
1. FLOW THROUGH PIPES – VISCOUS FLOW 

1.1 INTRODUCTION 
 

Pipe flow is one of the most important, say, subjects in fluid mechanics. Since almost 

all, say way of life, we have to use, say some way or another way, the pipe flow; may be for 

water supply or may be for sewage flow or may be for say transport chemicals or a petroleum 

products, etc., number of applications are there for pipe flow systems. Viscous flow is also 

called as Laminar flow. 

The simple and ordered flow is called laminar flow. In laminar flow fluid particles move 

along straight parallel paths in “layers” or “laminae”. In this type of flow, the molecules move 

in the stream they were initially and do not change their stream while flowing. That is why the 

flow is simple and ordered. Ordered flow is justified only when velocity is less. At low 

velocities, forces due to viscosity are predominant over inertial forces. 

 

Fig. 1.1 Laminar and turbulent flow 

 
 

The viscosity of fluid induces relative motion within the fluid as the fluid layers slide 

over each other, which in turn gives rise to shear stresses. The magnitude of viscous shear 

stresses so produced, varies from point to point, being maximum at boundary and gradually 

decreasing with increase in the distance from boundary. 

 
The stresses so produced result in developing a resistance to flow. In order to overcome 

shear resistance to flow, the pressure drops from section to section in the direction of flow, so 

that a pressure gradient exists. Therefore, an expression relating shear and pressure gradients 

in laminar flow have to be studied in ordered to analyse various cases of laminar flow. 



1.2 RELATION BETWEEN SHEAR AND PRESSURE GRADIENTS 

Consider a free body of fluid having the form of an elementary parallelepiped of length 

δx width δz and thickness δy. Since there is a relative motion between different layers of fluid, 

the velocity distribution is non-uniform. 

 

 

Fig. 1.2 Forces acting on parallelepiped 

 

 
Thus the fluid layer abcd is moving at higher velocity than the layer below it and hence 

the layer abcd exerts a shear stress in the positive direction on the lower layer. On the other 

hand, lower layer exerts an equal and opposite shear stress on the layer abcd. 

 
Similarly, shear stress is exerted by the aˈbˈcˈdˈ on the layer below it in positive x- 

direction. But the magnitude of shear stresses on the layers abcd and aˈbˈcˈdˈ will be different. 

If τ represents the shear stress on the layer abcd then shear stresses on the layer aˈbˈcˈdˈ 

is equal to  

 

For a two dimensional flow there will be no shear stresses on the vertical faces abbˈaˈ 

and cdˈdcˈ. Thus the only forces acting on the parallelepiped in the direction of flow i.e, x will 

be pressure and shear forces. 



The net shear force acting on the parallelepiped 
 

 

If the pressure intensity on face addˈaˈis p, and since there exists a pressure gradient 

in the direction of flow, the pressure intensity on the face bccˈbˈ will be ( 𝘱 +   
𝜕𝘱   

𝛿𝑥). 
𝜕𝑥 

The net shear force acting on the parallelepiped 
 

 

For a steady and uniform flow, there being no acceleration in the direction of motion, 

the sum of these forces in the x-direction must be equal to zero. Thus, 

𝜕𝜏 𝜕𝘱 
( 
𝜕𝑦 

or 

) δxδyδz − ( 
𝜕𝑥 
) δxδyδz = 0 

𝜕𝜏 
( 
𝜕𝑦 

 
) = ( 

𝜕𝘱 
) 

𝜕𝑥 

 
 
 

1.1 

Equation 1.1, indicates that in a steady uniform laminar flow the pressure gradient in 

the direction of flow is equal to the shear stress gradient in the normal direction. Since the 

acceleration is absent, the pressure gradient is independent of y and shear stress gradient is 

independent of x. 

From Newton’s law of viscosity (  = 𝜇 
𝜕𝑣

) for viscous fluids, equation 1.1 can also 
𝜕𝑦 

be written as 
 
 

1.2 

Equation 1.2 is the differential equation which is used for the analysis of problems of 

steady uniform laminar flows. 

 

1.3 FLOW OF VISCOUS FLUIDS THROUGH CIRCULAR PIPES 

 

For flow of viscous fluids through circular pipe, the velocity distribution across a 

section, the shear stress distribution, drop of pressure for a given length and the ratio of 

maximum velocity to average velocity is to be determined. The flow through circular pipe will 

be laminar, if the Reynolds number (Re = ρVD/μ) is less than 2000. The value of Re 

depends upon density of fluid flowing through the pipe, average velocity of the fluid, 

diameter of the pipe and viscosity of the fluid. 



