
UNIT-IV 

TREES: 

Definition of trees: 

     A tree is defined as a finite set of one or more nodes such that 

(i) there is a specially designated node called the root and  

(ii) the rest of the nodes could be partitioned into t disjoint sets (t ≥ 0) each set 

representing a tree Ti , i = 1, 2, . . . t known as subtree of the tree.  

    A node in the definition of the tree represents an item of information, and the links between 

the nodes termed as branches, represent an association between the items of information.  

    Figure below illustrates a tree. The definition of the tree emphasizes on the aspect of (i) 

connectedness and (ii) absence of closed loops or what are termed cycles.  

 
Fig.  An example tree 

Basic terminologies of trees : 

There are several basic terminologies associated with the tree. The specially designated 

node called root node. 

 The number of subtrees of a node is known as the degree of the node. Nodes that have 

zero degree are called leaf nodes or terminal nodes.  

The rest of them are called as non-terminal nodes. These nodes which hang from 

branches emanating from a node are known a children and the node from which the branches 

emanate is known as the parent node.  

Children of the same parent node are referred to as siblings. The ancestors of a given 

node are those nodes that occur on the path from the root to the given node.  

The degree of a tree is the maximum degree of the node in the tree. The level of a node 

is defined by letting the root to occupy level 1 . The rest of the nodes occupy various levels 

depending on their association. 

 Thus if a parent node occupies level i, its children should occupy level i+1. This renders 

the tree to have a hierarchical structure with root occupying the top most level of 1.  

The height or depth of a tree is defined to be the maximum level of any node in the 

tree.  

Depth of a node to be the length of the longest path from the root node to that node, 

which yields the relation, depth of the tree = height of the tree – 1 . 

A forest is a set of zero or more disjoint trees. The removal of the root node from a tree 

results in a forest (of its subtrees!). 



 

Representation of Trees: 

  A common representation of a tree to suit its storage in the memory of a computer, is a list. The 

tree of above Fig. could be represented in its list form as (A (B(F,G,H), C, D(I), E(J,K(L))) ). 

 The root node comes first followed by the list of subtrees of the node. This is repeated for each 

subtree in the tree.  

This list form of a tree, is a naïve representation of the tree as a linked list. The node structure of 

the linked list is shown in Fig. (a). 

 
The DATA field of the node stores the information content of the tree node. A fixed set 

of LINK fields accommodate the pointers to the child nodes of the given node. 

 In fact the maximum number of links the node would require is equal to the degree of 

the tree. The linked representation of the tree illustrated in Fig. (b). 

Disadvantage: wastage of space by way of null pointers. 

 

 An alternative representation would be to use a node structure as shown in Fig.below. 

Here TAG =1 indicates that the next field (DATA / DOWN LINK) is occupied by data (DATA) and 

TAG = 0 indicates that the same is used to hold a link (DOWN LINK). 

 The node structure of the linked list holds a DOWNLINK whenever it encounters a child 

node which gives rise to a subtree. Thus the root node A has four child nodes, three of which 

viz., B, D and E give rise to subtrees.  

Note the DOWN LINK active fields of the nodes in these cases with TAG set to 0. In 

contrast, observe the linked list node corresponding to C which has no subtree. The DATA field 

records C with TAG set to 1. 



 

BINARY TREES: 
Basic terminologies: 

A binary tree has the characteristic of all nodes having at most two branches, that is, all 

nodes have a degree of at most 2. A binary tree can therefore be empty or consist of a root 

node and two disjointed binary trees termed left subtree and right subtree. Figure below 

illustrates a binary tree. 

 
            Fig. An example of binary tree 

The distinction between trees and binary trees 

The distinction between trees and binary trees are while a binary tree can be empty 

with zero nodes, a tree can never be empty. 

 Again while the ordering of the subtrees in a tree is immaterial, in a binary tree the 

distinction of left and right subtrees are very clearly maintained. 

Properties: 

Some important observations regarding binary trees. 

(i) The maximum number of nodes on level i of a binary tree is 2i–1, i ≥ 1. 

(ii) The maximum number of nodes in a binary tree of height h is 2h – 1, h ≥ 1. 

(iii) For any non-empty binary tree, if to is the number of terminal nodes and t2 is the 

number of nodes of degree 2, then to = t2 + 1. 

    

These observations could be easily verified on the binary tree shown in above Fig. The maximum 

number of nodes on level 3 is 232 = 22 = 4.  



