
I I- B.Tech I SEM ADS&A Prepared By: BSR 1 | P a g e

N.B.K.R. INSTITUTE OF SCIENCE AND TECHNOLOGY::VIDYANAGAR

(AUTONOMOUS)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

II-B.Tech I SEM(R-23)

 ADVANCED DATA STRUCTURES & ALGORITHM

ANALYSIS

(COMMON TO CSE, IT, AI&DS, AND ALLIED BRANCHES)

I I- B.Tech I SEM ADS&A Prepared By: BSR 2 | P a g e

UNIT-I

Introduction to Algorithm Analysis, Space and Time

Complexity analysis, Asymptotic Notations.

AVL Trees – Creation, Insertion, Deletion operations and

Applications

B-Trees – Creation, Insertion, Deletion operations and

Applications

UNIT-II

Heap Trees (Priority Queues) – Min and Max Heaps,

Operations and Applications

Graphs – Terminology, Representations, Basic Search and

Traversals, Connected Components and Bi-connected

Components, applications

Divide and Conquer: The General Method, Quick Sort,

Merge Sort, Strassen‟s matrix multiplication, Convex Hull

UNIT-III

Greedy Method: General Method, Job Sequencing with

deadlines, Knapsack Problem, Minimum cost spanning

trees, Single Source Shortest Paths

Dynamic Programming: General Method, All pairs

shortest paths, Single Source Shortest Paths– General

Weights (Bellman Ford Algorithm), Optimal Binary Search

I I- B.Tech I SEM ADS&A Prepared By: BSR 3 | P a g e

Trees, 0/1 Knapsack, String Editing, Travelling Salesperson

problem.

UNIT-IV

Backtracking: General Method, 8-Queens Problem, Sum of

Subsets problem, Graph Coloring, 0/1 Knapsack Problem

Branch and Bound: The General Method, 0/1 Knapsack

Problem, Travelling Salesperson problem.

UNIT-V

NP Hard and NP Complete Problems: Basic Concepts,

Cook‟s theorem.

NP Hard Graph Problems: Clique Decision Problem

(CDP), Chromatic Number Decision Problem (CNDP),

Traveling Salesperson Decision Problem (TSP)

NP Hard Scheduling Problems: Scheduling Identical

Processors, Job Shop Scheduling

I I- B.Tech I SEM ADS&A Prepared By: BSR 4 | P a g e

UNIT-I

Introduction to Algorithm Analysis, Space and Time

Complexity analysis, Asymptotic Notations.

AVL Trees – Creation, Insertion, Deletion operations and

Applications

B-Trees – Creation, Insertion, Deletion operations and

Applications

1.1 Introduction to Algorithm Analysis

An algorithm is an effective method for finding out the

solution for a given problem. It is a sequence of instruction.

That conveys the method to address a problem.

1.1.1 Definition of Algorithm

Algorithm: an algorithm is a step by step procedure to solve

a computational problem is called an algorithm.

or

A finite set of instruction that specifies a sequence of

operation is to be carried out in order to solve a specific

problem or class of problems is called an Algorithm.

 Therefore Algorithm refers to a sequence of

finite steps to solve a particular problem.

I I- B.Tech I SEM ADS&A Prepared By: BSR 5 | P a g e

1.1.2 Use of the Algorithms: Algorithms play a crucial role

in various fields and have many applications. Some of the

key areas where algorithms are used include:

a) Computer Science: Algorithms form the basis of

computer programming and are used to solve problems

ranging from simple sorting and searching to complex tasks

such as artificial intelligence and machine learning.

b) Mathematics: Algorithms are used to solve

mathematical problems, such as finding the optimal solution

to a system of linear equations or finding the shortest path in

a graph.

c) Operations Research: Algorithms are used to optimize

and make decisions in fields such as transportation,

logistics, and resource allocation.

d) Artificial Intelligence: Algorithms are the foundation of

artificial intelligence and machine learning, and are used to

develop intelligent systems that can perform tasks such as

I I- B.Tech I SEM ADS&A Prepared By: BSR 6 | P a g e

image recognition, natural language processing, and

decision-making.

e) Data Science: Algorithms are used to analyze, process,

and extract insights from large amounts of data in fields

such as marketing, finance, and healthcare.

 These are just a few examples of the many

applications of algorithms. The use of algorithms is

continually expanding as new technologies and fields

emerge, making it a vital component of modern society.

1.1.3 What is the need for algorithms?

 Algorithms are necessary for solving complex

problems efficiently and effectively.

 They help to automate processes and make them

more reliable, faster, and easier to perform.

 Algorithms also enable computers to perform tasks

that would be difficult or impossible for humans to

do manually.

 They are used in various fields such as mathematics,

computer science, engineering, finance, and many

others to optimize processes, analyze data, make

predictions, and provide solutions to problems.

I I- B.Tech I SEM ADS&A Prepared By: BSR 7 | P a g e

1.1.4 Properties of an Algorithm

 According to D.E. Knuth a pioneer in the computer

science discipline an algorithm must have the following

properties

I I- B.Tech I SEM ADS&A Prepared By: BSR 8 | P a g e

1.1.5 Process for design and analysis of algorithms

I I- B.Tech I SEM ADS&A Prepared By: BSR 9 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 10 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 11 | P a g e

1.1.6 Pseudo code for expressing algorithms

I I- B.Tech I SEM ADS&A Prepared By: BSR 12 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 13 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 14 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 15 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 16 | P a g e

1.2 Overview of time and space complexity analysis

Performance Analysis: The efficiency of an algorithm can

be decided by measuring the performance of algorithm. We

can measure the performance of an algorithm by computing

amount of time and storage requirement. We can analyse an

algorithm by two ways.

1. By checking the correctness of an algorithm.

2. By measuring time and space complexity of an

algorithm.

I I- B.Tech I SEM ADS&A Prepared By: BSR 17 | P a g e

Time Complexity

Time complexity is defined in terms of how many times it

takes to run a given algorithm, based on the length of the

input.

Example

Statements s/e Frequency Total steps

Algorithm sum(a,n)

{

s:=0;

 for i:=1 to n do

 s:=s+a[i]

return s;

}

0

0

1

1

1

1

0

-

-

1

n+1

n

1

-

0

0

1

n+1

n

1

0

 2n+3

I I- B.Tech I SEM ADS&A Prepared By: BSR 18 | P a g e

Space Complexity

The amount of memory used by a program to execute it is

represented by its space complexity. The space requirement

S(P) can be given as

S(P)=C + SP

Example

Statements s/e Frequency Total steps

Algorithm sum(a,n)

{

s:=0;

 for i:=1 to n do

 s:=s+a[i]

return s;

}

0

0

1

1

1

1

0

-

-

1

n+1

n

1

-

0

0

1

n+1

n

1

0

 2n+3

The space requirement for algorithm given in example is

S(P)= 2n+3. Neglect the constants

I I- B.Tech I SEM ADS&A Prepared By: BSR 19 | P a g e

1.3 Asymptotic Notations

To choose the best algorithm, we need to check efficiency

of each algorithm. The efficiency can be measured by

computing time complexity of each algorithm. Asymptotic

notation is a shorthand way to represent the time

complexity. Using asymptotic notations we can give time

complexity as “fastest possible”, “slowest possible” or

“average time”. There are mainly three asymptotic

notations:

1. Big-O Notation (O-notation)

2. Omega Notation (Ω-Notation)

3. Theta Notation (Θ-Notation)

1. Big-O Notation (O-notation)

Big-oh notation denoted by „O‟ is a method of representing

the upper bound of algorithms running time. Using big-oh

notation we can give longest amount of time taken by the

algorithm to complete.

I I- B.Tech I SEM ADS&A Prepared By: BSR 20 | P a g e

Definition: The function f(n)=O(g(n)) iff there exist

positive constants c and no such that f(n) ≤ cg(n) for all n ≥

n0

2. Omega Notation (Ω-Notation)

Omega notation denoted by Ω is a method of representing

lower bound of algorithms running time. Using omega

notation we can denote shortest amount of time taken by

the algorithm to complete.

Definition: The function f(n)=Ω (g(n)) iff there exist

positive constants c and n0 such that f(n) ≥c*g(n) for all

n, n≥n0

I I- B.Tech I SEM ADS&A Prepared By: BSR 21 | P a g e

3. Theta Notation (Θ-Notation)

The Theta notation denoted as Θ is a method of representing

running time between upper bound and lower bound.

Definition: The function f(n)= Θ(g(n)) iff there exist

positive constants c1, c2 and n0 such that c1g(n) ≤f(n) ≤c2

g(n) for all n, n≥n0

I I- B.Tech I SEM ADS&A Prepared By: BSR 22 | P a g e

Linear Data structures - Time Complexities

Searching Algorithms - Time Complexities

Sorting Algorithms - Time Complexities

I I- B.Tech I SEM ADS&A Prepared By: BSR 23 | P a g e

1.3 AVL Trees –

AVL Tree is invented by GM Adelson - Velsky and EM

Landis in 1962. The tree is named AVL in honour of its

inventors.

 AVL Trees are Self-Balanced Binary Search Trees.

 In AVL trees, the balancing factor of each node is

either 0 or 1 or -1.

 Balance Factor of AVL Tree calculated as = Height

of Left Sub-tree - Height of Right Sub-tree

Balance Factor

Balance factor of a node in an AVL tree is the difference

between the height of the left subtree and that of the right

subtree of that node.

Balance Factor (k) = height (left(k)) - height (right(k))

 If balance factor of any node is 1, it means that the

left sub-tree is one level higher than the right sub-

tree.

 If balance factor of any node is -1, it means that the

left sub-tree is one level lower than the right sub-

tree.

 If balance factor of any node is 0, it means that the

left sub-tree and right sub-tree contain equal height.

I I- B.Tech I SEM ADS&A Prepared By: BSR 24 | P a g e

Operations on an AVL tree

Due to the fact that, AVL tree is also a binary search tree

therefore, all the operations are performed in the same way

as they are performed in a binary search tree. Searching and

traversing do not lead to the violation in property of AVL

tree. However, insertion and deletion are the operations

which can violate this property and therefore, they need to

be revisited.

