
Basic Fact Table Techniques:

Fact Table Definition

● A Fact Table is a central table in a star schema of a data warehouse. It is an important

concept required for Data Warehousing and BI Certification.
● A fact table stores quantitative information for analysis and is often denormalized.
● A fact table works with dimension tables and it holds the data to be analyzed and a

dimension table stores data about the ways in which the data can be analyzed.
● A fact table consists of two types of columns. The foreign keys column allows to join with

dimension tables and the measure columns contain the data that is being analyzed.

An example of a fact table

In the schema below, we have a fact table FACT_SALES that has a grain that gives us the number

of units sold by date, by store, and product.

All other tables such as DIM_DATE, DIM_STORE and DIM_PRODUCT are dimensions tables. This

schema is known as the star schema.

Measure types

A fact table can store different types of measures such as additive, non-additive, semi-additive.

Addictive Type:

Additive facts can be used with any aggregation function like Sum(), Avg() etc.

Measurements in a fact table that can be summed up across all dimensions

Consider the following retail fact table:

https://www.edureka.co/data-warehousing-and-bi

Store wise sales

Product-wise

sales

Daily Sales

Semi Addictive Fact:

Measurements in a fact table that can be summed up across only a few dimensions keys

Semi-additive facts are those where only a few of aggregation function can be applied

Following table is used to record current balance and profit margin for each id at a particular instance

of time (Day end)

https://mindmajix.com/data-warehousing/what-is-confirmed-shrunk-dimensions

In the above table, we cannot sum up current balance across Acct Id

If we ask balance for Id 21653 we will say that 22000, not 22000+8000

Non-addictive fact:

Facts that cannot be summed up across any dimension key

You cannot use numeric aggregation functions such as Sum(), Avg() etc on Non-additive facts

Note: % and ratio columns are non-addictive facts

Factless fact table:

A fact table without any measures is called the factless fact table

● It contains only keys

● It acts as a bridge between dimension keys

Fact Table Types

There are main three types of fact tables:

● Transaction.

● Periodic.

● Accumulated Snapshot.

Transaction Fact Table:

● The transaction fact table is a basic approach to operate the businesses.

● These fact tables represent an event that occurs at the primary point.

● A line exists in the fact table for the customer or product when the transaction occurs.

● Many rows in a fact table connect to a customer or product because they are involved in

multiple transactions. Transaction data is often structured quickly in a one-dimensional

framework.

● The lowest-level data is the rawest dimensional data that cannot be done by summarized

data.

Periodic Snapshot Fact Table

● The snapshot fact table describes the state of things at a particular time and contains
many semi-additive and non-additive facts.

Example: The daily equilibrium fact is expressed by the customer dimension but not by

the time dimension.

● Periodic snapshots require the performance of the business at regular and estimated time
intervals.

● Unlike a transaction fact table where we load a row for each event, with periodic snapshots,
we take a picture of the activity at the end of the day, week, or month, and then another
picture at the end of the next period.

Example: Performance summary of a salesman during the previous month

Accumulated Snapshot Fact Table

● An accumulating fact table stores one row for the entire process.

● It does not accumulate time it accumulates business process.

● A row in an accumulating snapshot fact table summarizes the measurement events

occurring at predictable steps between the beginning and the end of a process

● Accumulating Fact tables are used to show the activity of progress through a well-defined

process and are most often used to research the time between milestones.

● These fact tables are updated as the business process unfolds, and each milestone is

completed.

Fact Table Types: Comparison

Fact tables types comparison.

Feature Transaction Periodic Accumulating

Grain 1 row/transaction 1 row/time-period event stages

Date Dimension Lowest granularity End-of-period granularity Multiple date

Facts Transaction activities Periodic activities Defined lifetime activities

Size Largest Medium Smallest

Update No No Yes, after stage finished

Null Facts

Null-valued measurements behave gracefully in fact tables. The aggregate functions

(SUM, COUNT, MIN, MAX, and AVG) all do the “right thing” with null facts.

