
UNIT-V
PART - A

Iterative Process Planning : Work Breakdown
Structures, Planning Guidelines, Cost and
Schedule Estimating, Iteration Planning
Process, Pragmatic Planning.

Overview

• Work Breakdown Structures

– Conventional WBS Issues

– Evolutionary Work Breakdown Structures

Work Breakdown Structures

• A good work breakdown structure and its
synchronization with the process framework
are critical factors in software project success.

• Development of a work breakdown structure
dependent on the project management style,
organizational culture, customer preference,
financial constraints, and several other hard-
to-define, project-specific parameters.

Work Breakdown Structures

• A WBS is simply a hierarchy of elements that
decomposes the project plan into the discrete
work tasks.

• A WBS provides the following information
structure:
– A delineation of all significant work

– A clear task decomposition for assignment of
responsibilities

– A framework for scheduling, budgeting, and
expenditure tracking

Work Breakdown Structures

• Many parameters can drive the decomposition of
work into discrete tasks: product subsystems,
components, functions, organizational units, life-
cycle phases, even geographies.

• Most systems have a first-level decomposition by
subsystem.

• Subsystems are then decomposed into their
components, one of which is typically the
software.

Conventional WBS Issues

• Conventional work breakdown structures
frequently suffer from three fundamental flaws.

1. They are prematurely structured around the
product design.

2. They are prematurely decomposed, planned,
and budgeted in either too much or too little
detail.

3. They are project-specific, and cross-project
comparisons are usually difficult or impossible.

Conventional WBS Issues

 Conventional work breakdown structures are
prematurely structured around the product
design.

– Below figure shows a typical conventional WBS
that has been structured primarily around the
subsystems of its product architecture, then
further decomposed into the components of each
subsystem.

Conventional WBS Issues

– Once this structure is ingrained in the WBS and
then allocated to responsible managers with
budgets, schedules, and expected deliverables, a
concrete planning foundation has been set that is
difficult and expensive to change.

– A WBS is the architecture for the financial plan.

– Just as software architectures need to encapsulate
components that are likely to change, so must
planning architectures.

Conventional WBS Issues

 Conventional work breakdown structures are
prematurely decomposed, planned, and
budgeted in either too little or too much
detail

– Large software projects tend to be over planned
and small projects tend to be under planned.

– The basic problem with planning too much detail
at the outset is that the detail does not evolve
with the level of fidelity in the plan.

Conventional WBS Issues

 Conventional work breakdown structures are project-
specific, and cross-project comparisons are usually
difficult or impossible
– Most organizations allow individual projects to define their

own project-specific structure tailored to the projects
manager’s style, the customer’s demands, or other
project-specific preferences.

– With no standard WBS structure, it is extremely difficult to
compare plans, financial data, schedule data,
organizational efficiencies, cost trends, productivity trends,
or quality trends across multiple projects.

– Each project organizes the work differently and uses
different units of measure.

Conventional WBS Issues

– Some of the following simple questions, which are critical
to any organizational process improvement program,
cannot be answered by most project teams that use
conventional work breakdown structure.
• What is the ratio of productive activities (requirements, design,

implementation, assessment, deployment) to overhead activities
(management, environment)?

• What is the percentage of effort expended in rework activities?

• What is the percentage of cost expended in software capital
equipment (the environment expenditures)?

• What is the ratio of productive testing versus (unproductive)
integration?

• What is the cost of release N (as a basis for planning release N+1)?

EVOLUTIONARY WORK BREAKDOWN
STRUCTURES

• An evolutionary WBS should organize the planning
elements around the process framework rather than
the product framework.

• The basic recommendation for the WBS is to organize
the hierarchy as follows:

• First-level WBS elements are the workflows
(management, environment, requirements, design,
implementation, assessment, and deployment).
– These elements are usually allocated to a single team and

constitute the anatomy of a project for the purposes of
planning and comparison with other projects.

EVOLUTIONARY WORK BREAKDOWN
STRUCTURES

• Second-level elements are defined for each phase of
the life cycle (inception, elaboration, construction, and
transition).
– These elements allow the fidelity of the plan to evolve

more naturally with the level of understanding of the
requirements and architecture, and the risks therein.

• Third-level elements are defined for the focus of
activities that produce the artifacts of each phase.
– These elements may be the lowest level in the hierarchy

that collects the cost of a discrete artifact for a given
phase, or they may be decomposed further into several
lower level activities that, taken together, produce a single
artifact.

EVOLUTIONARY WORK BREAKDOWN
STRUCTURES

• A default WBS consistent with the process
framework (phases, workflows, and artifacts) is
shown in below figure.

• This recommended structure provides one
example of how the elements of the process
framework can be integrated into a plan.

• It provides a framework for estimating the costs
and schedules of each element, allocating them
across a project organization, and tracking
expenditures.

