
 I- B.Tech II SEM Data Structures Prepared By: BSR 1 | P a g e

N.B.K.R. INSTITUTE OF SCIENCE AND TECHNOLOGY::VIDYANAGAR

(AUTONOMOUS)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

I-B.Tech II SEM(R-23)

23CS1201–DATA STRUCTURES

(COMMON TO CSE, IT, AI&DS, AND ALLIED BRANCHES)

 I- B.Tech II SEM Data Structures Prepared By: BSR 2 | P a g e

UNIT-I

Introduction to Linear Data Structures: Definition and

importance of linear data structures, Abstract data types

(ADTs) and their implementation, Overview of time and

space complexity analysis for linear data structures.

Searching Techniques: Linear and Binary Search.

Sorting Techniques: Bubble sort, Selection sort, and

Insertion Sort.

UNIT-II

Linked Lists: Singly linked lists - representation and

operations, doubly linked lists and circular linked lists,

Comparing arrays and linked lists, Applications of linked

lists.

UNIT-III

Stacks: Introduction, properties and operations,

implementing stacks using arrays and linked lists,

Applications of stacks in expression evaluation, balanced

parentheses, reversing list etc.

 I- B.Tech II SEM Data Structures Prepared By: BSR 3 | P a g e

Queues: Introduction, properties and operations,

implementing queues using arrays and linked lists, Queue

applications in OS and simulation experiments.

Types of Queues: Types - Circular Queues, Priority

Queues, Deques, and supporting operations.

UNIT-IV

Trees- Introduction, Types and basic properties.

Binary Trees–Definition, Tree traversals, Tree

representations. Binary Search Trees – Definition,

properties and applications. AVL trees- Introduction and

basic operations. Heap – Introduction and types, Heap sort.

UNIT-V

Graphs: Introduction, Basic terminologies, Graph

Representations, Bi-connected components, Topological

sorting. Hashing: introduction to hashing and hash

functions, basic implementation and operations of Hash

tables, Caching, Collision resolution techniques - chaining

and open addressing.

 I- B.Tech II SEM Data Structures Prepared By: BSR 4 | P a g e

UNIT-I

Introduction to Linear Data Structures: Definition and

importance of linear data structures, Abstract data types

(ADTs) and their implementation, Overview of time and

space complexity analysis for linear data structures.

Searching Techniques: Linear and Binary Search.

Sorting Techniques: Bubble sort, Selection sort, and

Insertion Sort.

1.1 Introduction to Linear Data Structures:

Introduction: Programs consists of two things, algorithms

and data structures. A good program is a combination of

both algorithm and a data structure. An algorithm is a step-

by-step recipe for solving an instance of a problem. Every

single procedure that a computer performs is an algorithm.

An algorithm states the action to be executed and the order

in which the actions are to be executed.

Definition: A data structure represents the logical

relationship that exists between individual elements of data

to carry out a certain task.

 [Or]

 I- B.Tech II SEM Data Structures Prepared By: BSR 5 | P a g e

A data structure is an arrangement of data in computer‟s

memory (or on a disk).

Classification of data structures [or] Types of data

structures:

Primary data structures: Primary data structures are the

basic data structures that operate upon the machine

instructions. The primary data structures are also called

primitive data structures.

Example: Integers, floating –point numbers, character

constants, string constants and pointers.

Secondary data structures: secondary data structures are

more complicated data structures derived from primary data

 I- B.Tech II SEM Data Structures Prepared By: BSR 6 | P a g e

structures. The secondary data structures are also called

non-primitive data structures.

Example: Arrays, stacks, queues, records, files , linked list,

trees, graphs etc.

 The secondary data structures are classified as

a) Linear data structures b) Non-linear data structures

a) Linear data structures: Data structures using sequential

allocation are called linear data structures.

Example: Arrays, records, stacks, queues , linked list

 Based on memory allocation, the Linear Data

Structures are further classified into two types:

a) Static data structures b)Dynamic data structures

a) Static data structures: If a data structures is created

using static memory allocation. It is known as static data

structures or fixed size data structures.

Example: Arrays and structures

b) Dynamic data structures: If a data structures is created

using dynamic memory allocation. It is known as dynamic

data structures or variable size data structures.

Example: Linked list

 I- B.Tech II SEM Data Structures Prepared By: BSR 7 | P a g e

b) Non-linear data structures: data structures don‟t have

sequential allocation are called non-linear data structures.

Example: Trees and Graphs

1.2 Why data structure?

The following are the advantages of using the data structure:

 These are the essential ingredients used for creating

fast and powerful algorithms.

 They help us to manage and organize the data.

 Data structures make the code cleaner and easier to

understand.

1.3 Advantages of Linear Data Structures

 Efficient data access: Elements can be easily

accessed by their position in the sequence.

 Dynamic sizing: Linear data structures can

dynamically adjust their size as elements are added

or removed.

 Ease of implementation: Linear data structures can

be easily implemented using arrays or linked lists.

 Versatility: Linear data structures can be used in

various applications, such as searching, sorting, and

manipulation of data.

 I- B.Tech II SEM Data Structures Prepared By: BSR 8 | P a g e

 Simple algorithms: Many algorithms used in linear

data structures are simple and straightforward.

1.4 Abstract Data Type (ADT)

What is abstract data type?

An abstract data type is an abstraction of a data structure

that provides only the interface to which the data structure

must adhere. The interface does not give any specific details

about something should be implemented or in what

programming language.

 In other words, we can say that abstract data types

are the entities that are definitions of data and operations

but do not have implementation details. In this case, we

know the data that we are storing and the operations that can

be performed on the data, but we don't know about the

implementation details.

Abstract data type model

Before knowing about the abstract data type model, we

should know about abstraction and encapsulation.

 I- B.Tech II SEM Data Structures Prepared By: BSR 9 | P a g e

Abstraction: It is a technique of hiding the internal details

from the user and only showing the necessary details to the

user.

Encapsulation: It is a technique of combining the data and

the member function in a single unit is known as

encapsulation.

The above figure shows the ADT model. There are two

types of models in the ADT model, i.e., the public function

and the private function. The ADT model also contains the

data structures that we are using in a program. In this model,

first encapsulation is performed, i.e., all the data is wrapped

in a single unit, i.e., ADT. Then, the abstraction is

performed means showing the operations that can be

 I- B.Tech II SEM Data Structures Prepared By: BSR 10 | P a g e

performed on the data structure and what are the data

structures that we are using in a program.

1.5 Array as ADT (Abstract Data Type) using C

Representation of Data on Array:

Now let‟s look at the representation of the data on an array.

The first thing is we need an array space of some size. Here

we initialize an array of size = 10 and length = 0 because

there are no elements in the array.

Here we have two methods to initialize our Array:

1. Inside Stack Memory: As shown in the below

image, A [10] will create a contiguous block of

memory index from 0 to 9 inside Stack.

 I- B.Tech II SEM Data Structures Prepared By: BSR 11 | P a g e

2. Inside Heap Memory: We can also create our array

dynamically with the new keyword, The new

operator denotes a request for memory allocation, as

shown in the below image, we created a pointer of

int* type and in the next step we point it to a

contiguous block of memory inside Heap. We have

created our array inside heap memory by using a

pointer.

The Complete C Code:

#include <stdio.h>

#include <stdlib.h>

struct Array {

 int* A;

 int size;

 int length;

};

int main() {

 struct Array arr;

 printf("Enter Size of an Array: ");

 I- B.Tech II SEM Data Structures Prepared By: BSR 12 | P a g e

 scanf("%d", &arr.size);

 arr.A = (int*)malloc(sizeof(int) * arr.size);

 arr.length = 0;

 printf("Enter Number of Elements: ");

 scanf("%d", &arr.length);

 printf("Enter All Elements: \n");

 for (int i = 0; i < arr.length; i++) {

 scanf("%d", &arr.A[i]);

 }

 getchar();

}

Output:

Enter Size of an Array: 10

Enter Number of Elements: 5

Enter All Elements:1 2 3 4 5

1.6 Overview of time and space complexity analysis for

linear data structures.

1.6.1 Performance Analysis: The efficiency of an

algorithm can be decided by measuring the performance of

algorithm. We can measure the performance of an algorithm

 I- B.Tech II SEM Data Structures Prepared By: BSR 13 | P a g e

by computing amount of time and storage requirement. We

can analyse an algorithm by two ways.

1. By checking the correctness of an algorithm.

2. By measuring time and space complexity of an

algorithm.

Time Complexity

Time complexity is defined in terms of how many times it

takes to run a given algorithm, based on the length of the

input.

Example

Statements s/e Frequency Total steps

Algorithm sum(a,n)

{

s:=0;

0

0

1

-

-

1

0

0

1

 I- B.Tech II SEM Data Structures Prepared By: BSR 14 | P a g e

 for i:=1 to n do

 s:=s+a[i]

return s;

}

1

1

1

0

n+1

n

1

-

n+1

n

1

0

 2n+3

Space Complexity

The amount of memory used by a program to execute it is

represented by its space complexity. The space requirement

S(P) can be given as

S(P)=C + SP

Example

Statements s/e Frequency Total steps

Algorithm sum(a,n)

{

s:=0;

 for i:=1 to n do

 s:=s+a[i]

return s;

}

0

0

1

1

1

1

0

-

-

1

n+1

n

1

-

0

0

1

n+1

n

1

0

 2n+3

The space requirement for algorithm given in example is

S(P)= 2n+3. Neglect the constants

 I- B.Tech II SEM Data Structures Prepared By: BSR 15 | P a g e

1.6.2 Asymptotic Notations

To choose the best algorithm, we need to check efficiency

of each algorithm. The efficiency can be measured by

computing time complexity of each algorithm. Asymptotic

notation is a shorthand way to represent the time

complexity. Using asymptotic notations we can give time

complexity as “fastest possible”, “slowest possible” or

“average time”. There are mainly three asymptotic

notations:

1. Big-O Notation (O-notation)

2. Omega Notation (Ω-Notation)

3. Theta Notation (Θ-Notation)

1. Big-O Notation (O-notation)

Big-oh notation denoted by „O‟ is a method of representing

the upper bound of algorithms running time. Using big-oh

notation we can give longest amount of time taken by the

algorithm to complete.

 I- B.Tech II SEM Data Structures Prepared By: BSR 16 | P a g e

Definition: The function f(n)=O(g(n)) iff there exist

positive constants c and no such that f(n) ≤ cg(n) for all n ≥

n0

2. Omega Notation (Ω-Notation)

Omega notation denoted by Ω is a method of representing

lower bound of algorithms running time. Using omega

notation we can denote shortest amount of time taken by

the algorithm to complete.

Definition: The function f(n)=Ω (g(n)) iff there exist

positive constants c and n0 such that f(n) ≥c*g(n) for all

n, n≥n0

 I- B.Tech II SEM Data Structures Prepared By: BSR 17 | P a g e

3. Theta Notation (Θ-Notation)

The Theta notation denoted as Θ is a method of representing

running time between upper bound and lower bound.

Definition: The function f(n)= Θ(g(n)) iff there exist

positive constants c1, c2 and n0 such that c1g(n) ≤f(n) ≤c2

g(n) for all n, n≥n0

 I- B.Tech II SEM Data Structures Prepared By: BSR 18 | P a g e

Linear Data structures - Time Complexities

Searching Algorithms - Time Complexities

Sorting Algorithms - Time Complexities

 I- B.Tech II SEM Data Structures Prepared By: BSR 19 | P a g e

1.7 Searching Techniques: Linear and Binary Search.

Searching Algorithms are designed to check for an element

or retrieve an element from any data structure where it is

stored. Based on the type of search operation, these

algorithms are generally classified into two categories:

Sequential Search: In this, the list or array is traversed

sequentially and every element is checked. For example:

Linear Search.

Interval Search: These algorithms are specifically designed

for searching in sorted data-structures. This type of

searching algorithms are much more efficient than Linear

Search as they repeatedly target the centre of the search

structure and divide the search space in half. For Example:

Binary Search.

1.7.1 Linear Search

Linear Search is defined as a sequential search algorithm

that starts at one end and goes through each element of a list

until the desired element is found, otherwise the search

continues till the end of the data set.

 I- B.Tech II SEM Data Structures Prepared By: BSR 20 | P a g e

Example

Example: Write a C program to check whether the given

element is present in a list or not by using linear search.

#include<stdio.h>
#include<conio.h>

void main()

{
 int a[10]={11,21,35,46,62,67,83,95,99,105 };
 int key;

 printf("\n Enter the key value");
 scanf("%d",&key);

 for(i=0;i<n;i++)
 if(a[i]==key)
 {

 printf("\n Element is present at position %d", i+1);
 exit(0);

 }
 printf("\n Element is not present");
getch();

 I- B.Tech II SEM Data Structures Prepared By: BSR 21 | P a g e

}

Output: Enter the key value 35

 Element is present at position 3

 Enter the key value 10

 Element is not present

Linear search Time complexity

The above algorithm‟s runtime complexity is O(N) and

space complexity is O(1).

1.7.2 Binary Search

Binary search is an efficient searching method. While

searching the elements using this method the most essential

thing is that the elements in the array should be sorted one.

 An element which is to be searched from the list of

elements stored in array A[0……n-1] is called KEY

element.

 Let A[m] be the mid element of array A. then there

are three conditions that needs to be tested while searching

the array using this method.

1. If KEY =A[m] then desired element is present in the

list.

2. Otherwise if KEY<A[m] then search the left sublist.

 I- B.Tech II SEM Data Structures Prepared By: BSR 22 | P a g e

3. Otherwise if KEY> A[m] then search the right

sublist.

This can be represented as

Binary search Algorithm

Algorithm for Binary Search

1) Initialize low=0, high=n-1 and found =0 [un successful]

2) Repeat step 3 and step 4 while(low<=high)

3) mid=(low+high)/2

4) if key <a[mid] then

 High=mid-1

 Else if key > a[mid] then

 low=mid+1

 else

 found=1

5) return(found)

 I- B.Tech II SEM Data Structures Prepared By: BSR 23 | P a g e

Example: Let us consider the elements 1 2 3

 4 5 6

Sol:

Initially low=0 and high=n-1[high=6-1]

high=5

Here low<=high 0<= 5 so find mid value.

Now calculate mid=(low+high)/2

 mid=(0+5)/2

 mid=2

Select the searching element or key value is 5.

 I- B.Tech II SEM Data Structures Prepared By: BSR 24 | P a g e

mid=3 and key =5. Here key value is greater than mid value

so low=mid+1

Low=2+1

Low=3. Here key value greater than mid value then the

searching will be done right half.

mid=(low+high)/2

mid=(3+5)/2

mid=4

 I- B.Tech II SEM Data Structures Prepared By: BSR 25 | P a g e

if mid value is equal to the key value then we can say an

element is present at position 4.

Example: Write a C program to check whether an

element is present in the list or not by using binary

search.

#include<stdio.h>
#include<conio.h>
main()

{

int a[10] = {11,21,35,46,62,67,83,95,99,105};

int key;

clrscr();
printf("\n Enter the key value");
scanf("%d",&key);
if(binary_search(a,10,key))

printf("\n Elements is present");

else
printf(”\n Elements is not preseny”);
getch();

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 26 | P a g e

int binary_search(int a[], int n, int key)
{
int found=0,mid, low=0,high=n-1;
while(low<=high)

{
mid=(low+high)/2;

if(key<a[mid])
high=mid-1;
else if (key>a[mid])
low=mid+1;

else
{

found=1;
break;

}
}
return(found);

}

OUTPUT
Enter the key value 11

Element is present
Enter the key value 88
Element is not present

Binary Search complexity

Now, let's see the time complexity of Binary search in the

best case, average case, and worst case. We will also see the

space complexity of Binary search.

 I- B.Tech II SEM Data Structures Prepared By: BSR 27 | P a g e

1. Time Complexity

Best Case Complexity - In Binary search, best case occurs

when the element to search is found in first comparison, i.e.,

when the first middle element itself is the element to be

searched. The best-case time complexity of Binary search is

O(1).

Average Case Complexity - The average case time

complexity of Binary search is O(logn).

Worst Case Complexity - In Binary search, the worst case

occurs, when we have to keep reducing the search space till

it has only one element. The worst-case time complexity of

Binary search is O(logn).

2. Space Complexity

 I- B.Tech II SEM Data Structures Prepared By: BSR 28 | P a g e

1.8 Sorting Techniques

Sorting: Arrangement of elements either in ascending order

or descending order then it is said to be a sorting.

Exchange sort: Making repeated comparisons and

exchanging the adjacent items, if some condition is satisfied.

Sorting will be useful to search, insert or delete a data item

in a list. There are various sorting techniques

1.8.1 Bubble Sort

1.8.2 Selection Sort

1.8.3 Insertion Sort

1.8.1 Bubble Sort

The bubble sort, also known as the ripple sort, is one of the

least efficient sorting algorithms. However, it is probably

the simplest to understand. At each step, if two adjacent

elements of a list are not in order, they will be swapped.

Thus, larger elements will “bubble” to the end, (or smaller

elements will be “bubbled” to the front, depending on

implementation) and hence the name.

 The principle of a bubble sort is illustrated below:

Compare the first two values and swap if necessary. Then

compare the next pair of values and swap if necessary. This

 I- B.Tech II SEM Data Structures Prepared By: BSR 29 | P a g e

process is repeated n-1 times, where n is the number of

values being sorted.

Example

Algorithm for Bubble sort or Exchange sort

Bubble(Arr, n)

where Arr is an array of 'n' elements
Step 1:Repeat for i=0,1,2......n-1
Step 2:Repeat for j=i+1 to n-1
Step 3:if(Arr[i]>Arr[j]) then

 Interchage Arr[i] and Arr[j]

 [End if structure]
Step 4: Increment j by 1
Step 5: [End of step 2 for loop]
Step 6: [End of step 1 for loop]

Step 7:Print the sorted array

 End Bubble().

 I- B.Tech II SEM Data Structures Prepared By: BSR 30 | P a g e

Example 1: Write a C program to sort the numbers

using Bubble sort

#include<stdio.h>

#include<conio.h>
void bubble(int a[], int n);

int i, j, n, temp,a[10];
void main()
{
 printf("\n How many elements you want");

 scanf("%d", &n);
 printf("\n Enter the elements");

 for(i=0;i<n;i++)
 scanf("%d", &a[i]);

 bubble(a, n);
 printf("\n The sorted list is");
 for(i=0;i<;i++)

 printf("%d\t", a[i]);
 getch();

}

void bubble(int a[], int n)
 {
 for(i=0;i<=n-1;i++)

 {

 for(j=i+1;j<=n-1;j++)
 {
 if(a[i]>a[j])
 {

 temp=a[i];
 a[i]=a[j];
 a[j]=temp;
 }

 I- B.Tech II SEM Data Structures Prepared By: BSR 31 | P a g e

 }
 }
}

Output

How many elements you want 4

Enter the elements 7 6 4 3

The sorted list is 3 4 6 7

1.8.2 Selection Sort

In selection sort find the smallest value in the array and

exchange it with the first element. Find the next smallest

and exchange it with the second element and continue in this

manner till all elements are completed.

