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4.1 What’s Inside a Router? 

Now that we’ve overviewed the network layer’s services and functions, let’s turn 

our attention to its forwarding function—the actual transfer of packets from a 

router’s incoming links to the appropriate outgoing links at that router. We already 

took a brief look at a few aspects of forwarding in Section 4.2, namely, addressing 

and longest prefix matching. We mention here in passing that the terms forwarding 

and switching are often used interchangeably by computer-networking researchers 

and practitioners; we’ll use both terms interchangeably in this textbook as well. 

A high-level view of a generic router architecture is shown in Figure 4.6. Four 

router components can be identified: 

 
• Input ports. An input port performs several key functions. It performs the 

physical layer function of terminating an incoming physical link at a router; 

this is shown in the leftmost box of the input port and the rightmost box of the 

output port in Figure 4.6. An input port also performs link-layer functions 

needed to interoperate with the link layer at the other side of the incoming 

link; this is represented by the middle boxes in the input and output ports. Per- 

haps most crucially, the lookup function is also performed at the input port; 

this will occur in the rightmost box of the input port. It is here that the for- 

warding table is consulted to determine the router output port to which an 
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arriving packet will be forwarded via the switching fabric. Control packets 

(for example, packets carrying routing protocol information) are forwarded 

from an input port to the routing processor. Note that the term port here— 

referring to the physical input and output router interfaces—is distinctly 

different from the software ports associated with network applications and 

sockets discussed in Chapters 2 and 3. 

• Switching fabric. The switching fabric connects the router’s input ports to its 

output ports. This switching fabric is completely contained within the router—  

a network inside of a network router! 

• Output ports. An output port stores packets received from the switching fabric 

and transmits these packets on the outgoing link by performing the necessary 

link-layer and physical-layer functions. When a link is bidirectional (that is, 
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Figure 4.6 ◆ Router architecture 
 

carries traffic in both directions), an output port will typically be paired with the 

input port for that link on the same line card (a printed circuit board containing 

one or more input ports, which is connected to the switching fabric). 

• Routing processor. The routing processor executes the routing protocols (which 

we’ll study in Section 4.6), maintains routing tables and attached link state infor- 

mation, and computes the forwarding table for the router. It also performs the 

network management functions that we’ll study in Chapter 9. 

 
Recall that in Section 4.1.1 we distinguished between a router’s forwarding and 

routing functions. A router’s input ports, output ports, and switching fabric 

together implement the forwarding function and are almost always implemented 

in hardware, as shown in Figure 4.6. These forwarding functions are sometimes 

collectively referred to as the router forwarding plane. To appreciate why a 

hardware implementation is needed, consider that with a 10 Gbps input link and a 

64-byte IP datagram, the input port has only 51.2 ns to process the datagram 

before another datagram may arrive. If N ports are combined on a line card (as is 

often done in practice), the datagram-processing pipeline must operate N times 

faster—far too fast for software implementation. Forwarding plane hardware can 

be implemented either using a router vendor’s own hardware designs, or con- 

structed using purchased merchant-silicon chips (e.g., as sold by companies such  

as Intel and Broadcom). 

While the forwarding plane operates at the nanosecond time scale, a router’s 

control functions—executing the routing protocols, responding to attached links that 
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go up or down, and performing management functions such as those we’ll study in 

Chapter 9—operate at the millisecond or second timescale. These router control 

plane functions are usually implemented in software and execute on the routing 

processor (typically a traditional CPU). 

Before delving into the details of a router’s control and data plane, let’s return to 

our analogy of Section 4.1.1, where packet forwarding was compared to cars entering 

and leaving an interchange. Let’s suppose that the interchange is a roundabout, and that 

before a car enters the roundabout, a bit of processing is required—the car stops at an 

entry station and indicates its final destination (not at the local roundabout, but the ulti- 

mate destination of its journey). An attendant at the entry station looks up the final des- 

tination, determines the roundabout exit that leads to that final destination, and tells the 

driver which roundabout exit to take. The car enters the roundabout (which may be 

filled with other cars entering from other input roads and heading to other roundabout 

exits) and eventually leaves at the prescribed roundabout exit ramp, where it may 

encounter other cars leaving the roundabout at that exit. 

We can recognize the principal router components in Figure 4.6 in this anal- 

ogy—the entry road and entry station correspond to the input port (with a lookup 

function to determine to local outgoing port); the roundabout corresponds to the 

switch fabric; and the roundabout exit road corresponds to the output port. With this 

analogy, it’s instructive to consider where bottlenecks might occur. What hap- pens 

if cars arrive blazingly fast (for example, the roundabout is in Germany or Italy!) 

but the station attendant is slow? How fast must the attendant work to ensure 

there’s no backup on an entry road? Even with a blazingly fast attendant, what hap- 

pens if cars traverse the roundabout slowly—can backups still occur? And what 

happens if most of the entering cars all want to leave the roundabout at the same 

exit ramp—can backups occur at the exit ramp or elsewhere? How should the 

roundabout operate if we want to assign priorities to different cars, or block certain 

cars from entering the roundabout in the first place? These are all analogous to crit- 

ical questions faced by router and switch designers. 

In the following subsections, we’ll look at router functions in more detail. [Iyer 

2008, Chao 2001; Chuang 2005; Turner 1988; McKeown 1997a; Partridge 1998] 

provide a discussion of specific router architectures. For concreteness, the ensuing 

discussion assumes a datagram network in which forwarding decisions are based  

on the packet’s destination address (rather than a VC number in a virtual-circuit 

network). However, the concepts and techniques are quite similar for a virtual- 

circuit network. 

 

4.1.1 Input Processing 

A more detailed view of input processing is given in Figure 4.7. As discussed above, 

the input port’s line termination function and link-layer processing implement the 

physical and link layers for that individual input link. The lookup performed in the 

input port is central to the router’s operation—it is here that the router uses the for- 

warding table to look up the output port to which an arriving packet will be 
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CASE HISTORY 

CISCO SYSTEMS: DOMINATING THE NETWORK CORE  

As of this writing 2012, Cisco employs more than 65,000 people. How did this  
gorilla of a networking company come to be? It all started in 1984 in the living room 
of a Silicon Valley apartment. 

Len Bosak and his wife Sandy Lerner were working at Stanford University when they 
had the idea to build and sell Internet routers to research and academic institutions, the 
primary adopters of the Internet at that time. Sandy Lerner came up with the name Cisco 
(an abbreviation for San Francisco), and she also designed the company’s bridge logo. 
Corporate headquarters was their living room, and they financed the project with credit 
cards and moonlighting consulting jobs. At the end of 1986, Cisco’s revenues reached 

$250,000 a month. At the end of 1987, Cisco succeeded in attracting venture capital— 
$2 million from Sequoia Capital in exchange for one-third of the company. Over the next 
few years, Cisco continued to grow and grab more and more market share. At the same 
time, relations between Bosak/Lerner and Cisco management became strained. Cisco 
went public in 1990; in the same year Lerner and Bosak left the company. 

Over the years, Cisco has expanded well beyond the router market, selling security, 
wireless caching, Ethernet switch, datacenter infrastructure, video conferencing, and 
voice-over IP products and services. However, Cisco is facing increased international 
competition, including from Huawei, a rapidly growing Chinese network-gear compa- 
ny. Other sources of competition for Cisco in the router and switched Ethernet space 
include Alcatel-Lucent and Juniper. 

 

forwarded via the switching fabric. The forwarding table is computed and updated 

by the routing processor, with a shadow copy typically stored at each input port. The 

forwarding table is copied from the routing processor to the line cards over a sepa- 

rate bus (e.g., a PCI bus) indicated by the dashed line from the routing processor to 

the input line cards in Figure 4.6. With a shadow copy, forwarding decisions can be 

made locally, at each input port, without invoking the centralized routing processor 

on a per-packet basis and thus avoiding a centralized processing bottleneck. 

Given the existence of a forwarding table, lookup is conceptually simple—we just 

search through the forwarding table looking for the longest prefix match, as described 
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in Section 4.2.2. But at Gigabit transmission rates, this lookup must be performed in 

nanoseconds (recall our earlier example of a 10 Gbps link and a 64-byte IP datagram). 

Thus, not only must lookup be performed in hardware, but techniques beyond a simple 

linear search through a large table are needed; surveys of fast lookup algorithms can be 

found in [Gupta 2001, Ruiz-Sanchez 2001]. Special attention must also be paid to mem- 

ory access times, resulting in designs with embedded on-chip DRAM and faster SRAM 

(used as a DRAM cache) memories. Ternary Content Address Memories (TCAMs) are 

also often used for lookup. With a TCAM, a 32-bit IP address is presented to the mem- 

ory, which returns the content of the forwarding table entry for that address in essen- 

tially constant time. The Cisco 8500 has a 64K CAM for each input port. 

Once a packet’s output port has been determined via the lookup, the packet can 

be sent into the switching fabric. In some designs, a packet may be temporarily 

blocked from entering the switching fabric if packets from other input ports are cur- 

rently using the fabric. A blocked packet will be queued at the input port and then 

scheduled to cross the fabric at a later point in time. We’ll take a closer look at the 

blocking, queuing, and scheduling of packets (at both input ports and output ports) 

in Section 4.3.4. Although “lookup” is arguably the most important action in input 

port processing, many other actions must be taken: (1) physical- and link-layer pro- 

cessing must occur, as discussed above; (2) the packet’s version number, checksum 

and time-to-live field—all of which we’ll study in Section 4.4.1—must be checked 

and the latter two fields rewritten; and (3) counters used for network management 

(such as the number of IP datagrams received) must be updated. 

Let’s close our discussion of input port processing by noting that the input port 

steps of looking up an IP address (“match”) then sending the packet into the switching 

fabric (“action”) is a specific case of a more general “match plus action” abstraction 

that is performed in many networked devices, not just routers. In link-layer switches 

(covered in Chapter 5), link-layer destination addresses are looked up and several 

actions may be taken in addition to sending the frame into the switching fabric towards 

the output port. In firewalls (covered in Chapter 8)—devices that filter out selected 

incoming packets—an incoming packet whose header matches a given criteria (e.g., a 

combination of source/destination IP addresses and transport-layer port numbers) may 

be prevented from being forwarded (action). In a network address translator (NAT, cov- 

ered in Section 4.4), an incoming packet whose transport-layer port number matches a 

given value will have its port number rewritten before forwarding (action). Thus, the 

“match plus action” abstraction is both powerful and prevalent in network devices. 

 
4.1.2 Switching 

The switching fabric is at the very heart of a router, as it is through this fabric that 

the packets are actually switched (that is, forwarded) from an input port to an output 

port. Switching can be accomplished in a number of ways, as shown in Figure 4.8: 

 
• Switching via memory. The simplest, earliest routers were traditional computers, 

with switching between input and output ports being done under direct control of 
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Figure 4.8 ◆ Three switching techniques 

the CPU (routing processor). Input and output ports functioned as traditional I/O 

devices in a traditional operating system. An input port with an arriving packet 

first signaled the routing processor via an interrupt. The packet was then copied 

from the input port into processor memory. The routing processor then extracted 

the destination address from the header, looked up the appropriate output port in 

the forwarding table, and copied the packet to the output port’s buffers. In this 

scenario, if the memory bandwidth is such that B packets per second can be writ- 

ten into, or read from, memory, then the overall forwarding throughput (the total 

rate at which packets are transferred from input ports to output ports) must be 

less than B/2. Note also that two packets cannot be forwarded at the same time, 

even if they have different destination ports, since only one memory read/write 

over the shared system bus can be done at a time. 

Many modern routers switch via memory. A major difference from early routers, 

however, is that the lookup of the destination address and the storing of the packet 

into the appropriate memory location are performed by processing on the input 

line cards. In some ways, routers that switch via memory look very much like 

shared-memory multiprocessors, with the processing on a line card switching 

(writing) packets into the memory of the appropriate output port. Cisco’s Catalyst 

8500 series switches [Cisco 8500 2012] forward packets via a shared memory. 
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• Switching via a bus. In this approach, an input port transfers a packet directly to the 

output port over a shared bus, without intervention by the routing processor. This is 

typically done by having the input port pre-pend a switch-internal label (header) to 

the packet indicating the local output port to which this packet is being transferred 

and transmitting the packet onto the bus. The packet is received by all output ports, 

but only the port that matches the label will keep the packet. The label is then 

removed at the output port, as this label is only used within the switch to cross the 

bus. If multiple packets arrive to the router at the same time, each at a different input 

port, all but one must wait since only one packet can cross the bus at a time. Because 

every packet must cross the single bus, the switching speed of the router is limited 

to the bus speed; in our roundabout analogy, this is as if the roundabout could only 

contain one car at a time. Nonetheless, switching via a bus is often sufficient for 

routers that operate in small local area and enterprise networks. The Cisco 5600 

[Cisco Switches 2012] switches packets over a 32 Gbps backplane bus. 

• Switching via an interconnection network. One way to overcome the bandwidth 

limitation of a single, shared bus is to use a more sophisticated interconnection net- 

work, such as those that have been used in the past to interconnect processors in a 

multiprocessor computer architecture. A crossbar switch is an interconnection net- 

work consisting of 2N buses that connect N input ports to N output ports, as shown 

in Figure 4.8. Each vertical bus intersects each horizontal bus at a crosspoint, which 

can be opened or closed at any time by the switch fabric controller (whose logic is 

part of the switching fabric itself). When a packet arrives from port A and needs to 

be forwarded to port Y, the switch controller closes the crosspoint at the intersection 

of busses A and Y, and port A then sends the packet onto its bus, which is picked up 

(only) by bus Y. Note that a packet from port B can be forwarded to port X at the 

same time, since the A-to-Y and B-to-X packets use different input and output 

busses. Thus, unlike the previous two switching approaches, crossbar networks are 

capable of forwarding multiple packets in parallel. However, if two packets from 

two different input ports are destined to the same output port, then one will have to 

wait at the input, since only one packet can be sent over any given bus at a time. 

More sophisticated interconnection networks use multiple stages of switching 

elements to allow packets from different input ports to proceed towards the same 

output port at the same time through the switching fabric. See [Tobagi 1990] for 

a survey of switch architectures. Cisco 12000 family switches [Cisco 12000 

2012] use an interconnection network. 

 

4.1.3 Output Processing 

Output port processing, shown in Figure 4.9, takes packets that have been stored in 

the output port’s memory and transmits them over the output link. This includes 

selecting and de-queueing packets for transmission, and performing the needed link- 

layer and physical-layer transmission functions. 
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Figure 4.9 ◆ Output port processing 
 

4.1.4 Where Does Queueing Occur? 

If we consider input and output port functionality and the configurations shown in 

Figure 4.8, it’s clear that packet queues may form at both the input ports and the out- 

put ports, just as we identified cases where cars may wait at the inputs and outputs of 

the traffic intersection in our roundabout analogy. The location and extent of queueing 

(either at the input port queues or the output port queues) will depend on the traffic 

load, the relative speed of the switching fabric, and the line speed. Let’s now consider 

these queues in a bit more detail, since as these queues grow large, the router’s mem- 

ory can eventually be exhausted and packet loss will occur when no memory is avail- 

able to store arriving packets. Recall that in our earlier discussions, we said that 

packets were “lost within the network” or “dropped at a router.” It is here, at these 

queues within a router, where such packets are actually dropped and lost. 

Suppose that the input and output line speeds (transmission rates) all have an 

identical transmission rate of R
line 

packets per second, and that there are N input 

ports and N output ports. To further simplify the discussion, let’s assume that all 

packets have the same fixed length, and the packets arrive to input ports in a syn- 

chronous manner. That is, the time to send a packet on any link is equal to the time 

to receive a packet on any link, and during such an interval of time, either zero or 

one packet can arrive on an input link. Define the switching fabric transfer rate 

R
switch 

as the rate at which packets can be moved from input port to output port. If 

R
switch 

is N times faster than R
line

, then only negligible queuing will occur at the 

input ports. This is because even in the worst case, where all N input lines are 

receiving packets, and all packets are to be forwarded to the same output port, each 

batch of N packets (one packet per input port) can be cleared through the switch fab- 

ric before the next batch arrives. 

But what can happen at the output ports? Let’s suppose that R
switch 

is still N 

times faster than R
line

. Once again, packets arriving at each of the N input ports    

are destined to the same output port. In this case, in the time it takes to send a single 

packet onto the outgoing link, N new packets will arrive at this output port. Since 

the output port can transmit only a single packet in a unit of time (the packet trans- 

mission time), the N arriving packets will have to queue (wait) for transmission over 

the outgoing link. Then N more packets can possibly arrive in the time it takes to 

Switch 
fabric 

 

Line 
termination 

Data link 
processing 
(protocol, 

encapsulation) 

Queuing (buffer 
management) 



328 CHAPTER 4 • THE NETWORK LAYER 
 

 

 

 
transmit just one of the N packets that had just previously been queued. And so on. 

Eventually, the number of queued packets can grow large enough to exhaust avail- 

able memory at the output port, in which case packets are dropped. 