However, nulls must be avoided in the fact table’s foreign keys because these nulls would

automatically cause a referential integrity violation.

Conformed fact table

● Conformed fact in a warehouse allows itself to have same name in separate tables. They

can be compared and combined mathematically.
● Conformed dimensions can be used across multiple data marts. These conformed

dimensions have a static structure.
● Any dimension table that is used by multiple fact tables can be conformed dimensions

.

AGGREGATE FACT TABLES

● Aggregates are precalculated summaries derived from the most granular fact table. These

summaries form a set of separate aggregate fact tables.

● These queries retrieve hundreds and thousands of table rows, manipulate the metrics in
the fact tables, and then produce the result sets.

● The manipulation of the fact table metrics may be a simple addition, an addition with
some adjustments, a calculation of averages, or even an application of complex arithmetic
algorithms.

Consolidated Fact Table

● It is often convenient to combine facts from multiple processes together into a

single consolidated fact table if they can be expressed at the same grain.

● For example, sales actuals can be consolidated with sales forecasts in a single fact table to

make the task of analyzing actuals versus forecasts simple and fast, as compared to

assembling a drill-across application using separate fact tables.

● Consolidated fact tables add burden to the ETL processing, but ease the analytic burden

on the BI applications. They should be considered for cross-process metrics that are

frequently analyzed together.

Basic Dimension Table Techniques:

Dimension Table Structure:

● A Dimension Table is present in the star or snowflake schema.

● Dimension tables’ help to describe dimensions i.e. dimension values, attributes and keys.

It is generally small in size. Size can range from several to thousand rows.

● It describes the objects present in the fact table.

● Dimension Table refers to the collection or group of information related to any

measurable event. They form a core for dimensional modelling.

● In data warehousing, a dimension table is one of the companion tables to a fact table in

the star schema. Different from a fact table that contains measures or business facts, a

dimension table contains the textual descriptor of the business.

● The fields of the dimension table are designed to satisfy these two important

requirements:

❖ Query constraining / grouping / filtering.

❖ Report labeling

https://www.zentut.com/data-warehouse/fact-table/
https://www.zentut.com/data-warehouse/fact-table/

● It contains a column that can be considered as a primary key column which helps to

uniquely identify every dimension row or record. It is being joined with the fact tables

through this key

● Its help to store the history of the information or dimensional information.

● Its is easy to understand than the normalized tables.

● More columns can be added to the table without affecting the existing applications that

are using those.

Dimension table example

In the schema below we have 3 dimension

tables Dim_Date, Dim_Store and Dim_Product surrounding the fact table Fact_Sales.

Surrogate keys in dimension tables

● It is critical that the primary key’s value of a dimension table remains unchanged. And it
is highly recommended that all dimension tables use surrogate keys as primary keys.

● Surrogate keys are key generated and managed inside the data warehouse rather than
keys extracted from data source systems.

There are several advantages of using surrogate keys in dimension tables:

❖ Performance – join processing between dimension tables and fact table is much
more efficient by using a single field surrogate key.

❖ Integration – in terms of data acquisition, the surrogate key allows integrating

data from multiple data sources even if they lack consistent source keys.

❖ Manage version of data – keep track of changes in dimension field values in the
dimension table.

● It is so important that the dimension tables should be designed in such a way that they
can be shared between multiple data marts and cubes within a data warehouse. This
ensures that the data warehouse provides consistent information for similar queries.

● Surrogate key must be used as the primary keys of dimension tables to enable the
dimension tables to be shared easier.

Natural, Durable and Supernatural Keys:

● In data warehouse tables, natural keys are meaningful values that identify records, such
as social security numbers that identify specific customers, calendar dates in a time
dimension, or SKU numbers in a product dimension.

● In some cases, natural keys are unique identifiers and can serve as primary keys. Dates in
a time dimension are reliable in this way.

● For example, the following records contain dates as unique natural keys:

● some natural keys are not durable enough to serve as primary keys.
● Natural keys are not excluded from dimension entities, but they must be designed as

business attributes.
● For instance, an employee number (natural key) may be changed if the employee resigns

and then is rehired.
● When the data warehouse wants to have a single key for that employee, a new durable

key must be created that is persistent and does not change in this situation. This key is
sometimes referred to as a durable supernatural key.