Also with the height of the binary tree being 3, the maximum number of nodes = 23 1 = 7. Again 

to = 4 and t2 = 3 which yields to = t2 + 1.4 

 

Types of binary trees:   

 

Full binary tree:  A binary tree of height h which has all its permissible maximum number of 

nodes viz., 2h-1 intact is known as a full binary tree of height h. Figure (a) illustrates a full binary 

tree of height 4. Note the specific method of numbering the nodes. 

complete binary tree:  A binary tree with n’ nodes and height h is complete if its nodes 

correspond to the nodes which are numbered 1 to n (n’≤ n) in a full binary tree of height h.  

  In other words, a complete binary tree is one in which its nodes follow a sequential 

numbering that increments from a left-to-right and top-to-bottom fashion. A full binary tree is 

therefore a special case of a complete binary tree.  

Also, the height of a complete binary tree with n elements has a height h given by 

 h = ⌈ log2 (n + 1) ⌉ .  

A complete binary tree obeys the following properties with regard to its node 

numbering: (i) If a parent node has a number i then its left child has the number 2i (2i≤n). If 2i > 

n then i has no left child. 

 (ii) If a parent node has a number i, then its right child has the number 2i + 1 (2i + 1 ≤ n). 

If 2i + 1 > n then i has no right child.  

(iii) If a child node (left or right) has a number i then the parent node has the number  

⌊ i/2⌋  if i ≠ 1. If i = 1 then i is the root and hence has no parent.  

 

Figure (b) illustrates an example complete binary tree.  

Skewed binary tree: A binary tree which is dominated solely by left child nodes or right child 

nodes is called a skewed binary tree or more specifically left skewed binary tree or right skewed 

binary tree respectively. Figure (c) illustrates examples of skewed binary trees. 



 
 

 

Representation of Binary Trees: 
A binary tree could be represented using a sequential data structure (arrays) as well as 

linked data structure. 

i) Array representation of binary trees: 

  To represent the binary tree as an array, the sequential numbering system emphasized 

by a complete binary tree is used. Consider the binary tree shown in Fig. (a) below. The 

array representation is as shown in Fig. (b) below.  

The association of numbers pertaining to parent and left/ right child nodes makes it 

convenient to access the appropriate cells of the array. However, the missing nodes in the 

binary tree and hence the corresponding array locations, are left empty in the array.  

This obviously leads to a lot of wastage of space. However, the array representation 

ideally suits a full binary tree due to its non-wastage of space. 



 
Fig.  Array representation of a binary tree 

ii) Linked representation of binary trees: 

The linked representation of a binary tree has the node structure shown in Fig. (a) 

below.  Here, the node, besides the DATA field, needs two pointers LCHILD and RCHILD to point 

to the left and right child nodes respectively. The tree is accessed by remembering the pointer 

to the root node of the tree. 

 
Fig.  Linked representation of a binary tree 

In the binary tree T shown in Fig. (b), LCHILD (T) refers to the node storing b and RCHILD 

(LCHILD (T )) refers to the node storing d and so on.  

The following are some of the important observations regarding the linked 

representation of a binary tree:  

(i) If a binary tree has n nodes then the number of pointers used in its linked 

representation is 2 * n.  

(ii) The number of null pointers used in the linked representation of a binary tree 

with n nodes is n + 1.  

 

BINARY TREE TRAVERSALS: 

A traversal of a binary tree is where its nodes are visited in a particular but repetitive 

order, rendering a linear order of the nodes or information represented by them.  

A traversal is governed by three actions; viz. Move left (L), Move Right (R) and Process 

Node (P). In all, it yields six different combinations of LPR, LRP, PLR, PRL and RLP. Of these, 

three have emerged significant. They are, 

  

i) LPR - Inorder traversal 



ii) LRP - Postorder traversal  

iii) PLR - Preorder traversal 

 
         Fig. Binary tree to demonstrate Inorder, Postorder and Preorder traversals 

Inorder Traversal: 

 The traversal keeps moving left in the binary tree until one can move no further, 

processes the node and moves to the right to continue its traversal again. In the absence of any 

node to the right, it retracts backwards by a node and continues the traversal. 

Algorithm : Recursive procedure to perform Inorder traversal of a binary tree 

 procedure INORDER_TRAVERSAL (NODE)  

If NODE ≠ NIL then  

{  

call INORDER_TRAVERSAL (LCHILD(NODE));  

print (DATA (NODE)) ;  

call INORDER_TRAVERSAL (RCHILD(NODE));  

}  

 end INORDER_TRAVERSAL. 

Table : Inorder traversal of binary tree shown in above Fig. 

 

 

 

 



 



 
 

Postorder Traversal: 

 The traversal proceeds by keeping to the left until it is no further possible, turns right to 

begin again or if there is no node to the right, processes the node and retraces its direction by 

one node to continue its traversal. 

