1 FLOW THROUGH PIPES

1.1 Laminar Flow

A stream line is an imaginary line with no flow normal to it, only along it. When the flow is laminar, the
streamlines are parallel and for flow between two parallel surfaces we may consider the flow as made up
of parallel laminar layers. In a pipe these laminar layers are cylindrical and may be called stream tubes.

In laminar flow, no mixing occurs between adjacent layers and it occurs at low average velocities.

1.2 Turbulent Flow

The shearing process causes energy loss and heating of the fluid. This increases with mean velocity.
When a certain critical velocity is exceeded, the streamlines break up and mixing of the fluid occurs. The
diagram illustrates Reynolds coloured ribbon experiment. Coloured dye is injected into a horizontal
flow. When the flow is laminar the dye passes along without mixing with the water. When the speed of
the flow is increased turbulence sets in and the dye mixes with the surrounding water. One explanation
of this transition is that it is necessary to change the pressure loss into other forms of energy such as

angular kinetic energy as indicated by small eddies in the flow.
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1.3 Laminar and Turbulent Boundary Layers

1.3.1 Critical Velocity - Reynolds Number

When a fluid flows in a pipe at a volumetric flow rate Q m®/s the average velocity is defined
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The Reynolds mumber is defined as R
L vV

If you check the units of Re you will see that there are none and that it is a dimensionless number. You

will learn more about such numbers in a later section.

For “small enough flowrate” the dye streak will remain as a well-defined line as it flows along, with only
slight blurring due to molecular diffusion of the dye into the surrounding water. For a somewhat larger
“intermediate flowrate” the dye fluctuates in time and space, and intermittent bursts of irregular behavior
appear along the streak. For “large enough flowrate” the dye streak almost immediately become blurred
and spreads across the entire pipe. Reynolds discovered that it was possible to predict the velocity or
flow rate at which the transition from laminar to turbulent flow occurred for any Newtonian fluid in any
pipe. He also discovered that the critical velocity at which it changed back again was different. He found
that when the flow was gradually increased, the change from laminar to turbulent always occurred at a
Reynolds number of 2500 and when the flow was gradually reduced it changed back again at a Reynolds
number of 2000. Normally, 2000 is taken as the critical value.

1.3.2 Head loss due to Friction:

There are many types of losses of head for flowing liquids such as friction, inlet and outlet losses. The
major loss is that due to frictional resistance of the pipe, which depends on the inside roughness of the

pipe. The common formula for calculating the loss of head due to friction is Darcy’s one.

Darcy’s formula for friction loss of head:

For a flowing liquid, water in general, through a pipe, the horizontal forces on water between two

sections (1) and (2) are: Area A
1 Direction
. of Flow
P1LA=P2A+FR =

Friction along Wall

P1= Pressure intensity at (1).
_

Fluid Flow *
f ————————p

A = Cross sectional area of Friction along Wall
pipe. Po= Pressure intensity



at (2).
FR= Frictional Resistance at (2).
FRIYA=(P1/y)-(P2/y)=hi
Where,
hf = Loss of pressure head due to friction.
v = Specific gravity of water.

It is found experimentally that:

FR = Factor x Wetted Area x Velocity?
FR=(yf/29) x (ndL)xV>

Where, f = Friction coefficient.
d = Diameter of pipe.
L = Length of pipe.

he=(pf/20) x (md L) xv2= 4f*L*\?

v (m d2 /4) d*2g

hf = 4fLv?2

2gd

It may be substituted for [v = Q / (= d2 /4)] in the last equation to get the head loss for a
known discharge. Thus,

hf = 32fLQ2




Note: f'=4f

The Darcy — Weisbach equation relates the head loss (or pressure loss) due to friction along a given

length of a pipe to the average velocity of the fluid flow for an incompressible fluid.

The friction factor f is not a constant and depends on the parameters of the pipe and the velocity of the

fluid flow, but it is known to high accuracy within certain flow regimes.

For given conditions, it may be evaluated using various empirical or theoretical relations, or it may be

obtained from published charts.