I I- B.Tech I SEM ADS&A Prepared By: BSR 25 | P a g e

AVL Rotations

We perform rotation in AVL tree only in case if Balance

Factor is other than -1, 0, and 1. There are basically four

types of rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of

left subtree of A

2. R R rotation : Inserted node is in the right subtree of

right subtree of A

3. L R rotation : Inserted node is in the right subtree of

left subtree of A

4. R L rotation : Inserted node is in the left subtree of

right subtree of A

The first two rotations LL and RR are single rotations and

the next two rotations LR and RL are double rotations.

For a tree to be unbalanced, minimum height must be at

least 2, Let us understand each rotation

1. LL Rotation

When BST becomes unbalanced, due to a node is inserted

into the left subtree of the left subtree of C, then we perform

LL rotation, LL rotation is clockwise rotation, which is

applied on the edge below a node having balance factor 2.

https://www.javatpoint.com/ll-rotation-in-avl-tree

I I- B.Tech I SEM ADS&A Prepared By: BSR 26 | P a g e

2. RR Rotation

When BST becomes unbalanced, due to a node is inserted

into the right subtree of the right subtree of A, then we

perform RR rotation, RR rotation is an anticlockwise

rotation, which is applied on the edge below a node having

balance factor -2

https://www.javatpoint.com/rr-rotation-in-avl-tree

I I- B.Tech I SEM ADS&A Prepared By: BSR 27 | P a g e

3. LR Rotation

Double rotations are bit tougher than single rotation which

has already explained above. LR rotation = RR rotation +

LL rotation, i.e., first RR rotation is performed on subtree

and then LL rotation is performed on full tree, by full tree

we mean the first node from the path of inserted node whose

balance factor is other than -1, 0, or 1.

State Action

A node B has been inserted into the

right subtree of A the left subtree of

C, because of which C has become an

unbalanced node having balance

factor 2. This case is L R rotation

where: Inserted node is in the right

subtree of left subtree of C

As LR rotation = RR + LL rotation,

hence RR (anticlockwise) on subtree

rooted at A is performed first. By

doing RR rotation, node A, has

become the left subtree of B.

I I- B.Tech I SEM ADS&A Prepared By: BSR 28 | P a g e

After performing RR rotation, node C

is still unbalanced, i.e., having

balance factor 2, as inserted node A is

in the left of left of C

Now we perform LL clockwise

rotation on full tree, i.e. on node C.

node C has now become the right

subtree of node B, A is left subtree of

B

Balance factor of each node is now

either -1, 0, or 1, i.e. BST is balanced

now.

4. RL Rotation

As already discussed, that double rotations are bit tougher

than single rotation which has already explained above. R L

rotation = LL rotation + RR rotation, i.e., first LL rotation is

performed on subtree and then RR rotation is performed on

I I- B.Tech I SEM ADS&A Prepared By: BSR 29 | P a g e

full tree, by full tree we mean the first node from the path of

inserted node whose balance factor is other than -1, 0, or 1.

State Action

A node B has been inserted into the

left subtree of C the right subtree of

A, because of which A has become

an unbalanced node having balance

factor - 2. This case is RL rotation

where: Inserted node is in the left

subtree of right subtree of A

As RL rotation = LL rotation + RR

rotation, hence, LL (clockwise) on

subtree rooted at C is performed first.

By doing RR rotation, node C has

become the right subtree of B.

I I- B.Tech I SEM ADS&A Prepared By: BSR 30 | P a g e

After performing LL rotation, node A

is still unbalanced, i.e. having balance

factor -2, which is because of the

right-subtree of the right-subtree node

A.

Now we perform RR rotation

(anticlockwise rotation) on full tree,

i.e. on node A. node C has now

become the right subtree of node B,

and node A has become the left

subtree of B.

Balance factor of each node is now

either -1, 0, or 1, i.e., BST is balanced

now.

I I- B.Tech I SEM ADS&A Prepared By: BSR 31 | P a g e

Q: Construct an AVL tree having the following elements

H, I, J, B, A, E

Sol: 1. Insert H, I, J

On inserting the above elements, especially in the case of H,

the BST becomes unbalanced as the Balance Factor of H is -

2. Since the BST is right-skewed, we will perform RR

Rotation on node H. The resultant balance tree is:

The resultant balance tree is:

I I- B.Tech I SEM ADS&A Prepared By: BSR 32 | P a g e

2. Insert B, A

On inserting the above elements, especially in case of A, the

BST becomes unbalanced as the Balance Factor of H and I

is 2, we consider the first node from the last inserted node

i.e. H. Since the BST from H is left-skewed, we will

perform LL Rotation on node H. The resultant balance tree

is:

I I- B.Tech I SEM ADS&A Prepared By: BSR 33 | P a g e

3. Insert E

On inserting E, BST becomes unbalanced as the Balance

Factor of I is 2, since if we travel from E to I we find that it

is inserted in the left subtree of right subtree of I, we will

perform LR Rotation on node I. LR = RR + LL rotation

3 a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

I I- B.Tech I SEM ADS&A Prepared By: BSR 34 | P a g e

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

Construct an AVL tree having the following elements

44, 17, 32, 78, 50, 88, 48, 62, 54

I I- B.Tech I SEM ADS&A Prepared By: BSR 35 | P a g e

Delete a node

A node is always deleted as a leaf node. After deleting a

node, the balance factors of the nodes get changed. In order

to rebalance the balance factor, suitable rotations are

performed.

1. Locate nodeToBeDeleted (recursion is used to

find nodeToBeDeleted in the code used below).

I I- B.Tech I SEM ADS&A Prepared By: BSR 36 | P a g e

2. There are three cases for deleting a node:

 If nodeToBeDeleted is the leaf node (ie. does not

have any child), then remove nodeToBeDeleted.

 If nodeToBeDeleted has one child, then substitute

the contents of nodeToBeDeleted with that of the

child. Remove the child.

 If nodeToBeDeleted has two children, find the

inorder successor w of nodeToBeDeleted (ie. node

with a minimum value of key in the right subtree).

I I- B.Tech I SEM ADS&A Prepared By: BSR 37 | P a g e

a) Substitute the contents of nodeToBeDeleted with that of

w

b) Remove the leaf node w.

I I- B.Tech I SEM ADS&A Prepared By: BSR 38 | P a g e

3. Update balanceFactor of the nodes.

4. Rebalance the tree if the balance factor of any of the

nodes is not equal to -1, 0 or 1.

a)If balanceFactor of currentNode > 1,

b) If balanceFactor of leftChild >= 0, do right rotation.

 Else do left-right rotation.

 If balanceFactor of currentNode < -1,

 If balanceFactor of rightChild <= 0, do left rotation.

 Else do right-left rotation.

5. The final tree is:

I I- B.Tech I SEM ADS&A Prepared By: BSR 39 | P a g e

Applications

1. Databases:

AVL trees are used in databases to ensure quick data

retrieval. Their self-balancing property makes them ideal for

implementing index structures that allow for efficient

searching, insertion, and deletion operations.

2. File Systems:

File systems often use AVL trees to manage directories and

files. The balance of the tree ensures that file operations are

performed efficiently, which is critical for maintaining the

performance of the file system.

3. Memory Management:

AVL trees are used in memory management systems to keep

track of free memory blocks. The balanced nature of AVL

trees ensures quick allocation and deallocation of memory.

I I- B.Tech I SEM ADS&A Prepared By: BSR 40 | P a g e

4. Networking:

In networking, AVL trees can be used to manage routing

tables efficiently. The balanced structure helps in

maintaining the routing information for quick lookup,

insertion, and deletion.

5. Compilers:

Compilers use AVL trees to implement symbol tables,

which store information about variables, functions, and

other entities. The efficient searching capability of AVL

trees helps in quick symbol resolution during compilation.

6. Geographical Information Systems (GIS):

AVL trees can be used in GIS for indexing spatial data. The

balanced structure ensures efficient query processing for

operations such as range searches and nearest neighbor

searches.

7. Telecommunication:

In telecommunications, AVL trees can be used to manage

call routing and connection management. The efficient

lookup and update operations help in maintaining real-time

performance.

I I- B.Tech I SEM ADS&A Prepared By: BSR 41 | P a g e

8. Scheduling Systems:

AVL trees are used in various scheduling systems to keep

track of tasks and resources. The balanced nature ensures

that scheduling operations are performed quickly and

efficiently.

9. Spell Checkers:

AVL trees can be used in spell checkers to store

dictionaries. The efficient searching capability helps in

quickly finding words and suggesting corrections.

10. Gaming:

In gaming, AVL trees can be used to manage objects and

characters in a game world. The balanced structure helps in

efficient collision detection, scene management, and

rendering.

11. Priority Queues:

AVL trees can be used to implement priority queues. The

balanced nature ensures that operations such as insert,

delete, and find-minimum can be performed efficiently.

12. Version Control Systems:

In version control systems, AVL trees can be used to

manage versions of files and directories. The efficient

I I- B.Tech I SEM ADS&A Prepared By: BSR 42 | P a g e

update and retrieval operations help in maintaining and

accessing different versions quickly.

1.4 B-Trees

B-tree is a special type of self-balancing search tree in

which each node can contain more than one key and can

have more than two children. It is a generalized form of the

binary search tree.

It is also known as a height-balanced m-way tree.

Why do you need a B-tree data structure?

The need for B-tree arose with the rise in the need for lesser

time in accessing physical storage media like a hard disk.

The secondary storage devices are slower with a larger

capacity. There was a need for such types of data structures

that minimize the disk access.

I I- B.Tech I SEM ADS&A Prepared By: BSR 43 | P a g e

Other data structures such as a binary search tree, avl tree,

red-black tree, etc can store only one key in one node. If you

have to store a large number of keys, then the height of such

trees becomes very large, and the access time increases.

However, B-tree can store many keys in a single node and

can have multiple child nodes. This decreases the height

significantly allowing faster disk accesses.

Time Complexity of B-Tree:

 Sr. No. Algorithm Time Complexity

1. Search O(log n)

2. Insert O(log n)

3. Delete O(log n)

Basic Operations of B Trees

The operations supported in B trees are Insertion, deletion

and searching with the time complexity of O(log n) for

every operation.

Insertion operation

The insertion operation for a B Tree is done similar to the

Binary Search Tree but the elements are inserted into the

same node until the maximum keys are reached. The

insertion is done using the following procedure −

I I- B.Tech I SEM ADS&A Prepared By: BSR 44 | P a g e

Step 1 − Calculate the maximum (m−1)

 and, minimum (⌈m/2⌉−1)

 number of keys a node can hold, where m is denoted by the

order of the B Tree.

