

UNIT-III

Finite Markov Decision Processes: The Agent–Environment

Interface, Goals and Rewards, Returns, Unified Notation for Episodic

and Continuing Tasks, The Markov Property, Markov Decision

Processes, Value Functions, Optimal Value Functions, Optimality and

Approximation.

1. Finite Markov Decision Processes: The Agent–

Environment Interface

• MDPs are meant to be a straightforward framing of the problem of learning from

interaction to achieve a goal.

• The learner and decision maker are called the agent.

• The thing it interacts with, comprising everything outside the agent, is called the

environment.

• These interact continually, the agent selecting actions and the environment responding

to these actions and presenting new situations to the agent.

• The environment also gives rise to rewards, special numerical values that the agent

seeks to maximize over time through its choice of actions.

• More specifically, the agent and environment interact at each of a sequence of discrete

time steps, t = 0, 1, 2, 3.... 2 At each time step t, the agent receives some representation

of the environment’s state, , and on that basis selects an action,

One time step later, in part as a consequence of its action, the agent receives a

numerical reward, , and finds itself in a new state, . The MDP

and agent together thereby give rise to a sequence or trajectory that begins like this:

• In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite

number of elements.

• In this case, the random variables Rt and St have well defined discrete probability

distributions dependent only on the preceding state and action.

• That is, for particular values of these random variables, and , there is a

probability of those values occurring at time t, given particular values of the preceding

state and action:

for all .

• The function p defines the dynamics of the MDP. The dot over the equals sign in the

equation reminds us that it is a definition (in this case of the function p) rather than a

fact that follows from previous definitions. The dynamics function

 is an ordinary deterministic function of four arguments.

• The ‘|’ in the middle of it comes from the notation for conditional probability but

here it just reminds us that p specifies a probability distribution for each choice of s

and a, that is, that

• In a Markov decision process, the probabilities given by p completely characterize the

environment’s dynamics.

• That is, the probability of each possible value for St and Rt depends only on the

immediately preceding state and action, St and Rt depends only on the immediately

preceding state and action, St-1 and At-1, and given them, not at all on earlier states and

actions.

• This is best viewed a restriction not on the decision process, but on the state.

• The state must include information about all aspects of the past agent–environment

interaction that make a difference for the future.

• We consider how a Markov state can be learned and constructed from non-Markov

observations from the four-argument dynamics function, p, one can compute anything

else one might want to know about the environment, such as the state-transition

probabilities (which we denote, with a slight abuse of notation, as a three-argument

function

Example 3.1: Bioreactor Suppose reinforcement learning is being applied to determine

moment-by-moment temperatures and stirring rates for a bio refactor (a large vat of nutrients

and bacteria used to produce useful chemicals). The actions in such an application might be

target temperatures and target stirring rates that are passed to lower-level control systems

that, in turn, differently activate heating elements and motors to attain the targets. The states

are likely to be thermocouple and other sensory readings, perhaps filtered and delayed, plus

symbolic inputs representing the ingredients in the vat and the target chemical. The rewards

might be moment-by-moment measures of the rate at which the useful chemical is produced

by the bioreactor. Notice that here each state is a list, or vector, of sensor readings and

symbolic inputs, and each action is a vector consisting of a target temperature and a stirring

rate. It is typical of reinforcement learning tasks to have states and actions with such

structured representations. Rewards, on the other hand, are always single numbers.

Example 3.2: Pick-and-Place Robot Consider using reinforcement learning to control the

motion of a robot arm in a repetitive pick-and-place task. If we want to learn movements that

are fast and smooth, the learning agent will have to control the motors directly and have low-

latency information about the current positions and velocities of the mechanical linkages. The

actions in this case might be the voltages applied to each motor at each joint, and the states

might be the latest readings of joint angles and velocities. The reward might be +1 for each

object successfully picked up and placed. To encourage smooth movements, on each time

step a small, negative reward can be given as a function of the moment-to-moment

“jerkiness” of the motion.

