1. FLOW THROUGH PIPES — VISCOUS FL OW
1.1 INTRODUCTION

Pipe flow is one of the most important, say, subjects in fluid mechanics. Since almost
all, say way of life, we have to use, say some way or another way, the pipe flow; may be for
water supply or may be for sewage flow or may be for say transport chemicals or a petroleum
products, etc., number of applications are there for pipe flow systems. Viscous flow is also

called as Laminar flow.

The simple and ordered flow is called laminar flow. In laminar flow fluid particles move
along straight parallel paths in “layers” or “laminae”. In this type of flow, the molecules move
in the stream they were initially and do not change their stream while flowing. That is why the
flow is simple and ordered. Ordered flow is justified only when velocity is less. At low

velocities, forces due to viscosity are predominant over inertial forces.
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Fig. 1.1 Laminar and turbulent flow

The viscosity of fluid induces relative motion within the fluid as the fluid layers slide
over each other, which in turn gives rise to shear stresses. The magnitude of viscous shear
stresses so produced, varies from point to point, being maximum at boundary and gradually

decreasing with increase in the distance from boundary.

The stresses so produced result in developing a resistance to flow. In order to overcome
shear resistance to flow, the pressure drops from section to section in the direction of flow, so
that a pressure gradient exists. Therefore, an expression relating shear and pressure gradients

in laminar flow have to be studied in ordered to analyse various cases of laminar flow.



1.2 RELATION BETWEEN SHEAR AND PRESSURE GRADIENTS
Consider a free body of fluid having the form of an elementary parallelepiped of length

ox width 6z and thickness dy. Since there is a relative motion between different layers of fluid,

the velocity distribution is non-uniform.
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Fig. 1.2 Forces acting on parallelepiped

Thus the fluid layer abcd is moving at higher velocity than the layer below it and hence
the layer abcd exerts a shear stress in the positive direction on the lower layer. On the other
hand, lower layer exerts an equal and opposite shear stress on the layer abcd.

Similarly, shear stress is exerted by the a'b'c’'d’ on the layer below it in positive x-

direction. But the magnitude of shear stresses on the layers abcd and a'b’'c'd’ will be different.

If T represents the shear stress on the layer abcd then shear stresses on the layera'b'c'd’

is equal to
ar -
(T+ a—yﬂy_}.
For a two dimensional flow there will be no shear stresses on the vertical faces abb'a’

and cd'dc’. Thus the only forces acting on the parallelepiped in the direction of flow i.e, x will

be pressure and shear forces.



The net shear force acting on the parallelepiped

8 . Bt
= [(r +a—;§}r) oxbz — THxbzZ| = {_ﬂ—;_}ﬁxﬂyﬂz.

If the pressure intensity on face add'a'is p, and since there exists a pressure gradient

in the direction of flow, the pressure intensity on the face bec'db” will be (p + o 6x).
Ox

The net shear force acting on the parallelepiped
_ do _ _{8p
= [p-‘iyﬂz - (p + Eﬂx) 53,'52] = (H) Oxdyoz.

For a steady and uniform flow, there being no acceleration in the direction of motion,
the sum of these forces in the x-direction must be equal to zero. Thus,
Jt ap
(5) 8x8ydz— (5-) 8x8ydz =0

or

Jt ap
1.1
Equation 1.1, indicates that in a steady uniform laminar flow the pressure gradient in
the direction of flow is equal to the shear stress gradient in the normal direction. Since the
acceleration is absent, the pressure gradient is independent of y and shear stress gradient is
independent of x.

. . d . . .
From Newton’s law of viscosity ( = u ") for viscous fluids, equation 1.1 can also
oy

be written as
(5= G2
1.2

Equation 1.2 is the differential equation which is used for the analysis of problems of

steady uniform laminar flows.