Output port queuing is illustrated in Figure 4.10. At time t, a packet has arrived at 

each of the incoming input ports, each destined for the uppermost outgoing port. 

Assuming identical line speeds and a switch operating at three times the line speed, 

one time unit later (that is, in the time needed to receive or send a packet), all three 

original packets have been transferred to the outgoing port and are queued awaiting 

transmission. In the next time unit, one of these three packets will have been transmit- 

ted over the outgoing link. In our example, two new packets have arrived at the incom- 

ing side of the switch; one of these packets is destined for this uppermost output port. 

Given that router buffers are needed to absorb the fluctuations in traffic load, the 

natural question to ask is how much buffering is required. For many years, the rule of 

thumb [RFC 3439] for buffer sizing was that the amount of buffering (B) should be 

equal to an average round-trip time (RTT, say 250 msec) times the link capacity (C). 

This result is based on an analysis of the queueing dynamics of a relatively small num- 

ber of TCP flows [Villamizar 1994]. Thus, a 10 Gbps link with an RTT of 250 msec 

would need an amount of buffering equal to B = RTT · C = 2.5 Gbits of buffers. Recent 
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Figure 4.10 ◆ Output port queuing 
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theoretical and experimental efforts [Appenzeller 2004], however, suggest that when 

there are a large number of TCP flows (N) passing through a link, the amount of buffer- 
— 
N . With a large number of flows typically passing through 

large backbone router links (see, e.g., [Fraleigh 2003]), the value of N can be large, with 

the decrease in needed buffer size becoming quite significant. [Appenzellar 2004; Wis- 

chik 2005; Beheshti 2008] provide very readable discussions of the buffer sizing prob- 

lem from a theoretical, implementation, and operational standpoint. 

A consequence of output port queuing is that a packet scheduler at the output 

port must choose one packet among those queued for transmission. This selection 

might be done on a simple basis, such as first-come-first-served (FCFS) scheduling, 

or a more sophisticated scheduling discipline such as weighted fair queuing (WFQ), 

which shares the outgoing link fairly among the different end-to-end connections 

that have packets queued for transmission. Packet scheduling plays a crucial role in 

providing quality-of-service guarantees. We’ll thus cover packet scheduling exten- 

sively in Chapter 7. A discussion of output port packet scheduling disciplines is 

[Cisco Queue 2012]. 

Similarly, if there is not enough memory to buffer an incoming packet, a decision 

must be made to either drop the arriving packet (a policy known as drop-tail) or 

remove one or more already-queued packets to make room for the newly arrived 

packet. In some cases, it may be advantageous to drop (or mark the header of) a packet 

before the buffer is full in order to provide a congestion signal to the sender. A number 

of packet-dropping and -marking policies (which collectively have become known as 

active queue management (AQM) algorithms) have been proposed and analyzed 

[Labrador 1999, Hollot 2002]. One of the most widely studied and implemented AQM 

algorithms is the Random Early Detection (RED) algorithm. Under RED, a 

weighted average is maintained for the length of the output queue. If the average 

queue length is less than a minimum threshold, min
th

, when a packet arrives, the 

packet is admitted to the queue. Conversely, if the queue is full or the average queue 

length is greater than a maximum threshold, max
th

, when a packet arrives, the packet 

is marked or dropped. Finally, if the packet arrives to find an average queue length in 

the interval [min
th

, max
th

], the packet is marked or dropped with a probability that is 

typically some function of the average queue length, min
th

, and max
th

. A number of 

probabilistic marking/dropping functions have been proposed, and various versions of 

RED have been analytically modeled, simulated, and/or implemented. [Christiansen 

2001] and [Floyd 2012] provide overviews and pointers to additional reading. 

If the switch fabric is not fast enough (relative to the input line speeds) to transfer 

all arriving packets through the fabric without delay, then packet queuing can also 

occur at the input ports, as packets must join input port queues to wait their turn to be 

transferred through the switching fabric to the output port. To illustrate an important 

consequence of this queuing, consider a crossbar switching fabric and suppose that 

(1) all link speeds are identical, (2) that one packet can be transferred from any one 

input port to a given output port in the same amount of time it takes for a packet to be 

received on an input link, and (3) packets are moved from a given input queue to their 

ing needed is B = RTT · C/ 
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desired output queue in an FCFS manner. Multiple packets can be transferred in paral- 

lel, as long as their output ports are different. However, if two packets at the front of 

two input queues are destined for the same output queue, then one of the packets will 

be blocked and must wait at the input queue—the switching fabric can transfer only 

one packet to a given output port at a time. 

Figure 4.11 shows an example in which two packets (darkly shaded) at the front 

of their input queues are destined for the same upper-right output port. Suppose that 

the switch fabric chooses to transfer the packet from the front of the upper-left 

queue. In this case, the darkly shaded packet in the lower-left queue must wait. But 

not only must this darkly shaded packet wait, so too must the lightly shaded packet 

that is queued behind that packet in the lower-left queue, even though there is no 

contention for the middle-right output port (the destination for the lightly shaded 

packet). This phenomenon is known as head-of-the-line (HOL) blocking in an 
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Figure 4.11 ◆ HOL blocking at an input queued switch 
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input-queued switch—a queued packet in an input queue must wait for transfer 

through the fabric (even though its output port is free) because it is blocked by 

another packet at the head of the line. [Karol 1987] shows that due to HOL block- 

ing, the input queue will grow to unbounded length (informally, this is equivalent to 

saying that significant packet loss will occur) under certain assumptions as soon as 

the packet arrival rate on the input links reaches only 58 percent of their capacity. A 

number of solutions to HOL blocking are discussed in [McKeown 1997b]. 

 

4.1.5 The Routing Control Plane 

In our discussion thus far and in Figure 4.6, we’ve implicitly assumed that the rout- 

ing control plane fully resides and executes in a routing processor within the router. 

The network-wide routing control plane is thus decentralized—with different pieces 

(e.g., of a routing algorithm) executing at different routers and interacting by send- 

ing control messages to each other. Indeed, today’s Internet routers and the routing 

algorithms we’ll study in Section 4.6 operate in exactly this manner. Additionally, 

router and switch vendors bundle their hardware data plane and software control 

plane together into closed (but inter-operable) platforms in a vertically integrated 

product. 

Recently, a number of researchers [Caesar 2005a, Casado 2009, McKeown 

2008] have begun exploring new router control plane architectures in which part of 

the control plane is implemented in the routers (e.g., local measurement/reporting of 

link state, forwarding table installation and maintenance) along with the data plane, 

and part of the control plane can be implemented externally to the router (e.g., in a 

centralized server, which could perform route calculation). A well-defined API dic- 

tates how these two parts interact and communicate with each other. These 

researchers argue that separating the software control plane from the hardware data 

plane (with a minimal router-resident control plane) can simplify routing by replac- 

ing distributed routing calculation with centralized routing calculation, and enable 

network innovation by allowing different customized control planes to operate over 

fast hardware data planes. 

 

 

 

4.2 Routing Algorithms 

So far in this chapter, we’ve mostly explored the network layer’s forwarding func- 

tion. We learned that when a packet arrives to a router, the router indexes a forward- 

ing table and determines the link interface to which the packet is to be directed. We 

also learned that routing algorithms, operating in network routers, exchange and 
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compute the information that is used to configure these forwarding tables. The inter- 

play between routing algorithms and forwarding tables was shown in Figure 4.2. 

Having explored forwarding in some depth we now turn our attention to the other 

major topic of this chapter, namely, the network layer’s critical routing function. 

Whether the network layer provides a datagram service (in which case different pack- 

ets between a given source-destination pair may take different routes) or a VC serv- 

ice (in which case all packets between a given source and destination will take the 

same path), the network layer must nonetheless determine the path that packets take 

from senders to receivers. We’ll see that the job of routing is to determine good paths 

(equivalently, routes), from senders to receivers, through the network of routers. 

Typically a host is attached directly to one router, the default router for the 

host (also called the first-hop router for the host). Whenever a host sends a packet, 

the packet is transferred to its default router. We refer to the default router of the 

source host as the source router and the default router of the destination host as the 

destination router. The problem of routing a packet from source host to destination 

host clearly boils down to the problem of routing the packet from source router to 

destination router, which is the focus of this section. 

The purpose of a routing algorithm is then simple: given a set of routers, with 

links connecting the routers, a routing algorithm finds a “good” path from source 

router to destination router. Typically, a good path is one that has the least cost. 

We’ll see, however, that in practice, real-world concerns such as policy issues (for 

example, a rule such as “router x, belonging to organization Y, should not forward 

any packets originating from the network owned by organization Z”) also come into 

play to complicate the conceptually simple and elegant algorithms whose theory 

underlies the practice of routing in today’s networks. 

A graph is used to formulate routing problems. Recall that a graph G = (N,E) 

is a set N of nodes and a collection E of edges, where each edge is a pair of nodes 

from N. In the context of network-layer routing, the nodes in the graph represent 

routers—the points at which packet-forwarding decisions are made—and the edges 

connecting these nodes represent the physical links between these routers. Such a 

graph abstraction of a computer network is shown in Figure 4.27. To view some 

graphs representing real network maps, see [Dodge 2012, Cheswick 2000]; for a 

discussion of how well different graph-based models model the Internet, see 

[Zegura 1997, Faloutsos 1999, Li 2004]. 

As shown in Figure 4.27, an edge also has a value representing its cost. Typi- 

cally, an edge’s cost may reflect the physical length of the corresponding link (for 

example, a transoceanic link might have a higher cost than a short-haul terrestrial 

link), the link speed, or the monetary cost associated with a link. For our purposes, 

we’ll simply take the edge costs as a given and won’t worry about how they are 

determined. For any edge (x,y) in E, we denote c(x,y) as the cost of the edge between 

nodes x and y. If the pair (x,y) does not belong to E, we set c(x,y) = . Also, through- 

out we consider only undirected graphs (i.e., graphs whose edges do not have a 

direction), so that edge (x,y) is the same as edge (y,x) and that c(x,y) = c(y,x). Also, a 

node y is said to be a neighbor of node x if (x,y) belongs to E. 
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Figure 4.27 ◆ Abstract graph model of a computer network 
 

Given that costs are assigned to the various edges in the graph abstraction, a natu- 

ral goal of a routing algorithm is to identify the least costly paths between sources and 

destinations. To make this problem more precise, recall that a path in a graph G = 

(N,E) is a sequence of nodes (x
1
, x

2
,..., x

p
) such that each of the pairs (x

1
,x

2
), 

(x
2
,x

3
),...,(x

p-1
,x

p
) are edges in E. The cost of a path (x

1
,x

2
,..., x

p
) is simply the sum of 

all the edge costs along the path, that is, c(x
1
,x

2
) + c(x

2
,x

3
) + ...+ c(x

p-1
,x

p
). Given any 

two nodes x and y, there are typically many paths between the two nodes, with each 

path having a cost. One or more of these paths is a least-cost path. The least-cost 

problem is therefore clear: Find a path between the source and destination that has 

least cost. In Figure 4.27, for example, the least-cost path between source node u and 

destination node w is (u, x, y, w) with a path cost of 3. Note that if all edges in the 

graph have the same cost, the least-cost path is also the shortest path (that is, the 

path with the smallest number of links between the source and the destination). 

As a simple exercise, try finding the least-cost path from node u to z in Figure 

4.27 and reflect for a moment on how you calculated that path. If you are like most 

people, you found the path from u to z by examining Figure 4.27, tracing a few routes 

from u to z, and somehow convincing yourself that the path you had chosen had the 

least cost among all possible paths. (Did you check all of the 17 possible paths 

between u and z? Probably not!) Such a calculation is an example of a centralized 

routing algorithm—the routing algorithm was run in one location, your brain, with 

complete information about the network. Broadly, one way in which we can classify 

routing algorithms is according to whether they are global or decentralized. 

 
• A global routing algorithm computes the least-cost path between a source and 

destination using complete, global knowledge about the network. That is, the 

algorithm takes the connectivity between all nodes and all link costs as inputs. 

This then requires that the algorithm somehow obtain this information before 

actually performing the calculation. The calculation itself can be run at one site 
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(a centralized global routing algorithm) or replicated at multiple sites. The key 

distinguishing feature here, however, is that a global algorithm has complete 

information about connectivity and link costs. In practice, algorithms with global 

state information are often referred to as link-state (LS) algorithms, since the 

algorithm must be aware of the cost of each link in the network. We’ll study LS 

algorithms in Section 4.5.1. 

• In a decentralized routing algorithm, the calculation of the least-cost path is 

carried out in an iterative, distributed manner. No node has complete information 

about the costs of all network links. Instead, each node begins with only the  

knowledge of the costs of its own directly attached links. Then, through an itera- 

tive process of calculation and exchange of information with its neighboring 

nodes (that is, nodes that are at the other end of links to which it itself is 

attached), a node gradually calculates the least-cost path to a destination or set of 

destinations. The decentralized routing algorithm we’ll study below in Section 

4.5.2 is called a distance-vector (DV) algorithm, because each node maintains a 

vector of estimates of the costs (distances) to all other nodes in the network. 

 
A second broad way to classify routing algorithms is according to whether they 

are static or dynamic. In static routing algorithms, routes change very slowly over 

time, often as a result of human intervention (for example, a human manually edit- 

ing a router’s forwarding table). Dynamic routing algorithms change the routing 

paths as the network traffic loads or topology change. A dynamic algorithm can be 

run either periodically or in direct response to topology or link cost changes. While 

dynamic algorithms are more responsive to network changes, they are also more 

susceptible to problems such as routing loops and oscillation in routes. 

A third way to classify routing algorithms is according to whether they are load- 

sensitive or load-insensitive. In a load-sensitive algorithm, link costs vary dynami- 

cally to reflect the current level of congestion in the underlying link. If a high cost is 

associated with a link that is currently congested, a routing algorithm will tend to 

choose routes around such a congested link. While early ARPAnet routing algo- 

rithms were load-sensitive [McQuillan 1980], a number of difficulties were encoun- 

tered [Huitema 1998]. Today’s Internet routing algorithms (such as RIP, OSPF, and 

BGP) are load-insensitive, as a link’s cost does not explicitly reflect its current (or 

recent past) level of congestion. 

 

4.2.1 The Link-State (LS) Routing Algorithm 

Recall that in a link-state algorithm, the network topology and all link costs are  

known, that is, available as input to the LS algorithm. In practice this is accom- 

plished by having each node broadcast link-state packets to all other nodes in the 

network, with each link-state packet containing the identities and costs of its 

attached links. In practice (for example, with the Internet’s OSPF routing protocol, 

discussed in Section 4.6.1) this is often accomplished by a link-state broadcast 
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algorithm [Perlman 1999]. We’ll cover broadcast algorithms in Section 4.7. The 

result of the nodes’ broadcast is that all nodes have an identical and complete view 

of the network. Each node can then run the LS algorithm and compute the same set 

of least-cost paths as every other node. 

The link-state routing algorithm we present below is known as Dijkstra’s algo- 

rithm, named after its inventor. A closely related algorithm is Prim’s algorithm; see 

[Cormen 2001] for a general discussion of graph algorithms. Dijkstra’s algorithm 

computes the least-cost path from one node (the source, which we will refer to as u) 

to all other nodes in the network. Dijkstra’s algorithm is iterative and has the prop- 

erty that after the kth iteration of the algorithm, the least-cost paths are known to k 

destination nodes, and among the least-cost paths to all destination nodes, these k 

paths will have the k smallest costs. Let us define the following notation: 

 
• D(v): cost of the least-cost path from the source node to destination v as of this 

iteration of the algorithm. 

• p(v): previous node (neighbor of v) along the current least-cost path from the 

source to v. 

• N' : subset of nodes; v is in N' if the least-cost path from the source to v is defin- 

itively known. 

 
The global routing algorithm consists of an initialization step followed by a 

loop. The number of times the loop is executed is equal to the number of nodes in 

the network. Upon termination, the algorithm will have calculated the shortest paths 

from the source node u to every other node in the network. 

 
Link-State (LS) Algorithm for Source Node u 

 
1 Initialization: 

2 N’ = {u} 
3 for all nodes v 
4 if v is a neighbor of u 
5 then D(v) = c(u,v) 
6 else D(v) =  

7 
8 Loop 

9 find w not in N’ such that D(w) is a minimum 
10 add w to N’ 
11 update D(v) for each neighbor v of w and not in N’: 
12  D(v) = min( D(v), D(w) + c(w,v) ) 
13 /* new cost to v is either old cost to v or known 
14 least path cost to w plus cost from w to v */ 
15 until N’= N 
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VideoNote 

Dijkstra’s algorithm: 

discussion and example 

As an example, let’s consider the network in Figure 4.27 and compute the 

least-cost paths from u to all possible destinations. A tabular summary of the 

algorithm’s computation is shown in Table 4.3, where each line in the table gives 

the values of the algorithm’s variables at the end of the iteration. Let’s consider the 

few first steps in detail. 

 
• In the initialization step, the currently known least-cost paths from u to its 

directly attached neighbors, v, x, and w, are initialized to 2, 1, and 5, respectively. 