EVOLUTIONARY WORK BREAKDOWN
STRUCTURES

• The structure shown is intended to be merely a starting point. It
needs to be tailored to the specifics of a project in many ways.
– Scale - Larger projects will have more levels and substructures.
– Organizational structure - Projects that include subcontractors or span

multiple organizational entities may introduce constraints that
necessitate different WBS allocations.

– Degree of custom development - Depending on the character of the
project, there can be very different emphases in the requirements,
design, and implementation workflows.

– Business context - Projects developing commercial products for
delivery to a broad customer base may require much more elaborate
substructures for the deployment element.

– Precedent experience - Very few projects start with a clean slate.
Most of them are developed as new generations of a legacy system
(with a mature WBS) or in the context of existing organizational
standards (with preordained WBS expectations).

EVOLUTIONARY WORK BREAKDOWN
STRUCTURES

• The WBS decomposes the character of the project and
maps it to the life cycle, the budget, and the personnel.

• Reviewing a WBS provides insight into the important
attributes, priorities, and structure of the project plan.

• Another important attribute of a good WBS is that the
planning fidelity inherent in each element is commensurate
with the current life-cycle phase and project state. Below
figure illustrates this idea.

• One of the primary reasons for organizing the default WBS
the way is to allow for planning elements that range from
planning packages (rough budgets that are maintained as
an estimate for future elaboration rather than being
decomposed into detail) through fully planned activity
networks (with a well-defined budget and continuous
assessment of actual versus planned expenditures).

Evolution of planning fidelity in the
WBS over the life cycle

Planning Guidelines

• Software projects span a broad range of
application domains.

• It is valuable but risky to make specific
planning recommendations independent of
project context.

• It is valuable because most people in
management positions are looking for a
starting point, a skeleton they can flesh out
with project-specific details.

Planning Guidelines

• Project-independent planning advice is also
risky.

• There is the risk that the guidelines may be
adopted blindly without being adapted to
specific project circumstances.

• Blind adherence to someone else’s project-
independent planning advice is a sure sign of
an incompetent management team.

Planning Guidelines

• There is also the risk of misinterpretation.
• The variability of project parameters, project business

contexts, organizational cultures, and project processes
makes it extremely easy to make mistakes that have
significant potential impact.

• Two simple planning guidelines should be considered
when a project plan is being initiated or assessed.

• The first guideline, detailed in first table, prescribes a
default allocation of costs among the first-level WBS
elements.

• The second guideline, detailed in second table, prescribes
the allocation of effort and schedule across the life-cycle
phases.

WBS Budgeting Defaults

Default distribution of effort and schedule by
phase

Planning Guidelines
• The first table provides default allocations for budgeted

costs of each first-level WBS element.
• While these values are certain to vary across projects, this

allocation provides a good benchmark for assessing the
plan by understanding the rationale for deviations from
these guidelines.

• An important point here is that this is cost allocation, not
effort allocation.

• To avoid misinterpretation, two explanations are necessary.
1. The cost of different labor categories is inherent in these

numbers.
2. The cost of hardware and software assets that support the

process automation and development teams is also
included in the environment element.

Planning Guidelines

• The second table provides guidelines for
allocating effort and schedule across the life-cycle
phases.

• Although these values can also vary widely,
depending on the specific constraints of an
application, they provide an average expectation
across a spectrum of application domains.

• Achieving consistency using these specific values
is not as important as understanding why your
project may be different.

The Cost and Schedule Estimating
Process

• Project plans need to be derived from two
perspectives.

• The first is a forward-looking, top-down
approach.

• It starts with an understanding of the general
requirements and constraints, derives a
macro-level budget and schedule, then
decomposes these elements into lower level
budgets and intermediate milestones.

The Cost and Schedule Estimating
Process

• From this perspective, the following planning sequence would occur:
1. The software project manager (and others) develops a characterization

of the overall size, process, environment, people, and quality required
for the project.

2. A macro-level estimate of the total effort and schedule is developed
using a software cost estimation model.

3. The software project manager partitions the estimate for the effort into
a top-level WBS using guidelines such as those in first table. The project
manager also partitions the schedule into major milestone dates and
partitions the effort into a staffing profile using guidelines such as those
in second table. Now there is a project-level plan. These sorts of
estimates tend to ignore many detailed project-specific parameters.

4. At this point, subproject managers are given the responsibility for
decomposing each of the WBS elements into lower levels using their
top-level allocation, staffing profile, and major milestone dates as
constraints.

The Cost and Schedule Estimating
Process

• The second perspective is a backward-looking, bottom-up
approach.

• We start with the end in mind, analyze the micro-level budgets and
schedules, then sum all these elements into the higher level
budgets and intermediate milestones.

• This approach tends to define and populate the WBS from the
lowest levels upward.

• From this perspective, the following planning sequence would
occur:

1. The lowest level WBS elements are elaborated into detailed tasks,
for which budgets and schedules are estimated by the responsible
WBS element manager.

2. Estimates are combined and integrated into higher level budgets
and milestones.

3. Comparisons are made with the top-down budgets and schedule
milestones.

The Cost and Schedule Estimating
Process

• Milestone scheduling or budget allocation through top-
down estimating tends to exaggerate the project
management biases and usually results in an overly
optimistic plan.

