

UNIT-V

Monte Carlo Methods: Monte Carlo Prediction, Monte Carlo

Estimation of Action Values, Monte Carlo Control, Monte Carlo

Control without Exploring Starts, Off-policy Prediction via

Importance Sampling, Incremental Implementation, Off-Policy Monte

Carlo Control, Importance Sampling on Truncated Returns.

1. Monte Carlo Prediction

➢ We begin by considering Monte Carlo methods for learning the state-value function

for a given policy.

➢ Recall that the value of a state is the expected return—expected cumulative future

discounted reward—starting from that state.

➢ An obvious way to estimate it from experience, then, is simply to average the returns

observed after visits to that state.

➢ As more returns are observed, the average should converge to the expected value.

➢ This idea underlies all Monte Carlo methods.

➢ In particular, suppose we wish to estimate vπ(s), the value of a state s under policy π,

given a set of episodes obtained by following π and passing through s.

➢ Each occurrence of state s in an episode is called a visit to s. Of course, s may be

visited multiple times in the same episode; let us call the first time it is visited in an

episode the first visit to s.

➢ The first-visit MC method estimates vπ(s) as the average of the returns following first

visits to s, whereas the every-visit MC method averages the returns following all visits

to s.

➢ These two Monte Carlo (MC) methods are very similar but have slightly different

theoretical properties.

➢ First-visit MC has been most widely studied, dating back to the 1940s, and is the one

we focus on in this chapter.

➢ First-visit MC is shown in procedural form in Figure 5.1.

➢ Both first-visit MC and every-visit MC converge to vπ(s) as the number of visits (or

first visits) to s goes to infinity.

➢ This is easy to see for the case of first-visit MC. In this case each return is an

independent, identically distributed estimate of vπ(s) with finite variance.

➢ By the law of large numbers, the sequence of averages of these estimates converges to

their expected value.

➢ Each average is itself an unbiased estimate, and the standard deviation of its error falls

as 1/ √ n, where n is the number of returns averaged.

➢ Every-visit MC is less straightforward, but its estimates also converge asymptotically

to vπ(s) (Singh and Sutton, 1996).

➢ The use of Monte Carlo methods is best illustrated through an example.

Example 5.1: Blackjack The object of the popular casino card game of blackjack is to obtain

cards the sum of whose numerical values is as great as possible without exceeding 21. All

face cards count as 10, and an ace can count either as 1 or as 11. We consider the version in

which each player competes independently against the dealer. The game begins with two

cards dealt to both dealer and player. One of the dealer’s cards is face up and the other is face

down. If the player has 21 immediately (an ace and a 10-card), it is called a natural. He then

wins unless the dealer also has a natural, in which case the game is a draw. If the player does

not have a natural, then he can request additional cards, one by one (hits), until he either stops

(sticks) or exceeds 21 (goes bust). If he goes bust, he loses; if he sticks, then it becomes the

dealer’s turn. The dealer hits or sticks according to a fixed strategy without choice: he sticks

on any sum of 17 or greater, and hits otherwise. If the dealer goes bust, then the player wins;

otherwise, the outcome—win, lose, or draw—is determined by whose final sum is closer to

21

Playing blackjack is naturally formulated as an episodic finite MDP. Each game of blackjack is an

episode. Rewards of +1, −1, and 0 are given for winning, losing, and drawing, respectively. All

rewards within a game are zero, and we do not discount (γ = 1); therefore these terminal rewards are

also the returns. The player’s actions are to hit or to stick. The states depend on the player’s cards and

the dealer’s showing card. We assume that cards are dealt from an infinite deck (i.e., with

replacement) so that there is no advantage to keeping track of the cards already dealt. If the player

holds an ace that he could count as 11 without going bust, then the ace is said to be usable. In this case

it is always counted as 11 because counting it as 1 would make the sum 11 or less, in which case there

is no decision to be made because, obviously, the player should always hit. Thus, the player makes

decisions on the basis of three variables: his current sum (12–21), the dealer’s one showing card (ace–

10), and whether or not he holds a usable ace. This makes for a total of 200 states. Consider the policy

that sticks if the player’s sum is 20 or 21, and otherwise hits. To find the state-value function for this

policy by a Monte Carlo approach, one simulates many blackjack games using the policy and

averages the returns following each state. Note that in this task the same state never recurs within one

episode, so there is no difference between first-visit and every-visit MC methods. In this way, we

obtained the estimates of the statevalue function shown in Figure 5.2. The estimates for states with a

usable ace are less certain and less regular because these states are less common. In any event, after

500,000 games the value function is very well approximated.