Example 3.3: Recycling Robot A mobile robot has the job of collecting empty soda cans in

an office environment. It has sensors for detecting cans, and an arm and gripper that can pick

them up and place them in an onboard bin; it runs on a rechargeable battery. The robot’s

control system has components for interpreting sensory information, for navigating, and for

controlling the arm and gripper. High-level decisions about how to search for cans are made

by a reinforcement learning agent based on the current charge level of the battery. This agent

has to decide whether the robot should (1) actively search for a can for a certain period of

time, (2) remain stationary and wait for someone to bring it a can, or (3) head back to its

home base to recharge its battery. This decision has to be made either periodically or

whenever certain events occur, such as finding an empty can. The agent therefore has three

actions, and its state is determined by the state of the battery. The rewards might be zero most

of the time, but then become positive when the robot secures an empty can, or large and

negative if the battery runs all the way down. In this example, the reinforcement learning

agent is not the entire robot. The states it monitors describe conditions within the robot itself,

not conditions of the robot’s external environment. The agent’s environment therefore

includes the rest of the robot, which might contain other complex decision-making systems,

as well as the robot’s external environment.

2. Goals and Rewards

• In reinforcement learning, the purpose or goal of the agent is formalized in terms of a

special signal, called the reward, passing from the environment to the agent.

• At each time step, the reward is a simple number, . Informally, the agent’s

goal is to maximize the total amount of reward it receives.

• This means maximizing not immediate reward, but cumulative reward in the long run.

We can clearly state this informal idea as the reward hypothesis:

“That all of what we mean by goals and purposes can be well thought of as the

maximization of the expected value of the cumulative sum of a received scalar signal

(called reward).”

• The use of a reward signal to formalize the idea of a goal is one of the most distinctive

features of reinforcement learning.

• Although formulating goals in terms of reward signals might at first appear limiting,

in practice it has proved to be flexible and widely applicable.

• The best way to see this is to consider examples of how it has been, or could be, used.

• For example, to make a robot learn to walk, researchers have provided reward on each

time step proportional to the robot’s forward motion.

• In making a robot learn how to escape from a maze, the reward is often -1 for every

time step that passes prior to escape; this encourages the agent to escape as quickly as

possible.

• To make a robot learn to find and collect empty soda cans for recycling, one might

give it a reward of zero most of the time, and then a reward of +1 for each can

collected.

• One might also want to give the robot negative rewards when it bumps into things or

when somebody yells at it.

• For an agent to learn to play checkers or chess, the natural rewards are +1 for

winning, -1 for losing, and 0 for drawing and for all nonterminal positions.

3. Returns and Episodes

• We have said that the agent’s goal is to maximize the cumulative reward it receives in

the long run. How might this be defined formally? If the sequence of rewards received

after time step t is denoted then what precise aspect of this

sequence do we wish to maximize? In general, we seek to maximize the expected

return, where the return, denoted Gt, is defined as some specific function of the

reward sequence.

• In the simplest case the return is the sum of the rewards:

where T is a final time step.

• This approach makes sense in applications in which there is a natural notion of final

time step, that is, when the agent–environment interaction breaks naturally into

subsequences, which we call episodes, 7 such as plays of a game, trips through a

maze, or any sort of repeated interaction.

• Each episode ends in a special state called the terminal state, followed by a reset to a

standard starting state or to a sample from a standard distribution of starting states.

• Even if you think of episodes as ending in different ways, such as winning and losing

a game, the next episode begins independently of how the previous one ended.

• Thus, the episodes can all be considered to end in the same terminal state, with

different rewards for the different outcomes.

• Tasks with episodes of this kind are called episodic tasks.

• In episodic tasks we sometimes need to distinguish the set of all nonterminal states,

denoted S, from the set of all states plus the terminal state, denoted S+.

• The time of termination, T, is a random variable that normally varies from episode to

episode.

• On the other hand, in many cases the agent–environment interaction does not break

naturally into identifiable episodes, but goes on continually without limit.

• For example, this would be the natural way to formulate an on-going process-control

task, or an application to a robot with a long-life span.

• We call these continuing tasks.

• The return formulation (3.7) is problematic for continuing tasks because the final time

step would be and the return, which is what we are trying to maximize,

could itself easily be infinite. (For example, suppose the agent receives a reward of +1

at each time step.) Thus, in this book we usually use a definition of return that is

slightly more complex conceptually but much simpler mathematically.