1.3 FLOW OF VISCOUS FLUIDS THROUGH CIRCULAR PIPES

For flow of viscous fluids through circular pipe, the velocity distribution across a
section, the shear stress distribution, drop of pressure for a given length and the ratio of
maximum velocity to average velocity is to be determined. The flow through circular pipe will
be laminar, if the Reynolds number (Re= pVD/p) is less than 2000. The value ofRe

depends upon density of fluid flowing through the pipe, average velocity of the fluid,

diameter of the pipe and viscosity of the fluid.
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Fig. 1.3 Viscous flow through a pipe

Consider a horizontal pipe of radius R. Consider an element of radius r, sliding in a
cylindrical fluid element of radius (r+dr). Let the length of the fluid element be 6x. If p is the

pressure on the face AB, then the intensity of pressure on face CD will be ( p + @6x). The
Ox

net forces acting on the fluid element are the pressure force, pnr? on face AB, the pressure

force, (p + a_p(?x) nr? on face CD, the net shear force, T * 2mrdx on the surface of the fluid
0x

element.

As there is no acceleration, the summation of all the forces in the direction of flow

must be zero i.e,

[pm‘z — (,r:l + j—iﬂx) mre— T Em*ﬁx] =0

T = —(:—ijiz 13

ap -

. . . a . . .
The hear stress T across a section varies withr as ~~ Hence shear stress distribution across a
section is linear.
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Fig. 1.4 Shear stress and velocity distribution across a section



(i) Velocity distribution

The velocity distribution across a section is obtained on substituting t = wZtin
dy
equation 1.3.
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Fig. 1.5 Velocity profile across a section

But in the relationt = pu 6,4 is measured from the pipe wall. Hencey =R - r and

dy
dy=-dr. Then, 7= — uﬂ. On substituting this value in equation 1.3, we get
ar
du 1 (ap
ar 2o

On integrating the above equation w.r.t ., ‘r’, we get

1 ap 2
= —(— +
u= " ( ax) r2+C

1414
Where c is the constant of integration and its value is obtained from the boundary
condition thatatr =R, u=0.

Thatis. C = — f# (:—i) 12 and on substituting the value of C in equation 1.4.

= -~ @& ® -

1515

In the above equation, the values of p, 9P angLR are constant, which means the
X

velocity, u varies with the square of r. Thus, the above equation is equation of parabola,
indicating the velocity distribution across the section of a pipe is a parabolic.
(i) Ratio of maximum velocity to average velocity
The velocity is maximum, when r = 0 in equation 1.5. Thus the maximum velocity,
Umax is obtained as
1 op

=— __ (—)R2
4,u(ax)

Umax

161.6



The average velocity is obtained, i, is obtained by dividing discharge of the fluid across
the section by the area of the pipe (mR?). The discharge (Q) across the section is obtained by
considering the flow through a circular element of radius r and thickness dr. The fluid flowing
per second through this element is,

dQ =u x 2ardr

= — — () (R2 — 12 )2mrdr
4u ~0x

On integrating the above equation within the limits 0 to R, we get

m dp
= —|——|R*
¢ Bp:( ﬂx)

Then. from the relation 10 = . the average velocity

Area

_ 1 apy .
i= 5~ 3R
1.71.7

From the equations, 1.6 and 1.7,—U™** = 2. Thus, the ratio of maximum velocity to

u

average velocity is equals to two.
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Fig. 1.6 Velocity distribution across a section
(iii) Drop of pressure for a given length (L) of a pipe

From the equation 1.7, we have

i=_ R o (=H=
8u O0x 0x R2



On integrating the above equation in between two sections 1 and 2 where the intensity

of pressure is p1and pz, w.r.t. x and on considering xo—xi1=Land R = ” we get,
2

32uaL
(p1—pz)=—13
where p1— p2 is the drop of pressure.
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Fig. 1.7 Pressure drop across a section

Thus, loss of pressure head (h) is equal to- 2122,
pg
e, hy =2k

1.81.8
Equation 1.8 is called Hagen Poiseuille Equation.
1.4 FLOW BETWEEN PARALLEL FLAT PLATES - BOTH PLATES AT REST

Consider two parallel fixed plates kept at a distance ‘t” apart. Consider a fluid element

of length 6x.
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Fig. 1.8 Viscous flow between two parallel plates
If p is the pressure on the face AB, then the intensity of pressure on face CD will be
ap

(p + Z6x). Let 7 is the shear stress acting on the face BC then the shear stress on the face
O0x

AD will be (7 + alrSy). If the width of the element in the direction perpendicular to the



dy
paper is unity then, the forces acting on the fluid element are the pressure force, pdyon face