Although we have complete knowledge of the environment in this task, it would not be easy to apply

DP methods to compute the value function. DP methods require the distribution of next events—in

particular, they require the quantities p(s 0 , r|s, a)—and it is not easy to determine these for blackjack.

For example, suppose the player’s sum is 14 and he chooses to stick. What is his expected reward as a

function of the dealer’s showing card? All of these expected rewards and transition probabilities must

be computed before DP can be applied, and such computations are often complex and error-prone. In

contrast, generating the sample games required by Monte Carlo methods is easy. This is the case

surprisingly often; the ability of Monte Carlo methods to work with sample episodes alone can be a

significant advantage even when one has complete knowledge of the environment’s dynamics.

➢ An important fact about Monte Carlo methods is that the estimates for each state are

independent.

➢ The estimate for one state does not build upon the estimate of any other state, as is the

case in DP.

➢ In other words, Monte Carlo methods do not bootstrap as we defined it in the previous

chapter.

➢ In particular, note that the computational expense of estimating the value of a single

state is independent of the number of states.

➢ This can make Monte Carlo methods particularly attractive when one requires the

value of only one or a subset of states.

➢ One can generate many sample episodes starting from the states of interest, averaging

returns from only these states ignoring all others.

➢ This is a third advantage Monte Carlo methods can have over DP methods (after the

ability to learn from actual experience and from simulated experience).

Example 5.2: Soap Bubble Suppose a wire frame forming a closed loop is dunked in soapy

water to form a soap surface or bubble conforming at its edges to the wire frame. If the

geometry of the wire frame is irregular but known, how can you compute the shape of the

surface? The shape has the property that the total force on each point exerted by neighboring

points is zero (or else the shape would change). This means that the surface’s height at any

point is the average of its heights at points in a small circle around that point. In addition, the

surface must meet at its boundaries with the wire frame. The usual approach to problems of

this kind is to put a grid over the area covered by the surface and solve for its height at the

grid points by an iterative computation. Grid points at the boundary are forced to the wire

frame, and all others are adjusted toward the average of the heights of their four nearest

neighbours. This process then iterates, much like DP’s iterative policy evaluati

This is similar to the kind of problem for which Monte Carlo methods were originally

designed. Instead of the iterative computation described above, imagine standing on the

surface and taking a random walk, stepping randomly from grid point to neighbouring grid

point, with equal probability, until you reach the boundary. It turns out that the expected

value of the height at the boundary is a close approximation to the height of the desired

surface at the starting point (in fact, it is exactly the value computed by the iterative method

described above). Thus, one can closely approximate the height of the surface at a point by

simply averaging the boundary heights of many walks started at the point. If one is interested

in only the value at one point, or any fixed small set of points, then this Monte Carlo method

can be far more efficient than the iterative method based on local consistency.

2. Monte Carlo Estimation of Action Values

➢ If a model is not available, then it is particularly useful to estimate action values (the

values of state–action pairs) rather than state values.

➢ With a model, state values alone are sufficient to determine a policy; one simply looks

ahead one step and chooses whichever action leads to the best combination of reward

and next state, as we did in the chapter on DP.

➢ Without a model, however, state values alone are not sufficient.

➢ One must explicitly estimate the value of each action in order for the values to be

useful in suggesting a policy.

➢ Thus, one of our primary goals for Monte Carlo methods is to estimate q∗.

➢ To achieve this, we first consider the policy evaluation problem for action values.

