UNIT-2
Introduction to relational model
The main construct for representing data in the relational model is a relation. A relation consists of a relation schema and a relation instance. The relation instanceis a table, and the relation schema describes the column heads for the table. We first describe the relation schema and then the relation instance. The schema specifies the relation’s name, the name of each field (or column, or attribute), and the domain of each field. A domain is referred to in a relation schema by the domain name and has a set of associated values.

Relational model uses a collection of tables to represent both data and the relationships among those data. Each table has multiple columns, and each column has a unique name. Tables are also known as relations.
The relational model represents how data is stored in Relational Databases. A relational database consists of a collection of tables, each of which is assigned a unique name. Consider a relation STUDENT with attributes ROLL_NO, NAME, ADDRESS, PHONE, and AGE shown in the table.
Table Student
	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	2
	RAMESH
	GURGAON
	9652431543
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20

	4
	SURESH
	DELHI
	9456253131
	18

Attributes

Attributes are properties or characteristics of an entity. Attributes are used to describe the entity. The attribute is nothing but a piece of data that gives more information about the entity. Attributes are used to distinguish one entity from the other entity. Attributes help to categorize the entity and the entity can be easily retrieved and manipulate the entity. Attributes can help the database to be more structural and hierarchical. An entity with no attribute is of no use in the database.
Example
1. Let’s take the student as an entity. Students will have multiple attributes such as roll number, name, and class.
1. These attributes are used to describe the student in more detail.
[image: C:\Users\Admin\Documents\Screenshot-2024-03-23-232743.jpg]
1. As shown in the figure, roll_no, name, and class are the attributes of the entity Student.
1. All three attributes give meaning to the entity. The information about the student entity lies in all 3 attributes.

Types Of Attribute
There are 8 types of attributes in DBMS.
1. Simple Attribute.
1. Composite Attribute.
1. Single Valued Attribute.
1. Multivalued Attribute.
1. Key Attribute.
1. Derived Attribute.
1. Stored Attribute.
1. Complex Attribute.

Simple Attribute
1. Simple attributes are those attributes that cannot be divided into more attributes. Simple attributes state the simple information about the entity such as name, roll_no, class, age, etc.
1. Simple attributes are widely used for storing information about the entity.
Example
roll_no, class, and name
[image: Lightbox]
Composite Attribute

1. When 2 or more than 2 simple attributes are combined to make an attribute then that attribute is called a Composite attribute.
1. The composite attribute is made up of multiple attributes. After combining these attributes, the composed attributes are formed.
1. Complex attributes are used where data is complex and needs to be stored in a complex structure.
Example
City, State, and Street.
[image: Lightbox]
Single Valued Attribute

1. The attribute with only a single value is known as a single-valued attribute. These attributes have a single value for each instance of a given entity.
1. Mostly these attributes are used to provide the unique identity to the multiple instances of attributes.

Example
DOB
[image: Lightbox]
Multivalued Attribute
1. An attribute which can have multiple values is known as a multivalued attribute. Multivalued attributes have multiple values for the single instance of an entity.
1. Keu of entity is associated with multiple values. It does not have only one value. It is the opposite of the single-valued attribute.
Example
 phone_no
[image: Lightbox]
Key Attribute
1. The attribute which has unique values for every row in the table is known as a Key Attribute. The key attribute has a very crucial role in the database.
1. The key attribute is a distinct and unique characteristic of the entity that can be used to identify the entity uniquely.
Example
roll_no.
[image: Lightbox]
Derived Attribute
1. The attribute that can be derived from the other attributes and does not require to be already present in the database is called a Derived Attribute.
1. Derived attributes are not stored in the Database directly. It is calculated by using the stored attributes in the database.

Example
1. Here the student has multiple attributes including DOB and age. It is observed that age can be calculated with the help of the DOB attribute.
1. So age is a derived attribute that is derived from an attribute named DOB.
[image: Lightbox]
Stored Attribute

1. If the data of the attribute remains constant for every instance of entity then it is called a Stored Attribute.
1. The value of the attribute present in the database does not get updated and it remains constant once it is stored.
1. These attributes are used to store permanent information about an entity which will remain constant throughout the lifetime of the entity.
Example
1. The student has 3 attributes as shown above. Her name and DOB will remain the same throughout his/her education. So the student has a fixed value attribute that will never change in the future.
1. These attributes are known as stored attributes.
[image: Lightbox]
Complex Attribute
1. When multi-valued and composite attributes together form an attribute then it is called a Complex attribute.
1. Complex attributes can have an unlimited number of sub-attributes.
Example
1. Here for the student, we created an attribute named contact_info which further decomposed into phone_no + Address.
1. The address is a composite attribute which is further divided into simple attributes and phone_no is a multivalued attribute.
1. This indicates that the contact_info attribute is made from the multi-valued and composite attribute.
[image: Lightbox]
Tuple
A tuple in a database management system is one record in the context of relational databases (one row). You can compare the data present in the database with a spreadsheet, with rows (known as tuples) and columns (known as fields or attributes) representing various data types.
Importance of NULL Value
· It is important to understand that a NULL value differs from a zero value.
· A NULL value is used to represent a missing value, but it usually has one of three different interpretations:
· The value unknown (value exists but is not known)
· Value not available (exists but is purposely withheld)
· Attribute not applicable (undefined for this tuple)
· It is often not possible to determine which of the meanings is intended. Hence, SQL does not distinguish between the different meanings of NULL.

