
 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 1 | P a g e

UNIT-I

Introduction to Programming and Problem Solving

History of Computers, Basic organization of a computer:

ALU, input-output units, memory, program counter,

Introduction to Programming Languages, Basics of a

Computer Program�Algorithms, flowcharts (Using Dia

Tool), pseudo code. Introduction to Compilation and

Execution, Primitive Data Types, Variables, and Constants,

Basic Input and Output, Operations, Type Conversion, and

Casting.

Problem Solving Techniques: Algorithmic approach,

characteristics of algorithm, Problem solving strategies:

Top-down approach, Bottom-up approach, Time and space

complexities of algorithms.

UNIT-II

Control Structures

Simple sequential programs Conditional Statements (if, if-

else, switch), Loops (for, while, do�while) Break and

Continue.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 2 | P a g e

UNIT-III

Arrays and Strings: Arrays indexing, memory model,

programs with array of integers, two dimensional arrays,

Introduction to Strings.

UNIT-IV

Pointers & User Defined Data types

Pointers, dereferencing and address operators, pointer and

address arithmetic, array manipulation using pointers, User-

defined data types-Structures and Unions.

UNIT-V

Functions & File Handling

Introduction to Functions, Function Declaration and

Definition, Function call Return Types and Arguments,

modifying parameters inside functions using pointers, arrays

as parameters. Scope and Lifetime of Variables, Basics of

File Handling

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 3 | P a g e

UNIT-I

Introduction to Programming and Problem Solving

History of Computers, Basic organization of a computer:

ALU, input-output units, memory, program counter,

Introduction to Programming Languages, Basics of a

Computer Program�Algorithms, flowcharts (Using Dia

Tool), pseudo code. Introduction to Compilation and

Execution, Primitive Data Types, Variables, and Constants,

Basic Input and Output, Operations, Type Conversion, and

Casting.

Problem Solving Techniques: Algorithmic approach,

characteristics of algorithm, Problem solving strategies:

Top-down approach, Bottom-up approach, Time and space

complexities of algorithms.

Introduction

What is a computer?

 Computer is a high-speed electronic device, which is

capable of performing logical and arithmetical operations. It

accepts data as input from the user processes and gives

desirable output.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 4 | P a g e

 In another word “computer is an electronic device

which can store and retrieve information and perform

mathematical and logical calculation

Advantages of Computer

Computer has become the life-style of mankind because of

its special features, which can be categorized as below:

(a) Speed: The first feature of computer is speed. It is a

very fast device, which can perform any type of task in a

fraction of seconds. When performing a particular task for

hours together, it can maintain the same speed till the end of

it. The speed of a computer can be measured in Pico seconds

that is nothing but trillionth part of a second.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 5 | P a g e

 Mili second = 100th of sec.

 Microsecond = 1 millionth of sec.

 Nano Second = 1 billionth of sec.

 Pico Second = 1000th of nano sec.

(b) Accuracy: The word accuracy means correctness of

result. The accuracy with which a computer performs

calculation or process data is very high. A computer never

gives any wrong information unless and until the user does

because a computer does all the operations using electronic

circuitry performing millions of operations every second.

These circuits can run error free for hours together.

(c) Storage: Computer stores many of our records and files

in its memory. We can easily retrieve our files & records

from the computer.

(d) Versatility: A computer is popular today because it can

performdifferent type of works like used for educational

use, for research, in banks and railways, in film and

animation making.

(e) Automation: A computer can perform a particular work

continuously for hours together without any human

intervention.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 6 | P a g e

(f) Diligence: A computer does not suffer from the human

traits of tiredness or bored. If 3 million calculations have to

be performed, it will perform the 3rd million calculations

with exactly the speed and accuracy asthe first one.

Difference between calculator and computer

1.1 History of Computers

The first counting device was used by the primitive people.

They used sticks, stones and bones as counting tools. As

human mind and technology improved with time more

computing devices were developed. Some of the popular

computing devices starting with the first to recent ones are

described below:

a) Abacus

The history of computer begins with the birth of abacus

which is believed to be the first computer. It is said that

Chinese invented Abacus around 4,000 years ago.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 7 | P a g e

It was a wooden rack which has metal rods with beads

mounted on them. The beads were moved by the abacus

operator according to some rules to perform arithmetic

calculations. Abacus is still used in some countries like

China, Russia and Japan. An image of this tool is shown

below:

b) Napier's Bones

It was a manually-operated calculating device which was

invented by John Napier (1550-1617) of Merchiston. In this

calculating tool, he used 9 different ivory strips or bones

marked with numbers to multiply and divide. So, the tool

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 8 | P a g e

became known as "Napier's Bones. It was also the first

machine to use the decimal point.

c) Pascaline

It is also called an Arithmetic Machine or Adding Machine.

A French mathematician-philosopher Blaise Pascal invented

this between 1642 and 1644. It was the first mechanical and

automatic calculator. It is invented by Pascal to help his

father, a tax accountant in his work or calculation. It could

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 9 | P a g e

perform addition and subtraction in quick time. It was

basically a wooden box with a series of gears and wheels. It

is worked by rotating wheel like when a wheel is rotated one

revolution, it rotates the neighbouring wheel and a series of

windows is given on the top of the wheels to read the totals.

d) Stepped Reckoner or Leibniz wheel

In 1673, a German mathematician-philosopher named

Gottfried Wilhelm Leibniz improved on Pascal‟s invention

to create this apparatus. It was a digital mechanical

calculator known as the stepped reckoner because it used

fluted drums instead of gears.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 10 | P a g e

e) Difference Engine

In the early 1820s, Charles Babbage created the Difference

Engine. It was a mechanical computer that could do basic

computations. It was a steam-powered calculating machine

used to solve numerical tables such as logarithmic tables.

f) Analytical Engine

Charles Babbage created another calculating machine, the

Analytical Engine, in 1830. It was a mechanical computer

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 11 | P a g e

that took input from punch cards. It was capable of solving

any mathematical problem and storing data in an indefinite

memory.

g) Tabulating machine

An American Statistician – Herman Hollerith invented this

machine in the year 1890. Tabulating Machine was a punch

card-based mechanical tabulator. It could compute statistics

and record or sort data or information. Hollerith began

manufacturing these machines in his company, which

ultimately became International Business Machines (IBM)

in 1924.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 12 | P a g e

h) Differential Analyzer

Vannevar Bush introduced the first electrical computer, the

Differential Analyzer, in 1930. This machine is made up of

vacuum tubes that switch electrical impulses in order to do

calculations. It was capable of performing 25 calculations in

a matter of minutes.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 13 | P a g e

i) Mark I

Howard Aiken planned to build a machine in 1937 that

could conduct massive calculations or calculations using

enormous numbers. The Mark I computer was constructed

in 1944 as a collaboration between IBM and Harvard.

1.2 Computer Generations

The computer has been grouped into five generations.

1. First generation

The first generation computers (1951-1958) used vacuum

tubes technology. The first computers are heavy, occupying

much space. It consumed large amount of power. It did not

have the stored program concepts.

 The first computer named was ENIAC

(Electronic Numerical Integrator and Calculator).

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 14 | P a g e

2. Second generation

The second generation computers (1959-1964) used

transistors technology. Transistors helped in developing

smaller and more reliable computers. It is used less power

and generated less heat than the first generation.

3. Third generation

The third generation computers (1964-1970) use

IC(Integrated Circuit) technology. The IC contained many

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 15 | P a g e

components fused together on a single chip. These

computers are very reliable and could store programs.

 The IC‟s are classified into four types

1. SSI (Small Scale Integrated Circuit)

2. MSI (Medium Scale Integrated Circuit)

3. LSI (Large Scale Integrated Circuit)

4. VLSI (Very Large Scale Integrated Circuit).

4. Fourth generation:

The fourth generation computers (1971 on words) used

Microprocessor technology, hence these computers are

called as micro computers or micros. It increases speed,

greater reliability, and large storage.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 16 | P a g e

5. Fifth generation:

In this generation, AI (Artificial Intelligence) technology is

used.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 17 | P a g e

1.3 Block diagram of a Computer

The basic organization of a computer system is the

processing unit, memory unit, and input-output devices. The

processing unit controls all the functions of the computer

system. It is the brain of the computer e.g. CPU. The

memory unit consists of two units. One is an arithmetic unit

and the other is a logic unit. Input devices are those devices

through which end-users can send messages to computers

e.g. keyboard, mouse, etc. Output devices are those devices

through which end-users get output from computers e.g.

monitors.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 18 | P a g e

1. Input Unit: - Usually a keyboard and mouse is the input.

Using these input devices we have to enter data and

instructions into a computer. Input unit is provided for man-

to-machine communication. It accept data in human

readable form, convert it into machine readable form and

sends it to CPU.

2. Central Processing Unit: - It is the heart of the

computer. The component that actually executes

instructions. It consists of three units.

a) Control Unit

b) Arithmetic Logic Unit (ALU)

c) Memory Unit (MU)

The main function of CPU is

 Controls the sequence of operation as per the stored

instructions.

 Issue commands to all parts of the computer.

 Stores data and instructions.

 Process the data and sends results to output.

a) Control Unit:- The control unit controls and co-ordinates

all operations of the CPU, input and output devices.

 It gives commands to transfer data from input unit to

memory unit, and Arithmetic Logical Unit(ALU).

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 19 | P a g e

 It stores the program in the memory and access

instructions one by one.

 It transfers the results from ALU to the memory unit

and output unit.

b) Arithmetic Logic Unit (ALU) :- It carries out all

arithmetic operations like addition, subtraction,

multiplication and division. It also performs all logical

operations. The logical operations consists of >, >=, <, <=,

==

3) Memory Unit: - It is used to store programs and data. It

is mainly two types they are

 Main Memory or primary memory or Immediate

Access Storage (IAS), which is part of the CPU.

 Auxiliary memory or secondary storage, which is

external to the CPU.

4). Output Unit:- Output Unit is provided for machine- to-

man communication. It receives the information from CPU

in machine readable form and presents it to the user in a

desired form. A computer may have one or more output

devices depending upon use.

 The Visual Display Unit (VDU) or

monitor and printers are most commonly used devices.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 20 | P a g e

Program Counter

A program counter (PC) is a CPU register in the computer

processor which has the address of the next instruction to be

executed from memory. It is a digital counter needed for

faster execution of tasks as well as for tracking the current

execution point.

 A program counter is also known as an

instruction counter, instruction pointer, instruction address

register or sequence control register.

1.4 Introduction to Programming Languages

Program and Programming:

Program: The set of instructions are called a program. For

Example, Programmers create programs by writing code

that instructs the computer what to do and execute it on

special software designed for it such as turbo C for

executing „C‟ Programs.

Programming:- Programming is the implementation of

logic to facilitate the specified computing operations and

functionality. Thus, in simple words, we can say that the

process of writing a program is called Programming.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 21 | P a g e

Types of computer languages

Basically, computer languages are divided into 3 types.

Machine language: Created with binary code [0, 1] and

they are very difficult for humans. Example: 11100001

Low level/assembly language: Created with English-like

shortcuts called MNEMONICS. Example: Add, Sub,

Subject, Subtract, Subway, Subscribe, Subscript,

subordinate

High-level language: Created with simple English.

Types of programming language

1. Low-level programming language

Low-level language is machine-dependent (0s and 1s)

programming language. The processor runs low- level

programs directly without the need of a compiler or

interpreter, so the programs written in low-level language

can be run very fast.

Low-level language is further divided into two parts -

i. Machine Language

Machine language is a type of low-level programming

language. It is also called as machine code or object code.

Machine language is easier to read because it is normally

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 22 | P a g e

displayed in binary or hexadecimal form (base 16) form. It

does not require a translator to convert the programs

because computers directly understand the machine

language programs.

The advantage of machine language is that it helps the

programmer to execute the programs faster than the high-

level programming language.

ii. Assembly Language

Assembly language (ASM) is also a type of low-level

programming language that is designed for specific

processors. It represents the set of instructions in a symbolic

and human-understandable form. It uses an assembler to

convert the assembly language to machine language.

The advantage of assembly language is that it requires less

memory and less execution time to execute a program.

2. High-level programming language

High-level programming language (HLL) is designed for

developing user-friendly software programs and websites.

This programming language requires a compiler or

interpreter to translate the program into machine language

(execute the program).

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 23 | P a g e

The main advantage of a high-level language is that it is

easy to read, write, and maintain.

High-level programming language includes Python, Java,

JavaScript, PHP, C#, C++, Objective C, Cobol, Perl, Pascal,

LISP, FORTRAN, and Swift programming language.

A high-level language is further divided into three parts –

i. Procedural Oriented programming language

Procedural Oriented Programming (POP) language is

derived from structured programming and based upon the

procedure call concept. It divides a program into small

procedures called routines or functions.

Procedural Oriented programming language is used by a

software programmer to create a program that can be

accomplished by using a programming editor like IDE,

Adobe Dreamweaver, or Microsoft Visual Studio.

The advantage of POP language is that it helps programmers

to easily track the program flow and code can be reused in

different parts of the program.

Example: C, FORTRAN, Basic, Pascal, etc.

ii. Object-Oriented Programming language

Object-Oriented Programming (OOP) language is based

upon the objects. In this programming language, programs

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 24 | P a g e

are divided into small parts called objects. It is used to

implement real-world entities like inheritance,

polymorphism, abstraction, etc in the program to makes the

program resusable, efficient, and easy-to-use.

The main advantage of object-oriented programming is that

OOP is faster and easier to execute, maintain, modify, as

well as debug.

Example: C++, Java, Python, C#, etc.

iii. Natural language

Natural language is a part of human languages such as

English, Russian, German, and Japanese. It is used by

machines to understand, manipulate, and interpret human's

language. It is used by developers to perform tasks such as

translation, automatic summarization, Named Entity

Recognition (NER), relationship extraction, and topic

segmentation.

The main advantage of natural language is that it helps users

to ask questions in any subject and directly respond within

seconds.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 25 | P a g e

3. Middle-level programming language

Middle-level programming language lies between the low-

level programming language and high-level programming

language. It is also known as the intermediate programming

language and pseudo-language.

A middle-level programming language's advantages are that

it supports the features of high-level programming, it is a

user-friendly language, and closely related to machine

language and human language.

Example: C, C++, language

1.5 What is Software?

Software is a collection of the program which uses the

resources of the Hardware components. A Program is a set

of instructions that are designed for a particular task. The set

of programs is called software. Let us understand this with

an example i.e. Calculator. For each button, there is some

program written inside it. That means a calculator is a

collection of programs. And we can also say that a

Calculator is a software. So, the software is a collection of

programs.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 26 | P a g e

Types of Software

The three major types of software are:

 System Software

 Application Software

 Programming Languages

System software programs manage and control the

hardware of the computer. The system software has direct

access to the hardware. System software maintains the

computer to run more efficiently. System software can

further be classified into the following types:

 Operating System

 Network Operating System

 System Utilities

Application software consists of software applications that

are useful to the users. Application software is dependent on

System software.

These can be divided into:

 General-purpose software

 Application-specific software

General-purpose software can be used for any purpose and

for any application. For example, MS Office, OpenOffice,

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 27 | P a g e

RDBMS like Oracle, and MySQL, Application servers like

JBoss, etc.

Application-specific software can only be used for a

specific purpose. For example, a Banking application

developed for a specific bank.

Programming Languages

Programming languages are used to write code, build, test,

and debug software applications. Some examples of high-

level programming languages are as follows:

 BASIC

 Pascal

 FORTRAN

 C

 C++

 Java

 Kotlin

 MATLAB

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 28 | P a g e

1.6 Basics of a Computer Program

We assume you are well aware of English Language, which

is a well-known Human Interface Language. English has a

predefined grammar, which needs to be followed to write

English statements in a correct way. Likewise, most of the

Human Interface Languages (Hindi, English, Spanish,

French, etc.) are made of several elements like verbs, nouns,

adjectives, adverbs, propositions, and conjunctions, etc.

Similar to Human Interface Languages, Computer

Programming Languages are also made of several elements.

We will take you through the basics of those elements and

make you comfortable to use them in various programming

languages. These basic elements include −

 Programming Environment

 Basic Syntax

 Data Types

 Variables

 Keywords

 Basic Operators

 Decision Making

 Loops

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 29 | P a g e

 Numbers

 Characters

 Arrays

 Strings

 Functions

 File I/O

a) Algorithms

An algorithm is the step-by-step logical procedure for

solving a problem. Each step is called an instruction. An

algorithm can be written in English like sentences or in any

standard representation. The algorithm written in English

like language is called “pseudo code”.

Properties of algorithm: According to D.E Knuth a pioneer

(found) in the computer discipline an algorithm must have

the following properties.

 Input

 Output

 Definiteness

 Finiteness

 Effectiveness

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 30 | P a g e

Input: Every algorithm takes zero or more inputs . Inputs

are the numeric or non-numeric quantities that are given to

an algorithm.

Output: An algorithm produces one or more outputs. If

there are no outputs, the algorithm is considered not to have

solved any computational problem.

Definiteness: Each instruction in an algorithm should be

clear and unambiguous (unclear).

Finiteness: The algorithm should terminate after a finite

number of steps. It should not enter into an infinite loop.

Effectiveness: Each step of algorithm must be effective ie;

every operation should be done roughly be pen and paper.