➢ The policy evaluation problem for action values is to estimate qπ(s, a), the expected

return when starting in state s, taking action a, and thereafter following policy π.

➢ The Monte Carlo methods for this are essentially the same as just presented for state

values, except now we talk about visits to a state– action pair rather than to a state.

➢ A state–action pair s, a is said to be visited in an episode if ever the state s is visited

and action a is taken in it.

➢ The every visit MC method estimates the value of a state–action pair as the average of

the returns that have followed visits all the visits to it.

➢ The first-visit MC method averages the returns following the first time in each

episode that the state was visited and the action was selected.

➢ These methods converge quadratically, as before, to the true expected values as the

number of visits to each state–action pair approaches infinity.

➢ The only complication is that many state–action pairs may never be visited.

➢ If π is a deterministic policy, then in following π one will observe returns only for one

of the actions from each state.

➢ With no returns to average, the Monte Carlo estimates of the other actions will not

improve with experience.

➢ This is a serious problem because the purpose of learning action values is to help in

choosing among the actions available in each state.

➢ To compare alternatives, we need to estimate the value of all the actions from each

state, not just the one we currently favour.

➢ For policy evaluation to work for action values, we must assure continual exploration.

➢ One way to do this is by specifying that the episodes start in a state–action pair, and

that every pair has a nonzero probability of being selected as the start.

➢ This guarantees that all state–action pairs will be visited an infinite number of times in

the limit of an infinite number of episodes.

➢ We call this the assumption of exploring starts.

➢ The assumption of exploring starts is sometimes useful, but of course it cannot be

relied upon in general, particularly when learning directly from actual interaction with

an environment.

➢ In that case the starting conditions are unlikely to be so helpful.

➢ The most common alternative approach to assuring that all state–action pairs are

encountered is to consider only policies that are stochastic with a nonzero probability

of selecting all actions in each state.

➢ We discuss two important variants of this approach in later sections.

➢ For now, we retain the assumption of exploring starts and complete the presentation

of a full Monte Carlo control method.

3. Monte Carlo Control

➢ We are now ready to consider how Monte Carlo estimation can be used in control,

that is, to approximate optimal policies.

➢ In GPI one maintains both an approximate policy and an approximate value function.

➢ The value function is repeatedly altered to more closely approximate the value

function for the current policy, and the policy is repeatedly improved with respect to

the current value function:

➢ These two kinds of changes work against each other to some extent, as each creates a

moving target for the other, but together they cause both policy and value function to

approach optimality.

➢ To begin, let us consider a Monte Carlo version of classical policy iteration. In this

method, we perform alternating complete steps of policy evaluation and policy

improvement, beginning with an arbitrary policy π0 and ending with the optimal

policy and optimal action-value function:

➢ where denotes a complete policy evaluation and denotes a complete

policy improvement.

➢ Policy evaluation is done exactly as described in the preceding section.

➢ Many episodes are experienced, with the approximate actionvalue function

approaching the true function asymptotically.

➢ For the moment, let us assume that we do indeed observe an infinite number of

episodes and that, in addition, the episodes are generated with exploring starts.

➢ Under these assumptions, the Monte Carlo methods will compute each qπk exactly,

for arbitrary πk. Policy improvement is done by making the policy greedy with

respect to the current value function.

➢ In this case we have an action-value function, and therefore no model is needed to

construct the greedy policy.

➢ For any action-value function q, the corresponding greedy policy is the one that, for

each s ∈ S, deterministically chooses an action with maximal action-value:

➢ The theorem assures us that each πk+1 is uniformly better than πk, or just as good as

πk, in which case they are both optimal policies.

➢ This in turn assures us that the overall process converges to the optimal policy and

optimal value function.

➢ In this way Monte Carlo methods can be used to find optimal policies given only

sample episodes and no other knowledge of the environment’s dynamics.

➢ We made two unlikely assumptions above in order to easily obtain this guarantee of

convergence for the Monte Carlo method.

➢ One was that the episodes have exploring starts, and the other was that policy

evaluation could be done with an infinite number of episodes.

➢ To obtain a practical algorithm we will have to remove both assumptions.