Algorithm: Recursive procedure to perform Postorder traversal of a binary tree  

procedure POSTORDER_TRAVERSAL (NODE) 

/* NODE refers to the Root node of the binary tree in its first call to the 

procedure. Root node is the starting point of the traversal */  

If NODE ≠ NIL then  

{  

call POSTORDER_TRAVERSAL (LCHILD(NODE));  

/ * Postorder traverse the left subtree (L) */  

call POSTORDER_TRAVERSAL (RCHILD(NODE));  

/* Postorder traverse the right subtree (R)*/ 

 print (DATA (NODE)) ;  /* Process node (P) */  

}  

end POSTORDER_TRAVERSAL. 



Table: Postorder traversal of binary tree shown in above Fig.  

 



 
Preorder Traversal: 

 The traversal processes every node as it moves left until it can move no further. Now it 

turns right to begin again or if there is no node in the right, retracts until it can move right to 

continue its traversal. 

Algorithm: Recursive procedure to perform Preorder traversal of a binary tree procedure  

 

PREORDER_TRAVERSAL (NODE)   

/* NODE refers to the Root node of the binary tree in its first call to the 

procedure. Root node is the starting point of the traversal */  

     If NODE ≠ NIL then 

 { 

 print (DATA (NODE)) ; /* Process node (P) */  

 call PREORDER_TRAVERSAL (LCHILD(NODE)); 

 / * Preorder traverse the left subtree (L) */  

 call PREORDER_TRAVERSAL (RCHILD(NODE));  

/* Preorder traverse the right subtree (R)*/ 

 }  



end PREORDER_TRAVERSAL. 

Table:  Preorder traversal of binary tree shown in above Fig.  

 

 



 
Some significant observations pertaining to the traversals of a binary tree are the 

following, 
(i) Given a preorder traversal of a binary tree, the root node is the first 

occurring item in the list. 

(ii) Given a postorder traversal of a binary tree, the root node is the last 

occurring item in the list.  

(iii) Inorder traversal does not directly reveal the root node of the binary tree. 

(iv) An inorder traversal coupled with any one of preorder or post order traversal 

helps trace back the structure of the binary tree  

 

 

BINARY SEARCH TREES:  
Definition : 

A binary search tree T may be an empty binary tree. If non-empty, then for a set S, a binary 

search tree T satisfies the following norms:  

(i) all keys of the binary search tree must be distinct 

 (ii) all keys in the left subtree of T are less than the root element  

(iii) all keys in the right subtree of T are greater than the root element and  

(iv) the left and right subtrees of T are also binary search trees. 

• The inorder traversal of a binary search tree T yields the elements of the associated set S 

in the ascending order. 

 
 

Representation of a binary search tree: 

    A binary search tree is commonly represented using a linked representation in the same 

way as that of a binary tree. 



    The node structure and the linked representation of the binary search tree shown in 

above Fig. is illustrated in below Fig. 

   However, the null pointers of the nodes may be represented using fictitious nodes 

called external nodes. 

 Thus a linked representation of a binary search tree is viewed as a bundle of external 

nodes which represent the null pointers and internal nodes which represent the keys.  

  Such a binary tree is referred to as an extended binary tree. Obviously, the number of 

external nodes in a binary search tree comprising n internal nodes is n+1. The path from the 

root to an external node is called as an external path. 

 

 
Binary Search Trees Operations: 

Retrieval from a binary search tree Let T be a binary search tree. To retrieve a key u from 

T, u is first compared with the root key r of T. 

 If u = r then the search is done. If u < r then the search begins at the left subtree of T. If u 

> r then the search begins at the right subtree of T. 

 The search is repeated recursively in the left and right sub-subtrees with u compared 

against the respective root keys, until the key u is either found or not found.  

If the key is found the search is termed successful and if not found, is termed 

unsuccessful.  

While all successful searches terminate at the appropriate internal nodes in the binary 

search tree, all unsuccessful searches terminate only at the external nodes in the appropriate 

portion of the binary search tree. Hence external nodes are also referred to as failure nodes. 

Algorithm : Procedure to retrieve ITEM from a binary search tree T  

 

procedure FIND_BST(T, ITEM, LOC)  

 

/* LOC is the address of the node containing ITEM which is to be retrieved from the 

binary search tree T. In case of unsuccessful search the procedure prints the message 

ITEM not found and returns LOC as NIL.*/ 

 

 if T = NIL then  

{ 



    print ( binary search tree T is empty); 

   exit; 

 }   /* exit procedure*/ 

              else  

  LOC = T;  

  while (LOC ≠ NIL) do  

  case  

  : ITEM = DATA(LOC) 

return (LOC);   /* ITEM found in node LOC*/ 

   : ITEM < DATA(LOC) 

      LOC = LCHILD(LOC);  /* search left subtree*/  

          : ITEM > DATA(LOC) 

        LOC= RCHILD(LOC);  /* search right subtree*/  

Endcase 

 endwhile  

If (LOC=NIL) then  

{ 

print(ITEM not found);  

return (LOC) 

}  /* unsuccessful search*/  

end FIND_BST15 

 

Example: Consider the set S = {416, 891, 456, 765, 111, 654, 345, 256, 333} whose associated binary 

search tree T is shown in Fig below. 