I.e.; tracing of each step should be possible.

b) Flowchart

A flowchart is a pictorial representation of an algorithm. It

shows the flow of operations in pictorial form and any error

in the logic of the problem can be detected very easily. A

flow chart uses different shapes of boxes and symbols to

denote different types of instructions. These symbols are

connected by solid lines with arrow marks to indicate the

operation flow.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 31 | P a g e

Normally an algorithm is represented in the form of a flow

chart and the flow chart is then expressed in some

programming language to prepare a computer program.

Flow chart symbols: A few symbols are needed to indicate

the necessary operations in a flow chart. These symbols

have been standardized by the American National Standard

Institute (ANSI). These symbols are

Start and stop commands are written within this symbols.

Operations are written with in these symbols.

Read and writing operations are indicated within this

symbol.

Processing

Input/output

Condition

Start/stop

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 32 | P a g e

Control operations are indicated with in this symbol.

One part of the flow chart is connected to another by using this

symbol when it does not fit into one sheet.

 Flow of control is indicated with this symbol.

A group of steps or instructions or a sub-algorithm is indicated

with in this symbol.

An activity carried out as part of a function or subroutine is

indicated within this symbol.

Connector

Subroutine/function

calls

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 33 | P a g e

Example: Write an algorithm for finding the average of

given three numbers and draw the flow chart for the same.

Sol: Algorithm

1. Start

2. Read a b and c

3. Compute sum=a+b+c

4. Avg=sum/3;

5. Print avg

6. Stop

Flow chart:

 Start

Read a, b ,c;

Sum=a+b+c;

Avg=sum/3;

Print Avg

 Stop

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 34 | P a g e

Advantages of Using Flowcharts

Communication: Flowcharts are better way of

communicating the logic of a system to all concerned or

involved.

Effective analysis: With the help of flowchart, problem can

be analyzed in more effective way therefore reducing cost

and wastage of time.

Proper documentation: Program flowcharts serve as a

good program documentation, which is needed for various

purposes, making things more efficient.

Efficient Coding: The flowcharts act as a guide or blueprint

during the systems analysis and program development

phase.

Proper Debugging: The flowchart helps in debugging

process.

Efficient Program Maintenance: The maintenance of

operating program becomes easy with the help of flowchart.

It helps the programmer to put efforts more efficiently on

that part

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 35 | P a g e

Disadvantages of Flowchart

A few disadvantages of Flowcharts are as follows:

 Difficulty in presenting complex programs and tasks.

 No scope for alteration or modification

 Reproduction becomes a problem

 It‟s a time-consuming process

 Difficult to understand for people who don‟t know

flowchart symbols.

 No man to computer communication.

Difficulty in presenting complex programs and tasks:

Complex tasks cannot be presented through symbols so

easily. Sometimes it becomes difficult for even for the

expert to present the program having complicated steps.

Various logics of the program are difficult to draw in a set

or already defined shapes in a flowchart.

No scope for alteration or modification: If there is any

error found in the process or logic of the flowchart, it is

difficult to alter or modify the same. This is because both we

have to erase the beginning or end of the program and the

whole flowchart is affected.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 36 | P a g e

Reproduction becomes a problem: The flowchart symbols

cannot be drawn. We have to use different applications like

Word or Excel to draw shapes and type words inside those

symbols. This recreation becomes difficult as they require

shapes to present the whole process.

It‟s a time-consuming process: as we have already seen,

reproduction of flowcharts is a problem due to the

complexity of shapes and the use of no specific application

to give already set up symbols to write the logic of the

process or task. Thus it becomes a time-absorbing task.

Difficult to understand for people who don‟t know

flowchart symbols: Since not all are experts in

understanding the purpose and motive behind using specific

symbols in a flowchart it is not understandable by the

common people instantly. This proper knowledge and

expertise are important to understand the flowchart. Thus

communication will become more effective.

No man to computer communication: A flowchart is not

meant for man to computer communication. Only man can

interpret the result of the flowchart.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 37 | P a g e

c) Pseudo code

Pseudo code is structured English for describing algorithms

concisely. It is made up of two words, namely, pseudo

meaning imitation and code meaning instructions. As the

name suggests, pseudo code does not obey the syntax rules

of any particular programming language i.e. it is not a real

programming code. It allows the designer to focus on main

logic without being distracted by programming languages

syntax.

Guidelines for Preparing Pseudo code

 Pseudo code will be enclosed by START (or

BEGIN) and STOP (or END).

 Pseudo code should be concise so ignore

unnecessary details.

 To accept data from user, generally used statements

are INPUT, READ, GET or OBTAIN.

 To display result or any message, generally used

statements are PRINT, DISPLAY, or WRITE.

 Generally used keywords are capitalized while

preparing pseudo code.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 38 | P a g e

Example of Pseudo code

Pseudo code: Calculation of Simple Interest

Advantages of Pseudo code

 It allows the designer to focus on main logic without

being distracted by programming languages syntax.

 Since it is language independent, it can be translated

to any computer language code.

 It allows designer to express logic in plain natural

language.

 It is easier to write actual code using pseudo code.

 Unlike algorithms, pseudo codes are concise so

pseudo codes are more readable and easier to

modify.

Disadvantages of Pseudo code

 There are no accepted standards for writing pseudo

codes and designer use their own style while writing

pseudo codes.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 39 | P a g e

 Pseudo code cannot be compiled and executed so its

correctness cannot be verified by using computers.

1.7 Fundamentals of C: History

How „C‟ evolved: The development of C language was a

result of the evolution of several languages. This can be

called the „ancestors‟ of C. Those were ALOGOL60, CPL,

BCPL, and B.

 In 1960 many computer languages, each for a

specific purpose, were developed.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 40 | P a g e

1. ALGOL 60: ALGOL 60 was a modular and

structured language but it did not succeed because it

was found to be too abstract (theoretical) and

too general (all-purpose).

2. CPL: The Combined Programming

Language was developed at Cambridge University

and university of London in 1963. However it was

hard to learn and difficult to implement.

3. BCPL: The basic combined programming

language was very close to CPL and developed by

Martin Richards at Cambridge University in 1967.

BCPL was too less powerful and too specific and

hence it failed.

4. B: The father of C language was the B

language developed by ken Thompson of Bell

Laboratories in 1970. It was first designed for UNIX.

However, it was machine dependent and a type

less language.

5. C: The „C‟ programming language was

invented by Dennis Ritchie in 1972 at Bell

Laboratories. The C was closely linked with UNIX

for which it was developed.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 41 | P a g e

Application areas

1. „C‟ is a general purpose programming language and not

designed for specific application areas like FORTRAN

(Scientific) and COBOL (Business).

2. C is well suited for business as well as scientific

applications because it has various features requires for

these applications. However it is better suited and widely

used for system software like operating systems, compilers,

interpreters etc.

Why C

 There are several reasons why C is a popular programming

language.

1. Flexibility: C is a general purpose language. It can be

used for diverse applications. The language itself places no

constraints on the programmer.

2. Powerful: It provides a variety of data types, control flow

instructions for structured programs and other built in

features.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 42 | P a g e

3. Small size: C language provides no input/output facilities

or file access. These mechanisms are provided by functions.

This helps in keeping the language small. C has only 32

keywords which can be described in a small space and

learned quickly.

4. Modular design: The C code has to be written in

functions which can be linked with or called in other

programs or applications. C also allows user defined

functions to be stored in library files and linked to other

programs.

5. Portability: A C program written for one computer

system can be compiled and run on another with little or no

modification.

6. High level structured language features: This allows

the programmer to concentrate on the logic flow of the code

rather than worry about the hardware instructions.

7. Low level features: C has a close relationship with the

assembly language making it easier to write assembly

language code in C program.

8. Bit engineering: C provides bit manipulation operators

which are a great advantage over other languages.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 43 | P a g e

9. Use of pointers: This provides for machine independent

address arithmetic.

10. Efficiency: A program written in C has development

efficiency as well as machine efficient (i.e., faster to

execute).

Limitations of C language

1. It was not suitable for programming of numerical

algorithms since it does not provide suitable data structures.

2. C does not perform bound checking on arrays.

3. C is not a strictly type checking language.

4. The order of evaluation of function arguments is not

specified by the language.

Example:- In the function call f(i, ++i) is not defined.

Whether the evaluation is left to right or right to left.

5. The order in which operators are evaluated is not

specified by the language.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 44 | P a g e

1.8 Structure of a C program

A C program consists of functions, one of which is main().

The program begins executing at main (). The basic

structure of a C program is as shown:

Documentation section

Link section

Definition section

Global declaration section

Function section

main()

{

 Declaration part

 Executable part

}

Sub program section

Function 1

Function2

.

 Function n

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 45 | P a g e

1. Documentation section

 This section consists of comments specifies the name of the

program, author and other details. These comments

beginning with two characters /* and ending with the

characters */. No space can be included between these pairs

of characters any characters may be included in either upper

case or lower case.

2. Link section

This section provides the compiler to link functions from the

system library (Ex:- stdio.h , conio.h , math.h).

3. Definition section

This section defines all symbolic constants.(Ex:- # define

Max 100 or #define PI 3.14).

4.Global declaration section

Some variables are used in one or more function, such

variables are called global variables and are declared in this

section. I.e.; outside of the all the functions.

5. Main function section

Every C program must have at least one function ie; main()

function. This main section has two parts.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 46 | P a g e

 Declaration part

 Executable part

The declaration part declares all the variables that are used

in the executable part. There is at least one statement in the

executable part. These two parts can appear between the

opening and closing braces. In all C programs execution

begins at this opening and closing braces and ends at this

closing brace. All the declaration and executable statements

end with a semi colon.

6. Subprogram section

This section contains user defined functions that are

mentioned in the main function. User defined functions are

generally placed immediately after the main function.

1.9 Introduction to Compilation and Execution

The compilation process in C is converting an

understandable human code into a Machine understandable

code and checking the syntax and semantics of the code to

determine any syntax errors or warnings present in our C

program. Suppose we want to execute our C Program

written in an IDE (Integrated Development Environment).

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 47 | P a g e

In that case, it has to go through several phases of

compilation (translation) to become an executable file that a

machine can understand.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 48 | P a g e

The compilation and execution process of C can be divided

in to multiple steps:

Preprocessing - Using a Preprocessor program to convert C

source code in expanded source code. "#includes" and

"#defines" statements will be processed and replaced

actually source codes in this step.

Compilation - Using a Compiler program to convert C

expanded source to assembly source code.

Assembly - Using a Assembler program to convert

assembly source code to object code.

Linking - Using a Linker program to convert object code to

executable code. Multiple units of object codes are linked to

together in this step.

Loading - Using a Loader program to load the executable

code into CPU for execution.

General compilation process is shown in Figure below:

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 49 | P a g e

1.10 Primitive Data Types

Data types in C: Name given to set of values which have

common property is known as data type. [or] A data type

defines a set of values and the operations that can be

performed on them are called a data type.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 50 | P a g e

C- Data types are classified as

 1. Integer data type: Integer data types are basic data type.

For example int we can assign any value which has no

fractional part to int type. C offers three different integer

data types they are

Int short int long int

The difference between these three integers is the number of

bytes to occupy and the range of values.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 51 | P a g e

2. Float data type: floating data types are the number

which consists fractional part also. Like integers floats are

divided into three types. They are

float double long double

Data type Format

string

Number of

bytes

Range

Float %f 4 3.4E-38 to

3.4E+38

Double %lf 8 1.7E-308 to

1.7E+3.8

Long

double

%lf 10 3.4E-4932 to

3.4E+4932

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 52 | P a g e

3. Character data type: A char data type can store an

element of machine‟s character set and will occupy 1 byte.

It is of two types. They are

 Signed char unsigned char

Data type Format

string

Number of

bytes

Range

Signed char %c 1 -128 to +127

Unsigned

char

%c 1 0 to 255

User defined data type:

1. Enumeration data type: An enumerated data type is a set

of values represented by identifiers called enumeration

constants.

Syntax: enum data type name { const1, const2,

const3,……….};

Example: enum dat {mon, tue, wen, thu, fri,sat, sun };

 Enum day day1, day2, day3;

Day1, day2, day3 are enumerated data types variables. We

can assign any member to day1, day2, day3 variable like

Day1=mon;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 53 | P a g e

Day2=tue;

Day3=wen; ……….

An enumerated data type is a user defined data type which

provides away for attaching names to numbers. It

increasing comprehensibility of the code. This can help in

making the program listing more readable. Enumerated

variables are usually used to clarify the operation of a

program and make the program readable.

2. Typedef: The users can define an identifier that

represents an existing data type by a feature known as

“typedef”.(Creating a new data type is called typedef) The

user defined data type identifier can later be used to declare

variables.

Syntax: typedef type identifier;

Here type refers to an existing data type and identifier refers

to the new name given to the data type.

Example:

#include<stdio.h>

#include<conio.h>

#define H 60

void main()

 {

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 54 | P a g e

 typedet int hours;

hours hrs;

pritntf(“Enter the hours”);

scanf(“%d”,&hrs);

printf(“minutes=%d”,hrs*h);

printf(“seconds=%d”, hrs*h*h);

getch();

}

Void data type: void is an empty data type defined by the

keyword void. It is used with functions. Void data type is

used in three places.

a)Before the function b) declared the void inside the

function c) both

a) Before the function: If we use before the function it

does not return any value.

 Example: void main()

b) Declare the void inside the function: If we use the void

inside the function, that indicates the function does not takes

any argument.

Example: main(void)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 55 | P a g e

c) Both a and b: If we use the void before the function and

inside of the function that indicates, the function neither

returns a value nor requires any argument.

Example: void main(void).

Structured data type:

The structured data types are

Array Structure Union Class

Array: Array is a collection of elements of similar data

types in which each element is located in separate memory

location.

Structure: The struct is keyword and used to combine

variables of different data types into a single record.

Union: A union is same as a structure. The only difference

is that all the variables will share the same memory space.

 Class: It is defined as set of data members and member

functions in a single unit is called a class.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 56 | P a g e

1.11 Variables

A variable name is an identifier or symbolic name assigned

to the memory location where data is stored. A variable can

have only one value assigned to it at any given time during

the execution of the program.

Rules regarding naming variables:

1. The variable name is an identifier, the same rules apply.

2. Meaningful names should be given so as to reflect value it

is representing.

Syntax:

Data type variable1, variable2 ……..;

Example:

int I, count;

float price, salary;

char c;

Where variable are declared

Variables will be declared in three basic places.

 Inside functions.

 In the definition of function parameters

 Outside of all functions.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 57 | P a g e

These are

a)Local variables b) Global variables c) Formal

variables

a) Local variables: variables that are declared inside a

function are called local variables. Local variables exist only

while the block of code in which they are declared is

executing.

Example:

 void fun1(void)

 {

 int x; local variables

 x=10;

 }

b) Global variable: variables that are declared outside of all

functions is called a global variables.

Example:

 int x; global variables

 void fun1(void)

 {

 x=10;

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 58 | P a g e

c) Formal parameters: If a function is use arguments, it

must declare variables that will accept the values of the

arguments. These variables are called the formal parameters

of a function.

Example:

 Void add(int y)

 {

 int y=5;

 y=y+5;

 printf (“value of y=%d”, y);

 }

Constant and volatile variables:

 Constant variable: If we want that the value of a certain

variable remains the same or remains unchanged during the

execution of a program then, it can be done only by

declaring the variable as a constant.

 The keyword const is then added before the

declaration. It tells the compiler that the variable is a

constant.

Example: const int m=10;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 59 | P a g e

Volatile variable: The volatile variables are those variables

that are changed at any time.

Example: volatile int d;

1.12 Constants

Constants refer to fixed values that do not change during

program execution. They can be classified as

 Numerical constants are classified into

1. Integer constants 2. Real constants

1. Integer constants: An integer constant is a sequence of

digits without a decimal point. No commas and no blank

spaces are allowed. It can be either +ve or - ve. If no sign

proceeds it is assumed to be +ve. It requires minimum of

two bytes.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 60 | P a g e

Example: 10 20 +30 -15

2. Real constants: Real constants often known as floating

point constants. These are real numbers having a decimal

point or an exponential or both.

Example: 0.246 9.345

Character constants: Character constants are classified

into two types.

1. Single character constants 2. String constants

1. Single character constants: Any character written

within single quotes is called character constant. Character

constants have integer values known as ASCII values.

Example: „a‟ „8‟

Escape sequence: C supports some special character

constants used in output functions. They are also called

character constants because they contain a black slash and a

character. The complete set of escape sequence is

Char Meaning

\a alert (bell)

\b back space

\f form feed

\n new line

\r carriage return

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 61 | P a g e

\t horizontal tab

\v vertical tab

\0 NULL char

\\ back slash

\ ? question mark

2. String constants or string literals: A string constant is a

sequence of zero or more characters enclosed in double

quotes. String constants are also known as string literals.

Example: “ welcome to hello world”

The internal representation of a string has a NULL char (\0)

at the end. Therefore the physical storage required is one

more than the number of characters in the string.