● The best durable keys have a format that is independent of the original business process

and thus should be simple integers assigned in sequence beginning with 1. While
multiple surrogate keys may be associated with an employee over time as their profile

changes, the durable key never changes.

2000-03-30 TH 14 MAR Q1_2000 2000

2000-03-31 FR 14 MAR Q1_2000 2000

https://www.zentut.com/sql-tutorial/sql-inner-join/

● The supernatural key is qualified as "durable" because it is an identifier that uniquely and
reliably identifies the dimension entity across its attribute changes.

● The durable supernatural key keeps the same value in all rows that represent the different
versions of the dimension over time.

● In some cases, the durable supernatural key can be an alternative for representing the
dimension key in fact entities, such as with slowly changing facts.

Drilling down Dimension:

● The drill-down operation (also called roll-down) is the reverse operation of roll-up.
● Drill-down is like zooming-in on the data cube. It navigates from less detailed record to

more detailed data.
● Drill-down can be performed by either stepping down a concept hierarchy for a

dimension or adding additional dimensions.
● Figure shows a drill-down operation performed on the dimension time by stepping down

a concept hierarchy which is defined as day, month, quarter, and year.
● Drill-down appears by descending the time hierarchy from the level of the quarter to a

more detailed level of the month.
● Because a drill-down adds more details to the given data, it can also be performed by

adding a new dimension to a cube. The following diagram illustrates how Drill-down
works.

Degenerate Dimension–

● A degenerate dimension is when the dimension attribute is stored as part of the fact table

and not in a separate table.
● Product id comes from product dimension table. Invoice number is a standalone attribute

and has no other attributes associated with it.
● An invoice number can be crucial since the business would want to know the quantity of

the products.

Denormalized flattened dimensions:

● Dimensional designers must resist the normalization urges caused by years of operational
database designs and instead denormalize the many-to-one fixed depth hierarchies into
separate attributes on a flattened dimension row.

● Dimension denormalization supports dimensional modeling’s twin objectives of
simplicity and speed.

Multiple hierarchies in dimensions:

● Multiple hierarchies can be defined for dimensions containing level-based hierarchies.
● You create multiple hierarchies for a dimension when you want to organize dimension

members in different ways. For example, in a Time dimension, you can create hierarchies
for Calendar year and Fiscal year.

● Because dimension members in separate hierarchies can be used to represent the same
entity, each hierarchy should contain the same lowest level members.

● For example, in a Time dimension, the Calendar hierarchy might have Year, Month, and
Day levels. The Fiscal hierarchy might have Year, Quarter, and Day levels. The lowest
level in both dimensions is the Day level.

● Hierarchies that are modeled using a shared level can be optimized during query
execution to remove non-intersecting values. To do this, you must ensure the Remove
non-existent tuples property is set in a dynamic cube.

Flags and indicators as dimension attributes:

● Cryptic abbreviations, true/false flags, and operational indicators should be supplemented
in dimension tables with full text words that have meaning when independently viewed.

● Operational codes with embedded meaning within the code value should be broken down
with each part of the code expanded into its own separate descriptive dimension attribute.

True False

Yes No

Y N

1 0

Null Attributes in Dimensions

● Null-valued dimension attributes result when a given dimension row has not been fully
populated, or when there are attributes that are not applicable to all the dimension’s rows.

● In both cases, we recommend substituting a descriptive string, such as Unknown or Not
Applicable in place of the null value.

● Nulls in dimension attributes should be avoided because different databases handle
grouping and constraining on nulls inconsistently.

Calendar Date Dimensions:

● A date dimension contains a continuous range of dates that cover the entire date period
required for the analysis.

● It also includes columns that will allow a user to filter the data by almost any date logic.It
can include the day of the week, workdays, weekends, quarters, months, years, or
seasons.