Step 2 − The data is inserted into the tree using the binary

search insertion and once the keys reach the maximum

number, the node is split into half and the median key

becomes the internal node while the left and right keys

become its children.

I I- B.Tech I SEM ADS&A Prepared By: BSR 45 | P a g e

Step 3 − All the leaf nodes must be on the same level.

The keys, 5, 3, 21, 9, 13 are all added into the node

according to the binary search property but if we add the

key 22, it will violate the maximum key property. Hence,

the node is split in half, the median key is shifted to the

parent node and the insertion is then continued.

I I- B.Tech I SEM ADS&A Prepared By: BSR 46 | P a g e

Another hiccup occurs during the insertion of 11, so the

node is split and median is shifted to the parent.

While inserting 16, even if the node is split in two parts, the

parent node also overflows as it reached the maximum keys.

Hence, the parent node is split first and the median key

I I- B.Tech I SEM ADS&A Prepared By: BSR 47 | P a g e

becomes the root. Then, the leaf node is split in half the

median of leaf node is shifted to its parent.

The final B tree after inserting all the elements is achieved.

Example 2: The elements to be inserted are 8, 9, 10, 11,

15, 20, 17

I I- B.Tech I SEM ADS&A Prepared By: BSR 48 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 49 | P a g e

Deletion operation

The deletion operation in a B tree is slightly different from

the deletion operation of a Binary Search Tree. The

procedure to delete a node from a B tree is as follows −

Case 1 − If the key to be deleted is in a leaf node and the

deletion does not violate the minimum key property, just

delete the node.

I I- B.Tech I SEM ADS&A Prepared By: BSR 50 | P a g e

Case 2 − If the key to be deleted is in a leaf node but the

deletion violates the minimum key property, borrow a key

from either its left sibling or right sibling. In case if both

siblings have exact minimum number of keys, merge the

node in either of them.

I I- B.Tech I SEM ADS&A Prepared By: BSR 51 | P a g e

Case 3 − If the key to be deleted is in an internal node, it is

replaced by a key in either left child or right child based on

which child has more keys. But if both child nodes have

minimum number of keys, they‟re merged together.

I I- B.Tech I SEM ADS&A Prepared By: BSR 52 | P a g e

Case 4 − If the key to be deleted is in an internal node

violating the minimum keys property, and both its children

and sibling have minimum number of keys, merge the

children. Then merge its sibling with its parent.

I I- B.Tech I SEM ADS&A Prepared By: BSR 53 | P a g e

Searching an element in a B-tree

a) Let us search key k = 17 in the tree below of degree 3

b) k is not found in the root so, compare it with the root key.

C) Since k > 11, go to the right child of the root node.

I I- B.Tech I SEM ADS&A Prepared By: BSR 54 | P a g e

d) Compare k with 16. Since k > 16, compare k with the

next key 18.

E) Since k < 18, k lies between 16 and 18. Search in the

right child of 16 or the left child of 18.

I I- B.Tech I SEM ADS&A Prepared By: BSR 55 | P a g e

f) k is found.

Applications

 Large databases employ it to access information

stored on discs.

 Using the B-Tree, finding data in a data set can be

done in a great deal less time.

I I- B.Tech I SEM ADS&A Prepared By: BSR 56 | P a g e

 Multilevel indexing is possible with the indexing

feature.

 The B-tree method is also used by the majority of

servers.

 In CAD systems, B-Trees are used to catalogue and

search geometric data.

 Other applications of B-Trees include encryption,

computer networks, and natural language processing.

 Since accessing values stored in a large database that

is stored on a disc takes a long time, B trees are used

to index the data and provide quick access to the

actual data stored on the disks.

 In the worst case, it takes O(n) running time to

search a database with n key values that is not sorted

or indexed. However, if we use B Tree to index this

database, it will be searched in O (log n) time in

worst case.

I I- B.Tech I SEM ADS&A Prepared By: BSR 57 | P a g e

UNIT-II

Heap Trees (Priority Queues) – Min and Max Heaps,

Operations and Applications

Graphs – Terminology, Representations, Basic Search and

Traversals, Connected Components and Bi-connected

Components, applications

Divide and Conquer: The General Method, Quick Sort,

Merge Sort, Strassen‟s matrix multiplication, Convex Hull

2.1 Heap Trees (Priority Queues)

A priority queue is an abstract data type that behaves

similarly to the normal queue except that each element has

some priority, i.e., the element with the highest priority

would come first in a priority queue. The priority of the

elements in a priority queue will determine the order in

which elements are removed from the priority queue.

The priority queue supports only comparable elements,

which means that the elements are either arranged in an

ascending or descending order.

For example, suppose we have some values like 1, 3, 4, 8,

14, 22 inserted in a priority queue with an ordering imposed

I I- B.Tech I SEM ADS&A Prepared By: BSR 58 | P a g e

on the values is from least to the greatest. Therefore, the 1

number would be having the highest priority while 22 will

be having the lowest priority.

Characteristics of a Priority queue

A priority queue is an extension of a queue that contains the

following characteristics:

 Every element in a priority queue has some priority

associated with it.

 An element with the higher priority will be deleted

before the deletion of the lesser priority.

 If two elements in a priority queue have the same

priority, they will be arranged using the FIFO

principle.

Types of Priority Queue

There are two types of priority queue:

Ascending order priority queue: In ascending order

priority queue, a lower priority number is given as a

higher priority in a priority. For example, we take the

numbers from 1 to 5 arranged in an ascending order like

1,2,3,4,5; therefore, the smallest number, i.e., 1 is given

as the highest priority in a priority queue.

I I- B.Tech I SEM ADS&A Prepared By: BSR 59 | P a g e

Descending order priority queue: In descending order

priority queue, a higher priority number is given as a higher

priority in a priority. For example, we take the numbers

from 1 to 5 arranged in descending order like 5, 4, 3, 2, 1;

therefore, the largest number, i.e., 5 is given as the highest

priority in a priority queue.

I I- B.Tech I SEM ADS&A Prepared By: BSR 60 | P a g e

Priority queue can be implemented using an array, a linked

list, a heap data structure, or a binary search tree. Among

these data structures, heap data structure provides an

efficient implementation of priority queues.

A heap is a complete binary tree in which the node can

have the utmost two children.

What is heap sort?

Heap sort is a popular and efficient sorting algorithm. The

concept of heap sort is to eliminate the elements one by one

from the heap part of the list, and then insert them into the

sorted part of the list. Heap sort is the in-place sorting

algorithm.

Types

There are two types of Heap

Max Heap: The value of each node is greater than its

children.

Min Heap: The value of each node is Smaller than its

children.

Min-Heap – The value of the root node is less than or equal

to either of its children.

I I- B.Tech I SEM ADS&A Prepared By: BSR 61 | P a g e

Max-Heap − The value of the root node is greater than

or equal to either of its children.

Step by Step Process

The Heap sort algorithm to arrange a list of elements in

ascending order is performed using following steps...

 Step 1 - Construct a Binary Tree with given list of

Elements.

I I- B.Tech I SEM ADS&A Prepared By: BSR 62 | P a g e

 Step 2 - Transform the Binary Tree into Min Heap.

 Step 3 - Delete the root element from Min Heap

using Heapify method.

 Step 4 - Put the deleted element into the Sorted list.

 Step 5 - Repeat the same until Min Heap becomes

empty.

 Step 6 - Display the sorted list.

Max Heap Construction Algorithm

Max Heap Deletion Algorithm

Step 1 − Remove root node.

Step 2 − Move the last element of last level to root.

Step 3 − Compare the value of this child node with its parent.

Step 4 − If value of parent is less than child, then swap them.

Step 5 − Repeat step 3 & 4 until Heap property holds.

I I- B.Tech I SEM ADS&A Prepared By: BSR 63 | P a g e

Example

I I- B.Tech I SEM ADS&A Prepared By: BSR 64 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 65 | P a g e

Delete

Deleting an element from a priority queue (max-heap) is

done as follows:

 Select the element to be deleted.

 Swap it with the last element

 Remove the last element.

 Heapify the tree

I I- B.Tech I SEM ADS&A Prepared By: BSR 66 | P a g e

Applications

1. Systems and Embedded Systems:

Heap sort is often used in systems where memory

constraints are tight. Its in-place sorting characteristic,

which requires only a constant amount of additional storage

space, makes it ideal for embedded systems and real-time

applications.

I I- B.Tech I SEM ADS&A Prepared By: BSR 67 | P a g e

2. Operating Systems:

Heap sort is utilized in operating systems for job scheduling.

The algorithm helps in efficiently managing the order of

jobs by sorting them based on priority.

3. Network Traffic Management:

In network systems, heap sort is used to manage packet

scheduling. Sorting packets based on priority or arrival time

ensures efficient handling of network traffic.

4. Event Simulation:

In discrete event simulation, heap sort is used to manage the

event queue. The algorithm helps in efficiently sorting and

processing events in chronological order.

5. Data Stream Processing:

Heap sort is useful in scenarios where a continuous stream

of data needs to be sorted in real-time. The algorithm's

efficiency in handling large data streams makes it suitable

for such applications.

6. Priority Queue Implementation:

Heap sort is foundational in implementing priority queues.

Priority queues are widely used in various applications such

as task scheduling, shortest path algorithms (like Dijkstra's),

and bandwidth management.

I I- B.Tech I SEM ADS&A Prepared By: BSR 68 | P a g e

7. Selection Algorithms:

Heap sort is used in selection algorithms to find the k-th

smallest (or largest) element in an array. The algorithm's

ability to efficiently sort and maintain order is leveraged in

these scenarios.

8. Graph Algorithms:

Many graph algorithms, such as Prim's and Dijkstra's for

finding minimum spanning trees and shortest paths,

respectively, use heap sort or its underlying heap data

structure for efficient edge and vertex selection.

9. External Sorting:

Heap sort is useful in external sorting, where data that

cannot fit into memory needs to be sorted. It is often used in

combination with other algorithms to manage and merge

large data sets.

10. Database Management:

In databases, heap sort is used to sort large datasets. Its

efficiency in handling large volumes of data makes it

suitable for indexing and query optimization.