1.13 Operators and expressions

Operator is a symbol, which operates one or more operands

with a specific meaning. C has very rich in-built in

operators. An operator tells the computer to perform some

specific operation.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 62 | P a g e

Example: sum=a+b where a and b are operands and +

is an operator

Expression: The combination of operators and operand is

called a expression.

a) Arithmetic operators:

/* Write a c program based on arithmetic operator */

#include<stdio.h>

#include<condio.h>

void main()

 {

 printf(“%d”, 10+2);

 printf(“%d”, 10-2);

 printf(“%d”, 10*2);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 63 | P a g e

 printf(“%d”, 10/2);

 printf(“%d”, 10%2);

getch();

}

Output: 12 8 20 5 0

/* write a c program to show precedence of the arithmetic

operators */

#include<stdio.h>

#include<conio.h>

void main()

{

 printf(“%d”, 2+3*2);

printf(“%d”, 6/6*3);

printf(“%d”,3+3/6);

printf(%d”,(3+3)/6;

getch();

}

Output: 8 3 3 1

b) Assignment operators:

 k=0;

 int a, b, c;

 a=10;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 64 | P a g e

Statement with simple

assignment operator

Statement with short

hand operator

a=a+1 a+=1

a=a-1 a-=1

a=a*(n+1) a*=n+1

a=a/(n+1) a/=n+1

a=a%b a%=b

Table: short hand assignment operators

Advantages of shorthand assignment operator:

 1.What appears on the left-hand side need not be

repeated and therefore it becomes easier to write.

 2.The statement is more concise and easier to read.

 3.The statement is more efficient.

/* Write a C program based on the assignment operator */

#include<stdio.h>

#include<conio.h>

void main()

{

 int a,b,c;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 65 | P a g e

a=10;

b=c=a;

a+=b+c;

printf(“a=%d b=%d c=%d”, a, b, c);

getch();

}

Output: a=30 b=10 c=10

/* Write a C program to prints a sequence of squares of

numbers using shorthand operator */

#include<stdio.h>

#include<conio.h>

#define N 100

#define A 2

void main()

 {

 int a;

 a=A;

 while(a<N)

 {

 printf(“%d\n”, a);

 a*=a;

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 66 | P a g e

getch();

}

Output: 2 4 16

c) Conditional operator [or] ternary operator: The

conditional operator? and: are sometimes called ternary

operator. It operates on three operands, and it is a

conditioned form of an if-else C statement.

Syntax: Exp1? Exp2 : Exp3

If Exp1 is true then Exp2 will be executed. If Exp1 is false

then Exp3 will be executed.

Example: Write a c program to use the conditional operator

with two statements

#include<stdio.h>

#include<conio.h>

void main()

 {

 clrscr();

 3>2 ? printf(“True”) : printf(“False”);

 getch();

 }

Write a c program to check whether given num is zero or

non zero using conditional operator or ternary operator.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 67 | P a g e

#include<stdio.h>

#include<conio.h>

void main()

 {

 int num;

 clrscr();

 printf(“enter the number”);

 scanf(“%d”,&num);

 num? printf(“non zero”) : printf(“zero”);

 gethc();

}

Write a c program to find the large value among three given

values using ternary operator

#include<stdio.h>

#include<conio.h>

void main()

 {

 int a, b, c, max;

 clrscr();

 printf(“enter the a, b, c values”);

 scanf(“%d%d%d”, &a,&b,&c);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 68 | P a g e

 max= (a>b && a>c) ? a: ((b>c) ? b: c);

 printf(“max=%d”, max);

 getch();

}

d) Relational operator: The operators are used to compare

arithmetic , logical and character expressions.

Operator Purpose

= = is equal to

! = not equal

< less than

> grater than

< = less than or equal

>= greater than or equal

Write a c program show the activity of relational operators

#include<stdio.h>

#include<conio.h>

void main()

 {

 clrscr();

 printf(“%d” , 2<3);

 printf(“%d” , 2>3);

 printf(“%d” , 2==3);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 69 | P a g e

 printf(“%d” , 2!=3);

 printf(“%d” , 2<=3);

 printf(“%d” , 2>=3);

 getch();

 }

e) Logical operator: These operators are used to compare

or evaluate logical and relational expressions. The result of

the logical expression will be either true(1) or false (0).

Operator Activity

&& AND

|| OR

! Not

AND (&&): If both inputs are true then the output is true

otherwise false.

A B A&&B

0 0 0

0 1 0

1 0 0

1 1 1

OR(| |): If both inputs are false then the output is false

otherwise true.

A B A&&B

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 70 | P a g e

0 0 0

0 1 1

1 0 1

1 1 1

Not (!) : If the input is true then output is false. If the input

is false then output is true

A ~A

0 1

1 0

Write a c program to display truth table of AND using &&

operator

#include<stdio.h>

#include<conio.h>

void main()

 {

 clrscr();

 printf(“ 0&&0=%d\n” , 0&&0);

 printf(“ 0&&1=%d\n” , 0&&1);

 printf(“ 1&&0=%d\n” , 1&&0);

 printf(“ 1&&1=%d\n” , 1&&1);

 getch();

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 71 | P a g e

Write a c program to display truth table of | | (OR)

 #include<stdio.h>

#include<conio.h>

void main()

 {

 clrscr();

 printf(“ 0||0=%d\n” , 0||0);

 printf(“ 0||1=%d\n” , 0||1);

 printf(“ 1||0=%d\n” , 1||0);

 printf(“ 1||1=%d\n” , 1||1);

 getch();

 }

Write a c program to display truth table of (!) not operator

#include<stdio.h>

#include<conio.h>

void main()

 {

 clrscr();

 printf(“ !0=%d\n” , !0);

 printf(“ !1=%d\n” , !1);

 getch();

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 72 | P a g e

f) Bitwise operator: These operators are used to operate

with bits of data for complementing, testing, setting or

shifting the bits of data in a byte or word.

Operator Operator name Purpose

~ complement for 1‟s complement

>> right shift to move bits to right

<< left shift to move bits to left

& bitwise AND to reset (0) / compare bits

! bitwise OR to reser(1)/ compare bits

^ bitwise exclusive OR (XOR) to clear the bits

Note: Bitwise operators work only with char and int data

types and not useful for float, double, void or complex data

types.

Write a c program for ~ (complement operator)

#include<stdio.h>

#include<conio.h>

void main()

 {

 char num=10;

 clrscr();

 printf(“%d\n” , ~num);

 getch();

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 73 | P a g e

 }

Write a c program for bitwise AND operator (&)

#include<stdio.h>

#include<conio.h>

void main()

 {

 char a=10;

 clrscr();

 printf(“ %d\n” , a&2);

 getch();

 }

Output: 2

Hint: Binary form of 10 = 0 0 0 1 0 1 0

 Binary form of 2 = 0 0 0 0 0 0 1 0

 AND operaration =0 0 0 0 0 0 1 0

Write a c program for bitwise OR operator (|)

#include<stdio.h>

#include<conio.h>

void main()

 {

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 74 | P a g e

 char a=10;

 clrscr();

 printf(“ %d\n” , a|2);

 getch();

 }

Output: 10

Hint: Binary form of 10 = 0 0 0 0 1 0 1 0

 Binary form of 2 = 0 0 0 0 0 0 1 0

 OR operaration = 0 0 0 0 1 0 1 0

Write a c program for bitwise XOR operator (^)

#include<stdio.h>

#include<conio.h>

void main()

 {

 char a=10;

 clrscr();

 printf(“ %d\n” , a^2);

 getch();

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 75 | P a g e

Write a c program to shift input data by two bits right (>>)

#include<stdio.h>

#include<conio.h>

void main()

 {

 int x, y;

 clrscr();

 printf(“enter the number ”);

 scanf(“%d”,&x);

 y=x>>2;

 printf(“ the right shifted data is %d”, y);

 getch();

 }

Formula:- y=n/2s where n is number and s is number of

position to be shifted.

Write a c program to shift input data by two bits right (<<)

#include<stdio.h>

#include<conio.h>

void main()

 {

 int x, y;

 clrscr();

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 76 | P a g e

 printf(“enter the number ”);

 scanf(“%d”,&x);

 y=x<<2;

 printf(“ the right shifted data is %d”, y);

 getch();

 }

Formula:- y=n*2s where n is number and s is number of

position to be shifted.

g) Increment and decrement operator: C has tow useful

operators

 1) ++ (increment operator)

 2) – (decrement operator)

The ++ operator adds 1 to its operand. The – operator

subtracts 1 from its operand.

These operators may be either pre increment/or pre

decrement or post increment /post decrement.

Write a c program to show the effect of increment operator

as a suffix.

#include<stdio.h>

#include<conio.h>

void main()

 {

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 77 | P a g e

 int a, z, x=10, y=20;

 clrscr();

 z= x*y++;

 a=x*y;

 printf(“ %d %d”, z,a);

 getch();

 }

Output: z=200 a=210

Note: z=x*y++ means first y value is assigned, later y will

be incremented so z=200 and a=210

Write a c program to show the effect of increment operator

as a prefix.

#include<stdio.h>

#include<conio.h>

void main()

 {

 int a, z, x=10, y=20;

 clrscr();

 z= x* ++y;

 a=x*y;

 printf(“ %d %d”, z,a);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 78 | P a g e

 getch();

 }

Output: z=210 a=210

Write a c program to perform increment and decrement

operator

#include<stdio.h>

#include<conio.h>

void main()

 {

 int , x=6, y=4,z;

 clrscr();

 z= ++x + y-- + x++ - x-- + y++ + --y +

++x;

 printf(“y= %d z= %d x= %d” y, z, x);

 getch();

 }

H) Special operators: The special operators are

 sizeof () operator

 Comma operator (,)

 Address of operator (&)

 Value at address operator (*)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 79 | P a g e

1) sizeof () operator: the sizeof operator is used to obtain

the size of a variable which occupies in system‟s memory.

The sizeof() return value (in bytes) is the size of a variable

or type with in the parenthesis.

Syntax: sizeof (object);

Where object may be any data type, variable or expression.

Example: int n1;

 n1= sizeof(int);

Write a c program on sizeof() operator

 #include<stdio.h>

#include<conio.h>

void main()

 {

 int x;

 float y;

 clrscr();

printf(“\n sizeof(x) =%d bytes”, size(x));

printf(“\n sizeof(y) =%d bytes”, size(y));

printf(“\n address of x =% u and y=%u”, &x,&y);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 80 | P a g e

2) Comma operator: The comma operator separates the

expressions

Syntax: exp1, exp2,……………expn;

Example: #include<stdio.h>

#include<conio.h>

void main()

 {

 printf(“addition=%d\n sub=%d”, 2+3, 5-4);

 getch();

 }

3) Address of operator(&): This operator is used to find

the address of a variable of any data type.

Example: m=&n; here address of n is assigned to m. This

m is not a ordinary variable, it is a variable which holds the

address of the other variable.

4) Value at address (*): This operator is used to find the

value at a particular memory location. This operator is also

called as indirection operator or dereferencing operator.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 81 | P a g e

1.14 Basic Input and Output

Reading the data from the input device and displaying the

results on the screen, are the two main tasks of any program.

To perform these tasks user friendly C has a number of

input and output functions. When a program needs data, it

takes the data through the input functions and sends results

obtained through the output functions.

There are number of I/O functions in C based on the data

types. The input/output functions are classified into two

types

1) Formatted functions: The formatted input/output

functions read and write all types of data values. They

require conversion symbol to identify the data type.

2) Unformatted functions: The unformatted input/out

functions only work with the character data type. They do

not require conversion symbol for identification of data

types because they work only with character data type.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 82 | P a g e

Formatted functions

a) The printf () statement

The printf () function prints all types of data values to the

console. It requires conversion symbol and variable names

to print the data. The conversion symbol and variable names

should be same in number. The example of print ()

statement is given below.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 83 | P a g e

b) The scanf () statement

The scanf () statement reads all types of data values. It is

used for runtime assignment of variables. The scanf ()

statement also requires conversion symbol to identify the

data to be read during the execution of a program.

Syntax

Scanf (“%d %f %c”, &a, &b, &c);

 Unformatted functions

C has two types of I/O functions.

 Character I/O

 String I/O

a) Character I/O

The getchar() and putchar() Functions

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 84 | P a g e

The int getchar(void) This function reads character type

data from the standard input. It reads one character at a time

till the user presses the enter key.

The int putchar(int c) function puts the passed character on

the screen and returns the same character. This function puts

only single character at a time.

#include <stdio.h>

int main()

{

 int c;

 printf("Enter a value :");

 c = getchar();

 printf("\nYou entered: ");

 putchar(c);

 return 0;

}

When the above code is compiled and executed, it waits for

you to input some text. When you enter a text and press

enter, then the program proceeds and reads only a single

character and displays it as follows −

$./a.out

Enter a value : this is test

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 85 | P a g e

You entered: t

The getch () and getche()

These functions read any alphanumeric characters from the

standard input device. The character entered is not displayed

by getch () function.

The putch()

This function prints any alphanumeric character taken by the

standard input device.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 86 | P a g e

 b) String I/O

The gets() and puts() Functions

The gets()

This function is used for accepting any string through

stdin(keyboard) until enter key is pressed. The header file

stdio.h is needed for implementing the above function.

The puts()

This function prints the string or character array.

#include <stdio.h>

int main()

{

 char str[100];

 printf("Enter a value :");

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 87 | P a g e

 gets(str);

 printf("\nYou entered: ");

 puts(str);

 return 0;

}

When the above code is compiled and executed, it waits for

you to input some text. When you enter a text and press

enter, then the program proceeds and reads the complete line

till end, and displays it as follows −

$./a.out

Enter a value : this is test

You entered: this is test

1.15 Type conversion

Sometimes the programmer needs the result in certain data

type. For example, division of 5 with 2 should return float

value. Practically the compiler always returns integer value

because both the arguments are of integer data type.

 The conversion of value of one data

type to another data type is called type casting.

Syntax : (data type) exp;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 88 | P a g e

They are two types of type conversion

 Implicitly type conversion

 Explicitly type conversion

1. Implicitly type conversion: The automatic conversion

from one data type into another data type is called a

implicitly type conversion.

2. Explicitly type conversion: The force to convert from

one data type into another data type is called a explicitly

type conversion.

Example:

#include<stdio.h>

#include<conio.h>

void main()

 {

 clrscr();

printf(“two intergers(5 and 2) %d”, 5/2);

printf(“two integers(5 and 2) %f”,(float) 5/2);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 89 | P a g e

1.16 Problem Solving Techniques: Algorithmic approach

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 90 | P a g e

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 91 | P a g e

1.17 Problem solving strategies: Top-down approach,

Bottom-up approach

1.18 Time and space complexities of algorithms.

Performance analysis of an algorithm is done to understand

how efficient that algorithm is compared to another

algorithm that solves the same computational problem.

Choosing efficient algorithms means computer

programmers can write better and efficient programs.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 92 | P a g e

A computer resource is memory and CPU time and

performance analysis revolves around these two resources.

Two ways to evaluate an algorithm is listed below.

 Space requirement

 Computation time

The space requirement is related to memory resource needed

by the algorithm to solve a computational problem to

completion. The program source code has many types of

variables and their memory requirements are different. So,

you can divide the space requirement into two parts.

Fixed Variables

The fixed part of the program are the instructions, simple

variables, constants that does not need much memory and

they do not change during execution. They are free from the

characteristics of an instance of the computational problem.

Dynamic Variables

The variables depends on input size, pointers that refers to

other variables dynamically, stack space for recursion are

some example. This type of memory requirement changes

with instance of the problem and depends on the instance

characteristics. It is given by the following equation.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 93 | P a g e

Instance characteristics means that it cannot be determined

unless the instance of a problem is running which is related

to dynamic memory space. The input size usually has the

control over instance of a computational problem.

Time Complexity

The time complexity is the amount of time required to run

the program to completion. It is given by following.

Program Execution in Steps

The computer executes a program in steps and each step has

a time cost associated with it. It means that a step could be

done in finite amount of time. See the table below.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 94 | P a g e

You can count the number of steps an algorithm performed

using this technique. For example, consider the following

example.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 95 | P a g e

UNIT-II

Control Structures

Simple sequential programs Conditional Statements (if, if-

else, switch), Loops (for, while, do�while) Break and

Continue.

2.1 Decision Statements (Control Statements)

Introduction: In any program statements are normally

executed. We have number of situations repeat a group of

statements until certain specified condition or change the

order of execution of statements. The C language supports

the control statements as listed below

1. The simple if statement

2. The if-else statement

3. Nested if-else statement

4. The if-else-if ladder statement

5. The switch() case statement

6. The nested switch() case statement

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 96 | P a g e

Flowchart Control Statements

1. The simple if statement: The if statement is used to

specify conditional execution of program statements or a

group of statements enclosed in braces.

The statement is executed only when the condition is true.

In case the condition is false the compiler skips the lines

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 97 | P a g e

within a pair of parenthesis. The conditional statements

should not be terminated with semi colons.

 Example 1: Write a c program to check whether the

entered number is less than 10? If yes, display the same.

 #include<stdio.h>

#include<conio.h>

void main()

 {

 int n;

 clrscr();

 printf(“Enter the number”);

 scanf(“%d”,&n);

 if(n<10)

 printf(“\n number is less than 10”);

 sleep(2);

 getch();

 }

Example 2: Write a c program to check whether the

candidates age is greater than 17 or not. If yes display

message “Eligible for voting”.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 98 | P a g e

#include<stdio.h>

#include<conio.h>

void main()

 {

 int age;

 clrscr();

 printf(“Enter the age”);

 scanf(“%d”,&age);

 if(age>17)

 printf(“\nEligible for voting”);

 getch();

 }

Example 3: Write a c program to use curly brace in the

if block. Enter only the three numbers and calculate

their sum and multiplication.