● Calendar date dimensions are attached to virtually every fact table to allow navigation of
the fact table through familiar dates, months, fiscal periods, and special days on the
calendar.

● To facilitate partitioning, the primary key of a date dimension can be more meaningful,
such as an integer representing YYYYMMDD, instead of a sequentially-assigned
surrogate key.

Role-Playing Dimensions:

● A table with multiple valid relationships between itself and another table is known as a
role-playing dimension. This is most commonly seen in dimensions such as Time and
Customer.

● For example, the Sales fact has multiple relationships to the Time query subject on the
keys Order Day, Ship Day, and Close Day.

Junk Dimensions:

● A Junk Dimension is a dimension table consisting of attributes that do not belong in the
fact table or in any of the existing dimension tables.

● The nature of these attributes is usually text or various flags, e.g. non-generic comments
or just simple yes/no or true/false indicators.

● The have low cardinality and usually don't come under SCD.

Snowflaked Dimensions:

● A snowflake schema is a multi-dimensional data model that is an extension of a star

schema, where dimension tables are broken down into subdimensions.

● Snowflake schemas are commonly used for business intelligence and reporting in OLAP
data warehouses, data marts, and relational databases.

● In a snowflake schema, engineers break down individual dimension tables into logical
subdimensions.

● This makes the data model more complex, but it can be easier for analysts to work with,
especially for certain data types.

● It's called a snowflake schema because its entity-relationship diagram (ERD) looks like a

snowflake, as seen below.

https://www.databricks.com/glossary/star-schema
https://www.databricks.com/glossary/star-schema

Benefits of snowflake schemas

● Fast data retrieval

● Enforces data quality

● Simple, common data model for data warehousing

Drawbacks of snowflake schemas

● Lots of overhead upon initial setup

● Rigid data model

● High maintenance costs

Outrigger dimensions:

● An outrigger is a dimension table or entity that is joined to other dimension tables in a

star schema. Outriggers are used when a dimension table is snowflaked.
● Outriggers are tables or entities that are shared by more than one dimension.
● A table or entity that is included in a hierarchy but is not directly related to the fact table

are known as outriggers.

● Outriggers are often used when a dimension table or entity is referenced by another
dimension.

● The primary key of an outrigger is referenced by the foreign key of a dimension table or
entity.

Slowly Changing Dimension Techniques

● A slowly changing dimension (SCD) in data management and data warehousing is
a dimension which contains relatively static data which can change slowly but
unpredictably, rather than according to a regular schedule.

● Some examples of typical slowly changing dimensions are entities as names of geographical
locations, customers, or products.

● Some scenarios can cause referential integrity problems.rather than changing regularly on a
time basis.

● Slowly changing dimensions are the dimensions in which the data changes slowly, rather
than changing regularly on a time basis.

https://en.wikipedia.org/wiki/Data_management
https://en.wikipedia.org/wiki/Data_warehousing
https://en.wikipedia.org/wiki/Dimension_(data_warehouse)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Referential_integrity

There are total 6 types of SCD that are widely used in the DWH implementation. They are as

follows:

● Type 0: This is a fixed dimension.

● Type 1: Maintain only current state.

● Type 2: History is stored.

● Type 3: Current and previous states are stored.

● Type 4: Combination of types 1 and 2.

● Type 6: Hybrid type.

In real world. Only Type 1, 2 and 3 are used. Other types of SCDs are used rarely.

SCD Type 0

● Type 0 is a fixed dimension.The data in this dimension table never changes. The data into

this dimension table is loaded one time at the beginning of the project.

● An example for Type 0 is business users data assigned to particular regions. These business

users will never change their location. So the data in this dimension never changes. The total
sales done by each business user can be generated.

SCD Type 1

● SCD type 1 methodology is used when there is no need to store historical data in the

dimension table.

● This method overwrites the old data in the dimension table with the new data. It is used to

correct data errors in the dimension.

As an example, assume the customer table with the below data.

surrogate_key customer_id customer_name Location

1 1 Mark Chicago

Here the customer Location is Chicago and the customer moved to another location New York.