Constraints on Relational Database Model
· Integrity constraints are a set of rules. It is used to maintain the quality of information.
· Integrity constraints ensure that the data insertion, updating, and other processes have to be performed in such a way that data integrity is not affected.
· Thus, integrity constraint is used to guard against accidental damage to the database.
Types of Integrity Constraint

[image: IMG_256]
1. Domain constraints
· Domain constraints can be defined as the definition of a valid set of values for an
· attribute.
· The data type of domain includes string, character, integer, time, date, currency, etc. The value of the attribute must be available in the corresponding domain.
Example:[image: IMG_257]
2. Entity integrity constraints
· The entity integrity constraint states that primary key value can't be null.
· This is because the primary key value is used to identify individual rows in relation and if the primary key has a null value, then we can't identify those rows.
· A table can contain a null value other than the primary key field.
Example:
[image: IMG_258]
3. Referential Integrity Constraints
· A referential integrity constraint is specified between two tables.
· In the Referential integrity constraints, if a foreign key in Table 1 refers to the Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null or be available in Table 2.
Example:
[image: IMG_259]
4. Key constraints
· Keys are the entity set that is used to identify an entity within its entity set uniquely.
· An entity set can have multiple keys, but out of which one key will be the primary key. A primary key can contain a unique and null value in the relational table.
Keys
· Keys play an important role in the relational database.
· It is used to uniquely identify any record or row of data from the table. It is also used to establish and identify relationships between tables.
For example, ID is used as a key in the Student table because it is unique for each student. In the PERSON table, passport_number, license_number, SSN are keys since they are unique for each person.
[image: IMG_256]
Types of keys:
[image: IMG_257]
1. Primary key
· It is the first key used to identify one and only one instance of an entity uniquely. An entity can contain multiple keys, as we saw in the PERSON table. The key which is most suitable from those lists becomes a primary key.
· In the EMPLOYEE table, ID can be the primary key since it is unique for each employee. In the EMPLOYEE table, we can even select License_Number and Passport_Number as primary keys since they are also unique.
· For each entity, the primary key selection is based on requirements and developers.
[image: IMG_258]
2. Candidate key
· A candidate key is an attribute or set of attributes that can uniquely identify a tuple.
· Except for the primary key, the remaining attributes are considered a candidate key. The candidate keys are as strong as the primary key.
For example: In the EMPLOYEE table, id is best suited for the primary key. The rest of the attributes, like SSN, Passport_Number, License_Number, etc., are considered a candidate key.
[image: IMG_259]
3. Super Key
Super key is an attribute set that can uniquely identify a tuple. A super key is a superset of a candidate key.
[image: IMG_260]
For example: In the above EMPLOYEE table, for(EMPLOEE_ID, EMPLOYEE_NAME), the name of two employees can be the same, but their EMPLYEE_ID can't be the same. Hence, this combination can also be a key.
The super key would be EMPLOYEE-ID (EMPLOYEE_ID, EMPLOYEE-NAME), etc.
4. Foreign key
· Foreign keys are the column of the table used to point to the primary key of another table.
· Every employee works in a specific department in a company, and employee and department are two different entities. So we can't store the department's information in the employee table. That's why we link these two tables through the primary key of one table.
· We add the primary key of the DEPARTMENT table, Department_Id, as a new attribute in the EMPLOYEE table.
· In the EMPLOYEE table, Department_Id is the foreign key, and both the tables are related.
[image: IMG_261]
5. Composite key
Whenever a primary key consists of more than one attribute, it is known as a composite key. This key is also known as Concatenated Key.
[image: IMG_263]
For example, in employee relations, we assume that an employee may be assigned multiple roles, and an employee may work on multiple projects simultaneously. So the primary key will be composed of all three attributes, namely Emp_ID, Emp_role, and Proj_ID in combination. So these attributes act as a composite key since the primary key comprises more than one attribute

