UNIT-IV

Dynamic Programming: Policy Evaluation, Policy Improvement,
Policy Iteration, Value Iteration, Asynchronous Dynamic
Programming, Generalized Policy Iteration, Efficiency of Dynamic
Programming.

Dynamic Programming:
Bellman Optimality Equation

v,(s) = maxE[R, +7v,(S,4) | Si=s,A,=q|

mfxz -p[s’,r|s_,a]l[r - ’:r't-',[s’]l] (4.1)

sr

>

ar

gu(5,a) = E[H!H + 7 max o Siy1,a’) | .5'¢=.3_,.*'-1¢=ﬂ.]

— ZP(5I=T'|5.~E:|[T+ Tnﬁxq‘{f’aﬂ]? (4.2)

5,r

for all s € & a € A(s), and & € 8%, As we shall see, DP algorithms are
obtained by turning Bellman equations such as these into assignments, that 1s,
mto update rules for improving approximations of the desired value functions.

X9
Q
ajo

oty
1. Poli valuation

Y

First we consider how to compute the state-value function v, for an arbatrary
policy . This 1s called policy evaluation in the DP hterature. We also refer
to 1t as the prediction problem. Recall from Chapter 3 that, for all s € &,

ve(s) = E.[Rut +YRu2 + 7Y Rea+--- | Si=s]
B[Rt +7us(Seet) | Se=9] (13)
= Y wlals) Yopls'rls.a) [r + ()], (1.4

where w(a|s) 18 the probability of taking action a m state s under policy 7, and
the expectations are subscripted by = to mdicate that they are conditional on
7 being followed. The existence and umqueness of v, are guaranteed as long
as elther v < 1 or eventual termination 18 guaranteed from all states under the
policy .

» If the environment’s dynamics are completely known, then (4.4) is a system of |S]
simultaneous linear equations in |S| unknowns (the vz(s), s € S).
> In principle, its solution is a straightforward, if tedious, computation.

> For our purposes, iterative solution methods are most suitable. Consider a sequence of
approximate value functions v0, v1, v2. ..

> Each mapping " to .|

» The initial approximation, v0, is chosen arbitrarily and each successive approximation
is obtained by using the Bellman equation for v, (3.12) as an update rule:

B+ Rie1 + 1u(Set1) | Se=s]
E mals) Zp{s’,r s, [’.r + }-vk(s’}]., (4.5] K
a £ \%
L7

for all s € & Clearly, vy = v, 158 a fixed pomnt for this update rule because
the Bellman equation for v, assures us of equality in this case. Indeed, the
sequence {vy } can be shown 1n general to converge to v, as k — oo under the
same conditions that guarantee the existence of v,. This algornthm 1z called

Uk+1(3)

iterative policy evaluation.

N
Input w, the policy to be evaluated
Imtialize an array V(s) =0, for all s € 5%
Repeat
A+10
For each s € &:
v+ Vis)

V(s) « X, w(als) Xy, pls',rls, a) [r + V(")
A+ max(A, |v — V(s}|)

until A =< # (a small positive number)

Output V' == v,

Figure 4.1: lterative policy evaluation.

Example O &Q*%\y
K\

S

Q .

Example 4.1 Consider the 4 x4 gridworld shown below.

4 |5 |6 |7 R = -1
on all transitions

actions

12 13 |14

The nonterminal states are § = {1,2,...,14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent off the grid in fact leave the state unchanged. Thus, for instance,
p(6/5,right) =1, p(10|5,right) =0, and p(7|7,right) = 1. This is an undis-
counted, episodic task. The reward is —1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s,a, s') = —1 for all states s, s" and actions a. Suppose the agent follows
the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {v;} computed by iterative
policy evaluation. The final estimate is in fact v, which in this case gives for
each state the negation of the expected number of steps from that state until

Vi for the Greedy Policy

Random Policy WIL Vp
0.0 00| ool oo bl tals
0.0 00| 0.0 00 i vl random
k=0 0.0) 0.0| 0.0 o0 e il et policy
0.0 0.0] 0.0 00 o
0.0{-1.0[-1.o-1.1]
Ee1 -1.0{-1.0-1.0]-1.9] T
-1.0-1.0|-1.0[-1.0] et |
-1.0]-1.0]-1.0{ 0.0 I E
00|-1.7]-2.0-2] S
Fod -1.7]-2.0{-2.0{-2.0] Ry
20/-2.0]-20-17] Phb| o,
-2.0{-2.0{-1.7] 00| e o -
0.0]-2.4]-2.9]-3.0] - = |5
F—3 -2.4]-2.8]-5.0]-2.5| "H il
-25]-3.0-2.5]-2.4] AEEER
-3.0]-2.8]-2.4] g.of L= =
0.0]-6.1(-8.4-5.0f — = | \
k=10 +.1]-7.7]-8.4]-5.4] Wl [| o optimal
- .4)-5.4]- = policy
g.4)-8.4]-7.7)-6.1 =
-5.0/-8.4]-6.1] 0.0 Lf o =
0.0/-14f-20]-22. - |- |q
e -14-18)-20]-20. : L—fhf-l \
-20.|-20{-18-14. l
-22.-20|-14| g.0f L] =