➢ For now, we focus on the assumption that policy evaluation operates on an infinite

number of episodes.

➢ This assumption is relatively easy to remove.

➢ In fact, the same issue arises even in classical DP methods such as iterative policy

evaluation, which also converge only asymptotically to the true value function.

➢ In both DP and Monte Carlo cases there are two ways to solve the problem.

➢ One is to hold firm to the idea of approximating qπk in each policy evaluation.

Measurements and assumptions are made to obtain bounds on the magnitude and

probability of error in the estimates, and then sufficient steps are taken during each

policy evaluation to assure that these bounds are sufficiently small.

This approach can probably be made completely satisfactory in the sense of guaranteeing

correct convergence up to some level of approximation.

 However, it is also likely to require far too many episodes to be useful in practice on any but

the smallest problems.

The second approach to avoiding the infinite number of episodes nominally required for

policy evaluation is to forgo trying to complete policy evaluation before returning to policy

improvement.

➢ On each evaluation step we move the value function toward qπk , but we do not

expect to actually get close except over many steps.

➢ One extreme form of the idea is value iteration, in which only one iteration of iterative

policy evaluation is performed between each step of policy improvement.

➢ The in-place version of value iteration is even more extreme; there we alternate

between improvement and evaluation steps for single states.

➢ For Monte Carlo policy evaluation it is natural to alternate between evaluation and

improvement on an episode-by-episode basis.

➢ After each episode, the observed returns are used for policy evaluation, and then the

policy is improved at all the states visited in the episode.

➢ A complete simple algorithm along these lines is given in Figure 5.4. We call this

algorithm Monte Carlo ES, for Monte Carlo with Exploring Starts.

➢ In Monte Carlo ES, all the returns for each state–action pair are accumulated and

averaged, irrespective of what policy was in force when they were observed.

➢ It is easy to see that Monte Carlo ES cannot converge to any suboptimal policy.

➢ If it did, then the value function would eventually converge to the value function for

that policy, and that in turn would cause the policy to change.

➢ Stability is achieved only when both the policy and the value function are optimal.

Convergence to this optimal fixed point seems inevitable as the changes to the action-

value function decrease over time, but has not yet been formally proved.

➢ In our opinion, this is one of the most fundamental open theoretical questions in

reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to blackjack.

Since the episodes are all simulated games, it is easy to arrange for exploring starts that

include all possibilities. In this case one simply picks the dealer’s cards, the player’s sum, and

whether or not the player has a usable ace, all at random with equal probability. As the initial

policy we use the policy evaluated in the previous blackjack example, that which sticks only

on 20 or 21. The initial action-value function can be zero for all state–action pairs. Figure 5.5

shows the optimal policy for blackjack found by Monte Carlo ES. This policy is the same as

the “basic” strategy of Thorp (1966) with the sole exception of the leftmost notch in the

policy for a usable ace, which is not present in Thorp’s strategy. We are uncertain of the

reason for this discrepancy, but confident that what is shown here is indeed the optimal policy

for the version of blackjack we have described.

4. Monte Carlo Control without Exploring Starts

➢ How can we avoid the unlikely assumption of exploring starts? The only general way

to ensure that all actions are selected infinitely often is for the agent to continue to

select them. There are two approaches to ensuring this, resulting in what we call on-

policy methods and off-policy methods.

➢ On policy methods attempt to evaluate or improve the policy that is used to make

decisions, whereas off-policy methods evaluate or improve a policy different from

that used to generate the data.

➢ The Monte Carlo ES method developed above is an example of an on-policy method.

➢ In on-policy control methods the policy is generally soft, meaning that π(a|s) > 0 for

all s ∈ S and all a ∈ A(s), but gradually shifted closer and closer to a deterministic

optimal policy.

➢ The on-policy method we present in this section uses ε-greedy policies, meaning that

most of the time they choose an action that has maximal estimated action value, but

with probability ε.

➢ they instead select an action at random. That is, all nongreedy actions are given the

minimal probability of selection, , and the remaining bulk of the probability,

, is given to the greedy action.