AB, the pressure force, (P + aﬁc?x)&y on face CD, the shear force, 16x on face BC and the
O0x
shear force (t + alrSy) 6x on face AD.
oy

As there is no acceleration for steady and uniform flow, the summation of all the

forces in the direction of flow must be zero i.e,

[p&y— (p ¥ %Sx)Sy— ™ox + (r+z—;6y)6x] =0

The velocity distribution across a section is obtained on substituting the value of shear
a
stress T = H— in equation 1.9.
y

0%u Jou 1 ap

Py =g -
ax oy 3,2 °r ayr ,uax

On double integrating the above equation w.r.t. y, we get

u= (‘*”]”2+ c, y+ C, 1.10

fx/ 2

where C1and Cz are constants of integration. Their values are obtained from the two
boundary conditions (i) aty =0, u =0 (ii) at y =t, u = 0.
On substituting first boundary condition in the equation 1.10, C>= 0. And again on

solving the equation 1.10 with second boundary condition and C, =0,
-1 (')p

Ci1=
! 2,uax

From the values of C1and C», the equation 1.10 can also be written as

= 15+ o

o= ()0

2u \ox



In the above equation, the values of [Th %aand t are constant, which means the
X

velocity, u varies with the square of y. Hence the velocity distribution across a section of

parallel plate is parabolic.

Fig. 1.9 Velocity distribution of flow between two parallel plates

(if) Ratio of maximum velocity to average velocity
The velocity is maximum, when y = t/2. Substituting this value in equation 1.11, the

maximum velocity, Umax iS obtained as
1 op
Unax =~ B (a) t?
1.12
The average velocity is obtained, @, is obtained by dividing discharge of the fluid across
the section by the area of the section (t x 1). The discharge (Q) across the section is obtained
by considering the rate of flow of fluid through the strip of thickness dy and integrating it. The
rate of flow of fluid through the strip is,

dQ=uxdyx1

=—"L _
2. (G (ty — y*)dy

On integrating the above equation within the limits O to t, we get

—1 yd
12u\dx

Then, from the relation 0 = @ , the average velocity
Area

- -1 ,0p
= — (Dt 1.13
i 12M( ax)

From the equations, 1.12 and 1.13 ,U™==3/2 Thus, the ratio of maximum velocity to

u

average velocity is equals to 1.5.



(iii) Drop of pressure head for a given length (L)
From the equation 1.13, we have

_ i
- L:p(ﬂx)tz

On integrating the above equation in between two sections 1 and 2 where the intensity

(nh:' _ —lzpuu
axt £l

of pressure is prand p2, w.r.t. x and on considering X2 — x1 = L we get,
12ual
(p1—p2)=—4

where p1— p2 is the drop of pressure.
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Fig. 1.10 pressure drop of flow between two parallel plates

Thus, loss of pressure head (hr)

hy _p1-p2) _ 12pul

ie., >
P9 Pyt

1.14

(iv) Shear Stress distribution

It 1s obtained by substituting value of velocity from the equation 1.11 into = u :—; .
that 15 .
—1 y8p —1adp
= u(=—(==)t— 2y = ——[t— 2y
’ H (Z,U, (ﬁx) [ }]) or T 2u dx [ V]
1.15

- a - - -
In the above equation. ﬁ and t are constant. Hence T vanes linearly with v. Shear

stress 15 maxinum when v = 0 or at the walls of the plates. Shear stress i1s zero when y = t/2

that 1s at the centre line between two plates. hMaximum shear stress (To) 15 given by
—1dp

T = Zax



2. FLOW THROUGH PIPES — TURBULENT FLOW

2.1 TURBULENT FLOW

Whether a flow is laminar or turbulent depends of the relative importance of fluid friction
(viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds number. Given
the characteristic velocity scale, U, and length scale, L, for a system, the Reynolds number is Re
= UL/v, where v is the kinematic viscosity of the fluid. For most surface water systems the
characteristic length scale is the basin-scale. The flow in pipes is turbulent if Reynolds number is
more than 4000. The velocity distribution in turbulent flow is relatively uniform and the velocity
profile of turbulent flow is much flatter than the corresponding laminar flow parabola for the same
mean velocity. Shear stress in turbulent flow is sum of shear stress due to viscosity and shear stress
due to turbulence,

dv dv
T= ,ME +n E
Where, u = absolute viscosity; and
n = eddy viscosity
Turbulent shear stress by Reynolds is given as
T = pUyUx

Where, wvxand vy = the fluctuating components of velocity in the x and y directions

respectively.

