
 

UNIT-2 

 

The Feistel Cipher: 

 

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing 

the concept of a product cipher, which is the execution of two or more simple ciphers in 

sequence in such a way that the final result or product is cryptographically stronger than any 

of the component ciphers. The essence of the approach is to develop a block cipher with a 

key length of k bits and a block length of n bits, allowing a total of 2k possible 

transformations, rather than the 2n! transformations available with the ideal block cipher. 

In particular, Feistel proposed the use of a cipher that alternates substitutions and 

permutations, where these terms are defined as follows: 

➢ Substitution: Each plaintext element or group of elements is uniquely replaced by a 

corresponding ciphertext element or group of elements. 

➢ Permutation: A sequence of plaintext elements is replaced by a permutation of that 

sequence. That is, no elements are added or deleted or replaced in the sequence, rather 

the order in which the elements appear in the sequence is changed. 

 

Feistel’s is a practical application of a proposal by Claude Shannon to develop a product 

cipher that alternates confusion and diffusion functions 

 

FEISTEL CIPHER STRUCTURE The left-hand side of Figure 3.3 depicts the structure 

proposed by Feistel. The inputs to the encryption algorithm are a plaintext block of length 2w 

bits and a key . The plaintext block is divided into two halves, L0 and R0. The two halves of 

the data pass through n rounds of processing and then combine to produce the ciphertext 

block. Each round i has as inputs Li-1 and Ri-1 derived from the previous round, as well as a 

subkey Ki derived from the overall K. In general, the subkeys Ki are different from K and 

from each other. 

 

All rounds have the same structure. A substitution is performed on the left half of the data. 

This is done by applying a round function F to the right half of the data and then taking the 

exclusive-OR of the output of that function and the left half of the data. The round function 

has the same general structure for each round but is parameterized by the round subkey Ki. 

Feistel Cipher structures 

 

 



 



 

 

Permutation is performed that consists of the interchange of the two halves of the data. This 

structure is a particular form of the substitution-permutation network (SPN) proposed by 

Shannon. 

The exact realization of a Feistel network depends on the choice of the following parameters 

and design features: 

        Block size: Larger block sizes mean greater security (all other things being equal) but 

reduced encryption/decryption speed for a given algorithm. The greater security is achieved by 

greater diffusion. Traditionally, a block size of 64 bits has been considered a reasonable 

tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128-bit 

block size. 

       Key size: Larger key size means greater security but may decrease encryption/ decryption 

speed. The greater security is achieved by greater resistance to brute-force attacks and greater 

confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, and 128 bits 

has become a common size. 

       Number of rounds: The essence of the Feistel cipher is that a single round offers 

inadequate security but that multiple rounds offer increasing security. A typical size is 16 

rounds. 

       Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 

difficulty of cryptanalysis. 

 

There are two other considerations in the design of a Feistel cipher: 

      Fast software encryption/decryption: In many cases, encryption is embedded in 

applications or utility functions in such a way as to preclude a hardware implementation. 

Accordingly, the speed of execution of the algorithm becomes a concern. 

   Round function F: Again, greater complexity generally means greater resistance to 

cryptanalysis. 

Ease of analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze,  

there is great benefit in making the algorithm easy to analyze. That is, if the algorithm can be concisely  

and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and  

therefore develop a higher level of assurance as to its strength.  

DES, 

for example, does not have an easily analyzed functionality 

 

 

 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

Data Encryption Standard (DES): 

 

➢ DES is a Symmetric-key algorithm for the encryption of electronic data. 

➢ DES originated at IBM in 1977 & was adopted by the U.S Department of Defence. 

Now it is under the NIST (National Institute of Standard & Technology) 

➢ Data Encryption Standard (DES) is a widely-used method of data encryption using a 

private (secret) key 

➢ DES applies a 56-bit key to each 64-bit block of data. The process can run in several 

modes and involves 16 rounds or operations. 

 

Inner workings of DES: 

 

DES (and most of the other major symmetric ciphers) is based on a cipher known as the 

Feistel block cipher. This was a block cipher developed by the IBM cryptography researcher 

Horst Feistel in the early 70’s. It consists of a number of rounds where each round contains 

bit-shuffling, non-linear substitutions (S-boxes) and exclusive OR operations. Most 

symmetric encryption schemes today are based on this structure (known as a feistel network). 

Overall structure 

 

DES (and most of the other major symmetric ciphers) is based on a cipher known as the 

Feistel block cipher. 

Looking at the left-hand side of the figure, we can see that the processing of the plaintext 

proceeds in three phases. 

➢ First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the 

bits to produce the permuted input. 

➢ This is followed by a phase consisting of sixteen rounds of the same function, which 

involves both permutation and substitution functions. The output of the last 

(sixteenth) round consists of 64 bits that are a function of the input plaintext and the 

key. The left and right halves of the output are swapped to produce the preoutput. 

➢ Finally, the preoutput is passed through a permutation that is the inverse of the initial 

permutation function, to produce the 64-bit cipher text. With the exception of the 

initial and final permutations, DES has the exact structure of a Feistel cipher, 

http://searchsecurity.techtarget.com/definition/encryption


 

The right-hand portion of below shows the way in which the 56-bit key is used. Initially, the 

key is passed through a permutation function. Then, for each of the sixteen rounds, a subkey 

(Ki ) is produced by the combination of a left circular shift and a permutation. The 

permutation function is the same for each round, but a different subkey is produced because 

of the repeated shifts of the key bits. 