I I- B.Tech I SEM ADS&A Prepared By: BSR 69 | P a g e

11. Real-Time Systems:

Heap sort is applied in real-time systems where guarantees

on time complexity are crucial. Its predictable performance

helps in ensuring that time constraints are met.

12. Resource Allocation:

Heap sort is used in resource allocation problems to

efficiently assign resources based on priority or other

criteria. This is common in cloud computing and other

resource management applications.

13. Multimedia Applications:

In multimedia applications, heap sort is used to manage and

sort large collections of data, such as images, audio, and

video files, ensuring efficient storage and retrieval.

14. E-commerce and Online Marketplaces:

Heap sort is used to sort product listings based on various

criteria such as price, rating, and relevance. This helps in

enhancing the user experience by providing sorted and

relevant search results.

I I- B.Tech I SEM ADS&A Prepared By: BSR 70 | P a g e

2.2 Graphs

A graph is a non-linear kind of data structure made up of

nodes or vertices and edges. The edges connect any two

nodes in the graph, and the nodes are also known as

vertices.

Definition

A graph G can be defined as an ordered set G(V, E) where

V(G) represents the set of vertices and E(G) represents the

set of edges which are used to connect these vertices.

A Graph G(V, E) with 5 vertices (A, B, C, D, E) and six

edges ((A,B), (B,C), (C,E), (E,D), (D,B), (D,A)) is shown in

the following figure.

Directed and Undirected Graph

A graph can be directed or undirected. However, in an

undirected graph, edges are not associated with the

I I- B.Tech I SEM ADS&A Prepared By: BSR 71 | P a g e

directions with them. An undirected graph is shown in the

above figure since its edges are not attached with any of the

directions. If an edge exists between vertex A and B then the

vertices can be traversed from B to A as well as A to B.

 In a directed graph, edges form an ordered pair.

Edges represent a specific path from some vertex A to

another vertex B. Node A is called initial node while node B

is called terminal node.A directed graph is shown in the

following figure.

2.3 Graph Terminology

Path

A path can be defined as the sequence of nodes that are

followed in order to reach some terminal node V from the

initial node U.

I I- B.Tech I SEM ADS&A Prepared By: BSR 72 | P a g e

Connected Graph

A connected graph is the one in which some path exists

between every two vertices (u, v) in V. There are no isolated

nodes in connected graph.

Complete Graph

A complete graph is the one in which every node is

connected with all other nodes. A complete graph contain

n(n-1)/2 edges where n is the number of nodes in the graph.

Weighted Graph

A graph G= (V, E) is called a labeled or weighted graph

because each edge has a value or weight representing the

cost of traversing that edge.

Digraph

A digraph is a directed graph in which each edge of the

graph is associated with some direction and the traversing

can be done only in the specified direction.

I I- B.Tech I SEM ADS&A Prepared By: BSR 73 | P a g e

Adjacent Nodes

If two nodes u and v are connected via an edge e, then the

nodes u and v are called as neighbours or adjacent nodes.

Degree of the Node

A degree of a node is the number of edges that are

connected with that node. A node with degree 0 is called as

isolated node.

Finite Graph

The graph G=(V, E) is called a finite graph if the number of

vertices and edges in the graph is limited in number

Infinite Graph

The graph G=(V, E) is called a finite graph if the number of

vertices and edges in the graph is interminable.

I I- B.Tech I SEM ADS&A Prepared By: BSR 74 | P a g e

Trivial Graph

A graph G= (V, E) is trivial if it contains only a single

vertex and no edges.

Multi Graph

If there are numerous edges between a pair of vertices in a

graph G= (V, E), the graph is referred to as a multigraph.

There are no self-loops in a Multigraph.

I I- B.Tech I SEM ADS&A Prepared By: BSR 75 | P a g e

Null Graph

It's a reworked version of a trivial graph. If several vertices

but no edges connect them, a graph G= (V, E) is a null

graph.

Complete Graph

If a graph G= (V, E) is also a simple graph, it is complete.

Using the edges, with n number of vertices must be

connected. It's also known as a full graph because each

vertex's degree must be n-1.

I I- B.Tech I SEM ADS&A Prepared By: BSR 76 | P a g e

Pseudo Graph

If a graph G= (V, E) contains a self-loop besides other

edges, it is a pseudograph.

Cyclic Graph

If a graph contains at least one graph cycle, it is considered

to be cyclic.

I I- B.Tech I SEM ADS&A Prepared By: BSR 77 | P a g e

Acyclic Graph

When there are no cycles in a graph, it is called an acyclic

graph.

2.4 Representation of Graphs in Data Structures

Graphs in data structures are used to represent the

relationships between objects. Every graph consists of a set

of points known as vertices or nodes connected by lines

known as edges. The vertices in a network represent entities.

 The most frequent graph representations are the

two that follow:

 Adjacency matrix

 Adjacency list

I I- B.Tech I SEM ADS&A Prepared By: BSR 78 | P a g e

Adjacency matrix

An adjacency matrix is a way of representing a graph as a

matrix of boolean (0‟s and 1‟s). Let‟s assume there are n

vertices in the graph So, create a 2D matrix adjMat[n][n]

having dimension n x n.

 If there is an edge from vertex i to j, mark

adjMat[i][j] as 1.

 If there is no edge from vertex i to j, mark

adjMat[i][j] as 0.

Undirected Graph Representation

I I- B.Tech I SEM ADS&A Prepared By: BSR 79 | P a g e

Directed Graph Representation

Weighted Undirected Graph Representation

Weight or cost is indicated at the graph's edge, a weighted

graph representing these values in the matrix.

Adjacency List

 A linked representation is an adjacency list.

 You keep a list of neighbors for each vertex in the

graph in this representation. It means that each

I I- B.Tech I SEM ADS&A Prepared By: BSR 80 | P a g e

vertex in the graph has a list of its neighboring

vertices.

Representation of Undirected Graph to Adjacency list:

The below undirected graph has 3 vertices. So, an array of

list will be created of size 3, where each indices represent

the vertices. Now, vertex 0 has two neighbours (i.e, 1 and

2). So, insert vertex 1 and 2 at indices 0 of array. Similarly,

For vertex 1, it has two neighbour (i.e, 2 and 0) So, insert

vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2,

insert its neighbours in array of list.

Representation of Directed Graph to Adjacency list:

The below directed graph has 3 vertices. So, an array of list

will be created of size 3, where each indices represent the

vertices. Now, vertex 0 has no neighbours. For vertex 1, it

has two neighbour (i.e, 0 and 2) So, insert vertices 0 and 2 at

I I- B.Tech I SEM ADS&A Prepared By: BSR 81 | P a g e

indices 1 of array. Similarly, for vertex 2, insert its

neighbours in array of list.

2.5 Bi-connected components

A graph is said to be Biconnected if:

 It is connected, i.e. it is possible to reach every

vertex from every other vertex, by a simple path.

 Even after removing any vertex the graph remains

connected.

For example, consider the graph in the following figure

I I- B.Tech I SEM ADS&A Prepared By: BSR 82 | P a g e

Removing any of the vertices does not increase the number

of connected components. So the given graph is

Biconnected.

In the above graph if the vertex 2 is removed, then here's

how it will look:

I I- B.Tech I SEM ADS&A Prepared By: BSR 83 | P a g e

Articulation point or cut point

If a point in a graph becomes separated from the entire

graph upon removal, it is referred to as an Articulation Point

or Cut-Vertex.

Construction of Bi-connected graph

 Check the given graph whether it is bi-connected or

not.

 If the given graph is not bi-connected then identify

all the articulation points.

 If articulation points exists, determine a set of edges

whose inclusion makes the graph bi-connected.

I I- B.Tech I SEM ADS&A Prepared By: BSR 84 | P a g e

The articulation points are 2, 3, and 5

To transform the graph into bi-connected graph, the new

edges are included corresponding to the articulation point.

Edges corresponding to the articulation point 3- (4,10)(10,9)

Edges corresponding to the articulation point 2-(1,5)(3,8)

Edges corresponding to the articulation point 5-(6,7)

In the fig: there is a number of outside each vertex,

corresponds to the order in which a DFS visits these vertices

and are named as depth first numbers(dfns) of the vertex ie

I I- B.Tech I SEM ADS&A Prepared By: BSR 85 | P a g e

The solid edges of fig, will form a depth first spanning tree.

The depth first spanning tree representation is

Solid lines: Tree edges

-Dotted lines: Back edges

-Depth first spanning trees are very useful in identifying

articulation points and bi-connected components.

I I- B.Tech I SEM ADS&A Prepared By: BSR 86 | P a g e

Depth First Spanning tree properties

I I- B.Tech I SEM ADS&A Prepared By: BSR 87 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 88 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 89 | P a g e

The condition to check articulation point is not done for the

vertices 6, 8, 9 and 10. Since w does not exist in the

spanning tree structure and the condition is true for the

vertices 2, 3 and 5. Therefore the articulation points are 2, 3

and 5.

2.6 Graph Traversal

The process of visiting or updating each vertex in a graph is

known as graph traversal.

There are two techniques to implement a graph traversal

algorithm:

I I- B.Tech I SEM ADS&A Prepared By: BSR 90 | P a g e

 Breadth-first search

 Depth-first search

Breadth-first search(BFS)

We traverse the tree level wise from left to right starting

from the root. It is implemented using a queue.

Algorithm

I I- B.Tech I SEM ADS&A Prepared By: BSR 91 | P a g e

Depth-first search(DFS)

In the DFS traversal method, we start from the root and

traverse left as far as we can go once the leftmost end is

reached, we go to the right child of the node in the path and

move to its left most end.

I I- B.Tech I SEM ADS&A Prepared By: BSR 92 | P a g e

2.7 Applications

1. Social Networks:

 Friendship Networks: Graphs represent users as

nodes and friendships as edges, enabling analysis of

social relationships, community detection, and

influence propagation.

 Professional Networks: Platforms like LinkedIn use

graphs to model professional connections and

recommend potential contacts.

2. Transportation and Logistics:

 Route Planning: Graphs model transportation

networks (roads, railways, flight routes) to find the

shortest or fastest routes using algorithms like

Dijkstra's or A*.

 Supply Chain Management: Graphs optimize

logistics by modeling supply chains, managing

inventory, and minimizing transportation costs.

