
320 CHAPTER 4 • THE NETWORK LAYER

4.3 What’s Inside a Router? 320

4.3.1 Input Processing 322

4.3.2 Switching 324

4.3.3 Output Processing 326

4.3.4 Where Does Queuing Occur? 327

4.3.5 The Routing Control Plane 331
4.5 Routing Algorithms 363

 4.5.1 The Link-State (LS) Routing Algorithm 366
 4.5.2 The Distance-Vector (DV) Routing Algorithm 371
 4.5.3 Hierarchical Routing 379

4.6 Routing in the Internet 383
 4.6.1 Intra-AS Routing in the Internet: RIP 384
 4.6.2 Intra-AS Routing in the Internet: OSPF 388
 4.6.3 Inter-AS Routing: BGP 390

4.8 Summary 412
 Homework Problems and Questions 413

 Programming Assignments 429
 Wireshark Labs: IP, ICMP 430

 Interview: Vinton G. Cerf 431

4.1 What’s Inside a Router?

Now that we’ve overviewed the network layer’s services and functions, let’s turn

our attention to its forwarding function—the actual transfer of packets from a

router’s incoming links to the appropriate outgoing links at that router. We already

took a brief look at a few aspects of forwarding in Section 4.2, namely, addressing

and longest prefix matching. We mention here in passing that the terms forwarding

and switching are often used interchangeably by computer-networking researchers

and practitioners; we’ll use both terms interchangeably in this textbook as well.

A high-level view of a generic router architecture is shown in Figure 4.6. Four

router components can be identified:

• Input ports. An input port performs several key functions. It performs the

physical layer function of terminating an incoming physical link at a router;

this is shown in the leftmost box of the input port and the rightmost box of the

output port in Figure 4.6. An input port also performs link-layer functions

needed to interoperate with the link layer at the other side of the incoming

link; this is represented by the middle boxes in the input and output ports. Per-

haps most crucially, the lookup function is also performed at the input port;

this will occur in the rightmost box of the input port. It is here that the for-

warding table is consulted to determine the router output port to which an

4.3 • WHAT’S INSIDE A ROUTER? 325

arriving packet will be forwarded via the switching fabric. Control packets

(for example, packets carrying routing protocol information) are forwarded

from an input port to the routing processor. Note that the term port here—

referring to the physical input and output router interfaces—is distinctly

different from the software ports associated with network applications and

sockets discussed in Chapters 2 and 3.

• Switching fabric. The switching fabric connects the router’s input ports to its

output ports. This switching fabric is completely contained within the router—

a network inside of a network router!

• Output ports. An output port stores packets received from the switching fabric

and transmits these packets on the outgoing link by performing the necessary

link-layer and physical-layer functions. When a link is bidirectional (that is,

320 CHAPTER 4 • THE NETWORK LAYER

Figure 4.6 ◆ Router architecture

carries traffic in both directions), an output port will typically be paired with the

input port for that link on the same line card (a printed circuit board containing

one or more input ports, which is connected to the switching fabric).

• Routing processor. The routing processor executes the routing protocols (which

we’ll study in Section 4.6), maintains routing tables and attached link state infor-

mation, and computes the forwarding table for the router. It also performs the

network management functions that we’ll study in Chapter 9.

Recall that in Section 4.1.1 we distinguished between a router’s forwarding and

routing functions. A router’s input ports, output ports, and switching fabric

together implement the forwarding function and are almost always implemented

in hardware, as shown in Figure 4.6. These forwarding functions are sometimes

collectively referred to as the router forwarding plane. To appreciate why a

hardware implementation is needed, consider that with a 10 Gbps input link and a

64-byte IP datagram, the input port has only 51.2 ns to process the datagram

before another datagram may arrive. If N ports are combined on a line card (as is

often done in practice), the datagram-processing pipeline must operate N times

faster—far too fast for software implementation. Forwarding plane hardware can

be implemented either using a router vendor’s own hardware designs, or con-

structed using purchased merchant-silicon chips (e.g., as sold by companies such

as Intel and Broadcom).

While the forwarding plane operates at the nanosecond time scale, a router’s

control functions—executing the routing protocols, responding to attached links that

Routing, management

control plane (software)

Routing
processor

Forwarding

data plane (hardware)

Input port Output port

Input port Output port

Switch

fabric

322 CHAPTER 4 • THE NETWORK LAYER

go up or down, and performing management functions such as those we’ll study in

Chapter 9—operate at the millisecond or second timescale. These router control

plane functions are usually implemented in software and execute on the routing

processor (typically a traditional CPU).

Before delving into the details of a router’s control and data plane, let’s return to

our analogy of Section 4.1.1, where packet forwarding was compared to cars entering

and leaving an interchange. Let’s suppose that the interchange is a roundabout, and that

before a car enters the roundabout, a bit of processing is required—the car stops at an

entry station and indicates its final destination (not at the local roundabout, but the ulti-

mate destination of its journey). An attendant at the entry station looks up the final des-

tination, determines the roundabout exit that leads to that final destination, and tells the

driver which roundabout exit to take. The car enters the roundabout (which may be

filled with other cars entering from other input roads and heading to other roundabout

exits) and eventually leaves at the prescribed roundabout exit ramp, where it may

encounter other cars leaving the roundabout at that exit.

We can recognize the principal router components in Figure 4.6 in this anal-

ogy—the entry road and entry station correspond to the input port (with a lookup

function to determine to local outgoing port); the roundabout corresponds to the

switch fabric; and the roundabout exit road corresponds to the output port. With this

analogy, it’s instructive to consider where bottlenecks might occur. What hap- pens

if cars arrive blazingly fast (for example, the roundabout is in Germany or Italy!)

but the station attendant is slow? How fast must the attendant work to ensure

there’s no backup on an entry road? Even with a blazingly fast attendant, what hap-

pens if cars traverse the roundabout slowly—can backups still occur? And what

happens if most of the entering cars all want to leave the roundabout at the same

exit ramp—can backups occur at the exit ramp or elsewhere? How should the

roundabout operate if we want to assign priorities to different cars, or block certain

cars from entering the roundabout in the first place? These are all analogous to crit-

ical questions faced by router and switch designers.

In the following subsections, we’ll look at router functions in more detail. [Iyer

2008, Chao 2001; Chuang 2005; Turner 1988; McKeown 1997a; Partridge 1998]

provide a discussion of specific router architectures. For concreteness, the ensuing

discussion assumes a datagram network in which forwarding decisions are based

on the packet’s destination address (rather than a VC number in a virtual-circuit

network). However, the concepts and techniques are quite similar for a virtual-

circuit network.

4.1.1 Input Processing

A more detailed view of input processing is given in Figure 4.7. As discussed above,

the input port’s line termination function and link-layer processing implement the

physical and link layers for that individual input link. The lookup performed in the

input port is central to the router’s operation—it is here that the router uses the for-

warding table to look up the output port to which an arriving packet will be

4.3 • WHAT’S INSIDE A ROUTER? 323

CASE HISTORY

CISCO SYSTEMS: DOMINATING THE NETWORK CORE

As of this writing 2012, Cisco employs more than 65,000 people. How did this
gorilla of a networking company come to be? It all started in 1984 in the living room
of a Silicon Valley apartment.

Len Bosak and his wife Sandy Lerner were working at Stanford University when they
had the idea to build and sell Internet routers to research and academic institutions, the
primary adopters of the Internet at that time. Sandy Lerner came up with the name Cisco
(an abbreviation for San Francisco), and she also designed the company’s bridge logo.
Corporate headquarters was their living room, and they financed the project with credit
cards and moonlighting consulting jobs. At the end of 1986, Cisco’s revenues reached

$250,000 a month. At the end of 1987, Cisco succeeded in attracting venture capital—
$2 million from Sequoia Capital in exchange for one-third of the company. Over the next
few years, Cisco continued to grow and grab more and more market share. At the same
time, relations between Bosak/Lerner and Cisco management became strained. Cisco
went public in 1990; in the same year Lerner and Bosak left the company.

Over the years, Cisco has expanded well beyond the router market, selling security,
wireless caching, Ethernet switch, datacenter infrastructure, video conferencing, and
voice-over IP products and services. However, Cisco is facing increased international
competition, including from Huawei, a rapidly growing Chinese network-gear compa-
ny. Other sources of competition for Cisco in the router and switched Ethernet space
include Alcatel-Lucent and Juniper.

forwarded via the switching fabric. The forwarding table is computed and updated

by the routing processor, with a shadow copy typically stored at each input port. The

forwarding table is copied from the routing processor to the line cards over a sepa-

rate bus (e.g., a PCI bus) indicated by the dashed line from the routing processor to

the input line cards in Figure 4.6. With a shadow copy, forwarding decisions can be

made locally, at each input port, without invoking the centralized routing processor

on a per-packet basis and thus avoiding a centralized processing bottleneck.

Given the existence of a forwarding table, lookup is conceptually simple—we just

search through the forwarding table looking for the longest prefix match, as described

Figure 4.7 ◆ Input port processing

Switch
fabric

Line
termination

Lookup, fowarding,
queuing

Data link
processing
(protocol,

decapsulation)

324 CHAPTER 4 • THE NETWORK LAYER

in Section 4.2.2. But at Gigabit transmission rates, this lookup must be performed in

nanoseconds (recall our earlier example of a 10 Gbps link and a 64-byte IP datagram).

Thus, not only must lookup be performed in hardware, but techniques beyond a simple

linear search through a large table are needed; surveys of fast lookup algorithms can be

found in [Gupta 2001, Ruiz-Sanchez 2001]. Special attention must also be paid to mem-

ory access times, resulting in designs with embedded on-chip DRAM and faster SRAM

(used as a DRAM cache) memories. Ternary Content Address Memories (TCAMs) are

also often used for lookup. With a TCAM, a 32-bit IP address is presented to the mem-

ory, which returns the content of the forwarding table entry for that address in essen-

tially constant time. The Cisco 8500 has a 64K CAM for each input port.

Once a packet’s output port has been determined via the lookup, the packet can

be sent into the switching fabric. In some designs, a packet may be temporarily

blocked from entering the switching fabric if packets from other input ports are cur-

rently using the fabric. A blocked packet will be queued at the input port and then

scheduled to cross the fabric at a later point in time. We’ll take a closer look at the

blocking, queuing, and scheduling of packets (at both input ports and output ports)

in Section 4.3.4. Although “lookup” is arguably the most important action in input

port processing, many other actions must be taken: (1) physical- and link-layer pro-

cessing must occur, as discussed above; (2) the packet’s version number, checksum

and time-to-live field—all of which we’ll study in Section 4.4.1—must be checked

and the latter two fields rewritten; and (3) counters used for network management

(such as the number of IP datagrams received) must be updated.

Let’s close our discussion of input port processing by noting that the input port

steps of looking up an IP address (“match”) then sending the packet into the switching

fabric (“action”) is a specific case of a more general “match plus action” abstraction

that is performed in many networked devices, not just routers. In link-layer switches

(covered in Chapter 5), link-layer destination addresses are looked up and several

actions may be taken in addition to sending the frame into the switching fabric towards

the output port. In firewalls (covered in Chapter 8)—devices that filter out selected

incoming packets—an incoming packet whose header matches a given criteria (e.g., a

combination of source/destination IP addresses and transport-layer port numbers) may

be prevented from being forwarded (action). In a network address translator (NAT, cov-

ered in Section 4.4), an incoming packet whose transport-layer port number matches a

given value will have its port number rewritten before forwarding (action). Thus, the

“match plus action” abstraction is both powerful and prevalent in network devices.

4.1.2 Switching

The switching fabric is at the very heart of a router, as it is through this fabric that

the packets are actually switched (that is, forwarded) from an input port to an output

port. Switching can be accomplished in a number of ways, as shown in Figure 4.8:

• Switching via memory. The simplest, earliest routers were traditional computers,

with switching between input and output ports being done under direct control of

4.3 • WHAT’S INSIDE A ROUTER? 325

Memory
A X

Crossbar

A

Bus

A X

Key:

Input port Output port

Figure 4.8 ◆ Three switching techniques

the CPU (routing processor). Input and output ports functioned as traditional I/O

devices in a traditional operating system. An input port with an arriving packet

first signaled the routing processor via an interrupt. The packet was then copied

from the input port into processor memory. The routing processor then extracted

the destination address from the header, looked up the appropriate output port in

the forwarding table, and copied the packet to the output port’s buffers. In this

scenario, if the memory bandwidth is such that B packets per second can be writ-

ten into, or read from, memory, then the overall forwarding throughput (the total

rate at which packets are transferred from input ports to output ports) must be

less than B/2. Note also that two packets cannot be forwarded at the same time,

even if they have different destination ports, since only one memory read/write

over the shared system bus can be done at a time.

Many modern routers switch via memory. A major difference from early routers,

however, is that the lookup of the destination address and the storing of the packet

into the appropriate memory location are performed by processing on the input

line cards. In some ways, routers that switch via memory look very much like

shared-memory multiprocessors, with the processing on a line card switching

(writing) packets into the memory of the appropriate output port. Cisco’s Catalyst

8500 series switches [Cisco 8500 2012] forward packets via a shared memory.

B Y

C Z

Memory

B

C

X Y Z

B Y

C Z

326 CHAPTER 4 • THE NETWORK LAYER

• Switching via a bus. In this approach, an input port transfers a packet directly to the

output port over a shared bus, without intervention by the routing processor. This is

typically done by having the input port pre-pend a switch-internal label (header) to

the packet indicating the local output port to which this packet is being transferred

and transmitting the packet onto the bus. The packet is received by all output ports,

but only the port that matches the label will keep the packet. The label is then

removed at the output port, as this label is only used within the switch to cross the

bus. If multiple packets arrive to the router at the same time, each at a different input

port, all but one must wait since only one packet can cross the bus at a time. Because

every packet must cross the single bus, the switching speed of the router is limited

to the bus speed; in our roundabout analogy, this is as if the roundabout could only

contain one car at a time. Nonetheless, switching via a bus is often sufficient for

routers that operate in small local area and enterprise networks. The Cisco 5600

[Cisco Switches 2012] switches packets over a 32 Gbps backplane bus.

• Switching via an interconnection network. One way to overcome the bandwidth

limitation of a single, shared bus is to use a more sophisticated interconnection net-

work, such as those that have been used in the past to interconnect processors in a

multiprocessor computer architecture. A crossbar switch is an interconnection net-

work consisting of 2N buses that connect N input ports to N output ports, as shown

in Figure 4.8. Each vertical bus intersects each horizontal bus at a crosspoint, which

can be opened or closed at any time by the switch fabric controller (whose logic is

part of the switching fabric itself). When a packet arrives from port A and needs to

be forwarded to port Y, the switch controller closes the crosspoint at the intersection

of busses A and Y, and port A then sends the packet onto its bus, which is picked up

(only) by bus Y. Note that a packet from port B can be forwarded to port X at the

same time, since the A-to-Y and B-to-X packets use different input and output

busses. Thus, unlike the previous two switching approaches, crossbar networks are

capable of forwarding multiple packets in parallel. However, if two packets from

two different input ports are destined to the same output port, then one will have to

wait at the input, since only one packet can be sent over any given bus at a time.

More sophisticated interconnection networks use multiple stages of switching

elements to allow packets from different input ports to proceed towards the same

output port at the same time through the switching fabric. See [Tobagi 1990] for

a survey of switch architectures. Cisco 12000 family switches [Cisco 12000

2012] use an interconnection network.

4.1.3 Output Processing

Output port processing, shown in Figure 4.9, takes packets that have been stored in

the output port’s memory and transmits them over the output link. This includes

selecting and de-queueing packets for transmission, and performing the needed link-

layer and physical-layer transmission functions.

4.3 • WHAT’S INSIDE A ROUTER? 327

Figure 4.9 ◆ Output port processing

4.1.4 Where Does Queueing Occur?

If we consider input and output port functionality and the configurations shown in

Figure 4.8, it’s clear that packet queues may form at both the input ports and the out-

put ports, just as we identified cases where cars may wait at the inputs and outputs of

the traffic intersection in our roundabout analogy. The location and extent of queueing

(either at the input port queues or the output port queues) will depend on the traffic

load, the relative speed of the switching fabric, and the line speed. Let’s now consider

these queues in a bit more detail, since as these queues grow large, the router’s mem-

ory can eventually be exhausted and packet loss will occur when no memory is avail-

able to store arriving packets. Recall that in our earlier discussions, we said that

packets were “lost within the network” or “dropped at a router.” It is here, at these

queues within a router, where such packets are actually dropped and lost.

Suppose that the input and output line speeds (transmission rates) all have an

identical transmission rate of R
line

packets per second, and that there are N input

ports and N output ports. To further simplify the discussion, let’s assume that all

packets have the same fixed length, and the packets arrive to input ports in a syn-

chronous manner. That is, the time to send a packet on any link is equal to the time

to receive a packet on any link, and during such an interval of time, either zero or

one packet can arrive on an input link. Define the switching fabric transfer rate

R
switch

as the rate at which packets can be moved from input port to output port. If

R
switch

is N times faster than R
line

, then only negligible queuing will occur at the

input ports. This is because even in the worst case, where all N input lines are

receiving packets, and all packets are to be forwarded to the same output port, each

batch of N packets (one packet per input port) can be cleared through the switch fab-

ric before the next batch arrives.