 
 

 
Fig. 1.3 Viscous flow through a pipe 

 
 

Consider a horizontal pipe of radius R. Consider an element of radius r, sliding in a 

cylindrical fluid element of radius (r+dr). Let the length of the fluid element be δx. If p is the 

pressure on the face AB, then the intensity of pressure on face CD will be ( 𝘱 +  
𝜕𝘱 
𝛿𝑥). The 

𝜕𝑥 

net forces acting on the fluid element are the pressure force, pπr2 on face AB, the pressure 

force, ( 𝘱 +  
𝜕𝘱 
𝛿𝑥) πr2 on face CD,  the net shear  force, τ *  2πrδx  on the surface of the fluid 

𝜕𝑥 

element. 

As there is no acceleration, the summation of all the forces in the direction of flow 

must be zero i.e, 

 

The hear stress 𝜏 across a section varies with r as Hence shear stress distribution across a 

section is linear. 

 

Fig. 1.4 Shear stress and velocity distribution across a section 



(i) Velocity distribution 

The velocity distribution across a section is obtained on substituting  𝜏 =            𝜇 
𝜕𝑢 

in 
𝜕𝑦 

equation 1.3. 

 

Fig. 1.5 Velocity profile across a section 

 

But in the relation 𝜏 = 𝜇 
𝜕 

, y is measured from the pipe wall. Hence y = R - r and 
𝜕𝑦 

dy = - dr. Then, 𝜏 = − 𝜇
 𝜕𝑢

. On substituting this value in equation 1.3, we get 
𝜕𝑟 

𝜕𝑢 1 𝜕𝘱 
= 

𝜕𝑟 
 

 

2𝜇 
( 
𝜕𝑥 

) 𝑟 

On integrating the above equation w.r.t ., ‘r’, we get 
 

𝑢 = 
1 

4𝜇 
(
𝜕𝘱 

𝜕𝑥 
) 𝒓𝟐 + C 

 

 
1.4 1.4 

Where c is the constant of integration and its value is obtained from the boundary 

condition that at r = R, u = 0. 

 

  
  =  −    

1
 

4𝜇 

 
(
𝜕𝘱 

𝜕𝑥 

 
) (𝑹𝟐 

 
− 𝒓𝟐) 

 
 
 

1.5 1.5 

In the above equation, the values of μ, 𝜕𝘱 and R are constant, which means the 
𝜕𝑥 

velocity, u varies with the square of r. Thus, the above equation is equation of parabola, 

indicating the velocity distribution across the section of a pipe is a parabolic. 

(ii) Ratio of maximum velocity to average velocity 

The velocity is maximum, when r = 0 in equation 1.5. Thus the maximum velocity, 

Umax is obtained as 

𝑼𝒎𝒂𝒙 

1 
= − 

4𝜇 

𝜕𝘱 
( ) 𝑹𝟐 
𝜕𝑥 

 

 
1.6 1.6 



The average velocity is obtained, ū, is obtained by dividing discharge of the fluid across 

the section by the area of the pipe (πR2). The discharge (Q) across the section is obtained by 

considering the flow through a circular element of radius r and thickness dr. The fluid flowing 

per second through this element is, 

dQ = u x 2πrdr 

=  −   
1

 
4𝜇 

(
𝜕𝘱 

𝜕𝑥 
) (𝑹𝟐 − 𝒓𝟐 )2πrdr 

 

On integrating the above equation within the limits 0 to R, we get 

 
 

1.7 1.7 

 

From the equations, 1.6 and 1.7,    𝑼
𝒎𝒂𝒙 = 2. Thus, the ratio of maximum velocity to 
ū 

average velocity is equals to two. 
 
 

 

Fig. 1.6 Velocity distribution across a section 

 
(iii) Drop of pressure for a given length (L) of a pipe 

 
From the equation 1.7, we have 

 

 

ū = 
1   
(− 

𝜕𝘱
) 𝑹𝟐 or (−  

𝘱
) =  

8𝜇ū
 

8𝜇 𝜕𝑥 𝜕𝑥 𝑹𝟐 



On integrating the above equation in between two sections 1 and 2 where the intensity 

of pressure is p1 and p2, w.r.t. x and on considering x2 – x1 = L and R = 
𝐷 

we get, 
2 

 
 

(𝒑𝟏 − 𝒑𝟐 ) = 

 
where p1 – p2 is the drop of pressure. 