3. Telecommunications:

 Network Design: Graphs represent communication

networks, optimizing the layout of networks to

ensure efficient data transfer and minimal latency.

I I- B.Tech I SEM ADS&A Prepared By: BSR 93 | P a g e

 Routing: Graph algorithms find optimal paths for

data packets in a network, ensuring efficient and

reliable communication.

4. Biology and Bioinformatics:

 Protein-Protein Interaction Networks: Graphs

model interactions between proteins, helping

understand cellular processes and discover potential

drug targets.

 Genetic Networks: Graphs represent genetic

regulatory networks, analyzing gene interactions and

expression patterns.

6. Computer Science:

 Compiler Design: Graphs represent program

structures, optimizing code through control flow

graphs and dependency graphs.

 Web Page Ranking: Search engines like Google

use graph algorithms (e.g., PageRank) to rank web

pages based on link structures.

7. Geographical Information Systems (GIS):

 Map Services: Graphs model geographical regions,

providing route planning, geospatial analysis, and

location-based services.

I I- B.Tech I SEM ADS&A Prepared By: BSR 94 | P a g e

 Urban Planning: Graphs assist in designing

efficient public transportation systems and

optimizing urban infrastructure.

8. Recommendation Systems:

 Collaborative Filtering: Graphs model user-item

interactions, recommending products, movies, or

content based on user preferences and behaviors.

 Content Recommendation: Platforms like

YouTube and Netflix use graphs to suggest relevant

content based on user interaction patterns.

9. Electrical Engineering:

 Circuit Design: Graphs represent electrical circuits,

analyzing and optimizing circuit layouts for better

performance and reliability.

 Power Grid Management: Graphs model power

grids, optimizing energy distribution and managing

grid stability.

10. Finance and Economics:

 Stock Market Analysis: Graphs represent

relationships between stocks, aiding in market

analysis, portfolio optimization, and risk

management.

I I- B.Tech I SEM ADS&A Prepared By: BSR 95 | P a g e

 Fraud Detection: Graphs detect fraudulent activities

by analyzing transaction patterns and identifying

anomalies.

11. Artificial Intelligence and Machine Learning:

 Knowledge Graphs: Graphs represent relationships

between entities, enabling semantic search, question

answering, and AI-driven insights.

 Graph Neural Networks: Graphs are used in deep

learning to model complex relationships and

improve prediction accuracy in various applications.

12. Linguistics and Natural Language Processing:

 Syntax Trees: Graphs represent the syntactic

structure of sentences, aiding in language

understanding and processing.

 Semantic Networks: Graphs model the meaning of

words and phrases, improving natural language

understanding and generation.

13. Gaming and Entertainment:

 Game Maps: Graphs model game environments,

managing path finding for characters and optimizing

game dynamics.

I I- B.Tech I SEM ADS&A Prepared By: BSR 96 | P a g e

 Storytelling: Graphs represent story elements and

their relationships, enabling dynamic and interactive

storytelling experiences.

2.8 Introduction to Divide and conquer

If a problem is given, we divide it into some k number of

sub-problems with k size each. If we get the solution of each

part then we stop at that point, otherwise we still divide the

problem. We solve all individual sub-problems and combine

all these solutions of sub-problems which is the required

solution of a given problem.

 The principle behind the divide and conquer algorithm

design paradigm is that it is easier to solve several small

instances of a problem than one large one.

2.8.1 General method

The divide and conquer paradigm involves three steps at

each level of the recursion.

1. Divide: Divide the problem into a number of sub-

problems.

2. Conquer: These sub-problems are solved independently.

3. Combine: Combine the solutions to the sub-problems

into the solution for the original problem.

I I- B.Tech I SEM ADS&A Prepared By: BSR 97 | P a g e

Algorithm

I I- B.Tech I SEM ADS&A Prepared By: BSR 98 | P a g e

2.9 Applications of Divide and Conquer

 Quick sort

 Merge sort

 Stassen's matrix multiplication.

 Convex Hull

2.9.1 Quick Sort

Quick sort is a sorting algorithm that uses the divide and

conquer strategy. In this method division is dynamically

carried out. The 3steps of quick sort are as follows.

a) Divide: Rearrange the elements and split the array into

two sub arrays and an element in between. Each element in

the left sub array is less than or equal the middle element

and each element in the right sub array is greater that middle

element.

b) Conquer: recursively sort the two sub arrays

c) Combine: combine all the sorted elements in a group to

form a list of sorted elements.

I I- B.Tech I SEM ADS&A Prepared By: BSR 99 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 100 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 101 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 102 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 103 | P a g e

2.9.2 Merge Sort

The merge sort is a sorting algorithm that uses the divide

and conquer strategy. In this method division is dynamically

carried out. Merge sort on an input array with n elements

consists of three steps:

a) Divide: Partition array into two sublists s1 and s2 with

n/2 elements each.

b) Conquer: recursively sort s1 and s2.

c) Combine: merge s1 and s2 into a unique sorted group.

I I- B.Tech I SEM ADS&A Prepared By: BSR 104 | P a g e

Example

I I- B.Tech I SEM ADS&A Prepared By: BSR 105 | P a g e

2.9.3 Strassen's matrix multiplication.

The divide and conquer approach can be used for

implementing strassen‟s matrix multiplication.

a) Divide: Divide matrices into sub-matrices A0,A1,A2..etc.

I I- B.Tech I SEM ADS&A Prepared By: BSR 106 | P a g e

b) Conquer: use a group of matrix multiply equations.

c) Combine: recursively multiply sub-matrices and get the

final result of multiplication after performing required

additions or subtractions.

Now we will compare the actual our traditional matrix

multiplication procedure with strasses‟s procedure. In

strasses‟s multiplication.

I I- B.Tech I SEM ADS&A Prepared By: BSR 107 | P a g e

2.9.4 Convex Hull

A convex hull is the smallest convex polygon that

completely encloses a set of points in a two-dimensional or

three-dimensional space. It can be thought of as the

"envelope" or "wrapper" of the points. We use the divide

and conquer approach to solve this by recursively calling the

function for smaller parameters. It is a fundamental concept

with applications in various fields such as computer

graphics, robotics, and image processing. Convex Hull

Problem deals with the problem of finding convex polygon

with the minimum number of edges. Here is an illustration

of our approach:

The first step is to find out the farthest two points in the

plane:

Then, in the two spaces S1 and S2, we will find out the

farthest point:

I I- B.Tech I SEM ADS&A Prepared By: BSR 108 | P a g e

Finally, Our resultant polygon would look something like

this:

I I- B.Tech I SEM ADS&A Prepared By: BSR 109 | P a g e

Importance of Convex Hull:

Convex hulls are important in computational geometry for

several reasons:

 Collision detection: Convex hulls can be used to

efficiently detect collisions between objects in 2D or

3D space.

 Image processing: Convex hulls can be used to

extract meaningful shapes from images, such as the

outline of an object.

 Data visualization: Convex hulls can be used to

visualize the distribution of data points in a scatter

plot.

I I- B.Tech I SEM ADS&A Prepared By: BSR 110 | P a g e

UNIT-III

Greedy Method: General Method, Job Sequencing with

deadlines, Knapsack Problem, Minimum cost spanning

trees, Single Source Shortest Paths

Dynamic Programming: General Method, All pairs

shortest paths, Single Source Shortest Paths– General

Weights (Bellman Ford Algorithm), Optimal Binary Search

Trees, 0/1 Knapsack, String Editing, Travelling Salesperson

problem.

3.1 Greedy Method

In an algorithmic strategy like greedy, the decision is taken

based on the information available. The greedy method is

the most straight forward method. It is popular for obtaining

the optimized solutions.

I I- B.Tech I SEM ADS&A Prepared By: BSR 111 | P a g e

3.2 General Method

I I- B.Tech I SEM ADS&A Prepared By: BSR 112 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 113 | P a g e

3.3 Applications of Greedy Method

 3.3.1 Job Sequencing with deadlines

 3.3.2 Knapsack Problem

 3.3.3 Minimum cost spanning trees

 3.3.4 Single Source Shortest Paths

3.3.1 Job Sequencing with deadlines

Consider that there are n jobs that are to be executed. At any

time t=1,2,3… only exactly one job is to be executed. The

profits pi are given. These profits are gained by

corresponding jobs. For obtaining feasible solution we

should take care that the jobs get completed within their

given deadlines.

Let n=4

I I- B.Tech I SEM ADS&A Prepared By: BSR 114 | P a g e

We will follow following rules to obtain the feasible

solution.

I I- B.Tech I SEM ADS&A Prepared By: BSR 115 | P a g e

Finally the feasible sequence is 4,1. This sequence is

optimum solution as well.

Example 2:

3.3.2 Knapsack Problem

The knapsack problem can be stated as follows. Suppose

there are n objects from i=1,2,….n. each object i has some

positive weight wi and some profit value is associated with

I I- B.Tech I SEM ADS&A Prepared By: BSR 116 | P a g e

each object which is denoted as pi. This knapsack carries at

the most weight w.

 While solving above mentioned knapsack

problem we have the capacity constraints. When we try to

solve this problem using greedy approach our goal is

1. Choose only those objects that give maximum profit.

2. The total weight of selected objects should be <=w.

And then we can obtain the set of feasible solutions. In other

words,

Example

I I- B.Tech I SEM ADS&A Prepared By: BSR 117 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 118 | P a g e

Example 2:

I I- B.Tech I SEM ADS&A Prepared By: BSR 119 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 120 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 121 | P a g e

3.3.3 Minimum Cost Spanning Tree

A spanning tree of a graph is any tree that includes every

vertex in the graph.

I I- B.Tech I SEM ADS&A Prepared By: BSR 122 | P a g e

1. Prim’s algorithm

Let us understand the prim‟s algorithm with the help of

some example.

I I- B.Tech I SEM ADS&A Prepared By: BSR 123 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 124 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 125 | P a g e

2. Kruskal’s Algorithm

I I- B.Tech I SEM ADS&A Prepared By: BSR 126 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 127 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 128 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 129 | P a g e

3.3.4 Single source shortest path problem

I I- B.Tech I SEM ADS&A Prepared By: BSR 130 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 131 | P a g e

3.4 Difference between Divide and Conquer and Greedy

Method

I I- B.Tech I SEM ADS&A Prepared By: BSR 132 | P a g e

3.5 Dynamic Programming:

Introduction to Dynamic programming method

The drawback of greedy method is, we will make one

decision at a time. This can be overcome in dynamic

programming. In this, we will make more than one decision

at a time.