Figure 4.2: Convergence of iterative policy evaluation on a small gndworld.
The left column 18 the sequence of approximations of the state-value function
for the random policy (all actions equal). The nght column 15 the sequence
of greedy policies corresponding to the value function estimates {arrows are
shown for all actions achieving the maximum). The last policy 15 guaranteed
only to be an 1improvement over the random polcy, but 1n this case 1t, and all
pohicies after the third iteration, are optimal.

termination.

2. Policy Improvement

» Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v, for an arbitrary deterministic
policy 7.

» For some state s we would like to know Whether or not we should change the policy
to deterministically choose an action 7T

» We know how good it is to follow the current pollcy from s—that is vx(s)—but would
it be better or worse to change to the new policy? One way to answer this question is
to consider selecting a in s and thereafter following the existing policy, ©

» The value of this way of behaving is

(5, a) E Rie1 + v (Si41) | Se=s, Ay=a| (4.6)

Z}?I:.EI.I'LE,E:I[F f ’g-i.'.-r[.‘illjl].

» The key criterion is whether this is greater than or lgss.than vx(s).

> If it is greater—that is, if it is better to select a onge in s and thereafter follow « than it
would be to follow = all the time—then one would expect it to be better still to select
a every time s is encountered, and that thesnew policy would in fact be a better one
overall.

That this 15 true 15 a special case of a general result called the policy
improvement theorem. Let w and «' be any pair of determimstic polhcies such
that, for all s € 8,

gl s, 7(5)) = v, (s). {4.7)

Then the polcy 7 must be as good as, or better than, . That 15, 1t must

obtain greater or equal expected return from all states s € &:

ve(5) = vgs). (4.8)

The idea behind the proof of the policy improvement theorem is easy to understand. Starting
frem (4.7), we keep expanding the g side and reapplying

(4.7) until we get v (s):

vz(s) < gx(s,7'(s))
Ex|Rept1 + qva(Se1) | Si=s

< Ew|Rip1 + ¥e(Sis1, 7' (Ses1)) | Se=3]

Eoo|Reiv1 + 7B Rera +yoe(Seea)| | Si=s

E.[Rey1 + 7Ry + 7 va(Sesa) | Se=5]
< Eu [HHI FYRier2 + 7 Riva + 7 0o (Seea) | Sy ° A&
: >
< E. [RE_H v Reps + Y Reps + 7V Rega + - | S -=*

vl 5).

A7

So far we have seen how, given a policy and its value function, we can easily
evaluate a change 1n the policy at a single state to a particular action. It 15 a
natural extension to consider changes at all states and to all possible actions,
selecting at each state the action that appears best according to g.(s,a). In
other words, to consider the new greedy pohey, 7', miven by

T (s) argmax g, (s, a)
argmax B[Ry 1 + y0z(Se1) | Se=s, Ai=al (4.9)
argmm«:z pls', r|s,a) |:'r' } ’r'L'Tr[s":l]:
. s.or

U

> where argmaxa deno é@\the value of a at which the expression that follows is
maximized (with ti roken arbitrarily).
» The greedy po%y-,takes the action that looks best in the short term—after one step of
look ahead ording to V.
» By con ion, the greedy policy meets the conditions of the policy improvement
theo 4.7), so we know that it is as good as, or better than, the original policy.
l‘rocess of making a new policy that improves on an original policy, by making it
‘éueedy with respect to the value function of the original policy, is called policy
Q |mprovement

Suppose the new greedy policy, 7', 18 as good as, but not better than, the
old policy m. Then v, = v, and from (4.9) 1t follows that for all s £ &:

ve(s) = maxE[Res +9v2(Se1) | Se=s, Ai=al

— mf.:xZ pls' r|s,a) [r + Wﬂxl{s'}].