Note in particular that the cost to w is set to 5 (even though we will soon see that 

a lesser-cost path does indeed exist) since this is the cost of the direct (one hop) 

link from u to w. The costs to y and z are set to infinity because they are not 

directly connected to u. 

• In the first iteration, we look among those nodes not yet added to the set N' and 

find that node with the least cost as of the end of the previous iteration. That node 

is x, with a cost of 1, and thus x is added to the set N'. Line 12 of the LS algo- 

rithm is then performed to update D(v) for all nodes v, yielding the results shown 

in the second line (Step 1) in Table 4.3. The cost of the path to v is unchanged. 

The cost of the path to w (which was 5 at the end of the initialization) through 

node x is found to have a cost of 4. Hence this lower-cost path is selected and w’s 

predecessor along the shortest path from u is set to x. Similarly, the cost to y 

(through x) is computed to be 2, and the table is updated accordingly. 

• In the second iteration, nodes v and y are found to have the least-cost paths (2), 

and we break the tie arbitrarily and add y to the set N' so that N' now contains u, 

x, and y. The cost to the remaining nodes not yet in N', that is, nodes v, w, and z, 

are updated via line 12 of the LS algorithm, yielding the results shown in the 

third row in the Table 4.3. 

• And so on. . . . 

 
When the LS algorithm terminates, we have, for each node, its predecessor 

along the least-cost path from the source node. For each predecessor, we also 

 
 

step N’ D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) 

0 u 2,u 5,u 1,u   

1 ux 2,u 4,x  2,x  

2 uxy 2,u 3,y   4,y 
3 uxyv  3,y   4,y 

4 uxyvw     4,y 

5 uxyvwz      

 

Table 4.3 ◆ Running the link-state algorithm on the network in Figure 4.27 
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have its predecessor, and so in this manner we can construct the entire path from 

the source to all destinations. The forwarding table in a node, say node u, can 

then be constructed from this information by storing, for each destination, the 

next-hop node on the least-cost path from u to the destination. Figure 4.28 

shows the resulting least-cost paths and forwarding table in u for the network in 

Figure 4.27. 

What is the computational complexity of this algorithm? That is, given n 

nodes (not counting the source), how much computation must be done in the 

worst case to find the least-cost paths from the source to all destinations? In the 

first iteration, we need to search through all n nodes to determine the node, w, not  

in N' that has the minimum cost. In the second iteration, we need to check n – 1 

nodes to determine the minimum cost; in the third iteration n – 2 nodes, and so 

on. Overall, the total number of nodes we need to search through over all the iter- 

ations is n(n + 1)/2, and thus we say that the preceding implementation of the LS 

algorithm has worst-case complexity of order n squared: O(n2). (A more sophisti- 

cated implementation of this algorithm, using a data structure known as a heap, 

can find the minimum in line 9 in logarithmic rather than linear time, thus reduc- 

ing the complexity.) 

Before completing our discussion of the LS algorithm, let us consider a pathol- 

ogy that can arise. Figure 4.29 shows a simple network topology where link costs 

are equal to the load carried on the link, for example, reflecting the delay that would 

be experienced. In this example, link costs are not symmetric; that is, c(u,v) equals 

c(v,u) only if the load carried on both directions on the link (u,v) is the same. In this 

example, node z originates a unit of traffic destined for w, node x also originates a 

unit of traffic destined for w, and node y injects an amount of traffic equal to e, also 

destined for w. The initial routing is shown in Figure 4.29(a) with the link costs cor- 

responding to the amount of traffic carried. 

When the LS algorithm is next run, node y determines (based on the link costs 

shown in Figure 4.29(a)) that the clockwise path to w has a cost of 1, while the 

counterclockwise path to w (which it had been using) has a cost of 1 + e. Hence y’s 

 

 

Destination Link 
 

 

v (u, v) 

w (u, x) 

x (u, x) 

y (u, x) 

z (u, x) 
 

 

Figure 4.28 ◆ Least cost path and forwarding table for nodule u 
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a. Initial routing b. x, y detect better path 

to w, clockwise 

 
 

   
c. x, y, z detect better path 

to w, counterclockwise 
d. x, y, z, detect better path 

to w, clockwise 
 

Figure 4.29 ◆ Oscillations with congestion-sensitive routing 
 
 

least-cost path to w is now clockwise. Similarly, x determines that its new least-cost 

path to w is also clockwise, resulting in costs shown in Figure 4.29(b). When the 

LS algorithm is run next, nodes x, y, and z all detect a zero-cost path to w in the 

counterclockwise direction, and all route their traffic to the counterclockwise 

routes. The next time the LS algorithm is run, x, y, and z all then route their traffic 

to the clockwise routes. 

What can be done to prevent such oscillations (which can occur in any algo- 

rithm, not just an LS algorithm, that uses a congestion or delay-based link met- 

ric)? One solution would be to mandate that link costs not depend on the amount of 

traffic carried—an unacceptable solution since one goal of routing is to avoid 
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highly congested (for example, high-delay) links. Another solution is to ensure 

that not all routers run the LS algorithm at the same time. This seems a more 

reasonable solution, since we would hope that even if routers ran the LS algorithm 

with the same periodicity, the execution instance of the algorithm would not be 

the same at each node. Interestingly, researchers have found that routers in the 

Internet can self-synchronize among themselves [Floyd Synchronization 1994]. 

That is, even though they initially execute the algorithm with the same period 

but at different instants of time, the algorithm execution instance can eventually 

become, and remain, synchronized at the routers. One way to avoid such self- 

synchronization is for each router to randomize the time it sends out a link 

advertisement. 

Having studied the LS algorithm, let’s consider the other major routing algo- 

rithm that is used in practice today—the distance-vector routing algorithm. 

 

 

4.2.2 The Distance-Vector (DV) Routing Algorithm 

Whereas the LS algorithm is an algorithm using global information, the distance- 

vector (DV) algorithm is iterative, asynchronous, and distributed. It is distributed 

in that each node receives some information from one or more of its directly 

attached neighbors, performs a calculation, and then distributes the results of its 

calculation back to its neighbors. It is iterative in that this process continues 

on until no more information is exchanged between neighbors. (Interestingly, the 

algorithm is also self-terminating—there is no signal that the computation should 

stop; it just stops.) The algorithm is asynchronous in that it does not require all of 

the nodes to operate in lockstep with each other. We’ll see that an asynchronous, 

iterative, self-terminating, distributed algorithm is much more interesting and fun 

than a centralized algorithm! 

Before we present the DV algorithm, it will prove beneficial to discuss an 

important relationship that exists among the costs of the least-cost paths. Let d
x
(y) 

be the cost of the least-cost path from node x to node y. Then the least costs are  

related by the celebrated Bellman-Ford equation, namely, 

 
d

x
(y) = min

v
{c(x,v) + d

v
(y)}, (4.1) 

where the min
v 
in the equation is taken over all of x’s neighbors. The Bellman-Ford 

equation is rather intuitive. Indeed, after traveling from x to v, if we then take the 

least-cost path from v to y, the path cost will be c(x,v) + d
v
(y). Since we must begin 

by traveling to some neighbor v, the least cost from x to y is the minimum of c(x,v) 

+ d
v
(y) taken over all neighbors v. 
But for those who might be skeptical about the validity of the equation, let’s 

check it for source node u and destination node z in Figure 4.27. The source node u 
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has three neighbors: nodes v, x, and w. By walking along various paths in the graph, 

it is easy to see that d
v
(z) = 5, d

x
(z) = 3, and d

w
(z) = 3. Plugging these values into 

Equation 4.1, along with the costs c(u,v) = 2, c(u,x) = 1, and c(u,w) = 5, gives d
u
(z) = 

min{2 + 5, 5 + 3, 1 + 3} = 4, which is obviously true and which is exactly what the 

Dijskstra algorithm gave us for the same network. This quick verification should 

help relieve any skepticism you may have. 

The Bellman-Ford equation is not just an intellectual curiosity. It actually has 

significant practical importance. In particular, the solution to the Bellman-Ford 

equation provides the entries in node x’s forwarding table. To see this, let v* be any 

neighboring node that achieves the minimum in Equation 4.1. Then, if node x wants 

to send a packet to node y along a least-cost path, it should first forward the packet 

to node v*. Thus, node x’s forwarding table would specify node v* as the next-hop 

router for the ultimate destination y. Another important practical contribution of the 

Bellman-Ford equation is that it suggests the form of the neighbor-to-neighbor com- 

munication that will take place in the DV algorithm. 

The basic idea is as follows. Each node x begins with D
x
(y), an estimate of the 

cost of the least-cost path from itself to node y, for all nodes in N. Let D
x 
= [D

x
(y): y 

in N] be node x’s distance vector, which is the vector of cost estimates from x to all 

other nodes, y, in N. With the DV algorithm, each node x maintains the following 

routing information: 

 
• For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v 

• Node x’s distance vector, that is, D
x 
= [D

x
(y): y in N], containing x’s estimate of 

its cost to all destinations, y, in N 

• The distance vectors of each of its neighbors, that is, D
v 

= [D
v
(y): y in N] for each 

neighbor v of x 

 
In the distributed, asynchronous algorithm, from time to time, each node sends  

a copy of its distance vector to each of its neighbors. When a node x receives a 

new distance vector from any of its neighbors v, it saves v’s distance vector, and 

then uses the Bellman-Ford equation to update its own distance vector as fol- 

lows: 
 

D
x
(y) = min

v
{c(x,v) + D

v
(y)} for each node y in N 

If node x’s distance vector has changed as a result of this update step, node x will 

then send its updated distance vector to each of its neighbors, which can in turn 

update their own distance vectors. Miraculously enough, as long as all the nodes 

continue to exchange their distance vectors in an asynchronous fashion, each cost 

estimate D
x
(y) converges to d

x
(y), the actual cost of the least-cost path from node x 

to node y [Bertsekas 1991]! 
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Distance-Vector (DV) Algorithm 

At each node, x: 
 

1 Initialization: 

2 for all destinations y in N: 

3 D
x
(y) = c(x,y) /* if y is not a neighbor then c(x,y) =  */ 

4 for each neighbor w 
5 D

w
(y) = ? for all destinations y in N 

6 for each neighbor w 
7 send distance vector D

x 
= [D

x
(y): y in N] to w 

8 
9 loop 

10 wait (until I see a link cost change to some neighbor w or 
11 until I receive a distance vector from some neighbor w) 
12 
13 for each y in N: 
14 D

x
(y) = min

v
{c(x,v) + D

v
(y)} 

15 

16 if D
x
(y) changed for any destination y 

17 send distance vector D
x 
= [D

x
(y): y in N] to all neighbors 

18 
19 forever 

 

In the DV algorithm, a node x updates its distance-vector estimate when it 

either sees a cost change in one of its directly attached links or receives a distance- 

vector update from some neighbor. But to update its own forwarding table for a 

given destination y, what node x really needs to know is not the shortest-path 

distance to y but instead the neighboring node v*(y) that is the next-hop router along 

the shortest path to y. As you might expect, the next-hop router v*(y) is the neighbor 

v that achieves the minimum in Line 14 of the DV algorithm. (If there are multiple 

neighbors v that achieve the minimum, then v*(y) can be any of the minimizing 

neighbors.) Thus, in Lines 13–14, for each destination y, node x also determines 

v*(y) and updates its forwarding table for destination y. 

Recall that the LS algorithm is a global algorithm in the sense that it requires 

each node to first obtain a complete map of the network before running the Dijkstra 

algorithm. The DV algorithm is decentralized and does not use such global infor- 

mation. Indeed, the only information a node will have is the costs of the links to its 

directly attached neighbors and information it receives from these neighbors. Each 

node waits for an update from any neighbor (Lines 10–11), calculates its new dis- 

tance vector when receiving an update (Line 14), and distributes its new distance 
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vector to its neighbors (Lines 16–17). DV-like algorithms are used in many routing 

protocols in practice, including the Internet’s RIP and BGP, ISO IDRP, Novell IPX, 

and the original ARPAnet. 

Figure 4.30 illustrates the operation of the DV algorithm for the simple three- 

node network shown at the top of the figure. The operation of the algorithm is illus- 

trated in a synchronous manner, where all nodes simultaneously receive distance 

vectors from their neighbors, compute their new distance vectors, and inform their 

neighbors if their distance vectors have changed. After studying this example, you 
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Figure 4.30 ◆ Distance-vector (DV) algorithm 
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should convince yourself that the algorithm operates correctly in an asynchronous 

manner as well, with node computations and update generation/reception occurring 

at any time. 

The leftmost column of the figure displays three initial routing tables for each 

of the three nodes. For example, the table in the upper-left corner is node x’s initial 

routing table. Within a specific routing table, each row is a distance vector—specifi- 

cally, each node’s routing table includes its own distance vector and that of each of 

its neighbors. Thus, the first row in node x’s initial routing table is D
x 

= [D
x
(x), 

D
x
(y), D

x
(z)] = [0, 2, 7]. The second and third rows in this table are the most recently 

received distance vectors from nodes y and z, respectively. Because at initialization 

node x has not received anything from node y or z, the entries in the second and third 

rows are initialized to infinity. 

After initialization, each node sends its distance vector to each of its two neigh- 

bors. This is illustrated in Figure 4.30 by the arrows from the first column of tables 

to the second column of tables. For example, node x sends its distance vector D
x 

= 

[0, 2, 7] to both nodes y and z. After receiving the updates, each node recomputes its 

own distance vector. For example, node x computes 

 
D

x
(x) = 0 

D
x
(y) = min{c(x,y) + D

y
(y), c(x,z) + D

z
(y)} = min{2 + 0, 7 + 1} = 2 

D
x
(z) = min{c(x,y) + D

y
(z), c(x,z) + D

z
(z)} = min{2 + 1, 7 + 0} = 3 

The second column therefore displays, for each node, the node’s new distance vec- 

tor along with distance vectors just received from its neighbors. Note, for example, 

that node x’s estimate for the least cost to node z, D
x
(z), has changed from 7 to 3. 

Also note that for node x, neighboring node y achieves the minimum in line 14 of 

the DV algorithm; thus at this stage of the algorithm, we have at node x that v*(y) = 

y and v*(z) = y. 

After the nodes recompute their distance vectors, they again send their updated 

distance vectors to their neighbors (if there has been a change). This is illustrated in 

Figure 4.30 by the arrows from the second column of tables to the third column of 

tables. Note that only nodes x and z send updates: node y’s distance vector didn’t 

change so node y doesn’t send an update. After receiving the updates, the nodes then 

recompute their distance vectors and update their routing tables, which are shown in 

the third column. 

The process of receiving updated distance vectors from neighbors, recomputing 

routing table entries, and informing neighbors of changed costs of the least-cost path 

to a destination continues until no update messages are sent. At this point, since no 

update messages are sent, no further routing table calculations will occur and the 

algorithm will enter a quiescent state; that is, all nodes will be performing the wait 

in Lines 10–11 of the DV algorithm. The algorithm remains in the quiescent state 

until a link cost changes, as discussed next. 
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Distance-Vector Algorithm: Link-Cost Changes and Link Failure 

When a node running the DV algorithm detects a change in the link cost from itself to 

a neighbor (Lines 10–11), it updates its distance vector (Lines 13–14) and, if there’s a 

change in the cost of the least-cost path, informs its neighbors (Lines 16–17) of its new 

distance vector. Figure 4.31(a) illustrates a scenario where the link cost from y to x 

changes from 4 to 1. We focus here only on y’ and z’s distance table entries to destina- 

tion x. The DV algorithm causes the following sequence of events to occur: 

 

• At time t
0
, y detects the link-cost change (the cost has changed from 4 to 1),  

updates its distance vector, and informs its neighbors of this change since its dis- 

tance vector has changed. 

• At time t
1
, z receives the update from y and updates its table. It computes a new 

least cost to x (it has decreased from a cost of 5 to a cost of 2) and sends its new 

distance vector to its neighbors. 

• At time t
2
, y receives z’s update and updates its distance table. y’s least costs do 

not change and hence y does not send any message to z. The algorithm comes to 

a quiescent state. 

 
Thus, only two iterations are required for the DV algorithm to reach a quiescent 

state. The good news about the decreased cost between x and y has propagated 

quickly through the network. 

Let’s now consider what can happen when a link cost increases. Suppose that 

the link cost between x and y increases from 4 to 60, as shown in Figure 4.31(b). 

 
1. Before the link cost changes, D

y
(x) = 4, D

y
(z) = 1, D

z
(y) = 1, and D

z
(x) = 5. At 

time t
0
, y detects the link-cost change (the cost has changed from 4 to 60). y 

computes its new minimum-cost path to x to have a cost of 

D
y
(x) = min{c(y,x) + D

x
(x), c(y,z) + D

z
(x)} = min{60 + 0, 1 + 5} = 6 

 

 
 

a. b. 
 

Figure 4.31 ◆ Changes in link cost 
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Of course, with our global view of the network, we can see that this new cost 

via z is wrong. But the only information node y has is that its direct cost to x is 

60 and that z has last told y that z could get to x with a cost of 5. So in order to 

get to x, y would now route through z, fully expecting that z will be able to get 

to x with a cost of 5. As of t
1 

we have a routing loop—in order to get to x, y 

routes through z, and z routes through y. A routing loop is like a black hole—a 

packet destined for x arriving at y or z as of t
1 

will bounce back and forth 

between these two nodes forever (or until the forwarding tables are changed). 

