UNIT |
DEFLECTIONS

to 1ts span '1s'ca11ed the :

ffl 1 RELATIONSHIP BETWEEN CU RVATURE, DEFLECTION AND SLOPE
let the beam AB bend to the curve* A’PQB’ (Fig. 7.1). Take XX and YY’ as

E
R
1
R

Due to imposed loads,
axes of reference.

From the relation

(D)

HlR =&

‘ We have

3 i i -secti biected to an end
" It was shown in Chapter 6 that a straight beam of uniform cross-section, when subj

. ; .M
into a circular arc of radius R given by the relation o

fouple M applied about a perpendicular axis, bends

ty of the beam. This equation holds good for elastlc bending.

arc when it bends due to combined effect
d at any point of the beam where the B.M

here EI is the flexural rigidi

“The axis of the beam, however, no longer bends into a circular

and B.M. We still assume that the above equation holds goo
and with change of M, the radius of curvature changes from section to section. |

7249 :
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Methods for calculating slope and deflection

Macaulay’s method J

Double integration method f Method of superposition J

Conjugate beam method
—)[ Castigliano’s first theorem J

Strain energy method Virtual work method or }
Unit load method

\

(ii) Maxwell’s reciprocal
theorem

_)/(i) Betti’s theorem J

\




wu U‘Hgln Of Mefsn
aly

) A B
‘— O  (a) Loaded beam

______________________________ B

Elastic curve

Y ! ‘

w-/ (b) Bent beam
Fig. 7.1 ~ ‘

The product EI is known as flexural rigidity; R is the radius of curvature and M the bending

moment causing deflection of the beam. Consider a small element PQ on the elastic curve,

Let angle made by tangent at P with X-axis = 6
Angle between normals to the curve at P and Q = d8
The point of intersection O of the normals to the elastic curve at P and Q) is the centre of Curvatyre

and the length OP of OQ is the radius of curvature R. -
Now PQ=Rd0 ( - 1]
‘ r
1 do do \
or R = —@ = = (v for very small deflection, arc PQ = dx)
Slope of P = 6 and at Q = (6 - d0), i.e., the slope decreases with increase of dx therefore i
is -ve. dx
Hence 1. _ 4
R dx
dy
But - = .
gy ~and=o (since 0 is very small)
Ly _d
dx*  dx
or o o _ M
t ) EI
A7y
El— =_
dx? M
dy
or <o
EIdx A ".[de+ G

and =t
Ely=- H(de)dﬂcl“cz

where C, and C, are constants of integration,
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d0 .. negative, so Ty .
gince :i-; is neg ’ B2 S also negative. The
deflection is +ve. A

gM: Causmgg however, the BM. i
i Flg' 7' " (o} [} .- / .18 negaﬁve and the 1
I;; more than at P. At P itis © whereas at Q it -1: (OEF?'
4 do 2

and therefore here T is positive and so is d”y
de)l ~ dxz i
n both cases, arc PQ = Rd0

gince deflection is small, the arc is very flat and

a1

or dx i ©
_1_=dz_y_—M Fig. 7.2
o R dx* EH
(from the equation (i), M is negative for a cantilever)
d%y
El—5 = =
dx?

'2 .
W}len M is +ve (as in the case of beams) d_}% is negative and when M is -v¢ (as in case of
X

d’y .
cantilevers) -d_% is +ve. The general equation for deflection is
-

d*y

[—5 = -M . (70)

El" 2 (

By integrating it once, we get %y—, the slope, and by integrating it twice we get y, the deflection.
” :

The above equation is known as differential equation of flexure.
This method of determining slopes and deflections is called the double integration method or

Macaulay’s method.

72 SIGN CONVENTIONS

(1) When measured along the beam from left to right, x 1s taken as positive.

(2) Deflection y is positive downwards. ‘

(3) Bending moment M is positive when sagging.

(4) Slope 6 is positive if while going from left to 4
right along the beam, the tangent t0 the elastic
curve is inclined downwards.