• Bottom-up estimates usually exaggerate the performer
biases and result in an overly pessimistic plan.

• Iteration is necessary, using the results of one approach
to validate and refine the results of the other
approach, thereby evolving the plan through multiple
versions.

• This process instills ownership of the plan in all levels
of management.

The Cost and Schedule Estimating
Process

• These two planning approaches should be used together, in
balance, throughout the life cycle of the project.

• During the engineering stage, the top-down perspective
will dominate because there is usually not enough depth of
understanding nor stability in the detailed task sequences
to perform credible bottom-up planning.

• During the production stage, there should be enough
precedent experience and planning fidelity that the
bottom-up planning perspective will dominate.

• By then, the top-down approach should be well tuned to
the project-specific parameters, so it should be used more
as a global assessment technique.

• Below figure illustrates this life-cycle planning balance.

THE ITERATION PLANNING PROCESS

• Planning is concerned with defining the actual
sequence of intermediate results.

• Planning the content and schedule of the major
milestones and their intermediate iterations is
probably the most tangible form of the overall
risk management plan.

• An evolutionary build plan is important because
there are always adjustments in build content
and schedule as early conjecture evolves into
well-understood project circumstances.

THE ITERATION PLANNING PROCESS

• Iteration is used to mean a complete
synchronization across the project, with a
well-orchestrated global assessment of the
entire project baseline.

• Other micro-iterations, such as monthly,
weekly, or daily builds, are performed en
route to these project-level synchronization
points.

Checkpoints of the process

Inception Iterations

• The early prototyping activities integrate the
foundation components of a candidate
architecture and provide an executable
framework for elaborating the critical use cases
of the system.

• This framework includes existing components,
commercial components, and custom prototypes
sufficient to demonstrate a candidate
architecture and sufficient requirements
understanding to establish a credible business
case, vision, and software development plan.

Elaboration Iterations

• These iterations result in architecture, including a
complete framework and infrastructure for execution.

• Upon completion of the architecture iteration, a few
critical use cases should be demonstrable:

1. Initializing the architecture

2. Injecting a scenario to drive the worst-case data
processing flow through the system (for example, the
peak transaction throughput or peak load scenario)

3. Injecting a scenario to drive the worst-case control
flow through the system (for example, orchestrating
the fault-tolerance use cases)

Construction Iterations

• Most projects require at least two major construction
iterations: an alpha release and a beta release.

• An alpha release would include executable capability
for all the critical use cases. It usually represents only
about 70% of the total product breadth and performs
at quality levels (performance and reliability) below
those expected in the final product.

• A beta release typically provides 95% of the total
product capability breadth and achieves some of the
important quality attributes.

Transition Iterations

• Most projects use a single iteration to transition a
beta release into the final product.

• Again, numerous informal, small-scale iterations
may be necessary to resolve all the defects,
incorporate beta feed-back, and incorporate
performance improvements.

• However, because of the overhead associated
with a full-scale transition to the user community,
most projects learn to live with a single iteration
between a beta release and the final product
release.

Transition Iterations

• The general guideline is that most projects will use
between four and nine iterations. The typical project
would have the following six-iteration profile:
– One iteration in inception: an architecture prototype

– Two iterations in elaboration: architecture prototype and
architecture baseline

– Two iterations in construction: alpha and beta releases

– One iteration in transition: product release

• A very large or unprecedented project with many
stakeholders may require an additional inception
iteration and two additional iterations in construction,
for a total of nine iterations.

PRAGMATIC PLANNING

• Even though good planning is more dynamic in an
iterative process, doing it accurately is far easier.

• While executing iteration N of any phase, the
software project manager must be monitoring
and controlling against a plan that was initiated in
iteration N-1 and must be planning iteration N+1.

• The art of good project management is to make
trade-offs in the current iteration plan and the
next iteration plan based on objective results in
the current iteration and previous iterations.

PRAGMATIC PLANNING

• Aside from bad architectures and
misunderstood requirements, inadequate
planning (and subsequent bad management)
is one of the most common reasons for
project failures.

• The success of every successful project can be
attributed in part to good planning.

PRAGMATIC PLANNING

• While a planning document is not very useful as an end
item, the act of planning is extremely important to project
success.

• It provides a framework and forcing functions for making
decisions, ensures buy-in on the part of stakeholders and
performers and transforms subjective, generic process
frameworks into objective processes.

• A project's plan is a definition of how the project
requirements will be transformed into a product within the
business constraints.

• It must be realistic, it must be current, it must be a team
product, it must be understood by the stakeholders, and it
must be used.

PRAGMATIC PLANNING

• Plans are not just for managers.

• The more open and visible the planning
process and results, the more ownership there
is among the team members who need to
execute it.

• Bad, closely held plans cause attrition.

• Good, open plans can shape cultures and
encourage teamwork.