Advantages of Relational Database Model
1. It is simpler than the hierarchical model and network model.
1. It is easy and simple to understand.
1. Its structure can be changed anytime upon requirement.
1. Data Integrity: The relational database model enforces data integrity through various constraints such as primary keys, foreign keys, and unique constraints. This ensures that the data in the database is accurate, consistent, and valid.
1. Flexibility: The relational database model is highly flexible and can handle a wide range of data types and structures. It also allows for easy modification and updating of the data without affecting other parts of the database.
1. Scalability: The relational database model can scale to handle large amounts of data by adding more tables, indexes, or partitions to the database. This allows for better performance and faster query response times.
1. Security: The relational database model provides robust security features to protect the data in the database. These include user authentication, authorization, and encryption of sensitive data.
1. Data consistency: The relational database model ensures that the data in the database is consistent across all tables. This means that if a change is made to one table, the corresponding changes will be made to all related tables.
1. Query Optimization: The relational database model provides a query optimizer that can analyze and optimize SQL queries to improve their performance. This allows for faster query response times and better scalability.

Disadvantages of the Relational Model
1. Few database relations have certain limits which can’t be expanded further.
1. It can be complex and it becomes hard to use.
1. Complexity: The relational model can be complex and difficult to understand, particularly for users who are not familiar with SQL and database design principles. This can make it challenging to set up and maintain a relational database.
1. Performance: The relational model can suffer from performance issues when dealing with large data sets or complex queries. In particular, joins between tables can be slow, and indexing strategies can be difficult to optimize.
1. Scalability: While the relational model is generally scalable, it can become difficult to manage as the database grows in size. Adding new tables or indexes can be time-consuming, and managing relationships between tables can become complex.
1. Cost: Relational databases can be expensive to license and maintain, particularly for large-scale deployments. Additionally, relational databases often require dedicated hardware and specialized software to run, which can add to the cost.
1. Limited flexibility: The relational model is designed to work with tables that have predefined structures and relationships. This can make it difficult to work with data that does not fit neatly into a table-based format, such as unstructured or semi-structured data.
1. Data redundancy: In some cases, the relational model can lead to data redundancy, where the same data is stored in multiple tables. This can lead to inefficiencies and can make it difficult to ensure data consistency across the database.

Relational Algebra

Relational Algebra is a procedural query language. The main purpose of using Relational Algebra is to define operators that transform one or more input relations into an output relation. Given that these operators accept relations as input and produce relations as output, they can be combined and used to express potentially complex queries that transform potentially many input relations (whose data are stored in the database) into a single output relation (the query results).
Fundamental Operators
These are the basic/fundamental operators used in Relational Algebra.
1. Selection(σ)
1. Projection(π)
1. Union(U)
1. Set Difference(-)
1. Set Intersection(∩)
1. Rename(ρ)
1. Cartesian Product(X)

1. Selection(σ): It is used to select required tuples of the relations.
Example:

	A
	B
	C

	1
	2
	4

	2
	2
	3

	3
	2
	3

	4
	3
	4

For the above relation, σ(c>3)R will select the tuples which have c more than 3.

	A
	B
	C

	1
	2
	4

	4
	3
	4

Note: The selection operator only selects the required tuples but does not display them. For display, the data projection operator is used.

2. Projection(π): It is used to project required column data from a relation.
Example: Consider Table 1. Suppose we want columns B and C from Relation R.
π(B,C)R will show following columns.
	B
	C

	2
	4

	2
	3

	3
	4

Note: By Default, projection removes duplicate data.

3. Union(U): Union operation in relational algebra is the same as union operation in set theory.
Example:
 FRENCH
	Student_Name
	Roll_Number

	Ram
	01

	Mohan
	02

	Vivek
	13

	Geeta
	17

GERMAN
	Student_Name
	Roll_Number

	Vivek
	13

	Geeta
	17

	Shyam
	21

	Rohan
	25

Consider the following table of Students having different optional subjects in their course.
π(Student_Name)FRENCH U π(Student_Name)GERMAN
	Student_Name

	Ram

	Mohan

	Vivek

	Geeta

	Shyam

	Rohan

Note: The only constraint in the union of two relations is that both relations must have the same set of Attributes.

4. Set Difference(-): Set Difference in relational algebra is the same set difference operation as in set theory.
Example: From the above table of FRENCH and GERMAN, Set Difference is used as follows
π(Student_Name)FRENCH - π(Student_Name)GERMAN
	Student_Name

	Ram

	Mohan

Note: The only constraint in the Set Difference between two relations is that both relations must have the same set of Attributes.

5. Set Intersection(∩): Set Intersection in relational algebra is the same set intersection operation in set theory.
Example: From the above table of FRENCH and GERMAN, the Set Intersection is used as follows
π(Student_Name)FRENCH ∩ π(Student_Name)GERMAN

	Student_Name

	Vivek

	Geeta

Note: The only constraint in the Set Difference between two relations is that both relations must have the same set of Attributes.