#include<stdio.h>

#include<conio.h>

void main()

 {

 int a,b,c,x;

 clrscr();

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 99 | P a g e

 printf(“Enter three numbers”);

 scanf(“%d%d%d”,&a,&b,&c);

 if(x==3)

 printf(“\n sum=%d”, a+b+c);

 printf(“\n multiplication=%d”, a*b*c);

 getch();

 }

2. The if-else statement: The if-else statement takes care

of true as well as false conditions. It has two blocks. One

block is for if and it is executed when the condition is true.

The other block is of else and it is executed when the

condition is false. The else statement cannot be used without

if. No multiple else statements are allowed with one if.

Syntax: : if (condition)

 {

 Statement1;

 Statment2; If block (True block)

 }

 else

 {

 Statement3;

 Statement4; else block (False block)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 100 | P a g e

 }

Example 1: Read the values of a, b,c through the

keyboard add them and after addition check if it is in the

range of 100 and 200 or not. Print separate message for

each

#include<stdio.h>

#include<conio.h>

void main()

{

 int a,b,c,d;

 clrsr();

printf("Enter the three numbers");

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 101 | P a g e

scanf("%d%d%d",&a,&b,&c);

d=a+b+c;

if(d<=200&&d>=100)

printf("\n sum is %d which is in between 100 and 200", d);

else

printf("\n sum is %d which is outof range ",d);

getch();

}

Example 2: Write a c program to calculate the salary of

medical representative bases on the sales. Bonus and

incentive to be offered to him will be based on total sales.

If the sales exceeds Rs 100000/- follow the particulars of

table(1) otherwise table(2).

Table 1 Table 2

Basic= 3000 Basic=3000

H.R.A=20% of basic H.R.A =20% of basic

D.A=110% of basic D.A=110% of basic

Conveyance=500 conveyance=500

Incentive=10% of sales Incentive=5% of sales

Bonus=500 Bonus=200

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 102 | P a g e

#include<stdio.h>

#include<conio.h>

void main()

{

 float bs,hra,da,cv,incentive,bonus,sales,ts

 clrsr();

printf("enter the toatal sales");

scanf("%d",&sales)l

 if(sales>=100000)

 {

 bs=3000;

 hra=20*bs/100;

 da=110*bs/100;

 cv=500;

 incentive=sales*10/100;

 bonus=500;

 }

else

{

 bs=3000;

 hra=20*bs/100;

 da=110*bs/100;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 103 | P a g e

 cv=500;

 incentive=sales*5/100;

 bonus=200;

}

ts=bs+hra+da+cv+incentive+bonus;

printf("\n total sales=%f",sales);

printf("\n basic salary=%f",bs);

printf("\n H.R.A=%f",hra);

printf("\n D.A=%f",da);

printf("\n conveyanvce=%f",cv);

printf("\n Bonus=%f",bonus);

printf("\n grass salary=%f",ts);

getch();

}

3.The if-else-if ladder statement: In this kind of

statements number of logical conditions are executing

various statements here, if any logical condition is true the

compiler executes the block followed by if condition

otherwise it skips and executes else block. In if-else

statement else block is executed by default after failure of

condition.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 104 | P a g e

Syntax:

 if(condtion)

 {

 statement1;

 statment2;

 }

else if(condtion)

 {

 statement3;

 statement4;

 }

 else

 {

 statement5;

 statement6;

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 105 | P a g e

Example 1: Write a c program to calculate electricity

bill. Read the starting and ending meter reading. The

charges are as follows.

No. of units consumed Rate in (RS)

200-500 3.50

100-200 2.50

Less than 100 1.50

#include<stdio.h>

#include<conio.h>

void main()

{

 int intial, final, units;

 float price;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 106 | P a g e

 clrscr();

 printf("\n enter the intial and final readings");

 scanf("%d%d",&initial, &final);

 untis=final-initial;

 if(units>=200&&units<=500)

 price=uints*3.50;

else if(units>=100&&units<=199)

 price=uints*2.50;

else if(units<100)

 price=uints*1.50;

printf("units=%d price=%f", uints,price);

getch();

}

Example 2 : Write a c program to find the average of six

subjects and display the result as follows.

Average Result

>34 and <50 Third class

>49 and <60 second class

>60 and <75 First class

If marks in any subject less than 35 Fail

#include<stdio.h>

#inlclude<conio.h>

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 107 | P a g e

void main()

{

 int sum=0,a,b,c,d,e,f;

 float avg;

 clrscr();

 printf("Enter the six subjects marks");

 scanf("%d%d%d%d%d%d",&a,&b,&c,&d,&e,&f);

 sum=a+b+c+d+e+f;

 avg=sum/6;

 printf("sum=%d avg=%f",sum,avg);

 if(a<||35b<35||c<35||d<35||e<35||f<35)

 {

 printf("\n rerult is fail");

 exit(0);

 }

 if(avg>34&&avg<50)

 printf("\n result is third class");

else if(avg>49&&avg<60)

printf("\n result is second class");

else if(avf>60&&avg<75)

printf("\n result is first class");

else if(avg>75&&avg<100)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 108 | P a g e

printf("\n result is distinction");

getch();

}

4. The switch () case statement: The switch statement is a

multi-way branch statement. In the program if there is a

possibility to make a choice from a number of options, this

structured selection is useful. The switch statement requires

only one argument of any data type. Which is checked with

number of case options. The switch statement evaluates

expressions and then looks for its value among the case

constants. If the value matches with case constants, this

particular case statement is executed. If not default is

executed.

 Here switch, case and break, default

are keywords. Every case statement is terminated with

semicolon. The break statement is used to exit from the

current case structure.

Syntax:

switch(variable or expression)

 {

 case constant1:

 statement;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 109 | P a g e

 break;

 case constant2:

 statement;

 break;

 .

 .

 .

 .

 default: statement;

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 110 | P a g e

Example: Write a c program to provide multiple

functions such as 1.addition 2.substraction 3.

Multiplication 4. Division

#include<stdio.h>

#include<conio.h>

void main()

{

 int a,b,c,ch;

 clrscr();

 printf("----------------");

 printf("\n\t Menu");

 printf("------------------");

 printf("\n\t 1.Addtion");

 printf("\n\t 2.substraction");

 printf("\n\t 3.multiplication");

 printf("\n\t 4.division");

printf("enter the a,b values");

scanf("%d%d",&a,&b);

printf("enter the choice");

scanf("%d",&ch);

switch(ch)

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 111 | P a g e

 case 1: c=a+b;

 printf("sum=%d",c);

 break;

case 2: c=a-b;

 printf("sub=%d",c);

 break;

case 3: c=a*b;

 printf("multi=%d",c);

 break;

case 4: c=a+b;

 printf("division=%d",c);

 break;

default: printf("invalid choice");

}

getch();

}

5. Nested switch () case: C supports the nesting of switch (

) case. The inner switch can be part of an outer switch. The

inner and the outer switch case constants may be the same.

No conflict arises even if they are same.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 112 | P a g e

Example: Write a c program to demonstrated nested switch(

) case statement

#include<stdio.h>

#include<conio.h>

void main()

{

 int x;

 clrscr();

 printf("enter a number");

 scanf("%d",&x);

 switch(x)

 {

 case 0:printf("number is even");

 break;

 case 1:printf("number is odd");

 break;

 default:

 y=x%2;

 switch(y)

 {

 case 0: printf("even");

 break;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 113 | P a g e

 default: printf("odd");

 }

 }

getch();

}

The break statement: The keyword break allows the

programmers to terminate the loop. The break skips from

the loop or block in which it is defined.

 Break Statement Program

Let us write a C program to demonstrate break statement.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 114 | P a g e

Output

The continue statement: The continue statement is exactly

opposite to break. The continue statement is used for

continuing next iteration of loop statements. When it occurs

in the loop it does not terminate, but it skips the statements

after this statement.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 115 | P a g e

Continue Statement Program

Let us write a C program to demonstrate continue statement

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 116 | P a g e

Output

The goto statement: This statement does not require any

condition. This statement passes control anywhere in the

program. i.e; control is transferred to another part of the

program without testing any condition.

Why goto statement

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 117 | P a g e

C programming introduces a goto statement by which you

can jump directly to a line of code within the same file.

Syntax: goto label;

Where the label name must start with any character.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 118 | P a g e

Example 1: write a c program to find the entered

number is even or odd using goto statement.

#include<stdio.h>

#includ<conio.h>

void main()

{

 int x;

 clrscr();

 printf("enter a number");

 scanf("%d",&x);

 if(x%2==0)

 goto even;

 else

 goto odd;

even: prinf("\n %d is a even number");

 return;

odd: printf("\n %d is odd number");

 getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 119 | P a g e

Example2: write a c program to check whether the

entered year is a leap year or not use goto statement.

#include<stdio.h>

#includ<conio.h>

void main()

{

 int leap;

 clrscr();

 printf("enter the year");

 scanf("%d",&leap);

 if(leap%4==0)

 goto leap;

 else

 goto nonleap;

leap: prinf("\n %d is a lep year");

 return;

nonleap: printf("\n %d is not a leap year");

 getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 120 | P a g e

Difference between break and continue statement

Iterative Statements (Loop control statements)

Introduction: Many tasks are needed to be done with the

help of a computer and they are repetitive in nature. For

example , the salary of laborers of a factory is calculated by

the formula (No.of hours* wage rate). This calculation will

be performed by an accountant for each worker every

month. Such type of repetitive actions can be easily done

using a program that has a loop into the solution of the

problem.

Loop: A loop is defined as a block of statements which are

repeatedly executed for certain number of times.

Steps in loop:

1) Loop variable: It is a variable used in the loop.

2) Initialization: It is the first step in which starting and

final value is assigned to the loop variable. Each time the

updated value is checked by the loop itself.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 121 | P a g e

3) Increment/decrement: It is the numerical value added or

subtracted to the variable in each round of the loop.

 The loop statements are

1. for loop

2. Nested for loop

3. The while loop

4. The do-while loop

1. The for loop: This is used when the statements are to be

executed more than once. This is the most widely used

iteration construct. The for loop supported by C is much

more powerful than its counterpart in other high level

language.

Syntax:

 for(initialization; condition; increment/decrement)

 {

 Statement1;

 Statement2;

 }

 Initialization: The initial value is executed only once.

Condition: The condition is a relational expression that

determines the number of iterations desired or it determines

when to exit from the loop. The for loop continues to

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 122 | P a g e

execute as long as conditional test is satisfied. When the

condition becomes false the control of the program exists

from the body of the for loop and executes next statement

after the body of the loop.

Various formats of for loop:

Syntax Output Remarks

for (; ;) Infinite loop No arguments

for(a=0;a<=20) Infinite loop „a‟ is neither

incremented nor

decrement.

for(a=0;a<=10;a++) Display value

from 0 to 10

„a‟ is increased

from 0 to 10.

for(a=10;a>=0;a--) Display value

from 10 to 0

„a‟ is decreased

from 10 to 0

Syntax

 for(exp1;exp2;exp3)

 Statement;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 123 | P a g e

Example1: write a c program to find the factorial of a

given number

#include<stdio.h>

#include<condio.h>

void main()

{

 int n, i, fact=1;

 printf("Enter the number");

 scanf("%d",&n);

 for(i=1;i<=n;i++)

 {

 fact=fact*i;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 124 | P a g e

 }

 printf("The factorial of a given number is%d", fact);

getch();

}

Example 2: write a c program to display numbers from

1to 10

#include<stdio.h>

#include<condio.h>

void main()

{

 clrscr();

 for(i=1;i<11;i++)

 {

 printf("%d", i);

 }

getch();

}

Example3: Write a c program to find the distance

travelled by a vehicle(ut+1/2at2)

#include<stdio.h>

#include<condio.h>

void main()

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 125 | P a g e

{

 int n,i,t;

 float s;

 clrscr();

 printf("how many times do you want repeat the process");

 scanf("%d",&n);

 for(i=1;i<=n;i++)

 {

 printf("Enter the u,a,t values");

 scanf("%d%d%d",&u,&a,&t);

 s=u*t+a*t*t/2.0

 printf("The distance travelled by a vehicle is %f", s);

 }

getch();

}

2. Nested for loop: In nested for loops one or more

statements are included in the body of the loop. The number

of interactions in this type of structure will be equal to the

number of interactions in the outer loop multiplied by the

number of interactions in the inner loop.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 126 | P a g e

Example: Write a C program to illustrate an example

based on nested for loops

#include<stdio.h>

#include<conio.h>

void main()

{

 int i,j;

 clrscr();

 for(i=1;i<=3;i++)

 {

 for(j=1;j<=2;j++)

 {

 printf(“%d", i*j);

 }

 }

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 127 | P a g e

3. The while loop

 Syntax: while (condition)

 {

 Body of the loop;

 }

1. The test condition is evaluated and if it is true, the body

of the loop is executed.

2. On execution of the body, test condition is repetitively

checked and if it is true the body is executed.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 128 | P a g e

3. The process of execution of the body will be continuing

till the test condition becomes false.

4. The control is transferred out of the loop.

 The block of the loop may contain a single

statement or a number of statements. The same block can

be repeated.

Example1: Write a c program to print the string “welcome”

9 times using while loop

#include<stdio.h>

#include<conio.h>

void main()

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 129 | P a g e

{

 int x=1;

 while(x<10)

 {

 printf("\n welcome");

 x++;

 }

getch();

}

Example2: Write a c program to add 10 consecutive

numbers starting from 1 use the while loop.

#include<stdio.h>

#include<conio.h>

void main()

{

 int a=1,sum=0;

 clrscr();

 while(a<=10)

 {

 printf("%2d",a);

 sum=sum+a;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 130 | P a g e

 a++;

 }

 printf("sum of the 10 numbers is %d", sum);

getch();

}

Example 3:Write a c program to find the factorial of a

given number by using while loop

#include<stdio.h>

#include<condio.h>

void main()

{

 int n, i=1, fact=1;

 printf("Enter the number");

 scanf("%d",&n);

 while(i<=n)

 {

 fact=fact*i;

 i++;

 }

 printf("the factorial of a given number is%d",fact);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 131 | P a g e

4. do-while loop

A do...while loop is similar to a while loop, except the fact

that it is guaranteed to execute at least one time.

Syntax:

 do

 {

 Statements;

 }

 While (condition);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 132 | P a g e

Example 1: Write a c program to find the factorial of a

given number by using do-while

#include<stdio.h>

#include<condio.h>

void main()

{

 int n, i=1, fact=1;

 printf("Enter the number");

 scanf("%d",&n);

 do

 {

 fact=fact*i;

 i++;

 }

 while(i<=n);

 printf("the factorial of a given number is%d",fact);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 133 | P a g e

Difference between while and do-while

While Do-while

In the while loops the

condition is tested following

the statement and then the

body gets executed.

The do-while the condition

is checked at the end of the

loop.

The do-while loop will

execute at least one time

even if the condition is false.

5. The while loop within the do-while loop

Syntax:

do while(condition)

{

 Statements;

}

while(condition);

Example: Write a C program to use while statement in do-

while and print values from 1 to 5

#include<stdio.h>

#include<conio.h>

void main()

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 134 | P a g e

 int x=0;

 clrscr();

 do while(x<5)

 {

 x++;

 printf("%d",x);

 }

 while(x<1);

getch(); }

Output: 1 2 3 4 5

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 135 | P a g e

UNIT-III

Arrays and Strings: Arrays indexing, memory model,

programs with array of integers, two dimensional arrays,

Introduction to Strings.

3.1 Introduction

Consider the following example

main()

{

int a=2;

 a=4;

printf(“%d” ,a);

getch();

}

Output: 4.

 In the above example the value of „a‟ printed is 4. 2

is assigned to „a‟ before assigning 4 to it. When we assign 4

to „a‟ then the value stored in „a‟ is replaced with the new

value. Hence ordinary variables are capable of storing one

value at a time. But the array variables are able to store

more than one value at a time.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 136 | P a g e

Definition of Array

An array is defined as a set of homogeneous data items of

the same type that share a common name.

Element:

The individual values in the array are called as elements.

Index or Subscript:

Each array element is referred by specifying the array name,

followed by a number with in square braces referred as an

index or subscript.

Note: Arrays are static data structures.

3.2 Declaration of array

The declaration of array is as follows.

Syntax:

Stor Storage type Data type array name [size];

Where storage type may be either auto or register or static or

extern. The storage type while declaring an array is optional.

The data type specifies the type of element that will be

stored in the array. The size is a +ve integer constant.

Indicating the maximum number of elements that can be

stored in the array.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 137 | P a g e

Example:

 int days[31];

 char book[50];

 float real[10];

In an n element array the array elements are stored in

x[0],x[1]……x[n-2],x[n-1] as shown in fig.

3.3 Initialization of Arrays

Syntax:

Storag Storage type Data type array name[size]= { list of values };

The lists of values are separated by commas used for

initializing the array.