Distance x; deflection Y pending moment M and

in Fig. 7.3,
slope 0, are positive for the beam shown In Fig. 7 Fig. 7.3

Whereas 0 is V€.

v{
t
y
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7.3 STANDARD CASES

Déflection in case of few standard cases is dete
flexure.

rmined below by using the differential €quation
j it

7.3.1 Cantilevers
Case 1: Concentrated load W at the free end: (Fig. 7:4) o 3
Consider a section XX"ata distance x from the fixed A—
end A. a
M, =-W(l - %)
2
gt - M=W(-9)
or = Wl -Wx
On integrating, we have
dy _ Wix? +C
‘ EIE; = I/le 2 17
At A, when x is zero, the slope dy/dx is zero, therefore C; = 0
d Wa’
Hence EI_y =Wix - —
dx 2
For slope at B, put x =1 -
mz 2
B dx EI 2 2FI
For deflection, integrate the equation (i) above.
Wix? Wi
= - — 4 C
Ely > 5 )
where C, is the constant of integration.
Deflection at A is zero and thus y = 0 when x =0
C,=0 .
2 3
Hence Ely= VV‘I'Zx _ V\;x

For deflection at B, put x=1

y —
°E| 2 6 3E]

qu_lations (i) and (ii) give slore and deflection
respecftlvely atany section, whereas equations (7.1)and
(7.3) give the maximum value of the slope and deflection

_i(Wlxlz wﬁ} Wi

where C, is the constant of integration,

)

(i)

PR 5.

XE‘——- I-x —
5 T w/unit length

at the free end.

k)

b
SANASNNNNNNN

A/

Case 2: Carrying U.D.L at the rate of w/unit I
the entire span: (Fig. 7.5) f 1t length over

Consider a section XX’ at a di ;
oy ata distance x from the fixeq

°E| §-t: ‘m

Fig. 7.5
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M -"‘.U(l-x)2
5 2
d7y
EI_— = = w(l—xz
dx? M > ) =%(12'21I+x2)

'On integrating both sides, we have

dy  w 2 3
EIE=E[lzx_zi+x_l+c
2 .3 1

where C, is the constant of integration. At A, the slope is zero therefore on putting fl = ()
whenx = 0, we have C; =0 e

dy w 3 |
El— = — 2. 1,2, %
dx 2 (l x- fe +§} ()
For slope at B, put x = |
dy w B
B, = = = | Pxl-Ix+—
B iy 251( S 3]
wl®  WIZ
or _w” Wit )
6El _ 6EI (where W = wl) (74

Integrating the equation (i) above for deflection, we have
w(? I xt
Ely=2| 2 -=——+=|+C
4 z( 2 "3 T12)

where C, is the constant of integration. Deflection y at A is zero.
Thus y=0 when x = 0; therefore C,=0

: w (Px* Ix® | o4 7 \ B
=5 - " n + Yy ass
Hence Ely 5 ( ) 3 T2 (i)
For deflection at B, put X = l
2,2 3 4
=£(z x2 1xI +L}
wit WP
=Y = —— (where W=wl w(7-D)
or - SEl ~ BEL \ ) (
Thus, equations (i) and (ii) give slope and deflection at any section whereas equations (4) and
(5) give slope and deflection at B which are the maximum. Lo

Case 3: A point load W, not at the free end: (Fig. 7..6) - i .
Consider a section XX’ at a distance X from the fixed end ) ‘E""""”"C —

-]

e e i s 5 e

A. A . o

or
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g Mator[aps

” ine for slope, W€ have
" aci dy _I/_V_x_z_ + C.
E[Ex— = Wax - 2 1

is a constant of integration.

where C; i L
=0; — i herefore C; =
But at A where X = 0; T is zero, there 2 Al
d Wi |
Hence El % = Wax - ——2— n
tC, putx=a :
R W) _ W .
Gc = ;{; = -EI— Waxa- > 2EI (li)

As there is no load on the portion BC, there will be no B.M. in that portion and the portion pc
will not bend. It shall be straight.

Wa®
=Q.= — (7.6
65 =0 = — -79)
For deflection at C, integrate the equation (i) again.
Wax?  Wx°
= - —_— C
El y 2 6 2
where C, is the constant of integration.
At A where x = 0, y is zero; therefore Cz =0
- Wax? Wil
Hence Ely = TR ..(1i)
For deflection at C, put x = a '
I N A
TE|TT 2 e T =)
But y.=BD (Fig. 7.6)
and B'D=DC’taneC=BCtan9C=chec |
(" O is small .. tan 8 = 6¢)
2 2
BD =(I-a)x 8 i
Bt 2EI | O 3H
! Y5 =BB' = BD + B'D
or _ Wi . Wi
3E1 ~ opr (-9
or _ Wa?
B 6E] (31 = a) _,.(7.8)
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f i

