

UNIT-IV

Dynamic Programming: Policy Evaluation, Policy Improvement,

Policy Iteration, Value Iteration, Asynchronous Dynamic

Programming, Generalized Policy Iteration, Efficiency of Dynamic

Programming.

Dynamic Programming:

Bellman Optimality Equation

1. Policy Evaluation

➢ If the environment’s dynamics are completely known, then (4.4) is a system of |S|

simultaneous linear equations in |S| unknowns (the vπ(s), s ∈ S).

➢ In principle, its solution is a straightforward, if tedious, computation.

➢ For our purposes, iterative solution methods are most suitable. Consider a sequence of

approximate value functions v0, v1, v2. . .

➢ Each mapping .

➢ The initial approximation, v0, is chosen arbitrarily and each successive approximation

is obtained by using the Bellman equation for vπ (3.12) as an update rule:

Example:

 termination.

2. Policy Improvement

➢ Our reason for computing the value function for a policy is to help find better policies.

Suppose we have determined the value function vπ for an arbitrary deterministic

policy π.

➢ For some state s we would like to know whether or not we should change the policy

to deterministically choose an action .

➢ We know how good it is to follow the current policy from s—that is vπ(s)—but would

it be better or worse to change to the new policy? One way to answer this question is

to consider selecting a in s and thereafter following the existing policy, π.

➢ The value of this way of behaving is

➢ The key criterion is whether this is greater than or less than vπ(s).

➢ If it is greater—that is, if it is better to select a once in s and thereafter follow π than it

would be to follow π all the time—then one would expect it to be better still to select

a every time s is encountered, and that the new policy would in fact be a better one

overall.

The idea behind the proof of the policy improvement theorem is easy to understand. Starting

from (4.7), we keep expanding the qπ side and reapplying

➢ where argmaxa denotes the value of a at which the expression that follows is

maximized (with ties broken arbitrarily).

➢ The greedy policy takes the action that looks best in the short term—after one step of

look ahead—according to vπ.

➢ By construction, the greedy policy meets the conditions of the policy improvement

theorem (4.7), so we know that it is as good as, or better than, the original policy.

➢ The process of making a new policy that improves on an original policy, by making it

greedy with respect to the value function of the original policy, is called policy

improvement.

3. Policy Iteration

Figure 4.3: Policy iteration (using iterative policy evaluation) for v∗. This algorithm has a

subtle bug, in that it may never terminate if the policy continually switches between two or

more policies that are equally good. The bug can be fixed by adding additional flags, but it

makes the pseudocode so ugly that it is not worth it. :-)

Because a finite MDP has only a finite number of policies, this process must converge to an

optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is

given in Figure 4.3.

4. Value Iteration

➢ One drawback to policy iteration is that each of its iterations involves policy

evaluation, which may itself be a protracted iterative computation requiring multiple

sweeps through the state set.

➢ If policy evaluation is done iteratively, then convergence exactly to vπ occurs only in

the limit.

➢ In fact, the policy evaluation step of policy iteration can be truncated in several ways

without losing the convergence guarantees of policy iteration.

➢ One important special case is when policy evaluation is stopped after just one sweep

(one backup of each state).

➢ This algorithm is called value iteration. It can be written as a particularly simple

backup operation that combines the Figure 4.4:

➢ Another way of understanding value iteration is by reference to the Bellman

optimality equation (4.1).

➢ Note that value iteration is obtained simply by turning the Bellman optimality

equation into an update rule.

➢ Also note how the value iteration backup is identical to the policy evaluation backup

(4.5) except that it requires the maximum to be taken over all actions.

Finally, let us consider how value iteration terminates.

➢ Like policy evaluation, value iteration formally requires an infinite number of

iterations to converge exactly to v∗.

➢ In practice, we stop once the value function changes by only a small amount in a

sweep. Figure 4.5 gives a complete value iteration algorithm with this kind of

termination condition.

5. Asynchronous Dynamic Programming

➢ A major drawback to the DP methods that we have discussed so far is that they

involve operations over the entire state set of the MDP, that is, they require sweeps of

the state set.

➢ If the state set is very large, then even a single sweep can be prohibitively expensive.

➢ For example, the game of backgammon has over 1020 states.

➢ Even if we could perform the value iteration backup on a million states per second, it

would take over a thousand years to complete a single sweep.

➢ Asynchronous DP algorithms are in-place iterative DP algorithms that are not

organized in terms of systematic sweeps of the state set.

➢ These algorithms back up the values of states in any order whatsoever, using whatever

values of other states happen to be available.

➢ The values of some states may be backed up several times before the values of others

are backed up once.

➢ To converge correctly, however, an asynchronous algorithm must continue to backup

the values of all the states: it can’t ignore any state after some point in the

computation. Asynchronous DP algorithms allow great flexibility in selecting states to

which backup operations are applied.

➢ For example, one version of asynchronous value iteration backs up the value, in place,

of only one state, sk, on each step, k, using the value iteration backup (4.10).

➢ 0 ≤ γ < 1, asymptotic convergence to v∗ is guaranteed given only that all states occur

in the sequence {sk} an infinite number of times (the sequence could even be

stochastic).