If you use type1 method, it just simply overwrites the data. The data in the updated table will be.

surrogate_key customer_id customer_name Location

1 1 Mark New York

● The advantage of type1 is ease of maintenance and less space occupied.

● The disadvantage is that there is no historical data kept in the data warehouse.

SCD Type 2

● SCD type 2 stores the entire history the data in the dimension table. With type 2 we can store

unlimited history in the dimension table.

● In type 2, you can store the data in three different ways. They are:

● Versioning

● Flagging

● Effective Date

SCD Type 2 Versioning

● In versioning method, a sequence number is used to represent the change.

● The latest sequence number always represents the current row and the previous sequence

numbers represents the past data.

As an example, let’s use the same example of customer who changes the location. Initially the

customer is in Illinois location and the data in dimension table will look as.

surrogate_key customer_id customer_name Location Version

1 1 Marston Illinois 1

● The customer moves from Illinois to Seattle and the version number will be incremented.

The dimension table will look as

surrogate_key customer_id customer_name Location Version

1 1 Marston Illinois 1

2 1 Marston Seattle 2

Now again if the customer is moved to another location, a new record will be inserted into the

dimension table with the next version number.

SCD Type 2 Flagging

● In flagging method, a flag column is created in the dimension table.

● The current record will have the flag value as 1 and the previous records will have the flag

as 0.

Now for the first time, the customer dimension will look as.

surrogate_key customer_id customer_name Location flag

1 1 Marston Illinois 1

Now when the customer moves to a new location, the old records will be updated with flag value

as 0 and the latest record will have the flag value as 1.

surrogate_key customer_id customer_name Location flag

1 1 Marston Illinois 0

2 1 Marston Seattle 1

SCD Type 2 Effective Date

● In Effective Date method, the period of the change is tracked using the start_date and
end_date columns in the dimension table.

surrogate_key customer_id customer_name Location Start_date End_date

1 1 Marston Illinois 01-Mar-2010 20-Feb-2011

2 1 Marston Seattle 21-Feb-2011 NULL

● The NULL in the End_Date indicates the current version of the data and the remaining
records indicate the past data.

SCD Type 3

● In type 3 method, only the current status and previous status of the row is maintained in the

table. To track these changes two separate columns are created in the table.

● The customer dimension table in the type 3 method will look as

surrogate_key customer_id customer_name Current_Location previous_location

1 1 Marston Illinois NULL

Let say, the customer moves from Illions to Seattle and the updated table will look as

surrogate_key customer_id customer_name Current_Location previous_location

1 1 Marston Seattle Illinois

Now again if the customer moves from seattle to NewYork, then the updated table will be

surrogate_key customer_id customer_name Current_Location previous_location

1 1 Marston NewYork Seattle

The type 3 method will have limited history and it depends on the number of columns you create.

SCD Type 4

● The scd type 4 is also called as fast growing dimension. Imagine tracking all these changes

and storing them in a single dimension (using type3).

https://www.folkstalk.com/2013/05/scd-type-4-rapid-growing-dimension.html

● It takes so much time to generate a report when this dimension table is joined with the fact
table. To generate the report faster, the data in the dimension table should be minimal.

● In Type 4, the current data is maintained in the dimension table and the history is stored in

another table. This improves the performance when generating the report. However it adds
an overhead of maintaining the historical data in a separate table.

 Type 5

● The type 5 technique builds on the type 4 mini-dimension by embedding a “current profile”
mini-dimension key in the base dimension that's overwritten as a type 1 attribute. This
approach is called type 5 because 4 + 1 equals 5.

● The type 5 slowly changing dimension allows the currently-assigned mini-dimension

attribute values to be accessed along with the base dimension's others without linking
through a fact table.

● The outrigger attributes should have distinct column names, like “Current Income Level,” to

differentiate them from attributes in the mini-dimension linked to the fact table.