Re (Reynolds Number) is a dimensionless number.

Re=pvd
H
For pipes,  Laminar flow, Re <2000
Transitional flow, 2000 < Re < 4000
Turbulent flow, Re > 4000

For laminar flow,
Poiseuille law, (f = 64/Re) where Re is the Reynolds number .
For turbulent flow,

Methods for finding the friction coefficient f include using a diagram such as the Moody chart, or

solving equations such as the Colebrook—White equation.

Also, a variety of empirical equations valid only for certain flow regimes such as the Hazen — Williams
equation, which is significantly easier to use in calculations. However, the generality of Darcy —

Weisbach equation has made it the preferred one.

The only difference of (hf) between laminar and turbulent flows is the empirical value of (f).
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1.4 Minor Losses
Minor losses occur in the following circumstances.
a) Exit from a pipe into a tank.
b) Entry to a pipe from a tank.
c) Sudden enlargement in a pipe.
d) Sudden contraction in a pipe.
e) Bends in a pipe.

f) Any other source of restriction such as pipe fittings and valves.

Sudden /
expansion
“u

In general, minor losses are neglected when the pipe friction is large in comparison but for short pipe

systems with bends, fittings and changes in section, the minor losses are the dominant factor.

In general, the minor losses are expressed as a fraction of the kinetic head or dynamic pressure in the

smaller pipe.
Minor head loss = k (v2/2g)

Values of k can be derived for standard cases but for items like elbows and valves in a pipeline, it is

determined by experimental methods.



1.4.1 Coefficient of Contraction Cc

The fluid approaches the entrance from all directions and the radial velocity causes the jet to contract
just inside the pipe. The jet then spreads out to fill the pipe. The point where the jet is smallest is called
the VENA CONTRACTA.

=
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Vena-contracta

The coefficient of contraction C. is defined as
Cc = AjlAo
A\j is the cross sectional area of the jet and Ag is the c.s.a. of the pipe. For a round pipe this becomes Ce
= dj2/do2.
1.4.2 Coefficient of Velocity Cv
The coefficient of velocity is defined as
Cv = actual velocity/theoretical velocity

In this instance it refers to the velocity at the vena-contracta but as you will see later on, it applies to

other situations also.
1.4.3 Exit from a Pipe Into a Tank.

The liquid emerges from the pipe and collides with stationary liquid causing it to swirl about before
finally coming to rest. All the kinetic energy is dissipated by friction. It follows that all the kinetic head

islostsok=1.0
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1.4.4 Entry to a Pipe from a Tank

The value of k varies from 0.78 to 0.04 depending on the shape of the inlet. A good rounded inlet has a

low value but the case shown is the worst.
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1.4.5 Sudden Enlargement

This is similar to a pipe discharging into a tank but this time it does not collide with static fluid but with

slower moving fluid in the large pipe. The resulting loss coefficient is given by the following expression.
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1.4.6 Sudden Contraction

This is similar to the entry to a pipe from a tank. The best case gives k = 0 and the worse case is for a
sharp corner which gives k = 0.5.
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1.4.7 Bends and Fittings

The k value for bends depends upon the radius of the bend and the diameter of the pipe. The k value for
bends and the other cases is on various data sheets. For fittings, the manufacturer usually gives the k
value. Often instead of a k value, the loss is expressed as an equivalent length of straight pipe that is to

be added to L in the Darcy formula.
1.5 Hydraulic Gradient

Consider a tank draining into another tank at a lower level as shown. There are small vertical tubes at
points along the length to indicate the pressure head (h). Relative to a datum, the total energy head is ht

= h + z + u?/2g and this is shown as line A.

The hydraulic grade line is the line joining the free surfaces in the tubes and represents the sum of h and
z only. This is shown as line B and it is always below the line of ht by the velocity head u?/2g. Note that
at exit from the pipe, the velocity head is not recovered but lost as friction as the emerging jet collides

with the static liquid. The free surface of the tank does not rise.