But what can happen at the output ports? Let’s suppose that R
switch

is still N

times faster than R
line

. Once again, packets arriving at each of the N input ports

are destined to the same output port. In this case, in the time it takes to send a single

packet onto the outgoing link, N new packets will arrive at this output port. Since

the output port can transmit only a single packet in a unit of time (the packet trans-

mission time), the N arriving packets will have to queue (wait) for transmission over

the outgoing link. Then N more packets can possibly arrive in the time it takes to

Switch
fabric

Line
termination

Data link
processing
(protocol,

encapsulation)

Queuing (buffer
management)

328 CHAPTER 4 • THE NETWORK LAYER

transmit just one of the N packets that had just previously been queued. And so on.

Eventually, the number of queued packets can grow large enough to exhaust avail-

able memory at the output port, in which case packets are dropped.

Output port queuing is illustrated in Figure 4.10. At time t, a packet has arrived at

each of the incoming input ports, each destined for the uppermost outgoing port.

Assuming identical line speeds and a switch operating at three times the line speed,

one time unit later (that is, in the time needed to receive or send a packet), all three

original packets have been transferred to the outgoing port and are queued awaiting

transmission. In the next time unit, one of these three packets will have been transmit-

ted over the outgoing link. In our example, two new packets have arrived at the incom-

ing side of the switch; one of these packets is destined for this uppermost output port.

Given that router buffers are needed to absorb the fluctuations in traffic load, the

natural question to ask is how much buffering is required. For many years, the rule of

thumb [RFC 3439] for buffer sizing was that the amount of buffering (B) should be

equal to an average round-trip time (RTT, say 250 msec) times the link capacity (C).

This result is based on an analysis of the queueing dynamics of a relatively small num-

ber of TCP flows [Villamizar 1994]. Thus, a 10 Gbps link with an RTT of 250 msec

would need an amount of buffering equal to B = RTT · C = 2.5 Gbits of buffers. Recent

Output port contention at time t

One packet time later

Figure 4.10 ◆ Output port queuing

Switch
fabric

Switch
fabric

4.3 • WHAT’S INSIDE A ROUTER? 329

theoretical and experimental efforts [Appenzeller 2004], however, suggest that when

there are a large number of TCP flows (N) passing through a link, the amount of buffer-
—
N . With a large number of flows typically passing through

large backbone router links (see, e.g., [Fraleigh 2003]), the value of N can be large, with

the decrease in needed buffer size becoming quite significant. [Appenzellar 2004; Wis-

chik 2005; Beheshti 2008] provide very readable discussions of the buffer sizing prob-

lem from a theoretical, implementation, and operational standpoint.

A consequence of output port queuing is that a packet scheduler at the output

port must choose one packet among those queued for transmission. This selection

might be done on a simple basis, such as first-come-first-served (FCFS) scheduling,

or a more sophisticated scheduling discipline such as weighted fair queuing (WFQ),

which shares the outgoing link fairly among the different end-to-end connections

that have packets queued for transmission. Packet scheduling plays a crucial role in

providing quality-of-service guarantees. We’ll thus cover packet scheduling exten-

sively in Chapter 7. A discussion of output port packet scheduling disciplines is

[Cisco Queue 2012].

Similarly, if there is not enough memory to buffer an incoming packet, a decision

must be made to either drop the arriving packet (a policy known as drop-tail) or

remove one or more already-queued packets to make room for the newly arrived

packet. In some cases, it may be advantageous to drop (or mark the header of) a packet

before the buffer is full in order to provide a congestion signal to the sender. A number

of packet-dropping and -marking policies (which collectively have become known as

active queue management (AQM) algorithms) have been proposed and analyzed

[Labrador 1999, Hollot 2002]. One of the most widely studied and implemented AQM

algorithms is the Random Early Detection (RED) algorithm. Under RED, a

weighted average is maintained for the length of the output queue. If the average

queue length is less than a minimum threshold, min
th

, when a packet arrives, the

packet is admitted to the queue. Conversely, if the queue is full or the average queue

length is greater than a maximum threshold, max
th

, when a packet arrives, the packet

is marked or dropped. Finally, if the packet arrives to find an average queue length in

the interval [min
th

, max
th

], the packet is marked or dropped with a probability that is

typically some function of the average queue length, min
th

, and max
th

. A number of

probabilistic marking/dropping functions have been proposed, and various versions of

RED have been analytically modeled, simulated, and/or implemented. [Christiansen

2001] and [Floyd 2012] provide overviews and pointers to additional reading.

If the switch fabric is not fast enough (relative to the input line speeds) to transfer

all arriving packets through the fabric without delay, then packet queuing can also

occur at the input ports, as packets must join input port queues to wait their turn to be

transferred through the switching fabric to the output port. To illustrate an important

consequence of this queuing, consider a crossbar switching fabric and suppose that

(1) all link speeds are identical, (2) that one packet can be transferred from any one

input port to a given output port in the same amount of time it takes for a packet to be

received on an input link, and (3) packets are moved from a given input queue to their

ing needed is B = RTT · C/

4.4 • THE INTERNET PROTOCOL (IP) 335

desired output queue in an FCFS manner. Multiple packets can be transferred in paral-

lel, as long as their output ports are different. However, if two packets at the front of

two input queues are destined for the same output queue, then one of the packets will

be blocked and must wait at the input queue—the switching fabric can transfer only

one packet to a given output port at a time.

Figure 4.11 shows an example in which two packets (darkly shaded) at the front

of their input queues are destined for the same upper-right output port. Suppose that

the switch fabric chooses to transfer the packet from the front of the upper-left

queue. In this case, the darkly shaded packet in the lower-left queue must wait. But

not only must this darkly shaded packet wait, so too must the lightly shaded packet

that is queued behind that packet in the lower-left queue, even though there is no

contention for the middle-right output port (the destination for the lightly shaded

packet). This phenomenon is known as head-of-the-line (HOL) blocking in an

Output port contention at time t —
one dark packet can be transferred

Light blue packet experiences HOL blocking

Key:

destined for upper output
port

destined for middle output
port

destined for lower output
port

Figure 4.11 ◆ HOL blocking at an input queued switch

Switch
fabric

Switch
fabric

4.5 • ROUTING ALGORITHMS 331

input-queued switch—a queued packet in an input queue must wait for transfer

through the fabric (even though its output port is free) because it is blocked by

another packet at the head of the line. [Karol 1987] shows that due to HOL block-

ing, the input queue will grow to unbounded length (informally, this is equivalent to

saying that significant packet loss will occur) under certain assumptions as soon as

the packet arrival rate on the input links reaches only 58 percent of their capacity. A

number of solutions to HOL blocking are discussed in [McKeown 1997b].

4.1.5 The Routing Control Plane

In our discussion thus far and in Figure 4.6, we’ve implicitly assumed that the rout-

ing control plane fully resides and executes in a routing processor within the router.

The network-wide routing control plane is thus decentralized—with different pieces

(e.g., of a routing algorithm) executing at different routers and interacting by send-

ing control messages to each other. Indeed, today’s Internet routers and the routing

algorithms we’ll study in Section 4.6 operate in exactly this manner. Additionally,

router and switch vendors bundle their hardware data plane and software control

plane together into closed (but inter-operable) platforms in a vertically integrated

product.

Recently, a number of researchers [Caesar 2005a, Casado 2009, McKeown

2008] have begun exploring new router control plane architectures in which part of

the control plane is implemented in the routers (e.g., local measurement/reporting of

link state, forwarding table installation and maintenance) along with the data plane,

and part of the control plane can be implemented externally to the router (e.g., in a

centralized server, which could perform route calculation). A well-defined API dic-

tates how these two parts interact and communicate with each other. These

researchers argue that separating the software control plane from the hardware data

plane (with a minimal router-resident control plane) can simplify routing by replac-

ing distributed routing calculation with centralized routing calculation, and enable

network innovation by allowing different customized control planes to operate over

fast hardware data planes.

4.2 Routing Algorithms

So far in this chapter, we’ve mostly explored the network layer’s forwarding func-

tion. We learned that when a packet arrives to a router, the router indexes a forward-

ing table and determines the link interface to which the packet is to be directed. We

also learned that routing algorithms, operating in network routers, exchange and

332 CHAPTER 4 • THE NETWORK LAYER

compute the information that is used to configure these forwarding tables. The inter-

play between routing algorithms and forwarding tables was shown in Figure 4.2.

Having explored forwarding in some depth we now turn our attention to the other

major topic of this chapter, namely, the network layer’s critical routing function.

Whether the network layer provides a datagram service (in which case different pack-

ets between a given source-destination pair may take different routes) or a VC serv-

ice (in which case all packets between a given source and destination will take the

same path), the network layer must nonetheless determine the path that packets take

from senders to receivers. We’ll see that the job of routing is to determine good paths

(equivalently, routes), from senders to receivers, through the network of routers.

Typically a host is attached directly to one router, the default router for the

host (also called the first-hop router for the host). Whenever a host sends a packet,

the packet is transferred to its default router. We refer to the default router of the

source host as the source router and the default router of the destination host as the

destination router. The problem of routing a packet from source host to destination

host clearly boils down to the problem of routing the packet from source router to

destination router, which is the focus of this section.

The purpose of a routing algorithm is then simple: given a set of routers, with

links connecting the routers, a routing algorithm finds a “good” path from source

router to destination router. Typically, a good path is one that has the least cost.

We’ll see, however, that in practice, real-world concerns such as policy issues (for

example, a rule such as “router x, belonging to organization Y, should not forward

any packets originating from the network owned by organization Z”) also come into

play to complicate the conceptually simple and elegant algorithms whose theory

underlies the practice of routing in today’s networks.

A graph is used to formulate routing problems. Recall that a graph G = (N,E)

is a set N of nodes and a collection E of edges, where each edge is a pair of nodes

from N. In the context of network-layer routing, the nodes in the graph represent

routers—the points at which packet-forwarding decisions are made—and the edges

connecting these nodes represent the physical links between these routers. Such a

graph abstraction of a computer network is shown in Figure 4.27. To view some

graphs representing real network maps, see [Dodge 2012, Cheswick 2000]; for a

discussion of how well different graph-based models model the Internet, see

[Zegura 1997, Faloutsos 1999, Li 2004].

As shown in Figure 4.27, an edge also has a value representing its cost. Typi-

cally, an edge’s cost may reflect the physical length of the corresponding link (for

example, a transoceanic link might have a higher cost than a short-haul terrestrial

link), the link speed, or the monetary cost associated with a link. For our purposes,

we’ll simply take the edge costs as a given and won’t worry about how they are

determined. For any edge (x,y) in E, we denote c(x,y) as the cost of the edge between

nodes x and y. If the pair (x,y) does not belong to E, we set c(x,y) = . Also, through-

out we consider only undirected graphs (i.e., graphs whose edges do not have a

direction), so that edge (x,y) is the same as edge (y,x) and that c(x,y) = c(y,x). Also, a

node y is said to be a neighbor of node x if (x,y) belongs to E.

4.5 • ROUTING ALGORITHMS 333

Figure 4.27 ◆ Abstract graph model of a computer network

Given that costs are assigned to the various edges in the graph abstraction, a natu-

ral goal of a routing algorithm is to identify the least costly paths between sources and

destinations. To make this problem more precise, recall that a path in a graph G =

(N,E) is a sequence of nodes (x
1
, x

2
,..., x

p
) such that each of the pairs (x

1
,x

2
),

(x
2
,x

3
),...,(x

p-1
,x

p
) are edges in E. The cost of a path (x

1
,x

2
,..., x

p
) is simply the sum of

all the edge costs along the path, that is, c(x
1
,x

2
) + c(x

2
,x

3
) + ...+ c(x

p-1
,x

p
). Given any

two nodes x and y, there are typically many paths between the two nodes, with each

path having a cost. One or more of these paths is a least-cost path. The least-cost

problem is therefore clear: Find a path between the source and destination that has

least cost. In Figure 4.27, for example, the least-cost path between source node u and

destination node w is (u, x, y, w) with a path cost of 3. Note that if all edges in the

graph have the same cost, the least-cost path is also the shortest path (that is, the

path with the smallest number of links between the source and the destination).

As a simple exercise, try finding the least-cost path from node u to z in Figure

4.27 and reflect for a moment on how you calculated that path. If you are like most

people, you found the path from u to z by examining Figure 4.27, tracing a few routes

from u to z, and somehow convincing yourself that the path you had chosen had the

least cost among all possible paths. (Did you check all of the 17 possible paths

between u and z? Probably not!) Such a calculation is an example of a centralized

routing algorithm—the routing algorithm was run in one location, your brain, with

complete information about the network. Broadly, one way in which we can classify

routing algorithms is according to whether they are global or decentralized.

• A global routing algorithm computes the least-cost path between a source and

destination using complete, global knowledge about the network. That is, the

algorithm takes the connectivity between all nodes and all link costs as inputs.

This then requires that the algorithm somehow obtain this information before

actually performing the calculation. The calculation itself can be run at one site

5

v
3

w
2 5

u 2
3

1 z

1 2

x
1

y

334 CHAPTER 4 • THE NETWORK LAYER

(a centralized global routing algorithm) or replicated at multiple sites. The key

distinguishing feature here, however, is that a global algorithm has complete

information about connectivity and link costs. In practice, algorithms with global

state information are often referred to as link-state (LS) algorithms, since the

algorithm must be aware of the cost of each link in the network. We’ll study LS

algorithms in Section 4.5.1.

• In a decentralized routing algorithm, the calculation of the least-cost path is

carried out in an iterative, distributed manner. No node has complete information

about the costs of all network links. Instead, each node begins with only the

knowledge of the costs of its own directly attached links. Then, through an itera-

tive process of calculation and exchange of information with its neighboring

nodes (that is, nodes that are at the other end of links to which it itself is

attached), a node gradually calculates the least-cost path to a destination or set of

destinations. The decentralized routing algorithm we’ll study below in Section

4.5.2 is called a distance-vector (DV) algorithm, because each node maintains a

vector of estimates of the costs (distances) to all other nodes in the network.

A second broad way to classify routing algorithms is according to whether they

are static or dynamic. In static routing algorithms, routes change very slowly over

time, often as a result of human intervention (for example, a human manually edit-

ing a router’s forwarding table). Dynamic routing algorithms change the routing

paths as the network traffic loads or topology change. A dynamic algorithm can be

run either periodically or in direct response to topology or link cost changes. While

dynamic algorithms are more responsive to network changes, they are also more

susceptible to problems such as routing loops and oscillation in routes.

A third way to classify routing algorithms is according to whether they are load-

sensitive or load-insensitive. In a load-sensitive algorithm, link costs vary dynami-

cally to reflect the current level of congestion in the underlying link. If a high cost is

associated with a link that is currently congested, a routing algorithm will tend to

choose routes around such a congested link. While early ARPAnet routing algo-

rithms were load-sensitive [McQuillan 1980], a number of difficulties were encoun-

tered [Huitema 1998]. Today’s Internet routing algorithms (such as RIP, OSPF, and

BGP) are load-insensitive, as a link’s cost does not explicitly reflect its current (or

recent past) level of congestion.

4.2.1 The Link-State (LS) Routing Algorithm

Recall that in a link-state algorithm, the network topology and all link costs are

known, that is, available as input to the LS algorithm. In practice this is accom-

plished by having each node broadcast link-state packets to all other nodes in the

network, with each link-state packet containing the identities and costs of its

attached links. In practice (for example, with the Internet’s OSPF routing protocol,

discussed in Section 4.6.1) this is often accomplished by a link-state broadcast

4.5 • ROUTING ALGORITHMS 335

algorithm [Perlman 1999]. We’ll cover broadcast algorithms in Section 4.7. The

result of the nodes’ broadcast is that all nodes have an identical and complete view

of the network. Each node can then run the LS algorithm and compute the same set

of least-cost paths as every other node.

The link-state routing algorithm we present below is known as Dijkstra’s algo-

rithm, named after its inventor. A closely related algorithm is Prim’s algorithm; see

[Cormen 2001] for a general discussion of graph algorithms. Dijkstra’s algorithm

computes the least-cost path from one node (the source, which we will refer to as u)

to all other nodes in the network. Dijkstra’s algorithm is iterative and has the prop-

erty that after the kth iteration of the algorithm, the least-cost paths are known to k

destination nodes, and among the least-cost paths to all destination nodes, these k

paths will have the k smallest costs. Let us define the following notation:

• D(v): cost of the least-cost path from the source node to destination v as of this

iteration of the algorithm.

• p(v): previous node (neighbor of v) along the current least-cost path from the

source to v.

• N' : subset of nodes; v is in N' if the least-cost path from the source to v is defin-

itively known.

The global routing algorithm consists of an initialization step followed by a

loop. The number of times the loop is executed is equal to the number of nodes in

the network. Upon termination, the algorithm will have calculated the shortest paths

from the source node u to every other node in the network.

Link-State (LS) Algorithm for Source Node u

1 Initialization:

2 N’ = {u}
3 for all nodes v
4 if v is a neighbor of u
5 then D(v) = c(u,v)
6 else D(v) =

7
8 Loop

9 find w not in N’ such that D(w) is a minimum
10 add w to N’
11 update D(v) for each neighbor v of w and not in N’:
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 least path cost to w plus cost from w to v */
15 until N’= N

336 CHAPTER 4 • THE NETWORK LAYER

VideoNote

Dijkstra’s algorithm:

discussion and example

As an example, let’s consider the network in Figure 4.27 and compute the

least-cost paths from u to all possible destinations. A tabular summary of the

algorithm’s computation is shown in Table 4.3, where each line in the table gives

the values of the algorithm’s variables at the end of the iteration. Let’s consider the

few first steps in detail.