• The additional concept that we need is that of discounting. According to this

approach, the agent tries to select actions so that the sum of the discounted rewards it

receives over the future is maximized. In particular, it chooses At to maximize the

expected discounted return:

• The discount rate determines the present value of future rewards: a reward received k

time steps in the future is worth only times what it would be worth if it were

received immediately.

• the infinite sum in (3.8) has a finite value as long as the reward sequence

{Rk} is bounded. the agent is “myopic” in being concerned only with

maximizing immediate rewards: its objective in this case is to learn how to choose at

so as to maximize only Rt+1.

• If each of the agent’s actions happened to influence only the immediate reward, not

future rewards as well, then a myopic agent could maximize (3.8) by separately

maximizing each immediate reward.

• But in general, acting to maximize immediate reward can reduce access to future

rewards so that the return is reduced. As approaches 1, the return objective takes

future rewards into account more strongly; the agent becomes more farsighted.

• Returns at successive time steps are related to each other in a way that is important for

the theory and algorithms of reinforcement learning:

Note that this works for all time steps t < T even if termination occurs at t + 1, if we define

GT = 0. This often makes it easy to compute returns from reward sequences.

 Note that although the return (3.8) is a sum of an infinite number of terms, it is still finite if

the reward is nonzero and constant—if For example, if the reward is a constant +1,

then the return is

Example 3.4: Pole-Balancing

• The objective in this task is to apply forces to a cart moving along a track so as to

keep a pole hinged to the cart from falling over: A failure is said to occur if the pole

falls past a given angle from vertical or if the cart runs of the track.

• The pole is reset to vertical after each failure.

• This task could be treated as episodic, where the natural episodes are the repeated

attempts to balance the pole.

• The reward in this case could be +1 for every time step on which failure did not occur,

so that the return at each time would be the number of steps until failure.

• In this case, successful balancing forever would mean a return of infinity.

• Alternatively, we could treat pole-balancing as a continuing task, using discounting.

• In this case the reward would be -1 on each failure and zero at all other times.

• The return at each time would then be related to , where K is the number of

time steps before failure. In either case, the return is maximized by keeping the pole

balanced for as long as possible.

4. Unified Notation for Episodic and Continuing Tasks

• To be precise about episodic tasks requires some additional notation. Rather than one

long sequence of time steps, we need to consider a series of episodes, each of which

consists of a finite sequence of time steps.

• We number the time steps of each episode starting anew from zero. Therefore, we

have to refer not just to St, the state representation at time t, but to St,i, the state

representation at time t of episode i (and similarly for At,i, Rt,i, 𝜋t,i, Ti, etc.).

• However, it turns out that when we discuss episodic tasks we almost never have to

distinguish between different episodes.

• We are almost always considering a particular single episode, or stating something

that is true for all episodes.

• Accordingly, in practice we almost always abuse notation slightly by dropping the

explicit reference to episode number. That is, we write St to refer to St,i, and so on.

• We need one other convention to obtain a single notation that covers both episodic

and continuing tasks.

• We have defined the return as a sum over a finite number of terms in one case (3.7)

and as a sum over an infinite number of terms in the other (3.8). These two can be

unified by considering episode termination to be the entering of a special absorbing

state those transitions only to itself and that generates only rewards of zero.

• For example, consider the state transition diagram:

• Here the solid square represents the special absorbing state corresponding to the end

of an episode.

• Starting from S0, we get the reward sequence +1, +1, +1, 0, 0, 0.... Summing these, we

get the same return whether we sum over the first T rewards (here T = 3) or over the

full infinite sequence.

• This remains true even if we introduce discounting.

• Thus, we can define the return, in general, according to (3.8), using the convention of

omitting episode numbers when they are not needed, and including the possibility that

if the sum remains defined (e.g., because all episodes terminate).

• Alternatively, we can write

• Including the possibility that . We use these conventions throughout

the rest of the book to simplify notation and to express the close parallels between

episodic and continuing tasks.