The only reason why the hydraulic grade line is not horizontal is because there is a frictional loss hs. The

actual gradient of the line at any point is the rate of change with length i = 8h¢/5L
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1.6 Siphon

A siphon is a long bent pipe which is used to carry water from a reservoir at a higher elevation to another
reservoir at a lower elevation when the two reservoirs are separated by a hill or high level ground in
between as shown in Fig. Since the siphon is laid over the hill or the high level ground, for some length
from the entrance section it will rise above the water surface in the upper (or supply) reservoir, and then

for the remaining length it will drop down to be connected to the lower reservoir.
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The rising portion of the siphon is known as the 'inlet leg (or inlet limb), the highest point is known as
summit and the portion between the summit and the lower reservoir is known as outlet leg (or outlet
limb). As may be seen in Fig. the inlet leg (or inlet limb) of a siphon isusually smaller than the outlet leg
(or outlet limb). As the siphon is also a long pipe, the loss of head due to friction will be very large and
hence the other minor losses may be neglected. Further the length of the siphon maybe taken as the
length of its horizontal projection. Hence the hydraulic grade line and the energy grade line (or total
energy line) for a siphon, as shown in Fig.2.1 may also be obtained in the same manner as in the case of

an ordinary long pipe.

It will be seen from Fig. 2.1, that the hydraulic grade line cuts the siphon at points C and D, so that some
portion of the siphon is above the hydraulic grade line. The vertical distance between the hydraulic grade
line and the pipe centre line represents the pressure at any section. If the hydraulic grade line is above
the centre line of the pipe then the pressure is above atmospheric; and if the hydraulic grade line is below

the centre line of the pipe, the pressure is negative or below atmospheric.

Thus for the portion of the siphon below points C and D the pressure will be above atmospheric and at
points C and D the pressure of the water flowing in the siphon is equal to atmospheric pressure. For the
portion of the siphon between C and D the pressure will be below atmospheric. As the highest point of
the siphon above the hydraulic grade line is the summit S, the water pressure at this point is the least.
Further as the vertical distance between the summit of the siphon and the hydraulic grade line increases,
the water pressure at this point reduces. Theoretically this pressure may be reduced to - 10.3 m of water
(if the atmospheric pressure is 10.3 m of water) or absolute vacuum, because this limit would correspond
to a perfect vacuum and the flow would stop. However, in practice if the pressure is reduced to about 2.5
m of water absolute or 7.8 m of water vacuum the dissolved air or other gases would come out of the
solution and collect at the summit of the siphon in sufficient quantity to form an air-lock, which will

obstruct the continuity of the flow, (or the flow will completely stop).

A similar trouble may also be caused by the formation of the water vapor in the region of low pressure.
Therefore the siphon should be laid so that no section of the pipe will be more than 7.8 m above the
hydraulic grade line at the section. Moreover, in order to limit the reduction of the pressure at the
summit the length of the inlet leg of the siphon is also required to be limited. This is so because as
indicated below, if the inlet leg is very long a considerable loss of head due to friction is caused,

resulting in further reduction of the pressure at the summit.



1.7 Pipes in Series and Parallel

In many pipe systems there is more than one pipe involved. The governing mechanisms for the flow in

multiple pipe systems are the same as for the single pipe systems.

1.7.1 Pipesin Series
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L

The indicated pipe system has a steady flow rate Q through three pipes with diameters D1, D2, & Ds.

Two important rules apply to this problem.
The flow rate is the same through each pipe section. Q1= Q2=Q3=Q

The total frictional head loss is the sum of the head losses through the various sections.
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1.7.2 Pipesin Parallel

The indicated pipe system has a steady flow rate Q1, Q2, Qs through three pipes with diameters D1, D2, &

Ds. Two important rules apply to this problem.
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1.8 Branched Pipes

Consider the third example of a three-reservoir pipe junction as shown in the figure. If all flows are

considered positive toward the junction, then Q1 +Q2 +Q3=0

— lf.' = =0
h,=2z;+ Ps
pg
Ah, ;' fllel =z —hy
Ah, = gj %Ll—z: 2 — hy
Ahy = ;/_;de: =z—hy

which obviously implies that one or two of the flows must be away from the junction. The pressure must
change through each pipe so as to give the same static pressure p; at the junction. In other words, let the

HGL at the junction have the elevation.