➢ The ε-greedy policies are examples of ε-soft policies, defined as policies for which

π(a|s) ≥ |A(s)| for all states and actions, for some ε > 0. Among ε-soft policies, ε-

greedy policies are in some sense those that are closest to greedy.

➢ The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte

Carlo ES, we use first-visit MC methods to estimate the action-value function for the

current policy. Without the assumption of exploring starts, however, we cannot

simply improve the policy by making it greedy with respect to the current value

function, because that would prevent further exploration of nongreedy actions.

➢ Fortunately, GPI does not require that the policy be taken all the way to a greedy

policy, only that it be moved toward a greedy policy.

➢ In our on-policy method we will move it only to an ε-greedy policy.

➢ For any ε-soft policy, π, any ε-greedy policy with respect to qπ is guaranteed to be

better than or equal to π.

➢ Consider a new environment that is just like the original environment, except with the

requirement that policies be ε-soft “moved inside” the environment.

➢ The new environment has the same action and state set as the original and behaves as

follows.

➢ If in state s and taking action a, then with probability 1 − ε the new environment

behaves exactly like the old environment.

➢ With probability ε it repicks the action at random, with equal probabilities, and then

behaves like the old environment with the new, random action.

➢ The best one can do in this new environment with general policies is the same as the

best one could do in the original environment with ε-soft policies.

➢ Let ve∗ and qe∗ denote the optimal value functions for the new environment. Then a

policy π is optimal among ε-soft policies if and only if vπ = ve∗.

➢ From the definition of ve∗ we know that it is the unique solution to

➢ In essence, we have shown in the last few pages that policy iteration works for ε-soft

policies. Using the natural notion of greedy policy for ε-soft policies, one is assured of

improvement on every step, except when the best policy has been found among the ε-

soft policies.

➢ This analysis is independent of how the action-value functions are determined at each

stage, but it does assume that they are computed exactly.

➢ This brings us to roughly the same point as in the previous section.

➢ Now we only achieve the best policy among the ε-soft policies, but on the other hand,

we have eliminated the assumption of exploring starts. The complete algorithm is

given in Figure 5.6.

5. Off-policy Prediction via Importance Sampling

➢ So far we have considered methods for estimating the value functions for a policy

given an infinite supply of episodes generated using that policy.

➢ Suppose now that all we have are episodes generated from a different policy.

➢ That is, suppose we wish to estimate vπ or qπ, but all we have are episodes following

another policy µ, where µ 6= π.

➢ We call π the target policy because learning its value function is the target of the

learning process, and we call µ the behavior policy because it is the policy controlling

the agent and generating behavior.

➢ The overall problem is called off-policy learning because it is learning about a policy

given only experience “off” (not following) that policy.

➢ In order to use episodes from µ to estimate values for π, we must require that every

action taken under π is also taken, at least occasionally, under µ.

➢ That is, we require that π(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of

coverage.

➢ It follows from coverage that µ must be stochastic in states where it is not identical to

π.

➢ The target policy π, on the other hand, may be deterministic, and, in fact, this is a case

of particular interest.

➢ Typically the target policy is the deterministic greedy policy with respect to the

current action-value function estimate.

➢ This policy we hope becomes a deterministic optimal policy while the behavior policy

remains stochastic and more exploratory, for example, an ε-greedy policy.

➢ Importance sampling is a general technique for estimating expected values under one

distribution given samples from another.

➢ We apply this technique to off-policy learning by weighting returns according to the

relative probability of their trajectories occurring under the target and behavior

policies, called the importance-sampling ratio.

➢ Given a starting state St , the probability of the subsequent state–action trajectory, At ,

St+1, At+1, . . . , ST , occurring under any policy π is

➢ Note that although the trajectory probabilities depend on the MDP’s transition

probabilities, which are generally unknown, all the transition probabilities cancel and

drop out.

➢ The importance sampling ratio ends up depending only on the two policies and not at

all on the MDP.

➢ Now we are ready to give a Monte Carto algorithm that uses a batch of observed

episodes following policy µ to estimate vπ(s).