 
Table: Trace of Algorithm  for the retrieval of ITEM=333 



 
Table: Trace of Algorithm for the retrieval of ITEM=777 

 
Insertion into a binary search tree: 

 

 The insertion of a key into a binary search tree is similar to the retrieval operation. The 

insertion of a key u initially proceeds as if it were trying to retrieve the key from the binary 

search tree, but on reaching the null pointer (failure node) which it is sure to encounter since 

key u is not present in the tree, a new node containing the key u is inserted at that position.  

Example: Let us insert keys 701 and 332 into the binary search tree T associated with set 

S ={ 416, 891, 456, 765, 111, 654, 345, 256, 333}, shown in Fig below, Figure  (a) shows the 

insertion of 701. 

 Note how the operation moves down the tree in the path shown and when it 

encounters a failure node e7, the key 701 is inserted as the right child of node containing 654. 

Again the insertion of 332 which follows a similar procedure is illustrated in Fig. (b). 

 

 



 

Deletion from a binary search tree:      

          For the deletion of a key from the binary search tree we first search for the node 

containing the key by undertaking a retrieval operation.  

  But once the node is identified, the following cases are tested before the node containing 

the key u is appropriately deleted from the binary search tree T:  

 (i) key u is a leaf node  

 (ii) key u has a lone subtree (left subtree or right subtree only)  

 (iii) key u has both left subtree and right subtree 

 Case (i) If the key u to be deleted is a leaf node then the deletion is trivial since the appropriate 

link field of the parent node of key u only needs to be set as NIL.  

Case (ii) If the key u to be deleted has either a left subtree or a right subtree (but not both) then 

the link of the parent node of u is set to point to the appropriate subtree.  

Case (iii) If the key u to be deleted has both a left subtree and a right subtree, then the problem 

is complicated. In this case since the right subtree comprises keys that are greater than u, the 

parent node of key u is now set to point to the right subtree of u.  

 Since all the keys of the left subtree of u are less than that of the right subtree of u, we 

move as far left as possible in the right subtree of u until an empty left subtree is found and link 

the left subtree of u at that position.  

Algorithm : Procedure to delete a node NODE_U from a binary search tree given its parent 

node NODE_X 

 

 procedure DELETE(NODE_U, NODE_X) 

  /* NODE_U is the node which is to be deleted from the binary search tree. NODE_X is 

the parent node for which NODE_U may be the left child or the right child. Procedure DELETE is 

applicable for deletion of all non-empty nodes other than the root (i.e.) NODE_U ≠ NIL and 

NODE_X ≠ NIL */  

 



case  

     :LCHILD(NODE_U )=RCHILD(NODE_U )=NIL:     

 Set RCHILD(NODE_X) or LCHILD(NODE_X)to NIL based on whether NODE_U is the right 

child or left child of NODE_X respectively;  

          call RETURN(NODE_U );    

    

 :LCHILD(NODE_U )< > NIL and RCHILD(NODE_U )<> NIL:   

 

             Set RCHILD(NODE_X) or LCHILD(NODE_X) to RCHILD(NODE_U) based on whether 

NODE_U is the right child or left child of NODE_X respectively;  

 

 TEMP= RCHILD(NODE_U); 

  while (LCHILD(TEMP) <> NIL) do  

 TEMP=LCHILD(TEMP); 

  endwhile  

 LCHILD(TEMP) = LCHILD(NODE_U); 

  call RETURN (NODE_U);  

   

 :LCHILD (NODE_U)< > NIL and RCHILD(NODE_U) = NILTEMP=LCHILD(NODE_U);  

 Set RCHILD(NODE_X) or LCHILD(NODE_X) to TEMP based on whether NODE_U is the right 

child or left child of NODE_X respectively; 

  call RETURN(NODE_U); 

 

  :LCHILD(NODE_U) = NIL and RCHILD(NODE_U) < > NIL:  

 TEMP=RCHILD(NODE_U);  

 Set RCHILD(NODE_X) or LCHILD(NODE_X )to TEMP based on whether NODE_U is the right 

child or left child of NODE_X respectively;  

 call RETURN(NODE_U ); 

 endcase  

end DELETE 



 
 

 

Example: Delete keys 333, 891 and 416 in the order given, from the binary search tree T 

associated with set S = {416, 891, 456, 765, 111, 654, 345, 256, 333} shown in below Fig.  