of

i nstant. of i i
pere Gy 182 €0 ot integration. At A, the slope is zero, i.c,,

—_— =

I 0 when x = 0 and therefore C;=0

dy _w 3
Hence El-= = — | a®x-ax? +
dx 9 [ ax® + 5 o(f)
Forslope at C, put x = a
dy w 3 3
e = — = 2 - 2 ﬂ_ = wa :
€ ~ay 2EI[ Xa-axa“+ 3 EL .(if)
Since the portion BC is not loaded, it does not bend and remains straight, therefore
3 2
wa Wa
0,=0-=—F=— =
8=9¢= S T GmI (where W = wa) «(79)
On integrating the equation (i) for deflection:

w a2x2 ax3 x4

| Ely=3 [ 2 3 12 '
where C, is a constant of integration. At A, deflection is zero, ie,y=0whenx=0 and therefore
G=0
: w(d? a® 2
Hence Ely = —-2-[ 2 --—3—*"51

For deflection at C, put x = 4

+C'2

4 3
=3u_:1_=_IiVa_ here W= wa
Ye= ge1  8EI
3,
CC’'=BD=——

B'D = CD tan 0= BC tan 0. = BC % 6.

= (v tan 8 = O when 0 is small)

' Wa?
2 il
Wa ( s 0Oc 6E1)

6EI

Wa® Wa?
- D= — + —— (I-a
yp=BD +BD =g * gpr { )

or _ =(l-a)%

(7:10)

2
or _ Wi 41— a)
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Case 5: U.D.L at the rate w/unit length on a part of span from the free end: [Fig. 7.8(a)) '

| _ /] |
a i (I-a) ———’l 2 o/ ‘m“\I
w/unit length 7 4 len
4 5 ‘
A B A .; b
T 7 0p ']'
(Constant E and I) ¥s (Constant E and I) lfm
i |
(a) , ' B L
;-.—-— a ——-—!4——- (I-a) ———.l
2 N w/unit length o
413 B
7
/
(Constant E and ) Yp2

(©)

Fig. 7.8

From the figures it is obvious that to get the result in Case (a), take tk.. differences of results;
Case (b) and Case (c) thus:

6p =05, - Bp,
and Yg = Y5, = Y5,
But from previous articles, we have
0, = ﬁ . = w_l4
B1” GBI’ /B1 BEI
9. = .E_Ui. = Eai + wa’ ]
B~ e Y5 g T err (79
wl  wad w ' )
0, =0, -0, = - = 3. 48 (1
=878, " GET T 6EI _ eEIV ~ %)
Yp = Yp, ~ s,
_ ol fwat wd (I-a)
or | 8EI | 8EI = 6EI
' = —.w_ 4 4 wus . l
or BEI(I -“)-Bﬁ(l—a)
=2 _p STy
or 24FI (31 = 41(13 + 04) : ‘ . (

Case 6: A moment applied at the free end: (Fig. 7.9)

Consider a section XX’ at a distance x from the fixed end.
M, =-M
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Er%Y _ \217\

Td;z- = —Mx = M . é¥ :lx
ntegrating for slope, we have e ~
EI dy 47 .: .
E = Mx + Cl ‘ / by
is the constant of int { M
here C1 1 d;grahon. At A, the slope js — Fig. 7.9
F* e 0 when x = 0, therefore C;=0
d
Hence EI Exz = Mx
D)
Atx=1 |
0. < _ M
B —_— —
- dx  EI .(7.13)
For deflection, on integrating equation (1), we have
_ My?
Ely = 5 +C,
At A, deflection is zero, i.e., y = 0 when x = 0; therefore C, = 0
2
Hence Ely = _MZL a0
Deflection at y when x =1 is
MI?
- 2FI (714
Y8 2EI | (7:14)
7.3.2 Simply Supported Beams y
Case 1: Point load at mid-span: (Fig. 7.10) fe— x _+.|
Consider a section XX’ at a distancg x from A - *c . /
the support A but within the portion AC. S
By symmetry, the support reactions at A and B :
- ! 1 -
W ]
are each equal to —. w/2 X W/2
| w Fig. 7.10
M. =— XX
L
dy _ =V
But EI E;C_Z' =- 2
Integrating the above expression for slope, we have
2
E E‘y- = _Kv_x—-'f' Cl
dx 4

i i (0]
Where C, is a constant of integration. At midspan C, the slope is zer
l

i dy _ -
Le, - 0 when x 2
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_w(L
+C; =0
4 1
W[Z
T
gl . W, W
dc 4 16 "
For slope at A, put x=0
4 dx  16EI | ~(115)
-WP

B , Op=-0,= ——
ysymmetry,  Op=-0,= <o
For deflection, integrate expression (i) above,
' N Wi%x
= + +C
Ely 16 5
where C, is a constant of integration. At A, the deflection is zero, i.e.,
y =0 when x = 0; therefore C, =0 .-

Wi Wi2x
Ely=-— + .
4 12 16 : . o)

For deflection at C, put x = é

—W(i)a WIZ x i
1 2) 2 wi?