Example:

 int mark [7] = {100,45,75,88,63 };

 char name[8] = {„s‟,‟u‟,‟d‟,‟e‟,‟r‟,‟10‟ };

 float amount [] = { 12.3, 234.56, 34.56, 5768.90 };

In the third example the size of the array is omitted. In such

cases, the compiler allocates enough memory space for all

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 138 | P a g e

the elements given for initialization. Hence the size of the

array amount [] will be 4. Fig: Shows the memory occupied

by the array mark in the first example.

3.4 Characteristics of Arrays

1 The array name should be a valid identifier.

2 The name of the array should be unique, similar to other

variables.

3 The values of the elements stored in the array should be of

the same type.

Applications of Arrays

1 Insertion of a value in an existing array at a particular

position.

2 Deletion of value from an array.

3 Traversal of an array.

4 Sorting an array in to some particular order.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 139 | P a g e

5 Searching for a value in an array.

6 Merging as two arrays.

3.5 Types of Arrays (Categories of Arrays)

 There are 3 types of arrays.

 One dimensional arrays

 Two dimensional arrays

 Multi-dimensional arrays.

1. One dimensional arrays

 Arrays whose elements are specified

by a single subscript are called as one dimensional arrays or

single dimensional or single subscripted or linear arrays.

Syntax:

Storag Storage type Data type array name [size];

Accessing array elements:

 Once an array I s declared then the

individual elements in the array are accessed with the help

of subscripts. All the array elements are numbered starting

from zero. The first item is stored at the address pointed by

the array name itself.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 140 | P a g e

Example: Write a C program to find the biggest of 10

numbers using arrays.

#include<stdio.h>

#include<conio.h>

void main()

{

int i,n,a[10],max;

clrscr();

printf("enter n value");

scanf("%d",&n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

max=a[0];

for(i=0;i<n;i++)

if(a[i]>max)

max=a[i];

printf("maximum number=%d",max);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 141 | P a g e

2. Double dimensional arrays

A double dimensional array is defined in the same manner

as a single dimensional array except that it requires two

pairs of square brackets for two subscripts.

Syntax:

Stor Storage type Data type array name [row size] [column size];

Example: int mark [2] [2];

Defines a table as an integer array having 2 rows and 2

columns. An array element starts with an index zero and so

the individual elements of an array will be

int mark

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 142 | P a g e

Initializing double dimensional arrays

Syntax:

Storage type data type array name [row

size][columns size]={list of values};

Example:

 int mark[4][2] ={

 { 84, 56 },

 { 92, 67 },

 { 75, 78 },

 { 69, 89 }

 };

It can be also declared as

int mark[4][2]= { 84, 56, 92, 67, 75, 78, 69, 89 }; The

result of the initial assignment are

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 143 | P a g e

Mark[0][0]=84 mark[1][0]=56

Mark[0][1]=92 mark[1][1]=67

Mark[0][2]=75 mark[1][2]=78

Mark[0][3]=69 mark[1][3]=89

Example: Write a C program to calculate the sum of all

elements in a matrix using double dimensional array.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[10][10], i,j,m,n,sum=0;

printf("Enter the order of matrix");

scanf("%d%d",&m,&n);

printf("Enter the elements of a matrix");

for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 {

 scanf("%d",&a[i][j]);

 sum=sum+a[i][j];

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 144 | P a g e

 }

 printf("Sum of the matrix are %d",sum);

getch();

}

3. Three dimensional or multi-dimensional array

 The C program allows array of two or multi dimensions.

Syntax: Data type array name [s1][s2][s3]………..[sn]

Initialization:

int mat[3][3][3]= {

 { 1, 2, 3,

 4, 5, 6,

 7, 8, 9,

 1, 4, 7,

 2, 8, 9,

 1, 2, 3

 }

 };

 {

 2, 9, 8,

 4, 1, 3,

 3, 2, 3

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 145 | P a g e

A three dimensional array can be thought of as an array of

arrays. The outer array contains three elements the inner

array size is two dimensional with size [3] [3]

Example: Write to C program to explain the working of

three dimensional arrays

#include<stdio.h>

#include<conio.h>

void main()

{

int a3d[3][3][3];

int a,b,c;

clrscr();

for(a=0;a<3;a++

for(b=0;b<3;b++)

for(c=0;c<3;c++)

a3d[a][b][c]=a+b+c;

for(a=0;a<3;a++)

 {

 printf("\n");

 for(b=0;b<3;b++)

 {

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 146 | P a g e

 for(c=0;c<3;c++)

 printf("%3d", a3d[a][b][c]);

 printf("\n");

 }

 }

getch();

}

Limitations of arrays

1. The compiler uses static memory allocation for an array

that is it is not possible to increase or decrease the array size

at runtime.

2. Elements cannot be inserted into an array.

3. We cannot delete elements into an array.

4. If the number of elements to be stored is not known in

advance, there may be memory waste if an array of large

size is specified.

5. If a small array size is specified there may not be enough

memory to place all elements.

6. C does not perform bound checking of an array.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 147 | P a g e

Difference between character array and integer array

Character array Integer array

Character array NULL (\0)

character is automatically

added at the end.

Integer array or other types

of arrays no NULL

character is placed at the

end.

3.6 STRINGS

1. A group of characters can be stored in a character array.

These character arrays are called strings.

2. To recognize a character array should end with a NULL

character („\0‟).

Example: The string “student” could be stored as

„s‟

„t‟

„u‟

„d‟

„e‟

„n‟

„t‟

„\0‟

3. The length of a string is the number of characters it

contains excluding NULL character. But, to store a string,

we need one more locations than the length of the string.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 148 | P a g e

3.7 Declaring strings:-The general form of declaration of a

string variable is

Syntax: char variable-name [size];

Example: char name [10];

 Scanf(“%s”, name);

The scanf() function usually accepts an address of the

variable but in arrays ,by itself indicates the starting address

of the array and hence we don‟t use an ampersand (&)

before the variable name while reading strings.

3.8 Initializing strings

Syntax: char name [size] ={ list of characters”};

Example: char name [25]= { „r‟ „a‟ „v‟ „i‟ , „\0‟ };

 char name []={ „r‟ „a‟ „v‟ „i‟ , „\0‟ };

 char name [25]= “ravi”;

 char name []= “ravi”;

Note: While initializing a character array by listing its

elements, must specify the NULL terminator („\0‟) with

arrays elements.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 149 | P a g e

Example: Write a C program to display the output when the

count of NULL character in not considered.

#include<stdio.h>

#include<conio.h>

void main()

{

char name[6]={'w','e','l','c','o','m'};

printf("name=%s", name);

getch();

}

Output: welcome followed by garbage characters

Explanation: The output of the above program would be

welcome followed by some garbage values. To got the

correct result the argument must be [7] instead of [6]. The

output can be seen as given bellow after changing the

argument [7] in place of [6].

Example: Write a C program to print “welcome” by using

different formats of initialization of array.

#include<stdio.h>

#include<conio.h>

void main()

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 150 | P a g e

char a1[9]={'w','e','l','c','o','m','e','\0'};

char a2[9]="welcome";

char a3[9]={ {'w'},{'e'},{'l'},{'c'},{'o'},{'m'},{'e'} };

clrscr();

printf("\n a1=%s",a1);

printf("\n a2=%s",a2);

printf("\n a3=%s",a3);

getch();

}

Example: Write a C program to display the string

“prabhakar” using various format specifications.

#include<stdio.h>

#include<conio.h>

void main()

{

char a1[15]="prabhakar";

clrscr();

printf("\n %s",a1);

printf("\n %.5s",a1);

printf("\n %.8s",a1);

printf("\n %.15s",a1);

printf("\n %-10.4s",a1);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 151 | P a g e

printf("\n %11s",a1);

getch();

}

Output:

Prabhakar

Prabh

Prabhaka

prabhakar

prab

Prabhakar

3.9 Reading the strings: There are three ways to read to a

string from the user through the keyboard. They are

1. By using scanf () function 2.By using gets ()

function 3.By using loops

1. By using scanf () function: The scanf() function with

format string %s can be used to read a string from the user.

Example:

void main()

{

char name[10];

scanf("%s", name);

getch();

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 152 | P a g e

}

The advantage of using scanf() function is that it can be

used to read more than one string at a time.

Example: scanf(“%s %s %s”, name ,designation, address);

The disadvantages of scanf () is, it terminate when it

encounters a blank space.

2. By using gets () function: The gets () function

overcomes the disadvantages of scanf() function, since it

can read a string of any length with any number of blank

spaces and tabs . It gets terminated only when an “ENTER”

key is pressed.

Example:

void main()

{

char name[10];

gets(name);

getch();

}

The disadvantages of gets() function is that it can be used to

read only a single string at a time.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 153 | P a g e

3.By using the loops: A string is an array of characters,

hence a string can also be read, character-by-character from

the user by using loops.

void main()

{

char name[10];

for(i=0;i!='\0';i++)

scanf("%c", &name[i]);

getch();

}

Note: Ampersand (&) is used before the array name if we

are reading a string character-by-character.

3.10 Writing strings: The puts() function writes the

character string is supplied as a parameter to the standard

output device.

Example: puts(name);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 154 | P a g e

3.11 String library functions:

Various library functions in string.h

Function Purpose Example Result

Strupr () To convert all

alphabets in string to

upper case letters

Strupr(“srist”) SRIST

Strlwr() To convert all

alphabets in string to

lower case letters.

Strlwr(“SRIST”) Srist

Strlen() Finds the length of the

string in bytes

excluding NULL

character

Char s[]=”city”;

Int n;

n=strlen(s);

4

Strrev() To reverse a string Strrev(“city”); Ytic

Strcpy() Copies string str2 to

string str1

Char s2[]=”city”

Char s1[20];

Strcpy(s1,s2);

S2

contains

city

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 155 | P a g e

Strcmp() Used to compare if

two strings are

identical

n=strcmp(“srist”,

“srist”)

n=0

Strncmp() Compares the first n

characters of s1 and s2

n=strncmp(“raj”,”r

am”,2);

n=0

Strcat() To join s2 to s1 Strcat(“stu”,

“dent”)

student

Example 1: Write a C program to find the length of a given

string

#include<strig.h>

void main()

{

char str[10];

printf("Enter the string");

gets(str);

printf("The length of a given string is %d", strlen(str));

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 156 | P a g e

Example 2: Write a C program to copy from one string into

another string

void main()

{

char s1[10];

char s2[20];

printf("Enter the string");

gets(s1);

printf("The copied string is %s",strcpy(s2,s1));

getch();

}

Example3: Write a C program to perform string

concatenation

void main()

{

char s1[10];

char s2[20];

printf("Enter the string 1");

gets(s1);

printf("Enter the string 2");

gets(s2);

printf("The copied string is %s", strcat(s1,s2));

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 157 | P a g e

getch();

}

Example 4: Write a C program to reverse the given string

void main()

{

char s1[10];

printf("Enter the string 1");

gets(s1);

printf("The reverse string is %s", strrev(s1));

getch();

}

Example 5: Write a C program to convert from upper to

lower case

void main()

{

char s1[10];

printf("Enter the string 1");

gets(s1);

printf("The lower case string is %s", strlwr(s1));

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 158 | P a g e

Example 6: Write a C program to convert from lower to

upper case

void main()

{

char s1[10];

printf("Enter the string 1");

gets(s1);

printf("The upper case string is %s", strupr(s1));

getch();

}

Example 7: Write a C program to check the strings are

equal or not

void main()

{

char s1[10];

char s2[10];

printf("Enter the string 1");

gets(s1);

printf("Enter the string 2");

gets(s2);

x=strcmp(s1,s2);

if(x==0)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 159 | P a g e

printf("strings are equal");

else

printf("strings are not equal");

getch();

}

Example: Write a C program to perform the string

operations using string library functions.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

 char s[20],s2[20];

int x,ch;

clrscr();

printf("Enter the two strings");

scanf("%s %s",s,s1);

do

{

printf("\n 1.strlen");

printf("\n 2.strupr");

printf("\n 3.strlwr");

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 160 | P a g e

printf("\n 4.strrev");

printf("\n 5.strcat");

printf("\n 6.strcpy");

printf("\n 7.strcmp");

printf("\n 8.exit");

printf("\n Enter the choice");

scanf("%d",&ch);

switch(ch)

{

 case 1:printf("The length of the string is %d",strlen(s));

 break;

case 2:printf("The upper case of the string is %s",strupr(s));

 break;

case 3:printf("The lower case of the string is %s",strlwr(s));

 break;

case 4:printf("The reverse of the string is %s",strrev(s));

 break;

case 5:printf("The string concatination is %s",strcat(s,s1));

 break;

case 6:printf("The copieds string is %s",strcpy(s,s1));

 break;

case 7:if(x==strcmo(s,s1))

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 161 | P a g e

printf("The strings are equal);

else

printf("The strings are not equal");

 break;

case 8:exit(0);

default: printf("Invalid choice");

}

printf("Do u want continue press(y/n) buttons");

ch=getch();

}

while(ch=='y');

getch();

}

Example: Write a C program to find the length of a given

string by using user defined functions

#inlcude<stdio.h>

#include<conio.h>

void main()

{

char str[10];

int i;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 162 | P a g e

printf("Enter the string");

gets(str);

for(i=0;str[i]!='\0'; i++);

printf("The length of a string is %d", i);

getch();

}

Example: Write a C program to perform string copy by

using user defined functions

#inlcude<stdio.h>

#include<conio.h>

void main()

{

char str[10],str1[10];

int i;

printf("Enter the string");

gets(str);

for(i=0;str[i]!='\0'; i++)

{

 str1[i]=str[i];

}

str1[i]='\0';

printf("The copied string is %s",str1);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 163 | P a g e

getch();

}

Example: Write a C program to perform string

concatenation by using user defined functions

#inlcude<stdio.h>

#include<conio.h>

void main()

{

char str[10],str1[10];

int I, j;

printf("Enter the string 1");

gets(str);

printf("Enter the string 2");

gets(str1);

for(i=0;str[i]!='\0'; i++);

for(j=0;str1[j]!='\0';j++,i++)

{

 str[i]=str1[j];

}

str[i]='\0';

printf("The string concatenation is %s", str);

getch();

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 164 | P a g e

}

Example: Write a C program to reverse the given string by

using user defined functions

#inlcude<stdio.h>

#include<conio.h>

void main()

{

char str1[10],rev[10];

int I, j ,n=0;

printf("Enter the string");

gets(str1);

for(i=0;str[i]!='\0'; i++)

n++;

for(j=n-1,i=0;j>=0;j--,i++)

{

 rev[i]=str1[j];

}

rev[i]='\0';

printf("The reverse string is%s", rev);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 165 | P a g e

Example: Write a C program to check whether the strings

are equal or not by using user defined functions.

#inlcude<stdio.h>

#include<conio.h>

void main()

{

char str1[10],str2[10];

int i,j,flag;

printf("Enter the string1");

gets(str1);

printf("Enter the string2");

gets(str2);

for(i=0;str1[i]!='\0'; i++)

{

for(j=0;str2[j]!='\0';j++)

{

if((str1[i]!=str2[j])&&(i==j))

{

flag=1;

}

}

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 166 | P a g e

if((flag==1)||(i!=j))

printf("The strings are not equal");

else

printf("The strings are equal");

getch();

}

Example: Write a C program to check whether the string is

palindrome or not.

#inlcude<stdio.h>

#include<conio.h>

void main()

{

char str[10];

int i, j,flag=0, n;

printf("Enter the string");

gets(str);

n=strlen(str);

for(i=0, j=n-1; str[i]!='\0'; i++, j--)

{

if(str[i]!=str[j])

{

flag=1;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 167 | P a g e

break;

}

}

if((flag==0)

printf("The string is Palindrome");

else

printf("The string is not palindrome");

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 168 | P a g e

UNIT-IV

Pointers & User Defined Data types

Pointers, dereferencing and address operators, pointer and

address arithmetic, array manipulation using pointers, User-

defined data types-Structures and Unions.

4.1 Definition: A pointer is memory variable that stores a

memory address. Pointer can have any name that is legal for

other variable and it is declared in the same fashion like

other variable but it is always denoted by “* “operator.

4.2 Advantages of pointers

1. Pointers save the memory space.

2. Pointers are used to increase the speed of execution.

3. Pointers are used to reduce the length and complexity of a

program.

4. Pointers are useful for representing two dimensional and

multi dimensional arrays.

5. The memory is accessed efficiently with the pointers.

4.3 Operators used with pointers

a)Indirection operator or dereference operator (*): It is

used in two distinct ways with pointers

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 169 | P a g e

1. To declare a pointer variable in the declaration section,

before the identifier * is used. Then that variable is

converted into pointer variable.

2. To access the value stored in a particular memory

location * operator is used. That is why it is also called

dereference operator.

b)Address operator (&): It is used to find the address of a

variable. If we put & before any variable name, we get the

address of that memory location.

4.4 Pointer declaration: Like all variables, a pointer

variable should also be declared.