➢ It is convenient here to number time steps in a way that increases across episode

boundaries. That is, if the first episode of the batch ends in a terminal state at time

100, then the next episode begins at time t = 101.

➢ This enables us to use time-step numbers to refer to particular steps in particular

episodes.

➢ In particular, we can define the set of all time steps in which state s is visited, denoted

T(s). This is for an every-visit method; for a first-visit method, T(s) would only

include time steps that were first visits to s within their episode.

➢ Also, let T(t) denote the first time of termination following time t, and Gt denote the

return after t up through T(t). Then {Gt}t∈T(s) are the returns that pertain to state s,

and {ρ T(t) t }t∈T(s) are the corresponding importance-sampling ratios. To estimate

vπ(s), we simply scale the returns by the ratios and average the results:

➢ When importance sampling is done as a simple average in this way it is called

ordinary importance sampling

➢ or zero if the denominator is zero.

➢ To understand these two varieties of importance sampling, consider their estimates

after observing a single return.

➢ In the weighted-average estimate, the ratio ρ T(t) t for the single return cancels in the

numerator and denominator, so that the estimate is equal to the observed return

independent of the ratio (assuming the ratio is nonzero).

➢ Given that this return was the only one observed, this is a reasonable estimate, but of

course its expectation is vµ(s) rather than vπ(s), and in this statistical sense it is

biased.

➢ In contrast, the simple average (5.4) is always vπ(s) in expectation (it is unbiased), but

it can be extreme.

➢ Suppose the ratio were ten, indicating that the trajectory observed is ten times as

likely under the target policy as under the behaviour policy. In this case the ordinary

importance-sampling estimate would been times the observed return.

➢ That is, it would be quite far from the observed return even though the episode’s

trajectory is considered very representative of the target policy.

➢ Formally, the difference between the two kinds of importance sampling is expressed

in their variances.

➢ The variance of the ordinary importance sampling estimator is in general unbounded

because the variance of the ratios is unbounded, whereas in the weighted estimator the

largest weight on any single return is one.

➢ In fact, assuming bounded returns, the variance of the weighted importance-sampling

estimator converges to zero even if the variance of the ratios themselves is infinite

(Precup, Sutton, and Dasgupta 2001).

➢ In practice, the weighted estimator usually has dramatically lower variance and is

strongly preferred.

Example 5.4: Off-policy Estimation of a Blackjack State Value We applied both ordinary

and weighted importance-sampling methods to estimate the value of a single blackjack state

from off-policy data. Recall that one of the advantages of Monte Carlo methods is that they

can be used to evaluate a single state without forming estimates for any other states. In this

example, we evaluated the state in which the dealer is showing a deuce, the sum of the

player’s cards is 13, and the player has a usable ace (that is, the player holds an ace and a

deuce, or equivalently three aces). The data was generated by starting in this state then

choosing to hit or stick at random with equal probability (the behaviour policy). The target

policy was to stick only on a sum of 20 or 21, as in Example 5.1. The value of this state under

the target policy is approximately −0.27726 (this was determined by separately generating

one-hundred million episodes using the target policy and averaging their returns). Both off-

policy methods closely approximated this value after 1000 off-policy episodes using the

random policy. Figure 5.7 shows the mean squared error (estimated from 100 independent

runs) for each method as a function of number of episodes. The weighted importance-

sampling method has much lower overall error in this example, as is typical in practice.

Example 5.5: Infinite Variance The estimates of ordinary importance sampling will typically

have infinite variance, and thus unsatisfactory convergence properties, whenever the scaled

returns have infinite variance—and this can easily happen in off-policy learning when

trajectories contain loops. A simple example is shown inset in Figure 5.8. There is only one

nonterminal state s and two actions, end and back. The end action causes a deterministic

transition to termination, whereas the back action transitions, with probability 0.9, back to s

or, with probability 0.1, on to termination. The rewards are +1 on the latter transition and

otherwise zero. Consider the target policy that always selects back. All episodes under this

policy consist of some number (possibly zero) of transitions back to s followed by

termination with a reward and return of +1. Thus the value of s under the target policy is thus