According to Prandtl the shear stress in turbulent flow is given by

_pdin®
=)

Where, [ = mixing length

According to Prandtl, mixing length is that distance in the transverse direction which must
be covered by a lump of fluid particles travelling with its original mean in order to make the
difference between its velocity and the velocity of the new layer equal to the mean transverse
fluctuation in turbulent flow. When a fluid flows through a pipe, close to the pipe wall a boundary

layer is formed which may attain a maximum thickness equal to the radius of the pipe



at a certain section of the pipe at which the flow is considered to have been established. For laminar
flow in a pipe laminar boundary layer will be developed for the entire length of the pipe. According
to Rouse the length of the pipe x from the entrance of the pipe off to the section where the flow is
established is given as

% — 0.07Re

Where, D = diameter of the pipe ; and

Re = Reynolds nhumber

-

According to Rouse the distance required for the establishment of a fully developed

turbulent flow is given as

X =50
D

The boundary may be classified as
(1) hydro-dynamically smooth boundary
(i) hydro-dynamically rough boundary

A boundary is known as hydro-dynamically smooth boundary when (k /&) is less than 0.25 and it

is known as hydro-dynamically rough boundary when (k/ s s greater than 6.0, where k is the
average height of the irregularities projecting from the boundary surface, and & is the thickness of

the laminar sublayer. The boundary is classified as boundary in transition when 0.25<(k/5') <6.0.

2.2 VELOCITY DISTRIBUTION IN TURBULENT FLOW

The velocity distribution for turbulent flow hydrodynamically smooth pipes is given by

v V*y
— =5.75logi0 (—) + 5.5
V. \Y

V. = shear or friction velocity = \/(To/p)

and v = kinematic viscosity of the fluid.

Velocity distribution for turbulent flow in hydrodynamically rough pipes is given by

v

y
V.= 5.75 log1o (1? + 8.5



where
k = average height of irregularities projecting from the boundary surface.
The mean velocity V for turbulent flow in hydrodynamically smooth pipes of radius R is
given by
1% V<R
7. = 575loguo (T) +1.75
The mean velocity V for turbulent flow in hydrodynamically rough pipes of radius R is
given by
174 R
7= 5.75 log1o (l? +4.75
The wvelocity distribution identical for both hydodynamically smooth and
hydrodynamically rough pipes is given by

v—=V y
V.= 5.75 log1o (E) + 3.75

For y =R, i.e., at pipe axiS v = Umax, thus

Vmax—V
— —=23.75
Vs
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Fig. 2.1 Development of flow through pipes



2.3 THE MOODY CHART

The friction factor in fully developed turbulent pipe flow depends on the Reynolds number
and the relative roughness €/D, which is the ratio of the mean height of roughness of the pipe to
the pipe diameter. The functional form of this dependence cannot be obtained from a theoretical
analysis, and all available results are obtained from painstaking experiments using artificially
roughened surfaces (usually by gluing sand grains of a known size on the inner surfaces of the
pipes). Most such experiments were conducted by Prandtl’s student J. Nikuradse in 1933, followed

by the works of others. The friction factor was calculated from the measurements of the flow rate
and the pressure drop.

Moody Diagram
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Moody chart is probably one of the most widely accepted and used charts in engineering.
Although it is developed for circular pipes, it can also be used for noncircular pipes by replacing
the diameter by the hydraulic diameter.