 In order to obtain the optimal solution to the given

problem all possible decision sequences are being generated.

And using principle of optimality the optimal sequence

becomes the final solution.

General Method

Dynamic programming is typically applied to optimization

problems. For a given problem we may get any number of

solutions. Form all those solutions we seek for the optimum

solution. And such an optimal solution becomes the solution

to the given problem.(Minimum value or maximum value

solution).

I I- B.Tech I SEM ADS&A Prepared By: BSR 133 | P a g e

Difference between Divide and Conquer and Dynamic

Programming

Divide and conquer Dynamic Programming

The problem is divided into

small sub-problems. These

sub-problems are solved

independently. Finally all

the solutions of sub-

problems are collected

together to get the solution

to the given problem.

In dynamic programming,

we will make more than one

decision at a time, in-order

to obtain the optimal

solution.

In this duplicate solutions

may be obtained.

In this duplicate solutions

are avoided totally.

Divide and conquer is less

efficient than dynamic

programming.

It is efficient than divide and

conquer.

The divide and conquer uses

top down approach of

problem solving(recursive

method)

It uses bottom up approach

of problem solving(Iterative

method)

Divide and conquer splits its It splits its input at every

I I- B.Tech I SEM ADS&A Prepared By: BSR 134 | P a g e

input in the middle. possible points, rather than

at a particular point.

After it determines which

split point is optimal.

Difference between Greedy programming and Dynamic

programming

Principle of optimality

It states that “in optimal sequence of decisions or choices,

each subsequence must also be optimal”.

I I- B.Tech I SEM ADS&A Prepared By: BSR 135 | P a g e

When it is not possible to apply the principle of optimality it

is almost impossible to obtain the solution using dynamic

programming approach.

3.6 Applications of Dynamic programming

3.6.1 All pairs shortest paths

3.6.2 Single source shortest paths

3.6.3 Optimal Binary Search Tree(OBST)

3.6. 4 0/1 Knapsack problem

3.6.5 Travelling sales person problem.

3.6.6 String Editing

3.6.1 All pairs shortest paths

When a weighted graph, represented by its weight matrix W

then objective is to find the distance between every pair of

nodes. We will apply dynamic programming to solve the all

pairs shortest path.

I I- B.Tech I SEM ADS&A Prepared By: BSR 136 | P a g e

Example

Sol:

I I- B.Tech I SEM ADS&A Prepared By: BSR 137 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 138 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 139 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 140 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 141 | P a g e

Example 2:

I I- B.Tech I SEM ADS&A Prepared By: BSR 142 | P a g e

3.6.2 Single source shortest paths

The single source shortest path algorithm (for arbitrary

weight positive or negative) is also known Bellman-

Ford algorithm is used to find minimum distance

from source vertex to any other vertex.

 The main difference between this algorithm with

Dijkstra‟s algorithm is, in Dijkstra‟s algorithm we cannot

handle the negative weight, but here we can handle it easily.

Bellman-ford algorithm Steps

Initialize all distance values as ∞ except source (0)

2. Repeat (V-1) times:

 if d[u] +cost(uv)<d[v] then update d[v]

Else skip

I I- B.Tech I SEM ADS&A Prepared By: BSR 143 | P a g e

3. Relax all vertices once more. If you find any new

shortest distance value then we have –ve edge with

cycle else we don‟t.

Working of Bellman-Ford Algorithm to Detect the

Negative cycle in the graph:

Let‟s suppose we have a graph which is given below and we

want to find whether there exists a negative cycle or not

using Bellman-Ford.

Step 1: Initialize a distance array Dist[] to store the shortest

distance for each vertex from the source vertex. Initially

distance of source will be 0 and Distance of other vertices

will be INFINITY.

I I- B.Tech I SEM ADS&A Prepared By: BSR 144 | P a g e

Step 2: Start relaxing the edges, during 1st Relaxation:

 Current Distance of B > (Distance of A) + (Weight

of A to B) i.e. Infinity > 0 + 5

 Therefore, Dist[B] = 5

I I- B.Tech I SEM ADS&A Prepared By: BSR 145 | P a g e

Step 3: During 2nd Relaxation:

Current Distance of D > (Distance of B) + (Weight of B to

D) i.e. Infinity > 5 + 2

Dist[D] = 7

Current Distance of C > (Distance of B) + (Weight of B to

C) i.e. Infinity > 5 + 1

Dist[C] = 6

Step 4: During 3rd Relaxation:

Current Distance of F > (Distance of D) + (Weight of D to

F) i.e. Infinity > 7 + 2

Dist[F] = 9

Current Distance of E > (Distance of C) + (Weight of C to

E) i.e. Infinity > 6 + 1

Dist[E] = 7

I I- B.Tech I SEM ADS&A Prepared By: BSR 146 | P a g e

Step 5: During 4th Relaxation:

Current Distance of D > (Distance of E) + (Weight of E to

D) i.e. 7 > 7 + (-1)

Dist[D] = 6

Current Distance of E > (Distance of F) + (Weight of F to

E) i.e. 7 > 9 + (-3)

Dist[E] = 6

I I- B.Tech I SEM ADS&A Prepared By: BSR 147 | P a g e

Step 6: During 5th Relaxation:

Current Distance of F > (Distance of D) + (Weight of D to

F) i.e. 9 > 6 + 2

Dist[F] = 8

Current Distance of D > (Distance of E) + (Weight of E to

D) i.e. 6 > 6 + (-1)

Dist[D] = 5

Since the graph h 6 vertices, So during the 5th relaxation the

shortest distance for all the vertices should have been

calculated.

Step 7: Now the final relaxation i.e. the 6th relaxation

should indicate the presence of negative cycle if there is any

changes in the distance array of 5th relaxation.

During the 6th relaxation, following changes can be seen:

I I- B.Tech I SEM ADS&A Prepared By: BSR 148 | P a g e

Current Distance of E > (Distance of F) + (Weight of F to E)

i.e. 6 > 8 + (-3)

Dist[E]=5

Current Distance of F > (Distance of D) + (Weight of D to

F) i.e. 8 > 5 + 2

Dist[F]=7

Since, we observer changes in the Distance array Hence ,we

can conclude the presence of a negative cycle in the graph.

Result: A negative cycle (D->F->E) exists in the graph.

3.6.3 Optimal Binary Search Tree (OBST)

Suppose we are searching a word from a dictionary, and for

every required word, we are looking up in the dictionary

then it becomes time consuming process.

I I- B.Tech I SEM ADS&A Prepared By: BSR 149 | P a g e

 To perform this lookup more efficiently we can build

the binary search tree of common words as key elements.

Again we can make this binary search tree efficiently by

arranging frequently words nearer to the root and less

frequently words away from the root. Such a binary search

tree makes out task more simplified as well as efficient. This

type of binary search tree is called optimal binary search

tree(OBST).

Example

I I- B.Tech I SEM ADS&A Prepared By: BSR 150 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 151 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 152 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 153 | P a g e

3.6. 4 0/1 Knapsack problem

I I- B.Tech I SEM ADS&A Prepared By: BSR 154 | P a g e

Purging Rule

I I- B.Tech I SEM ADS&A Prepared By: BSR 155 | P a g e

Example

I I- B.Tech I SEM ADS&A Prepared By: BSR 156 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 157 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 158 | P a g e

3.6.5 Travelling sales person problem.

Let G be directed graph denoted by (V,E) where V denotes

set of vertices and E denotes set of edges. The edges are

given along with their cost Cij. The cost Cij>0 for all I and

j. if there is no edge between I and j then Cij=∞

 A tour for the graph should be such that all the

vertices should be visited only once and cost of the tour is

sum of cost of edges on the tour. The travelling sales person

problem is to find the tour of minimum cost. The following

formula can be used to obtain the optimum cost tour.

I I- B.Tech I SEM ADS&A Prepared By: BSR 159 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 160 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 161 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 162 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 163 | P a g e

3.6.6 String Editing

There are two strings given. The first string is the source

string and the second string is the target string. In this

program, we have to find how many possible edits are

needed to convert first string to the second string.

The edit of strings can be either Insert some elements, delete

something from the first string or modify something to

convert into the second string.

 Given two strings str1 and str2 and below

operations that can be performed on str1. Find the minimum

I I- B.Tech I SEM ADS&A Prepared By: BSR 164 | P a g e

number of edits (operations) required to convert „str1‟ into

„str2‟.

 Insert

 Remove

 Replace

All of the above operations are of equal cost.

Sol:

Convert a,d,c,e,g string into a,b,c,f,g.

Let fill first row

Convert NULL to NULL it requires 0 operations.

Convert NULL to a it requires 1 operation (ie., insert a)

I I- B.Tech I SEM ADS&A Prepared By: BSR 165 | P a g e

Convert NULL to b it requires 2 operation (ie., insert a, b)

Convert NULL to c it requires 3 operation (ie., insert a,b, c)

Convert NULL to a it requires 4 operation (ie., insert a,b,c,

f)

Convert NULL to a it requires 5 operation (ie., insert a,b,c,f,

g)

Let’s fill first column

If we have convert a to NULL it requires 1 operations (ie.,

remove a)

If we have convert a to NULL it requires 2 operations (ie.,

remove a, d)

If we have convert a to NULL it requires 3 operations (ie.,

remove a, d, c)

If we have convert a to NULL it requires 4 operations (ie.,

remove a, d, c ,e)

If we have convert a to NULL it requires 5 operations (ie.,

remove a, d, c ,e,g)

I I- B.Tech I SEM ADS&A Prepared By: BSR 166 | P a g e

Now fill internal cell use conditions

I I- B.Tech I SEM ADS&A Prepared By: BSR 167 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 168 | P a g e

UNIT-IV

Backtracking: General Method, 8-Queens Problem, Sum of

Subsets problem, Graph Coloring, 0/1 Knapsack Problem

Branch and Bound: The General Method, 0/1 Knapsack

Problem, Travelling Salesperson problem.

4.1 Introduction

In case of greedy and dynamic programming techniques, we

will use brute force approach. It means, we will evaluate all

possible solutions, among which we select one solution as

optimal solution.

