
 

 

UNIT-IV 

Dynamic Programming:  Policy Evaluation, Policy Improvement, 

Policy Iteration, Value Iteration, Asynchronous Dynamic 

Programming, Generalized Policy Iteration, Efficiency of Dynamic 

Programming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Dynamic Programming:   

Bellman Optimality Equation 

 

 

1. Policy Evaluation 

 

➢ If the environment’s dynamics are completely known, then (4.4) is a system of |S| 

simultaneous linear equations in |S| unknowns (the vπ(s), s ∈ S).  

➢ In principle, its solution is a straightforward, if tedious, computation.  



 

 

➢ For our purposes, iterative solution methods are most suitable. Consider a sequence of 

approximate value functions v0, v1, v2.  . .  

➢ Each mapping .  

➢ The initial approximation, v0, is chosen arbitrarily and each successive approximation 

is obtained by using the Bellman equation for vπ (3.12) as an update rule: 

 

 

 

Example: 



 

 

 



 

 

 

    termination. 

 

 

 



 

 

2. Policy Improvement 

➢ Our reason for computing the value function for a policy is to help find better policies. 

Suppose we have determined the value function vπ for an arbitrary deterministic 

policy π. 

➢ For some state s we would like to know whether or not we should change the policy 

to deterministically choose an action .  

➢ We know how good it is to follow the current policy from s—that is vπ(s)—but would 

it be better or worse to change to the new policy? One way to answer this question is 

to consider selecting a in s and thereafter following the existing policy, π.  

➢ The value of this way of behaving is 

 

➢ The key criterion is whether this is greater than or less than vπ(s).  

➢ If it is greater—that is, if it is better to select a once in s and thereafter follow π than it 

would be to follow π all the time—then one would expect it to be better still to select 

a every time s is encountered, and that the new policy would in fact be a better one 

overall. 

  

The idea behind the proof of the policy improvement theorem is easy to understand. Starting 

from (4.7), we keep expanding the qπ side and reapplying 



 

 

 

 

➢ where argmaxa denotes the value of a at which the expression that follows is 

maximized (with ties broken arbitrarily).  

➢ The greedy policy takes the action that looks best in the short term—after one step of 

look ahead—according to vπ. 

➢ By construction, the greedy policy meets the conditions of the policy improvement 

theorem (4.7), so we know that it is as good as, or better than, the original policy.  

➢ The process of making a new policy that improves on an original policy, by making it 

greedy with respect to the value function of the original policy, is called policy 

improvement. 



 

 

 

 

3. Policy Iteration 

 



 

 

 

Figure 4.3: Policy iteration (using iterative policy evaluation) for v∗. This algorithm has a 

subtle bug, in that it may never terminate if the policy continually switches between two or 

more policies that are equally good. The bug can be fixed by adding additional flags, but it 

makes the pseudocode so ugly that it is not worth it. :-) 

Because a finite MDP has only a finite number of policies, this process must converge to an 

optimal policy and optimal value function in a finite number of iterations. 

This way of finding an optimal policy is called policy iteration. A complete algorithm is 

given in Figure 4.3. 



 

 

 

 

 

4. Value Iteration 

➢ One drawback to policy iteration is that each of its iterations involves policy 

evaluation, which may itself be a protracted iterative computation requiring multiple 

sweeps through the state set.  

➢ If policy evaluation is done iteratively, then convergence exactly to vπ occurs only in 

the limit.  

➢ In fact, the policy evaluation step of policy iteration can be truncated in several ways 

without losing the convergence guarantees of policy iteration.  

➢ One important special case is when policy evaluation is stopped after just one sweep 

(one backup of each state).  

➢ This algorithm is called value iteration. It can be written as a particularly simple 

backup operation that combines the Figure 4.4:  



 

 

 

 

➢ Another way of understanding value iteration is by reference to the Bellman 

optimality equation (4.1). 

➢ Note that value iteration is obtained simply by turning the Bellman optimality 

equation into an update rule.  

➢ Also note how the value iteration backup is identical to the policy evaluation backup 

(4.5) except that it requires the maximum to be taken over all actions.  

Finally, let us consider how value iteration terminates. 



 

 

➢ Like policy evaluation, value iteration formally requires an infinite number of 

iterations to converge exactly to v∗.  

➢ In practice, we stop once the value function changes by only a small amount in a 

sweep. Figure 4.5 gives a complete value iteration algorithm with this kind of 

termination condition. 

 

 

 



 

 

 

 

 

5. Asynchronous Dynamic Programming 

➢ A major drawback to the DP methods that we have discussed so far is that they 

involve operations over the entire state set of the MDP, that is, they require sweeps of 

the state set. 

➢ If the state set is very large, then even a single sweep can be prohibitively expensive. 

➢ For example, the game of backgammon has over 1020 states.  

➢ Even if we could perform the value iteration backup on a million states per second, it 

would take over a thousand years to complete a single sweep. 

➢ Asynchronous DP algorithms are in-place iterative DP algorithms that are not 

organized in terms of systematic sweeps of the state set.  

➢ These algorithms back up the values of states in any order whatsoever, using whatever 

values of other states happen to be available.  

➢ The values of some states may be backed up several times before the values of others 

are backed up once.  

➢ To converge correctly, however, an asynchronous algorithm must continue to backup 

the values of all the states: it can’t ignore any state after some point in the 

computation. Asynchronous DP algorithms allow great flexibility in selecting states to 

which backup operations are applied. 



 

 

 

➢ For example, one version of asynchronous value iteration backs up the value, in place, 

of only one state, sk, on each step, k, using the value iteration backup (4.10).  