2. Since node y has computed a new minimum cost to x, it informs z of its new 

distance vector at time t
1
. 

3. Sometime after t
1
, z receives y’s new distance vector, which indicates that y’s 

minimum cost to x is 6. z knows it can get to y with a cost of 1 and hence 
computes a new least cost to x of D

z
(x) = min{50 + 0,1 + 6} = 7. Since z’s 

least cost to x has increased, it then informs y of its new distance vector at t
2
. 

4. In a similar manner, after receiving z’s new distance vector, y determines 

D
y
(x) = 8 and sends z its distance vector. z then determines D

z
(x) = 9 and 

sends y its distance vector, and so on. 

 
How long will the process continue? You should convince yourself that the loop 

will persist for 44 iterations (message exchanges between y and z)—until z even- 

tually computes the cost of its path via y to be greater than 50. At this point, z will 

(finally!) determine that its least-cost path to x is via its direct connection to x. y 

will then route to x via z. The result of the bad news about the increase in link cost 

has indeed traveled slowly! What would have happened if the link cost c(y, 

x) had changed from 4 to 10,000 and the cost c(z, x) had been 9,999? Because of 

such scenarios, the problem we have seen is sometimes referred to as the count- 

to-infinity problem. 

 
Distance-Vector Algorithm: Adding Poisoned Reverse 

The specific looping scenario just described can be avoided using a technique 

known as poisoned reverse. The idea is simple—if z routes through y to get to 

destination x, then z will advertise to y that its distance to x is infinity, that is, z will 

advertise to y that D
z
(x) =  (even though z knows D

z
(x) = 5 in truth). z will con- 

tinue telling this little white lie to y as long as it routes to x via y. Since y believes 

that z has no path to x, y will never attempt to route to x via z, as long as z continues 

to route to x via y (and lies about doing so). 

Let’s now see how poisoned reverse solves the particular looping problem we 

encountered before in Figure 4.31(b). As a result of the poisoned reverse, y’s dis- 

tance table indicates D
z
(x) = . When the cost of the (x, y) link changes from 4 to 60 

at time t
0
, y updates its table and continues to route directly to x, albeit at a higher 

cost of 60, and informs z of its new cost to x, that is, D
y
(x) = 60. After receiving the 
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update at t
1
, z immediately shifts its route to x to be via the direct (z, x) link at a cost 

of 50. Since this is a new least-cost path to x, and since the path no longer passes 

through y, z now informs y that D
z
(x) = 50 at t

2
. After receiving the update from z, y 

updates its distance table with D
y
(x) = 51. Also, since z is now on y’s least-cost path 

to x, y poisons the reverse path from z to x by informing z at time t
3 

that D
y
(x) =  

(even though y knows that D
y
(x) = 51 in truth). 

Does poisoned reverse solve the general count-to-infinity problem? It does not. 

You should convince yourself that loops involving three or more nodes (rather than 

simply two immediately neighboring nodes) will not be detected by the poisoned 

reverse technique. 
 

A Comparison of LS and DV Routing Algorithms 

The DV and LS algorithms take complementary approaches towards computing 

routing. In the DV algorithm, each node talks to only its directly connected neigh- 

bors, but it provides its neighbors with least-cost estimates from itself to all the 

nodes (that it knows about) in the network. In the LS algorithm, each node talks with 

all other nodes (via broadcast), but it tells them only the costs of its directly con- 

nected links. Let’s conclude our study of LS and DV algorithms with a quick com- 

parison of some of their attributes. Recall that N is the set of nodes (routers) and E 

is the set of edges (links). 

 
• Message complexity. We have seen that LS requires each node to know the 

cost of each link in the network. This requires O(|N| |E|) messages to be sent. 

Also, whenever a link cost changes, the new link cost must be sent to all 

nodes. The DV algorithm requires message exchanges between directly con- 

nected neighbors at each iteration. We have seen that the time needed for the 

algorithm to converge can depend on many factors. When link costs change, 

the DV algorithm will propagate the results of the changed link cost only if 

the new link cost results in a changed least-cost path for one of the nodes 

attached to that link. 

• Speed of convergence. We have seen that our implementation of LS is an O(|N|2) 

algorithm requiring O(|N| |E|)) messages. The DV algorithm can converge slowly 

and can have routing loops while the algorithm is converging. DV also suffers 

from the count-to-infinity problem. 

• Robustness. What can happen if a router fails, misbehaves, or is sabotaged? 

Under LS, a router could broadcast an incorrect cost for one of its attached 

links (but no others). A node could also corrupt or drop any packets it received 

as part of an LS broadcast. But an LS node is computing only its own forward- 

ing tables; other nodes are performing similar calculations for themselves. This 

means route calculations are somewhat separated under LS, providing a degree 

of robustness. Under DV, a node can advertise incorrect least-cost paths to any 

or all destinations. (Indeed, in 1997, a malfunctioning router in a small ISP 
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provided national backbone routers with erroneous routing information. This 

caused other routers to flood the malfunctioning router with traffic and caused 

large portions of the Internet to become disconnected for up to several hours 

[Neumann 1997].) More generally, we note that, at each iteration, a node’s cal- 

culation in DV is passed on to its neighbor and then indirectly to its neighbor’s 

neighbor on the next iteration. In this sense, an incorrect node calculation can be 

diffused through the entire network under DV. 

 
In the end, neither algorithm is an obvious winner over the other; indeed, both algo- 

rithms are used in the Internet. 

 
Other  Routing Algorithms 

The LS and DV algorithms we have studied are not only widely used in practice, 

they are essentially the only routing algorithms used in practice today in the Inter- 

net. Nonetheless, many routing algorithms have been proposed by researchers over 

the past 30 years, ranging from the extremely simple to the very sophisticated and 

complex. A broad class of routing algorithms is based on viewing packet traf- fic as 

flows between sources and destinations in a network. In this approach, the routing 

problem can be formulated mathematically as a constrained optimization problem 

known as a network flow problem [Bertsekas 1991]. Yet another set of routing 

algorithms we mention here are those derived from the telephony world. These 

circuit-switched routing algorithms are of interest to packet-switched data 

networking in cases where per-link resources (for example, buffers, or a frac- tion 

of the link bandwidth) are to be reserved for each connection that is routed over the 

link. While the formulation of the routing problem might appear quite different 

from the least-cost routing formulation we have seen in this chapter, there are a 

number of similarities, at least as far as the path-finding algorithm (routing 

algorithm) is concerned. See [Ash 1998; Ross 1995; Girard 1990] for a detailed 

discussion of this research area. 

 

 

4.2.3 Hierarchical Routing 

In our study of LS and DV algorithms, we’ve viewed the network simply as a col- 

lection of interconnected routers. One router was indistinguishable from another in 

the sense that all routers executed the same routing algorithm to compute routing 

paths through the entire network. In practice, this model and its view of a homoge- 

nous set of routers all executing the same routing algorithm is a bit simplistic for at 

least two important reasons: 

 
• Scale. As the number of routers becomes large, the overhead involved in 

computing, storing, and communicating routing information (for example, 
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LS updates or least-cost path changes) becomes prohibitive. Today’s public 

Internet consists of hundreds of millions of hosts. Storing routing information at 

each of these hosts would clearly require enormous amounts of memory. The 

overhead required to broadcast LS updates among all of the routers in the public 

Internet would leave no bandwidth left for sending data packets! A distance-vec- 

tor algorithm that iterated among such a large number of routers would surely 

never converge. Clearly, something must be done to reduce the complexity of 

route computation in networks as large as the public Internet. 

• Administrative autonomy. Although researchers tend to ignore issues such as a 

company’s desire to run its routers as it pleases (for example, to run whatever 

routing algorithm it chooses) or to hide aspects of its network’s internal organi- 

zation from the outside, these are important considerations. Ideally, an organiza- 

tion should be able to run and administer its network as it wishes, while still 

being able to connect its network to other outside networks. 

 
Both of these problems can be solved by organizing routers into autonomous sys- 

tems (ASs), with each AS consisting of a group of routers that are typically under 

the same administrative control (e.g., operated by the same ISP or belonging to the 

same company network). Routers within the same AS all run the same routing algo- 

rithm (for example, an LS or DV algorithm) and have information about each 

other—exactly as was the case in our idealized model in the preceding section. The 

routing algorithm running within an autonomous system is called an intra- 

autonomous system routing protocol. It will be necessary, of course, to connect 

ASs to each other, and thus one or more of the routers in an AS will have the added 

task of being responsible for forwarding packets to destinations outside the AS; 

these routers are called gateway routers. 

Figure 4.32 provides a simple example with three ASs: AS1, AS2, and AS3. In 

this figure, the heavy lines represent direct link connections between pairs of 

routers. The thinner lines hanging from the routers represent subnets that are 

directly connected to the routers. AS1 has four routers—1a, 1b, 1c, and 1d— which 

run the intra-AS routing protocol used within AS1. Thus, each of these four routers 

knows how to forward packets along the optimal path to any destina- tion within 

AS1. Similarly, autonomous systems AS2 and AS3 each have three routers. Note 

that the intra-AS routing protocols running in AS1, AS2, and AS3 need not be the 

same. Also note that the routers 1b, 1c, 2a, and 3a are all gateway routers. 

It should now be clear how the routers in an AS determine routing paths for 

source-destination pairs that are internal to the AS. But there is still a big missing 

piece to the end-to-end routing puzzle. How does a router, within some AS, know 

how to route a packet to a destination that is outside the AS? It’s easy to answer this 

question if the AS has only one gateway router that connects to only one other AS. 

In this case, because the AS’s intra-AS routing algorithm has deter- mined the least-

cost path from each internal router to the gateway router, each 
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Figure 4.32 ◆ An example of interconnected autonomous systems 
 

 

internal router knows how it should forward the packet. The gateway router, upon 

receiving the packet, forwards the packet on the one link that leads outside the 

AS. The AS  on  the other side of the link then takes over the responsibility    

of routing the packet to its ultimate destination. As an example, suppose router 

2b in Figure 4.32 receives a packet whose destination is outside of AS2. Router 

2b will then forward the packet to either router 2a or 2c, as specified by router 

2b’s forwarding table, which was configured by AS2’s intra-AS routing protocol. 

The packet will eventually arrive to the gateway router 2a, which will forward 

the packet to 1b. Once the packet has left 2a, AS2’s job is done with this one 

packet. 

So the problem is easy when the source AS has only one link that leads outside 

the AS. But what if the source AS has two or more links (through two or more gate- 

way routers) that lead outside the AS? Then the problem of knowing where to for- 

ward the packet becomes significantly more challenging. For example, consider a 

router in AS1 and suppose it receives a packet whose destination is outside the AS. 

The router should clearly forward the packet to one of its two gateway routers, 1b or 

1c, but which one? To solve this problem, AS1 needs (1) to learn which destinations 

are reachable via AS2 and which destinations are reachable via AS3, and (2) to 

propagate this reachability information to all the routers within AS1, so that each 

router can configure its forwarding table to handle external-AS destinations. These 

3c 
2c 

3a 
1c 2a 
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1a 1b 
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1d 

AS1 

Inter-AS routing 
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two tasks—obtaining reachability information from neighboring ASs and propagat- 

ing the reachability information to all routers internal to the AS—are handled by the 

inter-AS routing protocol. Since the inter-AS routing protocol involves communi- 

cation between two ASs, the two communicating ASs must run the same inter-AS 

routing protocol. In fact, in the Internet all ASs run the same inter-AS routing proto- 

col, called BGP4, which is discussed in the next section. As shown in Figure 4.32, 

each router receives information from an intra-AS routing protocol and an inter-AS 

routing protocol, and uses the information from both protocols to configure its for- 

warding table. 

As an example, consider a subnet x (identified by its CIDRized address), and 

suppose that AS1 learns from the inter-AS routing protocol that subnet x is reach- 

able from AS3 but is not reachable from AS2. AS1 then propagates this information 

to all of its routers. When router 1d learns that subnet x is reachable from AS3, and 

hence from gateway 1c, it then determines, from the information provided by the 

intra-AS routing protocol, the router interface that is on the least-cost path from 

router 1d to gateway router 1c. Say this is interface I. The router 1d can then put the 

entry (x, I) into its forwarding table. (This example, and others presented in this sec- 

tion, gets the general ideas across but is a simplification of what really happens in 

the Internet. In the next section we’ll provide a more detailed description, albeit 

more complicated, when we discuss BGP.) 

Following up on the previous example, now suppose that AS2 and AS3 con- 

nect to other ASs, which are not shown in the diagram. Also suppose that AS1 

learns from the inter-AS routing protocol that subnet x is reachable both from AS2, 

via gateway 1b, and from AS3, via gateway 1c. AS1 would then propagate this 

information to all its routers, including router 1d. In order to configure its forward- 

ing table, router 1d would have to determine to which gateway router, 1b or 1c, it 

should direct packets that are destined for subnet x. One approach, which is often 

employed in practice, is to use hot-potato routing. In hot-potato routing, the AS 

gets rid of the packet (the hot potato) as quickly as possible (more precisely, as 

inexpensively as possible). This is done by having a router send the packet to the 

gateway router that has the smallest router-to-gateway cost among all gateways 

with a path to the destination. In the context of the current example, hot-potato 

routing, running in 1d, would use information from the intra-AS routing protocol  

to determine the path costs to 1b and 1c, and then choose the path with the least 

cost. Once this path is chosen, router 1d adds an entry for subnet x in its forward- 

ing table. Figure 4.33 summarizes the actions taken at router 1d for adding the new 

entry for x to the forwarding table. 

When an AS learns about a destination from a neighboring AS, the AS can  

advertise this routing information to some of its other neighboring ASs. For example, 

suppose AS1 learns from AS2 that subnet x is reachable via AS2. AS1 could then tell 

AS3 that x is reachable via AS1. In this manner, if AS3 needs to route a packet 

destined to x, AS3 would forward the packet to AS1, which would in turn forward the 

packet to AS2. As we’ll see in our discussion of BGP, an AS has quite a bit of 
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Figure 4.33 ◆ Steps in adding an outside-AS destination in a router’s for- 
warding table 

 

flexibility in deciding which destinations it advertises to its neighboring ASs. This 

is a policy decision, typically depending more on economic issues than on technical 

issues. 

Recall from Section 1.5 that the Internet consists of a hierarchy of intercon- 

nected ISPs. So what is the relationship between ISPs and ASs? You might think that 

the routers in an ISP, and the links that interconnect them, constitute a single AS. 

Although this is often the case, many ISPs partition their network into multiple ASs. 

For example, some tier-1 ISPs use one AS for their entire network; others break up 

their ISP into tens of interconnected ASs. 

In summary, the problems of scale and administrative authority are solved by 

defining autonomous systems. Within an AS, all routers run the same intra-AS rout- 

ing protocol. Among themselves, the ASs run the same inter-AS routing protocol. 

The problem of scale is solved because an intra-AS router need only know about 

routers within its AS. The problem of administrative authority is solved since an 

organization can run whatever intra-AS routing protocol it chooses; however, each 

pair of connected ASs needs to run the same inter-AS routing protocol to exchange 

reachability information. 

In the following section, we’ll examine two intra-AS routing protocols (RIP and 

OSPF) and the inter-AS routing protocol (BGP) that are used in today’s Internet. 

These case studies will nicely round out our study of hierarchical routing. 

 

 

4.6 Routing in the Internet 

Having studied Internet addressing and the IP protocol, we now turn our attention to 

the Internet’s routing protocols; their job is to determine the path taken by a data- 

gram between source and destination. We’ll see that the Internet’s routing protocols 

embody many of the principles we learned earlier in this chapter. The link-state and 

distance-vector approaches studied in Sections 4.5.1 and 4.5.2 and the notion of an 

autonomous system considered in Section 4.5.3 are all central to how routing is 

done in today’s Internet. 
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Recall from Section 4.5.3 that an autonomous system (AS) is a collection of 

routers under the same administrative and technical control, and that all run the 

same routing protocol among themselves. Each AS, in turn, typically contains mul- 

tiple subnets (where we use the term subnet in the precise, addressing sense in Sec- 

tion 4.4.2). 

 

4.6.1 Intra-AS Routing in the Internet: RIP 

An intra-AS routing protocol is used to determine how routing is performed within 

an autonomous system (AS). Intra-AS routing protocols are also known as interior 

gateway protocols. Historically, two routing protocols have been used extensively 

for routing within an autonomous system in the Internet: the Routing Information 

Protocol (RIP) and Open Shortest Path First (OSPF). A routing protocol closely 

related to OSPF is the IS-IS protocol [RFC 1142, Perlman 1999]. We first discuss 

RIP and then consider OSPF. 