¥.= E_I 12 16 = 48E] (7.16)
Case 2: ULD.L. at the rate w/unit length over the whole span: (Fig. 7.11)
Consider a section at a distance x from the support A and within the portion AC.
By symmetry, support reactions at A and B are each equal to L
5
bl ‘wlx 'wx2
A R
EId_g = -M=_|Wx _w? AT E v
dx 2 2 eA | : C B
' ¢
~wlx  wx? '
or = +— [ X ==
On integrating the above for slope, we haye — ——-d"""/;/z
: W/2 '
d 2 yd Ll
e i ) Fig. 7.11

dx 4 6
where C, is a constant of integration. At midspan ¢ the slope i
’ is zero
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That is/ ngyc- 0 when x = %
!
3 2 6 2 + C1= 0
wl
C = 40—
159 24

24 e (i)

8 = wl® :
A . ——
24E] = (717
By SYmmen'Y' eB == BA
. I .
2MEl | 24fl (where W = wl) : ... (i)

For deflection, integrate expression (i) above

3 4 3
EIy=-WIx +wx +w1x+c
12 24 24 2

where C, is the constant of integration. At A, the deflection is zero,

ie., y=0atx= 0, therefore C, = 0
wi®  wxt | wlx ' 3
= e— + =l + - ee
Henc§ Ely T o o (iit)
l
For deflection at C, putx = —-
1 wl (1 4 5 w (1 ¥ N _z_uﬁ 1
Y= E | 12{5} 2|2) T2
_ 5wl
x ~ 384EI
- _ 5WI (whereW= wl) ...(7.18)
384EI
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Method of superposition:

Deflections due to any complex loading on a beam or cantilever can
be determined by treating the loading as a combination of simple
loading is known as method of superposition.

The resulting final deflection of a loaded beam is simply the sum of
deflections caused by each of the individual loads.

Slope or deflection at a point is determined as the resultant effect of
each one of these loads at that point. However, a limitation on the
application of this method in that the effect produced by each load
must be independent of that produced by other loads, i.e., each
independent load should not cause any appreciable change in original
length or shape of the beam.

This method is advantageous in solving problems wherein the loading
can be broken up into components that can be treated as basic
standard cases of loading.

For partially distributed loads, this method is the best.



Examples:

m Method of Superposition
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pie 7.2

A 3 metre long cantilever of uniform rectangular cross-section, 15 cm wide and 30 cm deep, is
loaded with a 30 kN load at its free end. In addition to ’
this, it carries a U.D.L. of 20 kN per metre run over its
entire length. Calculate (2) maximum slope and p——
maximum deflection, and (b) the slope and deflection at \

2 metres from the fixed end. Take E = 210 GN/m”.

TENR

1 Exam

&

30kN -

Solution:

SOONNNNNNNNNS

Consider a section XX’ at distance x from the fixedend A
(Fig. 7.15). < Fig. 7.15
B.M. at the section is '

3m {

3_ 2
M, =30 % 3-0-20x EL 10x (2w 0r-18)

2 :
Efd—% = -M, =10 (x* - 9x + 18) KNm = 10° (x* - 9x + 18) Nm
dx
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Integrating the above successively, we have

~ 3 2 .
dy = 104 f__.g_x__.{.]_Sx +C
(x4 9x° 18x%
' 1| -
and Ely =10 6 + 2 +C x+C,

where C; and C, are the constants of integration. ' | |
Applying conditions of zero slope and zero deflection at the end A, (i.e, when y = "

%=0andy=0),wehaveC1=OandC2=O

dy 4
har A —-—+18x
El-- =10 52 J (1)
[ 4 3 i
x* 3x ,
and Ely = 10 o 3 9x> (i)
3 3
Now = b 1930 3750 omt
12
or = 33752 m? = 33.75 x 10~ m*
| (100)
and * E = 210 x 10’ N/m?