➢ (In the undiscounted episodic case, it is possible that there are some orderings of

backups that do not result in convergence, but it is relatively easy to avoid these.)

Similarly, it is possible to intermix policy evaluation and value iteration backups to

produce a kind of asynchronous truncated policy iteration.

➢ Although the details of this and other more unusual DP algorithms are beyond the

scope of this book, it is clear that a few different backups form building blocks that

can be used flexibly in a wide variety of sweepless DP algorithms.

➢ Asynchronous algorithms also make it easier to intermix computation with real-time

interaction.

➢ To solve a given MDP, we can run an iterative DP algorithm at the same time that an

agent is actually experiencing the MDP.

➢ The agent’s experience can be used to determine the states to which the DP algorithm

applies its backups.

➢ At the same time, the latest value and policy information from the DP algorithm can

guide the agent’s decision-making.

➢ For example, we can apply backups to states as the agent visits them.

➢ This makes it possible to focus the DP algorithm’s backups onto parts of the state set

that are most relevant to the agent.

➢ This kind of focusing is a repeated theme in reinforcement learning.

6. Generalized Policy Iteration

➢ Policy iteration consists of two simultaneous, interacting processes, one making the

value function consistent with the current policy (policy evaluation), and the other

making the policy greedy with respect to the current value function (policy

improvement).

➢ In policy iteration, these two processes alternate, each completing before the other

begins, but this is not really necessary. In value iteration, for example, only a single

iteration of policy evaluation is performed in between each policy improvement.

➢ In asynchronous DP methods, the evaluation and improvement processes are

interleaved at an even finer grain.

➢ In some cases, a single state is updated in one process before returning to the other.

As long as both processes continue to update all states, the ultimate result is typically

the same—convergence to the optimal value function and an optimal policy.

➢ We use the term generalized policy iteration (GPI) to refer to the general idea of

letting policy evaluation and policy improvement processes interact, independent of

the granularity and other details of the two processes.

➢ Almost all reinforcement learning methods are well described as GPI.

➢ That is, all have identifiable policies and value functions, with the policy always

being improved with respect to the value function and the value function always being

driven toward the value function for the policy.

➢ This overall schema for GPI is illustrated in Figure 4.7.

➢ It is easy to see that if both the evaluation process and the improvement process

stabilize, that is, no longer produce changes, then the value function and policy must

be optimal.

➢ The value function stabilizes only when it is consistent with the current policy, and

the policy stabilizes only when it is greedy with respect to the current value function.

➢ Thus, both processes stabilize only when a policy has been found that is greedy with

respect to its own evaluation function.

➢ This implies that the Bellman optimality equation (4.1) holds, and thus that the policy

and the value function are optimal.

➢ The evaluation and improvement processes in GPI can be viewed as both competing

and cooperating.

➢ They compete in the sense that they pull in opposing directions.

➢ Making the policy greedy with respect to the value function typically makes the value

function incorrect for the changed policy, and making the value function consistent

with the policy typically causes that policy no longer to be greedy.

➢ In the long run, however, these two processes interact to find a single joint solution:

the optimal value function and an optimal policy.

7.Efficiency of Dynamic Programming.

➢ DP may not be practical for very large problems, but compared with other methods

for solving MDPs, DP methods are actually quite efficient.

➢ If we ignore a few technical details, then the (worst case) time DP methods take to

find an optimal policy is polynomial in the number of states and actions.

➢ If n and m denote the number of states and actions, this means that a DP method takes

a number of computational operations that is less than some polynomial function of n

and m.

➢ A DP method is guaranteed to find an optimal policy in polynomial time even though

the total number of (deterministic) policies is mn.

➢ In this sense, DP is exponentially faster than any direct search in policy space could

be, because direct search would have to exhaustively examine each policy to provide

the same guarantee.

➢ Linear programming methods can also be used to solve MDPs, and in some cases

their worst-case convergence guarantees are better than those of DP methods. But

linear programming methods become impractical at a much smaller number of states

than do DP methods (by a factor of about 100).

➢ For the largest problems, only DP methods are feasible.

➢ DP is sometimes thought to be of limited applicability because of the curse of

dimensionality (Bellman, 1957a), the fact that the number of states often grows

exponentially with the number of state variables.

➢ Large state sets do create difficulties, but these are inherent difficulties of the

problem, not of DP as a solution method.

➢ In fact, DP is comparatively better suited to handling large state spaces than

competing methods such as direct search and linear programming.

➢ In practice, DP methods can be used with today’s computers to solve MDPs with

millions of states.

➢ Both policy iteration and value iteration are widely used, and it is not clear which, if

either, is better in general.

➢ In practice, these methods usually converge much faster than their theoretical worst-

case run times, particularly if they are started with good initial value functions or

policies.

➢ On problems with large state spaces, asynchronous DP methods are often preferred.

➢ To complete even one sweep of a synchronous method requires computation and

memory for every state.

➢ For some problems, even this much memory and computation are impractical, yet the

problem is still potentially solvable because only a relatively few states occur along

optimal solution trajectories.

➢ Asynchronous methods and other variations of GPI can be applied in such cases and

may find good or optimal policies much faster than synchronous methods can.