5. The Markov Property

• In the reinforcement learning framework, the agent makes its decisions as a function

of a signal from the environment called the environment’s state.

• In particular, we formally define a property of environments and their state signals

that is of particular interest, called the Markov property.

• “The state” we mean whatever information is available to the agent. We assume that

the state is given by some pre-processing system that is nominally part of the

environment. We do not address the issues of constructing, changing, or learning the

state signal.

• In other words, our main concern is not with designing the state signal, but with

deciding what action to take as a function of whatever state signal is available.

• Certainly, the state signal should include immediate sensations such as sensory

measurements, but it can contain much more than that.

• State representations can be highly processed versions of original sensations, or they

can be complex structures built up over time from the sequence of sensations.

• For example, we can move our eyes over a scene, with only a tiny spot corresponding

to the fovea visible in detail at any one time, yet build up a rich and detailed

representation of a scene. Or, more obviously, we can look at an object, then look

away, and know that it is still there.

• We can hear the word “yes” and consider ourselves to be in totally different states

depending on the question that came before and which is no longer audible.

• At a more mundane level, a control system can measure position at two different

times to produce a state representation including information about velocity.

• In all of these cases the state is constructed and maintained on the basis of immediate

sensations together with the previous state or some other memory of past sensations.

• On the other hand, the state signal should not be expected to inform the agent of

everything about the environment, or even everything that would be useful to it in

making decisions.

• If the agent is playing blackjack, we should not expect it to know what the next card

in the deck is. If the agent is answering the phone, we should not expect it to know in

advance who the caller is.

• If the agent is a paramedic called to a road accident, we should not expect it to know

immediately the internal injuries of an unconscious victim.

• In all of these cases there is hidden state information in the environment, and that

information would be useful if the agent knew it, but the agent cannot know it because

it has never received any relevant sensations.

• In short, we don’t fault an agent for not knowing something that matters, but only for

having known something and then forgotten it! What we would like, ideally, is a state

signal that summarizes past sensations compactly, yet in such a way that all relevant

information is retained.

• This normally requires more than the immediate sensations, but never more than the

complete history of all past sensations.

• A state signal that succeeds in retaining all relevant information is said to be Markov,

or to have the Markov property (we define this formally below).

• For example, a checkers position—the current configuration of all the pieces on the

board—would serve as a Markov state because it summarizes everything important

about the complete sequence of positions that led to it.

• Much of the information about the sequence is lost, but all that really matters for the

future of the game is retained.

• Similarly, the current position and velocity of a cannonball is all that matters for its

future flight.

• It doesn’t matter how that position and velocity came about. This is sometimes also

referred to as an “independence of path” property because all that matters is in the

current state signal; its meaning is independent of the “path,” or history, of signals

that have led up to it.

• We now formally define the Markov property for the reinforcement learning problem.

• To keep the mathematics simple, we assume here that there are a finite number of

states and reward values.

• This enables us to work in terms of sums and probabilities rather than integrals and

probability densities, but the argument can easily be extended to include continuous

states and rewards.

• Consider how a general environment might respond at time t+ 1 to the action taken at

time t. In the most general, causal case this response may depend on everything that

has happened earlier.

• In this case the dynamics can be defined only by specifying the complete probability

distribution:

• If an environment has the Markov property, then its one-step dynamics (3.5) enable us

to predict the next state and expected next reward given the current state and action.

• One can show that, by iterating this equation, one can predict all future states and

expected rewards from knowledge only of the current state as well as would be

possible given the complete history up to the current time.

• It also follows that Markov states provide the best possible basis for choosing actions.

That is, the best policy for choosing actions as a function of a Markov state is just as

good as the best policy for choosing actions as a function of complete histories.

• Even when the state signal is non-Markov, it is still appropriate to think of the state in

reinforcement learning as an approximation to a Markov state.

• In particular, we always want the state to be a good basis for predicting future rewards

and for selecting actions.

• In cases in which a model of the environment is learned, we also want the state to be a

good basis for predicting subsequent states.

• Markov states provide an unsurpassed basis for doing all of these things.

• To the extent that the state approaches the ability of Markov states in these ways, one

will obtain better performance from reinforcement learning systems.