• In the initialization step, the currently known least-cost paths from u to its

directly attached neighbors, v, x, and w, are initialized to 2, 1, and 5, respectively.

Note in particular that the cost to w is set to 5 (even though we will soon see that

a lesser-cost path does indeed exist) since this is the cost of the direct (one hop)

link from u to w. The costs to y and z are set to infinity because they are not

directly connected to u.

• In the first iteration, we look among those nodes not yet added to the set N' and

find that node with the least cost as of the end of the previous iteration. That node

is x, with a cost of 1, and thus x is added to the set N'. Line 12 of the LS algo-

rithm is then performed to update D(v) for all nodes v, yielding the results shown

in the second line (Step 1) in Table 4.3. The cost of the path to v is unchanged.

The cost of the path to w (which was 5 at the end of the initialization) through

node x is found to have a cost of 4. Hence this lower-cost path is selected and w’s

predecessor along the shortest path from u is set to x. Similarly, the cost to y

(through x) is computed to be 2, and the table is updated accordingly.

• In the second iteration, nodes v and y are found to have the least-cost paths (2),

and we break the tie arbitrarily and add y to the set N' so that N' now contains u,

x, and y. The cost to the remaining nodes not yet in N', that is, nodes v, w, and z,

are updated via line 12 of the LS algorithm, yielding the results shown in the

third row in the Table 4.3.

• And so on. . . .

When the LS algorithm terminates, we have, for each node, its predecessor

along the least-cost path from the source node. For each predecessor, we also

step N’ D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)

0 u 2,u 5,u 1,u

1 ux 2,u 4,x 2,x

2 uxy 2,u 3,y 4,y
3 uxyv 3,y 4,y

4 uxyvw 4,y

5 uxyvwz

Table 4.3 ◆ Running the link-state algorithm on the network in Figure 4.27

4.5 • ROUTING ALGORITHMS 337

have its predecessor, and so in this manner we can construct the entire path from

the source to all destinations. The forwarding table in a node, say node u, can

then be constructed from this information by storing, for each destination, the

next-hop node on the least-cost path from u to the destination. Figure 4.28

shows the resulting least-cost paths and forwarding table in u for the network in

Figure 4.27.

What is the computational complexity of this algorithm? That is, given n

nodes (not counting the source), how much computation must be done in the

worst case to find the least-cost paths from the source to all destinations? In the

first iteration, we need to search through all n nodes to determine the node, w, not

in N' that has the minimum cost. In the second iteration, we need to check n – 1

nodes to determine the minimum cost; in the third iteration n – 2 nodes, and so

on. Overall, the total number of nodes we need to search through over all the iter-

ations is n(n + 1)/2, and thus we say that the preceding implementation of the LS

algorithm has worst-case complexity of order n squared: O(n2). (A more sophisti-

cated implementation of this algorithm, using a data structure known as a heap,

can find the minimum in line 9 in logarithmic rather than linear time, thus reduc-

ing the complexity.)

Before completing our discussion of the LS algorithm, let us consider a pathol-

ogy that can arise. Figure 4.29 shows a simple network topology where link costs

are equal to the load carried on the link, for example, reflecting the delay that would

be experienced. In this example, link costs are not symmetric; that is, c(u,v) equals

c(v,u) only if the load carried on both directions on the link (u,v) is the same. In this

example, node z originates a unit of traffic destined for w, node x also originates a

unit of traffic destined for w, and node y injects an amount of traffic equal to e, also

destined for w. The initial routing is shown in Figure 4.29(a) with the link costs cor-

responding to the amount of traffic carried.

When the LS algorithm is next run, node y determines (based on the link costs

shown in Figure 4.29(a)) that the clockwise path to w has a cost of 1, while the

counterclockwise path to w (which it had been using) has a cost of 1 + e. Hence y’s

Destination Link

v (u, v)

w (u, x)

x (u, x)

y (u, x)

z (u, x)

Figure 4.28 ◆ Least cost path and forwarding table for nodule u

V W

U Z

X Y

4.5 • ROUTING ALGORITHMS 371

a. Initial routing b. x, y detect better path

to w, clockwise

c. x, y, z detect better path

to w, counterclockwise
d. x, y, z, detect better path

to w, clockwise

Figure 4.29 ◆ Oscillations with congestion-sensitive routing

least-cost path to w is now clockwise. Similarly, x determines that its new least-cost

path to w is also clockwise, resulting in costs shown in Figure 4.29(b). When the

LS algorithm is run next, nodes x, y, and z all detect a zero-cost path to w in the

counterclockwise direction, and all route their traffic to the counterclockwise

routes. The next time the LS algorithm is run, x, y, and z all then route their traffic

to the clockwise routes.

What can be done to prevent such oscillations (which can occur in any algo-

rithm, not just an LS algorithm, that uses a congestion or delay-based link met-

ric)? One solution would be to mandate that link costs not depend on the amount of

traffic carried—an unacceptable solution since one goal of routing is to avoid

w

0

2 + e

1 z x 1

1 + e 1

0 0

y

e

w
2+ e

0

1 z x 1

0 0

1 1 + e

y

e

w

0

2 + e

1 z x 1

1 + e 1

0 0

y

e

w
1 + e

1

1 z x 1

0 0

0 e

y

e

370 CHAPTER 4 • THE NETWORK LAYER

highly congested (for example, high-delay) links. Another solution is to ensure

that not all routers run the LS algorithm at the same time. This seems a more

reasonable solution, since we would hope that even if routers ran the LS algorithm

with the same periodicity, the execution instance of the algorithm would not be

the same at each node. Interestingly, researchers have found that routers in the

Internet can self-synchronize among themselves [Floyd Synchronization 1994].

That is, even though they initially execute the algorithm with the same period

but at different instants of time, the algorithm execution instance can eventually

become, and remain, synchronized at the routers. One way to avoid such self-

synchronization is for each router to randomize the time it sends out a link

advertisement.

Having studied the LS algorithm, let’s consider the other major routing algo-

rithm that is used in practice today—the distance-vector routing algorithm.

4.2.2 The Distance-Vector (DV) Routing Algorithm

Whereas the LS algorithm is an algorithm using global information, the distance-

vector (DV) algorithm is iterative, asynchronous, and distributed. It is distributed

in that each node receives some information from one or more of its directly

attached neighbors, performs a calculation, and then distributes the results of its

calculation back to its neighbors. It is iterative in that this process continues

on until no more information is exchanged between neighbors. (Interestingly, the

algorithm is also self-terminating—there is no signal that the computation should

stop; it just stops.) The algorithm is asynchronous in that it does not require all of

the nodes to operate in lockstep with each other. We’ll see that an asynchronous,

iterative, self-terminating, distributed algorithm is much more interesting and fun

than a centralized algorithm!

Before we present the DV algorithm, it will prove beneficial to discuss an

important relationship that exists among the costs of the least-cost paths. Let d
x
(y)

be the cost of the least-cost path from node x to node y. Then the least costs are

related by the celebrated Bellman-Ford equation, namely,

d

x
(y) = min

v
{c(x,v) + d

v
(y)}, (4.1)

where the min
v
in the equation is taken over all of x’s neighbors. The Bellman-Ford

equation is rather intuitive. Indeed, after traveling from x to v, if we then take the

least-cost path from v to y, the path cost will be c(x,v) + d
v
(y). Since we must begin

by traveling to some neighbor v, the least cost from x to y is the minimum of c(x,v)

+ d
v
(y) taken over all neighbors v.
But for those who might be skeptical about the validity of the equation, let’s

check it for source node u and destination node z in Figure 4.27. The source node u

372 CHAPTER 4 • THE NETWORK LAYER

has three neighbors: nodes v, x, and w. By walking along various paths in the graph,

it is easy to see that d
v
(z) = 5, d

x
(z) = 3, and d

w
(z) = 3. Plugging these values into

Equation 4.1, along with the costs c(u,v) = 2, c(u,x) = 1, and c(u,w) = 5, gives d
u
(z) =

min{2 + 5, 5 + 3, 1 + 3} = 4, which is obviously true and which is exactly what the

Dijskstra algorithm gave us for the same network. This quick verification should

help relieve any skepticism you may have.

The Bellman-Ford equation is not just an intellectual curiosity. It actually has

significant practical importance. In particular, the solution to the Bellman-Ford

equation provides the entries in node x’s forwarding table. To see this, let v* be any

neighboring node that achieves the minimum in Equation 4.1. Then, if node x wants

to send a packet to node y along a least-cost path, it should first forward the packet

to node v*. Thus, node x’s forwarding table would specify node v* as the next-hop

router for the ultimate destination y. Another important practical contribution of the

Bellman-Ford equation is that it suggests the form of the neighbor-to-neighbor com-

munication that will take place in the DV algorithm.

The basic idea is as follows. Each node x begins with D
x
(y), an estimate of the

cost of the least-cost path from itself to node y, for all nodes in N. Let D
x
= [D

x
(y): y

in N] be node x’s distance vector, which is the vector of cost estimates from x to all

other nodes, y, in N. With the DV algorithm, each node x maintains the following

routing information:

• For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v

• Node x’s distance vector, that is, D
x
= [D

x
(y): y in N], containing x’s estimate of

its cost to all destinations, y, in N

• The distance vectors of each of its neighbors, that is, D
v

= [D
v
(y): y in N] for each

neighbor v of x

In the distributed, asynchronous algorithm, from time to time, each node sends

a copy of its distance vector to each of its neighbors. When a node x receives a

new distance vector from any of its neighbors v, it saves v’s distance vector, and

then uses the Bellman-Ford equation to update its own distance vector as fol-

lows:

D
x
(y) = min

v
{c(x,v) + D

v
(y)} for each node y in N

If node x’s distance vector has changed as a result of this update step, node x will

then send its updated distance vector to each of its neighbors, which can in turn

update their own distance vectors. Miraculously enough, as long as all the nodes

continue to exchange their distance vectors in an asynchronous fashion, each cost

estimate D
x
(y) converges to d

x
(y), the actual cost of the least-cost path from node x

to node y [Bertsekas 1991]!

4.5 • ROUTING ALGORITHMS 373

Distance-Vector (DV) Algorithm

At each node, x:

1 Initialization:

2 for all destinations y in N:

3 D
x
(y) = c(x,y) /* if y is not a neighbor then c(x,y) = */

4 for each neighbor w
5 D

w
(y) = ? for all destinations y in N

6 for each neighbor w
7 send distance vector D

x
= [D

x
(y): y in N] to w

8
9 loop

10 wait (until I see a link cost change to some neighbor w or
11 until I receive a distance vector from some neighbor w)
12
13 for each y in N:
14 D

x
(y) = min

v
{c(x,v) + D

v
(y)}

15

16 if D
x
(y) changed for any destination y

17 send distance vector D
x
= [D

x
(y): y in N] to all neighbors

18
19 forever

In the DV algorithm, a node x updates its distance-vector estimate when it

either sees a cost change in one of its directly attached links or receives a distance-

vector update from some neighbor. But to update its own forwarding table for a

given destination y, what node x really needs to know is not the shortest-path

distance to y but instead the neighboring node v*(y) that is the next-hop router along

the shortest path to y. As you might expect, the next-hop router v*(y) is the neighbor

v that achieves the minimum in Line 14 of the DV algorithm. (If there are multiple

neighbors v that achieve the minimum, then v*(y) can be any of the minimizing

neighbors.) Thus, in Lines 13–14, for each destination y, node x also determines

v*(y) and updates its forwarding table for destination y.

Recall that the LS algorithm is a global algorithm in the sense that it requires

each node to first obtain a complete map of the network before running the Dijkstra

algorithm. The DV algorithm is decentralized and does not use such global infor-

mation. Indeed, the only information a node will have is the costs of the links to its

directly attached neighbors and information it receives from these neighbors. Each

node waits for an update from any neighbor (Lines 10–11), calculates its new dis-

tance vector when receiving an update (Line 14), and distributes its new distance

374 CHAPTER 4 • THE NETWORK LAYER

vector to its neighbors (Lines 16–17). DV-like algorithms are used in many routing

protocols in practice, including the Internet’s RIP and BGP, ISO IDRP, Novell IPX,

and the original ARPAnet.

Figure 4.30 illustrates the operation of the DV algorithm for the simple three-

node network shown at the top of the figure. The operation of the algorithm is illus-

trated in a synchronous manner, where all nodes simultaneously receive distance

vectors from their neighbors, compute their new distance vectors, and inform their

neighbors if their distance vectors have changed. After studying this example, you

Node x table

Figure 4.30 ◆ Distance-vector (DV) algorithm

Time

y

2 1

x 7 z

x

y

z

cost to

x y z

0 2 7

cost to cost to

x

y

z

x

0

2

7

y

2

0

1

z

3

1

0

x

y

z

x

0

2

3

y

2

0

1

z

3

1

0

Node y table

cost to

x y z
cost to cost to

x x

y 2 0 1 y

z z

x y z

0 2 7

2 0 1

7 1 0

x y z

x 0 2 3

y 2 0 1

z 3 1 0

Node z table

cost to

x y z

cost to cost to

x x

y y

z 7 1 0 z

x y z

0 2 7

2 0 1

3 1 0

x y z

x 0 2 3

y 2 0 1

z 3 1 0 fr
o

m

fr
o

m

fr
o

m

fr
o

m

fr
o

m

fr
o

m

fr
o

m

fr
o

m

fr
o

m

4.5 • ROUTING ALGORITHMS 375

should convince yourself that the algorithm operates correctly in an asynchronous

manner as well, with node computations and update generation/reception occurring

at any time.

The leftmost column of the figure displays three initial routing tables for each

of the three nodes. For example, the table in the upper-left corner is node x’s initial

routing table. Within a specific routing table, each row is a distance vector—specifi-

cally, each node’s routing table includes its own distance vector and that of each of

its neighbors. Thus, the first row in node x’s initial routing table is D
x

= [D
x
(x),

D
x
(y), D

x
(z)] = [0, 2, 7]. The second and third rows in this table are the most recently

received distance vectors from nodes y and z, respectively. Because at initialization

node x has not received anything from node y or z, the entries in the second and third

rows are initialized to infinity.

After initialization, each node sends its distance vector to each of its two neigh-

bors. This is illustrated in Figure 4.30 by the arrows from the first column of tables

to the second column of tables. For example, node x sends its distance vector D
x

=

[0, 2, 7] to both nodes y and z. After receiving the updates, each node recomputes its

own distance vector. For example, node x computes

D

x
(x) = 0

D
x
(y) = min{c(x,y) + D

y
(y), c(x,z) + D

z
(y)} = min{2 + 0, 7 + 1} = 2

D
x
(z) = min{c(x,y) + D

y
(z), c(x,z) + D

z
(z)} = min{2 + 1, 7 + 0} = 3

The second column therefore displays, for each node, the node’s new distance vec-

tor along with distance vectors just received from its neighbors. Note, for example,

that node x’s estimate for the least cost to node z, D
x
(z), has changed from 7 to 3.

Also note that for node x, neighboring node y achieves the minimum in line 14 of

the DV algorithm; thus at this stage of the algorithm, we have at node x that v*(y) =

y and v*(z) = y.

After the nodes recompute their distance vectors, they again send their updated

distance vectors to their neighbors (if there has been a change). This is illustrated in

Figure 4.30 by the arrows from the second column of tables to the third column of

tables. Note that only nodes x and z send updates: node y’s distance vector didn’t

change so node y doesn’t send an update. After receiving the updates, the nodes then

recompute their distance vectors and update their routing tables, which are shown in

the third column.

The process of receiving updated distance vectors from neighbors, recomputing

routing table entries, and informing neighbors of changed costs of the least-cost path

to a destination continues until no update messages are sent. At this point, since no

update messages are sent, no further routing table calculations will occur and the

algorithm will enter a quiescent state; that is, all nodes will be performing the wait

in Lines 10–11 of the DV algorithm. The algorithm remains in the quiescent state

until a link cost changes, as discussed next.

376 CHAPTER 4 • THE NETWORK LAYER

Distance-Vector Algorithm: Link-Cost Changes and Link Failure

When a node running the DV algorithm detects a change in the link cost from itself to

a neighbor (Lines 10–11), it updates its distance vector (Lines 13–14) and, if there’s a

change in the cost of the least-cost path, informs its neighbors (Lines 16–17) of its new

distance vector. Figure 4.31(a) illustrates a scenario where the link cost from y to x

changes from 4 to 1. We focus here only on y’ and z’s distance table entries to destina-

tion x. The DV algorithm causes the following sequence of events to occur:

• At time t
0
, y detects the link-cost change (the cost has changed from 4 to 1),

updates its distance vector, and informs its neighbors of this change since its dis-

tance vector has changed.

• At time t
1
, z receives the update from y and updates its table. It computes a new

least cost to x (it has decreased from a cost of 5 to a cost of 2) and sends its new

distance vector to its neighbors.

• At time t
2
, y receives z’s update and updates its distance table. y’s least costs do

not change and hence y does not send any message to z. The algorithm comes to

a quiescent state.