AoJ',

So far in this section we have considered the special case of deterministic

policies. In the general case, a stochastic policy = specifies probabilities, w(a|s).

for taking each action, a, i each state, s. We will not go through the details,

but 1n fact all the 1deas of this section extend easily to stochastic policies. In

particular, the policy improvement theorem carries through as stated for the
stochastic case, under the natural definition:

g=(s,7'(s)) = Y 7'(als)qu(s, a).
Ol
3. Policy lteration
X
Onee a policy, 7, has been improved using v, to yield a better pohey, 7', we can
then compute vy and mmprove it again to yield an even better 7. We can thus

obtain a sequence of monotomeally improving policies and value functions:
E 1 E 1 E I E
M) —F Uy —F T —F Uy, —$ Ty —F o —3 T, —3 1,

where —+ denotes a policy evaluation and — denotes a policy improvement.
Each policy 18 guaranteed to be a strict improvement over the previous one

N7
60
Q.

1. Imtiahzation
{s) € R and w(s) € A(s) arbitranly for all s € &

2. Policy Evaluation

RHepeat
A0
For each s € &:
v+ Vi(s)

Vis) + Zr’,r pls',rls, w(s)) [f' t ’r'1-"_[-“":|:
A+ max(A, v — V(s)])
until A < # (a small positive number)

3. Polhicy Improvement
policy-stable +— true
For each s € &:
a +— (=)
mw(s) +— argmax, » . p(s’,r|s, a) [r { ’r"l--"[;z:":l:
If a +# w(s), then policy-stable + false
If policy-stable, then stop and return V' and m; else go to 2

Figure 4.3: Policy iteration (using iterative policyevaluation) for v«. This algorithm has a
subtle bug, in that it may never terminate if thecpolicy continually switches between two or
more policies that are equally good. The bug can be fixed by adding additional flags, but it
makes the pseudocode so ugly that it is not'worth it. :-)

Because a finite MDP has only a finite number of policies, this process must converge to an
optimal policy and optimal valueAftnction in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in Figure 4.3.

Example 4.2: Jack’s Car Rental Jack manages two locations for a na-
tionwide car rental company. Each day, some number of customers arrive at
each location to rent cars. If Jack has a car available, he rents 1t out and 15
credited $10 by the national company. If he 18 out of cars at that location,
then the business 1s lost. Cars become available for renting the day after they
are returned. To help ensure that cars are available where they are needed,
Jack can move them between the two locations overnight, at a cost of 52 per
car moved. We assume that the number of cars requested and returned at
each location are PDiSSDI‘l random varables, meamng that the probability that

the number 18 n 18 FE_':'.. where A 1= the expected number. Suppose A 15 3

and 4 for rental requests at the first and second locations and 3 and 2 for

"

returns. To simphfy the problem shghtly, we assume that there can be no
more than 20 cars at each location (any additional cars are returned to the
nationwide company, and thus disappear from the problem) and a maximum
of five cars can be moved from one location to the other in one mght. We take
the discount rate to be v = .9 and formulate this as a continuing fimte MDP,
where the time steps are days, the state 15 the number of cars at each location
at the end of the day, and the actions are the net numbers of cars moved
between the two locations overmight. Figure 4.4 shows the sequence of policies
found by policy iteration starting from the policy that never moves any cars.
|

Q®
>
\J‘b’

%‘%\‘54. Value Iteration

» One drawback to'E)T)Iicy iteration is that each of its iterations involves policy
evaluation, may itself be a protracted iterative computation requiring multiple

sweeps t h the state set
> If po aluation is done iteratively, then convergence exactly to v occurs only in
th

> ct, the policy evaluation step of policy iteration can be truncated in several ways
/\without losing the convergence guarantees of policy iteration.
- One important special case is when policy evaluation is stopped after just one sweep
(one backup of each state).
» This algorithm is called value iteration. It can be written as a particularly simple
backup operation that combines the Figure 4.4:

O

.1

PR =
- Lt
e

#Cars al first hocaton

.] . -
L '_-;lEm : ’“’““%mqf* '-‘“{_F“
#Cars at second location

0

Figure 4.4: The sequence of policies found by policy iteration on Jack's car
rental problem, and the final state-value function. The first five diagrams show.,
for each number of cars at each location at the end of the day, the number
of cars to be moved from the first location to the second (negative numbers
indicate transfers from the second location to the first). Each successive pohey
18 a strict improvement over the previous policy, and the last policy 1= optimal.