2.4 COMMERCIAL PIPES

Commercially available pipes differ from  Eguivalent roughness values for new
commercial pipes®

those used in the experiments in that the
Roughness, &

roughness of pipes in the market is not uniform

Material ft fmim
and it is difficult to give a precise description of Glazs, plastic 0 (smacth)
it. Equivalent roughness values for some  Concrete 0.003-0.03 0.3-3
o o Wood stave  0.0016 0.5
commercial pipes are given in Table 2.1 as well ~ Rubber,
. . smoothed 0.000033 0.01
as on the Moody chart. But it should be kept in Copper or

mind that these values are for new pipes, and the ~ Brass tubing 0.000005  0.0015

) ) ] ) Cast iron 0.00085 0.26
relative roughness of pipes may increase with use  Galvanized
iron 0.0005 0.15

as a result of corrosion, scale buildup, and Wrought iron  0.00015  0.046

precipitation. As a result, the friction factor may ~ Stainless steel 0.000007 0.002
Commercial

increase by a factor of 5 to 10. Actual operating steel 0.00015 0.045

conditions must be considered in the design of * The uncertsinty in thess values can be &8 much
L. & 68D percenl.
piping systems.
Also, the Moody chart and its equivalent Colebrook equation involve several uncertainties
(the roughness size, experimental error, curve fitting of data, etc.), and thus the results obtained
should not be treated as “exact.” It is usually considered to be accurate to +15

percent over the entire range in the figure.



NUMERICALS:

1. A crude oil of viscosity 0.97 poise and relative density 0.9 is flowing through a horizontal
circular pipe of diameter 100 mm and of length 10 m. Calculate the difference of pressure at
the two ends of the pipe, if 100 kg of the oil is collected in a tank in 30 seconds.

Sol: Given p = 0.97 poise = 0.097 Ns/m?
Relative density = 0.9
Density of oil = po = 0.9 x 1000 = 900 kg/m?
Diameter of the pipe =D =100 mm =0.1 m
Length of the pipe=L=10m
Mass of oil collected = M = 100 kg
Time = T = 30 seconds and then mass of oil per second = 100/30 kg/s = po X Q

Then, Q = (100 x 900)/30 = 0.0037 m3/s

i =_2_ — (0.0037 x4)/(I x 0.1 x 0.1) = 0.471 m/s

Area

The difference of pressure for laminar flow is given by,
32uil
(P1—p2)=—0

_32x0.097x0.471x 10
0.12

= 1462.8 N/m?=0.1462.8 N/cm?

2. A fluid of viscosity 0.7 Ns/m? and specific gravity 1.3 is flowing through a circular pipe of
diameter 100 mm. The maximum shear stress at the pipe wall is given as 196.2 N/m?, find the
1) pressure gradient, ii) the average velocity and iii) Reynolds number of the flow.

Sol: Given pu = 0.7 Ns/m?
Relative density = 1.3
Density of 0il = po= 1.3 x 1000 = 1300 kg/m?
Diameter of the pipe =D =100 mm =0.1m
Shear stress = To = as 196.2 N/m?

i) pressure gradient%a,
X



=—(0py7r =— (90 — (9P
Maximum shear stress is given by, T (_p) — (_p) E =) d

ox 2 ox 2 ox 2

1960'21“ = —7848 N/m?2 per m.

Then, (Z—Z =—

ii) the average velocity i = i Umax =[ — i (9P)R3 /2
2 4u ox

= [1x 7848 x0.05°] / [8 x 0.7]

=3.5m/s

iii) Reynolds number of the flow Re="""

u

= (1300 x 3.50 x 0.1) / (0.7) = 650

3. Determine the pressure gradient, shear stress at the two horizontal parallel plate and
discharge per metre width for the laminar flow of oil with a maximum velocity of 2 m/s between
two horizontal parallel fixed plates which are 100 mm apart. Take p = 2.4525 Ns/m?,

Sol: Given Umax=2 m/s
t=100mm=0.1m

i = 2.4525 Ns/m?

I) pressure gradient%&
X

Maximum velocity is given by the equation

1 op 5

Unax = B_M(a)t
5 = _ (01x0.1) )
(8x2.4525) ~ox

(22) = - 3924 N/m? per m
ox

i) Shear stress at wall,

=1%o (1x3924x0.1)/(2) =196.2 N/ m?

0 2 0x

iii) Discharge per metre width Q = mean velocity x area

= (2/3) X UmaxX (tx 1) = (2/3) x 2x 0.1 x 1 = 0.133 m?s.