6. Rename(ρ): Rename is a unary operation used for renaming attributes of a relation.
 ρ(a/b)R will rename the attribute 'b' of the relation by 'a'.
7. Cross Product(X): Cross-product between two relations. Let’s say A and B, so the cross product between A X B will result in all the attributes of A followed by each attribute of B. Each record of A will pair with every record of B.
Example:
 A
	Name
	Age
	Sex

	Ram
	14
	M

	Sona
	15
	F

	Kim
	20
	M

 B
	ID
	Course

	1
	DS

	2
	DBMS

 A X B
	Name
	Age
	Sex
	ID
	Course

	Ram
	14
	M
	1
	DS

	Ram
	14
	M
	2
	DBMS

	Sona
	15
	F
	1
	DS

	Sona
	15
	F
	2
	DBMS

	Kim
	20
	M
	1
	DS

	Kim
	20
	M
	2
	DBMS

Note: If A has ‘n’ tuples and B has ‘m’ tuples then A X B will have ‘ n*m ‘ tuples.

Derived Operators
These are some of the derived operators, which are derived from the fundamental operators.
1. Natural Join(⋈)
1. Conditional Join

1. Natural Join(⋈): Natural join is a binary operator. Natural join between two or more relations will result in a set of all combinations of tuples where they have an equal common attribute.
Example:
 EMP
	Name
	ID
	Dept_Name

	A
	120
	IT

	B
	125
	HR

	C
	110
	Sales

	D
	111
	IT

 DEPT
	Dept_Name
	Manager

	Sales
	Y

	Production
	Z

	IT
	A

Natural join between EMP and DEPT with condition :
EMP.Dept_Name = DEPT.Dept_Name

 EMP ⋈ DEPT
	Name
	ID
	Dept_Name
	Manager

	A
	120
	IT
	A

	C
	110
	Sales
	Y

	D
	111
	IT
	A

2.Conditional Join: Conditional join works similarly to natural join. In natural join, by default condition is equal between common attributes while in conditional join we can specify any condition such as greater than, less than, or not equal.
Example:
 R
	ID
	Sex
	Marks

	1
	F
	45

	2
	F
	55

	3
	F
	60

 S
	ID
	Sex
	Marks

	10
	M
	20

	11
	M
	22

	12
	M
	59

Join between R and S with condition R.marks >= S.marks
	R.ID
	R.Sex
	R.Marks
	S.ID
	S.Sex
	S.Marks

	1
	F
	45
	10
	M
	20

	1
	F
	45
	11
	M
	22

	2
	F
	55
	10
	M
	20

	2
	F
	55
	11
	M
	22

	3
	F
	60
	10
	M
	20

	3
	F
	60
	11
	M
	22

	3
	F
	60
	12
	M
	59

Relational Calculus

As Relational Algebra is a procedural query language, Relational Calculus is a non-procedural query language. It basically deals with the end results. It always tells me what to do but never tells me how to do it.
There are two types of Relational Calculus
1. Tuple Relational Calculus(TRC)
1. Domain Relational Calculus(DRC)

1. Tuple Relational Calculus (TRC) is a non-procedural query language used in relational database management systems (RDBMS) to retrieve data from tables. TRC is based on the concept of tuples, which are ordered sets of attribute values that represent a single row or record in a database table.
TRC is a declarative language, meaning that it specifies what data is required from the database, rather than how to retrieve it. TRC queries are expressed as logical formulas that describe the desired tuples.
Syntax: The basic syntax of TRC is as follows:
{ t | P(t) }
where t is a tuple variable and P(t) is a logical formula that describes the conditions that the tuples in the result must satisfy. The curly braces {} are used to indicate that the expression is a set of tuples.

For example, let’s say we have a table called “Employees” with the following attributes:
	Employee ID

	Name

	Salary

	Department ID

To retrieve the names of all employees who earn more than $50,000 per year, we can use the following TRC query:
{ t | Employees(t) ∧ t.Salary > 50000 }
In this query, the “Employees(t)” expression specifies that the tuple variable t represents a row in the “Employees” table. The “∧” symbol is the logical AND operator, which is used to combine the condition “t.Salary > 50000” with the table selection.
The result of this query will be a set of tuples, where each tuple contains the Name attribute of an employee who earns more than $50,000 per year.
TRC can also be used to perform more complex queries, such as joins and nested queries, by using additional logical operators and expressions.
While TRC is a powerful query language, it can be more difficult to write and understand than other SQL-based query languages, such as Structured Query Language (SQL). However, it is useful in certain applications, such as in the formal verification of database schemas and in academic research.
Tuple Relational Calculus is a non-procedural query language, unlike relational algebra. Tuple Calculus provides only the description of the query but it does not provide the methods to solve it. Thus, it explains what to do but not how to do it.

