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DEFLECTIONS

Assumption: The following assumptions are undertaken in order to derive a differential equation of
elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for beams that
are not stressed beyond the elastic limit.

2. The curvature is always small.
3. Any deflection resulting from the shear deformation of the material or shear stresses is neglected.

It can be shown that the deflections due to shear deformations are usually small and hence can be
ignored.
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the action of
loads the beam deflect to a position A'B' under load or infact we say that the axis of the beam bends to a
shape A'B'. It is customary to call A'B' the curved axis of the beam as the elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending moment M
varies along the length of the beam and we represent the variation of bending moment in B.M diagram.
Futher, it is assumed that the simple bending theory equation holds good.
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If we look at the elastic line or the deflection curve, this is obvious that the curvature at every point is
different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x and y, x-
axis coincide with the original straight axis of the beam and the y — axis shows the deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us construct
the normal which intersect at point O denoting the angle between these two normal be di



But for the deflected shape of the beam the slope i at any point C is defined,

tani=d—3'r R ¢ i=j—3'r Assuming tani =i
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Futher

ds =Rdi

however,

ds = dx [usually for smallcury ature]
Hence

ds =dx = Rdi
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substitutingthevalueofi, one get
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Fromthe simplebendingtheary
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This is the differential equation of the elastic line for a beam subjected to bending in the plane of
symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as it is
frequently called.

Relationship between shear force, bending moment and deflection: The relationship among shear
force,bending moment and deflection of the beam may be obtained as

Differentiating the equation as derived
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Therefore, the above expression represents the shear force whereas rate of intensity of loading can also
be found out by differentiating the expression for shear force



Therefare if 'y 'isthe deflection of the loadedbe am,
thenthefollowingimportantrelationscanbearrivedat
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Methods for finding the deflection: The deflection of the loaded beam can be obtained various
methods.The one of the method for finding the deflection of the beam is the direct integration method,
i.e. the method using the differential equation which we have derived.

Direct integration method: The governing differential equation is defined as
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onintegrating one get,
j_y= Igdx +A----thizequation gives the slope
i

of theloaded beam.

Integrate once againto get the deflection.

y=”%dx + A% +8

Where A and B are constants of integration to be evaluated from the known conditions of slope and
deflections for the particular value of x.



Case 1: Cantilever Beam with Concentrated Load at the end:-

A cantilever beam is subjected to a concentrated load W at the free end, it is required to determine the
deflection of the beam
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In order to solve this problem, consider any X-section X-X located at a distance x from the left end or
the reference, and write down the expressions for the shear force abd the bending moment

SF,_, = -W
BM|,_, = -W.x

Therefore M| _, = -W.x
. M
the gaverming equation =] = H;
substituting the value of M interms of % then integrating the eguation one get
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The constants A and B are required to be found out by utilizing the boundary conditions as defined
below

eatx=L;y=0 -mmmemmemmmeemeee- (1)

atx=L;dy/dx=0  -------mmmmmmmmm- 2



Utilizing the second condition, the value of constant A is obtained as
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Substituting the values of A and B we get
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The slope aswell as the deflection would be
maximum at the free end hence putting x=0 we get,
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Case 2: A Cantilever with Uniformly distributed Loads:-

In this case the cantilever beam is subjected to U.d.l with rate of intensity varying w / length.The same
procedure can also be adopted in this case
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Boundary conditions relevant to the problem
1. Atx=L;y=0
2. At x=L; dy/dx =0

The second boundary conditions yields

are as follows:
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Case 3: Simply Supported beam with uniformly distributed Loads:-

In this case a simply supported beam is subjected to a uniformly distributed load whose rate of intensity
varies as w / length.
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In order to write down the expression for bending moment consider any cross-section at distance of x
metre from left end support.
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The differential equation which gives the elastic curve for the deflected beam is
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Boundary conditions which are relevant in this case are that the deflection at each support must be zero.

ile.atx=0;y=0:atx=1ly=0



let us apply these two boundary conditions on equation (1) because the boundary conditions are on vy,
This yields B = 0.
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Futher

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. at the
position where the load is being applied ].So if we substitute the value of x = L/2
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Conclusions
(1) The value of the slope at the position where the deflection is maximum would be zero.
(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is
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By successive differentiation one can find the relations for slope, bending moment, shear force and rate
of loading.

Deflection (y)
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3" degree Polynomial

So the bending moment diagram would be
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equation In 'x’
Shear Force
Shear force is obtained by taking

third derivative.
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Case 4:

The direct integration method may become more involved if the expression for entire beam is not valid
for the entire beam.Let us consider a deflection of a simply supported beam which is subjected to a
concentrated load W acting at a distance ‘a' from the left end.




Let R1 & R be the reactions then,
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B.h far the portion AB
Mg =Fix Dixca
B.Mfor the portion BC
My =Rpx-¥Wix-a)a<xgl

so the differential equation for the two caseswould be,
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These two equations can be integrated in the usual way to find ‘y' but this will result in four constants of
integration two for each equation. To evaluate the four constants of integration, four independent
boundary conditions will be needed since the deflection of each support must be zero, hence the
boundary conditions (a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and deflection
at the point of application of load i.e. at x = a. Therefore four conditions required to evaluate these
constants may be defined as follows:

(a) at x=0; y =0 in the portion ABi.e. 0 <x<a

(b)at x =1; y=0 in the portion BCi.e. a<x <1

(c) at x = a; dy/dx, the slope is same for both portion

(d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R is obtained as
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Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence letting
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Now lastly ks is found out using condition (d) in equation (5) and equation (6), the condition (d) is that,



At x = a; y; the deflection is the same for both portion
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MOMENT-AREA METHOD:

The area moment method is a semi graphical method of dealing with problems of deflection of beams
subjected to bending. The method is based on a geometrical interpretation of definite integrals. This is
applied to cases where the equation for bending moment to be written is cumbersome and the loading is

relatively simple.