1.9 Equivalent Pipe

Often a compound pipe consisting of several pipes of varying diameters and lengths is to be replaced by
a pipe of uniform diameter, which is known as equivalent pipe. The uniform diameter of the equivalent
pipe is known as the equivalent diameter of the compound pipe. The size of the equivalent pipe may be
determined as follows. If L1, L2, L3 etc., are the lengths and D1, D2 and D3 etc., are the diameters



respectively of the different pipes of a compound pipeline, then the total head loss in the compound pipe,
neglecting the minor losses, is
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Again by continuity
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If D is the diameter and Load is the length of the equivalent pipe then it would carry the same discharge
Q if the head loss due to friction in the equivalent pipe is same as that in the compound pipe. The loss of
head due to friction in the equivalent pipe is

CFLVE F Q* L
~2gD  2g(n/3° D"

Thus equating the two heads losses, we get

L [l Lo L
D= |pf p: D

h;

The above equation is known as Dupuit’s equation, which may be used to determine the size of the
equivalent pipe. Thus if the length of the equivalent pipe is equal to the total length of the compound
pipe i.e., L= (L1, L2, Ls+...), then the diameter D of the equivalent pipe may be determined by using

above expression.
1.10 Pipe Networks

A group of interconnected pipes forming several loops as shown in fig below is called a network of

pipes. Such networks of pipes are commonly used for municipal water distribution systems in cities.

The main problem in a pipe network is to determine the distribution of flow through the various pipes of
the network such that all the conditions of flow are satisfied and all the circuits are then balanced. The

conditions to be satisfied in any network of pipes are as follows:
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According to the principle of continuity the flow into each junction must be equal to the flow out of the

junction. For example at junction A, the inflow must be equal to the flow through AB and AG.

In each loop, the loss of head due to flow in clockwise direction must be equal to the loss of head due to
flow in anticlockwise direction. For example in the loop ABCHG the sum of the head losses due to flow
in AB, BC and CH (clockwise flow) must be equal to the sum of the head losses due to flow in AG and

GH (anticlockwise flow).

The Darcy-Weisbach equation must be satisfied for flow in each pipe. Minor losses may be neglected if
the pipe lengths are large. However if the minor losses are large, they may be taken into account by
considering them in terms of the head loss due to friction in equivalent pipe lengths.According to Darcy-

Weisbach equation the loss of head hrthrough any pipe discharging at the rate of Q can be expressed as
hf =rQn

Where r is a proportionality factor which can be determined for each pipe knowing the friction factors
f, the length L and the diameter D of the pipe.

_ fi _ __FfL 1\
(r "~ 2g(m/4)*D5 12.1&1:5)'
and n is an exponent having numerical value ranging from 1.72 to 2.00.

1.11 Hardy — Cross Method

The pipe network problems are in general complicated and cannot be solved analytically. As such
methods of successive approximations are utilised. One such method which is commonly used is ‘Hardy
Cross Method’, named after its original investigator. The procedure for the solution of pipe network

problems by the Hardy Cross Method is as follows:



Assume a most suitable distribution of flow that satisfies continuity at each junction.
With the assumed values of Q, compute the head losses for each pipe using hf = rQn

Consider different loops or circuits and compute the net head loss around each circuit considering the
head loss in clockwise flows as positive and in anti-clockwise flows as negative. For a correct
distribution of flow the net head loss around each circuit should be equal to zero, so that the circuit will
be balanced. However, in most of the cases, for the assumed distribution of flow the head loss around the
circuit will not be equal to zero. The assumed flows are then corrected by introducing a correction AQ
for the flows, till the circuit is balanced. The value of the correction AQ to be applied to the assumed
flows of the circuit may be obtained as follows:

X Qs

YrnQi-t

AQ =—

In the above expression for the correction the denominator is the sum of absolute terms and hence it has
no sign. Further if the head losses due to flow in the clockwise direction are more than losses due to flow
in the anti-clockwise direction, then according to the sign convention adopted, AQ will be negative and
hence it should be added to the flow in the anti- clockwise direction and subtracted from the flow in the
clockwise direction. On the other hand if the head losses due to flow in the clockwise direction are less
than the head losses due to flow in the anti-clockwise direction, then AQ will be positive hence it should
be added to the flow in the clockwise direction and subtracted from the flow in the anti-clockwise
direction. Moreover, for the pipes common to two circuits or loops (such as CH, GH, HF etc.) a
correction from both the loops will be required to be applied.