Tuple Relational Query
In Tuple Calculus, a query is expressed as
		{t| P(t)}
where t = resulting tuples,
P(t) = known as Predicate and these are the conditions that are used to fetch t. Thus, it generates a set of all tuples t, such that Predicate P(t) is true for t.
P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬).
It also uses quantifiers:
∃ t ∈ r (Q(t)) = ”there exists” a tuple in t in relation r such that predicate Q(t) is true.
∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r.

2. Domain Relational Calculus (DRC)
Domain Relational Calculus is similar to Tuple Relational Calculus, where it makes a list of the attributes that are to be chosen from the relations as per the conditions.
	{<a1,a2,a3,.....an> | P(a1,a2,a3,.....an)}
where a1,a2,…an are the attributes of the relation and P is the condition.

Tuple Relational Calculus Examples
Table Customer
	Customer name
	Street
	City

	Saurabh
	A7
	Patiala

	Mehak
	B6
	Jalandhar

	Sumiti
	D9
	Ludhiana

	Ria
	A5
	Patiala

Table Branch
	Branch name
	Branch City

	ABC
	Patiala

	DEF
	Ludhiana

	GHI
	Jalandhar

Table Account
	Account number
	Branch name
	Balance

	1111
	ABC
	50000

	1112
	DEF
	10000

	1113
	GHI
	9000

	1114
	ABC
	7000

Table Loan
	Loan number
	Branch name
	Amount

	L33
	ABC
	10000

	L35
	DEF
	15000

	L49
	GHI
	9000

	L98
	DEF
	65000

Table Borrower
	Customer name
	Loan number

	Saurabh
	L33

	Mehak
	L49

	Ria
	L98

Table Depositor
	Customer name
	Account number

	Saurabh
	1111

	Mehak
	1113

	Suniti
	1114

Example 1: Find the loan number, branch, and amount of loans greater than or equal to 10000 amount.
	{t| t ∈ loan ∧ t[amount]>=10000}

Resulting relation:
	Loan number
	Branch name
	Amount

	L33
	ABC
	10000

	L35
	DEF
	15000

	L98
	DEF
	65000

In the above query, t[amount] is known as a tuple variable.
Example 2: Find the loan number for each loan of an amount greater or equal to 10000.
{t| ∃ s ∈ loan(t[loan number] = s[loan number]
 ∧ s[amount]>=10000)}
Resulting relation:
	Loan number

	L33

	L35

	L98

Example 3: Find the names of all customers who have a loan and an account at the bank.
{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name])
∧ ∃ u ∈ depositor(t[customer-name] = u[customer-name])}
Resulting relation:
	Customer name

	Saurabh

	Mehak

Example 4: Find the names of all customers having a loan at the “ABC” branch.
	{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name]
	 ∧ ∃ u ∈ loan(u[branch-name] = “ABC” ∧ u[loan-number] = s[loan-number]))}
Resulting relation:
	Customer name

	Saurabh

Basic SQL
Database Schema
· A database schema is a logical representation of data that shows how the data in a database should be stored logically. It shows how the data is organized and the relationship between the tables.
· Database schema contains table, field, views and relation between different keys like primary key, foreign key.
· Database schema provides the organization of data and the relationship between the stored data.
· Database schema defines a set of guidelines that control the database along with that it provides information about the way of accessing and modifying the data.
Types of Database Schemas
There are 3 types of database schema:
Physical Database Schema
· A Physical schema defines, how the data or information is stored physically in the storage systems in the form of files & indices. This is the actual code or syntax needed to create the structure of a database, we can say that when we design a database at a physical level, it’s called physical schema.
· The Database administrator chooses where and how to store the data in the different blocks of storage.
Logical Database Schema
· A logical database schema defines all the logical constraints that need to be applied to the stored data, and also describes tables, views, entity relationships, and integrity constraints.
· The Logical schema describes how the data is stored in the form of tables & how the attributes of a table are connected.
· Using ER modelling the relationship between the components of the data is maintained.
· In logical schema different integrity constraints are defined in order to maintain the quality of insertion and update the data.
View Database Schema
· It is a view level design which is able to define the interaction between end-user and database.
· User is able to interact with the database with the help of the interface without knowing much about the stored mechanism of data in database.
[image: IMG_256]
Data Types
An SQL developer must know what data type will be stored inside each column while creating a table. The data type guideline for SQL is to understand what type of data is expected inside each column and it also identifies how SQL will interact with the stored data.

[image: IMG_256]

1. Binary Datatypes
There are Three types of binary Datatypes which are given below:
	Data Type
	Description

	binary
	It has a maximum length of 8000 bytes. It contains fixed-length binary data.

	varbinary
	It has a maximum length of 8000 bytes. It contains variable-length binary data.

	image
	It has a maximum length of 2,147,483,647 bytes. It contains variable-length binary data.