 Algorithm for selection sort

selectionsort(a,n)

Where a is an array of n elements
Step 1:Repeat for i=0,1,2,......n-1

Step 2:Assign k=i, min=a[i]

 I- B.Tech II SEM Data Structures Prepared By: BSR 32 | P a g e

Step 3:Repeat for j=i+1 to n-1

Step 4: if(a[j]<min) then
 min=a[j]

 k=j
 [End of if structure]
Step 5: [End of step 3 for loop]

Step 6:Assign a[k]=a[i]
 a[i]=min

Step 7: [End of step 1 for loop]
Step 8: print the sorted array a

 End selectionsort()

Example : Write a C program to sort the numbers using

selection sort
#include<stdio.h>
#include<conio.h>
void selectionsort(int a[], int n);

int i, j, k,n,min,a[10];
void main()

{

 printf("\n How many elements you want");

 scanf("%d", &n);
 printf("\n Enter the elements");

 for(i=0;i<n;i++)
 scanf("%d", &a[i]);
 selectionsort(a, n);

 printf("\n The sorted list is");
 for(i=0;i<;i++)

 printf("%d\t", a[i]);

 getch();

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 33 | P a g e

void selectionsort(int a[], int n)
{
 for(i=0;i<=n-1;i++)
 {

 k=i;
 min=a[i];

 for(j=i+1;j<=n-1;j++)
 if(a[j]<min)
 {
 min=a[j];

 k=j;
 }

 a[k]=a[i];
 a[i]=min;

 }
 }

Output

How many elements you want 4

Enter the elements 7 6 4 3

The sorted list is 3 4 6 7

 I- B.Tech II SEM Data Structures Prepared By: BSR 34 | P a g e

1.8.3 Insertion Sort

The main idea of insertion sort is to consider each element

at a time, into the appropriate position relative to the

sequence of previously ordered elements, such that the

resulting sequence is also ordered.

Example: The insertion sort can be easily understood if we

know to play cards. Imagine that we are arranging cards

after it has been distributed before we in front of the table.

As each new card is taken and compared with the cards in

hand. The card is inserted in proper place within the cards in

hand, by pushing one position to the left or right. This

procedure proceeds until all the cards are placed in the hand

are in order.

Algorithm for Insertion sort

Insertionsort(a,n)

Where a is an array of n elements.

Step 1:Repeat for i=1,2,3....n-1

Step 2:Assign temp=a[i]

Step 3:Repeat for j=i t0 1

Step 4:if(temp<a[j-1]) then

 a[j]=a[j-1]

 else

 I- B.Tech II SEM Data Structures Prepared By: BSR 35 | P a g e

 goto step 7

 [End of if structure]

Step 5:Decerement j by 1

Step 6:[End of step 3 for loop]

Step 7:Assign a[j]=temp

Step 8:[End of step1 for loop]

Step 9:print the sorted array a

 End Insertsort()

Note: The insertion sort is also known as straight sorting

technique.

Example: Write a C program to sort the numbers using

insertion sort
#include<stdio.h>

#include<conio.h>
void insertionsort(int a[], int n);
int i, j,n,temp,a[10];

void main()
{

 clrscr();
 printf("\n How many elements you want");
 scanf("%d", &n);

 printf("\n Enter the elements");
 for(i=0;i<n;i++)

 scanf("%d", &a[i]);
 insertionsort(a, n);
 printf("\n The sorted list is");

 I- B.Tech II SEM Data Structures Prepared By: BSR 36 | P a g e

 for(i=0;i<n;i++)
 printf("%d\t", a[i]);
 getch();
}

void insertionsort(int a[], int n)

{
 for(i=1;i<=n-1;i++)
 {
 temp=a[i];

 for(j=i;j>=1;j--)
 {

 if(temp<a[j-1])
 a[j]=a[j-1];

 else
 break;
 }

 a[j]=temp;

 }

}

Output

How many elements you want 4

Enter the elements 7 6 4 3

The sorted list is 3 4 6 7

 I- B.Tech II SEM Data Structures Prepared By: BSR 37 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 38 | P a g e

UNIT-II

Linked Lists: Singly linked lists - representation and

operations, doubly linked lists and circular linked lists,

Comparing arrays and linked lists, Applications of linked

lists.

2.1 Linked Lists

Linked list or list is an ordered collection of elements. Each

element in the list is referred as a node. Each node contains

two fields namely

a) Data field

b) Link field

a) Data field: The data field contains the actual data of the

element to be stored in the list.

b) Link field: The link field also referred as the next

address field contains the address of the next node in the list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 39 | P a g e

The linked list is shown in fig 7.2 consists of three nodes,

each with a data field and a link field. A linked list contains

a pointer, referred as the head pointer. The head pointer

points to the first node in the list that stores the address of

the first node of the list.

 The data field contains the actual information

which is to be stored in the list. The data field of the first

node stores the value 10. The link field of the first node

contains the address of the second node, similarly the

second node of the list stores the value 75 in the data field

and address of the third node in the link field. The last node

of the list contains only the information part in the data field

and the address field stores the NULL pointer. This NULL

pointer is used to indicate the end of the list.

 The address stored in the linked list are

divided into three types namely

a) External address

b) Internal address

c) NULL address

a) External address: External address is the address of the

first node in the list. This address is stored in the head

pointer which points to the first node in the list. The entire

 I- B.Tech II SEM Data Structures Prepared By: BSR 40 | P a g e

linked list can be accessed only with the help of the head

pointer.

b) Internal address: Internal address is the address stored

in each and every node of the linked list except the last

node. The content stored in the link field is the address of

the next node.

c) NULL address: NULL address is the address stored by

the NULL pointer of the last node of the list, which

indicates the end of the list.

2.2 Types of linked list: There are different types of linked

lists. They can be classified as,

2.2.1 Singly linked list

2.2.2 Doubly linked list

2.2.3 Circular linked list

2.2.1 Singly linked list: It‟s having data field and linked

field is referred to as the singly linked list. In which each

node has a single link to its next node. This list is also

referred as a linear linked list. The head pointer points to the

first node in the list and the NULL pointer is stored in the

link field of the last node in the list, which indicated end of

list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 41 | P a g e

 We can traverse (move) in a singly linked list in

only one direction.

Basic operations on a singly linked list: The basic

operations that can be performed on singly linked list are

1. Creation of a list

2. Insertion of a node

3. Deletion of a node

4. Display of a list(Traversal of a list)

5. Count the number of nodes

1. Creation of a list: The creation of a list involves three

processes. They are

a) Creating a node

b) Reading details for a node from user

c) Connect the node with the list.

1. Creation of a list: The creation of a list involves three

processes. They are

a) Creating a node

b) Reading details for a node from user

c) Connect the node with the list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 42 | P a g e

Algorithm for declaration of structure node

struct node
data: data field

Link: link field (Address of next struct node)
End struct

Algorithm for allocation memory for the new node

 Getnode()

size: integer; newnode:node

step 1: set size=get the size of the node

step 2:set newnode=allocate space in memory for the size

of size and return the initial address.

step 3:return newnode

End Getnode()

Algorithm for reading the content for the new node

Readnode(newnode:node)

step 1: read, newnode->data

step 2:set newnode->link=NULL

step 3:return

End readnode()

 I- B.Tech II SEM Data Structures Prepared By: BSR 43 | P a g e

Algorithm for create list

createlist()

head, last, nenode:node
step 1: set newnode=Getnode()

step 2:call readnode(newnode)
step 3:set head=newnode
step 4:set last=newnode

step 5:if we want to add another node proceed

otherwise stop

step 6:set newnode=getnode()
step 7: call readnode(newnode)
step 8:Assign last->link=newnode

step 9:Assign last=last->link
step 10:goto step 5

End createlist()

2. Insertion of a node: One of the most important operation

that can be done in a singly linked list is the insertion of a

node. Memory is to be allocated for the new node before

reading the data. The new node will contain empty data field

and empty link field. The data field of the new node is then

stored with the information read from the user. The link

field of the new node is assigned to NULL.

 The new node can then be inserted in the list at

three different places namely,

a) Inserting as a first node in the list

 I- B.Tech II SEM Data Structures Prepared By: BSR 44 | P a g e

b) Inserting as a last node in the list

c) Inserting an intermediate node in the list

a) Inserting as a first node in the list:

The following steps are followed to insert a new node in the

start of the list.

1) Get the new node using Getnode(), and read the details

of the node using Readnode().

2) Check whether the list is empty or not (ie., check whether

the head pointer is pointing to NULL or not).

3) If the list is empty, assign new node as head. If the list is

not empty, follow the next steps.

4) The link field of the new node is made to point the data

field of the first node(ie., head node) in the list by assigning

the address of the first node.

5) The head pointer is made to point the data field of the

new node by assigning the address of the new node.

 InsertFirst() function is used for inserting a new

node in the first position of the list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 45 | P a g e

Algorithm for inserting a node as the first node in the list

Insert_first(head:node)

New node:node
step 1:set new node=Getnode()

step 2:call read node(new node)
step 3: if(head==NULL)
 set head =newnode

 return

step 4:Assign newnode->link=head

step 5:set head=newnode
 End Insert_first()

 I- B.Tech II SEM Data Structures Prepared By: BSR 46 | P a g e

b) Inserting as a last node in the list:

The following steps are followed to insert a new node in the

end of the list.

1) Get the new node using GetNode(), and read the details

of the node using ReadNode().

2) Check whether the list is empty or not. It the list is empty

, assign new node as head. If the list is not empty, follow the

next steps.

3) The link field of the last node is made to point the data

field of the new node in the list by assigning the address of

the new node.

4) The link field of the new node is set to NULL.

Algorithm for inserting a node as the last node in the list

Insert_last(head:node)
Last,newnode:node
step 1:Set newnode =getnode()

step 2:Call readnode(newnode)
step 3: if(head==NULL)

 Set head=newnode
 Return
step 4:Set last=head

step 5:Repeat while(last->link!=NULL)
 Assign last=last->link

step 6:Assign last->link=newnode
 End insert_last()

 I- B.Tech II SEM Data Structures Prepared By: BSR 47 | P a g e

c) Inserting an intermediate node in the list

The following steps are followed , to insert a new node in

any intermediate position in the list.

1) Get the new node using GetNode() , and read the details

of the node using ReadNode().

2) Check whether the list is empty or not. If the list is

empty, assign new node as head. If the list is not empty,

follow the next steps.

3) Get the address of the preceding node after which the

new node is to be inserted.

4) The link field of the new node is made to point the data

field of the next node by assigning its address.

5) The link field of the preceding node is made to point the

data field of the new node by assigning the address of the

new node.

 I- B.Tech II SEM Data Structures Prepared By: BSR 48 | P a g e

Algorithm for inserting a node at any intermediate position in

the list

Inser_middle(Head:node)
last, newnode:node
condition: Data of the any one node in the last for insert

Step 1:set newnode=Getnode()
Step 2:call readnode(new node)

Step 3:If(head==NULL)
 set head=newnode

 Return
 [End structure]
Step 4:print "Enter the data of node after which the insertion is to

be made"
Step 5:Read, condition

step 6:set last=head
Step 7:Repeat while(last!=NULL)
Step 8:If(last->data==Condition) then

 Assign newnode->link=last->link
 Assign last->link=newnode

 Return

 else
 Assign last=last->link
 [End structure]
Step 9:[End of step 7 while structure]

Step 10:Print "condition is not available"

 End Insert_middle()

 I- B.Tech II SEM Data Structures Prepared By: BSR 49 | P a g e

3) Deletion of a node: Another primitive operation that can

be done in a singly linked list is the deletion of a node.

Memory is to be released for the node to be deleted. A node

can be deleted from the list from three different places

namely

1) Deleting the first node from the list.

2) Deleting the last node from the list.

3) Deleting an intermediated node from the list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 50 | P a g e

1) Deleting the first node from the list

The following steps are followed, to delete a node from the

start of the list

a) Check whether the list is empty or not (i.e. check whether

the head pointer is pointing to NULL or not). If the list is

not empty, follow the next steps.

b) set the head pointer to the second node in the list.

c) Release the memory for the deleted node.

Algorithm for deleting the first node from the list

Delete_First(Head:node)

Delete:node

Step 1:if(Head==NULL)

 printf "list is empty"

 return

 [End of if structure]

Step 2:set delnode=Head

Step 3:Assign head=head->link

Step 4:Print "Deleted data is ", delnode->data

Step 5:Call releasenode(delnode)

 End Delete_First()

 I- B.Tech II SEM Data Structures Prepared By: BSR 51 | P a g e

2) Deleting the last node from the list

The following steps are followed , to delete a node from the

end of the list.

a) Check whether the list is empty or not. If the list is not

empty, follow the next steps

b) The link field of the previous node is set to NULL.

c) Release the memory for the deleted node.

Algorithm for deleting the last node from the list
Delete_lat(Head:node)
last, prev, Delnode:node
Step 1:if(Head==NULL)

 printf "list is empty"

 return
 [End of If structure]

Step 2:if(head->link==NULL) then

 set Delnode=Head
 Set Head=NULL

 printf "Deleted data is", delnode->data

 I- B.Tech II SEM Data Structures Prepared By: BSR 52 | P a g e

 Return

 [End of if structure]
Step 3: set last=head

step 4:Repeat while(last->link!=NULL)
Step 5:Assign prev=last
Step 6:Assign last=last->link

step 7:[End of step 4 while loop]
Step 8:Set delnode=last

Step 9:prev->link=NULL
Step 10:print "Deleted data is " delnode->data

step 11:Call releasenode(Delnode)
 End Delete_last()

c) Deleting an intermediate node from the list:

The following steps are followed , to delete a node from an

intermediate position in the list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 53 | P a g e

a) Check whether the list is empty or not(i.e. check whether

the head pointer is pointing to NULL or not). If the list is

not empty , follow the next steps.

b) The link field of the previous node is made to point the

data field of the next node, by assigning its address.

c) Release the memory for the deleted node

Algorithm for deleting a node at any intermediate position in the

list

Delete_middle(head: node)

Last, prev, delnode:node
Deldata: data of the node is the node to delete

Step 1: if(head==NULLL)
Print “List is empty”
Return

[End of if structure]
Step 2: print “Enter the data of the node in the list for deletion”

Step 3: read del data

Step 4: if (head->data ==del data) then
 Set del node=head
 Assign head=head->link
 Print “deleted data is “, del node-> data

 Call release node(del node)

 Return
 [End of if structure].
Step 5: set last=head->link

Step 6: set prev=head
Step 7: Repeat while(last!=NULL)
Step 8: if(last->data ==Del data) then

 Set del node= last

 I- B.Tech II SEM Data Structures Prepared By: BSR 54 | P a g e

 Assign prev->link=lat->link

 Print “The deleted data is “, del node->data
 Call return node(del node)

 Return
 Else
 Assign lat=last->link

 Assign prev=prev->link
 [End of if structure]

Step 9: [End of step 7 while loop]
Step 10: print “del data is not available in the list”

 End delete_middle()

5) Traversal of a list: To read the information or to display

the information in a linked list, we have to traverse (move) a

linked list, node by node from the first node, until the end of

the list is reached. Traversing a list involves the following

steps.

 I- B.Tech II SEM Data Structures Prepared By: BSR 55 | P a g e

a) Check whether the head pointer is pointing to NULL or

not. If yes display “list is empty” and terminate the

process. Otherwise follow the next steps.

b) Display the information in the data field stored in the

head pointer.

c) Traverse the list from one node to another by advancing

the head pointer.

Algorithm for displaying the contents of the list
View_list(Head:node)

Step 1: if(head==NULL)
 Print “List is empty”
 Return

 [End of if structure]
Step 2: While(head!=NULL)

Step 3: print “ The data is “, head->data
Step 4: head=head->link
Step 5: [End of step2 while structure]

 End view_list()

6) Count the number of nodes in the list: To count the

nodes in a linked list, we have to traverse (move) a linked

list node by node from the first node, until the end of the list

is reached. Counting the number of nodes in the list involves

the following steps.

 I- B.Tech II SEM Data Structures Prepared By: BSR 56 | P a g e

Algorithm for counting the number of nodes in the list

Count_list(Head:node)

Count:integer

Step 1: set count=0

Step 2: if(head==NULL)

 Print “list is empty”

 Return count

 [End of if structure]

Step 3: while(head!=NULL)

Step 4: count=count+1

Step 5: head=head->link

Step 6: [End of while structure]

Step 7: return count

End count_list()

Example: Write a C program on Single Linked List

#include<stdio.h>

#include<conio.h>

#include<alloc.h>
typedef struct linked node;
node *create_node();

void append();
void insert();
void delete();

void display();

 I- B.Tech II SEM Data Structures Prepared By: BSR 57 | P a g e

void count();
node *start=NULL,*last=NULL;
struct linked
{

int data;
struct linked *next;

};
void main()
{
int ch;

clrscr();
do

{
printf("\n 1.append");

printf("\n 2.insert");
printf("\n 3.del");
printf("\n 4.display");

printf("\n 5.count");
printf("\n Enter the choice");

scanf("%d",&ch);

switch(ch)
{
case 1:append();
break;

case 2:insert();

break;
case 3:delete();
break;
case 4:display();

break;
case 5:count();
break;
default:printf("Invalid choice");

 I- B.Tech II SEM Data Structures Prepared By: BSR 58 | P a g e

}
printf("\n do u want continue press(y/n)");
ch=getch();
}

while(ch=='y');
getch();

}
node *create_node()
{
node *temp;

int x;
temp=(node *)malloc(sizeof(node));

printf("Enter the data");
scanf("%d",&x);

temp->data=x;
temp->next=NULL;
return(temp);

}
void append()

{

node *temp=NULL;
temp=create_node();
if(start==NULL)
{

start=temp;

last=start;
}
else
{

last->next=temp;
last=temp;
}
}

 I- B.Tech II SEM Data Structures Prepared By: BSR 59 | P a g e

void insert()
{
node *temp,*temp1,*q;
int pos,i=0;

temp=create_node();
temp1=start;

printf("Enter the position");
scanf("%d",&pos);
if(pos==1) /*add at beg*/
{

temp->next=start;
start=temp;

}
else

{
for(i=1;i<pos-1;i++) /*ada after*/
{

temp1=temp1->next;
}

q=temp1->next;

temp1->next=temp;
if(q==NULL)
last=temp;
temp->next=q;

}

}
void delete()
{
node *temp1,*q;

int pos,i=0;
if(start==NULL)
{
printf("list is empty");

 I- B.Tech II SEM Data Structures Prepared By: BSR 60 | P a g e

return;
}
printf("Enter the position to delete");
scanf("%d",&pos);

if(pos==1) /*delete at beg*/
{

temp1=start;
start=start->next;
free(temp1);
}

else
{

for(temp1=start,i=1;i<pos-1;i++)
{

temp1=temp1->next;
}
q=temp1->next;

if(q->next==NULL)
last=temp1;

temp1->next=temp1->next->next;

free(q);
}
}
void display()

{

node *temp;
if(start==NULL)
{
printf("list is empty");

return;
}
for(temp=start;temp!=NULL;temp=temp->next)
printf("%d",temp->data);

 I- B.Tech II SEM Data Structures Prepared By: BSR 61 | P a g e

}
void count()
{
node *temp=start;

int c=0;
while(temp!=NULL)

{
temp=temp->next;
c++;
}

printf("No.of nodes %d",c);
}

2.2.2 Doubly linked list

Basic operations in a doubly linked list: The basic

operations that can be performed on doubly linked list are

1) Creation of a list

2) Insertion of a node

3) Deletion of a node

4) Traversal of a list

5) Count the no.of nodes

1) Creation of a list : Creation of list involves three

process. They are

1) Creating a node

2) Reading details for a node from user

3) Connect the node with the list

 I- B.Tech II SEM Data Structures Prepared By: BSR 62 | P a g e

Algorithm for declaration of structure NODE

Struct node

Data: data field

Flink: link field (Address of next structure node)

Blink: link field(Address of previous struct node)

End struct

Algorithm for allocating memory for the new node
Getnode()

Size: integer
Newnode: node
Step 1: set size=get the size of the node

Step 2: set Newnode=allocate space in memory for the size

of SIZE and return the initial address

Step 3: Return Newnode

End Getnode()

Algorithm for reading the content for the new node

Readnode(Newnode:node)

Step 1: read, newnode->data
Step 2: set newnode->flink=NULL
Step 3: set newnode->blink=NULL
Step 4: return

End Readnode()

 I- B.Tech II SEM Data Structures Prepared By: BSR 63 | P a g e

Algorithm for createlist()
Createlist()
Head, last, newnode:node

Step 1: Set newnode=Getnode()
Step 2: Call readnode(newnode)
Step 3: Set head=newnode

Step 4: Set last=newnode
Step 5: If we want to add another node proceed otherwise

return
Step 6:Set newnode=getnode()

Step 7: Call readnode(newnode)
Step 8: Assign last-> flink=newnode
Step 9: Assign newnode->blink=last

Step 10: Assign last=last->flink
Step 11: Goto step 5

End createlist()

2) Insertion of a node: One of the most primitive

operations that can be done in a doubly linked list is the

insertion of a node. Memory is to be allocated for the new

node before reading the data. The newnode will contain

empty data field and empty forward and backward link

fields. The data field of he new node is then stored with the

information read from the user. Both the link field of the

newnode are assigned to NULL.