Thus, only two iterations are required for the DV algorithm to reach a quiescent

state. The good news about the decreased cost between x and y has propagated

quickly through the network.

Let’s now consider what can happen when a link cost increases. Suppose that

the link cost between x and y increases from 4 to 60, as shown in Figure 4.31(b).

1. Before the link cost changes, D

y
(x) = 4, D

y
(z) = 1, D

z
(y) = 1, and D

z
(x) = 5. At

time t
0
, y detects the link-cost change (the cost has changed from 4 to 60). y

computes its new minimum-cost path to x to have a cost of

D
y
(x) = min{c(y,x) + D

x
(x), c(y,z) + D

z
(x)} = min{60 + 0, 1 + 5} = 6

a. b.

Figure 4.31 ◆ Changes in link cost

1 y

4 1

x
50 z

60 y

4 1

x
50 z

4.5 • ROUTING ALGORITHMS 377

Of course, with our global view of the network, we can see that this new cost

via z is wrong. But the only information node y has is that its direct cost to x is

60 and that z has last told y that z could get to x with a cost of 5. So in order to

get to x, y would now route through z, fully expecting that z will be able to get

to x with a cost of 5. As of t
1

we have a routing loop—in order to get to x, y

routes through z, and z routes through y. A routing loop is like a black hole—a

packet destined for x arriving at y or z as of t
1

will bounce back and forth

between these two nodes forever (or until the forwarding tables are changed).

2. Since node y has computed a new minimum cost to x, it informs z of its new

distance vector at time t
1
.

3. Sometime after t
1
, z receives y’s new distance vector, which indicates that y’s

minimum cost to x is 6. z knows it can get to y with a cost of 1 and hence
computes a new least cost to x of D

z
(x) = min{50 + 0,1 + 6} = 7. Since z’s

least cost to x has increased, it then informs y of its new distance vector at t
2
.

4. In a similar manner, after receiving z’s new distance vector, y determines

D
y
(x) = 8 and sends z its distance vector. z then determines D

z
(x) = 9 and

sends y its distance vector, and so on.

How long will the process continue? You should convince yourself that the loop

will persist for 44 iterations (message exchanges between y and z)—until z even-

tually computes the cost of its path via y to be greater than 50. At this point, z will

(finally!) determine that its least-cost path to x is via its direct connection to x. y

will then route to x via z. The result of the bad news about the increase in link cost

has indeed traveled slowly! What would have happened if the link cost c(y,

x) had changed from 4 to 10,000 and the cost c(z, x) had been 9,999? Because of

such scenarios, the problem we have seen is sometimes referred to as the count-

to-infinity problem.

Distance-Vector Algorithm: Adding Poisoned Reverse

The specific looping scenario just described can be avoided using a technique

known as poisoned reverse. The idea is simple—if z routes through y to get to

destination x, then z will advertise to y that its distance to x is infinity, that is, z will

advertise to y that D
z
(x) = (even though z knows D

z
(x) = 5 in truth). z will con-

tinue telling this little white lie to y as long as it routes to x via y. Since y believes

that z has no path to x, y will never attempt to route to x via z, as long as z continues

to route to x via y (and lies about doing so).

Let’s now see how poisoned reverse solves the particular looping problem we

encountered before in Figure 4.31(b). As a result of the poisoned reverse, y’s dis-

tance table indicates D
z
(x) = . When the cost of the (x, y) link changes from 4 to 60

at time t
0
, y updates its table and continues to route directly to x, albeit at a higher

cost of 60, and informs z of its new cost to x, that is, D
y
(x) = 60. After receiving the

378 CHAPTER 4 • THE NETWORK LAYER

update at t
1
, z immediately shifts its route to x to be via the direct (z, x) link at a cost

of 50. Since this is a new least-cost path to x, and since the path no longer passes

through y, z now informs y that D
z
(x) = 50 at t

2
. After receiving the update from z, y

updates its distance table with D
y
(x) = 51. Also, since z is now on y’s least-cost path

to x, y poisons the reverse path from z to x by informing z at time t
3

that D
y
(x) =

(even though y knows that D
y
(x) = 51 in truth).

Does poisoned reverse solve the general count-to-infinity problem? It does not.

You should convince yourself that loops involving three or more nodes (rather than

simply two immediately neighboring nodes) will not be detected by the poisoned

reverse technique.

A Comparison of LS and DV Routing Algorithms

The DV and LS algorithms take complementary approaches towards computing

routing. In the DV algorithm, each node talks to only its directly connected neigh-

bors, but it provides its neighbors with least-cost estimates from itself to all the

nodes (that it knows about) in the network. In the LS algorithm, each node talks with

all other nodes (via broadcast), but it tells them only the costs of its directly con-

nected links. Let’s conclude our study of LS and DV algorithms with a quick com-

parison of some of their attributes. Recall that N is the set of nodes (routers) and E

is the set of edges (links).

• Message complexity. We have seen that LS requires each node to know the

cost of each link in the network. This requires O(|N| |E|) messages to be sent.

Also, whenever a link cost changes, the new link cost must be sent to all

nodes. The DV algorithm requires message exchanges between directly con-

nected neighbors at each iteration. We have seen that the time needed for the

algorithm to converge can depend on many factors. When link costs change,

the DV algorithm will propagate the results of the changed link cost only if

the new link cost results in a changed least-cost path for one of the nodes

attached to that link.

• Speed of convergence. We have seen that our implementation of LS is an O(|N|2)

algorithm requiring O(|N| |E|)) messages. The DV algorithm can converge slowly

and can have routing loops while the algorithm is converging. DV also suffers

from the count-to-infinity problem.

• Robustness. What can happen if a router fails, misbehaves, or is sabotaged?

Under LS, a router could broadcast an incorrect cost for one of its attached

links (but no others). A node could also corrupt or drop any packets it received

as part of an LS broadcast. But an LS node is computing only its own forward-

ing tables; other nodes are performing similar calculations for themselves. This

means route calculations are somewhat separated under LS, providing a degree

of robustness. Under DV, a node can advertise incorrect least-cost paths to any

or all destinations. (Indeed, in 1997, a malfunctioning router in a small ISP

4.5 • ROUTING ALGORITHMS 379

provided national backbone routers with erroneous routing information. This

caused other routers to flood the malfunctioning router with traffic and caused

large portions of the Internet to become disconnected for up to several hours

[Neumann 1997].) More generally, we note that, at each iteration, a node’s cal-

culation in DV is passed on to its neighbor and then indirectly to its neighbor’s

neighbor on the next iteration. In this sense, an incorrect node calculation can be

diffused through the entire network under DV.

In the end, neither algorithm is an obvious winner over the other; indeed, both algo-

rithms are used in the Internet.

Other Routing Algorithms

The LS and DV algorithms we have studied are not only widely used in practice,

they are essentially the only routing algorithms used in practice today in the Inter-

net. Nonetheless, many routing algorithms have been proposed by researchers over

the past 30 years, ranging from the extremely simple to the very sophisticated and

complex. A broad class of routing algorithms is based on viewing packet traf- fic as

flows between sources and destinations in a network. In this approach, the routing

problem can be formulated mathematically as a constrained optimization problem

known as a network flow problem [Bertsekas 1991]. Yet another set of routing

algorithms we mention here are those derived from the telephony world. These

circuit-switched routing algorithms are of interest to packet-switched data

networking in cases where per-link resources (for example, buffers, or a frac- tion

of the link bandwidth) are to be reserved for each connection that is routed over the

link. While the formulation of the routing problem might appear quite different

from the least-cost routing formulation we have seen in this chapter, there are a

number of similarities, at least as far as the path-finding algorithm (routing

algorithm) is concerned. See [Ash 1998; Ross 1995; Girard 1990] for a detailed

discussion of this research area.

4.2.3 Hierarchical Routing

In our study of LS and DV algorithms, we’ve viewed the network simply as a col-

lection of interconnected routers. One router was indistinguishable from another in

the sense that all routers executed the same routing algorithm to compute routing

paths through the entire network. In practice, this model and its view of a homoge-

nous set of routers all executing the same routing algorithm is a bit simplistic for at

least two important reasons:

• Scale. As the number of routers becomes large, the overhead involved in

computing, storing, and communicating routing information (for example,

4.5 • ROUTING ALGORITHMS 381

LS updates or least-cost path changes) becomes prohibitive. Today’s public

Internet consists of hundreds of millions of hosts. Storing routing information at

each of these hosts would clearly require enormous amounts of memory. The

overhead required to broadcast LS updates among all of the routers in the public

Internet would leave no bandwidth left for sending data packets! A distance-vec-

tor algorithm that iterated among such a large number of routers would surely

never converge. Clearly, something must be done to reduce the complexity of

route computation in networks as large as the public Internet.

• Administrative autonomy. Although researchers tend to ignore issues such as a

company’s desire to run its routers as it pleases (for example, to run whatever

routing algorithm it chooses) or to hide aspects of its network’s internal organi-

zation from the outside, these are important considerations. Ideally, an organiza-

tion should be able to run and administer its network as it wishes, while still

being able to connect its network to other outside networks.

Both of these problems can be solved by organizing routers into autonomous sys-

tems (ASs), with each AS consisting of a group of routers that are typically under

the same administrative control (e.g., operated by the same ISP or belonging to the

same company network). Routers within the same AS all run the same routing algo-

rithm (for example, an LS or DV algorithm) and have information about each

other—exactly as was the case in our idealized model in the preceding section. The

routing algorithm running within an autonomous system is called an intra-

autonomous system routing protocol. It will be necessary, of course, to connect

ASs to each other, and thus one or more of the routers in an AS will have the added

task of being responsible for forwarding packets to destinations outside the AS;

these routers are called gateway routers.

Figure 4.32 provides a simple example with three ASs: AS1, AS2, and AS3. In

this figure, the heavy lines represent direct link connections between pairs of

routers. The thinner lines hanging from the routers represent subnets that are

directly connected to the routers. AS1 has four routers—1a, 1b, 1c, and 1d— which

run the intra-AS routing protocol used within AS1. Thus, each of these four routers

knows how to forward packets along the optimal path to any destina- tion within

AS1. Similarly, autonomous systems AS2 and AS3 each have three routers. Note

that the intra-AS routing protocols running in AS1, AS2, and AS3 need not be the

same. Also note that the routers 1b, 1c, 2a, and 3a are all gateway routers.

It should now be clear how the routers in an AS determine routing paths for

source-destination pairs that are internal to the AS. But there is still a big missing

piece to the end-to-end routing puzzle. How does a router, within some AS, know

how to route a packet to a destination that is outside the AS? It’s easy to answer this

question if the AS has only one gateway router that connects to only one other AS.

In this case, because the AS’s intra-AS routing algorithm has deter- mined the least-

cost path from each internal router to the gateway router, each

380 CHAPTER 4 • THE NETWORK LAYER

Figure 4.32 ◆ An example of interconnected autonomous systems

internal router knows how it should forward the packet. The gateway router, upon

receiving the packet, forwards the packet on the one link that leads outside the

AS. The AS on the other side of the link then takes over the responsibility

of routing the packet to its ultimate destination. As an example, suppose router

2b in Figure 4.32 receives a packet whose destination is outside of AS2. Router

2b will then forward the packet to either router 2a or 2c, as specified by router

2b’s forwarding table, which was configured by AS2’s intra-AS routing protocol.

The packet will eventually arrive to the gateway router 2a, which will forward

the packet to 1b. Once the packet has left 2a, AS2’s job is done with this one

packet.

So the problem is easy when the source AS has only one link that leads outside

the AS. But what if the source AS has two or more links (through two or more gate-

way routers) that lead outside the AS? Then the problem of knowing where to for-

ward the packet becomes significantly more challenging. For example, consider a

router in AS1 and suppose it receives a packet whose destination is outside the AS.

The router should clearly forward the packet to one of its two gateway routers, 1b or

1c, but which one? To solve this problem, AS1 needs (1) to learn which destinations

are reachable via AS2 and which destinations are reachable via AS3, and (2) to

propagate this reachability information to all the routers within AS1, so that each

router can configure its forwarding table to handle external-AS destinations. These

3c
2c

3a
1c 2a

AS3
1a 1b

3b AS2 2b

1d

AS1

Inter-AS routing
algorithm

Intra-AS routing
algorithm

Forwarding
table

382 CHAPTER 4 • THE NETWORK LAYER

two tasks—obtaining reachability information from neighboring ASs and propagat-

ing the reachability information to all routers internal to the AS—are handled by the

inter-AS routing protocol. Since the inter-AS routing protocol involves communi-

cation between two ASs, the two communicating ASs must run the same inter-AS

routing protocol. In fact, in the Internet all ASs run the same inter-AS routing proto-

col, called BGP4, which is discussed in the next section. As shown in Figure 4.32,

each router receives information from an intra-AS routing protocol and an inter-AS

routing protocol, and uses the information from both protocols to configure its for-

warding table.

As an example, consider a subnet x (identified by its CIDRized address), and

suppose that AS1 learns from the inter-AS routing protocol that subnet x is reach-

able from AS3 but is not reachable from AS2. AS1 then propagates this information

to all of its routers. When router 1d learns that subnet x is reachable from AS3, and

hence from gateway 1c, it then determines, from the information provided by the

intra-AS routing protocol, the router interface that is on the least-cost path from

router 1d to gateway router 1c. Say this is interface I. The router 1d can then put the

entry (x, I) into its forwarding table. (This example, and others presented in this sec-

tion, gets the general ideas across but is a simplification of what really happens in

the Internet. In the next section we’ll provide a more detailed description, albeit

more complicated, when we discuss BGP.)

Following up on the previous example, now suppose that AS2 and AS3 con-

nect to other ASs, which are not shown in the diagram. Also suppose that AS1

learns from the inter-AS routing protocol that subnet x is reachable both from AS2,

via gateway 1b, and from AS3, via gateway 1c. AS1 would then propagate this

information to all its routers, including router 1d. In order to configure its forward-

ing table, router 1d would have to determine to which gateway router, 1b or 1c, it

should direct packets that are destined for subnet x. One approach, which is often

employed in practice, is to use hot-potato routing. In hot-potato routing, the AS

gets rid of the packet (the hot potato) as quickly as possible (more precisely, as

inexpensively as possible). This is done by having a router send the packet to the

gateway router that has the smallest router-to-gateway cost among all gateways

with a path to the destination. In the context of the current example, hot-potato

routing, running in 1d, would use information from the intra-AS routing protocol

to determine the path costs to 1b and 1c, and then choose the path with the least

cost. Once this path is chosen, router 1d adds an entry for subnet x in its forward-

ing table. Figure 4.33 summarizes the actions taken at router 1d for adding the new

entry for x to the forwarding table.

When an AS learns about a destination from a neighboring AS, the AS can

advertise this routing information to some of its other neighboring ASs. For example,

suppose AS1 learns from AS2 that subnet x is reachable via AS2. AS1 could then tell

AS3 that x is reachable via AS1. In this manner, if AS3 needs to route a packet

destined to x, AS3 would forward the packet to AS1, which would in turn forward the

packet to AS2. As we’ll see in our discussion of BGP, an AS has quite a bit of

4.6 • ROUTING IN THE INTERNET 383

Figure 4.33 ◆ Steps in adding an outside-AS destination in a router’s for-
warding table

flexibility in deciding which destinations it advertises to its neighboring ASs. This

is a policy decision, typically depending more on economic issues than on technical

issues.

Recall from Section 1.5 that the Internet consists of a hierarchy of intercon-

nected ISPs. So what is the relationship between ISPs and ASs? You might think that

the routers in an ISP, and the links that interconnect them, constitute a single AS.

Although this is often the case, many ISPs partition their network into multiple ASs.

For example, some tier-1 ISPs use one AS for their entire network; others break up

their ISP into tens of interconnected ASs.

In summary, the problems of scale and administrative authority are solved by

defining autonomous systems. Within an AS, all routers run the same intra-AS rout-

ing protocol. Among themselves, the ASs run the same inter-AS routing protocol.

The problem of scale is solved because an intra-AS router need only know about

routers within its AS. The problem of administrative authority is solved since an

organization can run whatever intra-AS routing protocol it chooses; however, each

pair of connected ASs needs to run the same inter-AS routing protocol to exchange

reachability information.

In the following section, we’ll examine two intra-AS routing protocols (RIP and

OSPF) and the inter-AS routing protocol (BGP) that are used in today’s Internet.

These case studies will nicely round out our study of hierarchical routing.

4.6 Routing in the Internet

Having studied Internet addressing and the IP protocol, we now turn our attention to

the Internet’s routing protocols; their job is to determine the path taken by a data-

gram between source and destination. We’ll see that the Internet’s routing protocols

embody many of the principles we learned earlier in this chapter. The link-state and

distance-vector approaches studied in Sections 4.5.1 and 4.5.2 and the notion of an

autonomous system considered in Section 4.5.3 are all central to how routing is

done in today’s Internet.

Determine from
forwarding table the
interface I that leads

to least-cost gateway.
Enter (x,I) in

forwarding table.

Hot potato routing:
Choose the gateway

that has the
smallest least cost.

Use routing info from
intra-AS protocol to
determine costs of
least-cost paths to

each of the gateways.

Learn from inter-AS
protocol that subnet

x is reachable via
multiple gateways.