1. Suppose we are estimating this value from off-policy data using the behaviour policy that

selects end and back with equal probability. The lower part of Figure 5.8 shows ten

independent runs of the first-visit MC algorithm using ordinary importance sampling. Even

after millions of episodes, the estimates fail to converge to the correct value of 1. In contrast,

the weighted importance-sampling algorithm would give an estimate of exactly 1 ever after

the first episode that was consistent with the target policy (i.e., that ended with the back

action). This is clear because that algorithm produces a weighted average of the returns

consistent with the target policy, all of which would be exactly 1.

➢ To compute this expectation, we break it down into cases based on episode length and

termination.

➢ First note that, for any episode ending with the end action, the importance sampling

ratio is zero, because the target policy would never take this action; these episodes

thus contribute nothing to the expectation (the quantity in parenthesis will be zero)

and can be ignored.

➢ We need only consider episodes that involve some number (possibly zero) of back

actions that transition back to the nonterminal state, followed by a back action

transitioning to termination.

➢ All of these episodes have a return of 1, so the G0 factor can be ignored.

➢ To get the expected square we need only consider each length of episode, multiplying

the probability of the episode’s occurrence by the square of its importance-sampling

ratio, and add these up:

6. Incremental Implementation

➢ Monte Carlo prediction methods can be implemented incrementally, on an episode-

by-episode basis, using extensions of the techniques.

➢ For off-policy Monte Carlo methods, we need to separately consider those that use

ordinary importance sampling and those that use weighted importance sampling.

➢ In ordinary importance sampling, the returns are scaled by the importance sampling

ratio ρ T(t) t (5.3), then simply averaged.

➢ This leaves the case of off-policy methods using weighted importance sampling.

➢ Here we have to form a weighted average of the returns, and a slightly different

incremental algorithm is required.

➢ where C0 = 0 (and V1 is arbitrary and thus need not be specified). Figure 5.9

gives a complete episode-by-episode incremental algorithm for Monte Carlo

policy evaluation.

➢ The algorithm is nominally for the off-policy case, using weighted importance

sampling, but applies as well to the on-policy case just by choosing the target

and behaviour policies as the same.

7. Off-Policy Monte Carlo Control

➢ We are now ready to present an example of the second class of learning

control methods we consider in this book: off-policy methods.

➢ Recall that the distinguishing feature of on-policy methods is that they

estimate the value of a policy while using it for control.

➢ In off-policy methods these two functions are separated.

➢ The policy used to generate behaviour, called the behaviour policy, may in

fact be unrelated to the policy that is evaluated and improved, called the target

policy.

➢ An advantage of this separation is that the target policy may be deterministic

(e.g., greedy), while the behaviour policy can continue to sample all possible

actions.

➢ They follow the behavior policy while learning about and improving the target

policy. These techniques requires that the behavior policy has a nonzero

probability of selecting all actions that might be selected by the target policy

(coverage).

➢ To explore all possibilities, we require that the behavior policy be soft (i.e.,

that it select all actions in all states with nonzero probability).

➢ Figure 5.10 shows an off-policy Monte Carlo method, based on GPI and

weighted importance sampling, for estimating q∗.

➢ The target policy π is the greedy policy with respect to Q, which is an estimate

of qπ. The behaviour policy µ can be anything, but in order to assure

convergence of π to the optimal policy, an infinite number of returns must be

obtained for each pair of state and action.

➢ This can be assured by choosing µ to be ε-soft.

➢ A potential problem is that this method learns only from the tails of episodes,

after the last nongreedy action.

➢ If nongreedy actions are frequent, then learning will be slow, particularly for

states appearing in the early portions of long episodes.

➢ Potentially, this could greatly slow learning.

➢ There has been insufficient experience with off-policy Monte Carlo methods

to assess how serious this problem is.

➢ Alternatively, if γ is less than 1, then the idea developed in the next section

may also help significantly.

8. Importance Sampling on Truncated Returns.