32𝜇ū𝐿 
 

 

𝑫𝟐 

 

 

Fig. 1.7 Pressure drop across a section 

 
Thus, loss of pressure head (hf) is equal to

 (𝒑𝟏 − 𝒑𝟐) 
. 

𝜌𝑔 
 

i.e., 𝒉𝒇 = 
32𝜇ū𝐿 

𝑫𝟐 

 

1.8 1.8 
 

Equation 1.8 is called Hagen Poiseuille Equation. 

 

1.4 FLOW BETWEEN PARALLEL FLAT PLATES – BOTH PLATES AT REST 

 

Consider two parallel fixed plates kept at a distance ‘t’ apart. Consider a fluid element 

of length δx. 

 
Fig. 1.8 Viscous flow between two parallel plates 

If p is the pressure on the face AB, then the intensity of pressure on face CD will be 

( 𝘱 +  
𝜕𝘱 
𝛿𝑥). Let 𝜏 is the shear stress acting on the face BC then the shear stress on the face 

𝜕𝑥 

AD will be (𝜏 +   
𝜕𝜏 
𝛿𝑦). If the width of the element in the direction perpendicular to the 



𝜕𝑦 

paper is unity then, the forces acting on the fluid element are the pressure force, p𝛿y on face 

AB, the pressure force, (P  +  
𝜕𝘱 
𝛿𝑥)𝛿y on  face CD, the shear  force,  τδx  on face BC and the 

𝜕𝑥 

shear force (𝜏 +  
𝜕𝜏 
𝛿𝑦) 𝛿𝑥 on face AD. 

𝜕𝑦 

As there is no acceleration for steady and uniform flow, the summation of all the 

forces in the direction of flow must be zero i.e, 

 

The velocity distribution across a section is obtained on substituting the value of shear 

stress 𝜏  =  𝜇 
𝜕𝑢
 
𝜕𝑦 

in equation 1.9. 
 

𝜕𝘱 
( ) = (𝜇 
𝜕𝑥 

 

 
𝜕2𝑢 

𝜕𝑦2) or 

 

 
𝜕2𝑢 

𝜕𝑦2 
=

 

 
 

1 𝜕𝘱 
 

 

𝜇 𝜕𝑥 

 

On double integrating the above equation w.r.t. y, we get 

 
 

where C1 and C2 are constants of integration. Their values are obtained from the two 

boundary conditions (i) at y = 0, u = 0 (ii) at y =t, u = 0. 

On substituting first boundary condition in the equation 1.10, C2 = 0. And again on 

solving the equation 1.10 with second boundary condition and C2 = 0, 

−1 𝜕𝘱 
𝑪𝟏 = 𝑡 

2𝜇 𝜕𝑥 

From the values of C1 and C2, the equation 1.10 can also be written as 
 



In the above equation, the values of         μ, 𝜕𝘱 and t are constant, which means the 
𝜕𝑥 

velocity, u varies with the square of y. Hence the velocity distribution across a section of 

parallel plate is parabolic. 

Fig. 1.9 Velocity distribution of flow between two parallel plates 

 
(ii) Ratio of maximum velocity to average velocity 

The velocity is maximum, when y = t/2. Substituting this value in equation 1.11, the 

maximum velocity, Umax is obtained as 

𝑼𝒎𝒂𝒙 

1 
= − 

8𝜇 

𝜕𝘱 
( ) 𝒕𝟐 
𝜕𝑥 

 

 
1.12 

The average velocity is obtained, ū, is obtained by dividing discharge of the fluid across 

the section by the area of the section (t x 1). The discharge (Q) across the section is obtained 

by considering the rate of flow of fluid through the strip of thickness dy and integrating it. The 

rate of flow of fluid through the strip is, 

dQ = u x dy x 1 
 

=  −   
1

 
2𝜇 

(
𝜕𝘱 

𝜕𝑥 
) (𝒕𝒚 − 𝒚𝟐 )dy 

 

On integrating the above equation within the limits 0 to t, we get 
 

Then, from the relation ū = 
𝑄

 
𝐴𝑟𝑒𝑎 

, the average velocity 

ū = 
−1 

12𝜇 
( 
𝜕𝘱

) 𝒕𝟐 1.13 
𝜕𝑥 

 

From the equations, 1.12 and 1.13   , 𝑼
𝒎𝒂𝒙 = 3/2 Thus, the ratio of maximum velocity to 
ū  

average velocity is equals to 1.5. 
 