 In backtracking technique, we will get same optimal

solution with a less number of steps. So by using

backtracking technique, we will solve problems in an

efficient way, when compared to other methods like greedy

method and dynamic programming.

In this we will use bounding functions(criterion function),

implicit and explicit constraints.

Explicit constraints: These are rules which restrict each xi

to take on values only from a given set.

Example: 1. In knapsack problem, the explicit constraints

are xi= 0 or 1 0<=xi<=1

I I- B.Tech I SEM ADS&A Prepared By: BSR 169 | P a g e

2. In 4-quens problem, 4-queens can be placed in 4X4

chessboard in 44

ways.

Implicit constraints: These are rules which determine

which of the tuples in the solution space satisfy the criterion

function.

Example: In 4-queesn problem, the implicit constraints are

no two queens can be on the same column, same row and

same diagonal.

Terminology in Backtracking

1. Criterion Function

It is a function p(x1,x2….xn) which needs to be maximized

or minimized for a given problem.

2. Solution space

All the tuples that satisfy the explicit constraints define a

possible solution space for a particular instance „I‟ of the

problem.

3. Problem state

Each node in the tree organization defines a problem state.

4. Solution states

These are those problem states s for which the path from the

root to S defines a tuples in the solution space.

I I- B.Tech I SEM ADS&A Prepared By: BSR 170 | P a g e

5. State space tree

If we represent solution space in the form of a tree then the

tree is referred as the state space tree.

6. Answer state

These solution states s for which the path from the root to s

defines a tuple which is a member of the set of solutions

7. Live node

A node which has been generated and all of whose children

have not yet been generated is live node.

8. E-node

The live nodes whose children are currently being generated

is called the E-node(node being expanded).

9. Dead node

It is generated node that is either not to be expanded further.

4.2 General Method

In the backtracking method

 a) The desired solution is expressible as an n tuple

(x1,x2…xn) where xi is chosen from some finite set si .

b) The solution maximizes or minimizes or stratifies a

criterion function

I I- B.Tech I SEM ADS&A Prepared By: BSR 171 | P a g e

 The basic idea of backtracking is to build up a

vector, one component at a time and to test whether

the vector being formed has any chance of success.

 Backtracking algorithm determines the solution by

systematically searching the solution space for the

given problem.

4.3 Applications of Backtracking

4.3.1 8-Queens Problem

4.3.2 Sum of Subsets problem

4.3.3 Graph Coloring

4.3.4 0/1 Knapsack Problem

4.3.1 8-Queens Problem

1. n-Queens problem(4,8 Queens problem)

Consider an nxn chessboard. Let there are n queens. These n

queens are to be placed on the nxn chessboard so that no

two queens are on the same column, same row or same

diagonal.

I I- B.Tech I SEM ADS&A Prepared By: BSR 172 | P a g e

4-queens problem

Consider a 4X4 chessboard. Let there are 4-queens. The

objective is to place there 4 queens on 4X4 chessboard in

such away that no two queens should be placed in the same

row, same column or diagonal position.

 The explicit constraints are 4-queens are to be placed

on 4X4 chessboard in 4
4

ways
.

 The implicit constraints are no two queens are in the

same row or column or diagonal.

I I- B.Tech I SEM ADS&A Prepared By: BSR 173 | P a g e

Let {x1,x2,x3,x4} be the solution vector where xi, column

number on which the queens i is placed. First queen Q1 is

placed in first row and first column.

The second queen should not be placed in first row and

second column. It should be placed in second row and in

second, third or fourth column. If we placed in second

column, both will be in same diagonal, so place it in third

column.

We are unable to place Q3 in third row so go back to Q2 and

place it somewhere else.

I I- B.Tech I SEM ADS&A Prepared By: BSR 174 | P a g e

8-Queens problem

Consider a 8X8 chessboard. Let there are 8 queens. The

objective is to place these 8 queens on the board so that no

two queens are on the same row or same column or same

diagonal.

I I- B.Tech I SEM ADS&A Prepared By: BSR 175 | P a g e

The explicit constraint is 8-queens are to be placed in 8X8

chessboard in 8
8

ways.

Let position P1=(i, j) and position P2=(k, l). Then P1 and P2

are on the same diagonal.

I I- B.Tech I SEM ADS&A Prepared By: BSR 176 | P a g e

Example1: for the following feasible sequence solve 8-

queens problem. (6,4,7,1) using back tracking.

Sol:

I I- B.Tech I SEM ADS&A Prepared By: BSR 177 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 178 | P a g e

Time complexity: The solution space tree of 8-queens

problem contain 8
8
 tuple. After imposing implicit constraint,

the size of solution space is reduced to 8! Tuples. Hence the

time complexity is O(8!). For n-queens problem, it is O(n!)

4.3.2 Sum of Subsets problem

 Subset sum problem is to find subset of elements

that are selected from a given set whose sum adds up

to a given number K.

 We are considering the set contains non-negative

values.

 It is assumed that the input set is unique (no

duplicates are presented).

Example

Consider a set S={5,10,12,13,15,18} an N=30

Subset Sum=0 Action initially

set is empty

5 5

5,10 15

5,10,12 27

5,10,12,13 40 Sum exceeds

I I- B.Tech I SEM ADS&A Prepared By: BSR 179 | P a g e

N=30 hence

backtrack

5,10,12,15 Not feasible

5,10,12,13 Not feasible

5,10 List ends.

Backtrack

5,10,13 28

5,10,13,15 33 Not feasible.

Backtrack

5,10 15

4.3.3 Graph Coloring

Graph coloring is a problem of coloring each vertex in graph

in such a way that no two adjacent vertices have same color

and yet m-colors are used. This problem is also called m-

coloring problem. If the degree of given graph is d then we

can color it with d + 1 colors. The least number of colors

needed to color the graph is called its chromatic number.

For example : Consider a graph given in Fig. below. As

given in Fig. we require three colors to color the graph.

Hence the chromatic number of given graph is 3. We can

I I- B.Tech I SEM ADS&A Prepared By: BSR 180 | P a g e

use backtracking technique to solve the graph coloring

problem as follows –

Step1:

I I- B.Tech I SEM ADS&A Prepared By: BSR 181 | P a g e

A graph G consists of vertices from A to F. There are colors

used Red, Green and Blue. We will number then out. That

means 1 indicates Red, 2 indicates Green and 3 indicates

Blue color.

Step 2:

I I- B.Tech I SEM ADS&A Prepared By: BSR 182 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 183 | P a g e

Step 3:

Thus the graph coloring problem is solved. The state-space

tree can be drawn for better understanding of graph coloring

technique using backtracking approach-

I I- B.Tech I SEM ADS&A Prepared By: BSR 184 | P a g e

Here we have assumed, color index Red=1, Green=2 and

Blue=3.

4.3.4 0/1 Knapsack Problem

I I- B.Tech I SEM ADS&A Prepared By: BSR 185 | P a g e

4.4 Branch and Bound: Introduction

 The back tracking algorithm is effective for decision

problems, but it is not designed for optimization problems.

This drawback is rectified in case of branch and bound

technique.

 The essential difference between back tracking

and branch and bound is, if we get a solution then we will

terminate the search procedure in back tracking, where as in

branch and bound , we will continue the process(Search)

until we get an optimal solution.

Branch and bound technique is applicable for only

minimization problems.

We will use Three types of search strategies in branch and

bound.

1.FIFO search

2. LIFO search

3.LC(Least Cost) search

I I- B.Tech I SEM ADS&A Prepared By: BSR 186 | P a g e

4.5 General Methods

FIFO Branch and Bound search

Assume the node is an answer node. In FIFO search, first

we will take E-node as node 1. next we generate the children

of node 1.. We will place all these live nodes in a queue.

This can be shown in fig:

Now, we will delete an element from queue i.e., node 2 next

generate children of node 2 and place in the queue.

Next, delete an element from queue and take it as E-node

generate the children of node 3. 7 , 8 are children of 3 and

2 3 4

I I- B.Tech I SEM ADS&A Prepared By: BSR 187 | P a g e

these live nodes are killed by bounding functions. So we

will not include in the queue.

Again delete 4 from the queue. 9 is the children of 4 and this

is live node are killed by bounding function.

Next, delete 5 from the queue. 10 and 11 are generated and

killed by boundary function. Last node in queue is 5. the

child of node 6 is 12 and it satisfies the condition of the

problem, which is the answer node, so search terminates.

4 5 6

 5 6

I I- B.Tech I SEM ADS&A Prepared By: BSR 188 | P a g e

2. LIFO Branch and Bound search

For this we will use a data structure called stack. Initially

stack is empty. Generate children of node 1 and place these

live nodes into stack. This can be shown in fig:

I I- B.Tech I SEM ADS&A Prepared By: BSR 189 | P a g e

Remove element from stack and generate the children of it,

place those nodes into stack. 2 is removed from stack. The

children of 2 are 5, 6. the content of stack is

I I- B.Tech I SEM ADS&A Prepared By: BSR 190 | P a g e

Again remove an element from stack ie; node 5 is removed

and nodes generated by 5 are 10,11 which are killed by

bounding function. So we will not place 10,11 into stack.

This can be shown in fig:

I I- B.Tech I SEM ADS&A Prepared By: BSR 191 | P a g e

Delete an element from stack ie; node 6. generate child of

node 6 ie; node 12 which is the answer node, so search

process terminates.

3. Least cost(LC) Branch and Bound search

In this we will use ranking function or cost function, which

is denoted by C
^
(x). Which generates the children of E-

node, among these live nodes, we select a node which has

minimum cost. By using ranking function we will calculate

the cost of each node.

I I- B.Tech I SEM ADS&A Prepared By: BSR 192 | P a g e

Initially we will take node 1 as E-node. Generate children of

node 1, the children are 2,3,4. by using ranking function we

will calculate the cost of 2,3,4 node is C^=2, C^ =3, AND

C^=4 respectively.

 Now we will select a node which has minimum

cost ie; node 2.

I I- B.Tech I SEM ADS&A Prepared By: BSR 193 | P a g e

For node 2, the children are 5 , 6 . The cost of the node 5 is

C^=4 and node 6 is C^=1 so select node 6.

For the node 6 the children are 12 and 13. now we will

select a node which has minimum cost ie; node 12. node 12

is the answer node. So, we terminate search process.