S

policy improvement and truncated policy evaluation steps:
Up+1(5) max E|K;.1 + yui(Se1) | Se=s, Ai=aq] (4.10)
a

max E p(s' r|s,a) [r s j.-znk{.ﬁ:’:l] :

for all s € 5. For arbitrary v, the sequence {v} can be shown to converge to
4 v, under the same conditions that puarantee the existence of v,.
> Another way of understanding value iteration is by reference to the Bellman
optimality equation (4.1).
> Note that value iteration is obtained simply by turning the Bellman optimality

equation into an update rule.
> Also note how the value iteration backup is identical to the policy evaluation backup

(4.5) except that it requires the maximum to be taken over all actions.

Finally, let us consider how value iteration terminates.

> Like policy evaluation, value iteration formally requires an infinite number of
iterations to converge exactly to v,

> In practice, we stop once the value function changes by only a small amount in a
sweep. Figure 4.5 gives a complete value iteration algorithm with this kind of
termination condition.

[mtiahze array V' arbitranly (e.g., V(s) =0 for all s € 57)

&

Repeat

A0 %\/
For each s £ &: 4
v+ Vi(s)

Vi(s) + max, Z:r,r p[s’,r|s,a}[‘r + ’:;'Vl{s’]l]
A max(A, Jv — V(s]|})
until A < # (a small positive number)

Output a determimstic pohicy, w, such that

7(s) = argmax, }_, pls'.7|s,a} [T - ’ﬂ"[s’]]

Figure 4.5: Value iteration.
g
Example 4.3: Gambler’s Problem A gambler has the opportumty to
make bets on the outcomes of a sequence of comn thps. If the coin comes up
heads, he wins as many dollars as he has staked on that flip; 1if 1t 18 tails, he
loses his stake. The game ends when the gambler wins by reaching his goal
of $100, or loses by runming out of money. On each flip, the gambler must
decide what portion of his capital to stake, in integer numbers of dollars. This
problem can be formulated as an undiscounted, episodic, fimte MDP. The

state 15 the gambler's capital, s € {1,2,...,99} and the actions are stakes,
KY
a e {0,1,...,mmn(s, 100 — s)}. The reward 18 zero on all transitions except

those on which the gambler reaches his goal, when it 15 +1. The state-value
function then gives the probability of winming from each state. A policy 1s a
mapping from levels of capital to stakes. The optimal policy maximizes the
probability of reaching the goal. Let pp denote the probability of the comn
coming up heads. If py 18 known, then the entire problem iz known and 1t can
be solved, for mstance, by value iteration. Figure 4.6 shows the change in the
value function over successive sweeps of value iteration, and the final policy
found, for the case of py, = 0.4, This policy 15 optimal, but not unique. In
fact, there 18 a whole family of optimal policies, all corresponding to ties for
the argmax action selection with respect to the optimal value function. Can
vou guess what the entire family looks hke? [

5. Asynchronous Dynamic Programming

A major drawback to the DP methods that we have discussed so far is that they
involve operations over the entire state set of the MDP, that is, they require sweeps of
the state set.

If the state set is very large, then even a single sweep can be prohibitively expensive.
For example, the game of backgammon has over 1020 states.

Even if we could perform the value iteration backup on a million states‘per second, it
would take over a thousand years to complete a single sweep.

Asynchronous DP algorithms are in-place iterative DP algorithms that are not
organized in terms of systematic sweeps of the state set.

These algorithms back up the values of states in any orderwhatsoever, using whatever
values of other states happen to be available.

The values of some states may be backed up sevetaltimes before the values of others
are backed up once.

To converge correctly, however, an asynchronous algorithm must continue to backup
the values of all the states: it can’t dgnore any state after some point in the
computation. Asynchronous DP algorithms allow great flexibility in selecting states to
which backup operations are appligd.

0.8+
Value 9]
estimates
0.4
024 |-— " sWeep 1
- SWeep 2
0- f sweep 3
i 2|5 5ICI 7I5 EIIQ
Capital
50+
0
Final ;|
olicy ~
stake) %7
10
14
T T T T 1
1 25 50 75 oo
Capital

Figure 4.6: The solution to the gambler's problem for py = 0.4. The upper
graph shows the value function found by successive sweeps of value iteration.
The lower graph shows the final policy.

For example;one version of asynchronous value iteration backs up the value, in place,
of only One-state, sk, on each step, k, using the value iteration backup (4.10).

0 <9< 1, asymptotic convergence to v* is guaranteed given only that all states occur
in\the sequence {sk} an infinite number of times (the sequence could even be
stochastic).

(In the undiscounted episodic case, it is possible that there are some orderings of
backups that do not result in convergence, but it is relatively easy to avoid these.)
Similarly, it is possible to intermix policy evaluation and value iteration backups to
produce a kind of asynchronous truncated policy iteration.