Syntax: Data type * variable name;

Example: int *ptr;

Fig: Representation of a pointer variable

Example: Write a c program for accessing a variable

through a pointer

#include<stdio.h>

#include<conio.h>

void main()

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 170 | P a g e

{

int a=5,b=10,*ptr;

ptr=&a;

printf("before values a=%d b=%d",a,b);

b=*ptr;

printf("after values a=%d b=%d",a,b);

printf("value of ptr%d",ptr);

printf("address of a is %d", &a);

printf("value of *ptr is%d",*ptr);

getch();

}

Output: Before values a=5 b=10

 After values a=5 b=5

 Value of ptr is 4040

 Address of a is 4040

 Value of *ptr is 5

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 171 | P a g e

4.5 Initialization of pointers: A pointer is similar to any

other variable except that is holds only memory address, and

therefore, it needs to be initialized with a valid address

before it can be used.

 Pointers should be initialized either

when they are declared or in an assignment statement. A

pointer may be initialized to NULL or with the address of

some other variable, which is already defined.

Example: ptr= & i is called as pointer initialization.

4.6 Pointer arithmetic: Arithmetic operations on pointer

variables are also possible. ++, -- , prefix and postfix

operations can be performed with the help of the pointers.

The effect of these operations are shown in the below given

table.

Data type Initial address Operation Address after

operations Required bytes

int i=2 4046 ++ -- 4048 4044 2

char c=‟x‟ 4053 ++ -- 4054 4052 1

float f=2.2 4058 ++ -- 4062 4054 4

long l=2 4060 ++ -- 4064 4056 4

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 172 | P a g e

Note: ++ to be incremented, but not by 1. - - to be

decremented, not by 1.

Example: write a c program to display the address of the

variable

#include<stdio.h>

#include<conio.h>

void main()

{

int n;

printf("Enter the n value");

scanf("%d",&n);

printf("value of num=%d", num);

printf("address of num=%d",&num);

getch();

}

Output: n=20

value of num=20

Address of num=4066

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 173 | P a g e

Example: Write a c program to find the sum of two

values using pointers

#include<stdio.h>

#include<conio.h>

void main()

{

int a, b, sum, *ptr1,*ptr2;

ptr1=&a;

ptr2=&b;

printf("enter the two numbers");

scanf("%d %d",&a,&b);

sum=*ptr1 +*ptr2;

printf("sum=%d", sum);

getch();

}

Example: Write a c program to find the biggest of two

values using pointers

#include<stdio.h>

#include<conio.h>

void main()

{

int a, b, *big *ptr1,*ptr2;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 174 | P a g e

ptr1=&a;

ptr2=&b;

printf("enter the two numbers");

scanf("%d %d",&a,&b);

if(*ptr1>*ptr2)

big=ptr1;

else

big=ptr2;

printf("biggest number is=%d", *big);

getch();

}

4.7 Pointers and arrays: In C, when an array is declared,

the array name denotes the address of the 0th element in that

array. The address of the 0th element is also called base

address or starting address. Therefore, if we refer the name

of the array we get the starting address of the array.

 So array name itself is an address or

pointer. The elements of the array together with their

address can be displayed by using array name itself since

array elements are stored in contiguous memory locations.

For example, an array is initialized as bellow

int a[4]= {3,7,9,4};

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 175 | P a g e

Now, we can access the value in the second location by two

ways.

By array notation: a[1]

By pointer notation: *(a+1)

Similarly, we can get address of the second location by two

ways.

By array notation: &a[1]

By pointer notation: (a+1)

Example: Write a C program to find the biggest number

among given list of elements by using pointers

#include<stdio.h>

#include<conio.h>

void main()

{

int i,n,a[20], *ptr;

clrscr();

printf("enter n value");

scanf("%d",&n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

*ptr=a[0];

for(i=0;i<n;i++)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 176 | P a g e

if(a[i]>*ptr)

*ptr=a[i];

printf("maximum number=%d",*ptr);

getch();

}

Example: Write a C program to display element name,

value at that location and address of that location.

#include<stdio.h>

void main()

{

int x[]={1,2,3,4};

int i;

printf("element.no, elem address\n");

for(i=0;i<4;i++)

 {

 printf("x[%d] %d %d", i, *(a+i), (a+i));

 }

getch();

}

Output:

Element. No element Address

X[0] 1 4056

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 177 | P a g e

X[1] 2 4058

X[2] 3 4060

X[3] 4 4062

4.8 Dynamic memory allocation: Memory allocations

mean allocating sufficient memory space to all the variables

in the program. Memory space can be allocated in two ways.

They are

1. Static memory allocation

2. Dynamic memory allocation

1. Static memory allocation: To allocating the memory at

the time of compilation, then it is said to be a static memory

allocation.

2. Dynamic memory allocation: To allocating the memory

at the time of execution, then it is said to be dynamic

memory allocation.

 In C language there are 4 ways to allocating the

memory

1.The malloc() function 2.the calloc() function

 3.The realloc() function

4.The free() function

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 178 | P a g e

1. The malloc () function: This is used to allocate a

contiguous block of memory in bytes.

Syntax:

Pointer variable=(cast-type *) malloc(size);

Example: x=(int *)malloc(20);

 x=(int *)malloc(10 *sizeof(int)); on execution

of malloc, 10 times the size of an int (ie., 10*2=20 bytes) is

allocated and the starting address of the first byte is assigned

to pointer x of type int.

Where pointer-variable is a valid C variable already defined.

Cast –type is the type of the pointer returned by malloc ()

such as int, char…etc. size is the required size of memory

in byte.

Note: If the memory allocation is success it returns the

starting address else it returns the NULL.

Example: Write a C program to perform sum of array

elements by using malloc() function

#include<stdio.h>

#include<conio.h>

void main()

{

int *a,i,n,sum=0;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 179 | P a g e

printf("enter the size of array");

scanf("%d",&n);

a=(int *)malloc(n*size(int));

if(a!=NULL)

{

 printf("enter the elements");

 for(i=0;i<n;i++)

 {

 scanf("%d",&a[i]);

 sum=sum+a[i];

 }

printf("sum of given elements are %d",sum);

}

else

printf("memory can not be allocated");

getch();

}

Output: Enter the size of the array 5

 Enter the elements 1 2 3 4 5

 Sum of given elements are 15

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 180 | P a g e

2. The calloc () function: This function is used to allocate

multiple blocks of contiguous memory in bytes. All the

blocks are of same size.

Syntax: pointer-variable =(cast-type *) calloc(n, size);

Example: x=(int *) calloc(5,10);

Where pointer-variable is a valid C variable already defined.

Cast-type is the type of the pointer returned by calloc ()

such as int, char ….etc. „n‟ is the number of blocks and size

is the required size of memory in bytes.

Note: If the memory allocation is success it returns the

starting address else it returns NULL.

3. The realloc () function: The realloc () function is used

to increase or decrease the size of memory previously

allocated by using malloc/calloc () function.

Syntax: new-pointer=realloc (old-pointer, new-size);

Where new-pointer is valid C variable previously defined.

Old-pointer is the pointer variable used in malloc() or

calloc() function. New-size is the size of the new memory

needed.

Example: y= (int *)malloc(50);

 X=realloc(y, 30);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 181 | P a g e

The first statement allocated memory space of size 50 bytes

and returns the starting address of the memory through the

pointer x. the second statement reallocates (decreases) the

already allocated space to 30 bytes.

4. The free () function: The free () function is used to free

(release or de allocate) the block of unused or already used

memory.

Syntax: free (pointer-variable);

Where pointer-variable is a pointer to the memory block

which has been already created by malloc () or calloc ()

function.

Example: x= (int *) malloc (50);

 free (x);

The first statement allocated memory space of 50 bytes and

returns the starting address of the allocated memory through

a pointer variable x. The second statement frees the

allocated memory.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 182 | P a g e

4.9 Definition: A structures is a collection of one or more

variables of different types, grouped together under a

single name.

 The variables or data items in a structure are

called as members of the structures.

4.10 Declaration of structures: The general form or the

syntax of declaring a structure is

struct <structure name>

{

data type member1;

data type member2;

.

.

.

data type member N;

};

In the above declaration, struct is a keyword followed by an

optional user defined structure name usually referred as a

tag. The list of member declaration is enclosed in a pair of

flower braces. The closing brace of the structure and the

semicolon ends the structure declaration.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 183 | P a g e

Example:

struct employee

{

int empno;

char ename[10];

float salary ;

};

Where employee is the name of the structure. The structure

employee contains three members of type int, char and float

representing empno, empname and salary respectively.

4.11 Defining a structure: Defining a structure means

creating variables to access members in the structures.

Creating structure variables allocates sufficient memory

space to hold all the members of the structures.

 The syntax for defining the

structure during structure its declaration is

struct <structure name>

{

data type member1;

data type member2;

.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 184 | P a g e

.

.

.

data type member N;

}structure-variable(s);

Example:

struct employee

{

int empno;

char ename[10];

float salary ;

} emp1;

Fig: Shows the memory allocation for the structure

employee

 Empno 2 bytes

 Empno 2 bytes

 Empno 2 bytes

Fig: Memory occupied by structure employee

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 185 | P a g e

4.12 Accessing structure members: Dot (.) or period

operator is used to access a data member of a structure

variable. It is to be noted that the dot operator separates the

structure variable and the data member.

Syntax: structure-variable . Member-name

Example: Write a C program to declaring, initializing

and accessing members of structure by dot operator

void main()

{

struct book

{

char title[40];

int pages;

float price;

};

struct book b1= { "pc&ds", 300,150.0};

printf("%s\n", b1.name);

printf("%d\n", b1.pages);

printf("%f\n", b1.price);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 186 | P a g e

4.13 Initialization of structures: The structure members

can be initialized only by using structure variables during

structure declarations.

Syntax:

struct <structure name>

{

data type member1;

data type member2;

..

.

.

data type member N;

}structure-variable={ list of values};

Example:

struct employee

{

int height;

float weight ;

} emp1={154, 77.9};

The above initialization initialize 154 to the structure

member height and 77.9 to the structure member weight.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 187 | P a g e

The values to be initialized for the structure members must

be enclosed with in a pair of braces.

Example: Write a C program to initializing the structure

using the structure name

#include<stdio.h>

#include<conio.h>

struct student

{

int rollno;

char name[10];

}s3;

void main()

{

struct student s1= {123, "sai"};

struct student s2= {456, "kumar"};

printf("name is %s\n", s1.name);

printf("rollno is %d\n", s1.rollno);

printf("name is %s\n", s2.name);

printf("rollno is %d\n", s2.rollno);

s3=s1;

printf("name is %s\n", s3.name);

printf("rollno is %d\n", s3.rollno);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 188 | P a g e

getch();

}

Example: Write a C program to assign the values to

members

 #include<stdio.h>

#include<conio.h>

void main()

{

struct student

{

int rollno;

char name[10];

char branch[20];

};

struct student s

strcpy(s.name, "sai");

strcpy(s.branch, "cse");

s.rollno=32;

printf("%s %s %d\n", s.name, s.branch, s.rollno);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 189 | P a g e

Example: Write a C program to assign the values from

the keyboard

#include<stdio.h>

#include<conio.h>

void main()

{

struct account

{

int number;

char name[10];

float balance;

}a;

printf("Enter the account holder name");

gets(a.name);

printf("Enter the account number");

scanf(“%d”,&a.number);

printf("Enter the balance");

scanf(“%f”,&a.balance);

printf("The details are ");

printf("%s %d %f\n", a.name, a.number, a.balance);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 190 | P a g e

4.14 Nested structures: Nested structures are nothing but a

structure with in another structure. A structure may be

defined and/or declared inside another structures.

Example:

struct employee

{

int empno;

char name[10];

struct employ_add

{

int no;

char street[10];

char area[10];

long int pincode;

}address;

char deptname[10];

float salary;

}emp1, emp2;

In the above structure declaration employee is the main

structure. It gets additional information about the

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 191 | P a g e

employ_add. The member of a nested structure is accessed

is

Example: emp1. address. no

Example: Write a C program on nested structures

#include<stdio.h>

#include<conio.h>

void main()

{

 struct employee

{

int empno;

char name[10];

struct employ_add

{

int no;

char street[10];

char area[10];

long int pincode;

}address;

char deptname[10];

float salary;

Main structure variable. Sub structure variable . Sub structure member

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 192 | P a g e

}emp1;

printf("enter the empno, empname, deptname, salary of the

employee");

scanf("%d %s %s %f",&emp1.empno, emp1.empname,

emp1.deptname,&emp1.salary);

printf("Enter the address of the employee");

scanf("%d %s %s %s %ld", &emp1.addres.no,

emp1.address.street, emp1.address.area,

emp1.address.pincode);

printf("\n employee no=%d",emp1.empno);

printf("\n employee name=%s",emp1.empname);

printf("\n department name=%s",emp1.deptname);

printf("\n salary=%f",emp1.salary);

printf("employee address no=%d", emp1.address.no);

printf("employee street=%s", emp1.address.street);

printf("employee pincode =%ld", emp1.address.pincode);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 193 | P a g e

4.15 Array of structures: It is possible to declare array of

structures. The following example illustrates this.

Struct employee_info

 {

 char name[30];

 int age;

 char designation[10];

 float salary;

 }staff [200];

This declares staff to be an array with 200 elements. The

process of declaring a structure array is similar to declaring

any other kind of array.

Example: Write a C program to declaring array of

structure student and displaying the marks of students

who got more than 75 marks.

#include<stdio.h>

#include<conio.h>

Struct student

 {

 int rno;

 char sname[10];

 int marks;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 194 | P a g e

 };

void main()

{

 struct student s[60];

int i, n;

printf("How many students");

scanf("%d",&n);

for(i=0;i<n;i++)

 {

 printf("Enter the rollno");

 scanf("%d",&s[i].rno);

 printf("Enter the name");

 scanf("%s", s[i].name);

 printf("Enter the marks");

 scanf("%d",&s[i].marks);

 }

printf("Rollno name marks");

for(i=0;i<n;i++)

 {

 if(s[i].marks>=75)

 printf(" %d %s %d", s[i].rno, s[i].sname, s[i].marks);

 }

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 195 | P a g e

getch();

}

Array of structures can be initialized as

struct employee

{

int empno;

char empname[20], deptname[20];

float salry;

}emp[5]={ {1, "kumar" , "sales", 300.50},

 {2, "subbu" , "accounting", 400.50},

 {3, "manoj" , "marketing", 583.50},

 {4, "madhu" , "production", 88750.50},

 {5, "sudha" , "maintaintence", 7235.50}

 };

Note: If some of the members of the structures are not

initialized it takes a value zero. If the member is a char data

types , it takes a value NULL.

Example: Write a C program to initialize the array of

structure

#include<stdio.h>

#include<conio.h>

void main()

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 196 | P a g e

{

int i;

clrscr();

struct employee

{

int empno;

char empname[20];

float salry;

}emp[3]={ {1, "kumar", 300.50},

 {2, "subbu", 400.50},

 };

for(i=0;i<3;i++)

{

 printf("employee name=%s", emp[i].empname);

 printf("employee no=%d", emp[i].empno);

 printf("employee salary=%f",emp[i].salary);

}

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 197 | P a g e

4.16 Pointers and structures: Members of a structure can

be accessed by a pointer. To access the structure members

by pointer we use  (arrow) operator.

Example:

#include<stdio.h>

#include<conio.h>

struct book

{

 char title[10];

 int pages;

 float price;

};

void main()

{

struct book *ptr;

struct book b1;

ptr=&b1;

strcpy(ptr->title, "pc&ds");

ptr->pages=300;

ptr->price=150.0;

printf("title=%s",b1.title);

printf("pages=%d", b1.pages);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 198 | P a g e

printf("price=%f", b1.price);

getch();

}

4.17 Functions and structures: There are three ways to

pass a structure to a function

1. Passing structure members to functions

2. Passing the address of members to functions

3. Passing entire structure to function.

1. Passing structure members to functions: This method

is used to pass members of the structure as actual arguments

of the function call statement.

Example:

struct employee

{

int empno;

char empname[20];

char deptname[20];

float salary;

}emp1;

The members of the structure can be passed to the function

employ () as

employ (emp1.empno);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 199 | P a g e

employ (emp1.empname);

employ (emp1.salary);

employ(emp1.deptname);

This method is the most common method and becomes

inefficient when the structure is large.

Example: Write a C program to pass the structures members

to functions

#include<stdio.h>

#include<conio.h>

struct employee

{

int empno;

char empname[20];

}emp1;

void employ();

void main()

{

printf("\n enter the employee no and name");

scanf("%d %s", &emp1.empno, emp1.empname);

employ(emp1.empno,emp1.empname);

getch();

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 200 | P a g e

}

void employ()

{

printf("\n the employee no is %d", emp1.empno);

printf("\n the employee name is %s", emp1.empname);

}

2. Passing the address of members to functions: Members

of a structure can also be passed to a function by passing

their address. In this method, the address location of the

members is passed to the called function, hence the address

operator (&) is used before the structure name. The

members of the structure can be passed to a function employ

() as

employ (&emp1.empno);

employ (&emp1.salary);

employ (emp1.deptname);

employ (emp1.empname);

This method is more efficient than the previous one, since it,

works faster, but becomes inefficient when the structure is

large.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 201 | P a g e

Example: Write a C program to pass the address of members

to function

#include<stdio.h>

#include<conio.h>

struct employee

{

int empno;

char empname[20];

}emp1;

void employ();

void main()

{

printf("\n enter the employee no and name");

scanf("%d %s", &emp1.empno, emp1.empname);

employ(&emp1.empno,emp1.empname);

getch();

}

void employ()

{

printf("\n the employee no is %d", emp1.empno);

printf("\n the employee name is %s", emp1.empname);

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 202 | P a g e

3. Passing entire structure to function: In this method, the

entire structure is passed as an argument to the function.