4.6 Applications

4.6.1 Travelling Salesperson Problem

4.6.2 0/1 Knapsack problem

4.6.1 Travelling Salesperson Problem

If there are n cities and cost of travelling from one city to

other city is given. A salesman has to start from any one of

the city and has to visit all the cities exactly once and has to

I I- B.Tech I SEM ADS&A Prepared By: BSR 194 | P a g e

return to the starting place with shortest distance or

minimum cost.

If there are n cities and cost of travelling from one city to

other city is given. A sales man has to start from any one of

the city and has to visit all the cities exactly once and has to

return to the starting place with shortest distance or

minimum cost.

Let G=(V,E) be a directed graph defining an instance of the

travelling sales person problem. Let Cij be the cost of the

edge(i, j) and cij= ∞.

Reduced Cost Matrix

A row or column is said to be reduced if it contains at-least

one zero and all remaining entries are non-negative. A

matrix is reduced iff every row and column is reduced.

a) If a constant t is chosen to be minimum entry in row i or

column j then subtracting it from all entries in row i (column

j) will reduce a zero into a row i(column j).

b) The total amount subtracted from the columns and rows

is lower bound on the length of a minimum cost tour and

can be used as the C^(x). value for the root of state space

tree.

I I- B.Tech I SEM ADS&A Prepared By: BSR 195 | P a g e

With every node in the state space tree, we associate a

reduced cost matrix.

Let A be the reduced cost matrix for node R. Let S be the

child of R such that the edge (R,s) corresponds to including

edge(i, j) in the tour. If S is not a leaf node then the reduced

cost matrix for node S can be obtained as follows.

Example

I I- B.Tech I SEM ADS&A Prepared By: BSR 196 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 197 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 198 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 199 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 200 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 201 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 202 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 203 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 204 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 205 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 206 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 207 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 208 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 209 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 210 | P a g e

4.6.2 0/1 Knapsack problem

The 0/1 knapsack problem states that, there are n objects

given and capacity of knapsack is M. Then select some

objects to fill the knapsack in such away that it should not

exceed the capacity of knapsack and maximum profit can be

earned.

The branch and bound techniques is used to find solution to

the knapsack problem. But we can not directly apply the

branch and bound technique to the knapsack problem

because the branch and bound deals only the minimization

problems. We modify the knapsack problem to the

minimization problem. The modified problem is

I I- B.Tech I SEM ADS&A Prepared By: BSR 211 | P a g e

1. Fractions are not allowed in calculation of upper bound.

2. Lower bound fractions are allowed

3. X1=1 means we should place first item.

x2=1, x3=1, x4=1, x5=1

X1=0 can not consider

X2=0 , x3=0, x4=0, x5=0

4. Both lower bound are same, then select the minimum of

upper bound.

5. It both upper bounds are same then select x1=0 or x2=0

or x3=0 or x4=0 or x5=0

I I- B.Tech I SEM ADS&A Prepared By: BSR 212 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 213 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 214 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 215 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 216 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 217 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 218 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 219 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 220 | P a g e

UNIT-V

NP Hard and NP Complete Problems: Basic Concepts,

Cook‟s theorem.

NP Hard Graph Problems: Clique Decision Problem

(CDP), Chromatic Number Decision Problem (CNDP),

Traveling Salesperson Decision Problem (TSP)

NP Hard Scheduling Problems: Scheduling Identical

Processors, Job Shop Scheduling

5.1 NP Hard and NP Complete Problems:

The problems are classified into two groups

Polynomial Time

1. The first group consists of the problems that can be

solved in polynomial time by using deterministic algorithm

Example:

Searching of an element from an array –O(log n).

Sorting of given n elements –O(n log n)

All pairs shortest path problem-O(n
3
)

Non-Polynomial Time

2. The second group consists of the problems that can be

solved in polynomial time by using non-deterministic

algorithm.

I I- B.Tech I SEM ADS&A Prepared By: BSR 221 | P a g e

I I- B.Tech I SEM ADS&A Prepared By: BSR 222 | P a g e

Deterministic Algorithm

A deterministic algorithm is one where, given a particular

input, the algorithm will always produce the same output

and follow the same sequence of states.

Non-Deterministic Algorithm

A non-deterministic algorithm is one where the same input

can lead to multiple possible outcomes.

Non deterministic Algorithm (NP):

I I- B.Tech I SEM ADS&A Prepared By: BSR 223 | P a g e

Reduction or Reducible

I I- B.Tech I SEM ADS&A Prepared By: BSR 224 | P a g e

NP-Hard

NP-Complete

I I- B.Tech I SEM ADS&A Prepared By: BSR 225 | P a g e

P-Class problems (Deterministic algorithms)

Problems that can be solved in polynomial time are called P-

class problems. Where „p‟ stand for polynomial time.

Example:

1. Searching of key element among n number of elements-

O(n)

2. Sorting of „n‟ elements- O(n
2
)

3. Addition of two matrices- O(n
2
)

4. Multiplication of matrices- O(n
3
)

5. All pairs shortest path problem- O(n
3
)

 These problems can be solved by using

deterministic algorithms.

NP-Class Problems (Non deterministic algorithm)

Problems that can be solved in polynomial time by using

Non-deterministic algorithms are called NP-class problems.

Where „NP‟ stand for Non-Polynomial time.

Example:

1. Travelling salesperson problem

2. 0/1 knapsack problem

3. Graph coloring problem

4. Hamiltonian cycle problem

I I- B.Tech I SEM ADS&A Prepared By: BSR 226 | P a g e

Relationship between P and NP-class problem

I I- B.Tech I SEM ADS&A Prepared By: BSR 227 | P a g e

5.2 Cook’s theorem.

Cook's theorem states that the problems of satisfiability and

determining if P=NP are equivalent. It proves this by

showing that if satisfiability is in P (can be solved in

polynomial time), then any problem in NP (can be solved by

a non-deterministic Turing machine in polynomial time) can

also be solved in P, meaning P=NP. Conversely, if P=NP,

then satisfiability must also be in P.

Statement

The satisfiability problem (SAT) is NP complete.

In computational complexity theory, the Cook–Levin

theorem, also known as Cook's theorem, states that the

Boolean satisfiability problem is NP-complete. That is, it is

in NP, and any problem in NP can be reduced in polynomial

time by a deterministic Turing machine to the Boolean

satisfiability problem.

Boolean Satisfiability Problem

Boolean Satisfiability or simply SAT is the problem of

determining if a Boolean formula is satisfiable or

unsatisfiable.

I I- B.Tech I SEM ADS&A Prepared By: BSR 228 | P a g e

Satisfiable: If the Boolean variables can be assigned values

such that the formula turns out to be TRUE, then we say that

the formula is satisfiable.

Unsatisfiable : If it is not possible to assign such values,

then we say that the formula is unsatisfiable.

Examples:

Note: Boolean satisfiability problem is NP-complete

I I- B.Tech I SEM ADS&A Prepared By: BSR 229 | P a g e

5.3 NP Hard Graph Problems:

5.3.1 Clique Decision Problem (CDP)

5.3.2 Chromatic Number Decision Problem (CNDP)

5.3.3 Traveling Salesperson Decision Problem (TSP).

5.3.1 Clique Decision Problem (CDP)

A clique is a sub-graph of graph such that all vertices in sub-

graph are completely connected with each other.

The max-clique problem is the computational problem of

finding maximum clique of the graph.

Example

I I- B.Tech I SEM ADS&A Prepared By: BSR 230 | P a g e

This graph can be divided into two cliques

One clique contains {0,1,2}

Other clique contains{3,4}

I I- B.Tech I SEM ADS&A Prepared By: BSR 231 | P a g e

5.3.2 Chromatic Number Decision Problem (CNDP)

I I- B.Tech I SEM ADS&A Prepared By: BSR 232 | P a g e

Graph coloring can be described as a process of assigning

colors to the vertices of a graph. In this, the same color

should not be used to fill the two adjacent vertices. We can

also call graph coloring as Vertex Coloring. In graph

coloring, we have to take care that a graph must not contain

any edge whose end vertices are colored by the same color.

This type of graph is known as the properly colored graph.

Example of Graph coloring

In this graph, we are showing the properly colored graph,

which is described as follows:

The above graph contains some points, which are described

as follows:

 The same color cannot be used to color the two

adjacent vertices.

 Hence, we can call it as a properly colored graph.

I I- B.Tech I SEM ADS&A Prepared By: BSR 233 | P a g e

Applications of Graph coloring

There are various applications of graph coloring. Some of

their important applications are described as follows:

 Assignment

 Map coloring

 Scheduling the tasks

 Sudoku

 Prepare time table

 Conflict resolution

I I- B.Tech I SEM ADS&A Prepared By: BSR 234 | P a g e

Example of Chromatic number:

To understand the chromatic number, we will consider a

graph, which is described as follows:

I I- B.Tech I SEM ADS&A Prepared By: BSR 235 | P a g e

The above graph contains some points, which are described

as follows:

The same color is not used to color the two adjacent

vertices.

The minimum number of colors of this graph is 3, which is

needed to properly color the vertices.

Hence, in this graph, the chromatic number = 3

If we want to properly color this graph, in this case, we are

required at least 3 colors.

I I- B.Tech I SEM ADS&A Prepared By: BSR 236 | P a g e

5.3.3 Traveling Salesperson Decision Problem (TSP).

The NP-hard Traveling Salesman Problem (TSP) asks to

find the shortest route that visits all vertices in the graph. To

be precise, the TSP is the shortest tour that visits all vertices

and returns back to the start.

I I- B.Tech I SEM ADS&A Prepared By: BSR 237 | P a g e

5.4 NP Hard Scheduling Problems:

5.4.1 Scheduling Identical Processors

5.4.2 Job Shop Scheduling

5.4.1 Scheduling Identical Processors

5.4.2 Job Shop Scheduling

Job Shop Scheduling Problem (JSSP), which aims to

schedule several jobs over some machines in which each job

has a unique machine route, is one of the NP-hard

optimization problems researched over decades for finding

optimal sequences over machines.

https://optimization.cbe.cornell.edu/index.php?title=Job_sho

p_scheduling

https://optimization.cbe.cornell.edu/index.php?title=Job_shop_scheduling
https://optimization.cbe.cornell.edu/index.php?title=Job_shop_scheduling