 

 
 

 

 

 

 

 

 

 



GRAPHS: 

Definitions and Basic Terminologies: 

Graph A graph G = (V, E) consists of a finite non empty set of vertices V also called points 

or nodes and a finite set E of unordered pairs of distinct vertices called edges or arcs or links. 

 Example Figure below illustrates a graph. Here V = {a, b, c, d} and E = {(a, b), (a, c), (b, c), (c, d)}. 

However it is convenient to represent edges using labels as shown in the figure. 

 
Fig.  A graph 

V : Vertices : {a, b, c, d}  

E : Edges : {e1, e2, e3, e4}  

• A graph G = (V, E) where E = Ø, is called as a null or empty graph. 

• A graph with one vertex and no edges is called a trivial graph. 

 

Multigraph: 

 A multigraph G = (V, E) also consists of a set of vertices and edges except that E may 

contain multiple edges (i.e.) edges connecting the same pair of vertices, or may contain loops 

or self edges (i.e.) an edge whose end points are the same vertex.  

Example Figure below illustrates a multigraph Observe the multiple edges e1, e2 

connecting vertices a, b and e5, e6, e7 connecting vertices c, d respectively. Also note the self 

edge e4. 

 
Fig.  A multigraph 

Directed and undirected graphs: 

 A graph whose definition makes reference to unordered pairs of vertices as edges is 

known as an undirected graph. 

 The edge eij of such an undirected graph is represented as (vi , vj ) where vi , vj are 

distinct vertices. Thus an undirected edge (vi , vj ) is equivalent to (vj , vi ). 

 On the other hand, directed graphs or digraphs make reference to edges which are 

directed (i.e.) edges which are ordered pairs of vertices.  

The edge eij is referred to as which is distinct from < vj , vi > where vi , vj are distinct 

vertices.  

Example: Figure below illustrates a digraph and an undirected graph. 



 

In Fig. (a), e1 is a directed edge between v1 and v2, (i.e.) e1 = <v1,v2>, whereas in Fig. 

(b) e1 is an undirected edge between v1 and v2, (i.e.) e1 = (v1, v2).  

The list of vertices and edges of graphs G1 and G2 are:  

Vertices (G1) : {v1, v2, v3, v4}  

Vertices (G2) : {v1, v2, v3, v4}  

Edges (G1) : {<v1,v2>,<v2,v1>,<v1,v3>,<v3,v4>,<v4,v3> } or {e1, e2, e3, e4, e5} 

Edges (G2) : {(v1, v2) (v1, v3) (v2, v3) (v3, v4)} or {e1, e2, e3, e4}  

 

• In the case of an undirected edge (vi , vj ) in a graph, the vertices vi , vj are said to be 

adjacent or the edge (vi , vj ) is said to be incident on vertices vi , vj .  

• Thus in Fig. (b) vertices v1, v3 are adjacent to vertex v2 and edges e1: (v1, v2), e3: (v2, 

v3) are incident on vertex v2.  

• On the other hand, if is a directed edge, then vi is said to be adjacent to vj and vj is said 

to be adjacent from vi . The edge is incident to both vi and vj .  

Complete graphs: 

 The number of distinct unordered pairs (vi , vj ), vi ≠ vj in a graph with n vertices is nC2= 

(n(n-1))/2. An n vertex undirected graph with exactly (n(n-1))/2 edges is said to be complete. 

Example Figure below  illustrates a complete graph. The undirected graph with 4 vertices has all 

its 4C2 = 6 edges intact. 

 
Fig.  A complete graph 

In the case of a digraph with n vertices, the maximum number of edges is given by nP2 = 

n. (n-1).  

Such a graph with exactly n.(n-1) edges is said to be a complete digraph.  

Example Figure (a) illustrates a digraph which is complete and Fig. (b) a graph which is 

not complete. 

 



Subgraph: 

 A subgraph G1’  = (V1’ , E1’ ) of a graph G = (V, E) is such that V1⊆ V and E1⊆ E.  

Example Figure below illustrates some subgraphs of the directed and undirected graphs shown 

in Fig. (Graphs G1 and G2) 

 
Path: 

 A path from a vertex vi to vertex vj in an undirected graph G is a sequence of vertices 

such that (vi , vl1) (vl1 , vl2), … (vlk , vj) are edges in G.  

If G is directed then the path from vi to vj more specially known as a directed path 

consists of edges < vi , vl1> < vl1 , vl2> … < vlk , vj > in G.  

Example Figure (a) illustrates a path P1 from vertex v1 to v4 in graph G1 and Fig (b) 

illustrates a path P2 from vertex v1 to v4 of graph G2. 

 
The length of a path is the number of edges on it. Example In above Fig. the length of 

path P1 is 4 and the length of path P2 is 3. 