The maximum slope and deflection are obviously at the free end B, for which put x =3 in the
equations (i) and (ii).

3> 9x3? |
EIB,_, = 104{? -2z +18x3] =225 x 10*
225%x10* 225x10%
0, = = = 0.003175 radian
EI (210x10%)x (33.75% 10™°)
3% 3x3®
EI Ymax = 104 l:l_z' - > +9x% 32] =47.25 x 104
g = 4725x 10* _ 4725x10°0 - _ 067 m = 0.667 Cm
x - -
ma EI (210x10%) x (33.75% 10™) i
~ e AL I . - - ) et mean () and (”)
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7.8.3 " A Cantilever Carrying a Point Load W, which is not at the Free End

Since E and I are constant, Fig. 7.43(b) shoWs the E—A;I diagram. End A of the cantilever is fixed,

therefore, tangent to the elastic curve at A is horizontal, i.e.,
8, =0 "

a - (1-a) —]
C

0. = area of E_NII diagram between A and C

B

SONONNNNNN

Wa a Wa2 '(a) constant E and I)
or s ——X- = — :
EI 2 2
| — |
Since there is no load on BC so slope at C is the same as ' Ve
the slope at B ' A !“ 3
Wa? v-\g | G/' C 5
93 =0 C = —_ M ,.
2E1 , | E (b) (- diagram)
Now deflection at C is Y. = moment of area of E—NII
diagram about C j |
1 Wa 2a )
=|=x—xa|=— !
or (2 El ) 3 | a E I
Wa® ]
o " 3E i
(¢) (elastic curve)
Similarly, deflection at B is yz= moment of area of M Fig. 7.43
diagram about B 2
or = W_az 2 +1
2E1 37T “)
: Wa?
= — (3] -
or 6EI (Bl -a)
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siope and Deflection

7.8.4 A Cantilever Carrying |
Span from the FixedgEn'c?-L. at the rate wiypjt Length on a Part of
gince E and I are constants, Fig, 7.44(b) shows the M '

e — dj _
that the tangent to the elastic curve a¢ A'is horig Fall diagram. End A of the cantilever is so fixeq
Ontal, i.e.,

\315\

the

e -“"i'"‘(l—a) N

w/unit length L~ 1
A G
a (a) constant E and I
e —
3a
t“T——F—‘(l-a) —
C B

A
L
wa
K3

® (A4 disgram)

e

wl‘__s__lm

() Elastic curve)

' Fig. 7.44,
0, =0
M :
0. = area of I diagram between A and C
3 28 % T em (whereW‘= wa,)
: 3
As length BC carriers no load, so it shall be straight and 6, = 8 . = il
B 7C 6HI
Deflection at C is
y. =moment of the area of I diagram between A and C about C.
(1, e ), Be_wa
or ~ (37 2EI 4 8EI
. . M 1
Similarly, y; = moment of area of 0 diagram between A and B about B

or

1 wa? 3a
—X—Xa |x| —+1-a
3 2EI 4

4

_ wa’l _wa
8EI 24EI
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78.6 Cantilever with a Moment Applied at the Free End

M . :
Figure 7.46(b) shows the i diagram. Since the end A of % D
the cantilever 1is fixed, the tangent to the elastic curve AZ I |
at A shall be horizontal and thus: ’ S — M
% =0 Y T
_ M M // M
B, = area of — diagram El / E
El 1 4
M . _M ® L diagram

EI EI

(o]

§

Deflection y,at B is the moment of area of % diagram 4

about B.

5 —f

M 1 MP
Y= 71 97 2E

I 2EI Fig. 7.46

(c) (Elastic curve)

gy, E--=Fm ==
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.9 CONJUGATE BEAM METHOD

ftis 2 special case of the moment-area method and it can be stated in words as follows:

Conjugate beam Theorem 1. The angle between the tangent to the elastic curve of a beam AB at a point
~ Cand the chord AB is the same as the shear force at C in case of an imaginary simply supported beam AB

loaded with 1 diagram.

Conjugate beam Theorem I1. The deflection at any point C on the elastic curve of a beam AB measured

: . . ., M
from the chord AB is the same as the bending moment at C in case of an imaginary beam AB loaded with o
diagram.