➢ 0 ≤ γ < 1, asymptotic convergence to v∗ is guaranteed given only that all states occur 

in the sequence {sk} an infinite number of times (the sequence could even be 

stochastic). 

➢ (In the undiscounted episodic case, it is possible that there are some orderings of 

backups that do not result in convergence, but it is relatively easy to avoid these.) 

Similarly, it is possible to intermix policy evaluation and value iteration backups to 

produce a kind of asynchronous truncated policy iteration.  

➢ Although the details of this and other more unusual DP algorithms are beyond the 

scope of this book, it is clear that a few different backups form building blocks that 

can be used flexibly in a wide variety of sweepless DP algorithms. 

➢ Asynchronous algorithms also make it easier to intermix computation with real-time 

interaction.  



 

 

➢ To solve a given MDP, we can run an iterative DP algorithm at the same time that an 

agent is actually experiencing the MDP.  

➢ The agent’s experience can be used to determine the states to which the DP algorithm 

applies its backups. 

➢ At the same time, the latest value and policy information from the DP algorithm can 

guide the agent’s decision-making. 

➢ For example, we can apply backups to states as the agent visits them.  

➢ This makes it possible to focus the DP algorithm’s backups onto parts of the state set 

that are most relevant to the agent.  

➢ This kind of focusing is a repeated theme in reinforcement learning. 

 

6. Generalized Policy Iteration 

➢ Policy iteration consists of two simultaneous, interacting processes, one making the 

value function consistent with the current policy (policy evaluation), and the other 

making the policy greedy with respect to the current value function (policy 

improvement).  

➢ In policy iteration, these two processes alternate, each completing before the other 

begins, but this is not really necessary. In value iteration, for example, only a single 

iteration of policy evaluation is performed in between each policy improvement.  

➢ In asynchronous DP methods, the evaluation and improvement processes are 

interleaved at an even finer grain.  

➢ In some cases, a single state is updated in one process before returning to the other. 

As long as both processes continue to update all states, the ultimate result is typically 

the same—convergence to the optimal value function and an optimal policy. 

➢ We use the term generalized policy iteration (GPI) to refer to the general idea of 

letting policy evaluation and policy improvement processes interact, independent of 

the granularity and other details of the two processes. 

➢ Almost all reinforcement learning methods are well described as GPI.  

➢ That is, all have identifiable policies and value functions, with the policy always 

being improved with respect to the value function and the value function always being 

driven toward the value function for the policy.  

➢ This overall schema for GPI is illustrated in Figure 4.7. 



 

 

 

 

➢ It is easy to see that if both the evaluation process and the improvement process 

stabilize, that is, no longer produce changes, then the value function and policy must 

be optimal.  

➢ The value function stabilizes only when it is consistent with the current policy, and 

the policy stabilizes only when it is greedy with respect to the current value function.  

➢ Thus, both processes stabilize only when a policy has been found that is greedy with 

respect to its own evaluation function. 

➢ This implies that the Bellman optimality equation (4.1) holds, and thus that the policy 

and the value function are optimal. 

➢ The evaluation and improvement processes in GPI can be viewed as both competing 

and cooperating.  

➢ They compete in the sense that they pull in opposing directions.  



 

 

➢ Making the policy greedy with respect to the value function typically makes the value 

function incorrect for the changed policy, and making the value function consistent 

with the policy typically causes that policy no longer to be greedy.  

➢ In the long run, however, these two processes interact to find a single joint solution: 

the optimal value function and an optimal policy. 

7.Efficiency of Dynamic Programming. 

➢ DP may not be practical for very large problems, but compared with other methods 

for solving MDPs, DP methods are actually quite efficient.  

➢ If we ignore a few technical details, then the (worst case) time DP methods take to 

find an optimal policy is polynomial in the number of states and actions. 

➢ If n and m denote the number of states and actions, this means that a DP method takes 

a number of computational operations that is less than some polynomial function of n 

and m. 

➢ A DP method is guaranteed to find an optimal policy in polynomial time even though 

the total number of (deterministic) policies is mn.  

➢ In this sense, DP is exponentially faster than any direct search in policy space could 

be, because direct search would have to exhaustively examine each policy to provide 

the same guarantee.  

➢ Linear programming methods can also be used to solve MDPs, and in some cases 

their worst-case convergence guarantees are better than those of DP methods. But 

linear programming methods become impractical at a much smaller number of states 

than do DP methods (by a factor of about 100).  

➢ For the largest problems, only DP methods are feasible. 

➢ DP is sometimes thought to be of limited applicability because of the curse of 

dimensionality (Bellman, 1957a), the fact that the number of states often grows 

exponentially with the number of state variables.  

➢ Large state sets do create difficulties, but these are inherent difficulties of the 

problem, not of DP as a solution method.  

➢ In fact, DP is comparatively better suited to handling large state spaces than 

competing methods such as direct search and linear programming. 

➢ In practice, DP methods can be used with today’s computers to solve MDPs with 

millions of states.  

➢ Both policy iteration and value iteration are widely used, and it is not clear which, if 

either, is better in general.  

➢ In practice, these methods usually converge much faster than their theoretical worst-

case run times, particularly if they are started with good initial value functions or 

policies. 

➢ On problems with large state spaces, asynchronous DP methods are often preferred.  

➢ To complete even one sweep of a synchronous method requires computation and 

memory for every state.  



 

 

➢ For some problems, even this much memory and computation are impractical, yet the 

problem is still potentially solvable because only a relatively few states occur along 

optimal solution trajectories. 

➢ Asynchronous methods and other variations of GPI can be applied in such cases and 

may find good or optimal policies much faster than synchronous methods can. 

 