 A simple path is a path in which all the vertices except possibly the first and last 

vertices are distinct. 

Example In graph G2, the path from v1 to v4 given by {(v1, v2), (v2, v3), (v3, v4)} and written as 

{v1, v2, v3, v4} is a simple path where as the path from v3 to v4 given by {(v3, v1), (v1, v2), (v2, 

v3), (v3, v4)} and written as {v3, v1, v2, v3, v4} is not a simple path but a path due to the 

repetition of vertices.  

A cycle is a simple path in which the first and last vertices are the same. A cycle is also 

known as a circuit, elementary cycle, circular path or polygon.  

Example In graph G2 the path {v1, v2, v3, v1} is a cycle. Also, in graph G1 the path {v1, 

v2, v1} is a cycle or more specifically a directed cycle.  

 

Connected graphs: 

 Two vertices vi , vj in a graph G are said to be connected only if there is a path in G 

between vi and vj . 



 In an undirected graph if vi and vj are connected then it automatically holds that vj and 

vi are also connected. An undirected graph is said to be a connected graph if every pair of 

distinct vertices vi , vj are connected.  

Example Graph G2 is connected where as graph G3 shown in below Fig. is not 

connected.  

In the case of an undirected graph which is not connected, the maximal connected 

subgraph is called as a connected component or simply a component.  

Example Graph G3  has two connected components viz., graph G31 and G32. 

 
A directed graph is said to be strongly connected if every pair of distinct vertices vi , vj are 

connected (by means of a directed path). Thus if there exists a directed path from vi to vj then 

there also exists a directed path from vj to vi .  

Example Graph G4 shown in Fig. is strongly connected. 

 
 

However, the digraph shown in Fig. is not strongly connected but is said to possess two 

strongly connected components. A strongly connected component is a maximal subgraph that 

is strongly connected. 

 
Trees:  

A tree is defined to be a connected acyclic graph. The following properties are satisfied 

by a tree:  

(i) There exists a path between any two vertices of the tree, and  

(ii)  No cycles must be present in the tree. In other words, trees are acyclic. 

 Example Figure (a) illustrates a tree. Figure  (b) illustrates graphs which are not trees due to the 

violation of the property of acyclicity and connectedness respectively. 



 
 

Degree: 

 The degree of a vertex in an undirected graph is the number of edges incident to that 

vertex. 

 A vertex with degree one is called as a pendant vertex or end vertex.  

A vertex with degree zero and hence has no incident edges is called an isolated vertex. 

Example In graph G2 the degree of vertex v3 is 3 and that of vertex v2 is 2.  

In the case of digraphs, we define the indegree of a vertex v to be the number of edges 

with v as the head and the outdegree of a vertex to be number of edges with v as the tail. 

Example In graph G1 the indegree of vertex v3 is 2 and the out degree of vertex v4 is 1.  

 

Isomorphic graphs:  

Two graphs are said to be isomorphic if,  

(i) they have the same number of vertices 

(ii) they have the same number of edges  

(iii) they have an equal number of vertices with a given degree 

Example Figure illustrates two graphs which are isomorphic. 

 
The property of isomorphism can be verified on the lists of vertices and edges of the two graphs 

G8 and G9 when superimposed as shown below: 

 
 

Cut set: 



 A cut set in a connected graph G is the set of edges whose removal from G leaves G 

disconnected, provided the removal of no proper subset of these edges disconnects the graph 

G. Cut sets are also known as proper cut set or cocycle or minimal cut set. 

 

Example Figure below illustrates the cut set of the graph G10. The cut set {e1, e4} disconnects 

the graph into two components as shown in the figure. {e5} is also another cut set of the graph. 

 
Labeled graphs: 

 A graph G is called a labeled graph if its edges and / or vertices are assigned some data. 

In particular if the edge e is assigned a non negative number l(e) then it is called the weight or 

length of the edge e.  

Example Figure below illustrates a labeled graph. A graph with weighted edges is also 

known as a network. 

 
Eulerian graph: 

 A walk starting at any vertex going through each edge exactly once and terminating at 

the start vertex is called an Eulerian walk or Euler line. 

 The Koenigsberg bridge problem was in fact a problem of obtaining an Eulerian walk for 

the graph concerned. The solution to the problem is, an Eulerian walk is possible only if the 

degree of each vertex in the graph is even. 

 Given a connected graph G, G is an Euler graph iff all the vertices are of even degree. 

Example Figure below illustrates an Euler graph. {e1, e2, e3, e4} shows a Eulerian walk. The 

even degree of the vertices may be noted. 

 
 

 

 



 Hamiltonian circuit: 

 A Hamiltonian circuit in a connected graph is defined as a closed walk that traverses 

every vertex of G exactly once, except of course the starting vertex at which the walk 

terminates. 