 

 

 

Initial Permutation: The initial permutation and its inverse are defined by tables, as shown 

in Tables 3.2a and 3.2b, respectively. The tables are to be interpreted as follows. The input to 

a table consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table 

contain a permutation of the numbers from 1 to 64. Each entry in the permutation table 

indicates the position of a numbered input bit in the output, which also consists of 64 bits. 



 

 

To see that these two permutation functions are indeed the inverse of each other, consider the 

following 64-bit input M: 

Where Mi is a binary digit. Then the permutation X = (IP(M)) is as follows: 



 

 
 

 

DETAILS OF SINGLE ROUND 

 

Below figure shows the internal structure of a single round. Again, begin by focusing on the 

left-hand side of the diagram. The left and right halves of each 64-bit intermediate value are 

treated as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel 

cipher, the overall processing at each round can be summarized in the following formulas: 

 

 

 



 

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by 

using a table that defines a permutation plus an expansion that involves duplication of 16 of 

the R bits (Table 3.2c).The resulting 48 bits are XORed with Ki . This 48-bit result passes 

through a substitution function that produces a 32-bit output, which is permuted as defined by 

Table 3.2d. The role of the S-boxes in the function F is illustrated in Figure 3.7.The 

substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input and 

produces 4 bits as output. These transformations are defined in Table 3.3, which is interpreted 

as follows : The first and last bits of the input to box Si form a 2-bit binary number to select 

one of four substitutions defined by the four rows in the table for . The middle four bits select 

one of the sixteen columns. The decimal value in the cell selected by the row and column is 

then converted to its 4-bit representation to produce the output. 

 

For example, in S1, for input 011001, the row is 01 (row 1) and the column is 1100 (column 

12).The value in row 1, column 12 is 9, so the output is 1001. Each row of an S-box defines a 

general reversible substitution. Figure 3.2 may be useful in understanding the mapping. The 

figure shows the substitution for row 0 of box S1. The operation of the S-boxes is worth 

further comment. Ignore for the moment the contribution of the key (Ki). If you examine the 

expansion table, you see that the 32 bits of input are split into groups of 4 bits and then 

become groups of 6 bits by taking the outer bits from the two adjacent groups. For example, 

if part of the input word is 
... efgh ijkl mnop ... 

This becomes ... defghi hijklm lmnopq ... 

 

 

The outer two bits of each group select one of four possible substitutions (one row of an S- 

box). Then a 4-bit output value is substituted for the particular 4-bit input (the middle four 

input bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next 

round, the output from each S-box immediately affects as many others as possible. 

 

Substitution Boxes S: Have eight S-boxes which map 6 to 4 bits. Each S-box is actually 4 

little 4 bit boxes. Outer bits 1 & 6 (row bits) select one rows. inner bits 2-5 (col bits) are 

substituted. Result is 8 lots of 4 bits, or 32 bits. Row selection depends on both data & key 



 

KEY GENERATION Returning to above all figures, we see that a 64-bit key is used as 

input to the algorithm. The bits of the key are numbered from 1 through 64; every eighth bit 

is ignored, as indicated by the lack of shading in Table 3.4a.The key is first subjected to a 

permutation governed by a table labeled Permuted Choice One (Table 3.4b) 

The resulting 56-bit key is then treated as two 28-bit quantities, labelled C0 and D0. At each 

round, Ci-1 and Di-1 are separately subjected to a circular left shift or (rotation) of 1 or 2 

bits, as governed by Table 3.4d.These shifted values serve as input to the next round. They 

also serve as input to the part labeled Permuted Choice Two (Table 3.4c), which produces a 

48-bit output that serves as input to the Function F(Ri-1, Ki). 

 

DES DECRYPTION: 

Whatever process we following in the encryption that process is used for decryption also but 

the order of key is changed on input message (cipher text). 
Reverse order of keys are K16, K15 ,……, K1. 

 

Strengths of DES: 

 

The DES is a symmetric key block cipher which takes 64bits cipher text and 56 bit 

key as an input and produce 64 bits cipher text as output. 

The DES function is made up of P & S boxes 

P-boxes transpose bits 

S-boxes Substitution bits to generating the cipher text. 

 

The use of 56bits keys: 56 bit key is used in encryption, there are 256 possible keys. 

256=7.2×1016 keys, by this a brute force attack on such number of keys is impractical. A 

machine performing one DES encryption per microsecond would take more than a thousand 

years to break the cipher. 

 

The nature of algorithm: Cryptanalyst can perform cryptanalysis by exploiting the 

characteristic of DES algorithm but no one has succeeded in finding out the weakness. This is 

possible because, in DES, they using 8-substitution tables or S-boxes in each iteration & one 

P-box transition for the every individual iteration. 

 

Avalanche Effect: 

• key desirable property of an encryption algorithm 

• where a change of one input or key bit results in changing approx half output bits 

• making attempts to “home-in” by guessing keys impossible 

• DES exhibits strong avalanche 

Timing Attacks 

• attacks actual implementation of cipher 

• use knowledge of consequences of implementation to derive knowledge of some/all 

subkey bits 

• specifically use fact that calculations can take varying times depending on the value 

of the inputs to it 

• particularly problematic on smartcards 

Analytic Attacks 

• now have several analytic attacks on DES 

• these utilize some deep structure of the cipher 

– by gathering information about encryptions 

– can eventually recover some/all of the sub-key bits 

– if necessary then exhaustively search for the rest 



 

 

• generally these are statistical attacks 

• include 

– differential cryptanalysis 

– linear cryptanalysis  

– related key attacks 
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