RIP was one of the earliest intra-AS Internet routing protocols and is still in 

widespread use today. It traces its origins and its name to the Xerox Network Sys- 

tems (XNS) architecture. The widespread deployment of RIP was due in great part 

to its inclusion in 1982 in the Berkeley Software Distribution (BSD) version of 

UNIX supporting TCP/IP. RIP version 1 is defined in [RFC 1058], with a backward- 

compatible version 2 defined in [RFC 2453]. 

RIP is a distance-vector protocol that operates in a manner very close to the 

idealized DV protocol we examined in Section 4.5.2. The version of RIP specified 

in RFC 1058 uses hop count as a cost metric; that is, each link has a cost of 1. In the 

DV algorithm in Section 4.5.2, for simplicity, costs were defined between pairs of 

routers. In RIP (and also in OSPF), costs are actually from source router to a des- 

tination subnet. RIP uses the term hop, which is the number of subnets traversed 

along the shortest path from source router to destination subnet, including the des- 

tination subnet. Figure 4.34 illustrates an AS with six leaf subnets. The table in the 

figure indicates the number of hops from the source A to each of the leaf subnets. 

The maximum cost of a path is limited to 15, thus limiting the use of RIP to 

autonomous systems that are fewer than 15 hops in diameter. Recall that in DV 

protocols, neighboring routers exchange distance vectors with each other. The 

distance vector for any one router is the current estimate of the shortest path 

distances from that router to the subnets in the AS. In RIP,  routing updates    

are exchanged between neighbors approximately every 30  seconds  using  a 

RIP response message. The response message sent by a router or host contains  

a list of up to 25 destination subnets within the AS, as well as the sender’s 

distance to each of those subnets. Response messages are also known as RIP 

advertisements. 

Let’s take a look at a simple example of how RIP advertisements work. Con- 

sider the portion of an AS shown in Figure 4.35. In this figure, lines connecting the 

routers denote subnets. Only selected routers (A, B, C, and D) and subnets (w, x, y, 
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u 1 

v 2 

w 2 
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Figure 4.34 ◆ Number of hops from source router A to various subnets 

and z) are labeled. Dotted lines indicate that the AS continues on; thus this 

autonomous system has many more routers and links than are shown. 

Each router maintains a RIP table known as a routing table. A router’s routing 

table includes both the router’s distance vector and the router’s forwarding table. 

Figure 4.36 shows the routing table for router D. Note that the routing table has 

three columns. The first column is for the destination subnet, the second column 

indicates the identity of the next router along the shortest path to the destination sub- 

net, and the third column indicates the number of hops (that is, the number of sub- 

nets that have to be traversed, including the destination subnet) to get to the 

destination subnet along the shortest path. For this example, the table indicates that 

to send a datagram from router D to destination subnet w, the datagram should first 

be forwarded to neighboring router A; the table also indicates that destination sub- 

net w is two hops away along the shortest path. Similarly, the table indicates that 

subnet z is seven hops away via router B. In principle, a routing table will have one 

row for each subnet in the AS, although RIP version 2 allows subnet entries to be 

aggregated using route aggregation techniques similar to those we examined in 

 

 

 

Figure 4.35 ◆ A portion of an autonomous system 
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Destination Subnet Next Router Number of Hops to Destination 

w A 2 

y B 2 

z B 7 

x — 1 

. . .  . . . .  . . . .  . 
 

Figure 4.36 ◆ Routing table in router D before receiving advertisement 
from router A 

 

Section 4.4. The table in Figure 4.36, and the subsequent tables to come, are only 

partially complete. 

Now suppose that 30 seconds later, router D receives from router A the adver- 

tisement shown in Figure 4.37. Note that this advertisement is nothing other than 

the routing table information from router A! This information indicates, in particu- 

lar, that subnet z is only four hops away from router A. Router D, upon receiving this 

advertisement, merges the advertisement (Figure 4.37) with the old routing table 

(Figure 4.36). In particular, router D learns that there is now a path through router A 

to subnet z that is shorter than the path through router B. Thus, router D updates its 

routing table to account for the shorter shortest path, as shown in Figure 4.38. How 

is it, you might ask, that the shortest path to subnet z has become shorter? Possibly, 

the decentralized distance-vector algorithm is still in the process of converging (see 

Section 4.5.2), or perhaps new links and/or routers were added to the AS, thus 

changing the shortest paths in the AS. 

Let’s next consider a few of the implementation aspects of RIP. Recall that RIP 

routers exchange advertisements approximately every 30 seconds. If a router does 

not hear from its neighbor at least once every 180 seconds, that neighbor is 

considered to be no longer reachable; that is, either the neighbor has died or the 

 

 
 

Destination Subnet Next Router Number of Hops to Destination 

z C 4 

w — 1 

x — 1 

. . . . . . .  . . . .  . 
 

Figure 4.37 ◆ Advertisement from router A 
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Destination Subnet Next Router Number of Hops to Destination 

w A 2 

y B 2 

z A 5 

. . . . . . . . . . . . 
 

Figure 4.38 ◆ Routing table in router D after receiving advertisement from 
router A 

 

connecting link has gone down. When this happens, RIP modifies the local routing 

table and then propagates this information by sending advertisements to its neigh- 

boring routers (the ones that are still reachable). A router can also request informa- 

tion about its neighbor’s cost to a given destination using RIP’s request message. 

Routers send RIP request and response messages to each other over UDP using port 

number 520. The UDP segment is carried between routers in a standard IP data- 

gram. The fact that RIP uses a transport-layer protocol (UDP) on top of a network- 

layer protocol (IP) to implement network-layer functionality (a routing algorithm) 

may seem rather convoluted (it is!). Looking a little deeper at how RIP is imple- 

mented will clear this up. 

Figure 4.39 sketches how RIP is typically implemented in a UNIX system, for 

example, a UNIX workstation serving as a router. A process called routed (pronounced 

“route dee”) executes RIP, that is, maintains routing information and exchanges 

messages with routed processes running in neighboring routers. Because RIP is 

implemented as an application-layer process (albeit a very special one that is able to 
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Figure 4.39 ◆ Implementation of RIP as the routed daemon 
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manipulate the routing tables within the UNIX kernel), it can send and receive mes- 

sages over a standard socket and use a standard transport protocol. As shown, RIP is 

implemented as an application-layer protocol (see Chapter 2) running over UDP. If 

you’re interested in looking at an implementation of RIP (or the OSPF and BGP pro- 

tocols that we will study shortly), see [Quagga 2012]. 

 

4.6.2 Intra-AS Routing in the Internet: OSPF 

Like RIP, OSPF routing is widely used for intra-AS routing in the Internet. OSPF 

and its closely related cousin, IS-IS, are typically deployed in upper-tier ISPs 

whereas RIP is deployed in lower-tier ISPs and enterprise networks. The Open in 

OSPF indicates that the routing protocol specification is publicly available (for 

example, as opposed to Cisco’s EIGRP protocol). The most recent version of OSPF, 

version 2, is defined in RFC 2328, a public document. 

OSPF was conceived as the successor to RIP and as such has a number of 

advanced features. At its heart, however, OSPF is a link-state protocol that uses 

flooding of link-state information and a Dijkstra least-cost path algorithm. With 

OSPF, a router constructs a complete topological map (that is, a graph) of the entire 

autonomous system. The router then locally runs Dijkstra’s shortest-path algorithm 

to determine a shortest-path tree to all subnets, with itself as the root node. Individ- 

ual link costs are configured by the network administrator (see Principles and Prac- 

tice: Setting OSPF Weights). The administrator might choose to set all link costs to 

1, thus achieving minimum-hop routing, or might choose to set the link weights to 

be inversely proportional to link capacity in order to discourage traffic from using 

low-bandwidth links. OSPF does not mandate a policy for how link weights are set 

(that is the job of the network administrator), but instead provides the mechanisms 

(protocol) for determining least-cost path routing for the given set of link weights. 

With OSPF, a router broadcasts routing information to all other routers in the 

autonomous system, not just to its neighboring routers. A router broadcasts link- 

state information whenever there is a change in a link’s state (for example, a change 

in cost or a change in up/down status). It also broadcasts a link’s state periodically 

(at least once every 30 minutes), even if the link’s state has not changed. RFC 2328 

notes that “this periodic updating of link state advertisements adds robustness to the 

link state algorithm.” OSPF advertisements are contained in OSPF messages that 

are carried directly by IP, with an upper-layer protocol of 89 for OSPF. Thus, the 

OSPF protocol must itself implement functionality such as reliable message transfer 

and link-state broadcast. The OSPF protocol also checks that links are operational 

(via a HELLO message that is sent to an attached neighbor) and allows an OSPF 

router to obtain a neighboring router’s database of network-wide link state. 

Some of the advances embodied in OSPF include the following: 

 
• Security. Exchanges between OSPF routers (for example, link-state updates) 

can be authenticated. With authentication, only trusted routers can participate 
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in the OSPF protocol within an AS, thus preventing malicious intruders (or net- 

working students taking their newfound knowledge out for a joyride) from 

injecting incorrect information into router tables. By default, OSPF packets 

between routers are not authenticated and could be forged. Two types of 

authentication can be configured—simple and MD5 (see Chapter 8 for a dis- 

cussion on MD5 and authentication in general). With simple authentication, the 

same password is configured on each router. When a router sends an OSPF 

packet, it includes the password in plaintext. Clearly, simple authentication is 

not very secure. MD5 authentication is based on shared secret keys that are 

configured in all the routers. For each OSPF packet that it sends, the router 

computes the MD5 hash of the content of the OSPF packet appended with the 

secret key. (See the discussion of message authentication codes in Chapter 7.) 

Then the router includes the resulting hash value in the OSPF packet. The 

receiving router, using the preconfigured secret key, will compute an MD5 hash 

of the packet and compare it with the hash value that the packet carries, thus 

verifying the packet’s authenticity. Sequence numbers are also used with MD5 

authentication to protect against replay attacks. 

• Multiple same-cost paths. When multiple paths to a destination have the same 

cost, OSPF allows multiple paths to be used (that is, a single path need not be 

chosen for carrying all traffic when multiple equal-cost paths exist). 

• Integrated support for unicast and multicast routing. Multicast OSPF (MOSPF) 

[RFC 1584] provides simple extensions to OSPF to provide for multicast routing 

(a topic we cover in more depth in Section 4.7.2). MOSPF uses the existing 

OSPF link database and adds a new type of link-state advertisement to the exist- 

ing OSPF link-state broadcast mechanism. 

• Support for hierarchy within a single routing domain. Perhaps the most signifi- 

cant advance in OSPF is the ability to structure an autonomous system hierarchi- 

cally. Section 4.5.3 has already looked at the many advantages of hierarchical 

routing structures. We cover the implementation of OSPF hierarchical routing in 

the remainder of this section. 

 
An OSPF autonomous system can be configured hierarchically into areas. Each 

area runs its own OSPF link-state routing algorithm, with each router in an area 

broadcasting its link state to all other routers in that area. Within each area, one or 

more area border routers are responsible for routing packets outside the area. Lastly, 

exactly one OSPF area in the AS is configured to be the backbone area. The primary 

role of the backbone area is to route traffic between the other areas in the AS. The 

backbone always contains all area border routers in the AS and may contain nonbor- 

der routers as well. Inter-area routing within the AS requires that the packet be first 

routed to an area border router (intra-area routing), then routed through the back- 

bone to the area border router that is in the destination area, and then routed to the 

final destination. 
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SETTING OSPF LINK WEIGHTS  

Our discussion of link-state routing has implicitly assumed that link weights are set, a rout- 
ing algorithm such as OSPF is run, and traffic flows according to the routing tables comput- 
ed by the LS algorithm. In terms of cause and effect, the link weights are given (i.e., they 
come first) and result (via Dijkstra’s algorithm) in routing paths that minimize overall cost. In 
this viewpoint, link weights reflect the cost of using a link (e.g., if link weights are inversely 
proportional to capacity, then the use of high-capacity links would have smaller weights 
and thus be more attractive from a routing standpoint) and Disjkstra’s algorithm serves to 
minimize overall cost. 

In practice, the cause and effect relationship between link weights and routing paths 
may be reversed, with network operators configuring link weights in order to obtain routing 
paths that achieve certain traffic engineering goals [Fortz 2000, Fortz 2002]. For example, 
suppose a network operator has an estimate of traffic flow entering the network at each 
ingress point and destined for each egress point. The operator may then want to put in 
place a specific routing of ingress-to-egress flows that minimizes the maximum utilization 
over all of the network’s links. But with a routing algorithm such as OSPF, the operator’s 
main “knobs” for tuning the routing of flows through the network are the link weights. Thus, 
in order to achieve the goal of minimizing the maximum link utilization, the operator must 
find the set of link weights that achieves this goal. This is a reversal of the cause and effect 
relationship—the desired routing of flows is known, and the OSPF link weights must be 
found such that the OSPF routing algorithm results in this desired routing of flows. 

 

OSPF is a relatively complex protocol, and our coverage here has been neces- 

sarily brief; [Huitema 1998; Moy 1998; RFC 2328] provide additional details. 

 

4.6.3 Inter-AS Routing: BGP 

We just learned how ISPs use RIP and OSPF to determine optimal paths for source- 

destination pairs that are internal to the same AS. Let’s now examine how paths are 

determined for source-destination pairs that span multiple ASs. The Border Gate- 

way Protocol version 4, specified in RFC 4271 (see also [RFC 4274), is the de facto 

standard inter-AS routing protocol in today’s Internet. It is commonly referred to as 

BGP4 or simply as BGP. As an inter-AS routing protocol (see Section 4.5.3), BGP 

provides each AS a means to 

 
1. Obtain subnet reachability information from neighboring ASs. 

2. Propagate the reachability information to all routers internal to the AS. 

3. Determine “good” routes to subnets based on the reachability information and 

on AS policy. 
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Most importantly, BGP allows each subnet to advertise its existence to the rest of 

the Internet. A subnet screams “I exist and I am here,” and BGP makes sure that all 

the ASs in the Internet know about the subnet and how to get there. If it weren’t for 

BGP, each subnet would be isolated—alone and unknown by the rest of the Internet. 

 

BGP Basics 

BGP is extremely complex; entire books have been devoted to the subject and many 

issues are still not well understood [Yannuzzi 2005]. Furthermore, even after having 

read the books and RFCs, you may find it difficult to fully master BGP without hav- 

ing practiced BGP for many months (if not years) as a designer or administrator of 

an upper-tier ISP. Nevertheless, because BGP is an absolutely critical protocol for 

the Internet—in essence, it is the protocol that glues the whole thing together—we 

need to acquire at least a rudimentary understanding of how it works. We begin by 

describing how BGP might work in the context of the simple example network we 

studied earlier in Figure 4.32. In this description, we build on our discussion of hier- 

archical routing in Section 4.5.3; we encourage you to review that material. 

In BGP, pairs of routers exchange routing information over semipermanent 

TCP connections using port 179. The semi-permanent TCP connections for the net- 

work in Figure 4.32 are shown in Figure 4.40. There is typically one such BGP TCP 

connection for each link that directly connects two routers in two different ASs; 

thus, in Figure 4.40, there is a TCP connection between gateway routers 3a and 1c 

and another TCP connection between gateway routers 1b and 2a. There are also 

semipermanent BGP TCP connections between routers within an AS. In particular, 

Figure 4.40 displays a common configuration of one TCP connection for each pair 

of routers internal to an AS, creating a mesh of TCP connections within each AS. 

For each TCP connection, the two routers at the end of the connection are called 

BGP peers, and the TCP connection along with all the BGP messages sent over the 
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Figure 4.40 ◆ eBGP and iBGP sessions 
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OBTAINING INTERNET PRESENCE:  PUTTING THE PUZZLE TOGETHER  

Suppose you have just created a small that has a number of servers, including a public 
Web server that describes your company’s products and services, a mail server from which 
your employees obtain their email messages, and a DNS server. Naturally, you would like 
the entire world to be able to surf your Web site in order to learn about your exciting prod- 
ucts and services. Moreover, you would like your employees to be able to send and 
receive email to potential customers throughout the world. 

To meet these goals, you first need to obtain Internet connectivity, which is done by 
contracting with, and connecting to, a local ISP. Your company will have a gateway 
router, which will be connected to a router in your local ISP.  This connection might be     
a DSL connection through the existing telephone infrastructure, a leased line to the ISP’s 
router, or one of the many other access solutions described in Chapter 1. Your  local    
ISP will also provide you with an IP address range, e.g., a /24 address range consist-   
ing of 256 addresses. Once you have your physical connectivity and your IP address 
range, you will assign one of the IP addresses (in your address range) to your Web 
server, one to your mail server, one to your DNS server, one to your gateway router,   
and other IP addresses to other servers and networking devices in your company’s 
network. 

In addition to contracting with an ISP, you will also need to contract with an Internet regis- 
trar to obtain a domain name for your company, as described in Chapter 2. For example, if 
your company’s name is, say, Xanadu Inc., you will naturally try to obtain the domain name 
xanadu.com. Your company must also obtain presence in the DNS system. Specifically, 
because outsiders will want to contact your DNS server to obtain the IP addresses of your 
servers, you will also need to provide your registrar with the IP address of your DNS server. 
Your registrar will then put an entry for your DNS server (domain name and corresponding IP 
address) in the .com top-level-domain servers, as described in Chapter 2. After this step is 
completed, any user who knows your domain name (e.g., xanadu.com) will be able to  
obtain the IP address of your DNS server via the DNS system. 