With the corrected flows in all the pipes, a second trial calculation is made for all the loops and the

process is repeated till the correction become negligible.



Numericals

Problem.

Consider the two reservoirs shown in figure 16, connected by a single pipe that changes diameter over its
length. The surfaces of the two reservoirs have a difference in level of 9m. The pipe has a diameter of
200mm for the first 15m (from A to C) then a diameter of 250mm for the remaining 45m (from C to B).

A

pipe |

diameter d, )
length L, pipe 2
diameter d,
length L,

9m

Figure 16:
For the entrance use k;. = 0.5 and the exit k;. = 1.0. The join at C is sudden. For both pipes use f=0.01.

Solution.

Total head loss for the system H = height difference of reservoirs

hp = head loss for 200mm diameter section of pipe
hp = head loss for 250mm diameter section of pipe
hi_ cniry = head loss at entry point

hy join = head loss at join of the two pipes

hi exit = head loss at exit point

So
H=hgs +hp+h entry + thnln + h it =9m

All losses are, in terms of ():

by SO
T340
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Substitute these into
hﬂ + hl‘.’ + thnu'y +* hL;om+ hl.cxn =9

and solve for Q, to give Q =0.158 m’/s

Problem.

Two pipes connect two reservoirs (A and B) which have a height difference of 10m. Pipe | has diameter
50mm and length 100m. Pipe 2 has diameter 100mm and length 100m. Both have entry loss k; =0.5 and
exit loss ky=1.0 and Darcy fof 0.008.
Calculate:
a) rate of flow for each pipe
b) the diameter D of a pipe 100m long that could replace the two pipes and provide the same
flow.

Solution.



a)
Apply Bernoulli to each pipe separately For plpe l:

Poo¥ay oPo iy cqsh (A0 (0%
g 28 g 2 2g 2gd, 2g

pa and pg are atmospheric, and as the reservoir surface move s slowly u,and ug are negligible, so

Z == [05+f+10]2g

10:(1.0+4"°'°°8"'°°] u;
0.0 2x9.81
u,=1731mls

And flow rate is given by

2
=u ﬂL:O.OOMm’/s
1 1 4

For pipe 2:

,

2 2 2
Pa My, . . +—5-+-,+05 f‘—/ﬁ‘ln.o-”i-
P28 " ;g2 2g 2gd, 2g

Again p, and py are atmospheric, and as the reservoir surface move s slowly u, and ug are negligible, so
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|0=(l.0+4x0'008x'00) 1

0.1 2x981
=242m/s
And flow rate is given by
0, =u.‘%-00190m s

b) Replacing the pipe, we need Q = Q; + Qs = 0.0034 + 0.0190 = 0.0224 m’/s

For this pipe, diameter D, velocity u , and making the same assumptions about entry/exit losses, we have:

2 4 2
&-4»"' = ——E’-+£L+ +OS"—+ L +1

pE 2g /g 2g T2g 28D T 2g
Lo
=, =z, =| 05+ 410
i ( Jano)
™ (|5+4x0008x100) u

2x9.81
1962=|15+ ]

The velocity can be obtained from Q 1.e.

Q=Au=—ﬂ—’i—:u
_4_g 0.02852
D!
So
l%'2=(15 32 o.ozz’;sz)2
DN D’

0=241212D° -15D-32
which must be solved iteratively

An approximate answer can be obtained by dropping the second term:
0=241212D" =32

_32
D=13%41212

D =0.1058m
Writing the function

f(D)=241212D° -15D-32
£(0.1058) =-0.161
So increase D slightly, try 0.107m
£(0.107) =0.022
1.e. the solution is between 0.107m and 0.1058m but 0.107 if sufficiently accurate.