 The new node can then be inserted in the list at three

different places namely

 I- B.Tech II SEM Data Structures Prepared By: BSR 64 | P a g e

a) Inserting as a first node in the list

b) Inserting as a last node in the list

c) Insertiong an intermediate node in the list

a) Inserting as a first node in the list:

Algorithm for inserting a node as the first node in the lsit
Insert_first(Head:node)
Newnode:node

Step 1: Set Newnode=Getnode()

Step 2:Call readnode(newnode)

Step 3: if(head==NULL)
 Set head=Newnode

 Return
 [End of if structure]
Step 4: Assign Newnode->flink=Head

Step 5: Assign Head->Blink=newnode
Step 6: Assign Head=Newnode

End Insert_first()

 I- B.Tech II SEM Data Structures Prepared By: BSR 65 | P a g e

b) Inserting as a last node in the list:

Algorithm for inserting a node as the last node in the list
Insert_last(Head:node)

Last, newnode:node
Step 1: set newnode=Getnode()

Step 2: Call read node(newnode)
Step 3: if(Head==NULL)
 Set head=newnode

 Return
 [End of if structure]
Step 4: Set last=Head
Step 5: Repeat while(last->Flink!=NULL)
 Assign last=last->Flink

 [End of while structure]

Step 6: Assign last-> Flink=newnode
Step 7: Assign newnode->Blink=last
End Insert_last()

 I- B.Tech II SEM Data Structures Prepared By: BSR 66 | P a g e

c) Inserting an intermediate node in the list:

Algorithm for inserting a node at any intermediate

position in the list
Insert_middle(Head:node)

Last, next, newnode:node

Condition: Data of the any one Node in the last for insert.
Step 1: set Newnode=Getnode()
Step 2: call readnode(newnode)
Step 3: if(Head==NULL)

 Set head=newnode

 Return
 [End of if structure]
Step 4: print “ Enter the data of node after which the

insertion is to be made”

Step 5: read, condition

Step 6: set last=head
Step 7: repeat while(last!=NULL)
Step 8: if(last->data ==Condition) then

 I- B.Tech II SEM Data Structures Prepared By: BSR 67 | P a g e

 Assign next=last->Flink
 Assign newnode->Flink=Next

 Assign newnode->Blink=last
 Assign last->Flink=Newnode
 If(Next!=NULL)

 Assign next-> Blink=new node
 [End of if structure]

 Step 9: [End of step 7 while structure]
Step 10: print “ Condition is not available”
Step 11: Return

End Insert_middle()

4) Delection of a node: Another primitive operation that

can be done in a doubly linked list is the deletion of a node.

 I- B.Tech II SEM Data Structures Prepared By: BSR 68 | P a g e

Memory is released for the node to be deleted. A node can

be deleted fro m the list from three different places namely

a) Deleting the first node from the list

b) Deleting the last node from the list

c) Deleting an intermediated node from the list.

a) Deleting the first node from the list:

Algorithm for deleting the first node from the list
Delete_first(Head: node)
Delnode:node

Step 1: if(head==NULL)
 Print “list is empty”
 Return

 [End of if structure]
Step 2: set delnode=head

Step 3: assign head=heade->Flink
Step 4: if(head!=NULL)
 Assign head->Blink=NULL

 [End of if structure]
Step 5: print “ Deleted data is”, delnode->data

Step 6: call release node(delnode)

Step 7: Return
 End delete_first()

 I- B.Tech II SEM Data Structures Prepared By: BSR 69 | P a g e

b) Deleting the last node from the list:

Algorithm for deleting the last node from the list
Del_last(Head:node)

Last, prev, delnode:node
Step 1: if(head==NULL)
 Print “list is empty”

 Return
 [End of if structure]

Step 2: if(head->Flink==NULL) then

 Set delnode=head
 Print “ deleted data is ”, delnode->data
 Return
 [End of if structure]

Step 3: set last=head

Step 4: repeat while(last-> Flink!=NULL)
 Assign last=last->Flink
 [End of while loop]
Step 5: set delnode=last

Step 6: assign last->Blink->Flink=NULL
Step 7: print “ deleted data is”, delnode->data

Step 8: call releasenode(delnode)

 I- B.Tech II SEM Data Structures Prepared By: BSR 70 | P a g e

Step 9: return

 End delete_last()

c) Deleting an intermediate node from the list:

Algorithm for deleting a node at any intermediate

position in the list
Delete_middle(Head:node)
Next, prev, last, delnode: node

Deldata: data of the node is the list to delete
Step 1: if(head==NULL)
 Print “ list is empty”

 Return

 [End of if structure]
Step 2: print “ Enter the data of the any node in the list for

delete”
Step 3: read del data

Step 4: if(head->data==Deldata) then

 Set delnode=head

 Assign head=head->Flink
 If(head!=NULL

 Assign head->Blink=NULL

 I- B.Tech II SEM Data Structures Prepared By: BSR 71 | P a g e

 [End of if structure]
 Print “ deleted data is ”, delnode->data

 Call releasenode(delnode)
 Return
 [End of if structure]

Step 5: set last=head->Flink
Step 6: repeat while(last!=NULL)

Step 7: if(last->data==deldata) then
 Set delnode=last
 Set prev=last->Blink

Set next=last->Flink
Assign prev->Flink=Next

 If(Next!=NULL)
 Assign next->Blink=prev
[End of if structure]

Print “ The deleted data is ”, delnode->data
Call releasenode(delnode)

Return
Else
Assign last=last->Flink

[End of if structure]
Step 8: [End of step 6 while loop]

Step 9: print “ deldata is not available in the list”

Step 10: return
 End delete_middle()

 I- B.Tech II SEM Data Structures Prepared By: BSR 72 | P a g e

5) Traversal of a list: To read the information or to display

the information in a linked list, we have to traverse(move) a

linked list node by node from the first node until the end of

the list is reached.

Algorithm for displaying the contents of the list
View_list(head: node)

Step 1: if(head==NULL)
 Print “ list is empty ”

 Return
 [End of if structure]
Step 2: while(head!=NULL)

Step 3: print “ The data is ”, head->data

Step 4: head=head->Flink
Step 5: [End of step2 while structure]

 End view_list()

6) Count the number of nodes in the list: To count the

nodes in a linked list , we have to traverse (move) in a

linked list, made by node from the first node, until the end

of the list is reached.

 I- B.Tech II SEM Data Structures Prepared By: BSR 73 | P a g e

Algorithm for counting the number of nodes in the list

Count_list(head:node)
Count:integer

Step 1: set count=0
Step 2: if(head==NULL)

 Print “ List is empty”
 Return count
 [End of if structure]

Step 3: while(head!=NULL)

Step 4: count=count+1

Step 5: head=head->Flink
Step 6: [End of step2 while structure]
Step 7: return count

 End Count_list()

Example: Write a C program on doubly linked list

#include<stdio.h>

#include<stdlib.h>

struct node

{

 struct node *prev;

 struct node *next;

 int data;

};

struct node *head;

void insertion_beginning();

void insertion_last();

void insertion_specified();

void deletion_beginning();

void deletion_last();

void deletion_specified();

void display();

void search();

 I- B.Tech II SEM Data Structures Prepared By: BSR 74 | P a g e

void main ()

{

int choice =0;

 while(choice != 9)

 {

 printf("\n*********Main Menu*********\n");

 printf("\nChoose one option from the following list

...\n");

printf("\n====================================

===========\n");

 printf("\n1.Insert in begining\n2.Insert at

last\n3.Insert at any random location\n4.Delete from

Beginning\n5.Delete from last\n6.Delete the node after the

given data\n7.Search\n8.Show\n9.Exit\n");

 printf("\nEnter your choice?\n");

 scanf("\n%d",&choice);

 switch(choice)

 {

 case 1:

 insertion_beginning();

 break;

 case 2:

 insertion_last();

 break;

 case 3:

 insertion_specified();

 break;

 case 4:

 deletion_beginning();

 break;

 case 5:

 deletion_last();

 I- B.Tech II SEM Data Structures Prepared By: BSR 75 | P a g e

 break;

 case 6:

 deletion_specified();

 break;

 case 7:

 search();

 break;

 case 8:

 display();

 break;

 case 9:

 exit(0);

 break;

 default:

 printf("Please enter valid choice..");

 }

 }

}

void insertion_beginning()

{

 struct node *ptr;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 printf("\nEnter Item value");

 scanf("%d",&item);

 if(head==NULL)

 I- B.Tech II SEM Data Structures Prepared By: BSR 76 | P a g e

 {

 ptr->next = NULL;

 ptr->prev=NULL;

 ptr->data=item;

 head=ptr;

 }

 else

 {

 ptr->data=item;

 ptr->prev=NULL;

 ptr->next = head;

 head->prev=ptr;

 head=ptr;

 }

 printf("\nNode inserted\n");

}

}

void insertion_last()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *) malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 printf("\nEnter value");

 scanf("%d",&item);

 ptr->data=item;

 if(head == NULL)

 I- B.Tech II SEM Data Structures Prepared By: BSR 77 | P a g e

 {

 ptr->next = NULL;

 ptr->prev = NULL;

 head = ptr;

 }

 else

 {

 temp = head;

 while(temp->next!=NULL)

 {

 temp = temp->next;

 }

 temp->next = ptr;

 ptr ->prev=temp;

 ptr->next = NULL;

 }

 }

 printf("\nnode inserted\n");

 }

void insertion_specified()

{

 struct node *ptr,*temp;

 int item,loc,i;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\n OVERFLOW");

 }

 else

 {

 temp=head;

 printf("Enter the location");

 I- B.Tech II SEM Data Structures Prepared By: BSR 78 | P a g e

 scanf("%d",&loc);

 for(i=0;i<loc;i++)

 {

 temp = temp->next;

 if(temp == NULL)

 {

 printf("\n There are less than %d elements", loc);

 return;

 }

 }

 printf("Enter value");

 scanf("%d",&item);

 ptr->data = item;

 ptr->next = temp->next;

 ptr -> prev = temp;

 temp->next = ptr;

 temp->next->prev=ptr;

 printf("\nnode inserted\n");

 }

}

void deletion_beginning()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\n UNDERFLOW");

 }

 else if(head->next == NULL)

 {

 head = NULL;

 free(head);

 printf("\nnode deleted\n");

 }

 I- B.Tech II SEM Data Structures Prepared By: BSR 79 | P a g e

 else

 {

 ptr = head;

 head = head -> next;

 head -> prev = NULL;

 free(ptr);

 printf("\nnode deleted\n");

 }

}

void deletion_last()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\n UNDERFLOW");

 }

 else if(head->next == NULL)

 {

 head = NULL;

 free(head);

 printf("\nnode deleted\n");

 }

 else

 {

 ptr = head;

 if(ptr->next != NULL)

 {

 ptr = ptr -> next;

 }

 ptr -> prev -> next = NULL;

 free(ptr);

 printf("\nnode deleted\n");

 I- B.Tech II SEM Data Structures Prepared By: BSR 80 | P a g e

 }

}

void deletion_specified()

{

 struct node *ptr, *temp;

 int val;

 printf("\n Enter the data after which the node is to be

deleted : ");

 scanf("%d", &val);

 ptr = head;

 while(ptr -> data != val)

 ptr = ptr -> next;

 if(ptr -> next == NULL)

 {

 printf("\nCan't delete\n");

 }

 else if(ptr -> next -> next == NULL)

 {

 ptr ->next = NULL;

 }

 else

 {

 temp = ptr -> next;

 ptr -> next = temp -> next;

 temp -> next -> prev = ptr;

 free(temp);

 printf("\nnode deleted\n");

 }

}

void display()

{

 struct node *ptr;

 printf("\n printing values...\n");

 I- B.Tech II SEM Data Structures Prepared By: BSR 81 | P a g e

 ptr = head;

 while(ptr != NULL)

 {

 printf("%d\n",ptr->data);

 ptr=ptr->next;

 }

}

void search()

{

 struct node *ptr;

 int item,i=0,flag;

 ptr = head;

 if(ptr == NULL)

 {

 printf("\nEmpty List\n");

 }

 else

 {

 printf("\nEnter item which you want to search?\n");

 scanf("%d",&item);

 while (ptr!=NULL)

 {

 if(ptr->data == item)

 {

 printf("\nitem found at location %d ",i+1);

 flag=0;

 break;

 }

 else

 {

 flag=1;

 }

 i++;

 I- B.Tech II SEM Data Structures Prepared By: BSR 82 | P a g e

 ptr = ptr -> next;

 }

 if(flag==1)

 {

 printf("\nItem not found\n");

 }

 }

}

2.2.3 Circular linked list

The basic operations that can be performed on circular

singly linked list are similar to the singly linked list, except

that the last node is made to point the first node in the list.

The basic operations that can be performed on circular

singly linked lists are

1) Creation of a list

2) Insertion of a node

3) Deletion of a node

4) Traversal of a node

5) Count the number of nodes

1) Creation of a list: Creation of list involves three process.

a) Creating a node

b) Reading details for a node from user

c) Connect the node with the list

 I- B.Tech II SEM Data Structures Prepared By: BSR 83 | P a g e

Algorithm for declaration of the structure node
Struct node

Data:data field
Link:link field

End struct

Algorithm for allocating memory for the new node
Getnode()
Size: integer; newnode:node
Step 1: set size=get the size of the node

Step 2: set newnode=allocate space in memory for the size

of size and return the initial address

Step 3: return newnode

End Getnode()

Algorithm for reading the content for the new node
Readnode(newnode:node)
Step 1:Read , newnode->data

Step 2: set newnode->link=newnode
Step 3: return
End Readnode()

Algorithm for create list()
Createlist()

Head, last newnode:node

Step 1: Assign newnode=Getnode()
Step 2: Call readnode(newnode)

Step 3: set head=Newnode

Step 4: set last=newnode
Step 5: if we want to add another node proced otherwise return

head

 I- B.Tech II SEM Data Structures Prepared By: BSR 84 | P a g e

Step 6: set newnode=Getnode()

Step 7: call readnode(newnode)
Step 8: assign last-> link=newnode

Step 9: assing newnode->link=head
Step 10: assign last=last->link
Step 11: goto step 5

End createlist()

2) Insertion of a node: The new node can then be inserted

in the list at three different places namely.

a) Inserting as a first node in the list

b) Inserting as a last node in the list

c) Inserting as an intermediate node in the list

a) Inserting as a first node in the list:

Algorithm for inserting a node as the first node in the list

Inser_first(head:node)

Newnode, last:node
Step 1: set newnode=getnode()
Step 2: call readnode(newnode)
Step 3: if(head==NULL)

 Set head=newnode

 Return
 [End of if structure]
Step 4: set last=head
Step 5: Repeat while(last->link!=head)

 Assign last=last->link
 [End of while structure]
Step 6: assign last->link=newnode
Step 7: assign newnode->link=head

 I- B.Tech II SEM Data Structures Prepared By: BSR 85 | P a g e

Step 8: assign head=newnode

End Insert_first()

b) Inserting as a last node in the list:

Algorithm for inserting a node as the last node in the list

Insert_last(head: node)
Last, newnode:node
Step 1: set newnode=getnode()
Step 2: call readnode(newnode)

Step 3: if(head==NULL)

 Set head=newnode

 Return
 [End of if structure]
Step 4: set last=head

Step 5:Repeat while(last->link!=head)

 I- B.Tech II SEM Data Structures Prepared By: BSR 86 | P a g e

 Assign last=last->link

 [End of while structure]
Step 6: Assign last->link=newnode

Step 7: Assign newnode->link=head
End Insert_last()

c) Inserting an intermediate node in the list:

Algorithm for inserting a node at any intermediate

position in the list

Insert_middle(head:node)
Last, newnode:node

Condition: data of the any one node in the list for insert
Step 1: set newnode=getnode()

Step 2: call readnode(newnode)

 I- B.Tech II SEM Data Structures Prepared By: BSR 87 | P a g e

Step 3: if(head==NULL)
 Set head=newnode

 Return
 [End of if structure]
Step 4: print “ Enter the data of node after which the

insertion is to be made”
Step 5: read condition

Step 6: set last=head
Step 7: repeat
Step 8: if(last->data==condition) then

 Assign newnode->link=last->link
 Assign last->link=newnode

 Return
 Else
 Assign last=last->link

 [End of if structure]
Step 9: until(last==head)

Step 10: print “ condition is not available”

End Insert_middle()

 I- B.Tech II SEM Data Structures Prepared By: BSR 88 | P a g e

3) Deletion of a node: A node can be deleted from the list

from three different places namely

a) Deleting the first node from the list

b) Deleting the last node from the list

c) Deleting an intermediate node from the list

a) Deleting the first node from the list:

Algorithm for deleting the first node from the list
Delete_first(head:node)

Last, prev, delnode:node

Step 1: if(head==NULL)
 Print “ List is empty”
 Return

 [End of if structure]
Step 2: if(head->link==head) then

 Delnode=head
 Print “ Deleted data is”, delnode->data
 Set head=NULL

 Call releasenode(delnode)

 Return
 [End of if structure]
Step 3: set last=head

 I- B.Tech II SEM Data Structures Prepared By: BSR 89 | P a g e

Step 4: repeat
 Assign prev=last

 Assign last=last->link
 Until(last->link==head)
Step 5: delnode=last

Step 6: prev->link=head
Step 7: print “ Deleted data is”, delnode->data

Step 8: call releasenode(delnode)

End Delete_first()

 I- B.Tech II SEM Data Structures Prepared By: BSR 90 | P a g e

b) Deleting the last node from the list:

Algorithm for deleting the last node from the list
Delete_last(head:node)
Last, prev, delnode:node

Step 1: if(head==NULL)
 Print “ List is empty”

 Return
 [End of if structure]
Step 2: if(head->link==head) then

 Set delnode=head

 Set head=NULL

 Print “ Deleted data is”, delnode->data
 Call releasenode(delnode)
 Return

 [End of if structure]
Step 3: set last=head

Step 4: Repeat while(last->link!=head)
Step 5: assign prev=last
Step 6: assign last=last->link

Step 7: [End of step4 while loop]

Step 8: set delnode=last
Step 9: prev->link=head
Step 10: print “Deleted data is”, delnode->data

Step 11: call releasenode(delnode)
 End Delete_last()

 I- B.Tech II SEM Data Structures Prepared By: BSR 91 | P a g e

c) Deleting an intermediate node from the list:

 I- B.Tech II SEM Data Structures Prepared By: BSR 92 | P a g e

Example: Write a program on circular singly linked list

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

struct node *head;

void beginsert ();

void lastinsert ();

void randominsert();

void begin_delete();

void last_delete();

void random_delete();

void display();

void search();

void main ()

{

 int choice =0;

 while(choice != 7)

 {

 I- B.Tech II SEM Data Structures Prepared By: BSR 93 | P a g e

 printf("\n*********Main Menu*********\n");

 printf("\nChoose one option from the following list ...\n");

printf("\n================================\n");

 printf("\n1.Insert in begining\n2.Insert at last\n3.Delete

from Beginning\n4.Delete from last\n5.Search for an

element\n6.Show\n7.Exit\n");

 printf("\nEnter your choice?\n");

 scanf("\n%d",&choice);

 switch(choice)