2. Approximate Numeric Datatype :
The subtypes are given below:
	Data type
	From
	To
	Description

	float
	-1.79E + 308
	1.79E + 308
	It is used to specify a floating-point value e.g. 6.2, 2.9 etc.

	real
	-3.40e + 38
	3.40E + 38
	It specifies a single precision floating point number

3. Exact Numeric Datatype
The subtypes are given below:
	Data type
	Description

	int
	It is used to specify an integer value.

	smallint
	It is used to specify small integer value.

	bit
	It has the number of bits to store.

	decimal
	It specifies a numeric value that can have a decimal number.

	numeric
	It is used to specify a numeric value.

4. Character String Datatype
The subtypes are given below:
	Data type
	Description

	char
	It has a maximum length of 8000 characters. It contains Fixed-length non-unicode characters.

	varchar
	It has a maximum length of 8000 characters. It contains variable-length non-unicode characters.

	text
	It has a maximum length of 2,147,483,647 characters. It contains variable-length non-unicode characters.

5. Date and time Data types
The sub types are given below:

	Datatype
	Description

	date
	It is used to store the year, month, and days value.

	time
	It is used to store the hour, minute, and second values.

	timestamp
	It stores the year, month, day, hour, minute, and the second value.

Table Definitions:
Definition Language actually consists of the SQL commands that can be used to define the database schema. It simply deals with descriptions of the database schema and is used to create and modify the structure of database objects in the database.
DDL is a set of SQL commands used to create, modify, and delete database structures but not data. These commands are normally not used by a general user, who should be accessing the database via an application.
List of DDL Commands:
Here are all the main DDL (Data Definition Language) commands along with their syntax:
	Command
	Description
	Syntax

	CREATE
	Create database or its objects (table, index, function, views, store procedure, and triggers)
	CREATE TABLE table_name (column1 data_type, column2 data_type, ...);

	DROP
	Delete objects from the database
	DROP TABLE table_name;

	ALTER
	Alter the structure of the database
	ALTER TABLE table_name ADD COLUMN column_name data_type;

CREATE Table
SQL create table is used to create a table in the database. To define the table, you should define the name of the table and also define its columns and column's data type.
Syntax
create table "table_name"
("column1" "data type",
column2" "data type",
column3" "data type",
"columnN" "data type"
);
Example
SQL> CREATE TABLE EMPLOYEE (
EMP_ID INT NOT NULL,
EMP_NAME VARCHAR (25) NOT NULL,
PHONE_NO INT NOT NULL,
ADDRESS CHAR (30),
PRIMARY KEY (ID)
);
If you create the table successfully, you can verify the table by looking at the message by the SQL server. Else you can use DESC command as follows:
SQL> DESC EMPLOYEE;
	Field
	Type
	Null
	Key
	Default
	Extra

	EMP_ID
	int(11)
	NO
	PRI
	NULL
	

	EMP_NAME
	varchar(25)
	NO
	
	NULL
	

	PHONE_NO
	NO
	int(11)
	
	NULL
	

	ADDRESS
	YES
	
	
	NULL
	char(30)

DROP table
A SQL drop table is used to delete a table definition and all the data from a table. When this command is executed, all the information available in the table is lost forever, so you have to very careful while using this command.
Syntax
DROP TABLE "table_name";
Example
SQL>DROP TABLE EMPLOYEE;
ALTER TABLE
SQL ALTER TABLE command can add, delete, or modify columns of an existing table.
This article discusses the SQL ALTER TABLE statement with examples and syntax.
ALTER TABLE STATEMENT
The ALTER TABLE statement in SQL is used to add, remove, or modify columns in an existing table. The ALTER TABLE statement is also used to add and remove various constraints on existing tables.
It allows for structural changes like adding new columns, modifying existing ones, deleting columns, and renaming columns within a table.
Syntax
To alter/modify the table use the ALTER TABLE syntax:
ALTER TABLE table_name
clause [column_name] [datatype];
Here, the clause is the operational clause of the ALTER TABLE statement. Some key clauses of the ALTER TABLE statement are:
ADD – To add a new column to the table:
ALTER TABLE table_name
ADD column_name datatype;
MODIFY/ALTER – To change the data type of an existing column:
ALTER TABLE table_name
MODIFY COLUMN column_name datatype;
DROP – To delete an existing column from the table:
ALTER TABLE table_name
DROP COLUMN column_name;
SQL ALTER TABLE Examples
Below are the examples of ALTER TABLE statement. These examples demonstrates different use cases and shows how to use ALTER TABLE statement in SQL.
SQL ALTER TABLE ADD Column Example
The following SQL query adds an “Email” column to the “Students” table:
ALTER TABLE Students
ADD Email varchar(255);
SQL ALTER TABLE DROP Column Example
The following query deletes the “Email” column from “Students” table:
ALTER TABLE Students
DROP COLUMN Email;
SQL ALTER TABLE MODIFY Column Example
ALTER TABLE table_name
MODIFY COLUMN column_name datatype;
SQL ALTER TABLE Queries
Suppose there is a student database:
	ROLL_NO
	NAME