So that people can discover the IP addresses of your Web server, in your DNS server 
you will need to include entries that map the host name of your Web server (e.g., 
www.xanadu.com) to its IP address. You will want to have similar entries for other publicly 
available servers in your company, including your mail server. In this manner, if Alice 
wants to browse your Web server, the DNS system will contact your DNS server, find the 
IP address of your Web server, and give it to Alice. Alice can then establish a TCP 
connection directly with your Web server. 

However, there still remains one other necessary and crucial step to allow outsiders 
from around the world access your Web server. Consider what happens when Alice, 
who knows the IP address of your Web server, sends an IP datagram (e.g., a TCP SYN 
segment) to that IP address. This datagram will be routed through the Internet, visiting a 
series of routers in many different ASes, and eventually reach your Web server. When 

http://www.xanadu.com/
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any one of the routers receives the datagram, it is going to look for an entry in its 
forwarding table to determine on which outgoing port it should forward the datagram. 
Therefore, each of the routers needs to know about the existence of your company’s 
/24 prefix (or some aggregate entry). How does a router become aware of your 
company’s prefix? As we have just seen, it becomes aware of it from BGP! Specifically, 
when your company contracts with a local ISP and gets assigned a prefix (i.e., an 
address range), your local ISP will use BGP to advertise this prefix to the ISPs to which 
it connects. Those ISPs will then, in turn, use BGP to propagate the advertisement. 
Eventually, all Internet routers will know about your prefix (or about some aggregate that 
includes your prefix) and thus be able to appropriately forward datagrams destined to 
your Web and mail servers. 

 

 

connection is called a BGP session. Furthermore, a BGP session that spans two ASs 

is called an external BGP (eBGP) session, and a BGP session between routers in 

the same AS is called an internal BGP (iBGP) session. In Figure 4.40, the eBGP 

sessions are shown with the long dashes; the iBGP sessions are shown with the short 

dashes. Note that BGP session lines in Figure 4.40 do not always correspond to the 

physical links in Figure 4.32. 

BGP allows each AS to learn which destinations are reachable via its neighbor- 

ing ASs. In BGP, destinations are not hosts but instead are CIDRized prefixes, with 

each prefix representing a subnet or a collection of subnets. Thus, for example, sup- 

pose there are four subnets attached to AS2: 138.16.64/24, 138.16.65/24, 

138.16.66/24, and 138.16.67/24. Then AS2 could aggregate the prefixes for these four 

subnets and use BGP to advertise the single prefix to 138.16.64/22 to AS1. As another 

example, suppose that only the first three of those four subnets are in AS2 and the 

fourth subnet, 138.16.67/24, is in AS3. Then, as described in the Principles and Prac- 

tice in Section 4.4.2, because routers use longest-prefix matching for forwarding data- 

grams, AS3 could advertise to AS1 the more specific prefix 138.16.67/24 and AS2 

could still advertise to AS1 the aggregated prefix 138.16.64/22. 

Let’s now examine how BGP would distribute prefix reachability information 

over the BGP sessions shown in Figure 4.40. As you might expect, using the eBGP 

session between the gateway routers 3a and 1c, AS3 sends AS1 the list of prefixes 

that are reachable from AS3; and AS1 sends AS3 the list of prefixes that are reach- 

able from AS1. Similarly, AS1 and AS2 exchange prefix reachability information 

through their gateway routers 1b and 2a. Also as you may expect, when a gateway 

router (in any AS) receives eBGP-learned prefixes, the gateway router uses its iBGP 

sessions to distribute the prefixes to the other routers in the AS. Thus, all the routers 

in AS1 learn about AS3 prefixes, including the gateway router 1b. The gateway 

router 1b (in AS1) can therefore re-advertise AS3’s prefixes to AS2. When a router 

(gateway or not) learns about a new prefix, it creates an entry for the prefix in its 

forwarding table, as described in Section 4.5.3. 
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Path Attributes and BGP Routes 

Having now a preliminary understanding of BGP, let’s get a little deeper into it 

(while still brushing some of the less important details under the rug!). In BGP, an 

autonomous system is identified by its globally unique autonomous system num- 

ber (ASN) [RFC 1930]. (Technically, not every AS has an ASN. In particular, a so- 

called stub AS that carries only traffic for which it is a source or destination will not 

typically have an ASN; we ignore this technicality in our discussion in order to bet- 

ter see the forest for the trees.) AS numbers, like IP addresses, are assigned by 

ICANN regional registries [ICANN 2012]. 

When a router advertises a prefix across a BGP session, it includes with the pre- 

fix a number of BGP attributes. In BGP jargon, a prefix along with its attributes is 

called a route. Thus, BGP peers advertise routes to each other. Two of the more 

important attributes are AS-PATH and NEXT-HOP: 

 
• AS-PATH. This attribute contains the ASs through which the advertisement for the 

prefix has passed. When a prefix is passed into an AS, the AS adds its ASN to the AS- 

PATH attribute. For example, consider Figure 4.40 and suppose that prefix 

138.16.64/24 is first advertised from AS2 to AS1; if AS1 then advertises the prefix to 

AS3, AS-PATH would be AS2 AS1. Routers use the AS-PATH attribute to detect and 

prevent looping advertisements; specifically, if a router sees that its AS is contained 

in the path list, it will reject the advertisement. As we’ll soon discuss, routers also use 

the AS-PATH attribute in choosing among multiple paths to the same prefix. 

• Providing the critical link between the inter-AS and intra-AS routing protocols, the 

NEXT-HOP attribute has a subtle but important use. The NEXT-HOP is the router 

interface that begins the AS-PATH. To gain insight into this attribute, let’s again refer 

to Figure 4.40. Consider what happens when the gateway router 3a in AS3 advertises 

a route to gateway router 1c in AS1 using eBGP. The route includes the advertised 

prefix, which we’ll call x, and an AS-PATH to the prefix. This advertisement also 

includes the NEXT-HOP, which is the IP address of the router 3a interface that leads 

to 1c. (Recall that a router has multiple IP addresses, one for each of its interfaces.) 

Now consider what happens when router 1d learns about this route from iBGP. After 

learning about this route to x, router 1d may want to forward packets to x along the 

route, that is, router 1d may want to include the entry (x, l) in its forwarding table, 

where l is its interface that begins the least-cost path from 1d towards the gateway 

router 1c. To determine l, 1d provides the IP address in the NEXT-HOP attribute to 

its intra-AS routing module. Note that the intra-AS routing algorithm has determined 

the least-cost path to all subnets attached to the routers in AS1, including to the sub- 

net for the link between 1c and 3a. From this least-cost path from 1d to the 1c-3a sub- 

net, 1d determines its router interface l that begins this path and then adds the entry 

(x, l) to its forwarding table. Whew! In summary, the NEXT-HOP attribute is used by 

routers to properly configure their forwarding tables. 

• Figure 4.41 illustrates another situation where the NEXT-HOP is needed. In this fig- 

ure, AS1 and AS2 are connected by two peering links. A router in AS1 could learn 
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Figure 4.41 ◆ NEXT-HOP attributes in advertisements are used to deter- 
mine which peering link to use 

 

about two different routes to the same prefix x. These two routes could have the same 

AS-PATH to x, but could have different NEXT-HOP values corresponding to the dif- 

ferent peering links. Using the NEXT-HOP values and the intra-AS routing algo- 

rithm, the router can determine the cost of the path to each peering link, and then 

apply hot-potato routing (see Section 4.5.3) to determine the appropriate interface. 

 
BGP also includes attributes that allow routers to assign preference metrics to 

the routes, and an attribute that indicates how the prefix was inserted into BGP at 

the origin AS. For a full discussion of route attributes, see [Griffin 2012; Stewart 

1999; Halabi 2000; Feamster 2004; RFC 4271]. 

When a gateway router receives a route advertisement, it uses its import policy 

to decide whether to accept or filter the route and whether to set certain attributes 

such as the router preference metrics. The import policy may filter a route because 

the AS may not want to send traffic over one of the ASs in the route’s AS-PATH. 

The gateway router may also filter a route because it already knows of a preferable 

route to the same prefix. 

 
BGP  Route Selection 

As described earlier in this section, BGP uses eBGP and iBGP to distribute routes 

to all the routers within ASs. From this distribution, a router may learn about more 

than one route to any one prefix, in which case the router must select one of the 
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possible routes. The input into this route selection process is the set of all routes that 

have been learned and accepted by the router. If there are two or more routes to the 

same prefix, then BGP sequentially invokes the following elimination rules until one 

route remains: 

 
• Routes are assigned a local preference value as one of their attributes. The local 

preference of a route could have been set by the router or could have been 

learned by another router in the same AS. This is a policy decision that is left up 

to the AS’s network administrator. (We will shortly discuss BGP policy issues in 

some detail.) The routes with the highest local preference values are selected. 

• From the remaining routes (all with the same local preference value), the route with 

the shortest AS-PATH is selected. If this rule were the only rule for route selection, 

then BGP would be using a DV algorithm for path determination, where the dis- 

tance metric uses the number of AS hops rather than the number of router hops. 

• From the remaining routes (all with the same local preference value and the same 

AS-PATH length), the route with the closest NEXT-HOP router is selected. Here, 

closest means the router for which the cost of the least-cost path, determined by 

the intra-AS algorithm, is the smallest. As discussed in Section 4.5.3, this process 

is called hot-potato routing. 

• If more than one route still remains, the router uses BGP identifiers to select the 

route; see [Stewart 1999]. 

 
The elimination rules are even more complicated than described above. To avoid 

nightmares about BGP, it’s best to learn about BGP selection rules in small doses! 

 
 

PUTTING IT ALL TOGETHER: HOW DOES AN ENTRY GET INTO A ROUTER’S FORWARDING 

TABLE?  

Recall that an entry in a router’s forwarding table consists of a prefix (e.g., 138.16.64/22) 
and a corresponding router output port (e.g., port 7). When a packet arrives to the router, 
the packet’s destination IP address is compared with the prefixes in the forwarding table to 
find the one with the longest prefix match. The packet is then forwarded (within the router) 
to the router port associated with that prefix. Let’s now summarize how a routing entry 
(prefix and associated port) gets entered into a forwarding table. This simple exercise will 
tie together a lot of what we just learned about routing and forwarding. To make things 
interesting, let’s assume that the prefix is a “foreign prefix,” that is, it does not belong to 
the router’s AS but to some other AS. 

In order for a prefix to get entered into the router’s forwarding table, the router has to 
first become aware of the prefix (corresponding to a subnet or an aggregation of sub- 
nets). As we have just learned, the router becomes aware of the prefix via a BGP route 

PRINCIPLES IN PRACTICE 
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advertisement. Such an advertisement may be sent to it over an eBGP session (from a 
router in another AS) or over an iBGP session (from a router in the same AS). 

After the router becomes aware of the prefix, it needs to determine the appropriate output 
port to which datagrams destined to that prefix will be forwarded, before it can enter that 
prefix in its forwarding table. If the router receives more than one route advertisement for this 
prefix, the router uses the BGP route selection process, as described earlier in this subsection, 
to find the “best” route for the prefix. Suppose such a best route has been selected. As 
described earlier, the selected route includes a NEXT-HOP attribute, which is the IP address of 
the first router outside the router’s AS along this best route. As described above, the router 
then uses its intra-AS routing protocol (typically OSPF) to determine the shortest path to the 
NEXT-HOP router. The router finally determines the port number to associate with the prefix 
by identifying the first link along that shortest path. The router can then (finally!) enter the 
prefix-port pair into its forwarding table! The forwarding table computed by the routing 
processor (see Figure 4.6) is then pushed to the router’s input port line cards. 

 

 

Routing Policy 

Let’s illustrate some of the basic concepts of BGP routing policy with a simple exam- 

ple. Figure 4.42 shows six interconnected autonomous systems: A, B, C, W, X, and Y. 

It is important to note that A, B, C, W, X, and Y are ASs, not routers. Let’s assume that 

autonomous systems W, X, and Y are stub networks and that A, B, and C are backbone 

provider networks. We’ll also assume that A, B, and C, all peer with each other, and 

provide full BGP information to their customer networks. All traffic entering a stub 

network must be destined for that network, and all traffic leaving a stub network must 

have originated in that network. W and Y are clearly stub networks. X is a multi- 

homed stub network, since it is connected to the rest of the network via two different 

providers (a scenario that is becoming increasingly common in practice). However, 

like W and Y, X itself must be the source/destination of all traffic leaving/entering X. 

But how will this stub network behavior be implemented and enforced? How will X 

be prevented from forwarding traffic between B and C? This can easily be 

 

Key: 
 

Provider 
network 

 
Customer 
network 

 
 

Figure 4.42 ◆ A simple BGP scenario 
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WHY ARE THERE DIFFERENT INTER-AS AND INTRA-AS ROUTING 

PROTOCOLS?  

Having now studied the details of specific inter-AS and intra-AS routing protocols deployed 
in today’s Internet, let’s conclude by considering perhaps the most fundamental question 
we could ask about these protocols in the first place (hopefully, you have been wondering 
this all along, and have not lost the forest for the trees!): Why are different inter-AS and 
intra- AS routing protocols used? 

The answer to this question gets at the heart of the differences between the goals of 
routing within an AS and among ASs: 

 

• Policy. Among ASs, policy issues dominate. It may well be important that traffic origi- 
nating in a given AS not be able to pass through another specific AS. Similarly, a 
given AS may well want to control what transit traffic it carries between other ASs. We 
have seen that BGP carries path attributes and provides for controlled distribution of 
routing information so that such policy-based routing decisions can be made. Within an 
AS, everything is nominally under the same administrative control, and thus policy 
issues play a much less important role in choosing routes within the AS. 

• Scale. The ability of a routing algorithm and its data structures to scale to handle rout- 
ing to/among large numbers of networks is a critical issue in inter-AS routing. Within 
an AS, scalability is less of a concern. For one thing, if a single administrative domain 
becomes too large, it is always possible to divide it into two ASs and perform inter-AS 
routing between the two new ASs. (Recall that OSPF allows such a hierarchy to be 
built by splitting an AS into areas.) 

• Performance. Because inter-AS routing is so policy oriented, the quality (for example, 
performance) of the routes used is often of secondary concern (that is, a longer or more 
costly route that satisfies certain policy criteria may well be taken over a route that is 
shorter but does not meet that criteria). Indeed, we saw that among ASs, there is not 
even the notion of cost (other than AS hop count) associated with routes. Within a sin- 
gle AS, however, such policy concerns are of less importance, allowing routing to focus 
more on the level of performance realized on a route. 

 

 

accomplished by controlling the manner in which BGP routes are advertised. In par- 

ticular, X will function as a stub network if it advertises (to its neighbors B and C) that 

it has no paths to any other destinations except itself. That is, even though X may 

know of a path, say XCY, that reaches network Y, it will not advertise this path to B. 

Since B is unaware that X has a path to Y, B would never forward traffic destined to Y 

(or C) via X. This simple example illustrates how a selective route advertisement pol- 

icy can be used to implement customer/provider routing relationships. 

PRINCIPLES IN PRACTICE 
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Let’s next focus on a provider network, say AS B. Suppose that B has learned 

(from A) that A has a path AW to W. B can thus install the route BAW into its rout- 

ing information base. Clearly, B also wants to advertise the path BAW to its cus- 

tomer, X, so that X knows that it can route to W via B. But should B advertise the 

path BAW to C? If it does so, then C could route traffic to W via CBAW. If A, B, 

and C are all backbone providers, than B might rightly feel that it should not have 

to shoulder the burden (and cost!) of carrying transit traffic between A and C. B 

might rightly feel that it is A’s and C’s job (and cost!) to make sure that C can route 

to/from A’s customers via a direct connection between A and C. There are currently 

no official standards that govern how backbone ISPs route among themselves. How- 

ever, a rule of thumb followed by commercial ISPs is that any traffic flowing across 

an ISP’s backbone network must have either a source or a destination (or both) in a 

network that is a customer of that ISP; otherwise the traffic would be getting a free 

ride on the ISP’s network. Individual peering agreements (that would govern ques- 

tions such as those raised above) are typically negotiated between pairs of ISPs and 

are often confidential; [Huston 1999a] provides an interesting discussion of peering 

agreements. For a detailed description of how routing policy reflects commercial 

relationships among ISPs, see [Gao 2001; Dmitiropoulos 2007]. For a discussion of 

BGP routing polices from an ISP standpoint, see [Caesar 2005b]. 

As noted above, BGP is the de facto standard for inter-AS routing for the pub- 

lic Internet. To see the contents of various BGP routing tables (large!) extracted 

from routers in tier-1 ISPs, see http://www.routeviews.org. BGP routing tables 

often contain tens of thousands of prefixes and corresponding attributes. Statistics 

about the size and characteristics of BGP routing tables are presented in [Potaroo 

2012]. 