384 CHAPTER 4 • THE NETWORK LAYER

Recall from Section 4.5.3 that an autonomous system (AS) is a collection of

routers under the same administrative and technical control, and that all run the

same routing protocol among themselves. Each AS, in turn, typically contains mul-

tiple subnets (where we use the term subnet in the precise, addressing sense in Sec-

tion 4.4.2).

4.6.1 Intra-AS Routing in the Internet: RIP

An intra-AS routing protocol is used to determine how routing is performed within

an autonomous system (AS). Intra-AS routing protocols are also known as interior

gateway protocols. Historically, two routing protocols have been used extensively

for routing within an autonomous system in the Internet: the Routing Information

Protocol (RIP) and Open Shortest Path First (OSPF). A routing protocol closely

related to OSPF is the IS-IS protocol [RFC 1142, Perlman 1999]. We first discuss

RIP and then consider OSPF.

RIP was one of the earliest intra-AS Internet routing protocols and is still in

widespread use today. It traces its origins and its name to the Xerox Network Sys-

tems (XNS) architecture. The widespread deployment of RIP was due in great part

to its inclusion in 1982 in the Berkeley Software Distribution (BSD) version of

UNIX supporting TCP/IP. RIP version 1 is defined in [RFC 1058], with a backward-

compatible version 2 defined in [RFC 2453].

RIP is a distance-vector protocol that operates in a manner very close to the

idealized DV protocol we examined in Section 4.5.2. The version of RIP specified

in RFC 1058 uses hop count as a cost metric; that is, each link has a cost of 1. In the

DV algorithm in Section 4.5.2, for simplicity, costs were defined between pairs of

routers. In RIP (and also in OSPF), costs are actually from source router to a des-

tination subnet. RIP uses the term hop, which is the number of subnets traversed

along the shortest path from source router to destination subnet, including the des-

tination subnet. Figure 4.34 illustrates an AS with six leaf subnets. The table in the

figure indicates the number of hops from the source A to each of the leaf subnets.

The maximum cost of a path is limited to 15, thus limiting the use of RIP to

autonomous systems that are fewer than 15 hops in diameter. Recall that in DV

protocols, neighboring routers exchange distance vectors with each other. The

distance vector for any one router is the current estimate of the shortest path

distances from that router to the subnets in the AS. In RIP, routing updates

are exchanged between neighbors approximately every 30 seconds using a

RIP response message. The response message sent by a router or host contains

a list of up to 25 destination subnets within the AS, as well as the sender’s

distance to each of those subnets. Response messages are also known as RIP

advertisements.

Let’s take a look at a simple example of how RIP advertisements work. Con-

sider the portion of an AS shown in Figure 4.35. In this figure, lines connecting the

routers denote subnets. Only selected routers (A, B, C, and D) and subnets (w, x, y,

4.6 • ROUTING IN THE INTERNET 385

Destination Hops

u 1

v 2

w 2

x 3

y 3

z 2

Figure 4.34 ◆ Number of hops from source router A to various subnets

and z) are labeled. Dotted lines indicate that the AS continues on; thus this

autonomous system has many more routers and links than are shown.

Each router maintains a RIP table known as a routing table. A router’s routing

table includes both the router’s distance vector and the router’s forwarding table.

Figure 4.36 shows the routing table for router D. Note that the routing table has

three columns. The first column is for the destination subnet, the second column

indicates the identity of the next router along the shortest path to the destination sub-

net, and the third column indicates the number of hops (that is, the number of sub-

nets that have to be traversed, including the destination subnet) to get to the

destination subnet along the shortest path. For this example, the table indicates that

to send a datagram from router D to destination subnet w, the datagram should first

be forwarded to neighboring router A; the table also indicates that destination sub-

net w is two hops away along the shortest path. Similarly, the table indicates that

subnet z is seven hops away via router B. In principle, a routing table will have one

row for each subnet in the AS, although RIP version 2 allows subnet entries to be

aggregated using route aggregation techniques similar to those we examined in

Figure 4.35 ◆ A portion of an autonomous system

u v

A B
w

x

C D

z y

z

w x y
A D B

C

386 CHAPTER 4 • THE NETWORK LAYER

Destination Subnet Next Router Number of Hops to Destination

w A 2

y B 2

z B 7

x — 1

.

Figure 4.36 ◆ Routing table in router D before receiving advertisement
from router A

Section 4.4. The table in Figure 4.36, and the subsequent tables to come, are only

partially complete.

Now suppose that 30 seconds later, router D receives from router A the adver-

tisement shown in Figure 4.37. Note that this advertisement is nothing other than

the routing table information from router A! This information indicates, in particu-

lar, that subnet z is only four hops away from router A. Router D, upon receiving this

advertisement, merges the advertisement (Figure 4.37) with the old routing table

(Figure 4.36). In particular, router D learns that there is now a path through router A

to subnet z that is shorter than the path through router B. Thus, router D updates its

routing table to account for the shorter shortest path, as shown in Figure 4.38. How

is it, you might ask, that the shortest path to subnet z has become shorter? Possibly,

the decentralized distance-vector algorithm is still in the process of converging (see

Section 4.5.2), or perhaps new links and/or routers were added to the AS, thus

changing the shortest paths in the AS.

Let’s next consider a few of the implementation aspects of RIP. Recall that RIP

routers exchange advertisements approximately every 30 seconds. If a router does

not hear from its neighbor at least once every 180 seconds, that neighbor is

considered to be no longer reachable; that is, either the neighbor has died or the

Destination Subnet Next Router Number of Hops to Destination

z C 4

w — 1

x — 1

.

Figure 4.37 ◆ Advertisement from router A

4.6 • ROUTING IN THE INTERNET 387

Destination Subnet Next Router Number of Hops to Destination

w A 2

y B 2

z A 5

.

Figure 4.38 ◆ Routing table in router D after receiving advertisement from
router A

connecting link has gone down. When this happens, RIP modifies the local routing

table and then propagates this information by sending advertisements to its neigh-

boring routers (the ones that are still reachable). A router can also request informa-

tion about its neighbor’s cost to a given destination using RIP’s request message.

Routers send RIP request and response messages to each other over UDP using port

number 520. The UDP segment is carried between routers in a standard IP data-

gram. The fact that RIP uses a transport-layer protocol (UDP) on top of a network-

layer protocol (IP) to implement network-layer functionality (a routing algorithm)

may seem rather convoluted (it is!). Looking a little deeper at how RIP is imple-

mented will clear this up.

Figure 4.39 sketches how RIP is typically implemented in a UNIX system, for

example, a UNIX workstation serving as a router. A process called routed (pronounced

“route dee”) executes RIP, that is, maintains routing information and exchanges

messages with routed processes running in neighboring routers. Because RIP is

implemented as an application-layer process (albeit a very special one that is able to

Transport
(UDP)

 Transport
(UDP)

Network
(IP)

 Forwarding
tables

 Forwarding
tables

 Network
(IP)

Data link

Data link

Physical Physical

Figure 4.39 ◆ Implementation of RIP as the routed daemon

Routed Routed

388 CHAPTER 4 • THE NETWORK LAYER

manipulate the routing tables within the UNIX kernel), it can send and receive mes-

sages over a standard socket and use a standard transport protocol. As shown, RIP is

implemented as an application-layer protocol (see Chapter 2) running over UDP. If

you’re interested in looking at an implementation of RIP (or the OSPF and BGP pro-

tocols that we will study shortly), see [Quagga 2012].

4.6.2 Intra-AS Routing in the Internet: OSPF

Like RIP, OSPF routing is widely used for intra-AS routing in the Internet. OSPF

and its closely related cousin, IS-IS, are typically deployed in upper-tier ISPs

whereas RIP is deployed in lower-tier ISPs and enterprise networks. The Open in

OSPF indicates that the routing protocol specification is publicly available (for

example, as opposed to Cisco’s EIGRP protocol). The most recent version of OSPF,

version 2, is defined in RFC 2328, a public document.

OSPF was conceived as the successor to RIP and as such has a number of

advanced features. At its heart, however, OSPF is a link-state protocol that uses

flooding of link-state information and a Dijkstra least-cost path algorithm. With

OSPF, a router constructs a complete topological map (that is, a graph) of the entire

autonomous system. The router then locally runs Dijkstra’s shortest-path algorithm

to determine a shortest-path tree to all subnets, with itself as the root node. Individ-

ual link costs are configured by the network administrator (see Principles and Prac-

tice: Setting OSPF Weights). The administrator might choose to set all link costs to

1, thus achieving minimum-hop routing, or might choose to set the link weights to

be inversely proportional to link capacity in order to discourage traffic from using

low-bandwidth links. OSPF does not mandate a policy for how link weights are set

(that is the job of the network administrator), but instead provides the mechanisms

(protocol) for determining least-cost path routing for the given set of link weights.

With OSPF, a router broadcasts routing information to all other routers in the

autonomous system, not just to its neighboring routers. A router broadcasts link-

state information whenever there is a change in a link’s state (for example, a change

in cost or a change in up/down status). It also broadcasts a link’s state periodically

(at least once every 30 minutes), even if the link’s state has not changed. RFC 2328

notes that “this periodic updating of link state advertisements adds robustness to the

link state algorithm.” OSPF advertisements are contained in OSPF messages that

are carried directly by IP, with an upper-layer protocol of 89 for OSPF. Thus, the

OSPF protocol must itself implement functionality such as reliable message transfer

and link-state broadcast. The OSPF protocol also checks that links are operational

(via a HELLO message that is sent to an attached neighbor) and allows an OSPF

router to obtain a neighboring router’s database of network-wide link state.

Some of the advances embodied in OSPF include the following:

• Security. Exchanges between OSPF routers (for example, link-state updates)

can be authenticated. With authentication, only trusted routers can participate

4.6 • ROUTING IN THE INTERNET 389

in the OSPF protocol within an AS, thus preventing malicious intruders (or net-

working students taking their newfound knowledge out for a joyride) from

injecting incorrect information into router tables. By default, OSPF packets

between routers are not authenticated and could be forged. Two types of

authentication can be configured—simple and MD5 (see Chapter 8 for a dis-

cussion on MD5 and authentication in general). With simple authentication, the

same password is configured on each router. When a router sends an OSPF

packet, it includes the password in plaintext. Clearly, simple authentication is

not very secure. MD5 authentication is based on shared secret keys that are

configured in all the routers. For each OSPF packet that it sends, the router

computes the MD5 hash of the content of the OSPF packet appended with the

secret key. (See the discussion of message authentication codes in Chapter 7.)

Then the router includes the resulting hash value in the OSPF packet. The

receiving router, using the preconfigured secret key, will compute an MD5 hash

of the packet and compare it with the hash value that the packet carries, thus

verifying the packet’s authenticity. Sequence numbers are also used with MD5

authentication to protect against replay attacks.

• Multiple same-cost paths. When multiple paths to a destination have the same

cost, OSPF allows multiple paths to be used (that is, a single path need not be

chosen for carrying all traffic when multiple equal-cost paths exist).

• Integrated support for unicast and multicast routing. Multicast OSPF (MOSPF)

[RFC 1584] provides simple extensions to OSPF to provide for multicast routing

(a topic we cover in more depth in Section 4.7.2). MOSPF uses the existing

OSPF link database and adds a new type of link-state advertisement to the exist-

ing OSPF link-state broadcast mechanism.

• Support for hierarchy within a single routing domain. Perhaps the most signifi-

cant advance in OSPF is the ability to structure an autonomous system hierarchi-

cally. Section 4.5.3 has already looked at the many advantages of hierarchical

routing structures. We cover the implementation of OSPF hierarchical routing in

the remainder of this section.

An OSPF autonomous system can be configured hierarchically into areas. Each

area runs its own OSPF link-state routing algorithm, with each router in an area

broadcasting its link state to all other routers in that area. Within each area, one or

more area border routers are responsible for routing packets outside the area. Lastly,

exactly one OSPF area in the AS is configured to be the backbone area. The primary

role of the backbone area is to route traffic between the other areas in the AS. The

backbone always contains all area border routers in the AS and may contain nonbor-

der routers as well. Inter-area routing within the AS requires that the packet be first

routed to an area border router (intra-area routing), then routed through the back-

bone to the area border router that is in the destination area, and then routed to the

final destination.

390 CHAPTER 4 • THE NETWORK LAYER

PRINCIPLES IN PRACTICE

SETTING OSPF LINK WEIGHTS

Our discussion of link-state routing has implicitly assumed that link weights are set, a rout-
ing algorithm such as OSPF is run, and traffic flows according to the routing tables comput-
ed by the LS algorithm. In terms of cause and effect, the link weights are given (i.e., they
come first) and result (via Dijkstra’s algorithm) in routing paths that minimize overall cost. In
this viewpoint, link weights reflect the cost of using a link (e.g., if link weights are inversely
proportional to capacity, then the use of high-capacity links would have smaller weights
and thus be more attractive from a routing standpoint) and Disjkstra’s algorithm serves to
minimize overall cost.

In practice, the cause and effect relationship between link weights and routing paths
may be reversed, with network operators configuring link weights in order to obtain routing
paths that achieve certain traffic engineering goals [Fortz 2000, Fortz 2002]. For example,
suppose a network operator has an estimate of traffic flow entering the network at each
ingress point and destined for each egress point. The operator may then want to put in
place a specific routing of ingress-to-egress flows that minimizes the maximum utilization
over all of the network’s links. But with a routing algorithm such as OSPF, the operator’s
main “knobs” for tuning the routing of flows through the network are the link weights. Thus,
in order to achieve the goal of minimizing the maximum link utilization, the operator must
find the set of link weights that achieves this goal. This is a reversal of the cause and effect
relationship—the desired routing of flows is known, and the OSPF link weights must be
found such that the OSPF routing algorithm results in this desired routing of flows.

OSPF is a relatively complex protocol, and our coverage here has been neces-

sarily brief; [Huitema 1998; Moy 1998; RFC 2328] provide additional details.

4.6.3 Inter-AS Routing: BGP

We just learned how ISPs use RIP and OSPF to determine optimal paths for source-

destination pairs that are internal to the same AS. Let’s now examine how paths are

determined for source-destination pairs that span multiple ASs. The Border Gate-

way Protocol version 4, specified in RFC 4271 (see also [RFC 4274), is the de facto

standard inter-AS routing protocol in today’s Internet. It is commonly referred to as

BGP4 or simply as BGP. As an inter-AS routing protocol (see Section 4.5.3), BGP

provides each AS a means to

1. Obtain subnet reachability information from neighboring ASs.

2. Propagate the reachability information to all routers internal to the AS.

3. Determine “good” routes to subnets based on the reachability information and

on AS policy.

4.6 • ROUTING IN THE INTERNET 391

Most importantly, BGP allows each subnet to advertise its existence to the rest of

the Internet. A subnet screams “I exist and I am here,” and BGP makes sure that all

the ASs in the Internet know about the subnet and how to get there. If it weren’t for

BGP, each subnet would be isolated—alone and unknown by the rest of the Internet.

BGP Basics

BGP is extremely complex; entire books have been devoted to the subject and many

issues are still not well understood [Yannuzzi 2005]. Furthermore, even after having

read the books and RFCs, you may find it difficult to fully master BGP without hav-

ing practiced BGP for many months (if not years) as a designer or administrator of

an upper-tier ISP. Nevertheless, because BGP is an absolutely critical protocol for

the Internet—in essence, it is the protocol that glues the whole thing together—we

need to acquire at least a rudimentary understanding of how it works. We begin by

describing how BGP might work in the context of the simple example network we

studied earlier in Figure 4.32. In this description, we build on our discussion of hier-

archical routing in Section 4.5.3; we encourage you to review that material.

In BGP, pairs of routers exchange routing information over semipermanent

TCP connections using port 179. The semi-permanent TCP connections for the net-

work in Figure 4.32 are shown in Figure 4.40. There is typically one such BGP TCP

connection for each link that directly connects two routers in two different ASs;

thus, in Figure 4.40, there is a TCP connection between gateway routers 3a and 1c

and another TCP connection between gateway routers 1b and 2a. There are also

semipermanent BGP TCP connections between routers within an AS. In particular,

Figure 4.40 displays a common configuration of one TCP connection for each pair

of routers internal to an AS, creating a mesh of TCP connections within each AS.

For each TCP connection, the two routers at the end of the connection are called

BGP peers, and the TCP connection along with all the BGP messages sent over the

VideoNote

Gluing the Internet

together

Figure 4.40 ◆ eBGP and iBGP sessions

3c 2c
3a

1c 2a

AS3
1a 1b

3b AS2 2b

Key:

eBGP session

 iBGP session

1d
AS1

392 CHAPTER 4 • THE NETWORK LAYER

PRINCIPLES IN PRACTICE

OBTAINING INTERNET PRESENCE: PUTTING THE PUZZLE TOGETHER

Suppose you have just created a small that has a number of servers, including a public
Web server that describes your company’s products and services, a mail server from which
your employees obtain their email messages, and a DNS server. Naturally, you would like
the entire world to be able to surf your Web site in order to learn about your exciting prod-
ucts and services. Moreover, you would like your employees to be able to send and
receive email to potential customers throughout the world.