• For all of these reasons, it is useful to think of the state at each time step as an

approximation to a Markov state, although one should remember that it may not fully

satisfy the Markov property.

• The Markov property is important in reinforcement learning because decisions and

values are assumed to be a function only of the current state.

• In order for these to be effective and informative, the state representation must be

informative.

• All of the theory presented in this book assumes Markov state signals. This means

that not all the theory strictly applies to cases in which the Markov property does not

strictly apply.

• However, the theory developed for the Markov case still helps us to understand the

behaviour of the algorithms, and the algorithms can be successfully applied to many

tasks with states that are not strictly Markov.

• A full understanding of the theory of the Markov case is an essential foundation for

extending it to the more complex and realistic non-Markov case.

• Finally, we note that the assumption of Markov state representations is not unique to

reinforcement learning but is also present in most if not all other approaches to

artificial intelligence.

Example 3.5: Pole-Balancing State In the pole-balancing task introduced earlier, a state

signal would be Markov if it specified exactly, or made it possible to reconstruct exactly, the

position and velocity of the cart along the track, the angle between the cart and the pole, and

the rate at which this angle is changing (the angular velocity). In an idealized cart–pole

system, this information would be sufficient to exactly predict the future behavior of the cart

and pole, given the actions taken by the controller. In practice, however, it is never possible

to know this information exactly because any real sensor would introduce some distortion

and delay in its measurements. Furthermore, in any real cart–pole system there are always

other effects, such as the bending of the pole, the temperatures of the wheel and pole

bearings, and various forms of backlash, that slightly affect the behavior of the system. These

factors would cause violations of the Markov property if the state signal were only the

positions and velocities of the cart and the pole.

Example 3.6: Draw Poker In draw poker, each player is dealt a hand of five cards. There is a

round of betting, in which each player exchanges some of his cards for new ones, and then

there is a final round of betting. At each round, each player must match or exceed the highest

bets of the other players, or else drop out (fold). After the second round of betting, the player

with the best hand who has not folded is the winner and collects all the bets. The state signal

in draw poker is different for each player. Each player knows the cards in his own hand, but

can only guess at those in the other players’ hands. A common mistake is to think that a

Markov state signal should include the contents of all the players’ hands and the cards

remaining in the deck. In a fair game, however, we assume that the players are in principle

unable to determine these things from their past observations. If a player did know them, then

she could predict some future events (such as the cards one could exchange for) better than

by remembering all past observations. In addition to knowledge of one’s own cards, the state

in draw poker should include the bets and the numbers of cards drawn by the other players.

For example, if one of the other players drew three new cards, you may suspect he retained a

pair and adjust your guess of the strength of his hand accordingly. The players’ bets also

influence your assessment of their hands. In fact, much of your past history with these

particular players is part of the Markov state. Does Ellen like to bluff, or does she play

conservatively? Does her face or demeanor provide clues to the strength of her hand? How

does Joe’s play change when it is late at night, or when he has already won a lot of money?

Although everything ever observed about the other players may have an effect on the

probabilities that they are holding various kinds of hands, in practice this is far too much to

remember and analyse, and most of it will have no clear effect on one’s predictions and

decisions. Very good poker players are adept at remembering just the key clues, and at sizing

up new players quickly, but no one remembers everything that is relevant. As a result, the

state representations people use to make their poker decisions are undoubtedly nonMarkov,

and the decisions themselves are presumably imperfect. Nevertheless, people still make very

good decisions in such tasks. We conclude that the inability to have access to a perfect

Markov state representation is probably not a severe problem for a reinforcement learning

agent.

6. Markov Decision Processes

• A reinforcement learning task that satisfies the Markov property is called a Markov

decision process, or MDP.

• If the state and action spaces are finite, then it is called a finite Markov decision

process (finite MDP).

• Finite MDPs are particularly important to the theory of reinforcement learning.

• We treat them extensively throughout this book; they are all you need to understand

90% of modern reinforcement learning.