Example: Write a C program to pass the entire structure to

functions

#include<stdio.h>

#include<conio.h>

struct employee

{

int empno;

char empname[20];

}emp1;

void employ(struct employee emp);

void main()

{

printf("\n enter the employee no and name");

scanf("%d %s", &emp1.empno, emp1.empname);

employ(emp1);

}

void employ(struct employee emp)

{

printf("\n the employee no is %d", emp.empno);

printf("\n the employee name is %s", emp.empname);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 203 | P a g e

getch();

}

4.18 Typedef: The typedef statement defines synonyms for

an existing data type. It does not introduce a new data type

and does not reserve storage also.

Syntax:

typedef existing data type new data type

Example:

typedef float REAL;

REAL area, volume;

Example: Write a C program to create user defined data

type hours on int data type and use it in the program.

#define H 60

void main()

{

typedef int hours;

hours hrs;

clrscr();

printf("enter the hours");

scanf("%d", &hrs);

printf("\n minutes=%d", hrs*H);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 204 | P a g e

printf("\n seconds=%d", hrs*H*H);

getch();

}

4.19 Unions: A union is a derived data type, like structure,

but only one data member is active at a time. In structure

each member has its own memory location whereas,

members of unions have same memory locations. Unions

also contains members of types int, float , char , long,

arrays, pointers……etc.

Syntax:

union <union name>

{

data type member1;

data type member2;

.

.

.

data type memberN;

}union variable;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 205 | P a g e

 The syntax of union is identical to that of a

structure except that the keyword struct is replaced with the

keyword union.

Example:

union exam

{

int rollno;

char name[10];

int m1,m2,m3;

};

In the above example, union has 5 members. First member

is a character array name having 10 characters (i.e., 10

bytes). Second member is of type int that requires 2 bytes

for their storage. All the other members m1, m2, m3 are

integers which requires 2 bytes for their storage.

The fig: shows the memory allocation of members of union

exam

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 206 | P a g e

 In union, all these 5 members are allocated in a common

place of memory.

Example: Write a C program to show how many bytes

are occupied by structure and union.

union exam

{

int rollno;

char name[10];

int m1,m2,m3;

}u1;

struct exam1

{

int rollno;

char name[10];

int m1,m2,m3;

}s1;

void main()

{

printf("The size of union is %d\n , sizeof(u1));

printf("The size of structrue is %d\n", sizeof(s1));

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 207 | P a g e

Output: The size of union is 10

 The size of structure is 18

4.20 Initialization a union: There is a major difference

between structure and union in terms of storage. In

structure, each member has its own storage location where

as all the members of union occupy the same memory

location.

 A union may contain many members of

different data types; it can handle only one member at a

time. Hence, we can initialize only one member in a union.

 If we try to initialize more than one member,

the last initialized value will be assigned to all of its

members.

Example: Write a C program to demonstrate

initialization of a union

union exam

{

int rollno,m1,m2,m3;

}u1;

void main()

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 208 | P a g e

{

u1.rollno=252;

u1.m1=89;

printf("\n Roll no=%d\n", u1.rollno);

printf("\n m1=%d\n", u1.m1);

printf("\n m2=%d\n", u1.m2);

printf("\n m3=%d\n", u1.m3);

getch();

}

Output:

Rollno=89

M1=89

M2=89

M3=89

4.21 Self-referential structures: In a structure, if one or

more members are pointers pointing to the same structure,

then that structure is called self-referential structure. In

simple, a structure refers to itself is known itself referential

structure.

Example:

Struct node

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 209 | P a g e

int num;

char name[10];

struct node *next;

};

Each node consists of three data items 1.number 2.name

3.next node. The pointer variable next is called a link. These

structures are represented as follows:

The pointer “next” contains either an address of the location

in memory of the successor node element or NULL. The

NULL is used to denote the end of the list. We now declare

three nodes as structure type node:

node n1, n2, n3;

We assign data values to these nodes:

n1.num=10; strcpy(n1.name, "ravi");

n2.num=20; strcpy(n2.name, "kumar");

n3.num=30; strcpy(n3.name, "krishna");

Let us link these nodes together

n1.next=&n2;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 210 | P a g e

n2.next=&n3;

n3.next=NULL;

These pointers assignments result in linking n1 to n2 to n3.

Fig: A linked list

Now the links allow us to retrieve data from successive

nodes. Thus

n1.next->num and n1.next->name have values 20 and

"kumar"

n1.next->next->num and n1.next->next->name have values

30 and "krishna"

Example: Write a C program on self-referential structures.

#include<stdio.h>

#include<conio.h>

void main()

{

struct node

{

int num;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 211 | P a g e

char name[10];

struct node *next;

};

struct node n1,n2, n3;

n1.num=10; strcpy(n1.name, "ravi");

n2.num=20; strcpy(n2.name, "kumar");

n3.num=30; strcpy(n3.name, "krishna");

n1.next=&n2;

n2.next=&n3;

n3.next=NULL;

printf("\n %d %s", n1.next->num,n1.next->name);

printf("\n %d %s",n1.next->next->num,n1.next->next-

>name);

getch();

}

Output: 20 kumar

 30 Krishna

4.22 Difference between structure and unions

Structure Union

1. The key word struct is

used to declare a structure.

1. The key word union is

used to declare an union.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 212 | P a g e

2. All data members in a

structure are active at a time.

2. Only one data member is

active at a time.

3. All the members of a

structure can be initialized.

3. Only the first of union can

be initialized.

4. Each members in a

structure occupies and use

its own memory space.

4. All union members use

the same memory space.

5. More memory space is

required, since each member

is stored in a separate

memory locations.

5. Less memory space is

required since all members

are stored in the same

memory locations.

Example:

Struct book

{

 Char title[40];

 Int pages;

Float price;

}s;

For s total memory required

is 40+2+4 bytes.

Example:

Union book

{

Char title[40];

Int pages;

Float price;

} s;

For s total memory required

is 40 bytes only.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 213 | P a g e

4.23 Difference between arrays and structure

Arrays Structures

1.An array is a collection

of data items of same data

types.

1.A structure is a collection of

data items of different data

types.

2.The individual entries in

an array are called

elements.

2.The individual entries in a

structure are called members.

3. An array declaration

reserves enough memory

space for its elements.

3.The structure definition

reserves enough memory space

for its members.

4.There is no keyword to

represent arrays but the

square braces []

preceding the variable

name tell us that we are

dealing with arrays.

4.The keyword struct tell us

that we are dealing with

structures.

5. Initialization of

elements can be done

during array declaration.

5. Initialization of members

can be done only during the

structure definition.

6.The elements of an array

are store in sequence of

6.The members of a structure

are not in sequence of memory

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 214 | P a g e

memory location. location.

7.The array elements are

accessed by using index or

subscript.

7.The members of a structure

are accessed by using dot

operator.

8.Its general format is

Data type array

name[size];

9.Example: int sum[10];

8.Its general format is :

Struct <structure name>

{

Data type member1;

Data type member2;

.

.

Data type memberN;

}structurevariable(s);

9.Example:

Struct student

{

 Int rollno;

Char name[10];

}s1;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 215 | P a g e

Example 1: Write a C program to display int , float and

char values using switch case in structure.

void main()

{

union

{

int a;

float b;

char c;

}s;

int ch;

printf("\n 1.int 2.float 3. char");

printf("\n enter the choice");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nenter the integer value");

 scanf("%d", &s.a);

 printf("\n value=%d", s.a);

 break;

case 2: printf("\nenter the float value");

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 216 | P a g e

 scanf("%f", &s.a);

 printf("\n value=%f", s.b);

 break;

case 3: printf("\nenter the char");

 scanf("%c", &s.a);

 printf("\n char=%c", s.c);

 break;

}

getch();

}

Output: 1. Int 2. Float 3. Char

 Enter the choice 1

 Enter the value 2

 Value=2

Example 2: Write a C program using a structure to

create a library catalogue with the following fields.

1. Accessno 2.authors‟ name 3.title 4. Year of

publication 5.publisher name 6.price.

void main()

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 217 | P a g e

struct library

{

 int accessno;

 char authorname[10];

 char title[10];

 int year;

char pubname[10];

float price;

};

struct library b1={101, "kamthane", "pc&ds" , 2005,

"pearson" , 195.00};

clrscr();

printf("\n access no=%d", b1.accessno);

printf("\n author name=%s",b1.authorname);

printf("\n title=%s", b1.title);

printf("\n year=%d", b1.year);

printf("\n pubname=%s", b1.pubname);

printf("\n price=%f", b1.price);

getch();

}

Output:

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 218 | P a g e

Example 3: Write a c program to find the topper of the

student by using array of structures.

#include<stdio.h>

#include<conio.h>

void main()

{

 struct student

 {

 int rollno, m1,m2,m3,sum;

 char name[10];

 float avg;

 }s[10];

int i, n, t=0, k=0;

clrscr();

printf("\n enter the number of students u want");

scanf("%d", &n);

for(i=0;i<n;i++)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 219 | P a g e

{

 printf("\n Enter the name rollno m1 m2 m3");

 scanf("\n%s%d%d%d%d", s[i].name, &s[i].rollno,

&s[i].m1,&s[i].m2,&s[i].m3);

 s[i].sum=s[i].m1+s[i].m2+s[i].m3;

 s[i].avg=s[i].sum/3.0;

 printf("\n sum=%d\n avg=%f\n", s[i].sum, s[i].avg);

}

t=s[0].avg;

for(i=1;i<n;i++)

 {

 if(t<s[i].avg)

 {

 t=s[i].avg;

 k=i;

 }

 }

printf("\n Topper of the class is");

printf("\n---------------------------");

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 220 | P a g e

printf("\n Name=%s\n Rollno=%d\n m1=%d\n m2=%d\n

m3=%d\n ", s[k].name, s[k].rollno, s[k].m1, s[k].m2,

s[k].m3);

printf("\n sum=%d\n avg=%f", s[k].sum, s[k].avg);

getch();

}

Output:

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 221 | P a g e

UNIT-V

Functions & File Handling

Introduction to Functions, Function Declaration and

Definition, Function call Return Types and Arguments,

modifying parameters inside functions using pointers, arrays

as parameters. Scope and Lifetime of Variables, Basics of

File Handling

6.1 Introduction: The C language supports two types of

functions

1. Library functions or predefined functions

2. User defined functions

1. Library functions or predefined functions: The library

functions are pre-defined set of functions. Their task is

limited. A user cannot understand the internal working of

these functions. The user can only use the functions but

cannot change or modify them.

Example: sqrt(81) gives result 9. Here the user need not

worry about its source code, but the result should be

provided by the function.

2. User defined functions: The user defined functions are

totally different. The functions defined by the user

according to his/her requirements are called user defined

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 222 | P a g e

functions. The user can modify the function according to the

requirement. The user certainly under stands the internal

working of the function.

Definition: A function is a self-contained block is called a

function.

 [Or]

A subprogram of one or more statements that performs a

special task when called.

Use of functions: The use of functions offers flexibility in

the design development and implementation of the program

to solve complex problems.

Advantages of functions:

1. Modular programming.

2. Reduction in the amount of work and development time.

3. Program and function debugging is easier.

4. Division of work is simplified due to the use of divide

and conquers principle.

5. Reduction in the size of the program due to code

reusability.

6. Logical clarity of the programming will be clear.

7. A library with user defined functions can be created.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 223 | P a g e

Example: Write a c program on local variables

#include<stdio.h>

#include<conio.h>

void main()

{

 int b=10, c=5;

 clrscr();

printf("\n In main function b=%d c=%d", b,c);

fun();

getch();

}

fun()

{

 int b=20, c=10;

 printf("\n In function b=%d c=%d", b,c);

}

Output: In main function b=10 c=5

 In function b=20 c=10

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 224 | P a g e

Example: Write a c program on global variables

#include<stdio.h>

#include<conio.h>

int b=10, c=5;

void main()

{

 clrscr();

printf("\n In main function b=%d c=%d", b,c);

fun();

b++;

c--;

Printf("\n again in main() b=%d c=%d", b,c);

getch();

}

fun()

{

 b++;

 c--;

printf("\n In function b=%d c=%d", b,c);

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 225 | P a g e

Output: In main() b=10 c=5

 In fun() b=11 c=4

 Again in main() b=12 c=3

6.2 Function components: Every function has the

following elements associated with it

1. Function declaration and function prototype

2. Function parameters

3. Function definition

4. Return statements

5. Function call

1. Function declaration and function prototype: Function

is declared as per format given bellow

function-name(arguments/parameter list)

{

 local variable declaration;

 statement1;

 statement2;

 return(value);

}

void main()

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 226 | P a g e

{

abc(x,y,z); Function call or calling or function

declaration

.........

......... Actual arguments

}

abc(l,k,j) Function definition or called function

{

.......... Formal arguments

..........

return(); return value

}

2. Function parameters: The parameters specified in the

function call (calling) are known as actual parameters and

those specified in the function definition (called) are known

as formal parameters.

void main()

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 227 | P a g e

 int x=1, y=2 ,z;

 z=add(x,y); Function call(calling)

printf("z=%d", z);

getch();

}

add(a,b) Function definition (called)

{

 return(a+b);

}

3. Function definition: The function itself is referred to as

function definition. The first line of the function definition

is known as function declaratory and is followed by the

function body.

add(a,b) Function definition (called)

{

 return(a+b);

}

4. Return statements: Functions can be grouped into two

categories

1. Functions that do not have a return value(void)

2.Functions that have a return value.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 228 | P a g e

void main() The main() function should not return

anything.

{

.............

............

getch();

}

int main() The main() function should return a

integer type of value.

{

.............

............

return(0);

getch();

}

5. Function call: A function call is specified by the

function name followed by the arguments enclosed in

parenthesis and terminated by a semicolon. The return type

is not mentioned in the function call.

Example: z=add(x, y); Function call(calling)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 229 | P a g e

6.3 Variables: There are two kinds of variables.

1. Local variables 2.Global variables

Local variables Global variables

1. It is declaration inside the

function.

2.It is declared by auto int

a=10 or int a = 10 (auto is

default scope)

3. If it is not initialized

garbage value is stored. EX:

int a; a is garbage value.

4. It is created when the

function starts execution and

lost when the function

terminates

5. It is visible in only one

function.

6. It can be accessed in only

one function that is the

function where it is declared.

7. Data sharing is not possible

that is data of local variable

1.It is declaration outside

the function

2. It is declared by int a=10

3. If it is not initialized zero

is stored

EX: int a; a = 0.

4. It is created before

program execution

starts and lost when

program terminates

5. It is visible throughout

the program.

6. It can be accessed in

more than one function.

7. Data sharing is possible

that is multiple functions

can access the same global

variable.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 230 | P a g e

can be accessed by only one

function

8. Parameters passing is

required for local variable that

is local variable of one

variable

9. If value of local variable is

modified in one function

changes are not visible in

another functions

8. Parameters passing is not

required for global variable

since global variable is

visible

throughout the program.

9. If value of global

variable is modified in one

function changes are

visible in rest of the

program.

6.4 Types of functions: Depending upon the argument

present, return value sends the result back to the calling

function based on this the functions are divided into four

types.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 231 | P a g e

Example1: Write a C program on without arguments

and return values

#include<stdio.h>

#include<conio.h>

void main()

{

void message();

}

void message()

{

printf("Have a nice day");

}

Output: Have a nice day

Explanation: - This program contains a user defined

function named message (). It requires no arguments and

returns nothing. It displays only a message when called.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 232 | P a g e

Example2: Write a C program on with arguments

without return values

#include<stdio.h>

#include<conio.h>

void main()

{

int j=0;

void sqr();

for(j=1;j<=5;j++)

sqr(j);

}

void sqr(int k)

{

printf("\n %d",k*k);

}

Output: 1 4 9 16 25

Explanation: Here the main () function passes one argument

per call to the function sqr(). The function sqr() collects this

arguments and prints its square. The function sqr() is void.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 233 | P a g e

Example 3: Write a C program on with arguments and

with return values

#include<stdio.h>

#include<conio.h>

void main()

{

int date(int, int,int);

int d,m,y,t;

clrscr();

printf("enter date dd/mm/yy");

scanf("%d%d%d",&d,&m,&y);

t=date(d,m,y);

printf("\n Tomorrow=%d/%d/%d",d,m,y);

return 0;

}

date(int x, int y, int z)

{

printf("\n Today=%d/%d/%d",x,y,z);

return(++x);

}

output: enter date dd/mm/yy 12 12 12

Today = 12/12/12

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 234 | P a g e

Tomorrow= 13/12/12

Explanation: In the above program three values date,

month, and year are passed to functions date (). The function

displays the date. The function date () returns the next date.

The next date is printed in function main (). Here, function

date () receives arguments and returns the values.