To meet these goals, you first need to obtain Internet connectivity, which is done by
contracting with, and connecting to, a local ISP. Your company will have a gateway
router, which will be connected to a router in your local ISP. This connection might be
a DSL connection through the existing telephone infrastructure, a leased line to the ISP’s
router, or one of the many other access solutions described in Chapter 1. Your local
ISP will also provide you with an IP address range, e.g., a /24 address range consist-
ing of 256 addresses. Once you have your physical connectivity and your IP address
range, you will assign one of the IP addresses (in your address range) to your Web
server, one to your mail server, one to your DNS server, one to your gateway router,
and other IP addresses to other servers and networking devices in your company’s
network.

In addition to contracting with an ISP, you will also need to contract with an Internet regis-
trar to obtain a domain name for your company, as described in Chapter 2. For example, if
your company’s name is, say, Xanadu Inc., you will naturally try to obtain the domain name
xanadu.com. Your company must also obtain presence in the DNS system. Specifically,
because outsiders will want to contact your DNS server to obtain the IP addresses of your
servers, you will also need to provide your registrar with the IP address of your DNS server.
Your registrar will then put an entry for your DNS server (domain name and corresponding IP
address) in the .com top-level-domain servers, as described in Chapter 2. After this step is
completed, any user who knows your domain name (e.g., xanadu.com) will be able to
obtain the IP address of your DNS server via the DNS system.

So that people can discover the IP addresses of your Web server, in your DNS server
you will need to include entries that map the host name of your Web server (e.g.,
www.xanadu.com) to its IP address. You will want to have similar entries for other publicly
available servers in your company, including your mail server. In this manner, if Alice
wants to browse your Web server, the DNS system will contact your DNS server, find the
IP address of your Web server, and give it to Alice. Alice can then establish a TCP
connection directly with your Web server.

However, there still remains one other necessary and crucial step to allow outsiders
from around the world access your Web server. Consider what happens when Alice,
who knows the IP address of your Web server, sends an IP datagram (e.g., a TCP SYN
segment) to that IP address. This datagram will be routed through the Internet, visiting a
series of routers in many different ASes, and eventually reach your Web server. When

http://www.xanadu.com/

4.6 • ROUTING IN THE INTERNET 393

any one of the routers receives the datagram, it is going to look for an entry in its
forwarding table to determine on which outgoing port it should forward the datagram.
Therefore, each of the routers needs to know about the existence of your company’s
/24 prefix (or some aggregate entry). How does a router become aware of your
company’s prefix? As we have just seen, it becomes aware of it from BGP! Specifically,
when your company contracts with a local ISP and gets assigned a prefix (i.e., an
address range), your local ISP will use BGP to advertise this prefix to the ISPs to which
it connects. Those ISPs will then, in turn, use BGP to propagate the advertisement.
Eventually, all Internet routers will know about your prefix (or about some aggregate that
includes your prefix) and thus be able to appropriately forward datagrams destined to
your Web and mail servers.

connection is called a BGP session. Furthermore, a BGP session that spans two ASs

is called an external BGP (eBGP) session, and a BGP session between routers in

the same AS is called an internal BGP (iBGP) session. In Figure 4.40, the eBGP

sessions are shown with the long dashes; the iBGP sessions are shown with the short

dashes. Note that BGP session lines in Figure 4.40 do not always correspond to the

physical links in Figure 4.32.

BGP allows each AS to learn which destinations are reachable via its neighbor-

ing ASs. In BGP, destinations are not hosts but instead are CIDRized prefixes, with

each prefix representing a subnet or a collection of subnets. Thus, for example, sup-

pose there are four subnets attached to AS2: 138.16.64/24, 138.16.65/24,

138.16.66/24, and 138.16.67/24. Then AS2 could aggregate the prefixes for these four

subnets and use BGP to advertise the single prefix to 138.16.64/22 to AS1. As another

example, suppose that only the first three of those four subnets are in AS2 and the

fourth subnet, 138.16.67/24, is in AS3. Then, as described in the Principles and Prac-

tice in Section 4.4.2, because routers use longest-prefix matching for forwarding data-

grams, AS3 could advertise to AS1 the more specific prefix 138.16.67/24 and AS2

could still advertise to AS1 the aggregated prefix 138.16.64/22.

Let’s now examine how BGP would distribute prefix reachability information

over the BGP sessions shown in Figure 4.40. As you might expect, using the eBGP

session between the gateway routers 3a and 1c, AS3 sends AS1 the list of prefixes

that are reachable from AS3; and AS1 sends AS3 the list of prefixes that are reach-

able from AS1. Similarly, AS1 and AS2 exchange prefix reachability information

through their gateway routers 1b and 2a. Also as you may expect, when a gateway

router (in any AS) receives eBGP-learned prefixes, the gateway router uses its iBGP

sessions to distribute the prefixes to the other routers in the AS. Thus, all the routers

in AS1 learn about AS3 prefixes, including the gateway router 1b. The gateway

router 1b (in AS1) can therefore re-advertise AS3’s prefixes to AS2. When a router

(gateway or not) learns about a new prefix, it creates an entry for the prefix in its

forwarding table, as described in Section 4.5.3.

394 CHAPTER 4 • THE NETWORK LAYER

Path Attributes and BGP Routes

Having now a preliminary understanding of BGP, let’s get a little deeper into it

(while still brushing some of the less important details under the rug!). In BGP, an

autonomous system is identified by its globally unique autonomous system num-

ber (ASN) [RFC 1930]. (Technically, not every AS has an ASN. In particular, a so-

called stub AS that carries only traffic for which it is a source or destination will not

typically have an ASN; we ignore this technicality in our discussion in order to bet-

ter see the forest for the trees.) AS numbers, like IP addresses, are assigned by

ICANN regional registries [ICANN 2012].

When a router advertises a prefix across a BGP session, it includes with the pre-

fix a number of BGP attributes. In BGP jargon, a prefix along with its attributes is

called a route. Thus, BGP peers advertise routes to each other. Two of the more

important attributes are AS-PATH and NEXT-HOP:

• AS-PATH. This attribute contains the ASs through which the advertisement for the

prefix has passed. When a prefix is passed into an AS, the AS adds its ASN to the AS-

PATH attribute. For example, consider Figure 4.40 and suppose that prefix

138.16.64/24 is first advertised from AS2 to AS1; if AS1 then advertises the prefix to

AS3, AS-PATH would be AS2 AS1. Routers use the AS-PATH attribute to detect and

prevent looping advertisements; specifically, if a router sees that its AS is contained

in the path list, it will reject the advertisement. As we’ll soon discuss, routers also use

the AS-PATH attribute in choosing among multiple paths to the same prefix.

• Providing the critical link between the inter-AS and intra-AS routing protocols, the

NEXT-HOP attribute has a subtle but important use. The NEXT-HOP is the router

interface that begins the AS-PATH. To gain insight into this attribute, let’s again refer

to Figure 4.40. Consider what happens when the gateway router 3a in AS3 advertises

a route to gateway router 1c in AS1 using eBGP. The route includes the advertised

prefix, which we’ll call x, and an AS-PATH to the prefix. This advertisement also

includes the NEXT-HOP, which is the IP address of the router 3a interface that leads

to 1c. (Recall that a router has multiple IP addresses, one for each of its interfaces.)

Now consider what happens when router 1d learns about this route from iBGP. After

learning about this route to x, router 1d may want to forward packets to x along the

route, that is, router 1d may want to include the entry (x, l) in its forwarding table,

where l is its interface that begins the least-cost path from 1d towards the gateway

router 1c. To determine l, 1d provides the IP address in the NEXT-HOP attribute to

its intra-AS routing module. Note that the intra-AS routing algorithm has determined

the least-cost path to all subnets attached to the routers in AS1, including to the sub-

net for the link between 1c and 3a. From this least-cost path from 1d to the 1c-3a sub-

net, 1d determines its router interface l that begins this path and then adds the entry

(x, l) to its forwarding table. Whew! In summary, the NEXT-HOP attribute is used by

routers to properly configure their forwarding tables.

• Figure 4.41 illustrates another situation where the NEXT-HOP is needed. In this fig-

ure, AS1 and AS2 are connected by two peering links. A router in AS1 could learn

4.6 • ROUTING IN THE INTERNET 395

AS2

Router learns
about a
route to x

AS1

Two peering
links between
AS2 and AS1

Key:

Route advertisements

message for destination x

Router learns about
another route to x

Figure 4.41 ◆ NEXT-HOP attributes in advertisements are used to deter-
mine which peering link to use

about two different routes to the same prefix x. These two routes could have the same

AS-PATH to x, but could have different NEXT-HOP values corresponding to the dif-

ferent peering links. Using the NEXT-HOP values and the intra-AS routing algo-

rithm, the router can determine the cost of the path to each peering link, and then

apply hot-potato routing (see Section 4.5.3) to determine the appropriate interface.

BGP also includes attributes that allow routers to assign preference metrics to

the routes, and an attribute that indicates how the prefix was inserted into BGP at

the origin AS. For a full discussion of route attributes, see [Griffin 2012; Stewart

1999; Halabi 2000; Feamster 2004; RFC 4271].

When a gateway router receives a route advertisement, it uses its import policy

to decide whether to accept or filter the route and whether to set certain attributes

such as the router preference metrics. The import policy may filter a route because

the AS may not want to send traffic over one of the ASs in the route’s AS-PATH.

The gateway router may also filter a route because it already knows of a preferable

route to the same prefix.

BGP Route Selection

As described earlier in this section, BGP uses eBGP and iBGP to distribute routes

to all the routers within ASs. From this distribution, a router may learn about more

than one route to any one prefix, in which case the router must select one of the

396 CHAPTER 4 • THE NETWORK LAYER

possible routes. The input into this route selection process is the set of all routes that

have been learned and accepted by the router. If there are two or more routes to the

same prefix, then BGP sequentially invokes the following elimination rules until one

route remains:

• Routes are assigned a local preference value as one of their attributes. The local

preference of a route could have been set by the router or could have been

learned by another router in the same AS. This is a policy decision that is left up

to the AS’s network administrator. (We will shortly discuss BGP policy issues in

some detail.) The routes with the highest local preference values are selected.

• From the remaining routes (all with the same local preference value), the route with

the shortest AS-PATH is selected. If this rule were the only rule for route selection,

then BGP would be using a DV algorithm for path determination, where the dis-

tance metric uses the number of AS hops rather than the number of router hops.

• From the remaining routes (all with the same local preference value and the same

AS-PATH length), the route with the closest NEXT-HOP router is selected. Here,

closest means the router for which the cost of the least-cost path, determined by

the intra-AS algorithm, is the smallest. As discussed in Section 4.5.3, this process

is called hot-potato routing.

• If more than one route still remains, the router uses BGP identifiers to select the

route; see [Stewart 1999].

The elimination rules are even more complicated than described above. To avoid

nightmares about BGP, it’s best to learn about BGP selection rules in small doses!

PUTTING IT ALL TOGETHER: HOW DOES AN ENTRY GET INTO A ROUTER’S FORWARDING

TABLE?

Recall that an entry in a router’s forwarding table consists of a prefix (e.g., 138.16.64/22)
and a corresponding router output port (e.g., port 7). When a packet arrives to the router,
the packet’s destination IP address is compared with the prefixes in the forwarding table to
find the one with the longest prefix match. The packet is then forwarded (within the router)
to the router port associated with that prefix. Let’s now summarize how a routing entry
(prefix and associated port) gets entered into a forwarding table. This simple exercise will
tie together a lot of what we just learned about routing and forwarding. To make things
interesting, let’s assume that the prefix is a “foreign prefix,” that is, it does not belong to
the router’s AS but to some other AS.

In order for a prefix to get entered into the router’s forwarding table, the router has to
first become aware of the prefix (corresponding to a subnet or an aggregation of sub-
nets). As we have just learned, the router becomes aware of the prefix via a BGP route

PRINCIPLES IN PRACTICE

4.6 • ROUTING IN THE INTERNET 397

advertisement. Such an advertisement may be sent to it over an eBGP session (from a
router in another AS) or over an iBGP session (from a router in the same AS).

After the router becomes aware of the prefix, it needs to determine the appropriate output
port to which datagrams destined to that prefix will be forwarded, before it can enter that
prefix in its forwarding table. If the router receives more than one route advertisement for this
prefix, the router uses the BGP route selection process, as described earlier in this subsection,
to find the “best” route for the prefix. Suppose such a best route has been selected. As
described earlier, the selected route includes a NEXT-HOP attribute, which is the IP address of
the first router outside the router’s AS along this best route. As described above, the router
then uses its intra-AS routing protocol (typically OSPF) to determine the shortest path to the
NEXT-HOP router. The router finally determines the port number to associate with the prefix
by identifying the first link along that shortest path. The router can then (finally!) enter the
prefix-port pair into its forwarding table! The forwarding table computed by the routing
processor (see Figure 4.6) is then pushed to the router’s input port line cards.

Routing Policy

Let’s illustrate some of the basic concepts of BGP routing policy with a simple exam-

ple. Figure 4.42 shows six interconnected autonomous systems: A, B, C, W, X, and Y.

It is important to note that A, B, C, W, X, and Y are ASs, not routers. Let’s assume that

autonomous systems W, X, and Y are stub networks and that A, B, and C are backbone

provider networks. We’ll also assume that A, B, and C, all peer with each other, and

provide full BGP information to their customer networks. All traffic entering a stub

network must be destined for that network, and all traffic leaving a stub network must

have originated in that network. W and Y are clearly stub networks. X is a multi-

homed stub network, since it is connected to the rest of the network via two different

providers (a scenario that is becoming increasingly common in practice). However,

like W and Y, X itself must be the source/destination of all traffic leaving/entering X.

But how will this stub network behavior be implemented and enforced? How will X

be prevented from forwarding traffic between B and C? This can easily be

Key:

Provider
network

Customer
network

Figure 4.42 ◆ A simple BGP scenario

B

X
W A

C
Y

398 CHAPTER 4 • THE NETWORK LAYER

WHY ARE THERE DIFFERENT INTER-AS AND INTRA-AS ROUTING

PROTOCOLS?

Having now studied the details of specific inter-AS and intra-AS routing protocols deployed
in today’s Internet, let’s conclude by considering perhaps the most fundamental question
we could ask about these protocols in the first place (hopefully, you have been wondering
this all along, and have not lost the forest for the trees!): Why are different inter-AS and
intra- AS routing protocols used?

The answer to this question gets at the heart of the differences between the goals of
routing within an AS and among ASs:

• Policy. Among ASs, policy issues dominate. It may well be important that traffic origi-
nating in a given AS not be able to pass through another specific AS. Similarly, a
given AS may well want to control what transit traffic it carries between other ASs. We
have seen that BGP carries path attributes and provides for controlled distribution of
routing information so that such policy-based routing decisions can be made. Within an
AS, everything is nominally under the same administrative control, and thus policy
issues play a much less important role in choosing routes within the AS.

• Scale. The ability of a routing algorithm and its data structures to scale to handle rout-
ing to/among large numbers of networks is a critical issue in inter-AS routing. Within
an AS, scalability is less of a concern. For one thing, if a single administrative domain
becomes too large, it is always possible to divide it into two ASs and perform inter-AS
routing between the two new ASs. (Recall that OSPF allows such a hierarchy to be
built by splitting an AS into areas.)

• Performance. Because inter-AS routing is so policy oriented, the quality (for example,
performance) of the routes used is often of secondary concern (that is, a longer or more
costly route that satisfies certain policy criteria may well be taken over a route that is
shorter but does not meet that criteria). Indeed, we saw that among ASs, there is not
even the notion of cost (other than AS hop count) associated with routes. Within a sin-
gle AS, however, such policy concerns are of less importance, allowing routing to focus
more on the level of performance realized on a route.

accomplished by controlling the manner in which BGP routes are advertised. In par-

ticular, X will function as a stub network if it advertises (to its neighbors B and C) that

it has no paths to any other destinations except itself. That is, even though X may

know of a path, say XCY, that reaches network Y, it will not advertise this path to B.

Since B is unaware that X has a path to Y, B would never forward traffic destined to Y

(or C) via X. This simple example illustrates how a selective route advertisement pol-

icy can be used to implement customer/provider routing relationships.

PRINCIPLES IN PRACTICE

412 CHAPTER 4 • THE NETWORK LAYER

Let’s next focus on a provider network, say AS B. Suppose that B has learned

(from A) that A has a path AW to W. B can thus install the route BAW into its rout-

ing information base. Clearly, B also wants to advertise the path BAW to its cus-

tomer, X, so that X knows that it can route to W via B. But should B advertise the

path BAW to C? If it does so, then C could route traffic to W via CBAW. If A, B,

and C are all backbone providers, than B might rightly feel that it should not have

to shoulder the burden (and cost!) of carrying transit traffic between A and C. B

might rightly feel that it is A’s and C’s job (and cost!) to make sure that C can route

to/from A’s customers via a direct connection between A and C. There are currently

no official standards that govern how backbone ISPs route among themselves. How-

ever, a rule of thumb followed by commercial ISPs is that any traffic flowing across

an ISP’s backbone network must have either a source or a destination (or both) in a

network that is a customer of that ISP; otherwise the traffic would be getting a free

ride on the ISP’s network. Individual peering agreements (that would govern ques-

tions such as those raised above) are typically negotiated between pairs of ISPs and

are often confidential; [Huston 1999a] provides an interesting discussion of peering

agreements. For a detailed description of how routing policy reflects commercial

relationships among ISPs, see [Gao 2001; Dmitiropoulos 2007]. For a discussion of

BGP routing polices from an ISP standpoint, see [Caesar 2005b].