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can be turned into a

simple example of an MDP by simplifying it and providing some more details. (Our aim is to

produce a simple example, not a particularly realistic one.) Recall that the agent makes a

decision at times determined by external events (or by other parts of the robot’s control

system). At each such time the robot decides whether it should (1) actively search for a can,

(2) remain stationary and wait for someone to bring it a can, or (3) go back to home base to

recharge its battery. Suppose the environment works as follows. The best way to find cans is

to actively search for them, but this runs down the robot’s battery, whereas waiting does not.

Whenever the robot is searching, the possibility exists that its battery will become depleted.

In this case the robot must shut down and wait to be rescued (producing a low reward). The

agent makes its decisions solely as a function of the energy level of the battery. It can

distinguish two levels, high and low, so that the state set is S = {high, low}. Let us call the

possible decisions—the agent’s actions— wait, search, and recharge. When the energy level

is high, recharging would always be foolish, so we do not include it in the action set for this

state. The agent’s action sets are

If the energy level is high, then a period of active search can always be completed without

risk of depleting the battery. A period of searching that begins with a high energy level leaves

the energy level high with probability α and reduces it to low with probability 1−α. On the

other hand, a period of searching undertaken when the energy level is low leaves it low with

probability β and depletes the battery with probability 1−β. In the latter case, the robot must

be rescued, and the battery is then recharged back to high. Each can be collected by the robot

counts as a unit reward, whereas a reward of −3 results whenever the robot has to be rescued.

Let rsearch and rwait, with rsearch > rwait, respectively denote the expected number of cans the

robot will collect (and hence the expected reward) while searching and while waiting.

Finally, to keep things simple, suppose that no cans can be collected during a run home for

recharging, and that no cans can be collected on a step in which the battery is depleted. This

system is then a finite MDP, and we can write down the transition probabilities and the

expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite MDP. Figure 3.3

shows the transition graph for the recycling robot example. There are two kinds of nodes:

state nodes and action nodes. There is a state node for each possible state (a large open circle

labelled by the name of the state), and an action node for each state–action pair (a small solid

circle labelled by the name of the action and connected by a line to the state node). Starting in

state s and taking action a moves you along the line from state node s to action node (s, a).

Then the environment responds with a transition to the next state’s node via one of the arrows

leaving action node (s, a). Each arrow corresponds to a triple (s, s0 , a), where s 0 is the next

state, and we label the arrow with the transition probability, p(s 0 |s, a), and the expected

reward for that transition, r(s, a, s0). Note that the transition probabilities labeling the arrows

leaving an action node always sum to 1.

7. Value Functions

• Almost all reinforcement learning algorithms involve estimating value functions—

functions of states (or of state–action pairs) that estimate how good it is for the agent

to be in a given state (or how good it is to perform a given action in a given state).

• The notion of “how good” here is defined in terms of future rewards that can be

expected, or, to be precise, in terms of expected return.

• Of course, the rewards the agent can expect to receive in the future depend on what

actions it will take.

• Accordingly, value functions are defined with respect to particular policies.

• Recall that a policy, π, is a mapping from each state, s ∈ S, and action, a ∈ A(s), to the

probability π(a|s) of taking action a when in state s.

• Informally, the value of a state s under a policy π, denoted vπ(s), is the expected return

when starting in s and following π thereafter.

• For MDPs, we can define vπ(s) formally as

where Eπ[·] denotes the expected value of a random variable given that the agent

follows policy π, and t is any time step. Note that the value of the terminal state, if

any, is always zero. We call the function vπ the state-value function for policy π.

• Similarly, we define the value of taking action a in state s under a policy π, denoted

qπ(s, a), as the expected return starting from s, taking the action a, and thereafter

following policy π:

• The value functions vπ and qπ can be estimated from experience.

• For example, if an agent follows policy π and maintains an average, for each state

encountered, of the actual returns that have followed that state, then the average will

converge to the state’s value, vπ(s), as the number of times that state is encountered

approaches infinity.

• If separate averages are kept for each action taken in a state, then these averages will

similarly converge to the action values, qπ(s, a).

• We call estimation methods of this kind Monte Carlo methods because they involve

averaging over many random samples of actual returns.