 



(iii) Drop of pressure head for a given length (L) 

From the equation 1.13, we have   

 

On integrating the above equation in between two sections 1 and 2 where the intensity 

of pressure is p1 and p2, w.r.t. x and on considering x2 – x1 = L we get, 

12𝜇ū𝐿 
(𝒑𝟏 − 𝒑𝟐 ) = 

where p1 – p2 is the drop of pressure. 

𝒕𝟐 

 

 
Fig. 1.10 pressure drop of flow between two parallel plates 

Thus, loss of pressure head (hf) 

i.e., 𝒉𝒇 

 
 

(iv) Shear Stress distribution 

=
 (𝒑𝟏 − 𝒑𝟐 ) 

𝙥𝒈 
= 

12𝜇ū𝐿 

𝙥𝒈𝒕𝟐 
 
 

1.14 

 

 



2. FLOW THROUGH PIPES – TURBULENT FLOW 
 

2.1 TURBULENT FLOW 

Whether a flow is laminar or turbulent depends of the relative importance of fluid friction 

(viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds number. Given 

the characteristic velocity scale, U, and length scale, L, for a system, the Reynolds number is Re 

= UL/ν, where ν is the kinematic viscosity of the fluid. For most surface water systems the 

characteristic length scale is the basin-scale. The flow in pipes is turbulent if Reynolds number is 

more than 4000. The velocity distribution in turbulent flow is relatively uniform and the velocity 

profile of turbulent flow is much flatter than the corresponding laminar flow parabola for the same 

mean velocity. Shear stress in turbulent flow is sum of shear stress due to viscosity and shear stress 

due to turbulence, 

𝜏 = 𝜇 
 

Where, 𝜇 = absolute viscosity; and 

𝜂 = eddy viscosity 

Turbulent shear stress by Reynolds is given as 

𝑑𝑣 
 

 

𝑑𝑦 
+ 𝜂 

𝑑𝑣 
 

 

𝑑𝑦 

𝜏  = 𝜌  𝑣  𝑦   𝑣 𝑥   

Where, 𝑣𝑥 𝑎𝑛𝑑 𝑣𝑦 = the fluctuating components of velocity in the x and y directions 

respectively. 

 
According to Prandtl the shear stress in turbulent flow is given by 

 

 

 
Where, 𝑙 = mixing length 

 

 
 

According to Prandtl, mixing length is that distance in the transverse direction which must 

be covered by a lump of fluid particles travelling with its original mean in order to make the 

difference between its velocity and the velocity of the new layer equal to the mean transverse 

fluctuation in turbulent flow. When a fluid flows through a pipe, close to the pipe wall a boundary 

layer is formed which may attain a maximum thickness equal to the radius of the pipe 



at a certain section of the pipe at which the flow is considered to have been established. For laminar 

flow in a pipe laminar boundary layer will be developed for the entire length of the pipe. According 

to Rouse the length of the pipe x from the entrance of the pipe off to the section where the flow is 

established is given as 

 

 
Where, D = diameter of the pipe ; and 

Re = Reynolds number  

 

According to Rouse the distance required for the establishment of a fully developed 

turbulent flow is given as 

 

 
The boundary may be classified as 

(i) hydro-dynamically smooth boundary 

(ii) hydro-dynamically rough boundary 

x 
= 50 

D 

 

 

A boundary is known as hydro-dynamically smooth boundary when (𝑘⁄𝛿′) is less than 0.25 and it 

is known as hydro-dynamically rough boundary when (𝑘⁄𝛿′) is greater than 6.0,  where k is  the 

average height of the irregularities projecting from the boundary surface, and 𝛿′ is the thickness of 

the laminar sublayer. The boundary is classified as boundary in transition when 0.25<(𝑘⁄𝛿′) < 6.0. 

 
2.2 VELOCITY DISTRIBUTION IN TURBULENT FLOW 

The velocity distribution for turbulent flow hydrodynamically smooth pipes is given by 

𝑣 
 

 

𝑉∗ 

 
= 5.75 log10 ( 

𝑉∗𝑦 
) + 5.5 

v 

 
 

V∗ = shear or friction velocity = √(τ0⁄ρ) 

and v = kinematic viscosity of the fluid. 

Velocity distribution for turbulent flow in hydrodynamically rough pipes is given by 

𝑣 
 

 

𝑉∗ 

𝑦 
= 5.75 log10 (

k
) + 8.5 



where 

k = average height of irregularities projecting from the boundary surface. 