 A circuit in a connected graph G is said to be Hamiltonian if it includes every vertex of G. 

If any edge is removed from a Hamiltonian circuit then what remains is referred to as a 

Hamiltonian path. Hamiltonian path traverses every vertex of G. 

 

Example Figure below illustrates a Hamiltonian circuit. 

 
 

Representations of Graphs:  

 The representation of graphs in a computer can be categorized as 

1. sequential representation and 

2. linked representation.  

Of the two, though sequential representation has several methods, all of them follow a 

matrix representation thereby calling for their implementation using arrays. The linked 

representation of a graph makes use of a singly linked list as its fundamental data structure. 

1.  Sequential representation of graphs  

The sequential or the matrix representation of graphs have the following methods: 

(i) Adjacency matrix representation 

(ii) Incidence matrix representation  

(iii) Circuit matrix representation 

(iv) Cut set matrix representation  

(v) Path matrix representation  

i) Adjacency matrix representation : 

The adjacency matrix of a graph G with n vertices is an n X n symmetric binary matrix given 

by A = [aij] defined as aij = 1 if the i th and jth vertices are adjacent (i.e.) there is an edge                                 

connecting the i th and j th vertices 

                                          = 0 otherwise, (i.e.) if there is no edge linking the vertices.  

Example Figure (a) illustrates an undirected graph whose adjacency matrix is shown in Fig. 

(b). It can easily be seen that while adjacency matrices of undirected graphs are symmetric, 

nothing can be said about the symmetricity of the adjacency matrix of digraphs. 



 
Example Figure below illustrates a digraph and its adjacency matrix representation. 

 
ii) Incidence matrix representation : 

Let G be a graph with n vertices and e edges. Define an n X e matrix M = [mij] whose n rows 

correspond to n vertices and e columns correspond to e edges, as  

mij = 1 if the j th edge ej is incident on the i th vertex vi ,  

      = 0 otherwise   

Matrix M is known as the incidence matrix representation of the graph G. 

 Example Consider the graph G13 shown in below Fig. (a), the incidence matrix representation 

for the graph is given in Fig. (b). 

 
iii) Circuit matrix representation : 

For a graph G let the number of different circuits be t and the number of edges be e. Then 

the circuit matrix C= [Cij] of G is a t X e matrix defined as 

 Cij = 1 if the i th circuit includes the j th edge,  

      = 0 otherwise  

Example Consider the graph G14 shown in below Fig. (a). The circuits for this graph 

expressed in terms of their edges are 1: {e1, e2, e3} 2: {e3, e4, e5} 3: {e1, e2, e5, e4}. The circuit 

matrix C of order 3 X 6 is shown in Fig. (b). 



 
iv) Cut set matrix representation: 

 For a graph G, a matrix S = [sij] whose rows correspond to cut sets and columns correspond 

to edges of the graph is defined to be a cut set matrix if  

    sij = 1 if the i th cut set contains the j th edge, 

        = 0 otherwise 

 Example Consider the graph G15 shown in below Fig. (a). The cut sets of the graph are 

1:{e4} 2:{e1, e2} 3:{e2, e3} and 4:{e1, e3}. The cut set matrix representation is shown in Fig. (b). 

 
 

v) Path matrix representation : 

A path matrix is generally defined for a specific pair of vertices in a graph. If (u, v) is a pair of 

vertices then the path matrix denoted as P(u,v) = [pij] is given by 

 pij = 1 if the jth edge lies in the i th path between vertices u and v, 

      = 0 otherwise 

Example Consider the graph G16 shown in Fig. (a). The paths between vertices v1 and v4 are 

1:{e2, e4} and 2:{e1, e3, e4}. The path matrix representation is shown in Fig (b). 

 
Of all these sequential representations, adjacency matrix representation represents the graph 

best and is the most widely used representation. 

 

2. Linked representation of graphs : 

The linked representation of graphs is referred to as adjacency list representation and is 

comparatively efficient with regard to adjacency matrix representation. 



 Given a graph G with n vertices and e edges, the adjacency list opens n head nodes 

corresponding to the n vertices of graph G, each of which points to a singly linked list of nodes, 

which are adjacent to the vertex representing the head node. 

 Example Figure below illustrates a graph and its adjacency list representation. It can easily 

be seen that if the graph is undirected, then the number of nodes in the singly linked lists put 

together is 2e where as in the case of digraphs the number of nodes is just e, where e is the 

number of edges in the graph. 

 

 

Graph Traversals: 

Graphs support the following traversals:  

1. Breadth first Traversal, and  

2. Depth first Traversal.  

A traversal, to recall, is a systematic walk which visits the nodes comprising the data structure 

(graphs in this case) in a specific order.  