 {

 case 1:

 beginsert();

 break;

 case 2:

 lastinsert();

 break;

 case 3:

 begin_delete();

 break;

 case 4:

 last_delete();

 break;

 case 5:

 search();

 break;

 case 6:

 display();

 break;

 case 7:

 exit(0);

 break;

 default:

 I- B.Tech II SEM Data Structures Prepared By: BSR 94 | P a g e

 printf("Please enter valid choice..");

 }

 }

}

void beginsert()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 printf("\nEnter the node data?");

 scanf("%d",&item);

 ptr -> data = item;

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp->next != head)

 temp = temp->next;

 ptr->next = head;

 temp -> next = ptr;

 head = ptr;

 }

 printf("\nnode inserted\n");

 I- B.Tech II SEM Data Structures Prepared By: BSR 95 | P a g e

 }

}

void lastinsert()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 }

 else

 {

 printf("\nEnter Data?");

 scanf("%d",&item);

 ptr->data = item;

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp -> next != head)

 {

 temp = temp -> next;

 }

 temp -> next = ptr;

 ptr -> next = head;

 }

 I- B.Tech II SEM Data Structures Prepared By: BSR 96 | P a g e

 printf("\nnode inserted\n");

 }

}

void begin_delete()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\nUNDERFLOW");

 }

 else if(head->next == head)

 {

 head = NULL;

 free(head);

 printf("\nnode deleted\n");

 }

 else

 { ptr = head;

 while(ptr -> next != head)

 ptr = ptr -> next;

 ptr->next = head->next;

 free(head);

 head = ptr->next;

 printf("\nnode deleted\n");

 }

}

void last_delete()

{

 struct node *ptr, *preptr;

 I- B.Tech II SEM Data Structures Prepared By: BSR 97 | P a g e

 if(head==NULL)

 {

 printf("\nUNDERFLOW");

 }

 else if (head ->next == head)

 {

 head = NULL;

 free(head);

 printf("\nnode deleted\n");

 }

 else

 {

 ptr = head;

 while(ptr ->next != head)

 {

 preptr=ptr;

 ptr = ptr->next;

 }

 preptr->next = ptr -> next;

 free(ptr);

 printf("\nnode deleted\n");

 }

}

void search()

{

 struct node *ptr;

 int item,i=0,flag=1;

 ptr = head;

 if(ptr == NULL)

 {

 I- B.Tech II SEM Data Structures Prepared By: BSR 98 | P a g e

 printf("\nEmpty List\n");

 }

 else

 {

 printf("\nEnter item which you want to search?\n");

 scanf("%d",&item);

 if(head ->data == item)

 {

 printf("item found at location %d",i+1);

 flag=0;

 }

 else

 {

 while (ptr->next != head)

 {

 if(ptr->data == item)

 {

 printf("item found at location %d ",i+1);

 flag=0;

 break;

 }

 else

 {

 flag=1;

 }

 i++;

 ptr = ptr -> next;

 }

 }

 if(flag != 0)

 {

 printf("Item not found\n");

 }

 I- B.Tech II SEM Data Structures Prepared By: BSR 99 | P a g e

 }

}

void display()

{

 struct node *ptr;

 ptr=head;

 if(head == NULL)

 {

 printf("\nnothing to print");

 }

 else

 {

 printf("\n printing values ... \n");

 while(ptr -> next != head)

 {

 printf("%d\n", ptr -> data);

 ptr = ptr -> next;

 }

 printf("%d\n", ptr -> data);

 }

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 100 | P a g e

2.3 Comparing arrays and linked lists

2.4 Applications of linked lists

 Linked lists can be used to represent polynomials.

 Using a linked list, we can perform the polynomial

manipulation.

 Arithmetic operations like addition or subtraction of

long integers can also be performed using a linked

list.

 The linked list can be used to implement stacks and

queues.

 The linked list is also used in implementing graphs

in which the adjacent vertices are stored in the nodes

of the linked list popularly known as Adjacency list

representation.

 I- B.Tech II SEM Data Structures Prepared By: BSR 101 | P a g e

Applications of Linked Lists in the Real World :

 In music players, we can create our song playlist and

can play a song either from starting or ending of the

list. And these music players are implemented using

a linked list.

 We watch the photos on our laptops or PCs, and we

can simply see the next or previous images easily.

This feature is implemented using a linked list.

 You must be reading this article on your web

browser, and in web browsers, we open multiple

URLs, and we can easily switch between those

URLs using the previous and next buttons because

they are connected using a linked list.

Some Other Applications of Linked List

 Allocation of Memory

 Email applications

 Reducing file sizes on disk

 Implementation of advanced data structures

 Advantages of Linked List Over Arrays

 A few advantages of linked lists over arrays are :

 Dynamic size

 Efficient implementation of data structures

 I- B.Tech II SEM Data Structures Prepared By: BSR 102 | P a g e

 No memory wastage

 Efficient insertion and deletion operation

1. Polynomial Manipulation

Polynomials are algebraic expressions that contain

coefficients and variables. Polynomial manipulation is doing

mathematical operations, like addition, subtraction, etc., on

polynomials.

Polynomials are a very important part of mathematics, and

there aren't any direct data structures present that can be

used to store polynomials in memory. Thus, we take the

help of a linked list to represent a polynomial.

To represent the polynomials using a linked list, we assume

that each node of the linked list corresponds to each term of

the polynomials.

Let us see how a polynomial is represented in a linked list.

The node of the linked list contains three parts :

 The coefficient value

 The exponent value, and

 The link to the next term.

 I- B.Tech II SEM Data Structures Prepared By: BSR 103 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 104 | P a g e

#include <bits/stdc++.h>

using namespace std;

// structure of a node

struct Node{

 int co_eff;

 int pwr;

 struct Node* nxt;

};

// add new node

void make_newnode(int x, int y,

 struct Node** temp){

 struct Node *r, *z;

 z = *temp;

 if (z == NULL){

 r = (struct Node*)malloc(sizeof(struct Node));

 r->co_eff = x;

 r->pwr = y;

 *temp = r;

 r->nxt = (struct Node*)malloc(sizeof(struct Node));

 r = r->nxt;

 r->nxt = NULL;

 }

 else{

 r->co_eff = x;

 r->pwr = y;

 r->nxt = (struct Node*)malloc(sizeof(struct Node));

 r = r->nxt;

 r->nxt = NULL;

 }

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 105 | P a g e

// add two polynomials

void add_poly(struct Node* first_poly,

 struct Node* sec_poly,

 struct Node* poly){

 // if the degree of the first polynomial is

 // greater than the second polynomial then

 // do not change the first polynomial and move

 // its pointer

 while (first_poly->nxt &&

 sec_poly->nxt){

 if (first_poly->pwr > sec_poly->pwr){

 poly->pwr = first_poly->pwr;

 poly->co_eff = first_poly->co_eff;

 first_poly = first_poly->nxt;

 }

 // if the degree of the second polynomial is

 // greater than the first polynomial then

 // do not change the second polynomial and move

 // its pointer

 else if (first_poly->pwr < sec_poly->pwr){

 poly->pwr = sec_poly->pwr;

 poly->co_eff = sec_poly->co_eff;

 sec_poly = sec_poly->nxt;

 }

 // if the degree of both polynomials is

 // same then add the coefficients

 else{

 poly->pwr = first_poly->pwr;

 I- B.Tech II SEM Data Structures Prepared By: BSR 106 | P a g e

 poly->co_eff = (first_poly->co_eff +

 sec_poly-

>co_eff);

 first_poly = first_poly->nxt;

 sec_poly = sec_poly->nxt;

 }

poly->nxt =struct Node*)malloc(sizeof(struct Node));

 poly = poly->nxt;

 poly->nxt = NULL;

 }

 while (first_poly->nxt || sec_poly->nxt){

 if (first_poly->nxt){

 poly->pwr = first_poly->pwr;

 poly->co_eff = first_poly->co_eff;

 first_poly = first_poly->nxt;

 }

 if (sec_poly->nxt){

 poly->pwr = sec_poly->pwr;

 poly->co_eff = sec_poly->co_eff;

 sec_poly = sec_poly->nxt;

 }

 poly->nxt =

 (struct Node*)malloc(sizeof(struct

Node));

 poly = poly->nxt;

 poly->nxt = NULL;

 }

}

// print the linked list

void display_poly(struct Node* node){

 while (node->nxt != NULL){

 printf("%dx^%d", node->co_eff,

 I- B.Tech II SEM Data Structures Prepared By: BSR 107 | P a g e

 node->pwr);

 node = node->nxt;

 if (node->co_eff >= 0){

 if (node->nxt != NULL)

 printf("+");

 }

 }

 printf("\n");

}

// main function

int main(){

 struct Node *first_poly = NULL,

 *sec_poly = NULL,

 *poly = NULL;

 make_newnode(5, 2, &first_poly);

 make_newnode(4, 1, &first_poly);

 make_newnode(2, 0, &first_poly);

 make_newnode(-5, 1, &sec_poly);

 make_newnode(-5, 0, &sec_poly);

 printf("1st Number: ");

 display_poly(first_poly);

 printf("2nd Number: ");

 display_poly(sec_poly);

 poly = (struct Node*)malloc(sizeof(struct Node));

 add_poly(first_poly, sec_poly, poly);

 I- B.Tech II SEM Data Structures Prepared By: BSR 108 | P a g e

 printf("Added polynomial: ");

 display_poly(poly);

 return 0;

}

Output

 I- B.Tech II SEM Data Structures Prepared By: BSR 109 | P a g e

UNIT-III

Stacks: Introduction, properties and operations,

implementing stacks using arrays and linked lists,

Applications of stacks in expression evaluation, balanced

parentheses, reversing list etc.

Queues: Introduction, properties and operations,

implementing queues using arrays and linked lists, Queue

applications in OS and simulation experiments.

Types of Queues: Types - Circular Queues, Priority

Queues, Deques, and supporting operations.

3.1 Stack: A stack is an ordered collection of elements in

which insertions and deletions are restricted to one end. The

end from which elements are added/or removed is referred

to as top of the stack.

 Stacks are also referred as “piles” and “push-down

lists”. The first element placed in the stack will be at the

bottom of the stack. The last element added to stack is the

first element to be removed. Hence stacks are referred to as

Last-In-First-Out (LIFO).

Note: A stack is a non-primitive linear data structure.

 I- B.Tech II SEM Data Structures Prepared By: BSR 110 | P a g e

Working of Stack

Stack works on the LIFO pattern. As we can observe in the

below figure there are five memory blocks in the stack;

therefore, the size of the stack is 5.

Suppose we want to store the elements in a stack and let's

assume that stack is empty. We have taken the stack of size

5 as shown below in which we are pushing the elements one

by one until the stack becomes full.

Since our stack is full as the size of the stack is 5. In the

above cases, we can observe that it goes from the top to the

bottom when we were entering the new element in the stack.

The stack gets filled up from the bottom to the top. When

we perform the delete operation on the stack, there is only

one way for entry and exit as the other end is closed. It

follows the LIFO pattern, which means that the value

 I- B.Tech II SEM Data Structures Prepared By: BSR 111 | P a g e

entered first will be removed last. In the above case, the

value 5 is entered first, so it will be removed only after the

deletion of all the other elements.

3.2 Properties of Stack

There are following important properties of stack-

(i) All insertions and deletions can occur only at the top of

stack.

(ii) The elements that are removed from stack in reverse

order in which they were inserted.

(iii) Only one element can be pushed or popped from the

stack at a time.

(iv) It works in last-in-first-out or LIFO manner.

3.3 Operations on stack: The basic operations that can be

performed on stack are as follows

1. Create 2.Push 3.Pop 4.peek 5.Empty stack 6.Fully

occupied stack.

1. Create: This operation creates a stack, and leaves it

empty.

2. Push operation: Push is an operation used to add a new

element in to a stack.

 I- B.Tech II SEM Data Structures Prepared By: BSR 112 | P a g e

3. Pop operation: This operation deletes an item only from

the top of the stack when stack is not empty.

4. Peek operation: Peek is an operation used to display the

element from the top of the stack.

5. Is Empty: This operation checks whether the stack is

empty or not. It returns true if stack is empty, otherwise

returns false.

6. Is Full: This operation checks whether the stack is full or

not. It returns true if stack is full otherwise it returns false.

Algorithm for PUSH operation

[Check for the stack is full or not]

Step 1:if(top==SIZE-1)

 {

 printf("\n stack is full");

 return;

 }

Step 2:[Increment the top value by one]

 top=top+1;

Step 3:Insert the elements into the stack

 stack[top]=x;

 I- B.Tech II SEM Data Structures Prepared By: BSR 113 | P a g e

Algorithm for POP operation

 [Check for the stack is empty or not]

Step 1:if(top==-1)

 {

 printf("\n stack is empty");

 return;

 }

Step 2:The elements into the stack:

 x=stack[top];

Step 3: top=top-1;

 I- B.Tech II SEM Data Structures Prepared By: BSR 114 | P a g e

Algorithm for PEEK operation

[Check for the stack is empty or not]

Step 1:if(top==-1)

 {

 printf("\n stack is empty");

 return;

 }

Step 2:for(i=top; i>=0;i--)

 printf ("->%d", stack[i]);

 I- B.Tech II SEM Data Structures Prepared By: BSR 115 | P a g e

3.4 Implementing stacks using arrays and linked lists

Example 1: Write a C program to perform stack

operations using arrays

#include<stdio.h>

#include<conio.h>

#define SIZE 10

int stack[SIZE], top=-1,i;

void push();

void pop();

void display();

void main()

{

int ch;

clrscr();

do

{

printf("\n 1.Push");

printf("\n 2.Pop");

printf("\n 3.Display");

printf("\n 4.Exit");

printf("\n Enter the choice");

scanf("%d",&ch);

switch(ch)

{

case 1:push();

 break;

case 2:pop();

 break;

case 3:display();

 break;

case 4:exit(0);

 break;

 I- B.Tech II SEM Data Structures Prepared By: BSR 116 | P a g e

default: printf("\n Invalid choice");

}

}

while(ch!=4);

getch();

}

void push()

{

if(top==SIZE-1)

 {

 printf("\n stack is full");

 return;

 }

 top=top+1;

 printf("\n Enter the elements");

 scanf("%d", &stack[top]);

}

void pop()

{

 if(top==-1)

 {

 printf("\n Stack is empty");

 return;

 }

printf("\n The Pop element is %d", stack[top]);

top=top-1;

}

void display()

{

 I- B.Tech II SEM Data Structures Prepared By: BSR 117 | P a g e

 if(top==-1)

 {

 printf("\n Stack is empty");

 return;

 }

printf("\n The elements in the stack is");

for(i=top; i>=0; i--)

printf("->%d", stack[i]);

}

Example 2: Write a C program to perform stack

operations using linked list

#include<stdio.h>

#include<conio.h>

struct node

{

int data;

struct node *next;

};

struct node *top=NULL, *temp;

void main()

{

 int ch, x;

 clrscr();

 I- B.Tech II SEM Data Structures Prepared By: BSR 118 | P a g e

 while(1)

 {

 printf("\n 1.Push");

 printf("\n 2.Pop");

 printf("\n 3.Display");

 printf("\n 4.Exit");

 printf("\n Enter the choice");

 scanf("%d",&ch);

 switch(ch)

 {

 case 1:temp=(struct node *)malloc(sizeof(struct node);

 printf("\n Enter the element");

 scanf("%d", &x);

 temp->data=x;

 temp->next=top;

 top=temp;

 break;

 case 2:if(top!=NULL)

 {

 printf("\n The pop element is %d", top->data);

 top=top->next;

 }

 else

 {

 printf("\n Stack is empty");

 return;

 }

 break;

 case 3: temp=top;

 if(temp==NULL)

 {

 printf("\n Stack is empty");

 return;

 I- B.Tech II SEM Data Structures Prepared By: BSR 119 | P a g e

 }

 while(temp!=NULL)

 {

 printf("->%d", temp->data);

 temp=temp->next;

 }

 break;

 case 4:exit(0);

 break;

 }

 }

 }

Difference between Arrays and Stack

Advantages of Stack

 A Stack helps to manage the data in the „Last in First

out‟ method.

 When the variable is not used outside the function in

any program, the Stack can be used.

 I- B.Tech II SEM Data Structures Prepared By: BSR 120 | P a g e

 It allows you to control and handle memory

allocation and deallocation.

 It helps to automatically clean up the objects.

Disadvantages of Stack

 It is difficult in Stack to create many objects as it

increases the risk of the Stack overflow.

 It has very limited memory.

 In Stack, random access is not possible.

3.5 Applications of stacks

Some of the important applications of stacks include

1. Towers of Hanoi problem

2. Reversing a string

3. Recursion using stack

4. Evaluation of arithmetic expressions

5. Balanced Parenthesis

1. Towers of Hanoi problem

A tower of Hanoi is a game appeared in Europe in the 19
th

century. The French mathematician Eduard Lucas invented

the towers of Hanoi puzzle in 1883. We are given a

tower(tower1) of n disks initially stacked in increasing size

 I- B.Tech II SEM Data Structures Prepared By: BSR 121 | P a g e

from top to bottom. We have two more towers, tower2 and

tower3.

 Fig: illustrates the initial setup of towers of Hanoi.

The rules to be followed in moving the disks from tower1 to

tower3 using tower2 as follows.

a). Only one disc can be moved at a time.

b). Only the top disc on any tower can be moved to any

other tower.

c). A larger disc cannot be placed on a smaller disc.

Algorithm for TOH problem:
Let‟s consider move „n‟ disks from source peg (A) to

destination peg (C), using intermediate peg (B) as auxiliary.
1. Assign three pegs A, B & C
2. If n==1

Move the single disk from A to C and stop.
3. If n>1

a) Move the top (n-1) disks from A to B.
b) Move the remaining disks from A to C
c) Move the (n-1) disks from B to C

4. Terminate

 I- B.Tech II SEM Data Structures Prepared By: BSR 122 | P a g e

Since disks are moved from each tower in a LIFO manner,

each tower may be considered as a stack. The least number

of moves required to solve the problem according to our

algorithm is given be

O(N)= O(N-1) + 1+ O(N-1)

 =2
N
-1

If the time complexity is measured in no. of movements,

i.e., (O(2
N
)). The space complexity is O(N) due to the use of

recursion.

Recursive solution of tower of Hanoi

#include <stdio.h>

#include <conio.h>

void TOH(int, char, char, char); //Function prototype

void main()

{

int n;

 I- B.Tech II SEM Data Structures Prepared By: BSR 123 | P a g e

printf(“Enter number of disks”);

scanf(“%d”,&n);

TOH(n,‟O‟,‟D‟,‟I‟);

getch();

}

void TOH(int n, char A, char B, char C)

{

if(n>0)

{

TOH(n-1, A, C, B);

Printf(“Move disk %d from %c to%c\n”, n, A, B);

TOH(n-1, C, B, A);

}

}

2. Reversing a string: One of the main characteristic of

stack is reversing the order of its contents. This

characteristic is exploited and used to reverse strings. This

task can be accomplished by simply pushing each character

until end of the string. Now the individual characters are

popped off from the stack. Since the last character to be

popped off from the stack. The string will come off the in

the reverse order.

 I- B.Tech II SEM Data Structures Prepared By: BSR 124 | P a g e

C Program To Reverse a String using Stack

#include <stdio.h>

#include <string.h>

#define max 100

int top,stack[max];

void push(char x){

 // Push(Inserting Element in stack) operation

 if(top == max-1){

 printf("stack overflow");

 } else {

 stack[++top]=x;

 }

}

void pop(){

 // Pop (Removing element from stack)

 printf("%c",stack[top--]);

}

main()

{

 char str[]="sri lanka";

 int len = strlen(str);

 int i;

 for(i=0;i<len;i++)

 push(str[i]);

 I- B.Tech II SEM Data Structures Prepared By: BSR 125 | P a g e

 for(i=0;i<len;i++)

 pop();

}

3. Recursion with stack: Recursion is a process of defining

something in terms of itself. When a recursive program is

executed the recursive function calls are not executed

immediately. They are placed on a stack (LIFO) until the

condition that terminates the recursive function. The

function calls are then executed in reverse order, as they are

poped off the stack.