• A fundamental property of value functions used throughout reinforcement learning

and dynamic programming is that they satisfy particular recursive relationships.

• For any policy π and any state s, the following consistency condition holds between

the value of s and the value of its possible successor states:

where it is implicit that the actions, a, are taken from the set A(s), the next states, s 0 ,

are taken from the set S (or from S + in the case of an episodic problem), and the

rewards, r, are taken from the set R.

• Note also how in the last equation we have merged the two sums, one over all the

values of s 0 and the other over all values of r, into one sum over all possible values of

both.

• We will use this kind of merged sum often to simplify formulas. Note how the final

expression can be read very easily as an expected value.

• It is really a sum over all values of the three variables, a, s 0 , and r.

• For each triple, we compute its probability, π(a|s)p(s 0 , r|s, a), weight the quantity in

brackets by that probability, then sum over all possibilities to get an expected value.

• Equation (3.12) is the Bellman equation for vπ.

• It expresses a relationship between the value of a state and the values of its successor

states. Think of looking ahead from one state to its possible successor states, as

suggested by Figure 3.4a.

• Each open circle represents a state and each solid circle represents a state–action pair.

Starting from state s, the root node at the top, the agent could take any of some set of

actions—three are shown in Figure 3.4a.

• From each of these, the environment could respond with one of several next states, s 0

, along with a reward, r.

• The Bellman equation (3.12) averages over all the possibilities, weighting each by its

probability of occurring.

• It states that the value of the start state must equal the (discounted) value of the

expected next state, plus the reward expected along the way.

• The value function vπ is the unique solution to its Bellman equation.

• We call diagrams like those shown in Figure 3.4 backup diagrams because they

diagram relationships that form the basis of the update or backup operations that are at

the heart of reinforcement learning methods.

• These operations transfer value information back to a state (or a state–action pair)

from its successor states (or state–action pairs).

• We use backup diagrams throughout the book to provide graphical summaries of the

algorithms we discuss. (Note that unlike transition graphs, the state nodes of backup

diagrams do not necessarily represent distinct states; for example, a state might be its

own successor. We also omit explicit arrowheads because time always flows

downward in a backup diagram.).

Example 3.8: Gridworld Figure 3.5a uses a rectangular grid to illustrate value functions for a

simple finite MDP. The cells of the grid correspond to the states of the environment. At each

cell, four actions are possible: north, south, east, and west, which deterministically cause the

agent to move one cell in the respective direction on the grid. Actions that would take the

agent off the grid leave its location unchanged, but also result in a reward of −1. Other

actions result in a reward of 0, except those that move the agent out of the special states A

and B. From state A, all four actions yield a reward of +10 and take the agent to A0 . From

state B, all actions yield a reward of +5 and take the agent to B0 . Suppose the agent selects

all four actions with equal probability in all states. Figure 3.5b shows the value function, vπ,

for this policy, for the discounted reward case with γ = 0.9. This value function was

computed by solving the system of equations (3.12). Notice the negative values near the

lower edge; these are the result of the high probability of hitting the edge of the grid there

under the random policy. State A is the best state to be in under this policy, but its expected

return is less than 10, its immediate reward, because from A the agent is taken to A0 , from

which it is likely to run into the edge of the grid. State B, on the other hand, is valued more

than 5, its immediate reward, because from B the agent is taken to B0 , which has a positive

value. From B0 the expected penalty (negative reward) for possibly running into an edge is

more than compensated for by the expected gain for possibly stumbling onto A or B.

Example 3.9: Golf To formulate playing a hole of golf as a reinforcement learning task, we

count a penalty (negative reward) of −1 for each stroke until we hit the ball into the hole. The

state is the location of the ball. The value of a state is the negative of the number of strokes to

the hole from that location. Our actions are how we aim and swing at the ball, of course, and

which club we select. Let us take the former as given and consider just the choice of club,

which we assume is either a putter or a driver. The upper part of Figure 3.6 shows a possible

state-value function, vputt(s), for the policy that always uses the putter. The terminal state in-

the-hole has a value of 0. From anywhere on the green we assume we can make a putt; these

states have value −1. Off the green we cannot reach the hole by putting, and the value is

greater. If we can reach the green from a state by putting, then that state must have value one

less than the green’s value, that is, −2. For simplicity, let us assume we can putt very

precisely and deterministically, but with a limited range. This gives us the sharp contour line

labelled −2 in the figure; all locations between that line and the green require exactly two

strokes to complete the hole. Similarly, any location within putting range of the −2 contour

line must have a value of −3, and so on to get all the contour lines shown in the figure.