 

1. Breadth first traversal:  

The breadth first traversal starts from a vertex u which is said to be visited. Now all 

nodes vi , adjacent to u are visited. 

The unvisited vertices wij adjacent to each of vi are visited next and so on. The 

traversal terminates when there are no more nodes to visit. 

 The process calls for the maintenance of a queue to keep track of the order of 

nodes whose adjacent nodes are to be visited.  

Algorithm: Breadth first traversal 

 Procedure BFT(s) 

 /* s is the start vertex of the traversal in an undirected graph G */ 

 /* Q is a queue which keeps track of the vertices whose adjacent nodes are to be visited 

*/ 

 /* Vertices which have been visited have their ‘ visited’  flags set to 1 (i.e.) visited 

(vertex) = 1. Initially, visited (vertex) = 0 for all vertices of graph G */  

 

Initialize queue Q;  

 visited(s) = 1;  

call ENQUEUE (Q,s);     /* insert s into Q */  



while not EMPTY_QUEUE(Q) do   /* process until Q is empty */ 

call DEQUEUE (Q,s)    /* delete s from Q*/  

print (s);     /* output vertex visited */ 

 for all vertices v adjacent to s do 

     if (visited (v) = 0) then  

{ 

 call ENQUEUE (Q, v);  

visited (v) =1;  

}  

    end  

    endwhile 

end BFT. 

 

 Breadth first traversal as its name indicates traverses the successors of the start node, 

generation after generation in a horizontal or linear fashion.  

Example: Consider the undirected graph G shown in below Fig. (a) and its adjacency list 

representation shown in Fig.(b). The trace of procedure BFT(1) where the start vertex is 1, is 

shown in Table below. 

 
Fig. A graph and its adjacency list representation to demonstrate breadth first traversal 

 Table: Trace of the Breadth first traversal procedure on graph G. 



 

 
 

The breadth first traversal starts from vertex 1 and visits vertices 5,6,7 which are 

adjacent to it, while enqueuing them into queue Q. 

 In the next shot, vertex 5 is dequeued and its adjacent, unvisited vertices 4, 9 are visited 

next and so on. The process continues until the queue Q which keeps track of the adjacent 

vertices is empty. 

 

Depth first traversal: 

  The depth first traversal of an undirected graph starts from a vertex u which is said to be 

visited. Now, all the nodes vi adjacent to vertex u are collected and the first occurring vertex v1 

is visited, deferring the visits to other vertices. 



 The nodes adjacent to v1 viz., w1k are collected and the first occurring adjacent vertex 

viz., w11 is visited deferring the visit to other adjacent nodes and so on. The traversal 

progresses until there are no more visits possible.  

Algorithm : Depth first traversal  

 

Procedure DFT(s)   /* s is the start vertex */ 

 visited(s) = 1;  

print (s);   /* Output visited vertex */ 

for each vertex v adjacent to s do 

     if visited(v) = 0 then  

      call DFT(v); 

  end  

end DFT  

 

The depth first traversal as its name indicates visits each node, that is, the first occurring 

among its adjacent nodes and successively repeats the operation, thus moving deeper and 

deeper into the graph. 

 In contrast, breadth first traversal moves sideways or breadth ways in the graph. 

Example illustrates a depth first traversal of a undirected graph. 

Consider the undirected graph G and its adjacency list representation shown in above 

Fig. 

 Figure shows a tree of recursive calls which represents a trace of the procedure DFT(1) 

on the graph G with start vertex 1. 



 
The tree of recursive calls illustrates the working of the DFT procedure. The first call 

DFT(1) visits start vertex 1 and releases 1 as the traversal output. 

 Vertex 1 has vertices 5, 6, 7 as its adjacent nodes. DFT(1) now invokes DFT(5), visiting 

vertex 5 and releasing it as the next traversal output.  

However DFT(6) and DFT(7) are kept in waiting for DFT(5) to complete its execution. 

Such procedure calls waiting to be executed are shown in broken line boxes in the tree of 

recursive calls.  

Now DFT(5) invokes DFT(4) releasing vertex 4 as the traversal output while DFT(9) is 

kept in abeyance. Note that though vertex 1 is an adjacent node of vertex 5, since no DFT( ) 

calls to vertices already visited are invoked, DFT(1) is not called for. 

 The process continues until DFT(6) completes its execution with no more nodes left to 

visit. During recursion the calls made to DFT( ) procedure are indicated using solid arrows in the 

forward direction.  

Once DFT(6) finishes execution, back tracking takes place which is indicated using 

broken arrows in the reverse direction. Once DFT(1) completes execution the traversal output is 

gathered to be 1 5 4 2 9 7 3 8 10 6. 