In applying moment-area method for determining Py P P3 Pa Fs
the slope and the deflection, we had known a specific l l 1 c
point at which the tangent to the elastic curve was )
horizontal. The slope or deflection at any other point
was determined with reference to that tangent. But in
most of the cases where beams are not carrying
symmetrical loads, the point where the tangent to the
elastic curve is horizontal is not known. Application

of moment-area method to such cases causes g
complications.

‘
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-* Strength of Mat@ﬂg,
8

Consider the case of a simply supported beam loaded as shou.m in Fig. 7.55. Let the tangen,
the elastic curve at C make an angle 8 and the tangent to the elastic curve at B an angle 0 with ﬂ\lo
horizontal. Now, by moment-area method, we have e

M ..
05 - O = (Area of I diagram between B and C)

But

0 = 2:' = % X (Moment of area of %/II— diagram between A and B about A)

(Moment of area of % diagram between A and B about A)
l -

9C=

—(Area of % diagram between B and C), _ ()
For deflection,
yC - CCI = CCII . CICII

or = 05 % x( - deflection of C from tangent at B
or =0p X x-- (Moment of M diagram between B and C about C)
El
(Moment of % diagram between A and B about A)
or - =

1 xc

= (Moment of EMI diagram between B and C about C) e (i)

Now assume an imaginary siinply supported beam AB loaded with"EM diagram (Fig. 7.56). Let
R, and Ry be the support reactions in this case and F

c and M the shear force and the bending
moment at C on this imaginary beam.

%CUI'VE

A B
C |<—xc —_—
!

Ry Ry

Fig. 7.56

Moment of %Af diagram between A and B about A \
Now Rp= l |

But FC =Rp - ( Area of % diagram between B and C)

Moment of % diagram between A and B about A
l
M di - [from Eq. ()]
- | Area of T diagram between Band C| =6 : ... [from Eq

or =
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SIope_and Deflection

Gimilarly, M= Rp % x - (M M
C ome it
nt Qf I dla‘gram between B and C about C)

Moment of X dia
of FT diagram between A and B about A

or
1 c
i M,
(Moment of I diagram between Band C about C)
or = yc |
Thus, the above ) w fromi e
ove theorems caan;e applied to all cases where the chord AB is horizontal. The '

imaginary b ; : ,
jmaginary beam AB loaded with — diagram is also known as auxiliary beam or a conjugate beam.

EI

740 CONJUGATE BEAM METHOD FOR CANTILEVERS

Conjugate beam corresponding to a simply Supported beam as discussed in Sec. 7.6 is an imaginary

simply supported beam loaded with the %/IT diagram and n

has the same span.

Consider a cantilever AB of uniform cross-section
loaded as shown in Fig. 7.57(a). Cbviously, the deflection
and the slope and deflection are both zero at the fixed end
A. But we know that the slope and deflection at a point
are respectively equal to the S F. and the B.M. at that point
in case of a conjugate beam. Thus, the conjugate beam _L
A’B’ corresponding to the cantilever AB should be such
that the S.F.and BM. for the conjugate beam at A are both
zero. It is possible only if the conjugate beam A'B isfixed |

W

(a) Loaded cantilever

(b) BM. Diagram

. M. .
at B’ and free at A’ and loaded with I diagram [Fig.
eam A’B’ thus corresponds to the

7.57(c)]. The conjugate b
cantilever AB.

Ag

(c) Conjugate beam

Fig. 7.57

an | carries a point load W (not at midspan). Using the conjugate
der the load.

A simpl orted beam of sp )
bezl;nfnzt;lg%?detemﬁne the slopes at the ends of the beam and the deflection un