	1
	Ram

	2
	Abhi

	3
	Rahul

	4
	Tanu

To ADD 2 columns AGE and COURSE to table Student.
Query:
 ALTER TABLE Student ADD
 (AGE number(3),COURSE varchar(40));
Output:
	ROLL_NO
	NAME
	AGE
	COURSE

	1
	Ram
	
	

	2
	Abhi
	
	

	3
	Rahul
	
	

	4
	Tanu
	
	

MODIFY column COURSE in table Student.
Query:
 ALTER TABLE Student
 MODIFY COURSE varchar(20);
After running the above query the maximum size of the Course Column is reduced to 20 from 40.
DROP column COURSE in table Student.
Query:
ALTER TABLE Student
DROP COLUMN COURSE;
Output:
	ROLL_NO
	NAME
	AGE

	1
	Ram
	

	2
	Abhi
	

	3
	Rahul
	

	4
	Tanu
	

DML commands
Here are all the main DML (Data Manipulation Language) commands along with their syntax:
	Command
	Description
	Syntax

	INSERT
	Insert data into a table
	INSERT INTO table_name (column1, column2, ...) VALUES (value1, value2, ...);

	UPDATE
	Update existing data within a table
	UPDATE table_name SET column1 = value1, column2 = value2 WHERE condition;

	DELETE
	Delete records from a database table
	DELETE FROM table_name WHERE condition;

SQL INSERT INTO Statement
· The INSERT INTO statement in SQL is used to add new rows of data to a table in a database.
· There are two main ways to use the INSERT INTO statement by specifying the columns and values explicitly or by inserting values for all columns without specifying them.
Syntax
There are two primary syntaxes of INSERT INTO statements depending on the requirements. The two syntaxes are:
1. Only Values
The first method is to specify only the value of data to be inserted without the column names.
INSERT INTO table_name
VALUES (value1, value2, value);
Parameters:
· table_name: name of the table.
· value1, value2: value of first column, second column,… for the new record
2. Column Names And Values Both
In the second method we will specify both the columns which we want to fill and their corresponding values as shown below:
INSERT INTO table_name (column1, column2, column3)
VALUES (value1, value2, value);
Parameters:
· table_name: name of the table.
· column1, column2..: name of first column, second column.
· value1, value2, value..: the values for each specified column of the new record.
Examples of SQL INSERT INTO
For better understanding, let’s look at the SQL Server INSERT statement with examples.
Let us first create a table named ‘Student‘.
CREATE DATABASE StudentDB;
USE StudentDB;

CREATE TABLE Student (ROLL_NO INT PRIMARY KEY, NAME VARCHAR(50), ADDRESS VARCHAR(100), PHONE VARCHAR(15), AGE INT
);

INSERT INTO Student (ROLL_NO, NAME, ADDRESS, PHONE, AGE) VALUES
(1, 'Ram', 'Delhi', 'XXXXXXXXXX', 18),
(2, 'Ramesh', 'Gurgaon', 'XXXXXXXXXX', 18),
(3, 'Sujit', 'Rohtak', 'XXXXXXXXXX', 20),
(4, 'Suresh', 'Rohtak', 'XXXXXXXXXX', 18);
Created Table:
	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	Ram
	Delhi
	xxxxxxxxxxxxxx
	18

	2
	RAMESH
	GURGAON
	xxxxxxxxxxxxxx
	18

	3
	SUJIT
	ROHTAK
	xxxxxxxxxxxxxx
	20

	4
	SURESH
	ROHTAK
	xxxxxxxxxxxxxx
	18

	3
	SUJIT
	ROHTAK
	xxxxxxxxxxxxxx
	20

	2
	RAMESH
	GURGAON
	xxxxxxxxxxxxxx
	18

Example 2: Insert Values to Specified Columns Using INSERT INTO Example
If we want to insert values in the specified columns then we use the following query.
Query:
INSERT INTO Student (ROLL_NO, NAME, Age)
VALUES ('5','PRATIK','19');
Output:
The table Student will now look like this:
	ROLL_NO
	NAME
	ADDRESS
	PHONE
	Age