As noted above, BGP is the de facto standard for inter-AS routing for the pub-

lic Internet. To see the contents of various BGP routing tables (large!) extracted

from routers in tier-1 ISPs, see http://www.routeviews.org. BGP routing tables

often contain tens of thousands of prefixes and corresponding attributes. Statistics

about the size and characteristics of BGP routing tables are presented in [Potaroo

2012].

This completes our brief introduction to BGP. Understanding BGP is important

because it plays a central role in the Internet. We encourage you to see the references

[Griffin 2012; Stewart 1999; Labovitz 1997; Halabi 2000; Huitema 1998; Gao

2001; Feamster 2004; Caesar 2005b; Li 2007] to learn more about BGP.

4.7 Summary

In this chapter, we began our journey into the network core. We learned that the

network layer involves each and every host and router in the network. Because of

this, network-layer protocols are among the most challenging in the protocol stack.

We learned that a router may need to process millions of flows of packets

between different source-destination pairs at the same time. To permit a router to

process such a large number of flows, network designers have learned over the years

that the router’s tasks should be as simple as possible. Many measures can be taken

http://www.routeviews.org/

HOMEWORK PROBLEMS AND QUESTIONS 413

to make the router’s job easier, including using a datagram network layer rather than

a virtual-circuit network layer, using a streamlined and fixed-sized header (as in

IPv6), eliminating fragmentation (also done in IPv6), and providing the one and

only best-effort service. Perhaps the most important trick here is not to keep track of

individual flows, but instead base routing decisions solely on hierarchically struc-

tured destination addresses in the datagrams. It is interesting to note that the postal

service has been using this approach for many years.

In this chapter, we also looked at the underlying principles of routing algorithms.

We learned how routing algorithms abstract the computer network to a graph with

nodes and links. With this abstraction, we can exploit the rich theory of shortest-path

routing in graphs, which has been developed over the past 40 years in the operations

research and algorithms communities. We saw that there are two broad approaches: a

centralized (global) approach, in which each node obtains a complete map of the net-

work and independently applies a shortest-path routing algorithm; and a decentral-

ized approach, in which individual nodes have only a partial picture of the entire

network, yet the nodes work together to deliver packets along the shortest routes. We

also studied how hierarchy is used to deal with the problem of scale by partitioning

large networks into independent administrative domains called autonomous systems

(ASs). Each AS independently routes its datagrams through the AS, just as each

country independently routes its postal mail through the country. We learned how

centralized, decentralized, and hierarchical approaches are embodied in the principal

routing protocols in the Internet: RIP, OSPF, and BGP. We concluded our study of

routing algorithms by considering broadcast and multicast routing.

Having completed our study of the network layer, our journey now takes us one

step further down the protocol stack, namely, to the link layer. Like the network layer,

the link layer is also part of the network core. But we will see in the next chapter that

the link layer has the much more localized task of moving packets between nodes on

the same link or LAN. Although this task may appear on the surface to be trivial com-

pared with that of the network layer’s tasks, we will see that the link layer involves a

number of important and fascinating issues that can keep us busy for a long time.

Chapter 4 Review Questions

SECTIONS 4.1–4.2

R1. Let’s review some of the terminology used in this textbook. Recall that the

name of a transport-layer packet is segment and that the name of a link-layer

packet is frame. What is the name of a network-layer packet? Recall that both

routers and link-layer switches are called packet switches. What is the

fundamental difference between a router and link-layer switch? Recall that

we use the term routers for both datagram networks and VC networks.

Homework Problems and Questions

414 CHAPTER 4 • THE NETWORK LAYER

R2. What are the two most important network-layer functions in a datagram net-

work? What are the three most important network-layer functions in a virtual-

circuit network?

R3. What is the difference between routing and forwarding?

R4. Do the routers in both datagram networks and virtual-circuit networks use for-

warding tables? If so, describe the forwarding tables for both classes of networks.

R5. Describe some hypothetical services that the network layer can provide to a

single packet. Do the same for a flow of packets. Are any of your hypotheti-

cal services provided by the Internet’s network layer? Are any provided by

ATM’s CBR service model? Are any provided by ATM’s ABR service

model?

R6. List some applications that would benefit from ATM’s CBR service model.

SECTION 4.3

R7. Discuss why each input port in a high-speed router stores a shadow copy of

the forwarding table.

R8. Three types of switching fabrics are discussed in Section 4.3. List and briefly

describe each type. Which, if any, can send multiple packets across the fabric

in parallel?

R9. Describe how packet loss can occur at input ports. Describe how packet loss

at input ports can be eliminated (without using infinite buffers).

R10. Describe how packet loss can occur at output ports. Can this loss be

prevented by increasing the switch fabric speed?

R11. What is HOL blocking? Does it occur in input ports or output ports?

SECTION 4.4

R12. Do routers have IP addresses? If so, how many?

R13. What is the 32-bit binary equivalent of the IP address 223.1.3.27?

R14. Visit a host that uses DHCP to obtain its IP address, network mask, default

router, and IP address of its local DNS server. List these values.

R15. Suppose there are three routers between a source host and a destination host.

Ignoring fragmentation, an IP datagram sent from the source host to the desti-

nation host will travel over how many interfaces? How many forwarding tables

will be indexed to move the datagram from the source to the destination?

R16. Suppose an application generates chunks of 40 bytes of data every 20 msec,

and each chunk gets encapsulated in a TCP segment and then an IP datagram.

What percentage of each datagram will be overhead, and what percentage

will be application data?

R17. Suppose Host A sends Host B a TCP segment encapsulated in an IP datagram.

When Host B receives the datagram, how does the network layer in Host B

HOMEWORK PROBLEMS AND QUESTIONS 415

know it should pass the segment (that is, the payload of the datagram) to TCP

rather than to UDP or to something else?

R18. Suppose you purchase a wireless router and connect it to your cable modem.

Also suppose that your ISP dynamically assigns your connected device (that

is, your wireless router) one IP address. Also suppose that you have five PCs

at home that use 802.11 to wirelessly connect to your wireless router. How

are IP addresses assigned to the five PCs? Does the wireless router use NAT?

Why or why not?

R19. Compare and contrast the IPv4 and the IPv6 header fields. Do they have any

fields in common?

R20. It has been said that when IPv6 tunnels through IPv4 routers, IPv6 treats the

IPv4 tunnels as link-layer protocols. Do you agree with this statement? Why

or why not?

SECTION 4.5

R21. Compare and contrast link-state and distance-vector routing algorithms.

R22. Discuss how a hierarchical organization of the Internet has made it possible

to scale to millions of users.

R23. Is it necessary that every autonomous system use the same intra-AS routing

algorithm? Why or why not?

SECTION 4.6

R24. Consider Figure 4.37. Starting with the original table in D, suppose that D

receives from A the following advertisement:

Destination Subnet Next Router Number of Hops to Destination

z C 10

w — 1

x — 1

.

Will the table in D change? If so how?

R25. Compare and contrast the advertisements used by RIP and OSPF.

R26. Fill in the blank: RIP advertisements typically announce the number of hops

to various destinations. BGP updates, on the other hand, announce the

 to the various destinations.

R27. Why are different inter-AS and intra-AS protocols used in the Internet?

R28. Why are policy considerations as important for intra-AS protocols, such as

OSPF and RIP, as they are for an inter-AS routing protocol like BGP?

416 CHAPTER 4 • THE NETWORK LAYER

R29. Define and contrast the following terms: subnet, prefix, and BGP route.

R30. How does BGP use the NEXT-HOP attribute? How does it use the AS-PATH

attribute?

R31. Describe how a network administrator of an upper-tier ISP can implement

policy when configuring BGP.

SECTION 4.7

R32. What is an important difference between implementing the broadcast abstrac-

tion via multiple unicasts, and a single network- (router-) supported broad-

cast?

R33. For each of the three general approaches we studied for broadcast communi-

cation (uncontrolled flooding, controlled flooding, and spanning-tree broad-

cast), are the following statements true or false? You may assume that no

packets are lost due to buffer overflow and all packets are delivered on a link

in the order in which they were sent.

a. A node may receive multiple copies of the same packet.

b. A node may forward multiple copies of a packet over the same

outgoing link.

R34. When a host joins a multicast group, must it change its IP address to that of

the multicast group it is joining?

R35. What are the roles played by the IGMP protocol and a wide-area multicast

routing protocol?

R36. What is the difference between a group-shared tree and a source-based tree in

the context of multicast routing?

P1. In this question, we consider some of the pros and cons of virtual-circuit and

datagram networks.

a. Suppose that routers were subjected to conditions that might cause them

to fail fairly often. Would this argue in favor of a VC or datagram archi-

tecture? Why?

b. Suppose that a source node and a destination require that a fixed amount

of capacity always be available at all routers on the path between the

source and destination node, for the exclusive use of traffic flowing

between this source and destination node. Would this argue in favor of a

VC or datagram architecture? Why?

c. Suppose that the links and routers in the network never fail and that rout-

ing paths used between all source/destination pairs remains constant. In

this scenario, does a VC or datagram architecture have more control traf-

fic overhead? Why?

Problems

PROBLEMS 417

P2. Consider a virtual-circuit network. Suppose the VC number is an 8-bit field.

a. What is the maximum number of virtual circuits that can be carried over a

link?

b. Suppose a central node determines paths and VC numbers at connection

setup. Suppose the same VC number is used on each link along the VC’s

path. Describe how the central node might determine the VC number at con-

nection setup. Is it possible that there are fewer VCs in progress than the

maximum as determined in part (a) yet there is no common free VC number?

c. Suppose that different VC numbers are permitted in each link along a

VC’s path. During connection setup, after an end-to-end path is determined,

describe how the links can choose their VC numbers and configure their for-

warding tables in a decentralized manner, without reliance on a central node.

P3. A bare-bones forwarding table in a VC network has four columns. What is

the meaning of the values in each of these columns? A bare-bones forwarding

table in a datagram network has two columns. What is the meaning of the

values in each of these columns?

P4. Consider the network below.

a. Suppose that this network is a datagram network. Show the forwarding

table in router A, such that all traffic destined to host H3 is forwarded

through interface 3.

b. Suppose that this network is a datagram network. Can you write down a

forwarding table in router A, such that all traffic from H1 destined to host

H3 is forwarded through interface 3, while all traffic from H2 destined to

host H3 is forwarded through interface 4? (Hint: this is a trick question.)

c. Now suppose that this network is a virtual circuit network and that there is

one ongoing call between H1 and H3, and another ongoing call between

H2 and H3. Write down a forwarding table in router A, such that all traffic

from H1 destined to host H3 is forwarded through interface 3, while all

traffic from H2 destined to host H3 is forwarded through interface 4.

d. Assuming the same scenario as (c), write down the forwarding tables in

nodes B, C, and D.

H2

P5. Consider a VC network with a 2-bit field for the VC number. Suppose that

the network wants to set up a virtual circuit over four links: link A, link B,

1 B 2

1 3

A
2 4

1
3

H1 D

1 2 2

C H3

418 CHAPTER 4 • THE NETWORK LAYER

link C, and link D. Suppose that each of these links is currently carrying two

other virtual circuits, and the VC numbers of these other VCs are as follows:

Link A Link B Link C Link D

00 01 10 11

01 10 11 00

In answering the following questions, keep in mind that each of the existing

VCs may only be traversing one of the four links.

a. If each VC is required to use the same VC number on all links along its

path, what VC number could be assigned to the new VC?

b. If each VC is permitted to have different VC numbers in the different links

along its path (so that forwarding tables must perform VC number transla-

tion), how many different combinations of four VC numbers (one for each

of the four links) could be used?

P6. In the text we have used the term connection-oriented service to describe a

transport-layer service and connection service for a network-layer service.

Why the subtle shades in terminology?

P7. Suppose two packets arrive to two different input ports of a router at exactly

the same time. Also suppose there are no other packets anywhere in the

router.

a. Suppose the two packets are to be forwarded to two different output ports.

Is it possible to forward the two packets through the switch fabric at the

same time when the fabric uses a shared bus?

b. Suppose the two packets are to be forwarded to two different output ports.

Is it possible to forward the two packets through the switch fabric at the

same time when the fabric uses a crossbar?

c. Suppose the two packets are to be forwarded to the same output port. Is it

possible to forward the two packets through the switch fabric at the same

time when the fabric uses a crossbar?

P8. In Section 4.3, we noted that the maximum queuing delay is (n–1)D if the

switching fabric is n times faster than the input line rates. Suppose that all

packets are of the same length, n packets arrive at the same time to the n

input ports, and all n packets want to be forwarded to different output ports.

What is the maximum delay for a packet for the (a) memory, (b) bus, and (c)

crossbar switching fabrics?

P9. Consider the switch shown below. Suppose that all datagrams have the same

fixed length, that the switch operates in a slotted, synchronous manner, and

that in one time slot a datagram can be transferred from an input port to an

output port. The switch fabric is a crossbar so that at most one datagram can

PROBLEMS 419

be transferred to a given output port in a time slot, but different output ports

can receive datagrams from different input ports in a single time slot. What is

the minimal number of time slots needed to transfer the packets shown from

input ports to their output ports, assuming any input queue scheduling order

you want (i.e., it need not have HOL blocking)? What is the largest number

of slots needed, assuming the worst-case scheduling order you can devise,

assuming that a non-empty input queue is never idle?

P10. Consider a datagram network using 32-bit host addresses. Suppose a router

has four links, numbered 0 through 3, and packets are to be forwarded to the

link interfaces as follows:

Destination Address Range Link Interface

11100000 00000000 00000000 00000000

through 0

11100000 00111111 11111111 11111111

11100000 01000000 00000000 00000000

through 1

11100000 01000000 11111111 11111111

11100000 01000001 00000000 00000000

through 2

11100001 01111111 11111111 11111111

otherwise 3

a. Provide a forwarding table that has five entries, uses longest prefix match-

ing, and forwards packets to the correct link interfaces.

b. Describe how your forwarding table determines the appropriate link inter-

face for datagrams with destination addresses:

11001000 10010001 01010001 01010101

11100001 01000000 11000011 00111100

11100001 10000000 00010001 01110111

Switch
fabric

Output port Z

Output port Y

Output port X

Z Y

X Y

X

PROBLEMS 421

P11. Consider a datagram network using 8-bit host addresses. Suppose a router

uses longest prefix matching and has the following forwarding table:

Prefix Match Interface

00 0

010 1

011 2

10 2

11 3

For each of the four interfaces, give the associated range of destination host

addresses and the number of addresses in the range.

P12. Consider a datagram network using 8-bit host addresses. Suppose a router

uses longest prefix matching and has the following forwarding table:

Prefix Match Interface

1 0

10 1

111 2

otherwise 3

For each of the four interfaces, give the associated range of destination host

addresses and the number of addresses in the range.

P13. Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and

Subnet 3. Suppose all of the interfaces in each of these three subnets are

required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is

required to support at least 60 interfaces, Subnet 2 is to support at least 90

interfaces, and Subnet 3 is to support at least 12 interfaces. Provide three net-

work addresses (of the form a.b.c.d/x) that satisfy these constraints.

P14. In Section 4.2.2 an example forwarding table (using longest prefix matching)

is given. Rewrite this forwarding table using the a.b.c.d/x notation instead of

the binary string notation.

P15. In Problem P10 you are asked to provide a forwarding table (using longest

prefix matching). Rewrite this forwarding table using the a.b.c.d/x notation

instead of the binary string notation.

420 CHAPTER 4 • THE NETWORK LAYER

P16. Consider a subnet with prefix 128.119.40.128/26. Give an example of one

IP address (of form xxx.xxx.xxx.xxx) that can be assigned to this network.

Suppose an ISP owns the block of addresses of the form 128.119.40.64/26.

Suppose it wants to create four subnets from this block, with each block

having the same number of IP addresses. What are the prefixes (of form

a.b.c.d/x) for the four subnets?

P17. Consider the topology shown in Figure 4.17. Denote the three subnets with

hosts (starting clockwise at 12:00) as Networks A, B, and C. Denote the sub-

nets without hosts as Networks D, E, and F.

a. Assign network addresses to each of these six subnets, with the follow-

ing constraints: All addresses must be allocated from 214.97.254/23;

Subnet A should have enough addresses to support 250 interfaces; Sub-

net B should have enough addresses to support 120 interfaces; and

Subnet C should have enough addresses to support 120 interfaces. Of

course, subnets D, E and F should each be able to support two interfaces.

For each subnet, the assignment should take the form a.b.c.d/x or

a.b.c.d/x – e.f.g.h/y.

b. Using your answer to part (a), provide the forwarding tables (using longest

prefix matching) for each of the three routers.

P18. Use the whois service at the American Registry for Internet Numbers

(http://www.arin.net/whois) to determine the IP address blocks for three

universities. Can the whois services be used to determine with certainty the

geographical location of a specific IP address? Use www.maxmind.com to

determine the locations of the Web servers at each of these universities.

P19. Consider sending a 2400-byte datagram into a link that has an MTU of

700 bytes. Suppose the original datagram is stamped with the identifica-

tion number 422. How many fragments are generated? What are the

values in the various fields in the IP datagram(s) generated related to

fragmentation?

P20. Suppose datagrams are limited to 1,500 bytes (including header) between

source Host A and destination Host B. Assuming a 20-byte IP header, how

many datagrams would be required to send an MP3 consisting of 5 million

bytes? Explain how you computed your answer.