Problem.

A pipe joins two reservoirs whose head difference is 10m. The pipe is 0.2 m diameter, 1000m in length
and has a f value of 0.008.
a) What is the flow in the pipeline?
b) It is required to increase the flow to the downstream reservoir by 30%. This is to be done
adding a second pipe of the same diameter that connects at some point along the old pipe and runs
down to the lower reservoir. Assuming the diameter and the friction factor are the same as the old
pipe, how long should the new pipe be?

Solution.

a)
2
h =9
i 3d5
10— 0.008 x 1000Q°
3x0.2°
0=0.0346m" /s
O =346litres /s
b)

H=10=hy, +h, =h, +h,

hfz = hfz
2 2
LLOY _ fiLO,
3d,’ 3d,’

as the pipes 2 and 3 are the same f, same length and the same diameter then (> = Qs.

By continuity Qy = Q7 + Q5 =20, =2();
So
_9
0.=%
and

L, = 1000 -L,



Then

10=h, +h,,
m:ﬂLQﬁ +szfo
3d; 3d;
_ JﬂLl Qﬁ fz(l 000 - LI HQ1 ‘fz}l
10= —+ <
3d1 3d2

As [1 = rzj d] —dz
QI 1000 - L
lﬂzﬂ_;[Ll +%J

|

The new Q, 1s to be 30% greater than before so Q= 1.3 = 0.0346 = 0.045 m’/s

Solve for L to give
L;=456.Tm

Lo=1000-4567=5432m

Problem. Consider the example of a reservoir feeding pipe.

A

diameter d

Figure 15: Reservoir feeding a pipe

The pipe diameter is 100mm and has length 15m and feeds directly into the atmosphere at point C 4m
below the surface of the reservoir (i.e. z, = z. = 4.0m). The highest point on the pipe is a B which is 1.5m
above the surface of the reservoir (i.e. z, =z, = 1.5m) and 5 m along the pipe measured from the
reservoir. Assume the entrance and exit to the pipe to be sharp and the value of friction factor fto be 0.08.
Calculate a) velocity of water leaving the pipe at point C, b) pressure in the pipe at point B.

Solution.



a)
We use the Bernoulli equation with appropriate losses from point A to C
and for entry loss ki =0.5 and exit loss k;. = 1.0.

For the local losses from Table 2 for a sharp entry ki = 0.5 and for the sharp exit as it opens in to the
atmosphere with no contraction there are no losses, so

ll2
h =05—
. 2
Friction losses are given by the Darcy equation
h = 4 fLu”
2gd

Pressure at A and C are both atmospheric, uy is very small so can be set to zero, giving
g Ak +0.52%
2g 2gd 2g

Zy=Zc = i(l +0.5+ ﬂ)
2g d

Substitute in the numbers from the question

&= u (l'5+4x0.08x15)
2x9.81 0.1
u=126mls

b)
To find the pressure at B apply Bernoulli from point A to B using the velocity calculated above. The
length of the pipe is L; = 5m:
2 2 2
z =B 4" 4 /L +0.5—

z, =Ltz +

g 2g © 2gd  2g
2,y =L "—'(1+0.5+%)
’ P 28 d

e B 106 (|5+4x0.08x5.0)
771000x9.81 " 2x9.81\ 0.1

Py ==28.58x10° N/m*
That is 28.58 kN/m” below atmospheric.

Problem.



The table shows the data for the network of pipes shown connecting four reservoirs to a
common junction.

Reservoir  Water Level K for Pipe

oOw >

(m)abovea connecting B
datum to J (s/m°) -
50 4.0

45 30 :
40 2.0
30 2.0

Calculate the flow in each pipe using iteration until the final head correction at the junction is
less than 0.1 m.