Let us recall the figure, which we referred while deriving the differential equation governing the beams.

It may be noted that dq is an angle subtended by an arc element ds and M is the bending moment to
which this element is subjected.

We can assume,
ds = dx [since the curvature is small]

hence, R dg =ds

48 _ 1 _ M

ds R EI

df _ M

ds El

But far small curvature[but Bis the angle slope is tanf :¥ for small
X
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anglestanf =Ahence § = d—ysu we getﬁ :Ehy putting ds = dx]
dx dx*  El

Hence,
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The relationship as described in equation (1) can be given a very simple graphical interpretation with
reference to the elastic plane of the beam and its bending moment diagram

A B ;l

2 Defbaio ,:“,.,,,T tangents drawn at the

AQQ&:L do end of small element ds.
Deflection curve of p B — xdt
—_— ‘
the beam \>< Arc = Angle x radius
= 0 we can lake the radius
.~ S, to be equal 1o X
/ JB! This Isalso within
Al v reasonable acouracy

Bending Moment dlagram //
of the beam subjected to —m| M< [/ oC
arhitrary type of loading
A —x —= B
cantroid

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded beam and
A1Buis its corresponding bending moment diagram.

Let AO = Tangent drawn at A
BO = Tangent drawn at B
Tangents at A and B intersects at the point O.

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B is the
deflection of point B away from the tangent at A. All these quantities are futher understood to be very
small.

Let ds = dx be any element of the elastic line at a distance x from B and an angle between at its tangents
be dg. Then, as derived earlier

b d
df= ——
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This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded
bending moment diagram divided by EI.

From the above relationship the total angle g between the tangents A and B may be determined as



Since this integral represents the total area of the bending moment diagram, hence we may conclude this
result in the following theorem

Theorem I:
{ slopeord } _ %xarea of B.M diagrambetween
between any two points correspanding partionof B.Mdiagram

Now let us consider the deflection of point B relative to tangent at A, this is nothing but the vertical
distance BB'. It may be note from the bending diagram that bending of the element ds contributes to this
deflection by an amount equal to x dq [each of this intercept may be considered as the arc of a circle of
radius x subtended by the angle q]

B
a=jxda
Hence the total distance B'B becomes  #

The limits from A to B have been taken because A and B are the two points on the elastic curve, under
consideration]. Let us substitute the value of dq = M dx / El as derived earlier
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A [ This is infact the moment of area of the bending moment diagram]

Since M dx is the area of the shaded strip of the bending moment diagram and X is its distance from B,
we therefore conclude that right hand side of the above equation represents first moment area with
respect to B of the total bending moment area between A and B divided by EI.

Therefore,we are in a position to state the above conclusion in the form of theorem as follows:

Theorem I1:

1 {ﬁrat mament of area with respect }

= =
Deflection of point ‘B’ relative to point A El | topointB, of the total B.M diagram

Futher, the first moment of area, according to the definition of centroid may be written as A, where *
is equal to distance of centroid and a is the total area of bending moment
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Thus, '



Therefore,the first moment of area may be obtained simply as a product of the total area of the B.M
diagram betweenthe points A and B multiplied by the distance *to its centroid C.

If there exists an inflection point or point of contreflexure for the elastic line of the loaded beam between
the points A and B, as shown below,
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Then, adequate precaution must be exercised in using the above theorem. In such a case B. M diagram
gets divide into two portions +ve and —ve portions with centroids Ciand C,. Then to find an angle q
between the tangentsat the points A and B

A u]
And similarly for the deflection of B away fromthe tangent at Abecomes
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Cantilever carrying point load at its free end

1. A cantilever is subjected to a concentrated load at the free end.lt is required to find out the deflection
at the free end.

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below

7 777

\IWL B.M,Diagram

Let us workout this problem from the zero slope condition and apply the first area - moment theorem

slope at A:%[Area of B.M diagram between the points A and B]

1
= EI:EL.WL]
_ WLt
2El
The deflection at A (relative to B) may be obtained by applying the second area - moment theorem
NOTE: In this case the point B is at zero slope.
Thus,
&= é [first moment of area of B.M diagram between A and B about A]
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Simply supported beam carrying point load at its mid span:

A simply supported beam is subjected to a concentrated load W at point C. The bending moment
diagram is drawn below the loaded beam.

B.M digram.

Again working relative to the zero slope at the centre C.

[Area of B.M diagrambetween A and C]

1 [[1 ][%][#]] we aretaking half area of the B.Mbecause we

slope atA=

M| —

“Elz

havetowork out thisrelative to a zero slope
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Deflection of A relative to C = central deflection of C
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SIMPLY SUPPORTED BEAM CARRYING UDL OF ENTIRE SPAN:

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M is equal to
WI?/ 8
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