The mean velocity V for turbulent flow in hydrodynamically smooth pipes of radius R is 

given by 

𝑉 
 

 

𝑉∗ 
= 5.75 log10 ( 

𝑉∗𝑅 
) + 1.75 

v 

The mean velocity V for turbulent flow in hydrodynamically rough pipes of radius R is 

given by 

𝑉 
 

 

𝑉∗ 

𝑅 
= 5.75 log10 (

k
) + 4.75 

The velocity distribution identical for both hydodynamically smooth and 

hydrodynamically rough pipes is given by 

𝑣 − 𝑉 
 

 

𝑉∗ 

𝑦 
= 5.75 𝑙𝑜𝑔10 (

𝑘
) + 3.75 

For 𝑦 = 𝑅, i.e., at pipe axis 𝑣 = 𝑣𝑚𝑎𝑥, 𝑡ℎ𝑢𝑠 

𝑣𝑚𝑎𝑥 − 𝑉 
 

𝑉∗ 

 
 

= 3.75 

 
 
 
 
 

 

 
 
 

Fig. 2.1 Development of flow through pipes 



2.3 THE MOODY CHART 

The friction factor in fully developed turbulent pipe flow depends on the Reynolds number 

and the relative roughness Ɛ/D, which is the ratio of the mean height of roughness of the pipe to 

the pipe diameter. The functional form of this dependence cannot be obtained from a theoretical 

analysis, and all available results are obtained from painstaking experiments using artificially 

roughened surfaces (usually by gluing sand grains of a known size on the inner surfaces of the 

pipes). Most such experiments were conducted by Prandtl’s student J. Nikuradse in 1933, followed 

by the works of others. The friction factor was calculated from the measurements of the flow rate 

and the pressure drop. 

 
 

Moody chart is probably one of the most widely accepted and used charts in engineering. 

Although it is developed for circular pipes, it can also be used for noncircular pipes by replacing 

the diameter by the hydraulic diameter. 



2.4 COMMERCIAL PIPES 
 

Commercially available pipes differ from 

those used in the experiments in that the 

roughness of pipes in the market is not uniform 

and it is difficult to give a precise description of 

it. Equivalent roughness values for some 

commercial pipes are given in Table 2.1 as well 

as on the Moody chart. But it should be kept in 

mind that these values are for new pipes, and the 

relative roughness of pipes may increase with use 

as a result of corrosion, scale buildup, and 

precipitation. As a result, the friction factor may 

increase by a factor of 5 to 10. Actual operating 

conditions must be considered in the design of 

piping systems. 

 

 

Also, the Moody chart and its equivalent Colebrook equation involve several uncertainties 

(the roughness size, experimental error, curve fitting of data, etc.), and thus the results obtained 

should not be treated as “exact.” It is usually considered to be accurate to ±15 

percent over the entire range in the figure. 

 



NUMERICALS: 
 

1. A crude oil of viscosity 0.97 poise and relative density 0.9 is flowing through a horizontal 

circular pipe of diameter 100 mm and of length 10 m. Calculate the difference of pressure at 

the two ends of the pipe, if 100 kg of the oil is collected in a tank in 30 seconds. 

Sol: Given µ = 0.97 poise = 0.097 Ns/m2 

Relative density = 0.9 

Density of oil = ρo = 0.9 x 1000 = 900 kg/m3 

Diameter of the pipe = D = 100 mm = 0.1 m 

Length of the pipe = L = 10 m 

Mass of oil collected = M = 100 kg 
 

Time = T = 30 seconds and then mass of oil per second = 100/30 kg/s = ρo x Q 

Then, Q = (100 x 900)/30 = 0.0037 m3/s 

ū = 
𝑄

 
𝐴𝑟𝑒𝑎 

= (0.0037 𝑥 4)/(𝛱 𝑥 0.1 𝑥 0.1) = 0.471 m/s 

 

The difference of pressure for laminar flow is given by, 
 

 

(𝒑𝟏 − 𝒑𝟐 ) = 
32𝜇ū𝐿 

 
 

𝑫𝟐 

= 
32 𝑥 0.097 𝑥 0.471 𝑥 10 

𝟎.𝟏𝟐 

 

= 1462.8 N/m2 = 0.1462.8 N/cm2
 

 

 
2. A fluid of viscosity 0.7 Ns/m2 and specific gravity 1.3 is flowing through a circular pipe of 

diameter 100 mm. The maximum shear stress at the pipe wall is given as 196.2 N/m2 , find the 

i) pressure gradient, ii) the average velocity and iii) Reynolds number of the flow. 