Exercise problems:

1. An oil of viscosity 0.1 Ns/m?and relative density 0.9 is flowing through a circular pipe
of diameter 50 mm and a length of 300 m. The rate of flow of fluid through the pipe is
3.5 litres/sec. Find the pressure drop in a length of 300 m and also the shear stress at the pipe
wall.

2. A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity is
1.5 m/s. Find the mean velocity and radius at which this occurs. Also calculate the velocity at 4
cm from the wall of the pipe.

3. Power is required per kilometre of a line to overcome the viscous resistance to the flow
of glycerine through a horizontal pipe of diameter 100 mm at the rate of 100 lit/s? Take viscosity
as 8 poise and kinematic viscosity as 6 stokes.

4. Water at 15° flows between two larger parallel plates at a distance of 1.6 mm apart.
Determine i) maximum velocity, ii) pressure drop per unit length and iii) shear stress at the walls
of the plates if the average velocity is 0.2 m/s. The viscosity of water at 15° is given as
0.01 poise.

5. There is a horizontal crack 40 mm wide and 2.5 mm deep in a wall of thickness 100 mm.
Water leaks through the crack. Find the rate of leakage through the crack, if the difference of
pressure between the two ends of the crack is 0.02943 N/cm?. Take viscosity of water equals to
0.01 poise.

6. Calculate the pressure gradient along flow, the average velocity and the discharge of an
oil of viscosity 0.02 Ns/m?. flowing between two stationary plates 1 m wide maintained 10 mm
apart. The velocity midway between the plates is 2 m/s.



Problem.

R Determine the wall shearing stress in a pipe of diameter 1 00 mm which carries water.

The velocities at the pipe centre and 30 mm from the pipe centre are 2 m/s and 1.5 m/s respectively.
The flow in pipe is given as turbulent.

Solution.
Dia. of pipe, D =100 mm = 0.10 m
Radius, R= 9‘%9 =005 m
Velocity at centre, Uppey = 2 M/S

Velocity at 30 mm or 0.03 m from centre = 1.5 m/s
Velocity (at r=0.03 m), u = 1.5 m/s
Let the wall shearing stress =Ty
For turbulent flow, the velocity distribution in terms of centre line velocity () is given by equa

tion (10.18) as

Hwax —¥ _ 575 logyg [-f:)

u.

whereu=15misaty=(R-r)= 0.05-003=.02m

20-15 05 0.5
S22 =575 logyg — =2, 2
- 210 ) 2.288 or I 2.288
0.5
Uy = 2 =(0.2185 m/s

Using the relation Uy = 1/1:,, /p, where p for water = 1000 kgl/m3

0.2185 = |20 %
85 \/1000 or —oos = 02185 = 0.0477

Rg e N, Ty = 0.0477 X 1000 = 47.676 N/m>. Ans.




Problem.

For urbulent flow in a pipe of diameter 300 mm, find the discharge when the centre-
line velocity is 2.0 m/s and the velocity at a point 100 mm from the centre as measured by pitot- -tube

is 1.6 m/s.
Solution.

Dia. of pipe, D=300mm=03m
Radius, R= % =0.15m

Velocity at centre, Upay = 2.0 m/s

Velocity (at r=100 mm=0.1 m), u= 1.6 m/s

Now y=R-r=0.15-0.10=0.05m
Velocity (at r=0.1 moraty=0.05m), u=1.6m/s

The velocity in terms of centre-line velocity is given by equation (10.18) as

Upay — U = 5.7 lOglo (RIy)

i,

5 20-16 _ 525 10z, 13 y=gom
Substituting the values, we get 0210 55 R=015m

.

= 5.75 |Og|(, 3-0 = 2.7434

0.4
or — =2.7434
1.
i 0 4
e =0.1458 m/s A
Using equation (10.26) which gives relauon between velocity at any point and average velocity, we
have
-U
U=~ 57510g, (V/R) +3.75
e
at y = R, velocity u becomes = 1,
= 5.75 log,o (RIR) +3.75 =575 x 0+ 3.75 = 3.75
ul’
But Uy = 2.0 and u, from (i) = 0.1458
Ll A
0.1458

or U =2.0-.1458 x 3.75 = 2.0 - 0.5467 = 1.4533 m/s