Putting doesn’t get us out of sand traps, so they have a value of −∞. Overall, it takes us six

strokes to get from the tee to the hole by putting.

8. Optimal Value Functions

Example 3.10: Optimal Value Functions for Golf The lower part of Figure 3.6 shows the

contours of a possible optimal action-value function q∗(s, driver). These are the values of

each state if we first play a stroke with the driver and afterward select either the driver or the

putter, whichever is better. The driver enables us to hit the ball farther, but with less accuracy.

We can reach the hole in one shot using the driver only if we are already very close; thus the

−1 contour for q∗(s, driver) covers only a small portion of the green. If we have two strokes,

however, then we can reach the hole from much farther away, as shown by the −2 contour. In

this case we don’t have to drive all the way to within the small −1 contour, but only to

anywhere on the green; from there we can use the putter. The optimal action-value function

gives the values after committing to a particular first action, in this case, to the driver, but

afterward using whichever actions are best. The −3 contour is still farther out and includes the

starting tee. From the tee, the best sequence of actions is two drives and one putt, sinking the

ball in three strokes.

Because v∗ is the value function for a policy, it must satisfy the self-consistency condition

given by the Bellman equation for state values (3.12). Because it is the optimal value

function, however, v∗’s consistency condition can be written in a special form without

reference to any specific policy. This is the Bellman equation for v∗, or the Bellman

optimality equation. Intuitively, the Bellman optimality equation expresses the fact that the

value of a state under an optimal policy must equal the expected return for the best action

from that state:

9. Optimality and Approximation

• We have defined optimal value functions and optimal policies.

• Clearly, an agent that learns an optimal policy has done very well, but in practice this

rarely happens.

• For the kinds of tasks in which we are interested, optimal policies can be generated

only with extreme computational cost.

• A well-defined notion of optimality organizes the approach to learning we describe in

this book and provides a way to understand the theoretical properties of various

learning algorithms, but it is an ideal that agents can only approximate to varying

degrees.

• As we discussed above, even if we have a complete and accurate model of the

environment’s dynamics, it is usually not possible to simply compute an optimal

policy by solving the Bellman optimality equation.

• For example, board games such as chess are a tiny fraction of human experience, yet

large, custom-designed computers still cannot compute the optimal moves.

• A critical aspect of the problem facing the agent is always the computational power

available to it, in particular, the amount of computation it can perform in a single time

step.

• The memory available is also an important constraint.

• A large amount of memory is often required to build up approximations of value

functions, policies, and models.

• In tasks with small, finite state sets, it is possible to form these approximations using

arrays or tables with one entry for each state (or state–action pair).

• This we call the tabular case, and the corresponding methods we call tabular methods.

• In many cases of practical interest, however, there are far more states than could

possibly be entries in a table.

• In these cases, the functions must be approximated, using some sort of more compact

parameterized function representation.

• Our framing of the reinforcement learning problem forces us to settle for

approximations. However, it also presents us with some unique opportunities for

achieving useful approximations.

• For example, in approximating optimal behaviour, there may be many states that the

agent faces with such a low probability that selecting suboptimal actions for them has

little impact on the amount of reward the agent receives.

• Tesauro’s backgammon player, for example, plays with exceptional skill even though

it might make very bad decisions on board configurations that never occur in games

against experts.

• In fact, it is possible that TD-Gammon makes bad decisions for a large fraction of the

game’s state set.

• The on-line nature of reinforcement learning makes it possible to approximate optimal

policies in ways that put more effort into learning to make good decisions for

frequently encountered states, at the expense of less effort for infrequently

encountered states.

• This is one key property that distinguishes reinforcement learning from other

approaches to approximately solving MDPs.