Example 4: Write a c program on without arguments

and without returns values

#include<stdio.h>

#include<conio.h>

 main()

{

int sum(),a,s;

clrscr();

s=sum();

printf("sum=%d", s);

return 0;

}

sum()

{

int x,y,z;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 235 | P a g e

printf("\n Enter the three values");

scanf("%d %d %d", &x,&y,&z);

return(x+y+z);

}

Output: enter the three values 3 5 4

 Sum=12

6.5 Parameter passing mechanism: There are two

parameter passing mechanisms

1. Call by value. Or passing by value

2. Call by reference or passing by address or call by address.

1. Call by value:

Passing arguments by value means, the contents of the

arguments in the calling function are not changed, even if

they are changed in the called function. This is because the

content of the variable is copied to the formal parameter of

the function definition, thus preventing the contents of the

argument in the calling function.

2. Call by reference:

Call by reference means sending the address of variables as

arguments to the Function. When addresses are sent , the

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 236 | P a g e

changes occurred in the called function can also effect in the

calling function.

Example 1: Write a C program to perform parameter

passing mechanism by using call by value.

#include<stdio.h>

#include<conio.h>

void add(int);

void main()

{

 int x=5;

printf("Before x=%d",x);

add(x);

printf("After x=%d",x);

getch();

}

void add(int y)

{

 y=y+5;

printf("In called function x=%d",y);

}

Output:

 Before x=5.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 237 | P a g e

 In called function x=10.

 After x=5.

Advantages: 1. Expression can be passed as arguments.

 2. Un wanted changes to the variables in the

calling function can be avoided.

Disadvantages: Information cannot be passed back from

the calling function to the called function through

arguments.

Example 2: Write a C program to perform parameter

passing mechanism by using call by reference.

#include<stdio.h>

#include<conio.h>

void add(int *);

void main()

{

 int x=5;

printf("Before x=%d",x);

add(&x);

printf("After x=%d",x);

getch();

}

void add(int *y)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 238 | P a g e

{

 *y=*y+5;

printf("In called function x=%d", *y);

}

Output:

 Before x=5.

 In called function x=10.

 After x=10.

6.6 Recursion: A function which calls itself until a certain

condition is reached is called recursive function. The

recursion can be

1. Direct recursion 2.Indirect recursion.

1. Directive recursion: The direct recursion function calls

itself till the condition is true.

2. Indirect recursion: In indirect recursion a function calls

another function then the called function calls the calling

function.

Example1: Write a C program to find the factorial of a

given number using recursion

#include<stdio.h>

#include<conio.h>

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 239 | P a g e

long int fact(int);

void main()

{

 long int f;

 int n;

 clrscr();

printf("Enter the number");

scanf("%d",&n);

f=fact(n);

printf("The factorial of a given number is %ld", f);

getch();

}

long int fact(int x)

{

 long int m;

 if(x==1|| x==0)

 return(1);

 else

 {

 m=x*fact(x-1);

 return(m);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 240 | P a g e

 }

}

Output: Enter the number 5

 The factorial of a given number is 120

Example 2: Write a C program to find the Fibonacci

series using recursion

#include<stdio.h>

#include<conio.h>

int fib(int);

void main()

{

 int i, n;

 clrscr();

printf("Enter the number");

scanf("%d",&n);

printf("The fibnocci series is");

for(i=1;i<=n;i++)

printf("%d", fib(i));

getch();

}

int fib(int x)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 241 | P a g e

{

 if(x==1|| x==2)

 return(x-1);

 else

 return(fib(x-1)+fib(x-2));

}

Output: Enter the number 5

 The Fibonacci series is 0 1 1 2 3

6.7 STORAGE CLASSES: Automatic, External, Static and

Register Variables.

 Normally the life of a variable is limited to a function as

long as the function is alive. How to make it alive in a file or

throughout the program or limiting only to a block inside a

function or to make common to a desired couple of

functions etc., The answer lies in “STORAGE CLASSES”

or “VARIABLE TYPES”.

There are four types of storage classes.

1. Automatic variables. 2. External variables. 3. Static

variables. 4. Register variables.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 242 | P a g e

1. Automatic variables:

Automatic variables are declared inside a function, in which

they are to be utilized. They are created when the function is

called and destroyed automatically when the function is

exited. By default all variables are automatic variables.

These are also called local or internal variables.

Ex. Write a C Program on Automatic Variables.

#include<stdio.h>

#include<conio.h>

Void main()

{

int a=9;

clrscr();

fun1();

printf(“\n in main() a=%d”,a);

getch();

}

fun1()

{

Auto int a=8;

fun2()

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 243 | P a g e

int a =7;

printf(“\n in fun2() a=%d”,a);

}

Output:

In fun2 () a=7

In fun1 () a=8

In main () a=9

2. Register variables:

1. This is local to a function or a block.

2. If a compiler finds a physical register in the CPU free for

the time being, and also big enough to hold the value, then it

may stick that variable in that register. Otherwise the

compiler treats that variable as ordinary.

3. It is machine dependent. But compiler will not give error

messages even if no register available in reserve.

Ex: Write a C program on Register variables.

#include<stdio.h>

#include<conio.h>

Void main()

{

register int a=1;

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 244 | P a g e

clrscr();

for(;a<=3;a++)

printf(“\na=%d”,a);

getch();

}

Output:

a=1 a=2 a=3

3. Static variables:

When a variable is declared as a static variable it is assigned

the value zero. Static variables are initialized only once.

They will not be initialized for second time during the

program. When static is applied to a global variable, the

global variable becomes inaccessible outside the file.

Ex: Write a C program on Static Variables.

#include<stdio.h>

#include<conio.h>

void main()

{

int a;

static int b;

clrscr();

printf(“\na=%d\nb=%d”,a,b);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 245 | P a g e

getch();

}

Output:

a=25338, b=0;

4. External variables:

Variables that are both alive and active throughout the entire

program are called external variables. These variables are

available to all functions in that program. Whatever changes

that occur in a function, will affect the value of that variable.

Ex: Write a C program on External Variables.

#include<stdio.h>

#include<conio.h>

int a=5;

void main()

{

clrscr();

fun1();

fun2();

printf(“\n In main() a=%d”,a);

getch();

}

fun1()

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 246 | P a g e

{

printf(“\n in fun1() a=%d”,a);

}

fun2()

{

Printf(“\n in fun2() a=%d”,a);

}

Output:

In fun1 () a=5 In fun2 () a=5 In main () a=5

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 247 | P a g e

Difference between Iterative statements and Recursion

Iterative statements Recursion

1. Function calls some other

functions.

2. while loop, do while loop

or for loop is

necessary in iterative

function.

3. Fast in execution since one

function call

is enough to get the result.

4. Function call leads to

value

Eg: fact(4) = 24.

5. We require mathematical

steps or

procedure to write an

iterative function.

6. Stacks are not used during

execution

1. Function calls some

itself.

2. if statement is necessary

in recursive

Function

3. Slow in execution since

several function

calls are involved to get the

result, as number of

function increases execution

will slow down.

4. Function call leads to

another function call

Eg: fact(4) = 4 xfact(3)

5. We require a formula to

write a recursive function.

6. Stacks are used during

execution of

recursive functions.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 248 | P a g e

FILES: Introduction, File Types, Basic operations on Files,

File I/O, Command Line Arguments

6.8 Introduction: A file contains data/information which is

stored permanently in a storage device. Generally used

storage devices are CDs, DVDs & hard disks. When large

quantity of data is required to be stored and processed, the

concept of file is used.

 A file stored in a storage device is

always identified using a name(e.g. student. Dat, info.txt).

Normally a filename has a primary name and a secondary

name, which are separated by a dot(.).

STUDENT. DAT

Primary name separator secondary name

Definition: File is a set of records that can be accessed

through the set of library functions.

Streams: Stream means reading and writing of data. The

streams are designed to allow the user to access the files

efficiently. A stream is a file or physical device like

keyboard, printer and monitor.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 249 | P a g e

6.9 Types of files: Based on the type of data

1. Data file 2. Text file

Based on the accessing the data

1. Sequential file 2. Random file

1. Data file: A data file contains data stored in the form of

records. A record is a collection of data related to a person

or item. For example, a student record may contain data like

roll number, student name and marks obtained by him. A

file contain may such records. Imagine the records are

arranged one by one as shown in figure.

2. Text file: A text file contains information stored in the

form of string characters. The characters entered through the

keyboard are stored continuously as illustrated bellow.

1. Sequence file: In sequential file data/information is

stored sequentially one by another. The data is read in the

same order in which they are stored.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 250 | P a g e

2. Random access file: In random access file the

data/information can be read randomly. Normally a key is

used to identify the required record in random file accessing.

6.10 Basic operations on Files

File declaration: A file is declared and the data is accessed

using a file pointer. It has the following general form.

Various functions used in the file operations.

Function Operation

fopen() Creates a new file for read/write operation.

fclose() Closes a file associated with the pointer.

closeall() Closes all opened files with fopen ().

fgetc() Reads the character from current pointer position and

advances the pointer to next character.

getc() Same as fgetc ().

fprintf() Writes all types of data values to the file.

fscanf() Reads all types of data values from a file.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 251 | P a g e

putc() Writes character one by one to a file.

fputc() Same as putc().

gets() Reads string from the file.

puts() Writes string to the file.

putw() Writes an integer to the file.

getw() Reads an integer from the file.

fread() Reads structured data written by fwrite ().

fwrite() Writes block of structured data to the file.

fseek() Sets the pointer position anywhere in the file.

feof() Detects the end of file.

ferror() Reports error occurred while read/write operations.

perror() Prints compilers error messages along with user

defined messages.

ftell() Returns the current pointer position.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 252 | P a g e

rewind() Sets the record pointer at the beginning of the file.

unlink () Removes the specified file from the disk.

remove() Removes the specified file from the disk changes the

name of the file.

6.11 The file pointer (fp): A file pointer is a pointer to a

structure of type FILE. It points to information that defines

various things about the file, including its name, status and

the current position of the file.

Example: FILE *fp;

6.12 fopen() function: The fopen () function is used to

open a file and set the file pointer to the beginning/end of a

file. It has the following form.

Syntax:

fp= fopen(“filename”, “mode”);

Where fp refers to the name of the file to be opened. Mode

refers to the operation mode to access data. The following

“mode” are used in data processing.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 253 | P a g e

Mode Meaning

r Open a text file for reading.

w Create a text file for writing.

a Append to a text file.

rb Open a binary file for reading.

wb Creates a binary file for writing.

ab Append to a binary file.

r+ Open a text file for read/wrtite.

w+ Create a text file for read/write.

a+ Append for create a text file for read/write.

r+b Open a binary file for read/write.

w+b Create a binary file for read/write.

a+b Append or create a binary file for

read/write.

6.1 3 fclose() function: All files that are opened should be

closed after all input and output operations with the file.

This is to prevent data from getting corrupted. fclose()

function is used to close an active file. It has the following

form.

Syntax:

 int fclose (FILE *fp);

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 254 | P a g e

Example: fclose(fp);

Where fp refers to file pointer. The function return EOF if

an error occurs then uses the standard function ferror ().

Example1: Write a C program to read the data from the

keyboard, write it to a file called input, again read the

same data from the input file, and displaying it on the

screen.

#include<stdio.h>

void main()

{

FILE *fp;

int ch;

/* to store data in a file */

printf("\nEnter the data");

fp=fopen("input.dat", "w");

while((ch=getchar())!=EOF)

putc(ch, fp);

fclose(fp);

/* to display data on the screen */

printf("\nThe data stored in input.dat file");

fp=fopen("input.dat", "r");

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 255 | P a g e

while((ch=getc(fp))!=EOF)

printf("%d",ch);

fclose(fp);

getch();

}

Output: welcome to Nbkrist

Example2: To write a C program to read in a line of

lower case text from a file and display its upper case

equivalent on the screen.

#include<stdio.h>

void main()

{

FILE *fp;

int ch;

clrscr();

fp=fopen("sample.txt", "r");

while((ch=getc(fp))!=EOF)

putchar(toupper(ch));

fclose(fp);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 256 | P a g e

Output: first to create the file sample.txt and then write the

text “hai”

 The output is going to show HAI

Example: Write a C program to count chars, spaces,

tabs and new lines in a file.

#include<stdio.h>

#include<conio.h>

void main()

{

FILE *fp;

int ch;

int nol=1,not=0,noc=0,nob=0;

fp=fopen("srist.txt", "r");

while(1)

{

 ch=getc(fp);

 if(ch==EOF)

 break;

 noc++;

 if(ch==' ')

 nob++;

 if(ch=='\n')

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 257 | P a g e

 nol++;

 if(ch=='\t')

 not++;

}

fclose(fp);

printf("\n number of characters=%d",noc);

printf("\n number of blanks=%d",nob);

printf("\n number of tabs=%d",not);

printf("\n number of lines=%d",nol);

getch();

}

Output: First to create the file srist.txt and then write

welcome to Nbkrist Vidyanagar

 Number of characters=26

 Number of blanks=3

 Number of tabs=1

 Number of lines=1

File I/O

6.14 fscanf(): The fscanf() function is used to read data

from a file. It is similar to the scanf() function except that

fscanf() is used to read data from disk. It has the following

form.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 258 | P a g e

Syntax: fscanf(fp, “format string”,

&v1,&v2,…………&vn);

6.55 fprintf(): The fprintf() function is used to write data

to a file. It is similar to printf() function except that fprintf(

) is used to write data to the disk. It has the following form.

Syntax: fprintf(fp, “format string” , v1,v2, ………..vn);

 Example: Write a C program to create a file

“student.txt” , contains information such as student roll

number , name, total marks.

#include<stdio.h>

#include<conio.h>

void main()

{

 FILE *fp;

 int i, n, rno, total;

 char sname[20];

 fp=fopen("student.txt", "w");

 printf("\n how many students");

 scanf("%d",&n);

for(i=0;i<n;i++)

{

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 259 | P a g e

 printf("\n Enter rno, sname, total");

 scanf("%d %s %d", &rno,sname,&total);

 fprintf(fp, "%d %s %d",rno, sname,total);

}

fclose(fp);

getch();

}

6.16 Random access files: Random access files can be

referred randomly. For this separate functions are

available. The functions that are used in random access files

are

 1. fseek() , 2. ftell(), 3. rewind().

fseek() function: The fseek() function is used to move the

file pointer to any position in a file from a given reference

position. It has the following form.

Syntax: fseek(fp, n, position);

Where “fp” is a file pointer “n”is a + or – long integer

number that represent the number of bytes to be skipped and

“position” is the position from which n bytes to be skipped.

0 beginning (SEEK_SET)

1current (SEEK_CUR)

2end (SEEK_END)

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 260 | P a g e

Example: fseek(fp, 10, 0); or fseek(fp, 10, SEEK_SET);

The file pointer is repositioned in the forward direction by

10 bytes.

Example: Write a C program to illustrate fseek()

#include<stdio.h>

void main()

{

 FILE *fp;

 int n;

 clrscr();

fp=fopen("data.txt", "r");

fseek(fp,4L, 0);

n=getc(fp);

while(n!=EOF)

{

 putchar(n);

 n=getc(fp);

}

fclose(fp);

getch();

}

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 261 | P a g e

6.17 ferror(): The ferror() function determines whether a

file operation has produced an error.

Syntax: int ferror(FILE *fp);

 Where fp is a file pointer. It returns true if an error

has occupied during the last file operation. Otherwise it

returns false.

6.18 Writing a character (): The putc() function writes

characters to a file that was previously opened for writing

using the fopen().

Syntax: int putc(int ch, FILE *fp);

If a putc() function operation is successful, it returns the

character written. Otherwise , it returns EOE.

6.19 Reading a character: The function getc() reads

characters from a file opened in read mode by fopen().

Syntax: int getc(FILE *fp);

 Where fp is file pointer of type FILE returned by

fopen().

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 262 | P a g e

6.20 feof(): The C file system includes the function feof(),

which determines when the end of the file has been

encountered.

Syntax: int feof (FILE *fp);

 feof() returns true if the end of the file has been reached.

Otherwise it returns 0(zero).

6.21 Command line arguments: The function main() in C

can also pass arguments or parameters like the other

functions. It has two arguments argc (for argument count)

and argv (for argument vector). It may have one of the

following two forms.

void main(int argc, char *argv[])

 or

void main(int argc, char **argv[])

Where argc represents the number of arguments, argv is a

pointer to an array of strings or pointer to pointer to

character.

 The argument argv is used to pass

strings to the programs. Hence the arguments argc and argv

are called as program parameter.

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 263 | P a g e

The program name is then interpreted as an operation

system command. Hence the line in which it appears is

generally referred to as a command line.

Example: Program-name parameter1, parameter2

……….parameter n

The individual items must be separated from one another

either by blank space or by tabs. Some operating systems

permit blank space to be included within a parameter

provided the entire parameter is enclosed in quotation mark.

Example 1: sample red white blue

Argc= 4

Argv[0]= sample.exe

Argv[1]=red

Argv[2]= white

Argv[3]= blue

Example 2: sample red “white blue”

Argc= 3

Argv[0]= sample.exe

Argv[1]=red

Argv[2]= white blue

 I- B.Tech I SEM Introduction to Programming Prepared By: BSR 264 | P a g e

Example: Write a C program on command line

argument

#include<stdio.h>

#include<conio.h>

void main(int argc, char *argv[])

{

int count;

printf("argc=%d\n", argc);

for(count=0; count<argc; ++count)

printf("argv[%d]=%s\n", count, argv[count]);

getch();

}

Output: go to the command prompt