Program to find factorial using stack

#include<stdio.h>

int stk[100]; // stack

int size = 100; // size of stack

int ptr = -1; // store the index of top element of the stack

// push x to stack

void push(int x){

 if(ptr==size-1){

 printf("OverFlow \n");

 }

 else{

 ++ptr;

 stk[ptr] = x;

 }

}

// return top element of the stack

int top(){

 I- B.Tech II SEM Data Structures Prepared By: BSR 126 | P a g e

 if(ptr==-1){

 printf("UnderFlow \n");

 return -1;

 }

 else{

 return stk[ptr];

 }

}

// remove top element from the stack

void pop(){

 if(ptr==-1){

 printf("UnderFlow \n");

 }

 else{

 --ptr;

 }

}

// check if stack is empty or not

int isempty(){

 if(ptr==-1)

 return 1;

 else

 return 0;

}

int main() {

 int i, n;

 printf("Enter a number: ");

 scanf("%d", &n);

 push(1);

 for(i=2;i<=n;++i){

 I- B.Tech II SEM Data Structures Prepared By: BSR 127 | P a g e

 push(top() * i);

 }

 printf("Factorial: %d", top());

 return 0;

}

Output

Enter a number: 5

Factorial: 120

4. Evaluation of arithmetic expressions: An expression

consist of two components namely operands and operators.

Operators indicate the operation to be carried out on

operands.

 They are three ways of representing expressions in

computers. They are

a). Infix notation b) Prefix notation c) Postfix

notation

The table shows the different ways of representing an

expression.

Notation Arithmetic Expression

Infix Operand Operator Operand

Prefix Operator Operand Operand

Postfix Operand Operand Operator

 I- B.Tech II SEM Data Structures Prepared By: BSR 128 | P a g e

a) Infix notation: The normal way of expressing

mathematical expressions is called as infix notation. In this

form of expressing an arithmetic expression the operator

comes in between its operands.

Example: (a + b)

Advantages of infix notations:

1. It is the mathematical way of representing the expression.

2. It is easier to see visually which operation is done from

first to last.

b) Prefix notation: Prefix notation is also referred as polish

notation. A polish mathematician Jan lukasiewicz

introduced prefix notation. In this form of expressing an

arithmetic expression the operator is written before its

operands.

Example: (+ a b)

c) Postfix notation: Postfix notation also referred as suffix

form or reverse polish notation (RPN). This was also

introduced by Jan lukasiewicz. In this form of expressing an

arithmetic expression the operator is written after its

operands.

Example: (a b +)

 I- B.Tech II SEM Data Structures Prepared By: BSR 129 | P a g e

Advantages of postfix notations:

1. We need not worry about the rules of precedence.

2. We need not worry about the rules for right to left

associativity.

3. We need not need parenthesis to override the above rules.

Precedence of operators:

Priority Operation(symbol)

1 Exponentiation (↑)

2 Multiplication (*), division(/)

3 Addition (+) , subtraction(-)

Rules to be followed during infix to postfix conversion:

1. Fully parenthesize the expression starting from left to

right.

2. Move the operators one by one to their right, such that

each operator replaces their corresponding right parenthesis.

3. The part of the expression, which has been converted into

post fix, is to be treated as single operand.

 I- B.Tech II SEM Data Structures Prepared By: BSR 130 | P a g e

4. Once the expression is converted into postfix form,

remove all parentheses.

Example 1: Give the postfix from the infix expression

x+ y*z

Sol:

 x+(y*z)

x+(yz*)

x+A [A= (yz*)]

(x+A)

(xA+)

(x(yz*)+)

xyz*+

Example 2: Give the postfix from the infix expression

P+Q/R-S

Sol:

Character Postfix Stack

P P

+ +

Q PQ

/ +/

 I- B.Tech II SEM Data Structures Prepared By: BSR 131 | P a g e

R PQR/ +

- PQR/+ -

S PQR/+S

 PQR/+S- Stack is empty

Rules to be followed during infix to prefix conversion:

1. Fully parenthesize the expression starting from left to

right.

2. Move the operators one by one to their left, such that each

operator replaces their corresponding left parenthesis.

3. The part of the expression which has been converted into

prefix. Is to be treated as single operand.

4. Once the expression is converted into prefix form remove

all parentheses.

Example: Give the prefix form for the infix expression

p/p * r+s

Sol:

(p/q)*r+s

(/pq)*r+s

 A*r+s A=(/pq)

(A*r)+s

(*Ar)+s

 B+s B=(*Ar)

(B+s)

 I- B.Tech II SEM Data Structures Prepared By: BSR 132 | P a g e

(+Bs)

(+(*Ar)s)

(+(*(/pq)r)s)

+*/pqrs

Postfix evaluation:

In normal algebra we use the infix notation like a+b*c. The

corresponding postfix notation is abc*+. The algorithm for

conversion is as follows.

1. Scan the postfix form left to right.

2. Initialize an empty stack.

3. If the scanned character is an operand, add it to the stack.

If the scanned character is an operator, there will be at least

two operands in the stack.

4. After all characters are scanned; we will have only one

element in the stack. Return top stack.

Example: Let us see how the above algorithm will be

implemented using an example.

Postfix: 123* + 4 –

Initially the stack is empty. Now , the first three characters

scanned are 1, 2 and 3. Which are operands. Thus they will

be pushed into the stack in that order.

 I- B.Tech II SEM Data Structures Prepared By: BSR 133 | P a g e

Next character scanned is “* ”which is an operator. Thus,

we pop the top two elements from the stack and perform the

“ * ” operation with the two operands. The second operand

will be the first element that is popped.

The value of the expression (3*2) that has been evaluated

(6) is pushed into the stack.

 I- B.Tech II SEM Data Structures Prepared By: BSR 134 | P a g e

Next character is scanned is “ + ” which is an operator.

Thus, we pop the top two elements from the stack and

perform the “ + ” operation with two operands. The second

operand will be the first element.

The value of the expression (6+1) that has been evaluated

(7) is pushed into the stack.

 I- B.Tech II SEM Data Structures Prepared By: BSR 135 | P a g e

Next character is 4 which is added to the stack.

Next character is “ – ” which is an operator, so pop two

elements.

The value of the expression (7-4) that has been evaluated (3)

is pushed into the stack.

 I- B.Tech II SEM Data Structures Prepared By: BSR 136 | P a g e

Now, since all characters are scanned, the remaining

element in the stack is 3.

End result:

Postfix: 123 *+4-

Result: 3

Evaluation of postfix expression:

The postfix expression is evaluated easily by the use of a

stack. When a number is seen, it is pushed onto the stack;

when an operator is seen, the operator is applied to the two

numbers that are popped from the stack and the result is

pushed onto the stack. When an expression is given in

postfix notation, there is no need to know any precedence

rules; this is our obvious advantage.

Example 1:

Evaluate the postfix expression: 6 5 2 3 + 8 * + 3 + *

 I- B.Tech II SEM Data Structures Prepared By: BSR 137 | P a g e

Example 2:

Evaluate the following postfix expression: 6 2 3 + - 3 8 2 /

+ * 2 3 +

 I- B.Tech II SEM Data Structures Prepared By: BSR 138 | P a g e

Program to evaluate a postfix expression:

include <conio.h>

include <math.h>

define MAX 20

int isoperator(char ch)

{

if(ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '^')

return 1;

else

return 0;

}

void main(void)

{

char postfix[MAX];

int val;

char ch;

int i = 0, top = 0;

float val_stack[MAX], val1, val2, res;

clrscr();

printf("\n Enter a postfix expression: ");

scanf("%s", postfix);

while((ch = postfix[i]) != '\0')

{

if(isoperator(ch) == 1)

{

val2 = val_stack[--top];

val1 = val_stack[--top];

switch(ch)

{

case '+':

res = val1 + val2;

break;

 I- B.Tech II SEM Data Structures Prepared By: BSR 139 | P a g e

case '-':

res = val1 - val2;

break;

case '*':

res = val1 * val2;

break;

case '/':

res = val1 / val2;

break;

case '^':

res = pow(val1, val2);

break;

}

val_stack[top] = res;

}

else

val_stack[top] = ch-48; /*convert character digit to integer

digit */

top++;

i++;

}

printf("\n Values of %s is : %f ",postfix, val_stack[0]);

getch();

}

5. Balanced Parenthesis

Follow the steps mentioned below to implement the idea:

 Declare a character stack (say temp).

 Now traverse the string exp.

 I- B.Tech II SEM Data Structures Prepared By: BSR 140 | P a g e

o If the current character is a starting bracket (

„(„ or „{„ or „[„) then push it to stack.

o If the current character is a closing bracket (

„)‟ or „}‟ or „]‟) then pop from the stack and

if the popped character is the matching

starting bracket then fine.

o Else brackets are Not Balanced.

 After complete traversal, if some starting brackets

are left in the stack then the expression is Not

balanced, else Balanced.

 I- B.Tech II SEM Data Structures Prepared By: BSR 141 | P a g e

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

struct stack {

 char stck[MAX];

 int top;

}s;

void push(char item) {

 if (s.top == (MAX - 1))

 printf("Stack is Full\n");

 else {

 s.top = s.top + 1;

 s.stck[s.top] = item;

 }

}

void pop() {

 if (s.top == -1)

 printf("Stack is Empty\n");

 else

 s.top = s.top - 1;

}

int checkPair(char val1,char val2){

 return ((val1=='(' && val2==')')||(val1=='[' &&

val2==']')||(val1=='{' && val2=='}'));

}

int checkBalanced(char expr[], int len){

 I- B.Tech II SEM Data Structures Prepared By: BSR 142 | P a g e

 for (int i = 0; i < len; i++)

 {

 if (expr[i] == '(' || expr[i] == '[' || expr[i] == '{')

 {

 push(expr[i]);

 }

 else

 {

 // exp = {{}}}

 // if you look closely above {{}} will be matched

with pair, Thus, stack "Empty"

 //but an extra closing parenthesis like '}' will never

be matched

 //so there is no point looking forward

 if (s.top == -1)

 return 0;

 else if(checkPair(s.stck[s.top],expr[i]))

 {

 pop();

 continue;

 }

 // will only come here if stack is not empty

 // pair wasn't found and it's some closing parenthesis

 //Example : {{}}(]

 return 0;

 }

 }

 return 1;

}

int main() {

 char exp[MAX] = "({})[]{}";

 int i = 0;

 I- B.Tech II SEM Data Structures Prepared By: BSR 143 | P a g e

 s.top = -1;

 int len = strlen(exp);

 checkBalanced(exp, len)?printf("Balanced"): printf("Not

Balanced");

 return 0;

}

Output
INPUT THE STRING : ()(){{}}

BALANCED EXPRESSION

3.6 Queues

A queue is an ordered collection of elements in which

insertions are made at one end and deletions are made at the

other end. The end at which insertions are made is referred

to as the read end. And the end form which deletions are

made is referred to as the front end. The first element

placed in a queue will be at the first of the queue. That last

element placed in a queue will be at the last of the queue. In

queue, the first element inserted will be the first element to

be removed. So a queue is sometimes referred to as First-

In-First-Out (FIFO) lists.

Example: Consider five persons waiting in front of a ticket

counter in a line for buying their tickets. The person who is

 I- B.Tech II SEM Data Structures Prepared By: BSR 144 | P a g e

standing in front of the line will get the first ticket, the

second person will get the next ticket, and so on. If a new

person wants to buy a ticket he should stand after the fifth

person. These similar operations are carried out in a queue.

 The queue shown in fig: consists of 5

elements 1, 2, 3, 4 and 5.

 Where front end is the pointer pointing to the first element

in the queue. Rear end is the pointer pointing to the last

element in the queue. Element 1 is the first element of the

queue and 5 is the last element of the queue. If you want to

delete an element say 3 we have to first delete element 1 and

then element 2 and then the element 3. The front end is

shifted from 1
st
 element 1 to 4.

 I- B.Tech II SEM Data Structures Prepared By: BSR 145 | P a g e

Similarly, if we want to add a new element (say 6) it is

added after 5 because it is in the rear end. After inserting a

new element, the rear end is shifted from element 5 to

element 6. Which is the last position of the queue beyond

this position; we cannot insert any elements into the queue.

Queue operations: The primary operations that can be done

on a queue are insertions and deletions. These operations on

a queue are referred as enqueue and dequeue operations

respectively.

Algorithm for enqueue operation

 [Check the queue is empty or not]

Step 1: if(rear==SIZE-1)

 {

 printf("\n Queue is full");

 return;

 }

 I- B.Tech II SEM Data Structures Prepared By: BSR 146 | P a g e

Step 2: To increment the rear value

 rear=rear+1;

Step 3: Read the element from the key board

 printf("\n Enter the element");

 scanf("%d", &queue[front]);

Step 4:if(front==-1)

 front ++

Algorithm for dequeue operation

 [Check the queue if empty or not]

Step 1: if(front==-1)

 {

 printf("\n Queue is empty");

 return;

 }

Step 2: Printf("\n The deleted element is %d", queue[front]);

Step 3: if(front==rear)

 front=rear=-1;

 else

 front++;

 I- B.Tech II SEM Data Structures Prepared By: BSR 147 | P a g e

Algorithm for display operation

[Check the queue if empty or not]

Step 1: if(front==-1)

 {

 printf("\n Queue is empty");

 return;

 }

Step 2: Printf("\n The element in the queue is");

 for(i=front;i<=rear;i++)

 printf("%d", queue[i]);

3.7 Properties of Queue

Queue can be considered as a line of items which has

following essential properties-

(i) It has two ends that are front and rear.

(ii) Addition of new item can only be done at rear.

(iii) Deletion of an item can only be done from front end.

(iv) The item which is added first will be deleted first.

Hence, the structure is frequently called 'FIFO'.

(v) Only one item can be added at a time.

(vi) Only one item can be deleted at a time.

(vii) No element other than front and rear elements are

visible.

 I- B.Tech II SEM Data Structures Prepared By: BSR 148 | P a g e

3.8 Implementing queues using arrays and linked lists

Example 1: Write a C program to perform operations on

queue using arrays

#include<stdio.h>

#include<conio.h>

#define SIZE 10

int queue[SIZE], front=-1,rear=-1,i;

void enque();

void deque();

void display();

void main()

{

int ch;

clrscr();

do

{

printf("\n 1.Enque");

printf("\n 2.Deque");

printf("\n 3.Display");

printf("\n 4.Exit");

printf("\n Enter the choice");

scanf("%d",&ch);

switch(ch)

{

case 1:enque();

 break;

case 2:deque();

 break;

case 3:display();

 break;

case 4:exit(0);

 I- B.Tech II SEM Data Structures Prepared By: BSR 149 | P a g e

 break;

default: printf("\n Invalid choice");

}

}

while(ch!=4);

getch();

}

void enque()

{

if(rear==SIZE-1)

 {

 printf("\n Queue is full");

 return;

 }

 rear=rear+1;

 printf("\n Enter the elements");

 scanf("%d", &queue[rear]);

 if(front==-1)

 front++;

}

void deque()

{

 if(front==-1)

 {

 printf("\n Queue is empty");

 return;

 }

printf("\n The deleted element is %d",queue[front]);

if(front==rear)

 front=rear=-1;

 else

 front++;

 I- B.Tech II SEM Data Structures Prepared By: BSR 150 | P a g e

}

void display()

{

 if(front==-1)

 {

 printf("\n Queue is empty");

 return;

 }

printf("\n The elements in the queue is front-->");

for(i=front; i<=rear; i++)

printf("%d", queue[i]);

printf(" <-- Rear");

}

}

Example 2: Write a C program to perform operations on

queue by using linked list

 I- B.Tech II SEM Data Structures Prepared By: BSR 151 | P a g e

#include<stdio.h>

#include<conio.h>

struct node

{

int data;

struct node *next;

};

struct node *front=NULL,*rear=NULL, *temp;

void main()

{

 int ch, x;

 clrscr();

 while(1)

 {

 printf("\n 1.Enque");

 printf("\n 2.Deque");

 printf("\n 3.Display");

 printf("\n 4.Exit");

 printf("\n Enter the choice");

 scanf("%d",&ch);

 switch(ch)

 {

 case 1:temp=(struct node *)malloc(sizeof(struct node);

 printf("\n Enter the element");

 scanf("%d", &x);

 temp->data=x;

 temp->next=NULL;

 if(front==NULL)

 front=rear=temp;

 else

 {

 rear->next=temp;

 rear=temp;

 I- B.Tech II SEM Data Structures Prepared By: BSR 152 | P a g e

 }

 break;

 case 2:if(front!=NULL)

 {

 printf("\n The deleted element is %d", front->data);

 front=front->next;

 }

 else

 {

 printf("\n Queue is empty");

 return;

 }

 break;

 case 3: temp=front;

 if(temp==NULL)

 {

 printf("\n Queue is empty");

 return;

 }

 while(temp!=NULL)

 {

 printf("->%d", temp->data);

 temp=temp->next;

 }

 break;

 case 4:exit(0);

 break;

 }

 }

 }

 I- B.Tech II SEM Data Structures Prepared By: BSR 153 | P a g e

3.9 Queue applications

Some common applications of Queue data structure :

 Task Scheduling: Queues can be used to schedule tasks

based on priority or the order in which they were received.

 Resource Allocation: Queues can be used to manage and

allocate resources, such as printers or CPU processing time.

 Batch Processing: Queues can be used to handle batch

processing jobs, such as data analysis or image rendering.

 Message Buffering: Queues can be used to buffer

messages in communication systems, such as message

queues in messaging systems or buffers in computer

networks.

Event Handling: Queues can be used to handle events in

event-driven systems, such as GUI applications or

simulation systems.

Traffic Management: Queues can be used to manage

traffic flow in transportation systems, such as airport control

systems or road networks.

Operating systems: Operating systems often use queues to

manage processes and resources. For example, a process

scheduler might use a queue to manage the order in which

processes are executed.

 I- B.Tech II SEM Data Structures Prepared By: BSR 154 | P a g e

Network protocols: Network protocols like TCP and UDP

use queues to manage packets that are transmitted over the

network. Queues can help to ensure that packets are

delivered in the correct order and at the appropriate rate.

Printer queues: In printing systems, queues are used to

manage the order in which print jobs are processed. Jobs are

added to the queue as they are submitted, and the printer

processes them in the order they were received.

Web servers: Web servers use queues to manage incoming

requests from clients. Requests are added to the queue as

they are received, and they are processed by the server in the

order they were received.

Breadth-first search algorithm: The breadth-first search

algorithm uses a queue to explore nodes in a graph level-by-

level. The algorithm starts at a given node, adds its

neighbors to the queue, and then processes each neighbor in

turn.

FCFS (FIRST-COME, FIRST-SERVED) Scheduling

FCFS is considered as simplest CPU-scheduling algorithm.

In FCFS algorithm, the process that requests the CPU first is

allocated in the CPU first. The implementation of FCFS

algorithm is managed with FIFO (First in first out) queue.

 I- B.Tech II SEM Data Structures Prepared By: BSR 155 | P a g e

FCFS scheduling is non-preemptive. Non-preemptive

means, once the CPU has been allocated to a process, that

process keeps the CPU until it executes a work or job or task

and releases the CPU, either by requesting I/O.

FCFS Scheduling Mathematical Examples

In CPU-scheduling problems some terms are used while

solving the problems, so for conceptual purpose the terms

are discussed as follows −

Arrival time (AT) − Arrival time is the time at which the

process arrives in ready queue.