Although the details of this and other more unusual DP algorithms are beyond the
scope of this book, it is clear that a few different backups form building blocks that
can be used flexibly in a wide variety of sweepless DP algorithms.

Asynchronous algorithms also make it easier to intermix computation with real-time
interaction.

To solve a given MDP, we can run an iterative DP algorithm at the same time that an
agent is actually experiencing the MDP.

The agent’s experience can be used to determine the states to which the DP algorithm
applies its backups.

At the same time, the latest value and policy information from the DP algorithm can
guide the agent’s decision-making.

For example, we can apply backups to states as the agent visits them.

This makes it possible to focus the DP algorithm’s backups onto parts of the state set
that are most relevant to the agent.

This kind of focusing is a repeated theme in reinforcement learning.

6. Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting proeesses, one making the
value function consistent with the current policy (policy evaluation), and the other
making the policy greedy with respect to the curtent value function (policy
improvement).

In policy iteration, these two processes alternate;yeach completing before the other
begins, but this is not really necessary. In value iteration, for example, only a single
iteration of policy evaluation is performed in-between each policy improvement.

In asynchronous DP methods, the- evaluation and improvement processes are
interleaved at an even finer grain.

In some cases, a single state is tipdated in one process before returning to the other.
As long as both processes continue to update all states, the ultimate result is typically
the same—convergence to'the optimal value function and an optimal policy.

We use the term generalized policy iteration (GPI) to refer to the general idea of
letting policy evaluation and policy improvement processes interact, independent of
the granularity and other details of the two processes.

Almost all reinforcement learning methods are well described as GPI.

That is,.alhhave identifiable policies and value functions, with the policy always
beingiimproved with respect to the value function and the value function always being
driven toward the value function for the policy.

Fhis overall schema for GPI is illustrated in Figure 4.7.

evaluation
V=g

TT—greedy(V)

N/

improvement

T - ."1"1

£

Figure 4.7: Generahized policy iteration: Value and policy functions interact
until they are optimal and thus consistent with each other.

It is easy"10 see that if both the evaluation process and the improvement process
stabilizey that is, no longer produce changes, then the value function and policy must
be.optimal.

The value function stabilizes only when it is consistent with the current policy, and
the policy stabilizes only when it is greedy with respect to the current value function.
Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function.

This implies that the Bellman optimality equation (4.1) holds, and thus that the policy
and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating.

They compete in the sense that they pull in opposing directions.

Making the policy greedy with respect to the value function typically makes the value
function incorrect for the changed policy, and making the value function consistent
with the policy typically causes that policy no longer to be greedy.

In the long run, however, these two processes interact to find a single joint solution:
the optimal value function and an optimal policy.

7.Efficiency of Dynamic Programming.

DP may not be practical for very large problems, but compared with other methods
for solving MDPs, DP methods are actually quite efficient.

If we ignore a few technical details, then the (worst case) time DP methods take to
find an optimal policy is polynomial in the number of states and actions.

If n and m denote the number of states and actions, this means that a DR method takes
a number of computational operations that is less than some polynomial function of n
and m.

A DP method is guaranteed to find an optimal policy in polynomial time even though
the total number of (deterministic) policies is mn.

In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively~examine each policy to provide
the same guarantee.

Linear programming methods can also be used to solve MDPs, and in some cases
their worst-case convergence guarantees.‘@aré better than those of DP methods. But
linear programming methods becomeimpractical at a much smaller number of states
than do DP methods (by a factor of@bout 100).

For the largest problems, only DP'methods are feasible.

DP is sometimes thought to0,be of limited applicability because of the curse of
dimensionality (Bellman;~1957a), the fact that the number of states often grows
exponentially with the-number of state variables.

Large state sets do "create difficulties, but these are inherent difficulties of the
problem, not of-BP as a solution method.

In fact, DR—is comparatively better suited to handling large state spaces than
competing-methods such as direct search and linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states.

Both policy iteration and value iteration are widely used, and it is not clear which, if
either, is better in general.

In practice, these methods usually converge much faster than their theoretical worst-
case run times, particularly if they are started with good initial value functions or
policies.

On problems with large state spaces, asynchronous DP methods are often preferred.
To complete even one sweep of a synchronous method requires computation and
memory for every state.

» For some problems, even this much memory and computation are impractical, yet the
problem is still potentially solvable because only a relatively few states occur along
optimal solution trajectories.

» Asynchronous methods and other variations of GPI can be applied in such cases and
may find good or optimal policies much faster than synchronous methods can.