P21. Consider the network setup in Figure 4.22. Suppose that the ISP instead

assigns the router the address 24.34.112.235 and that the network address of

the home network is 192.168.1/24.

a. Assign addresses to all interfaces in the home network.

b. Suppose each host has two ongoing TCP connections, all to port 80 at

host 128.119.40.86. Provide the six corresponding entries in the NAT

translation table.

http://www.arin.net/whois
http://www.maxmind.com/

422 CHAPTER 4 • THE NETWORK LAYER

VideoNote

Dijkstra’s algorithm:

discussion and example

P22. Suppose you are interested in detecting the number of hosts behind a NAT.

You observe that the IP layer stamps an identification number sequentially on

each IP packet. The identification number of the first IP packet generated by

a host is a random number, and the identification numbers of the subsequent

IP packets are sequentially assigned. Assume all IP packets generated by

hosts behind the NAT are sent to the outside world.

a. Based on this observation, and assuming you can sniff all packets sent by

the NAT to the outside, can you outline a simple technique that detects the

number of unique hosts behind a NAT? Justify your answer.

b. If the identification numbers are not sequentially assigned but randomly

assigned, would your technique work? Justify your answer.

P23. In this problem we’ll explore the impact of NATs on P2P applications.

Suppose a peer with username Arnold discovers through querying that a peer

with username Bernard has a file it wants to download. Also suppose that

Bernard and Arnold are both behind a NAT. Try to devise a technique that

will allow Arnold to establish a TCP connection with Bernard without

application-specific NAT configuration. If you have difficulty devising such

a technique, discuss why.

P24. Looking at Figure 4.27, enumerate the paths from y to u that do not contain

any loops.

P25. Repeat Problem P24 for paths from x to z, z to u, and z to w.

P26. Consider the following network. With the indicated link costs, use Dijkstra’s

shortest-path algorithm to compute the shortest path from x to all network

nodes. Show how the algorithm works by computing a table similar to

Table 4.3.

z

12

8
7

y t

6 8 4

v 2

x
3

3

6
4 u

3

w

PROBLEMS 423

P27. Consider the network shown in Problem P26. Using Dijkstra’s algorithm, and

showing your work using a table similar to Table 4.3, do the following:

a. Compute the shortest path from t to all network nodes.

b. Compute the shortest path from u to all network nodes.

c. Compute the shortest path from v to all network nodes.

d. Compute the shortest path from w to all network nodes.

e. Compute the shortest path from y to all network nodes.

f. Compute the shortest path from z to all network nodes.

P28. Consider the network shown below, and assume that each node initially

knows the costs to each of its neighbors. Consider the distance-vector

algorithm and show the distance table entries at node z.

P29. Consider a general topology (that is, not the specific network shown above) and a

synchronous version of the distance-vector algorithm. Suppose that at each itera-

tion, a node exchanges its distance vectors with its neighbors and receives their

distance vectors. Assuming that the algorithm begins with each node knowing

only the costs to its immediate neighbors, what is the maximum number of itera-

tions required before the distributed algorithm converges? Justify your answer.

P30. Consider the network fragment shown below. x has only two attached neigh-

bors, w and y. w has a minimum-cost path to destination u (not shown) of 5,

and y has a minimum-cost path to u of 6. The complete paths from w and y to

u (and between w and y) are not shown. All link costs in the network have

strictly positive integer values.

u
1

v

6

2 3
z

2

y 3 x

w

2 2

x
5

y

424 CHAPTER 4 • THE NETWORK LAYER

a. Give x’s distance vector for destinations w, y, and u.

b. Give a link-cost change for either c(x,w) or c(x,y) such that x will inform

its neighbors of a new minimum-cost path to u as a result of executing the

distance-vector algorithm.

c. Give a link-cost change for either c(x,w) or c(x,y) such that x will not

inform its neighbors of a new minimum-cost path to u as a result of exe-

cuting the distance-vector algorithm.

P31. Consider the three-node topology shown in Figure 4.30. Rather than having

the link costs shown in Figure 4.30, the link costs are c(x,y) = 3, c(y,z) = 6,

c(z,x) = 4. Compute the distance tables after the initialization step and after

each iteration of a synchronous version of the distance-vector algorithm (as

we did in our earlier discussion of Figure 4.30).

P32. Consider the count-to-infinity problem in the distance vector routing. Will the

count-to-infinity problem occur if we decrease the cost of a link? Why? How

about if we connect two nodes which do not have a link?

P33. Argue that for the distance-vector algorithm in Figure 4.30, each value in the

distance vector D(x) is non-increasing and will eventually stabilize in a finite

number of steps.

P34. Consider Figure 4.31. Suppose there is another router w, connected to router

y and z. The costs of all links are given as follows: c(x,y) = 4, c(x,z) = 50,

c(y,w) = 1, c(z,w) = 1, c(y,z) = 3. Suppose that poisoned reverse is used in the

distance-vector routing algorithm.

a. When the distance vector routing is stabilized, router w, y, and z inform their

distances to x to each other. What distance values do they tell each other?

b. Now suppose that the link cost between x and y increases to 60. Will there

be a count-to-infinity problem even if poisoned reverse is used? Why or

why not? If there is a count-to-infinity problem, then how many iterations

are needed for the distance-vector routing to reach a stable state again?

Justify your answer.

c. How do you modify c(y,z) such that there is no count-to-infinity problem

at all if c(y,x) changes from 4 to 60?

P35. Describe how loops in paths can be detected in BGP.

P36. Will a BGP router always choose the loop-free route with the shortest AS-

path length? Justify your answer.

P37. Consider the network shown below. Suppose AS3 and AS2 are running OSPF

for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP

for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the

inter-AS routing protocol. Initially suppose there is no physical link between

AS2 and AS4.

PROBLEMS 425

a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP,

eBGP, or iBGP?

b. Router 3a learns about x from which routing protocol?

c. Router 1c learns about x from which routing protocol?

d. Router 1d learns about x from which routing protocol?

P38. Referring to the previous problem, once router 1d learns about x it will put an

entry (x, I) in its forwarding table.

a. Will I be equal to I
1

or I
2

for this entry? Explain why in one sentence.

b. Now suppose that there is a physical link between AS2 and AS4, shown by

the dotted line. Suppose router 1d learns that x is accessible via AS2 as

well as via AS3. Will I be set to I
1

or I
2
? Explain why in one sentence.

c. Now suppose there is another AS, called AS5, which lies on the path

between AS2 and AS4 (not shown in diagram). Suppose router 1d learns

that x is accessible via AS2 AS5 AS4 as well as via AS3 AS4. Will I be set

to I
1

or I
2
? Explain why in one sentence.

P39. Consider the following network. ISP B provides national backbone service

to regional ISP A. ISP C provides national backbone service to regional

ISP D. Each ISP consists of one AS. B and C peer with each other in two

places using BGP. Consider traffic going from A to D. B would prefer to

hand that traffic over to C on the West Coast (so that C would have to

absorb the cost of carrying the traffic cross-country), while C would

prefer to get the traffic via its East Coast peering point with B (so that B

would have carried the traffic across the country). What BGP mechanism

might C use, so that B would hand over A-to-D traffic at its East Coast

4b

4c 4a

x

3c AS4

3a
2c

3b 2a
1c 2b

AS3 1a
1b

AS2

1d

I1 I2

AS1

426 CHAPTER 4 • THE NETWORK LAYER

peering point? To answer this question, you will need to dig into the BGP

specification.

P40. In Figure 4.42, consider the path information that reaches stub networks W,

X, and Y. Based on the information available at W and X, what are their

respective views of the network topology? Justify your answer. The topology

view at Y is shown below.

X

W A

Stub network
C Y’s view of

the topology

Y

P41. Consider Figure 4.42. B would never forward traffic destined to Y via X

based on BGP routing. But there are some very popular applications for

which data packets go to X first and then flow to Y. Identify one such

application, and describe how data packets follow a path not given by

BGP routing.

P42. In Figure 4.42, suppose that there is another stub network V that is a customer of

ISP A. Suppose that B and C have a peering relationship, and A is a customer of

both B and C. Suppose that A would like to have the traffic destined to W to

come from B only, and the traffic destined to V from either B or C. How should

A advertise its routes to B and C? What AS routes does C receive?

P43. Suppose ASs X and Z are not directly connected but instead are connected by

AS Y. Further suppose that X has a peering agreement with Y, and that Y has

ISP A

ISP B

ISP C

ISP D

PROBLEMS 427

a peering agreement with Z. Finally, suppose that Z wants to transit all of Y’s

traffic but does not want to transit X’s traffic. Does BGP allow Z to imple-

ment this policy?

P44. Consider the seven-node network (with nodes labeled t to z) in Problem P26.

Show the minimal-cost tree rooted at z that includes (as end hosts) nodes u, v,

w, and y. Informally argue why your tree is a minimal-cost tree.

P45. Consider the two basic approaches identified for achieving broadcast, unicast

emulation and network-layer (i.e., router-assisted) broadcast, and suppose

spanning-tree broadcast is used to achive network-layer broadcast. Consider

a single sender and 32 receivers. Suppose the sender is connected to the

receivers by a binary tree of routers. What is the cost of sending a broadcast

packet, in the cases of unicast emulation and network-layer broadcast, for this

topology? Here, each time a packet (or copy of a packet) is sent over a single

link, it incurs a unit of cost. What topology for interconnecting the sender,

receivers, and routers will bring the cost of unicast emulation and true net-

work-layer broadcast as far apart as possible? You can choose as many

routers as you’d like.

P46. Consider the operation of the reverse path forwarding (RPF) algorithm in Figure

4.44. Using the same topology, find a set of paths from all nodes to the source

node A (and indicate these paths in a graph using thicker-shaded lines as in Fig-

ure 4.44) such that if these paths were the least-cost paths, then node B would

receive a copy of A’s broadcast message from nodes A, C, and D under RPF.

P47. Consider the topology shown in Figure 4.44. Suppose that all links have unit

cost and that node E is the broadcast source. Using arrows like those shown

in Figure 4.44 indicate links over which packets will be forwarded using

RPF, and links over which packets will not be forwarded, given that node E is

the source.

P48. Repeat Problem P47 using the graph from Problem P26. Assume that z is the

broadcast source, and that the link costs are as shown in Problem P26.

P49. Consider the topology shown in Figure 4.46, and suppose that each link has

unit cost. Suppose node C is chosen as the center in a center-based multicast

routing algorithm. Assuming that each attached router uses its least-cost path

to node C to send join messages to C, draw the resulting center-based routing

tree. Is the resulting tree a minimum-cost tree? Justify your answer.

P50. Repeat Problem P49, using the graph from Problem P26. Assume that the

center node is v.

P51. In Section 4.5.1 we studied Dijkstra’s link-state routing algorithm for com-

puting the unicast paths that are individually the least-cost paths from the

source to all destinations. The union of these paths might be thought of as

forming a least-unicast-cost path tree (or a shortest unicast path tree, if

all link costs are identical). By constructing a counterexample, show that

the least-cost path tree is not always the same as a minimum spanning tree.

428 CHAPTER 4 • THE NETWORK LAYER

P52. Consider a network in which all nodes are connected to three other nodes. In

a single time step, a node can receive all transmitted broadcast packets from

its neighbors, duplicate the packets, and send them to all of its neighbors

(except to the node that sent a given packet). At the next time step, neighboring

nodes can receive, duplicate, and forward these packets, and so on. Sup-

pose that uncontrolled flooding is used to provide broadcast in such a

network. At time step t, how many copies of the broadcast packet will be

transmitted, assuming that during time step 1, a single broadcast packet is

transmitted by the source node to its three neighbors.

P53. We saw in Section 4.7 that there is no network-layer protocol that can be used

to identify the hosts participating in a multicast group. Given this, how can

multicast applications learn the identities of the hosts that are participating in

a multicast group?

P54. Design (give a pseudocode description of) an application-level protocol that

maintains the host addresses of all hosts participating in a multicast group.

Specifically identify the network service (unicast or multicast) that is used by

your protocol, and indicate whether your protocol is sending messages in-

band or out-of-band (with respect to the application data flow among the

multicast group participants) and why.

P55. What is the size of the multicast address space? Suppose now that two multi-

cast groups randomly choose a multicast address. What is the probability that

they choose the same address? Suppose now that 1,000 multicast groups are

ongoing at the same time and choose their multicast group addresses at ran-

dom. What is the probability that they interfere with each other?

At the end of Chapter 2, there are four socket programming assignments. Below,

you will find a fifth assignment which employs ICMP, a protocol discussed in this

chapter.

Assignment 5: ICMP Ping

Ping is a popular networking application used to test from a remote location whether

a particular host is up and reachable. It is also often used to measure latency

between the client host and the target host. It works by sending ICMP “echo

request” packets (i.e., ping packets) to the target host and listening for ICMP “echo

response” replies (i.e., pong packets). Ping measures the RRT, records packet loss,

and calculates a statistical summary of multiple ping-pong exchanges (the mini-

mum, mean, max, and standard deviation of the round-trip times).

Socket Programming Assignment

PROGRAMMING ASSIGNMENT 429

In this lab, you will write your own Ping application in Python. Your application

will use ICMP. But in order to keep your program simple, you will not exactly follow

the official specification in RFC 1739. Note that you will only need to write the client

side of the program, as the functionality needed on the server side is built into almost

all operating systems. You can find full details of this assignment, as well as impor-

tant snippets of the Python code, at the Web site http://www.awl.com/kurose-ross.

In this programming assignment, you will be writing a “distributed” set of proce-

dures that implements a distributed asynchronous distance-vector routing for the

network shown below.

You are to write the following routines that will “execute” asynchronously

within the emulated environment provided for this assignment. For node 0, you will

write the routines:

• rtinit0(). This routine will be called once at the beginning of the emulation.

rtinit0() has no arguments. It should initialize your distance table in node 0 to

reflect the direct costs of 1, 3, and 7 to nodes 1, 2, and 3, respectively. In the fig-

ure above, all links are bidirectional and the costs in both directions are identi-

cal. After initializing the distance table and any other data structures needed by

your node 0 routines, it should then send its directly connected neighbors (in

this case, 1, 2, and 3) the cost of its minimum-cost paths to all other network

nodes. This minimum-cost information is sent to neighboring nodes in a routing

update packet by calling the routine tolayer2(), as described in the full assign-

ment. The format of the routing update packet is also described in the full

assignment.

• rtupdate0(struct rtpkt *rcvdpkt). This routine will be called when node 0

receives a routing packet that was sent to it by one of its directly connected

neighbors. The parameter *rcvdpkt is a pointer to the packet that was received.

rtupdate0() is the “heart” of the distance-vector algorithm. The values it

receives in a routing update packet from some other node i contain i’s current

shortest-path costs to all other network nodes. rtupdate0() uses these received

Programming Assignment

0
1

1

7
3

1

3
2

2

http://www.awl.com/kurose-ross

values to update its own distance table (as specified by the distance-vector algo-

rithm). If its own minimum cost to another node changes as a result of the

update, node 0 informs its directly connected neighbors of this change in mini-

mum cost by sending them a routing packet. Recall that in the distance-vector

algorithm, only directly connected nodes will exchange routing packets. Thus,

nodes 1 and 2 will communicate with each other, but nodes 1 and 3 will not

communicate with each other.

Similar routines are defined for nodes 1, 2, and 3. Thus, you will write eight proce-

dures in all: rtinit0(), rtinit1(), rtinit2(), rtinit3(), rtupdate0(), rtupdate1(), rtup-

date2(), and rtupdate3(). These routines will together implement a distributed,

asynchronous computation of the distance tables for the topology and costs shown

in the figure on the preceding page.

You can find the full details of the programming assignment, as well as C code

that you will need to create the simulated hardware/software environment, at

http://www.awl.com/kurose-ross. A Java version of the assignment is also available.

In the companion Web site for this textbook, http://www.awl.com/kurose-ross,

you’ll find two Wireshark lab assignments. The first lab examines the operation of

the IP protocol, and the IP datagram format in particular. The second lab explores

the use of the ICMP protocol in the ping and traceroute commands.

Wireshark Labs

http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross

	4.1 What’s Inside a Router?
	4.1.1 Input Processing
	4.1.2 Switching
	4.1.3 Output Processing
	4.1.4 Where Does Queueing Occur?
	4.1.5 The Routing Control Plane

	4.2 Routing Algorithms
	4.2.1 The Link-State (LS) Routing Algorithm
	Link-State (LS) Algorithm for Source Node u

	4.2.2 The Distance-Vector (DV) Routing Algorithm
	Distance-Vector (DV) Algorithm
	Distance-Vector Algorithm: Link-Cost Changes and Link Failure
	Distance-Vector Algorithm: Adding Poisoned Reverse
	A Comparison of LS and DV Routing Algorithms
	Other Routing Algorithms

	4.2.3 Hierarchical Routing

	4.6 Routing in the Internet
	4.6.1 Intra-AS Routing in the Internet: RIP
	4.6.2 Intra-AS Routing in the Internet: OSPF
	4.6.3 Inter-AS Routing: BGP
	BGP Basics
	Path Attributes and BGP Routes
	BGP Route Selection
	Routing Policy

	4.7 Summary
	Chapter 4 Review Questions
	Destination Address Range Link Interface

	Assignment 5: ICMP Ping