Burst time (BT) or CPU time of the process − Burst time

is the unit of time in which a particular process completes its

execution.

Completion time (CT) − Completion time is the time at

which the process has been terminated.

Turn-around time (TAT) − The total time from arrival

time to completion time is known as turn-around time. TAT

can be written as,

Turn-around time (TAT) = Completion time (CT) – Arrival

time (AT) or, TAT = Burst time (BT) + Waiting time (WT)

 I- B.Tech II SEM Data Structures Prepared By: BSR 156 | P a g e

Waiting time (WT) − Waiting time is the time at which the

process waits for its allocation while the previous process is

in the CPU for execution. WT is written as,

Waiting time (WT) = Turn-around time (TAT) – Burst time

(BT)

Response time (RT) − Response time is the time at which

CPU has been allocated to a particular process first time.

In case of non-preemptive scheduling, generally Waiting

time and Response time is same.

Gantt chart − Gantt chart is a visualization which helps to

scheduling and managing particular tasks in a project. It is

used while solving scheduling problems, for a concept of

how the processes are being allocated in different

algorithms.

Example

Consider the given table below and find Completion time

(CT), Turn-around time (TAT), Waiting time (WT),

Response time (RT), Average Turn-around time and

Average Waiting time.

 I- B.Tech II SEM Data Structures Prepared By: BSR 157 | P a g e

Solution
Gantt chart

For this problem CT, TAT, WT, RT is shown in the given

table –

Average Waiting time = (9+8+0+4+12)/5 = 33/5 = 6.6 time

unit (time unit can be considered as milliseconds)

 I- B.Tech II SEM Data Structures Prepared By: BSR 158 | P a g e

Average Turn-around time = (11+14+4+11+16)/5 = 56/5

= 11.2 time unit (time unit can be considered as

milliseconds)

Example: Write a C program on FCFS

#include <stdio.h>

int main()

{

 int pid[15];

 int bt[15];

 int n;

 printf("Enter the number of processes: ");

 scanf("%d",&n);

 printf("Enter process id of all the processes: ");

 for(int i=0;i<n;i++)

 {

 scanf("%d",&pid[i]);

 }

 printf("Enter burst time of all the processes: ");

 for(int i=0;i<n;i++)

 {

 scanf("%d",&bt[i]);

 }

 int i, wt[n];

 wt[0]=0;

 //for calculating waiting time of each process

 for(i=1; i<n; i++)

 {

 I- B.Tech II SEM Data Structures Prepared By: BSR 159 | P a g e

 wt[i]= bt[i-1]+ wt[i-1];

 }

 printf("Process ID Burst Time Waiting Time

TurnAround Time\n");

 float twt=0.0;

 float tat= 0.0;

 for(i=0; i<n; i++)

 {

 printf("%d\t\t", pid[i]);

 printf("%d\t\t", bt[i]);

 printf("%d\t\t", wt[i]);

 //calculating and printing turnaround time of each process

 printf("%d\t\t", bt[i]+wt[i]);

 printf("\n");

 //for calculating total waiting time

 twt += wt[i];

 //for calculating total turnaround time

 tat += (wt[i]+bt[i]);

 }

 float att,awt;

 //for calculating average waiting time

 awt = twt/n;

 //for calculating average turnaround time

 att = tat/n;

 printf("Avg. waiting time= %f\n",awt);

 printf("Avg. turnaround time= %f",att);

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 160 | P a g e

Output

Enter the number of processes: 3

Enter process id of all the processes: 1 2 3

Enter burst time of all the processes: 5 11 11

Process ID Burst Time Waiting Time TurnAround Time

1 5 0 5

2 11 5 16

3 11 16 27

Avg. waiting time= 7.000000

Avg. turnaround time= 16.000000

Round Robin algorithm: In round robin algorithm while

executing the one process it goes allows another process for

execution. So it is called a preemptive scheduling.

 Process Burst Time (mili sec)

 P1 24

 P2 10

 P3 3

Time quantum (or) Time sliced is 4

 I- B.Tech II SEM Data Structures Prepared By: BSR 161 | P a g e

Waiting time for p1= 0+(11-4)+(19-15)+(25-23)

 =0+ 7+4+2

 =13

 P2= 4+(15-8) +(23-19)

 =4+7+4

 =15

 P3= 8

Average waiting time= 13+15+8/3

 = 12

Round robin scheduling follows on Windows 95 and

window NT operating systems.

3.10 Types of Queues

Types of queues: They are different types of queues. They

can be classified as

1. Linear queues

2. Circular queues

3. Deques

4. Priority Queues

1. Linear queues: The queue has two ends. i.e. front end

and rear end. The rear end is where we insert elements and

front end is where we delete elements. We can traverse

 I- B.Tech II SEM Data Structures Prepared By: BSR 162 | P a g e

(move) in a linear queue in only one direction (i.e. from

front to rear).

If the front pointer is in the first position and the rear pointer

is in the last position then the queue is said to be fully

occupied. Initially the front and rear ends are at same

position (i.e. -1). When we insert elements the rear pointer

moves one by one until the last index position is reached.

Beyond this we cannot insert the data irrespective of the

position of the front pointer. This is the main disadvantage

of linear queues. Which overcome in circular queues.

 When we delete the elements the front

pointer moves one by one until the rear pointer is reached. If

the front pointer reaches the rear pointer both their positions

are initialized to -1 and the queue is said to be empty.

Limitation of simple queues:

The insertion and deletion processes are shown in the

following figures.

 I- B.Tech II SEM Data Structures Prepared By: BSR 163 | P a g e

2. Circular queues: Circular queue is another form of a

linear queue in which the last position is connected to the

first position of the list. It has two ends. The front end and

the rear end. The rear end is where we insert elements and

front end is where we delete elements. We can traverse in a

circular queue in only one direction (i.e. from front to rear).

 I- B.Tech II SEM Data Structures Prepared By: BSR 164 | P a g e

Initially the front end and rear ends are at same positions (i.e

-1). When we insert elements the rear pointer moves one by

one until the front end is reached. If the next position of the

rear is front, the queue is said to be fully occupied. Beyond

this we cannot insert any data. But if we delete and data, we

can insert the data accordingly.

When we delete the elements the front pointer moves

one by one until the rear pointer is reached. If the

front pointer reaches the rear pointer, both their

positions are initialized to -1 and the queue is said to

be empty.

 I- B.Tech II SEM Data Structures Prepared By: BSR 165 | P a g e

Algorithm for circular enqueue operation

[Check the circular queue is full or not]

Step 1:if((front==0&&rear==SIZE-1)||(front==rear+1))

then

 printf("\n Circular queue is full");

 return;

Step 2:[check circular queue is empty or not]

 if(front==-1) then

 front=rear=0;

 else

Step 3:[check circular queue is at last position of queue]

 if(rear==SIZE-1)

 rear=0;

 else

 rear++;

Step 4:[Insert the element into circular queue]

 printf("\n Enter the element");

 scanf("%d",&cqueue[rear]);

 I- B.Tech II SEM Data Structures Prepared By: BSR 166 | P a g e

Algorithm for circular dequeue operation

[check circular queue is empty or not]

Step 1:if(front==-1) then

 printf("\n Circular queue is empty");

 return;

[delete the element from the circular queue]

Step 2:printf("The deleted element is %d",

cqueue[front]);

Step 3: if(front==rear) then

 front=rear=-1;

 else

 if(front==SIZE-1)

 front=0;

 else

 front++;

Algorithm for circular display operation
[check circular queue is empty or not]

Step 1:if(front==-1) then

 printf("\n Circular queue is empty");

 return;

[Display the elements into the circular queue]

Step 2:for(i=front;i<=rear; i++)

 printf("%d", cqueue[i]);

 I- B.Tech II SEM Data Structures Prepared By: BSR 167 | P a g e

Example: Write a C program to perform operations on

Circular Queue

#include<stdio.h>

#include<conio.h>

#define SIZE 10

int cqueue[SIZE], front=-1,rear=-1,i;

void cenqueue();

void cdequeue();

void display();

void main()

{

int ch;

clrscr();

do

{

printf("\n 1.Cenqueue");

printf("\n 2.Cdequeue");

printf("\n 3.Display");

printf("\n 4.Exit");

printf("\n Enter the choice");

scanf("%d",&ch);

switch(ch)

{

case 1:Cenqueue();

 break;

case 2:Cdequeue();

 break;

case 3:display();

 break;

case 4:exit(0);

 break;

default: printf("\n Invalid choice");

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 168 | P a g e

}

while(ch!=4);

getch();

}

void cenqueue()

{

if((Front==0)&&(rear==SIZE-1)||(front==rear+1))

 {

 printf("\n Circular queue is full");

 return;

 }

 if(front==-1)

 {

 front=rear=0;

 }

 else

 if(rear==SIZE-1)

 rear=0;

 else

 rear++;

 printf("\n Enter the elements");

 scanf("%d", &cqueue[rear]);

}

void cdequeue()

{

 if(front==-1)

 {

 printf("\n Circular queue is empty");

 return;

 }

 I- B.Tech II SEM Data Structures Prepared By: BSR 169 | P a g e

printf("\n The deleted element is %d",cqueue[front]);

if(front==rear)

 {

 front=rear=-1;

 }

 else if(front==SIZE-1)

 {

 front=0;

 else

 front++;

 }

void display()

{

 if(front==-1)

 {

 printf("\n Circular queue is empty");

 return;

 }

printf("\n front=%d rear=%d",front,rear);

for(i=front;i<=rear;i++)

printf("%d", cqueue[i]);

}

3. Deques: Deque (Double-ended queue) is another form of

a queue in which insertions and deletions are made at both

the front and rear ends of the queue. There are two

variations of a deque namely

1. Input restricted deque

2. Output restricted deque

 I- B.Tech II SEM Data Structures Prepared By: BSR 170 | P a g e

1. Input restricted deque: The input restricted deque

allows insertion at one end (It can be either front or rear)

only.

2. Output restricted deque: The output restricted deque

allows deletion at one end (It can be either front or rear)

only.

 The different types of deques are

1. Linear deque

2. Circular deque

1. Linear deque: The linear deque is similar to a linear

queue except the following conditions.

a) The insertions and deletions are made at both the front

and rear ends of the deque.

b) If the front end is in the first position, we cannot insert

the data at front end.

c) If the rear end is in the last position, we cannot insert the

data at rear end.

 I- B.Tech II SEM Data Structures Prepared By: BSR 171 | P a g e

2. Circular deque: Circular deque is similar to a circular

queue except the following conditions.

a). The insertions and deletions are made at both the front

end and rear ends of the deque.

b) Irrespective of the positions of the front and rear end, we

can insert and delete data.

 I- B.Tech II SEM Data Structures Prepared By: BSR 172 | P a g e

4. Priority Queues

A priority queue is an abstract data type that behaves

similarly to the normal queue except that each element has

some priority, i.e., the element with the highest priority

would come first in a priority queue. The priority of the

elements in a priority queue will determine the order in

which elements are removed from the priority queue.

The priority queue supports only comparable elements,

which means that the elements are either arranged in an

ascending or descending order.

For example, suppose we have some values like 1, 3, 4, 8,

14, 22 inserted in a priority queue with an ordering imposed

on the values is from least to the greatest. Therefore, the 1

number would be having the highest priority while 22 will

be having the lowest priority.

Characteristics of a Priority queue

A priority queue is an extension of a queue that contains the

following characteristics:

 I- B.Tech II SEM Data Structures Prepared By: BSR 173 | P a g e

 Every element in a priority queue has some priority

associated with it.

 An element with the higher priority will be deleted

before the deletion of the lesser priority.

 If two elements in a priority queue have the same

priority, they will be arranged using the FIFO

principle.

Types of Priority Queue

There are two types of priority queue:

Ascending order priority queue: In ascending order

priority queue, a lower priority number is given as a

higher priority in a priority. For example, we take the

numbers from 1 to 5 arranged in an ascending order like

1,2,3,4,5; therefore, the smallest number, i.e., 1 is given

as the highest priority in a priority queue.

 I- B.Tech II SEM Data Structures Prepared By: BSR 174 | P a g e

Descending order priority queue: In descending order

priority queue, a higher priority number is given as a

higher priority in a priority. For example, we take the

numbers from 1 to 5 arranged in descending order like 5,

4, 3, 2, 1; therefore, the largest number, i.e., 5 is given as

the highest priority in a priority queue.

Priority queue can be implemented using an array, a

linked list, a heap data structure, or a binary search

tree. Among these data structures, heap data structure

provides an efficient implementation of priority queues.

Min-Heap – The value of the root node is less than or

equal to either of its children.

 I- B.Tech II SEM Data Structures Prepared By: BSR 175 | P a g e

Max-Heap − The value of the root node is greater than

or equal to either of its children.

Max Heap Construction Algorithm

 I- B.Tech II SEM Data Structures Prepared By: BSR 176 | P a g e

Max Heap Deletion Algorithm

Step 1 − Remove root node.

Step 2 − Move the last element of last level to root.

Step 3 − Compare the value of this child node with its parent.

Step 4 − If value of parent is less than child, then swap them.

Step 5 − Repeat step 3 & 4 until Heap property holds.

Priority Queue Operations

The common operations that we can perform on a priority

queue are insertion, deletion and peek.

Insert

 I- B.Tech II SEM Data Structures Prepared By: BSR 177 | P a g e

Delete

Deleting an element from a priority queue (max-heap) is

done as follows:

 Select the element to be deleted.

 Swap it with the last element

 Remove the last element.

 Heapify the tree

 I- B.Tech II SEM Data Structures Prepared By: BSR 178 | P a g e

UNIT-IV

Trees- Introduction, Types and basic properties.

Binary Trees–Definition, Tree traversals, Tree

representations. Binary Search Trees – Definition,

properties and applications. AVL trees- Introduction and

basic operations. Heap – Introduction and types, Heap sort.

4.1 Trees- Introduction, Types and basic properties.

What is a Tree?

A tree is a non-linear and hierarchical data structure that has

a group of nodes. When it comes to the tree, each node

stores a value.

 I- B.Tech II SEM Data Structures Prepared By: BSR 179 | P a g e

Important Terminologies in Tree

Root: The topmost node of a tree is known as the root.

Node: A node is an entity that contains a key or value and

pointers to its child nodes.

Edge: The connection between any two nodes is known as

the edge. In a tree data structure, if we have N number of

nodes then we can have a maximum of N-1 number of links.

Parent

In a tree data structure, the node which is a predecessor of

any node is called as PARENT NODE. In simple words, the

 I- B.Tech II SEM Data Structures Prepared By: BSR 180 | P a g e

node which has a branch from it to any other node is called

a parent node. Parent node can also be defined as "The node

which has child / children".

Child

In a tree data structure, the node which is descendant of any

node is called as CHILD Node. In simple words, the node

which has a link from its parent node is called as child node.

In a tree, any parent node can have any number of child

nodes. In a tree, all the nodes except root are child nodes.

 I- B.Tech II SEM Data Structures Prepared By: BSR 181 | P a g e

Siblings

In a tree data structure, nodes which belong to same Parent

are called as SIBLINGS. In simple words, the nodes with

the same parent are called Sibling nodes.

Leaf

In a tree data structure, the node which does not have a child

is called as LEAF Node. In simple words, a leaf is a node

with no child.

In a tree data structure, the leaf nodes are also called as

External Nodes. External node is also a node with no child.

In a tree, leaf node is also called as 'Terminal' node.

 I- B.Tech II SEM Data Structures Prepared By: BSR 182 | P a g e

Internal Nodes

In a tree data structure, the node which has atleast one child

is called as INTERNAL Node. In simple words, an internal

node is a node with atleast one child.

In a tree data structure, nodes other than leaf nodes are

called as Internal Nodes. The root node is also said to be

Internal Node if the tree has more than one node. Internal

nodes are also called as 'Non-Terminal' nodes.

 I- B.Tech II SEM Data Structures Prepared By: BSR 183 | P a g e

Degree

In a tree data structure, the total number of children of a

node is called as DEGREE of that Node. In simple words,

the Degree of a node is total number of children it has. The

highest degree of a node among all the nodes in a tree is

called as 'Degree of Tree'.

Level

In a tree data structure, the root node is said to be at Level 0

and the children of root node are at Level 1 and the children

of the nodes which are at Level 1 will be at Level 2 and so

on... In simple words, in a tree each step from top to bottom

is called as a Level and the Level count starts with '0' and

incremented by one at each level (Step).

 I- B.Tech II SEM Data Structures Prepared By: BSR 184 | P a g e

Height

In a tree data structure, the total number of edges from leaf

node to a particular node in the longest path is called as

HEIGHT of that Node. In a tree, height of the root node is

said to be height of the tree. In a tree, height of all leaf nodes

is '0'.

Depth

In a tree data structure, the total number of egdes from root

node to a particular node is called as DEPTH of that Node.

 I- B.Tech II SEM Data Structures Prepared By: BSR 185 | P a g e

In a tree, the total number of edges from root node to a leaf

node in the longest path is said to be Depth of the tree. In

simple words, the highest depth of any leaf node in a tree is

said to be depth of that tree. In a tree, depth of the root node

is '0'.

Path

In a tree data structure, the sequence of Nodes and Edges

from one node to another node is called as PATH between

that two Nodes. Length of a Path is total number of nodes in

that path. In below example the path A - B - E - J has length

4.

 I- B.Tech II SEM Data Structures Prepared By: BSR 186 | P a g e

Sub Tree

In a tree data structure, each child from a node forms a

subtree recursively. Every child node will form a subtree on

its parent node.

4.2 Properties of Trees

 A tree is a hierarchical structure as it contains

multiple levels.

 In a tree, the topmost node is known as the root

node.

 I- B.Tech II SEM Data Structures Prepared By: BSR 187 | P a g e

 A node that doesn‟t have a child node is known as a

leaf node or terminal node.

 The highest number of nodes at every level of i is 2i.

 Height of the tree = the longest path from the root

node to the leaf node.

 Depth of a node = the length of the path to its root.

4.3 Binary Tree Representation

 A binary tree data structure is representing using two

methods

 Array Representation

 Linked list Representation

Array Representation

We use 1-D array to represent binary tree

Steps: 1. Consider the root node at index 0

Step 2: for every left child=2i+1

Step3: for every right child=2i+2

 I- B.Tech II SEM Data Structures Prepared By: BSR 188 | P a g e

Example

Linked list Representation

We use a double linked list to represent a binary tree. In a

double linked list, every node consists of three fields. First

field for storing left child address, second for storing actual

data and third for storing right child address.

 In this linked list representation, a node has the

following structure

 I- B.Tech II SEM Data Structures Prepared By: BSR 189 | P a g e

The above example of the binary tree represented using

Linked list representation is shown as follows.

 I- B.Tech II SEM Data Structures Prepared By: BSR 190 | P a g e

4.4 Types of Trees

1. Binary Tree

2. Binary Search Tree

3. AVL Tree

1. Binary Tree

The Binary tree means that the node can have maximum

two children. Here, binary name itself suggests that

'two'; therefore, each node can have either 0, 1 or 2

children.

Let's understand the binary tree through an example.

The above tree is a binary tree because each node contains

the utmost two children. The logical representation of the

above tree is given below:

 I- B.Tech II SEM Data Structures Prepared By: BSR 191 | P a g e

In the above tree, node 1 contains two pointers, i.e., left and

a right pointer pointing to the left and right node

respectively. The node 2 contains both the nodes (left and

right node); therefore, it has two pointers (left and right).

The nodes 3, 5 and 6 are the leaf nodes, so all these nodes

contain NULL pointer on both left and right parts.

There are different types of binary trees and they are...

Types of Binary Tree

a) Full/ proper/ strict Binary tree

The full binary tree is also known as a strict binary

tree. The tree can only be considered as the full

binary tree if each node must contain either 0 or 2

children. The full binary tree can also be defined as

the tree in which each node must contain 2 children

except the leaf nodes.