The height of the datum 1s not given so we can only calculate the combined head and height.
The best guess is usually the mean height of the reservoirs which is (50 + 45 + 40 + 30)/4 =
4125

Ist ITERATION

PIPE K z Ahg Q Q/hg Guess hy+z;
A 4 50 8.75 1.47902 0.16903 41.25

B 3 45 3.75 1.11803 0.29814

B 2 40 -1.25 -0.7906 0.63246

D 2 30 -11.25  -23717 0.21082

-0.5652 1.31045
ZShf = 200 2x(0.650) =-0.863 =Correct hy+z,=40.4

> Qhy 1310
2nd ITERATION
PIPE R z Ahg Q Q¢ Guess hytz
A 4 50 9.6 1.54919 0.16137 4125
B 3 45 46 123828 0.26919
c 2 40 04  -04472 1.11803
D 2 30 -104 22804 021926

0.05991 1.76786

Zﬁhf _ 26Q  2x(0.5991)

= =(0.0678 This is less than 0.1 so meets the answer
> Qhy 176786

Qa=155mls Qg=124ms Qc =-0.45m’/s Qp=-2.28 m’/s

Solution.



Q1
In the simple network shown Q; =0.8 rnlfs, Q,=-12 m’/s.
The resistance of each pipe 1s as follows.

Pipe AB R=50s"/m’
Pipe BC R =30s"m’
Pipe AC R=60s"/m’

Determine the flow in the three pipes. Take n=2
Problem.

Solution.

By conservation of flow, Q; =04 m’/s

Guess the flow in each pipe bearing in mind the total flow at a node is zero. Clockwise is
positive. The starting guess is:

Q(AB)=06 Q(BC)=-06 Q(BC)=-04
First iteration
PIPE R Q h¢ h/Q
AB 50 0.6 18 30
BC 30 -0.6 -10.8 18
AC 60 -0.2 24 12
-0.2 48 60

50— Dhy 48

= =0.04 Correct the Q values by subtractin
2) hy/Q  2x60 Q < .

Second iteration

PIPE R Q h¢ h/Q
AB 50 0.56 15.68 28
BC 30 -0.64 -12.288 19.2
AC 60 -0.24 -3.456 144
-0.32 -0.064 616
0Q = Zh" _.2932 =-0.000524 Correct the Q values by subtracting

T2 hy/Q  2x61.6

Third iteration

PIPE R Q h¢ hdQ
AB 50 0.56052 15.708  28.025
BC 30 -0.6395 -12.2688 19.185
AC 60 -0.2395 -3.44162 1437

-0.3185 -0.00005 61.58

This is one iteration more than we need. The head loss is so close to zero that this is the correct
answer.

Q (AB)=0.56052 m%/s, Q(BC)=-0.6395 m*/s and Q (AC)=-0.2395 m’/s

If we check the flow into each node we will see that the original figures have been maintained.



Problem.

The diagram shnw_s a water supply network "32\ 4003
with the demands indicated at the nodes. Supply > s
The value of K for each pipe is 1000 s*/m’ >
except for BE which is 7500 s/m’.

The supply pressure head at A 1s 50 m above

. _ F E D
the ground elevation for the area served which
is flat and level. Calculate the pressure head 5 0’, ‘ N
at each node. - 0.0
Solution.
0.5
0ol L .
) ) A % 0.08 0.02 _,./'UM
Supply 1 Y B » C
The problem must be solved as two loops B 001 4001
with a common pipe BE. . i
. 00 )
First make a guess at the flow rates. E % B
The supply must be S \ i
0.02+005+003+003+005+002=02m’/s N 0.0%
Bear in mind that the net flow 1s zero at all nodes. Data shown for initial guess

Start with loop ABEFA
PIPE R Q hg h/Q
AB 1000  0.08 6.4 80 Zh 535
3Q = - = =-0.01386
BE 7500 001 075 75 2> hy/Q 2x335
EF 1000 -008 -64 80
FA 1000 -0.1 -10 100
-9.25 335 Correct all flows in this loop by adding 0.01386.
0.02 025 0.03
¥ 00038 ' 0.02 s
Supply Y ? B =1
’ 005610 (H'IIJSIl 001
Poopets b oy v
» ‘ R
0.02 N 003

0.05

Data after first correction to left loop



Now do loop BCDEB

PIPE R Q he hdQ T h, B
BC 1000 002 04 20 3Q = - =—001117
CD 1000 -001  -0.1 10 2 hy/Q 2x2485

DE 1000 004 -16 40
BE 7500 -0.02381 42504 1785
-5.550  248.5 Correct all flows in this loop by adding 0.01117.