This completes our brief introduction to BGP. Understanding BGP is important 

because it plays a central role in the Internet. We encourage you to see the references 

[Griffin 2012; Stewart 1999; Labovitz 1997; Halabi 2000; Huitema 1998; Gao 

2001; Feamster 2004; Caesar 2005b; Li 2007] to learn more about BGP. 

 

 

 

4.7 Summary 

In this chapter, we began our journey into the network core. We learned that the 

network layer involves each and every host and router in the network. Because of 

this, network-layer protocols are among the most challenging in the protocol stack. 

We learned that a router may need to process millions of flows of packets 

between different source-destination pairs at the same time. To permit a router to 

process such a large number of flows, network designers have learned over the years 

that the router’s tasks should be as simple as possible. Many measures can be taken 

http://www.routeviews.org/
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to make the router’s job easier, including using a datagram network layer rather than 

a virtual-circuit network layer, using a streamlined and fixed-sized header (as in 

IPv6), eliminating fragmentation (also done in IPv6), and providing the one and 

only best-effort service. Perhaps the most important trick here is not to keep track of 

individual flows, but instead base routing decisions solely on hierarchically struc- 

tured destination addresses in the datagrams. It is interesting to note that the postal 

service has been using this approach for many years. 

In this chapter, we also looked at the underlying principles of routing algorithms. 

We learned how routing algorithms abstract the computer network to a graph with 

nodes and links. With this abstraction, we can exploit the rich theory of shortest-path 

routing in graphs, which has been developed over the past 40 years in the operations 

research and algorithms communities. We saw that there are two broad approaches: a 

centralized (global) approach, in which each node obtains a complete map of the net- 

work and independently applies a shortest-path routing algorithm; and a decentral- 

ized approach, in which individual nodes have only a partial picture of the entire 

network, yet the nodes work together to deliver packets along the shortest routes. We 

also studied how hierarchy is used to deal with the problem of scale by partitioning 

large networks into independent administrative domains called autonomous systems 

(ASs). Each AS independently routes its datagrams through the AS, just as each 

country independently routes its postal mail through the country. We learned how 

centralized, decentralized, and hierarchical approaches are embodied in the principal 

routing protocols in the Internet: RIP, OSPF, and BGP. We concluded our study of 

routing algorithms by considering broadcast and multicast routing. 

Having completed our study of the network layer, our journey now takes us one 

step further down the protocol stack, namely, to the link layer. Like the network layer, 

the link layer is also part of the network core. But we will see in the next chapter that 

the link layer has the much more localized task of moving packets between nodes on 

the same link or LAN. Although this task may appear on the surface to be trivial com- 

pared with that of the network layer’s tasks, we will see that the link layer involves a 

number of important and fascinating issues that can keep us busy for a long time. 

 

Chapter 4 Review Questions 

SECTIONS 4.1–4.2 

R1. Let’s review some of the terminology used in this textbook. Recall that the 

name of a transport-layer packet is segment and that the name of a link-layer 

packet is frame. What is the name of a network-layer packet? Recall that both 

routers and link-layer switches are called packet switches. What is the 

fundamental difference between a router and link-layer switch? Recall that 

we use the term routers for both datagram networks and VC networks. 

Homework Problems and Questions 
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R2. What are the two most important network-layer functions in a datagram net- 

work? What are the three most important network-layer functions in a virtual- 

circuit network? 

R3. What is the difference between routing and forwarding? 

R4. Do the routers in both datagram networks and virtual-circuit networks use for- 

warding tables? If so, describe the forwarding tables for both classes of networks. 

R5. Describe some hypothetical services that the network layer can provide to a 

single packet. Do the same for a flow of packets. Are any of your hypotheti- 

cal services provided by the Internet’s network layer? Are any provided by 

ATM’s CBR service model? Are any provided by ATM’s ABR service 

model? 

R6. List some applications that would benefit from ATM’s CBR service model. 
 

SECTION 4.3 

R7. Discuss why each input port in a high-speed router stores a shadow copy of 

the forwarding table. 

R8. Three types of switching fabrics are discussed in Section 4.3. List and briefly 

describe each type. Which, if any, can send multiple packets across the fabric 

in parallel? 

R9. Describe how packet loss can occur at input ports. Describe how packet loss 

at input ports can be eliminated (without using infinite buffers). 

R10. Describe how packet loss can occur at output ports. Can this loss be 

prevented by increasing the switch fabric speed? 

R11. What is HOL blocking? Does it occur in input ports or output ports? 
 

SECTION 4.4 

R12. Do routers have IP addresses? If so, how many? 

R13. What is the 32-bit binary equivalent of the IP address 223.1.3.27? 

R14. Visit a host that uses DHCP to obtain its IP address, network mask, default 

router, and IP address of its local DNS server. List these values. 

R15. Suppose there are three routers between a source host and a destination host. 

Ignoring fragmentation, an IP datagram sent from the source host to the desti- 

nation host will travel over how many interfaces? How many forwarding tables 

will be indexed to move the datagram from the source to the destination? 

R16. Suppose an application generates chunks of 40 bytes of data every 20 msec, 

and each chunk gets encapsulated in a TCP segment and then an IP datagram. 

What percentage of each datagram will be overhead, and what percentage 

will be application data? 

R17. Suppose Host A sends Host B a TCP segment encapsulated in an IP datagram. 

When Host B receives the datagram, how does the network layer in Host B 
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know it should pass the segment (that is, the payload of the datagram) to TCP 

rather than to UDP or to something else? 

R18. Suppose you purchase a wireless router and connect it to your cable modem. 

Also suppose that your ISP dynamically assigns your connected device (that 

is, your wireless router) one IP address. Also suppose that you have five PCs 

at home that use 802.11 to wirelessly connect to your wireless router. How 

are IP addresses assigned to the five PCs? Does the wireless router use NAT? 

Why or why not? 

R19. Compare and contrast the IPv4 and the IPv6 header fields. Do they have any 

fields in common? 

R20. It has been said that when IPv6 tunnels through IPv4 routers, IPv6 treats the 

IPv4 tunnels as link-layer protocols. Do you agree with this statement? Why 

or why not? 
 

SECTION 4.5 

R21. Compare and contrast link-state and distance-vector routing algorithms. 

R22. Discuss how a hierarchical organization of the Internet has made it possible 

to scale to millions of users. 

R23. Is it necessary that every autonomous system use the same intra-AS routing 

algorithm? Why or why not? 

SECTION 4.6 

R24. Consider Figure 4.37. Starting with the original table in D, suppose that D 

receives from A the following advertisement: 

 
Destination Subnet Next Router Number of Hops to Destination 

z C 10 

w — 1 

x — 1 

. . . . . . . . . . . . 

 
Will the table in D change? If so how? 

R25. Compare and contrast the advertisements used by RIP and OSPF. 

R26. Fill in the blank: RIP advertisements typically announce the number of hops 

to various destinations. BGP updates, on the other hand, announce the 

   to the various destinations. 

R27. Why are different inter-AS and intra-AS protocols used in the Internet? 

R28. Why are policy considerations as important for intra-AS protocols, such as 

OSPF and RIP, as they are for an inter-AS routing protocol like BGP? 
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R29. Define and contrast the following terms: subnet, prefix, and BGP route. 

R30. How does BGP use the NEXT-HOP attribute? How does it use the AS-PATH 

attribute? 

R31. Describe how a network administrator of an upper-tier ISP can implement 

policy when configuring BGP. 

SECTION 4.7 

R32. What is an important difference between implementing the broadcast abstrac- 

tion via multiple unicasts, and a single network- (router-) supported broad- 

cast? 

R33. For each of the three general approaches we studied for broadcast communi- 

cation (uncontrolled flooding, controlled flooding, and spanning-tree broad- 

cast), are the following statements true or false? You may assume that no 

packets are lost due to buffer overflow and all packets are delivered on a link 

in the order in which they were sent. 

a. A node may receive multiple copies of the same packet. 

b. A node may forward multiple copies of a packet over the same 

outgoing link. 

R34. When a host joins a multicast group, must it change its IP address to that of 

the multicast group it is joining? 

R35. What are the roles played by the IGMP protocol and a wide-area multicast 

routing protocol? 

R36. What is the difference between a group-shared tree and a source-based tree in 

the context of multicast routing? 

 

P1. In this question, we consider some of the pros and cons of virtual-circuit and 

datagram networks. 

a. Suppose that routers were subjected to conditions that might cause them 

to fail fairly often. Would this argue in favor of a VC or datagram archi- 

tecture? Why? 

b. Suppose that a source node and a destination require that a fixed amount 

of capacity always be available at all routers on the path between the 

source and destination node, for the exclusive use of traffic flowing 

between this source and destination node. Would this argue in favor of a 

VC or datagram architecture? Why? 

c. Suppose that the links and routers in the network never fail and that rout- 

ing paths used between all source/destination pairs remains constant. In 

this scenario, does a VC or datagram architecture have more control traf- 

fic overhead? Why? 

Problems 
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P2. Consider a virtual-circuit network. Suppose the VC number is an 8-bit field. 

a. What is the maximum number of virtual circuits that can be carried over a 

link? 

b. Suppose a central node determines paths and VC numbers at connection 

setup. Suppose the same VC number is used on each link along the VC’s 

path. Describe how the central node might determine the VC number at con- 

nection setup. Is it possible that there are fewer VCs in progress than the 

maximum as determined in part (a) yet there is no common free VC number? 

c. Suppose that different VC numbers are permitted in each link along a 

VC’s path. During connection setup, after an end-to-end path is determined, 

describe how the links can choose their VC numbers and configure their for- 

warding tables in a decentralized manner, without reliance on a central node. 

P3. A bare-bones forwarding table in a VC network has four columns. What is 

the meaning of the values in each of these columns? A bare-bones forwarding 

table in a datagram network has two columns. What is the meaning of the 

values in each of these columns? 

P4. Consider the network below. 

a. Suppose that this network is a datagram network. Show the forwarding 

table in router A, such that all traffic destined to host H3 is forwarded 

through interface 3. 

b. Suppose that this network is a datagram network. Can you write down a 

forwarding table in router A, such that all traffic from H1 destined to host 

H3 is forwarded through interface 3, while all traffic from H2 destined to 

host H3 is forwarded through interface 4? (Hint: this is a trick question.) 

c. Now suppose that this network is a virtual circuit network and that there is 

one ongoing call between H1 and H3, and another ongoing call between 

H2 and H3. Write down a forwarding table in router A, such that all traffic 

from H1 destined to host H3 is forwarded through interface 3, while all 

traffic from H2 destined to host H3 is forwarded through interface 4. 

d. Assuming the same scenario as (c), write down the forwarding tables in 

nodes B, C, and D. 
 

H2 

P5. Consider a VC network with a 2-bit field for the VC number. Suppose that 

the network wants to set up a virtual circuit over four links: link A, link B, 

1 B 2 

1 3 

A 
2 4 

1 
3 

H1 D 

1 2 2 

C H3 
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link C, and link D. Suppose that each of these links is currently carrying two 

other virtual circuits, and the VC numbers of these other VCs are as follows: 

 

Link A Link B Link C Link D 

00 01 10 11 

01 10 11 00 

 
In answering the following questions, keep in mind that each of the existing 

VCs may only be traversing one of the four links. 

a. If each VC is required to use the same VC number on all links along its 

path, what VC number could be assigned to the new VC? 

b. If each VC is permitted to have different VC numbers in the different links 

along its path (so that forwarding tables must perform VC number transla- 

tion), how many different combinations of four VC numbers (one for each 

of the four links) could be used? 

P6. In the text we have used the term connection-oriented service to describe a 

transport-layer service and connection service for a network-layer service. 

Why the subtle shades in terminology? 

P7. Suppose two packets arrive to two different input ports of a router at exactly 

the same time. Also suppose there are no other packets anywhere in the 

router. 

a. Suppose the two packets are to be forwarded to two different output ports. 

Is it possible to forward the two packets through the switch fabric at the 

same time when the fabric uses a shared bus? 

b. Suppose the two packets are to be forwarded to two different output ports. 

Is it possible to forward the two packets through the switch fabric at the 

same time when the fabric uses a crossbar? 

c. Suppose the two packets are to be forwarded to the same output port. Is it 

possible to forward the two packets through the switch fabric at the same 

time when the fabric uses a crossbar? 

P8. In Section 4.3, we noted that the maximum queuing delay is (n–1)D if the 

switching fabric is n times faster than the input line rates. Suppose that all 

packets are of the same length, n packets arrive at the same time to the n 

input ports, and all n packets want to be forwarded to different output ports. 

What is the maximum delay for a packet for the (a) memory, (b) bus, and (c) 

crossbar switching fabrics? 

P9. Consider the switch shown below. Suppose that all datagrams have the same 

fixed length, that the switch operates in a slotted, synchronous manner, and 

that in one time slot a datagram can be transferred from an input port to an 

output port. The switch fabric is a crossbar so that at most one datagram can 
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be transferred to a given output port in a time slot, but different output ports 

can receive datagrams from different input ports in a single time slot. What is 

the minimal number of time slots needed to transfer the packets shown from 

input ports to their output ports, assuming any input queue scheduling order 

you want (i.e., it need not have HOL blocking)? What is the largest number 

of slots needed, assuming the worst-case scheduling order you can devise, 

assuming that a non-empty input queue is never idle? 
 

 

P10. Consider a datagram network using 32-bit host addresses. Suppose a router 

has four links, numbered 0 through 3, and packets are to be forwarded to the 

link interfaces as follows: 

Destination Address Range Link Interface 

 
11100000 00000000 00000000 00000000 

through 0 

11100000 00111111 11111111 11111111 

 
11100000 01000000 00000000 00000000 

through 1 

11100000 01000000 11111111 11111111 

11100000 01000001 00000000 00000000 

through 2 

11100001 01111111 11111111 11111111 

otherwise 3 

a. Provide a forwarding table that has five entries, uses longest prefix match- 

ing, and forwards packets to the correct link interfaces. 

b. Describe how your forwarding table determines the appropriate link inter- 

face for datagrams with destination addresses: 

 
11001000 10010001 01010001 01010101 

11100001 01000000 11000011 00111100 

11100001 10000000 00010001 01110111 

Switch 
fabric 

Output port Z 

Output port Y 

Output port X 

Z Y 

X Y 

X 
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P11. Consider a datagram network using 8-bit host addresses. Suppose a router 

uses longest prefix matching and has the following forwarding table: 

 
Prefix Match Interface 

00 0 

010 1 

011 2 

10 2 

11 3 

 
For each of the four interfaces, give the associated range of destination host 

addresses and the number of addresses in the range. 

P12. Consider a datagram network using 8-bit host addresses. Suppose a router 

uses longest prefix matching and has the following forwarding table: 

 

Prefix Match Interface 
 

1 0 

10 1 

111 2 

otherwise 3 

 
For each of the four interfaces, give the associated range of destination host 

addresses and the number of addresses in the range. 

P13. Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and 

Subnet 3. Suppose all of the interfaces in each of these three subnets are 

required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is 

required to support at least 60 interfaces, Subnet 2 is to support at least 90 

interfaces, and Subnet 3 is to support at least 12 interfaces. Provide three net- 

work addresses (of the form a.b.c.d/x) that satisfy these constraints. 

P14. In Section 4.2.2 an example forwarding table (using longest prefix matching) 

is given. Rewrite this forwarding table using the a.b.c.d/x notation instead of 

the binary string notation. 

P15. In Problem P10 you are asked to provide a forwarding table (using longest 

prefix matching). Rewrite this forwarding table using the a.b.c.d/x notation 

instead of the binary string notation. 
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P16.  Consider a subnet with prefix 128.119.40.128/26. Give an example of one  

IP address (of form xxx.xxx.xxx.xxx) that can be assigned to this network. 

Suppose an ISP owns the block of addresses of the form 128.119.40.64/26. 

Suppose it wants to create four subnets from this block, with each block 

having the same number of IP addresses. What are the prefixes (of form 

a.b.c.d/x) for the four subnets? 

P17. Consider the topology shown in Figure 4.17. Denote the three subnets with 

hosts (starting clockwise at 12:00) as Networks A, B, and C. Denote the sub- 

nets without hosts as Networks D, E, and F. 

a. Assign network addresses to each of these six subnets, with the follow- 

ing constraints: All addresses must be allocated from 214.97.254/23; 

Subnet A should have enough addresses to support 250 interfaces; Sub- 

net B should have enough addresses to support 120 interfaces; and   

Subnet C should have enough addresses to support 120 interfaces. Of 

course, subnets D, E and F should each be able to support two interfaces. 

For each subnet, the assignment should take the form a.b.c.d/x or   

a.b.c.d/x – e.f.g.h/y. 

b. Using your answer to part (a), provide the forwarding tables (using longest 

prefix matching) for each of the three routers. 

P18. Use the whois service at the American Registry for Internet Numbers 

(http://www.arin.net/whois) to determine the IP address blocks for three 

universities. Can the whois services be used to determine with certainty the 

geographical location of a specific IP address? Use www.maxmind.com to 

determine the locations of the Web servers at each of these universities. 