 I- B.Tech II SEM Data Structures Prepared By: BSR 192 | P a g e

b) Complete Binary Tree

A binary tree in which every internal node has

exactly two children and all leaf nodes are at same

level is called Complete Binary Tree.

c) Perfect Binary Tree

A tree is a perfect binary tree if all the internal nodes

have 2 children, and all the leaf nodes are at the

same level.

 I- B.Tech II SEM Data Structures Prepared By: BSR 193 | P a g e

d) Left Skewed Binary Tree

These are those skewed binary trees in which all the

nodes are having a left child or no child at all. It is a

left side dominated tree. All the right children

remain as null.

 I- B.Tech II SEM Data Structures Prepared By: BSR 194 | P a g e

#include <bits/stdc++.h>

using namespace std;

// A Tree node

struct Node {

 int key;

 struct Node *left, *right;

};

// Utility function to create a new node

Node* newNode(int key)

{

 Node* temp = new Node;

 temp->key = key;

 temp->left = temp->right = NULL;

 return (temp);

}

// Driver code

int main()

{

 /*

 1

 /

 2

 /

 3

 */

 Node* root = newNode(1);

 root->left = newNode(2);

 root->left->left = newNode(3);

 I- B.Tech II SEM Data Structures Prepared By: BSR 195 | P a g e

 return 0;

}

e) Right Skewed Binary Tree:

These are those skewed binary trees in which all the

nodes are having a right child or no child at all. It is

a right side dominated tree. All the left children

remain as null.

#include <bits/stdc++.h>

using namespace std;

// A Tree node

struct Node {

 int key;

 struct Node *left, *right;

};

// Utility function to create a new node

Node* newNode(int key)

 I- B.Tech II SEM Data Structures Prepared By: BSR 196 | P a g e

{

 Node* temp = new Node;

 temp->key = key;

 temp->left = temp->right = NULL;

 return (temp);

}

// Driver code

int main()

{

 /*

 1

 \

 2

 \

 3

 */

 Node* root = newNode(1);

 root->right = newNode(2);

 root->right->right = newNode(3);

 return 0;

}

f) Degenerate Or Pathological Tree

A degenerate or Pathological Tree is a Tree where

every parent node has only one child either left or

right.

 I- B.Tech II SEM Data Structures Prepared By: BSR 197 | P a g e

g) Balanced Binary Tree

Binary tree is called Balanced Binary Tree, if

difference of left and right subtree height is

maximum one for all the nodes.

 I- B.Tech II SEM Data Structures Prepared By: BSR 198 | P a g e

2. Binary Search Tree

In a Binary search tree, the value of left node must be

smaller than the parent node, and the value of right node

must be greater than the parent node. This rule is applied

recursively to the left and right subtrees of the root.

Let's understand the concept of Binary search tree with an

example.

In the above figure, we can observe that the root node is 40,

and all the nodes of the left subtree are smaller than the root

node, and all the nodes of the right subtree are greater than

the root node.

Similarly, we can see the left child of root node is greater

than its left child and smaller than its right child. So, it also

 I- B.Tech II SEM Data Structures Prepared By: BSR 199 | P a g e

satisfies the property of binary search tree. Therefore, we

can say that the tree in the above image is a binary search

tree.

Binary Search Tree (BST) is a special binary tree that

has the properties:

 The left subtree contains only the keys which are

lesser than the key of the node.

 The right subtree contains only the keys which are

greater than the key of the node.

 The left and right subtree both should be binary

search tree.

Applications of BST

 A Self-Balancing Binary Search Tree is used to

maintain sorted stream of data

 A Self-Balancing Binary Search Tree is used to

implement doubly ended priority queue.

 I- B.Tech II SEM Data Structures Prepared By: BSR 200 | P a g e

 One of the most common use cases of BSTs is

searching for a particular element in the tree.

 A BST can be used to sort a large dataset.

 Used in Database indexing.

 BSTs can be used to implement symbol tables,

which are used to store data such as variable and

function names in a programming language.

Operations on Binary Search tree

The four basic operations of BST

 Insertion

 Deletion

 Searching

 Traversals

Example of creating a binary search tree

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12,

20, 50

 First, we have to insert 45 into the tree as the root of

the tree.

 I- B.Tech II SEM Data Structures Prepared By: BSR 201 | P a g e

 Then, read the next element; if it is smaller than the

root node, insert it as the root of the left subtree, and

move to the next element.

 Otherwise, if the element is larger than the root

node, then insert it as the root of the right subtree.

Step 1 - Insert 45.

Step 2 - Insert 15.

As 15 is smaller than 45, so insert it as the root node of the

left subtree.

Step 3 - Insert 79.

 I- B.Tech II SEM Data Structures Prepared By: BSR 202 | P a g e

As 79 is greater than 45, so insert it as the root node of the

right subtree.

Step 4 - Insert 90.

90 is greater than 45 and 79, so it will be inserted as the

right subtree of 79.

Step 5 - Insert 10.

10 is smaller than 45 and 15, so it will be inserted as a left

subtree of 15.

 I- B.Tech II SEM Data Structures Prepared By: BSR 203 | P a g e

Step 6 - Insert 55.

55 is larger than 45 and smaller than 79, so it will be

inserted as the left subtree of 79.

Step 7 - Insert 12.

12 is smaller than 45 and 15 but greater than 10, so it will be

inserted as the right subtree of 10.

 I- B.Tech II SEM Data Structures Prepared By: BSR 204 | P a g e

Step 8 - Insert 20.

20 is smaller than 45 but greater than 15, so it will be

inserted as the right subtree of 15.

Step 9 - Insert 50.

50 is greater than 45 but smaller than 79 and 55. So, it will

be inserted as a left subtree of 55.

 I- B.Tech II SEM Data Structures Prepared By: BSR 205 | P a g e

Deletion in Binary Search tree

In a binary search tree, we must delete a node from the tree

by keeping in mind that the property of BST is not violated.

To delete a node from BST, there are three possible

situations occur -

 The node to be deleted is the leaf node, or,

 The node to be deleted has only one child, and,

 The node to be deleted has two children

 I- B.Tech II SEM Data Structures Prepared By: BSR 206 | P a g e

The node to be deleted is the leaf node

It is the simplest case to delete a node in BST. Here, we

have to replace the leaf node with NULL and simply free

the allocated space.

We can see the process to delete a leaf node from BST in

the below image. In below image, suppose we have to delete

node 90, as the node to be deleted is a leaf node, so it will be

replaced with NULL, and the allocated space will free.

The node to be deleted has only one child

We can see the process of deleting a node with one child

from BST in the below image. In the below image, suppose

we have to delete the node 79, as the node to be deleted has

only one child, so it will be replaced with its child 55.

So, the replaced node 79 will now be a leaf node that can be

easily deleted.

 I- B.Tech II SEM Data Structures Prepared By: BSR 207 | P a g e

The node to be deleted has two children

This case of deleting a node in BST is a bit complex among

other two cases. In such a case, the steps to be followed are

listed as follows -

o First, find the inorder successor of the node to be

deleted.

o After that, replace that node with the inorder

successor until the target node is placed at the leaf of

tree.

o And at last, replace the node with NULL and free up

the allocated space.

In the below image, suppose we have to delete node 45 that

is the root node, as the node to be deleted has two children,

so it will be replaced with its inorder successor. Now, node

45 will be at the leaf of the tree so that it can be deleted

easily.

 I- B.Tech II SEM Data Structures Prepared By: BSR 208 | P a g e

Searching in Binary search tree

Binary search trees are called “search trees” because they

make searching for a certain value more efficient than in an

unordered tree. In an ideal binary search tree, we do not

have to visit every node when searching for a particular

value.

Here is how we search in a binary search tree:

 Begin at the tree‟s root node

 If the value is smaller than the current node, move

left

 If the value is larger than the current node, move

right

 I- B.Tech II SEM Data Structures Prepared By: BSR 209 | P a g e

Binary Search Tree (BST) Traversals

 Inorder

Input:

Output:

Inorder Traversal: 10 20 30 100 150 200 300

 I- B.Tech II SEM Data Structures Prepared By: BSR 210 | P a g e

#include <stdio.h>

#include <stdlib.h>

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

struct node *root = NULL;

void insert(int data){

 struct node *tempNode = (struct node*)

malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL) {

 root = tempNode;

 } else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 I- B.Tech II SEM Data Structures Prepared By: BSR 211 | P a g e

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

void inorder_traversal(struct node* root){

 if(root != NULL) {

 inorder_traversal(root->leftChild);

 printf("%d ",root->data);

 inorder_traversal(root->rightChild);

 }

}

int main(){

 int i;

 int array[7] = { 27, 14, 35, 10, 19, 31, 42 };

 for(i = 0; i < 7; i++)

 insert(array[i]);

 printf("Inorder traversal: ");

 inorder_traversal(root);

 return 0;

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 212 | P a g e

Output

The complexity of the Binary Search tree

1. Time Complexity

2. Space Complexity

 I- B.Tech II SEM Data Structures Prepared By: BSR 213 | P a g e

3. AVL Tree

AVL Tree is invented by GM Adelson - Velsky and EM

Landis in 1962. The tree is named AVL in honour of its

inventors.

 AVL Trees are Self-Balanced Binary Search Trees.

 In AVL trees, the balancing factor of each node is

either 0 or 1 or -1.

 Balance Factor of AVL Tree calculated as = Height

of Left Sub-tree - Height of Right Sub-tree

Balance Factor

Balance factor of a node in an AVL tree is the difference

between the height of the left subtree and that of the right

subtree of that node.

Balance Factor (k) = height (left(k)) - height (right(k))

 If balance factor of any node is 1, it means that the

left sub-tree is one level higher than the right sub-

tree.

 If balance factor of any node is -1, it means that the

left sub-tree is one level lower than the right sub-

tree.

 If balance factor of any node is 0, it means that the

left sub-tree and right sub-tree contain equal height.

 I- B.Tech II SEM Data Structures Prepared By: BSR 214 | P a g e

Operations on an AVL tree

Due to the fact that, AVL tree is also a binary search tree

therefore, all the operations are performed in the same way

as they are performed in a binary search tree. Searching and

traversing do not lead to the violation in property of AVL

tree. However, insertion and deletion are the operations

which can violate this property and therefore, they need to

be revisited.

 I- B.Tech II SEM Data Structures Prepared By: BSR 215 | P a g e

AVL Rotations

We perform rotation in AVL tree only in case if Balance

Factor is other than -1, 0, and 1. There are basically four

types of rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of

left subtree of A

2. R R rotation : Inserted node is in the right subtree of

right subtree of A

3. L R rotation : Inserted node is in the right subtree of

left subtree of A

4. R L rotation : Inserted node is in the left subtree of

right subtree of A

The first two rotations LL and RR are single rotations and

the next two rotations LR and RL are double rotations.

For a tree to be unbalanced, minimum height must be at

least 2, Let us understand each rotation

1. LL Rotation

When BST becomes unbalanced, due to a node is inserted

into the left subtree of the left subtree of C, then we perform

LL rotation, LL rotation is clockwise rotation, which is

applied on the edge below a node having balance factor 2.

https://www.javatpoint.com/ll-rotation-in-avl-tree

 I- B.Tech II SEM Data Structures Prepared By: BSR 216 | P a g e

2. RR Rotation

When BST becomes unbalanced, due to a node is inserted

into the right subtree of the right subtree of A, then we

perform RR rotation, RR rotation is an anticlockwise

rotation, which is applied on the edge below a node having

balance factor -2

https://www.javatpoint.com/rr-rotation-in-avl-tree

 I- B.Tech II SEM Data Structures Prepared By: BSR 217 | P a g e

3. LR Rotation

Double rotations are bit tougher than single rotation which

has already explained above. LR rotation = RR rotation +

LL rotation, i.e., first RR rotation is performed on subtree

and then LL rotation is performed on full tree, by full tree

we mean the first node from the path of inserted node whose

balance factor is other than -1, 0, or 1.

State Action

A node B has been inserted into the

right subtree of A the left subtree of

C, because of which C has become an

unbalanced node having balance

factor 2. This case is L R rotation

where: Inserted node is in the right

subtree of left subtree of C

As LR rotation = RR + LL rotation,

hence RR (anticlockwise) on subtree

rooted at A is performed first. By

doing RR rotation, node A, has

become the left subtree of B.

 I- B.Tech II SEM Data Structures Prepared By: BSR 218 | P a g e

After performing RR rotation, node C

is still unbalanced, i.e., having

balance factor 2, as inserted node A is

in the left of left of C

Now we perform LL clockwise

rotation on full tree, i.e. on node C.

node C has now become the right

subtree of node B, A is left subtree of

B

Balance factor of each node is now

either -1, 0, or 1, i.e. BST is balanced

now.

4. RL Rotation

As already discussed, that double rotations are bit tougher

than single rotation which has already explained above. R L

rotation = LL rotation + RR rotation, i.e., first LL rotation is

performed on subtree and then RR rotation is performed on

 I- B.Tech II SEM Data Structures Prepared By: BSR 219 | P a g e

full tree, by full tree we mean the first node from the path of

inserted node whose balance factor is other than -1, 0, or 1.

State Action

A node B has been inserted into the

left subtree of C the right subtree of

A, because of which A has become

an unbalanced node having balance

factor - 2. This case is RL rotation

where: Inserted node is in the left

subtree of right subtree of A

As RL rotation = LL rotation + RR

rotation, hence, LL (clockwise) on

subtree rooted at C is performed first.

By doing RR rotation, node C has

become the right subtree of B.

 I- B.Tech II SEM Data Structures Prepared By: BSR 220 | P a g e

After performing LL rotation, node A

is still unbalanced, i.e. having balance

factor -2, which is because of the

right-subtree of the right-subtree node

A.

Now we perform RR rotation

(anticlockwise rotation) on full tree,

i.e. on node A. node C has now

become the right subtree of node B,

and node A has become the left

subtree of B.

Balance factor of each node is now

either -1, 0, or 1, i.e., BST is balanced

now.

 I- B.Tech II SEM Data Structures Prepared By: BSR 221 | P a g e

Q: Construct an AVL tree having the following elements

H, I, J, B, A, E

Sol: 1. Insert H, I, J

On inserting the above elements, especially in the case of H,

the BST becomes unbalanced as the Balance Factor of H is -

2. Since the BST is right-skewed, we will perform RR

Rotation on node H. The resultant balance tree is:

The resultant balance tree is:

 I- B.Tech II SEM Data Structures Prepared By: BSR 222 | P a g e

2. Insert B, A

On inserting the above elements, especially in case of A, the

BST becomes unbalanced as the Balance Factor of H and I

is 2, we consider the first node from the last inserted node

i.e. H. Since the BST from H is left-skewed, we will

perform LL Rotation on node H. The resultant balance tree

is:

 I- B.Tech II SEM Data Structures Prepared By: BSR 223 | P a g e

3. Insert E

On inserting E, BST becomes unbalanced as the Balance

Factor of I is 2, since if we travel from E to I we find that it

is inserted in the left subtree of right subtree of I, we will

perform LR Rotation on node I. LR = RR + LL rotation

3 a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

 I- B.Tech II SEM Data Structures Prepared By: BSR 224 | P a g e

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

Construct an AVL tree having the following elements

44, 17, 32, 78, 50, 88, 48, 62, 54

 I- B.Tech II SEM Data Structures Prepared By: BSR 225 | P a g e

4.5 Tree traversals

 Preorder

 Inorder

 Postorder

Preorder Traversal: 100 20 10 30 200 150 300

 I- B.Tech II SEM Data Structures Prepared By: BSR 226 | P a g e

Inorder Traversal: 10 20 30 100 150 200 300

Postorder Traversal: 10 30 20 150 300 200 100

 I- B.Tech II SEM Data Structures Prepared By: BSR 227 | P a g e

#include <stdio.h>

#include <stdlib.h>

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

struct node *root = NULL;

void insert(int data){

 struct node *tempNode = (struct node*)

malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

//if tree is empty

 if(root == NULL) {

 root = tempNode;

 } else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 I- B.Tech II SEM Data Structures Prepared By: BSR 228 | P a g e

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

void pre_order_traversal(struct node* root){

 if(root != NULL) {

 printf("%d ",root->data);

 pre_order_traversal(root->leftChild);

 pre_order_traversal(root->rightChild);

 }

}

void inorder_traversal(struct node* root){

 if(root != NULL) {

 inorder_traversal(root->leftChild);

 printf("%d ",root->data);

 inorder_traversal(root->rightChild);

 }

}

void post_order_traversal(struct node* root){

 if(root != NULL) {

 post_order_traversal(root->leftChild);

 post_order_traversal(root->rightChild);

 I- B.Tech II SEM Data Structures Prepared By: BSR 229 | P a g e

 printf("%d ", root->data);

 }

}

int main(){

 int i;

 int array[7] = { 27, 14, 35, 10, 19, 31, 42 };

 for(i = 0; i < 7; i++)

 insert(array[i]);

 printf("Preorder traversal: ");

 pre_order_traversal(root);

 printf("\nInorder traversal: ");

 inorder_traversal(root);

 printf("\nPost order traversal: ");

 post_order_traversal(root);

 return 0;

}

4.6 Heap

A heap is a complete binary tree in which the node can

have the utmost two children.

What is heap sort?

Heap sort is a popular and efficient sorting algorithm. The

concept of heap sort is to eliminate the elements one by one

from the heap part of the list, and then insert them into the

sorted part of the list. Heap sort is the in-place sorting

algorithm.

 I- B.Tech II SEM Data Structures Prepared By: BSR 230 | P a g e

Types

There are two types of Heap

Max Heap: The value of each node is greater than its

children.

Min Heap: The value of each node is Smaller than its

children.

Min-Heap – The value of the root node is less than or equal

to either of its children.

Max-Heap − The value of the root node is greater than

or equal to either of its children.

 I- B.Tech II SEM Data Structures Prepared By: BSR 231 | P a g e

Step by Step Process

The Heap sort algorithm to arrange a list of elements in

ascending order is performed using following steps...

 Step 1 - Construct a Binary Tree with given list of

Elements.

 Step 2 - Transform the Binary Tree into Min Heap.

 Step 3 - Delete the root element from Min Heap

using Heapify method.

 Step 4 - Put the deleted element into the Sorted list.

 Step 5 - Repeat the same until Min Heap becomes

empty.

 Step 6 - Display the sorted list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 232 | P a g e

Example

 I- B.Tech II SEM Data Structures Prepared By: BSR 233 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 234 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 235 | P a g e

UNIT-V

Graphs: Introduction, Basic terminologies, Graph

Representations, Bi-connected components, Topological

sorting. Hashing: introduction to hashing and hash

functions, basic implementation and operations of Hash

tables, Caching, Collision resolution techniques - chaining

and open addressing.

5.1 Graphs

A graph is a non-linear kind of data structure made up of

nodes or vertices and edges. The edges connect any two

nodes in the graph, and the nodes are also known as

vertices.

Definition

A graph G can be defined as an ordered set G(V, E) where

V(G) represents the set of vertices and E(G) represents the

set of edges which are used to connect these vertices.

A Graph G(V, E) with 5 vertices (A, B, C, D, E) and six

edges ((A,B), (B,C), (C,E), (E,D), (D,B), (D,A)) is shown in

the following figure.

 I- B.Tech II SEM Data Structures Prepared By: BSR 236 | P a g e

Directed and Undirected Graph

A graph can be directed or undirected. However, in an

undirected graph, edges are not associated with the

directions with them. An undirected graph is shown in the

above figure since its edges are not attached with any of the

directions. If an edge exists between vertex A and B then the

vertices can be traversed from B to A as well as A to B.

 In a directed graph, edges form an ordered pair.