Solution:
M
Support reactions at A and B are:
o - 1
Ry= 77 N8
BM.atCis
ab
Mc=—T

- ———
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Srlajy
W
if a . b ""I '
1 B
A
|
, ®)
.. & Fig. 7.58 |
_ Figute 7.58(b) shows the conjugate beam corresponding to the beam as shown i,
Fig. 7.58 (a). ' , )
Take moments about A’ to find the support reaction R'g for the conjugate beam.,
| Wab 2 1 Wab ( b)
’ b i Y Za+=x——xbla+—=
R’y 2x Enxax3a > X I 3
Walh  Wab?
= - 3a+b
= sen + e 00t Y
. WiPh Wab*(3a+b)
B~ 7t 2
3EIl 6EIl
- Wab 2 2 _
or = 2a° +3ab+b
6EIZ ) 0
Deflection at C is y. = B.M. at C’ for the conjugate beam
or =Ry xb- lx@xbx-ll
2 EI 3
2 ‘ 3
or = Wab2 (2% + 3ab + b?) - s
Ell 6EIl
Wab2 2 2
or = 24 +3ab + b2 - bl
: 6EII (207 +3a ¥
But b=1-a
| _ Wa(l-a)® 5 -
Yo = g 124" +3a(l - a) + (- a)* - 1(I - a)]
3EI 3EIl
.. Wab
From the equation (1) 0y = R’B e 5 (2a2 +3ab + b2)
6EIl
Wab -
or = 24% +3a(l - a) + (1 - a)?] = VoW +4)
6EI | W=a+-97 = —m
- Wab (I + b)
Similarly, 0, =R, = —
4 a =R 6EIl

I Example 7.28 |

Work out slope at the support A and the vertical deflection at the point B in terms of EI for the beam
AC shown in Fig. 7.59(a). Take I = Iy and I ap = 2pc.
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slope and Deflection

F

pigure 7.59(b) shows the B.M. diagram and Fig. 7.59(

c) shows the % diagram. Assume a simply

i | o M
supported conjugate beam ABC loaded with the Fp diagram.
50 kN
A
2 8 |
I €
(a)
%
60 kKNmv
A =2 /// - .
B
(b) BM. di'agra{;),
D A e
. ; /Q
@_1/ EI
4 //G}%,E! i/ G2 c
2m v! B i
= 3m >t L oom ——f
‘ — (3+ 2 1) ———
3 3 ,
© % diagram
Fig. 7.59
1 60 60
= — —_— X e
Area of ABCD 5 X I .
1 30 45
= =—X—X3=—
| Area of AABF > X T |
To find the support reactions, take moments about A.
s 455,60 11310
c EI ElI 3 EI
62
RC - _ET
R, = (_69 + E) _62_43
A \EI EI) EI EI
43
S.F.atA =RA=E e
43 45 84
tB=Mp, = —%X3-—X(3-2)=—.
and BM.a P = 362y
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aj‘ Fohﬂ’ D.
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[ Example 7.32

w

Using the conjugate-beam method, determine the = 7 "

deflection and the slope at the free end of a cantilever of * : c ’
span | carrying a‘point load W at a distance I, from the 7 ¢ %
fixed end (1, <1). (@

Solution:

N
Figure 7.61(b) shows the conjugate beam A’B’ -~ §B,
corresponding to the given cantilever AB [Fig. 7.61(a)]. i L . (-1 _,ﬁ
Slope at the free end B of the cantilever AB=SF. at fixed ' '

fe-m[ =~

’ s (b) Conjugate beam
end B’ of the conjugate beam. ' v Fig. 7.61 _
1 Wy wi2
—_— — —_— l = e—_—
%= 2% 1T 2E
Deflection at the free end B of the cantilever AB = B.M. at B’ for the conjugate beam.
- 1 Wy A
= (33 E<h) (13
wii /’/
= —(31+1
. eEr T )

\

\

A 200 cm long cantilever carries a load of 3 kN at a distance of 100 cm from the fixed end and a load
of 2 kN at the free end. Determine the deflection at the free end.

Take E =20 x 10° N/cm? I = 1500 cm?

Solution:

Deflection at B (Fig. 7.62) will be sum of the deflections caused individually by the two loads of 2.0
kN and 3.0 kN.
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@ Strength of Maferia;s

B.M. at A due to the 2.0 kN load = M, = (2.0 x 10%) x 200 = 4.0 x 10° Nem
B.M. at A due to the 3.0 kN load = M, = (3.0 x 10% x 100 = 3.0 x 10° Nem

M " 4x10° 4 s s 21
T 20x106 <1500 30 y l |
, . Af C B
M,  3x10 —1x10° g 100em — -
EI ~ 20x10° x 1500 - 200em ———
(a) Loaded cantilever

The corresponding conjugate beam is shown in T
Fig.7.62(b). Deflection at the free end B is represented 0

\\

by the B.M. at B’ in case of conjugate beam. 3 %
A B
NN
yp = [(%x§x10'5x200)x(§x200)] 1x107 :\\\\\\\Q‘\
’ | | 4 f——100cm —
1 -5 2 200 cm ————|
+ [(E x1x10"" x 100) X (100 + § X 100):| (b) Conjugate beam
Fig. 7.62

or = (0.261 cm
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