P19. Consider sending a 2400-byte datagram into a link that has an MTU of 

700 bytes. Suppose the original datagram is stamped with the identifica- 

tion number 422. How many fragments are generated? What are the 

values in the various fields in the IP datagram(s) generated related to 

fragmentation? 

P20. Suppose datagrams are limited to 1,500 bytes (including header) between 

source Host A and destination Host B. Assuming a 20-byte IP header, how 

many datagrams would be required to send an MP3 consisting of 5 million 

bytes? Explain how you computed your answer. 

P21. Consider the network setup in Figure 4.22. Suppose that the ISP instead 

assigns the router the address 24.34.112.235 and that the network address of 

the home network is 192.168.1/24. 

a. Assign addresses to all interfaces in the home network. 

b. Suppose each host has two ongoing TCP connections, all to port 80 at 

host 128.119.40.86. Provide the six corresponding entries in the NAT 

translation table. 

http://www.arin.net/whois
http://www.maxmind.com/
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VideoNote 

Dijkstra’s algorithm: 

discussion and example 

 
P22. Suppose you are interested in detecting the number of hosts behind a NAT. 

You observe that the IP layer stamps an identification number sequentially on 

each IP packet. The identification number of the first IP packet generated by 

a host is a random number, and the identification numbers of the subsequent 

IP packets are sequentially assigned. Assume all IP packets generated by 

hosts behind the NAT are sent to the outside world. 

a. Based on this observation, and assuming you can sniff all packets sent by 

the NAT to the outside, can you outline a simple technique that detects the 

number of unique hosts behind a NAT? Justify your answer. 

b. If the identification numbers are not sequentially assigned but randomly 

assigned, would your technique work? Justify your answer. 

P23. In this problem we’ll explore the impact of NATs on P2P applications. 

Suppose a peer with username Arnold discovers through querying that a peer 

with username Bernard has a file it wants to download. Also suppose that 

Bernard and Arnold are both behind a NAT. Try to devise a technique that 

will allow Arnold to establish a TCP connection with Bernard without 

application-specific NAT configuration. If you have difficulty devising such 

a technique, discuss why. 

P24. Looking at Figure 4.27, enumerate the paths from y to u that do not contain 

any loops. 

P25. Repeat Problem P24 for paths from x to z, z to u, and z to w. 

P26. Consider the following network. With the indicated link costs, use Dijkstra’s 

shortest-path algorithm to compute the shortest path from x to all network 

nodes. Show how the algorithm works by computing a table similar to 

Table 4.3. 

 

 

z 

12 

8 
7 

y t 

6 8 4 

v 2 

x 
3 

3 

6 
4 u 

3 

w 
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P27. Consider the network shown in Problem P26. Using Dijkstra’s algorithm, and 

showing your work using a table similar to Table 4.3, do the following: 

a. Compute the shortest path from t to all network nodes. 

b. Compute the shortest path from u to all network nodes. 

c. Compute the shortest path from v to all network nodes. 

d. Compute the shortest path from w to all network nodes. 

e. Compute the shortest path from y to all network nodes. 

f. Compute the shortest path from z to all network nodes. 

P28. Consider the network shown below, and assume that each node initially 

knows the costs to each of its neighbors. Consider the distance-vector 

algorithm and show the distance table entries at node z. 

 

 

P29. Consider a general topology (that is, not the specific network shown above) and a 

synchronous version of the distance-vector algorithm. Suppose that at each itera- 

tion, a node exchanges its distance vectors with its neighbors and receives their 

distance vectors. Assuming that the algorithm begins with each node knowing 

only the costs to its immediate neighbors, what is the maximum number of itera- 

tions required before the distributed algorithm converges? Justify your answer. 

P30. Consider the network fragment shown below. x has only two attached neigh- 

bors, w and y. w has a minimum-cost path to destination u (not shown) of 5, 

and y has a minimum-cost path to u of 6. The complete paths from w and y to 

u (and between w and y) are not shown. All link costs in the network have 

strictly positive integer values. 

u 
1 

v 

6 

2 3 
z 

2 

y 3 x 

w 

2 2 

x 
5 

y 
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a. Give x’s distance vector for destinations w, y, and u. 

b. Give a link-cost change for either c(x,w) or c(x,y) such that x will inform 

its neighbors of a new minimum-cost path to u as a result of executing the 

distance-vector algorithm. 

c. Give a link-cost change for either c(x,w) or c(x,y) such that x will not 

inform its neighbors of a new minimum-cost path to u as a result of exe- 

cuting the distance-vector algorithm. 

P31. Consider the three-node topology shown in Figure 4.30. Rather than having 

the link costs shown in Figure 4.30, the link costs are c(x,y) = 3, c(y,z) = 6, 

c(z,x) = 4. Compute the distance tables after the initialization step and after 

each iteration of a synchronous version of the distance-vector algorithm (as 

we did in our earlier discussion of Figure 4.30). 

P32. Consider the count-to-infinity problem in the distance vector routing. Will the 

count-to-infinity problem occur if we decrease the cost of a link? Why? How 

about if we connect two nodes which do not have a link? 

P33. Argue that for the distance-vector algorithm in Figure 4.30, each value in the 

distance vector D(x) is non-increasing and will eventually stabilize in a finite 

number of steps. 

P34. Consider Figure 4.31. Suppose there is another router w, connected to router 

y and z. The costs of all links are given as follows: c(x,y) = 4, c(x,z) = 50, 

c(y,w) = 1, c(z,w) = 1, c(y,z) = 3. Suppose that poisoned reverse is used in the 

distance-vector routing algorithm. 

a. When the distance vector routing is stabilized, router w, y, and z inform their 

distances to x to each other. What distance values do they tell each other? 

b. Now suppose that the link cost between x and y increases to 60. Will there 

be a count-to-infinity problem even if poisoned reverse is used? Why or 

why not? If there is a count-to-infinity problem, then how many iterations 

are needed for the distance-vector routing to reach a stable state again? 

Justify your answer. 

c. How do you modify c(y,z) such that there is no count-to-infinity problem 

at all if c(y,x) changes from 4 to 60? 

P35. Describe how loops in paths can be detected in BGP. 

P36. Will a BGP router always choose the loop-free route with the shortest AS- 

path length? Justify your answer. 

P37. Consider the network shown below. Suppose AS3 and AS2 are running OSPF 

for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP 

for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the 

inter-AS routing protocol. Initially suppose there is no physical link between 

AS2 and AS4. 



PROBLEMS 425 
 

 

 

 
a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, 

eBGP, or iBGP? 

b. Router 3a learns about x from which routing protocol? 

c. Router 1c learns about x from which routing protocol? 

d. Router 1d learns about x from which routing protocol? 
 

 

P38. Referring to the previous problem, once router 1d learns about x it will put an 

entry (x, I) in its forwarding table. 

a. Will I be equal to I
1 

or I
2 

for this entry? Explain why in one sentence. 

b. Now suppose that there is a physical link between AS2 and AS4, shown by 

the dotted line. Suppose router 1d learns that x is accessible via AS2 as 

well as via AS3. Will I be set to I
1 

or I
2
? Explain why in one sentence. 

c. Now suppose there is another AS, called AS5, which lies on the path 

between AS2 and AS4 (not shown in diagram). Suppose router 1d learns 

that x is accessible via AS2 AS5 AS4 as well as via AS3 AS4. Will I be set 

to I
1 

or I
2
? Explain why in one sentence. 

P39.  Consider the following network. ISP B provides national backbone service  

to regional ISP A. ISP C provides national backbone  service  to  regional 

ISP D. Each ISP consists of one AS. B and C peer with each other in two 

places using BGP. Consider traffic going from A to D. B would prefer to 

hand that traffic over to C on the West Coast (so that C would have to  

absorb the cost of carrying the  traffic  cross-country),  while  C  would 

prefer to get the traffic via its East Coast peering point with B (so that B 

would have carried the traffic across the country). What BGP mechanism 

might C use, so that B would hand over A-to-D traffic at its East Coast 

4b 

4c 4a 

x 

3c AS4 

3a 
2c 

3b 2a 
1c 2b 

AS3 1a 
1b 

AS2 

1d 

I1 I2 
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peering point? To answer this question, you will need to dig into the BGP 

specification. 

 

 
P40. In Figure 4.42, consider the path information that reaches stub networks W, 

X, and Y. Based on the information available at W and X, what are their 

respective views of the network topology? Justify your answer. The topology 

view at Y is shown below. 
 

X 

W A 

Stub network 
C Y’s view of 

the topology 
 

Y 
 

P41. Consider Figure 4.42. B would never forward traffic destined to Y via X 

based on BGP routing. But there are some very popular applications for 

which data packets go to X first and then flow to Y. Identify one such 

application, and describe how data packets follow a path not given by 

BGP routing. 

P42. In Figure 4.42, suppose that there is another stub network V that is a customer of 

ISP A. Suppose that B and C have a peering relationship, and A is a customer of 

both B and C. Suppose that A would like to have the traffic destined to W to 

come from B only, and the traffic destined to V from either B or C. How should 

A advertise its routes to B and C? What AS routes does C receive? 

P43. Suppose ASs X and Z are not directly connected but instead are connected by 

AS Y. Further suppose that X has a peering agreement with Y, and that Y has 

ISP A 

ISP B 

ISP C 

ISP D 
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a peering agreement with Z. Finally, suppose that Z wants to transit all of Y’s 

traffic but does not want to transit X’s traffic. Does BGP allow Z to imple- 

ment this policy? 

P44. Consider the seven-node network (with nodes labeled t to z) in Problem P26. 

Show the minimal-cost tree rooted at z that includes (as end hosts) nodes u, v, 

w, and y. Informally argue why your tree is a minimal-cost tree. 

P45. Consider the two basic approaches identified for achieving broadcast, unicast 

emulation and network-layer (i.e., router-assisted) broadcast, and suppose 

spanning-tree broadcast is used to achive network-layer broadcast. Consider  

a single sender and 32 receivers. Suppose the sender is connected to the 

receivers by a binary tree of routers. What is the cost of sending a broadcast 

packet, in the cases of unicast emulation and network-layer broadcast, for this 

topology? Here, each time a packet (or copy of a packet) is sent over a single 

link, it incurs a unit of cost. What topology for interconnecting the sender, 

receivers, and routers will bring the cost of unicast emulation and true net- 

work-layer broadcast as far apart as possible? You can choose as many 

routers as you’d like. 

P46. Consider the operation of the reverse path forwarding (RPF) algorithm in Figure 

4.44. Using the same topology, find a set of paths from all nodes to the source 

node A (and indicate these paths in a graph using thicker-shaded lines as in Fig- 

ure 4.44) such that if these paths were the least-cost paths, then node B would 

receive a copy of A’s broadcast message from nodes A, C, and D under RPF. 

P47. Consider the topology shown in Figure 4.44. Suppose that all links have unit 

cost and that node E is the broadcast source. Using arrows like those shown 

in Figure 4.44 indicate links over which packets will be forwarded using  

RPF, and links over which packets will not be forwarded, given that node E is 

the source. 

P48. Repeat Problem P47 using the graph from Problem P26. Assume that z is the 

broadcast source, and that the link costs are as shown in Problem P26. 

P49. Consider the topology shown in Figure 4.46, and suppose that each link has 

unit cost. Suppose node C is chosen as the center in a center-based multicast 

routing algorithm. Assuming that each attached router uses its least-cost path 

to node C to send join messages to C, draw the resulting center-based routing 

tree. Is the resulting tree a minimum-cost tree? Justify your answer. 

P50. Repeat Problem P49, using the graph from Problem P26. Assume that the 

center node is v. 

P51. In Section 4.5.1 we studied Dijkstra’s link-state routing algorithm for com- 

puting the unicast paths that are individually the least-cost paths from the 

source to all destinations. The union of these paths might be thought of as 

forming a least-unicast-cost path tree (or a shortest unicast path tree, if     

all link costs are identical). By constructing a counterexample, show that    

the least-cost path tree is not always the same as a minimum spanning tree. 
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P52. Consider a network in which all nodes are connected to three other nodes. In 

a single time step, a node can receive all transmitted broadcast packets from 

its neighbors, duplicate the packets, and send them to all of its neighbors 

(except to the node that sent a given packet). At the next time step, neighboring 

nodes can receive, duplicate, and forward these packets, and so on. Sup- 

pose that uncontrolled flooding is used to provide broadcast in such a 

network. At time step t, how many copies of the broadcast packet will be 

transmitted, assuming that during time step 1, a single broadcast packet is 

transmitted by the source node to its three neighbors. 

P53. We saw in Section 4.7 that there is no network-layer protocol that can be used 

to identify the hosts participating in a multicast group. Given this, how can 

multicast applications learn the identities of the hosts that are participating in 

a multicast group? 

P54. Design (give a pseudocode description of) an application-level protocol that 

maintains the host addresses of all hosts participating in a multicast group. 

Specifically identify the network service (unicast or multicast) that is used by 

your protocol, and indicate whether your protocol is sending messages in- 

band or out-of-band (with respect to the application data flow among the 

multicast group participants) and why. 

P55. What is the size of the multicast address space? Suppose now that two multi- 

cast groups randomly choose a multicast address. What is the probability that 

they choose the same address? Suppose now that 1,000 multicast groups are 

ongoing at the same time and choose their multicast group addresses at ran- 

dom. What is the probability that they interfere with each other? 

 

 

At the end of Chapter 2, there are four socket programming assignments. Below, 

you will find a fifth assignment which employs ICMP, a protocol discussed in this 

chapter. 

 
Assignment 5: ICMP Ping 

Ping is a popular networking application used to test from a remote location whether 

a particular host is up and reachable. It is also often used to measure latency 

between the client host and the target host. It works by sending ICMP “echo 

request” packets (i.e., ping packets) to the target host and listening for ICMP “echo 

response” replies (i.e., pong packets). Ping measures the RRT, records packet loss, 

and calculates a statistical summary of multiple ping-pong exchanges (the mini- 

mum, mean, max, and standard deviation of the round-trip times). 

Socket Programming Assignment 
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In this lab, you will write your own Ping application in Python. Your application 

will use ICMP. But in order to keep your program simple, you will not exactly follow 

the official specification in RFC 1739. Note that you will only need to write the client 

side of the program, as the functionality needed on the server side is built into almost 

all operating systems. You can find full details of this assignment, as well as impor- 

tant snippets of the Python code, at the Web site http://www.awl.com/kurose-ross. 

 
 

In this programming assignment, you will be writing a “distributed” set of proce- 

dures that implements a distributed asynchronous distance-vector routing for the 

network shown below. 

You are to write the following routines that will “execute” asynchronously 

within the emulated environment provided for this assignment. For node 0, you will 

write the routines: 
 

 
• rtinit0(). This routine will be called once at the beginning of the emulation. 

rtinit0() has no arguments. It should initialize your distance table in node 0 to 

reflect the direct costs of 1, 3, and 7 to nodes 1, 2, and 3, respectively. In the fig- 

ure above, all links are bidirectional and the costs in both directions are identi- 

cal. After initializing the distance table and any other data structures needed by 

your node 0 routines, it should then send its directly connected neighbors (in 

this case, 1, 2, and 3) the cost of its minimum-cost paths to all other network 

nodes. This minimum-cost information is sent to neighboring nodes in a routing 

update packet by calling the routine tolayer2(), as described in the full assign- 

ment. The format of the routing update packet is also described in the full 

assignment. 

• rtupdate0(struct rtpkt *rcvdpkt). This routine will be called when node 0 

receives a routing packet that was sent to it by one of its directly connected 

neighbors. The parameter *rcvdpkt is a pointer to the packet that was received. 

rtupdate0() is the “heart” of the distance-vector algorithm. The values it 

receives in a routing update packet from some other node i contain i’s current 

shortest-path costs to all other network nodes. rtupdate0() uses these received 

Programming Assignment 
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values to update its own distance table (as specified by the distance-vector algo- 

rithm). If its own minimum cost to another node changes as a result of the 

update, node 0 informs its directly connected neighbors of this change in mini- 

mum cost by sending them a routing packet. Recall that in the distance-vector 

algorithm, only directly connected nodes will exchange routing packets. Thus, 

nodes 1 and 2 will communicate with each other, but nodes 1 and 3 will not 

communicate with each other. 

 
Similar routines are defined for nodes 1, 2, and 3. Thus, you will write eight proce- 

dures in all: rtinit0(), rtinit1(), rtinit2(), rtinit3(), rtupdate0(), rtupdate1(), rtup- 

date2(), and rtupdate3(). These routines will together implement a distributed, 

asynchronous computation of the distance tables for the topology and costs shown 

in the figure on the preceding page. 

You can find the full details of the programming assignment, as well as C code 

that you will need to create the simulated hardware/software environment, at 

http://www.awl.com/kurose-ross. A Java version of the assignment is also available. 

 

 

In the companion Web site for this textbook, http://www.awl.com/kurose-ross, 

you’ll find two Wireshark lab assignments. The first lab examines the operation of 

the IP protocol, and the IP datagram format in particular. The second lab explores 

the use of the ICMP protocol in the ping and traceroute commands. 

Wireshark Labs 

http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross
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