● The ETL team must update/overwrite the type 1 mini-dimension reference whenever the

current mini-dimension changes over time. If the outrigger approach does not deliver
satisfactory query performance, then the mini-dimension attributes could be physically

embedded (and updated) in the base dimension.[3]

https://en.wikipedia.org/wiki/Slowly_changing_dimension#cite_note-3

SCD Type 6

● This is a combination of Type 1, 2 and 3. This is also called as Hybrid type. In this

dimension, the current data is stored in all the historical record in a current column.

● This type of dimension adds a lot of complexity. Implementing this SCD type is bit hard and

also stores a lot of redundant data. However, this provides an easy way to compare current
data with historical data.

Type 7: Hybrid[4] - Both surrogate and natural key[edit]

An alternative implementation is to place both the surrogate key and the natural key into the fact

table.[5] This allows the user to select the appropriate dimension records based on:

● the primary effective date on the fact record (above),

● the most recent or current information,

● any other date associated with the fact record.

This method allows more flexible links to the dimension, even if one has used the Type 2

approach instead of Type 6.

Here is the Supplier table as we might have created it using Type 2 methodology:

Supplier_

Key

Supplier_C

ode

Supplier_Na

me

Supplier_St

ate

Start_Dat

e

End_Dat

e

Current_F

lag

123

ABC

Acme Supply

Co

CA

2000-01-

01T00:00:

00

2004-12-

21T00:00:

00

N

124

ABC

Acme Supply

Co

IL

2004-12-

22T00:00:

00

2008-02-

03T00:00:

00

N

https://en.wikipedia.org/wiki/Slowly_changing_dimension#cite_note-KimballToolkit3rd-4
https://en.wikipedia.org/w/index.php?title=Slowly_changing_dimension&action=edit§ion=11
https://en.wikipedia.org/wiki/Surrogate_key
https://en.wikipedia.org/wiki/Natural_key
https://en.wikipedia.org/wiki/Slowly_changing_dimension#cite_note-SCDnot123-5

SELECT

delivery.delivery_cost,

supplier.supplier_name,

supplier.supplier_state

FROM delivery

INNER JOIN supplier

ON delivery.supplier_code = supplier.supplier_code

WHERE supplier.current_flag = 'Y';

SELECT

delivery.delivery_cost,

supplier.supplier_name,

supplier.supplier_state

FROM delivery
INNER JOIN supplier

ON delivery.supplier_code = supplier.supplier_code;

AND delivery.delivery_date BETWEEN supplier.Start_Date AND supplier.End_Date

125

ABC

Acme Supply

Co

NY

2008-02-

04T00:00:

00

9999-12-

31T23:59:

59

Y

To get current records:

To get history records:

To get history records based on a specific date (if more than one date exists in the fact table):

SELECT

delivery.delivery_cost,

supplier.supplier_name,

supplier.supplier_state

FROM delivery

INNER JOIN supplier

ON delivery.supplier_key = supplier.supplier_key;

	Basic Fact Table Techniques:
	Fact Table Definition
	Measure types
	Addictive Type:
	Daily Sales
	Factless fact table:
	Transaction Fact Table:
	Periodic Snapshot Fact Table
	Accumulated Snapshot Fact Table
	Conformed fact table
	AGGREGATE FACT TABLES
	Consolidated Fact Table
	Dimension Table Structure:
	Dimension table example
	Surrogate keys in dimension tables
	Natural, Durable and Supernatural Keys:
	Drilling down Dimension:
	Degenerate Dimension–
	Denormalized flattened dimensions:
	Multiple hierarchies in dimensions:
	Flags and indicators as dimension attributes:
	Null Attributes in Dimensions
	Calendar Date Dimensions:
	Role-Playing Dimensions:
	Junk Dimensions:
	Snowflaked Dimensions:
	Benefits of snowflake schemas
	Drawbacks of snowflake schemas
	Outrigger dimensions:
	Slowly Changing Dimension Techniques
	SCD Type 0
	SCD Type 1
	SCD Type 2
	SCD Type 2 Versioning
	SCD Type 2 Flagging
	SCD Type 2 Effective Date
	SCD Type 3
	SCD Type 4
	SCD Type 6