Sol: Given µ = 0.7 Ns/m2 

Relative density = 1.3 

Density of oil = ρo = 1.3 x 1000 = 1300 kg/m3 

Diameter of the pipe = D = 100 mm = 0.1 m 

Shear stress = Ʈo = as 196.2 N/m2
 

i) pressure gradient 𝜕𝘱, 
𝜕𝑥 



𝜕𝘱 2 

Maximum shear stress is given by, 
𝜏 = − ( 𝜕𝘱) 

𝑟 = − ( 𝜕𝘱) 
𝐷 = (

𝜕𝘱
) 0.1 

 
 

 

Then, 

 
(
𝜕𝘱 

𝜕𝑥 

 

) = − 

 
 
196.2 𝑥 4 

0.1 

𝜕𝑥 2 
 

= −𝟕𝟖𝟒𝟖 N/m2 per m. 

𝜕𝑥 2 𝜕𝑥 2 

ii) the average velocity ū =  
1  

Umax =[ −   
1   

( ) 𝑅 ] / 2 
2 4𝜇 𝜕𝑥 

 

= [1 x 7848 x 0.052] / [8 x 0.7] 

= 3.5 m/s 

iii) Reynolds number of the flow Re = 
𝜌ū𝐷

 
µ 

 

= ( 1300 x 3.50 x 0.1) / (0.7) = 650 

 

 

3. Determine the pressure gradient, shear stress at the two horizontal parallel plate and 

discharge per metre width for the laminar flow of oil with a maximum velocity of 2 m/s between 

two horizontal parallel fixed plates which are 100 mm apart. Take µ = 2.4525  Ns/m2. 

Sol: Given Umax = 2 m/s 
 

t = 100 mm = 0.1 m 

µ = 2.4525 Ns/m2
 

 
i) pressure gradient 𝜕𝘱, 

𝜕𝑥 
 

Maximum velocity is given by the equation 

 

𝑼𝒎𝒂𝒙 

1 
= − 

8𝜇 

𝜕𝘱 
( ) 𝒕𝟐 
𝜕𝑥 

2 = − 
(0.1 x 0.1) 

(8 x 2.4525) 
(
𝜕𝘱

)
 

𝜕𝑥 

 

(
𝜕𝘱 ) = - 3924 N/m2

 per m 

𝜕𝑥 
 

ii) Shear stress at wall, 
 

𝝉 = 
−1 𝜕𝘱 

𝑡 = - (1 x 3924 x 0.1) / (2) = 196.2 N/ m2
 

 

𝟎 2 𝜕𝑥 

 

iii) Discharge per metre width Q = mean velocity x area 
 

= (2/3) x Umax x (t x 1) = (2/3) x 2 x 0.1 x 1 = 0.133 m3/s. 



Exercise problems: 

1. An oil of viscosity 0.1 Ns/m2 and relative density 0.9 is flowing through a circular pipe 

of diameter 50 mm and a length of 300 m. The rate of flow of fluid through the pipe is 

3.5 litres/sec. Find the pressure drop in a length of 300 m and also the shear stress at the pipe 

wall. 
 

2. A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity is 

1.5 m/s. Find the mean velocity and radius at which this occurs. Also calculate the velocity at 4 

cm from the wall of the pipe. 

3. Power is required per kilometre of a line to overcome the viscous resistance to the flow 

of glycerine through a horizontal pipe of diameter 100 mm at the rate of 100 lit/s? Take viscosity 

as 8 poise and kinematic viscosity as 6 stokes. 

4. Water at 15º flows between two larger parallel plates at a distance of 1.6 mm apart. 

Determine i) maximum velocity, ii) pressure drop per unit length and iii) shear stress at the walls 

of the plates if the average velocity is 0.2 m/s. The viscosity of water at 15º is given as 

0.01 poise. 
 

5. There is a horizontal crack 40 mm wide and 2.5 mm deep in a wall of thickness 100 mm. 

Water leaks through the crack. Find the rate of leakage through the crack, if the difference of 

pressure between the two ends of the crack is 0.02943 N/cm2. Take viscosity of water equals to 

0.01 poise. 

6. Calculate the pressure gradient along flow, the average velocity and the discharge of an 

oil of viscosity 0.02 Ns/m2. flowing between two stationary plates 1 m wide maintained 10 mm 

apart. The velocity midway between the plates is 2 m/s. 
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Solution. 

 



Problem. 

Solution. 

 

 