Edges represent a specific path from some vertex A to

another vertex B. Node A is called initial node while node B

is called terminal node.A directed graph is shown in the

following figure.

 I- B.Tech II SEM Data Structures Prepared By: BSR 237 | P a g e

5.2 Graph Terminology

Path

A path can be defined as the sequence of nodes that are

followed in order to reach some terminal node V from the

initial node U.

Connected Graph

A connected graph is the one in which some path exists

between every two vertices (u, v) in V. There are no isolated

nodes in connected graph.

Complete Graph

A complete graph is the one in which every node is

connected with all other nodes. A complete graph contain

n(n-1)/2 edges where n is the number of nodes in the graph.

 I- B.Tech II SEM Data Structures Prepared By: BSR 238 | P a g e

Weighted Graph

A graph G= (V, E) is called a labeled or weighted graph

because each edge has a value or weight representing the

cost of traversing that edge.

Digraph

A digraph is a directed graph in which each edge of the

graph is associated with some direction and the traversing

can be done only in the specified direction.

Adjacent Nodes

If two nodes u and v are connected via an edge e, then the

nodes u and v are called as neighbours or adjacent nodes.

Degree of the Node

A degree of a node is the number of edges that are

connected with that node. A node with degree 0 is called as

isolated node.

 I- B.Tech II SEM Data Structures Prepared By: BSR 239 | P a g e

Finite Graph

The graph G=(V, E) is called a finite graph if the number of

vertices and edges in the graph is limited in number

Infinite Graph

The graph G=(V, E) is called a finite graph if the number of

vertices and edges in the graph is interminable.

Trivial Graph

A graph G= (V, E) is trivial if it contains only a single

vertex and no edges.

 I- B.Tech II SEM Data Structures Prepared By: BSR 240 | P a g e

Multi Graph

If there are numerous edges between a pair of vertices in a

graph G= (V, E), the graph is referred to as a multigraph.

There are no self-loops in a Multigraph.

Null Graph

It's a reworked version of a trivial graph. If several vertices

but no edges connect them, a graph G= (V, E) is a null

graph.

 I- B.Tech II SEM Data Structures Prepared By: BSR 241 | P a g e

Complete Graph

If a graph G= (V, E) is also a simple graph, it is complete.

Using the edges, with n number of vertices must be

connected. It's also known as a full graph because each

vertex's degree must be n-1.

Pseudo Graph

If a graph G= (V, E) contains a self-loop besides other

edges, it is a pseudograph.

 I- B.Tech II SEM Data Structures Prepared By: BSR 242 | P a g e

Cyclic Graph

If a graph contains at least one graph cycle, it is considered

to be cyclic.

Acyclic Graph

When there are no cycles in a graph, it is called an acyclic

graph.

 I- B.Tech II SEM Data Structures Prepared By: BSR 243 | P a g e

5.3 Representation of Graphs in Data Structures

Graphs in data structures are used to represent the

relationships between objects. Every graph consists of a set

of points known as vertices or nodes connected by lines

known as edges. The vertices in a network represent entities.

 The most frequent graph representations are the

two that follow:

 Adjacency matrix

 Adjacency list

Adjacency matrix

An adjacency matrix is a way of representing a graph as a

matrix of boolean (0‟s and 1‟s). Let‟s assume there are n

vertices in the graph So, create a 2D matrix adjMat[n][n]

having dimension n x n.

 If there is an edge from vertex i to j, mark

adjMat[i][j] as 1.

 If there is no edge from vertex i to j, mark

adjMat[i][j] as 0.

 I- B.Tech II SEM Data Structures Prepared By: BSR 244 | P a g e

Undirected Graph Representation

Directed Graph Representation

Weighted Undirected Graph Representation

Weight or cost is indicated at the graph's edge, a weighted

graph representing these values in the matrix.

 I- B.Tech II SEM Data Structures Prepared By: BSR 245 | P a g e

Adjacency List

 A linked representation is an adjacency list.

 You keep a list of neighbors for each vertex in the

graph in this representation. It means that each

vertex in the graph has a list of its neighboring

vertices.

Representation of Undirected Graph to Adjacency list:

The below undirected graph has 3 vertices. So, an array of

list will be created of size 3, where each indices represent

the vertices. Now, vertex 0 has two neighbours (i.e, 1 and

2). So, insert vertex 1 and 2 at indices 0 of array. Similarly,

For vertex 1, it has two neighbour (i.e, 2 and 0) So, insert

vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2,

insert its neighbours in array of list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 246 | P a g e

Representation of Directed Graph to Adjacency list:

The below directed graph has 3 vertices. So, an array of list

will be created of size 3, where each indices represent the

vertices. Now, vertex 0 has no neighbours. For vertex 1, it

has two neighbour (i.e, 0 and 2) So, insert vertices 0 and 2 at

indices 1 of array. Similarly, for vertex 2, insert its

neighbours in array of list.

 I- B.Tech II SEM Data Structures Prepared By: BSR 247 | P a g e

5.4 Bi-connected components

A graph is said to be Biconnected if:

 It is connected, i.e. it is possible to reach every

vertex from every other vertex, by a simple path.

 Even after removing any vertex the graph remains

connected.

For example, consider the graph in the following figure

Removing any of the vertices does not increase the number

of connected components. So the given graph is

Biconnected.

 I- B.Tech II SEM Data Structures Prepared By: BSR 248 | P a g e

In the above graph if the vertex 2 is removed, then here's

how it will look:

Articulation point or cut point

If a point in a graph becomes separated from the entire

graph upon removal, it is referred to as an Articulation Point

or Cut-Vertex.

 I- B.Tech II SEM Data Structures Prepared By: BSR 249 | P a g e

Construction of Bi-connected graph

 Check the given graph whether it is bi-connected or

not.

 If the given graph is not bi-connected then identify

all the articulation points.

 If articulation points exists, determine a set of edges

whose inclusion makes the graph bi-connected.

The articulation points are 2, 3, and 5

To transform the graph into bi-connected graph, the new

edges are included corresponding to the articulation point.

Edges corresponding to the articulation point 3- (4,10)(10,9)

Edges corresponding to the articulation point 2-(1,5)(3,8)

Edges corresponding to the articulation point 5-(6,7)

 I- B.Tech II SEM Data Structures Prepared By: BSR 250 | P a g e

In the fig: there is a number of outside each vertex,

corresponds to the order in which a DFS visits these vertices

and are named as depth first numbers(dfns) of the vertex ie

The solid edges of fig, will form a depth first spanning tree.

The depth first spanning tree representation is

Solid lines: Tree edges

 I- B.Tech II SEM Data Structures Prepared By: BSR 251 | P a g e

-Dotted lines: Back edges

-Depth first spanning trees are very useful in identifying

articulation points and bi-connected components.

 I- B.Tech II SEM Data Structures Prepared By: BSR 252 | P a g e

Depth First Spanning tree properties

 I- B.Tech II SEM Data Structures Prepared By: BSR 253 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 254 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 255 | P a g e

The condition to check articulation point is not done for the

vertices 6, 8, 9 and 10. Since w does not exist in the

spanning tree structure and the condition is true for the

vertices 2, 3 and 5. Therefore the articulation points are 2, 3

and 5.

5.5 Graph Traversal

The process of visiting or updating each vertex in a graph is

known as graph traversal.

There are two techniques to implement a graph traversal

algorithm:

 Breadth-first search

 Depth-first search

Breadth-first search(BFS)

We traverse the tree level wise from left to right starting

from the root. It is implemented using a queue.

Algorithm

 I- B.Tech II SEM Data Structures Prepared By: BSR 256 | P a g e

Depth-first search(DFS)

In the DFS traversal method, we start from the root and

traverse left as far as we can go once the leftmost end is

reached, we go to the right child of the node in the path and

move to its left most end.

 I- B.Tech II SEM Data Structures Prepared By: BSR 257 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 258 | P a g e

5.6 Topological sorting

Topological sorting for Directed Acyclic Graph (DAG) is a

linear ordering of vertices such that for every directed edge

u-v, vertex u comes before v in the ordering.

Note: Topological Sorting for a graph is not possible if the

graph is not a DAG.

Topological Sorting vs Depth First Traversal (DFS):

Algorithm for Topological Sorting:

 We use a temporary stack.

 We don‟t print the vertex immediately,

 We first recursively call topological sorting for all its

adjacent vertices, then push it to a stack.

 Finally, print the contents of the stack.

Depth First Traversal Topological Sorting

In DFS, we print a vertex

and then recursively call

DFS for its adjacent vertices.

In topological sorting, we

need to print a vertex before

its adjacent vertices.

 I- B.Tech II SEM Data Structures Prepared By: BSR 259 | P a g e

Example

Sol:

 I- B.Tech II SEM Data Structures Prepared By: BSR 260 | P a g e

 I- B.Tech II SEM Data Structures Prepared By: BSR 261 | P a g e

5.7 Hashing

Hashing is a technique or process of mapping keys, and

values into the hash table by using a hash function. It is

done for faster access to elements. The efficiency of

mapping depends on the efficiency of the hash function

used.

Hash Functions

There are three ways of calculating the hash function:

a) Division method

b) Folding method

c) Mid square method

 I- B.Tech II SEM Data Structures Prepared By: BSR 262 | P a g e

a) Division method

In the division method, the hash function can be defined as:

h(ki) = ki % m;

where m is the size of the hash table.

For example, if the key value is 6 and the size of the hash

table is 10. When we apply the hash function to key 6 then

the index would be:

h(6) = 6%10 = 6

The index is 6 at which the value is stored.

b) Multiplication method

The hash function used for the multiplication method is −

Here, k is the key and A can be any constant value between

0 and 1. Both k and A are multiplied and their fractional part

is separated. This is then multiplied with n to get the hash

value. An example of the Multiplication Method is as

follows –

 I- B.Tech II SEM Data Structures Prepared By: BSR 263 | P a g e

c) Mid Square Method

The mid square method is a very good hash function. It

involves squaring the value of the key and then extracting

the middle r digits as the hash value. The value of r can be

decided according to the size of the hash table. An example

of the Mid Square Method is as follows –

 I- B.Tech II SEM Data Structures Prepared By: BSR 264 | P a g e

Operations of Hash tables

The primary operations of a hash table are search, insert,

and delete. The search operation is used to locate the

element within a hash table. The insert operation is used to

add elements into the hash table. The delete operation

removes elements from the hash table.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#define SIZE 20

struct DataItem {

 int data;

 int key;

};

struct DataItem* hashArray[SIZE];

struct DataItem* dummyItem;

struct DataItem* item;

int hashCode(int key) {

 return key % SIZE;

}

struct DataItem *search(int key) {

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] != NULL) {

 if(hashArray[hashIndex]->key == key)

 I- B.Tech II SEM Data Structures Prepared By: BSR 265 | P a g e

 return hashArray[hashIndex];

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

void insert(int key,int data) {

 struct DataItem *item = (struct DataItem*)

malloc(sizeof(struct DataItem));

 item->data = data;

 item->key = key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty or deleted cell

 while(hashArray[hashIndex] != NULL &&

hashArray[hashIndex]->key != -1) {

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 hashArray[hashIndex] = item;

}

struct DataItem* delete(struct DataItem* item) {

 int key = item->key;

 //get the hash

 I- B.Tech II SEM Data Structures Prepared By: BSR 266 | P a g e

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] != NULL) {

 if(hashArray[hashIndex]->key == key) {

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

void display() {

 int i = 0;

 for(i = 0; i<SIZE; i++) {

 if(hashArray[i] != NULL)

 printf("(%d,%d)",hashArray[i]->key,hashArray[i]-

>data);

 }

 printf("\n");

}

int main() {

 dummyItem = (struct DataItem*) malloc(sizeof(struct

DataItem));

 I- B.Tech II SEM Data Structures Prepared By: BSR 267 | P a g e

 dummyItem->data = -1;

 dummyItem->key = -1;

 insert(1, 20);

 insert(2, 70);

 insert(42, 80);

 insert(4, 25);

 insert(12, 44);

 insert(14, 32);

 insert(17, 11);

 insert(13, 78);

 insert(37, 97);

 printf("Insertion done: \n");

 printf("Contents of Hash Table: ");

 display();

 int ele = 37;

 printf("The element to be searched: %d", ele);

 item = search(ele);

 if(item != NULL) {

 printf("\nElement found: %d\n", item->key);

 } else {

 printf("\nElement not found\n");

 }

 delete(item);

 printf("Hash Table contents after deletion: ");

 display();

}

 I- B.Tech II SEM Data Structures Prepared By: BSR 268 | P a g e

5.8 Caching

Caching is the process of storing data in a cache, which is a

temporary storage area that facilitates faster access to data

with the goal of improving application and system

performance.

A common example of caching is a web browser that stores

page content on a local disk for a designated period of time.

When the user first visits the website, the content is

downloaded from the web server and saved to a local

directory. If the user revisits the website, the content comes

from the local cache rather than the server. In this way, page

content loads much faster into the browser than it would if it

were downloaded from the web server. This saves the user

time, reduces network traffic and minimizes the load on the

web server.

 The idea behind caching is to temporarily

copy data to a location that enables an application or

component to access the data faster than if retrieving it from

its primary source.

 I- B.Tech II SEM Data Structures Prepared By: BSR 269 | P a g e

The uses of caching data

 Helps speed up application performance and increase

efficiency

 Store data locally

 Improve user experience and encourage people to

use their site.

5.9 Collision Resolution Techniques

The situation where a newly inserted key maps to an already

occupied slot in the hash table is called collision and must

be handled using some collision handling technique.

 I- B.Tech II SEM Data Structures Prepared By: BSR 270 | P a g e

Separate chaining

 This technique creates a linked list to the slot for

which collision occurs.

 The new key is then inserted in the linked list.

 These linked lists to the slots appear like chains.

 That is why, this technique is called as separate

chaining.

Example: Let us consider a simple hash function as “key

mod 7” and a sequence of keys as 50, 700, 76, 85, 92, 73,

101

 I- B.Tech II SEM Data Structures Prepared By: BSR 271 | P a g e

Advantages

 Simple to implement.

 Hash table never fills up, we can always add more

elements to the chain.

 Less sensitive to the hash function or load factors.

 It is mostly used when it is unknown how many and

how frequently keys may be inserted or deleted.

Disadvantages

 The cache performance of chaining is not good as

keys are stored using a linked list. Open addressing

provides better cache performance as everything is

stored in the same table.

 Wastage of Space (Some Parts of the hash table are

never used)

 If the chain becomes long, then search time can

become O(n) in the worst case

 Uses extra space for links

 I- B.Tech II SEM Data Structures Prepared By: BSR 272 | P a g e

Closed Hashing (Open Addressing)

This collision resolution technique requires a hash table with

fixed and known size. During insertion, if a collision is

encountered, alternative cells are tried until an empty bucket

is found. These techniques require the size of the hash table

to be supposedly larger than the number of objects to be

stored (something with a load factor < 1 is ideal).

There are various methods to find these empty buckets:

 Liner Probing

 Quadratic probing

 Double hashing

Liner Probing

In linear probing, the hash table is searched sequentially that

starts from the original location of the hash. If in case the

location that we get is already occupied, then we check for

the next location.

The function used for rehashing is as follows:

rehash(key) = (n+1)%tablesize

 I- B.Tech II SEM Data Structures Prepared By: BSR 273 | P a g e

Let us consider a simple hash function as “key mod 7”

and a sequence of keys as 50, 700, 76, 85, 92, 73, 101

which means hash(key)= key% S, here S=size of the table

=7,indexed from 0 to 6.We can define the hash function as

per our choice if we want to create a hash table, although it

is fixed internally with a pre-defined formula.

 I- B.Tech II SEM Data Structures Prepared By: BSR 274 | P a g e

Quadratic probing

Quadratic probing is a method to resolve collisions that can

occur during the insertion of data into a hash table. When a

collision takes place (two keys hashing to the same

location), quadratic probing calculates a new position by

adding successive squares of an incrementing value (usually

starting from 1) to the original position until an empty slot is

found.

How Quadratic Probing Works

Quadratic probing involves three main steps:

 Calculate the initial hash position for the key.

 If the position is occupied, apply the quadratic

probing formula to find the next available slot.

(hash(key) + i^2) % table_size,

 Repeat this process until an empty slot is found, and

insert the data.

 I- B.Tech II SEM Data Structures Prepared By: BSR 275 | P a g e

Example: Let us consider table Size = 7, hash function as

Hash(x) = x % 7 and collision resolution strategy to be f(i) =

i2 . Insert = 22, 30, and 50.

Step 1: Create a table of size 7.

Step 2 – Insert 22 and 30

Hash(22) = 22 % 7 = 1, Since the cell at index 1 is empty,

we can easily insert 22 at slot 1.

Hash(30) = 30 % 7 = 2, Since the cell at index 2 is empty,

we can easily insert 30 at slot 2.

 I- B.Tech II SEM Data Structures Prepared By: BSR 276 | P a g e

Step 3: Inserting 50

Hash(50) = 50 % 7 = 1

In our hash table slot 1 is already occupied. So, we will

search for slot 1+12, i.e. 1+1 = 2,

Again slot 2 is found occupied, so we will search for cell

1+22, i.e.1+4 = 5,

Now, cell 5 is not occupied so we will place 50 in slot 5.

 I- B.Tech II SEM Data Structures Prepared By: BSR 277 | P a g e

Double Hashing

In double hashing, we make use of two hash functions. The

first hash function is ℎ1(k), this function takes in our key

and gives out a location on the hash-table. If the new

location is empty, we can easily place our key in there

without ever using the secondary hash function.

However, in case of a collision, we need to use secondary

hash-function ℎ2(k) in combination with the first hash-

function ℎ1(k) to find a new location on the hash-table. The

combined hash-function used is of the form

h(k,i) = (ℎ1(k) +i * ℎ2(k))%m.

 I- B.Tech II SEM Data Structures Prepared By: BSR 278 | P a g e

Here, i is an non-negative integer which signifies the

collision number, k = element/key which is being hashed

and m= hash table size.

Method 1:

 First hash function is typically hash1(key) = key %

TABLE_SIZE

 A popular second hash function is hash2(key) =

PRIME – (key % PRIME) where PRIME is a prime

smaller than the TABLE_SIZE.

A good second Hash function is:

 It must never evaluate to zero

 Just make sure that all cells can be probed

Example

 I- B.Tech II SEM Data Structures Prepared By: BSR 279 | P a g e

Example

 I- B.Tech II SEM Data Structures Prepared By: BSR 280 | P a g e

Practice Problem Based on Double Hashing

Problem Statement 1:

Given the two hash functions,

ℎ1 (k) = k mod 23 and ℎ2(k) = 1 + k mod 19. Assume the

table size is 23. Find the address returned by double hashing

after 2nd collision for the key = 90.

Solution:

We will use the formula for double hashing-

h(k,i) = (ℎ1(k) + i * ℎ2(k))%m

As it is given, k = 90, m = 23

Since the 2nd collision has already occurred, i = 2.

Substituting the values in the above formula we get,

h(90,2) = [(90 % 23) + 2 * (1 + 90 % 19)] % 23

= [21 + 2 * 15] % 23

= 5

Hence after the second collision, the address returned by

double hashing for Key = 90 is 5.

Time Complexity:

Insertion: O(n)

Search: O(n)

Deletion: O(n)

 I- B.Tech II SEM Data Structures Prepared By: BSR 281 | P a g e

Advantages of Double Hashing

 No extra space is required.

 Primary Clustering does not occur.

 Secondary Clustering also does not occur.

 It can be used with different types of hash functions.

 It reduces the clustering effect of keys and decreases

the chance of keys being stored in consecutive

buckets.

Disadvantages of Double Hashing

 Poor cache performance.

 It's a little complicated because it uses two hash

functions.

 It has a bit harder implementation.

 It consumes more memory than other collision

resolution techniques.

 It may not be the best choice for small tables.