003
002 4

0.03
®._ 00038 0.03117 Pl
Supply > ]
upph e B e
02
e 001264
0.08619 | | 0.00117
F 006619 |g D
P 002883 "
0.02 v 0.03

0.035

Data after first correction to the right loop

This completes the first iteration so now do loop ABEFA again.

PIPE R Q he hf/Q T
AB 1000 009381 879956 9380597  5Q= n__-18132 00266
BE 7500  0.01264 1.19829 9480084 2% hy/Q  2x341

EF 1000 -0.0662 -438165 66.19403
FA 1000 -0.0862 -7.42941 86.19403

-1.81321 340.9949 Correct all flows by adding 0.00266

0.05

0.03

Supply
0.2

Diata after second correction
to the left loop

108354 0.00117

002583
0,03

002
Now do loop BCDEB again. 0.05
PIPE R Q he hyQ
BC 1000 003117 0971311 3116586 Q= Lha _ 16141 =-0.00459
CD 1000 000117 0.001359 1.165859 29 hy/Q  2x1759

DE 1000 -0.0288 -0.83141 28.83414
BE 7500 -0.0153 -1.7554  114.7411
-1.61414 175907 Correct all flows by adding 0.00459



0.0

0.02
Data after second correction 0.00646 I 0.0357% 003
to right loop SISJ!JJI‘_V s . 5 —
0.08354 0.0107 0.00575
Foo006354 o 002425
0.02 0.08
0.03
We need to keep going until hy 1s very small. Our initial guess was not very good.
Do ABEFA Again
> hy -0.849
o0) = = ==0.00131
PIPE R Q hy h/Q Q 2% hy/Q 2 x323.866
AB 1000  0.09646 930543 96.46467
BE 7500 0.01071 0.8604  80.33071
EF 1000 -0.0635 -4.03674 63.53533
FA 1000 -0.0835 -6.97815 83.53533
-0.84905 323.866  Correct all flows by adding 0.00131
0.03 )
002 4 0.03
Data after third correction . o P i 003s7s ¥
to the left loop T A B c
0.08222 | 0.01201, 0.00575
g 006222 0.02425 1
» R
0.02 v D
Do BCDEB again 0.03
PIPE R Q h¢ hy/Q
BC 1000 003575 1278342 3575391 5o_ 2hn _ -03603 _ .0
CD 1000  0.00575 0.033107 5.75391 2> h,/Q 2x155.916 .
DE 1000 -0.0242 -0.58787 24.24609
BE 7500 -0.012  -1.08389 90.16178
-0.36031 1559157 Correct all flows by adding 0.00116
0.05
0.02 4 0.03
¥ 0.09778 0.03691
Supply = * = -
a2 A B C
0.08222 0.01085 | 0.00691
p 00622 g D
> + >
0.02300 A
0.02 5 0.0
0.05

Final flow rates



We have a total friction head of less than | metre in both loops so we will end here.
To find the pressure head at each node we must evaluate the friction heads with these flows.

PIPE R Q hy

AB 1000 0.09778 9.56004

BE 7300 0.01087 0.88554

EF 1000 -0.0622 -3.87189

FA 1000 -0.0822 -6.76087

BC 1000 0.03691 1.362302

CD 1000 0.00691 0.047739

DE 1000 -0.0231 -0.53318

BE 7300 -0.0109 -0D.88554

Pressure at B=50-=96=404 m Pressure at E=404-09=395m
Pressure at F=50-68=432m Pressure at E=432 -3 9= 39 3 m (check)
Pressure at C=404-14=39m Pressure at D=39-0.05=39m

Pressure at D= 394 0.5 =389 m (check)