	1
	Ram
	Delhi
	XXXXXXXXXX
	18

	2
	RAMESH
	GURGAON
	XXXXXXXXXX
	18

	3
	SUJIT
	ROHTAK
	XXXXXXXXXX
	20

	4
	SURESH
	Delhi
	XXXXXXXXXX
	18

	3
	SUJIT
	ROHTAK
	XXXXXXXXXX
	20

	2
	RAMESH
	GURGAON
	XXXXXXXXXX
	18

	5
	PRATIK
	null
	null
	19

UPDATE Statement in SQL
The UPDATE statement in SQL is used to update the data of an existing table in the database. We can update single columns as well as multiple columns using the UPDATE statement as per our requirement.
Update Syntax
The syntax for SQL UPDATE Statement is :
UPDATE table_name SET column1 = value1, column2 = value2,…
WHERE condition;
Where,
· table_name: name of the table
· column1: name of first, second, third column….
· value1: new value for first, second, third column….
· condition: condition to select the rows for which the
Parameter Explanation
1. UPDATE: Command is used to update the column value in the table.
2. WHERE: Specifies the condition which we want to implement on the table.
Update Single Column Using UPDATE Statement Example
Update the column NAME and set the value to ‘Nitin’ in the rows where the Age is 22.
Query:
UPDATE Customer SET CustomerName
= 'Nitin' WHERE Age = 22;
Output:
[image: IMG_256]
Updating Multiple Columns using UPDATE Statement Example
Update the columns NAME to ‘Satyam’ and Country to ‘USA’ where CustomerID is 1.
Query:
UPDATE Customer SET CustomerName = 'Satyam',
Country = 'USA' WHERE CustomerID = 1;
Output:
[image: IMG_257]
Note: For updating multiple columns we have used comma(,) to separate the names and values of two columns.
Update Single Column Using UPDATE Statement Example
Update the column NAME and set the value to ‘Nitin’ in the rows where the Age is 22.
Query:
UPDATE Customer SET CustomerName
= 'Nitin' WHERE Age = 22;
Output:
[image: IMG_256]
Updating Multiple Columns using UPDATE Statement Example
Update the columns NAME to ‘Satyam’ and Country to ‘USA’ where CustomerID is 1.
Query:
UPDATE Customer SET CustomerName = 'Satyam',
Country = 'USA' WHERE CustomerID = 1;
Output:
[image: IMG_257]
Note: For updating multiple columns we have used comma(,) to separate the names and values of two columns.
DELETE Statement
[bookmark: _GoBack]SQL DELETE is a basic SQL operation used to delete data in a database. SQL DELETE is an important part of database management DELETE can be used to selectively remove records from a database table based on certain conditions. This SQL DELETE operation is important for database size management, data accuracy, and integrity.
Syntax:
DELETE FROM table_name
WHERE some_condition;
Parameter Explanation
· Some_condition: condition to choose a particular record.
· table_name: name of the table
Deleting Single Record
You can delete the records named Rithvik by using the below query:
Query
DELETE FROM GFG_Employees WHERE NAME = 'Rithvik';
Output
[image: IMG_256]
Deleting Multiple Records
Delete the rows from the table GFG_Employees where the department is “Development”. This will delete 2 rows(the first row and the seventh row).
Query
DELETE FROM GFG_Employees
WHERE department = 'Development';
Output
[image: IMG_257]
output
Delete All of the Records
To remove all the entries from the table, you can use the following query:
Query
DELETE FROM GFG_EMPLOyees;
Or
DELETE * FROM GFG_EMPLOyees;
Output
All of the records in the table will be deleted, there are no records left to display. The table GFG_EMPLOyees will become empty.
[image: IMG_258]

Department of CSE,NBKRIST Prepared by Smt B.Rajani
image4.jpeg
Student

image5.jpeg
Student

image6.jpeg
G

= Rl

Student

Address

)

Com

image7.png
Integrity Constraint.

Domain
Constraint

Entity Integrity
Constraint

Referential
Integrity Constraint

Key Constraint

image8.png
D NAME SEMENSTER | AGE
1000 Tom 1st 17
1001 Johnson 2nd 24
1002 Leonardo 5th 21
1003 Kate 3rd 19
1004 Morgan 8th A,

Not allowed. Because AGE is an integer attribute

image9.png
EMPLOYEE

EMP_ID EMP_NAME SALARY
123 Jack 30000
142 Harry 60000
164 John 20000

) Jackson 27000

Not allowed as primary key cant contain a NULL value

image10.png
(Table 1)

[EMP_NAME| NAME | AGE | DNo ——— Foreign key
1 Jack 2 B
2 Hary 0 2
3 Jon 27 18 —|—— Notallowed as D_No 18 is
not defined as a Primary
4 Devil 38 13 key of table 2 and In table 1
D_Nois foreign key
defined
Relationships
(Table 2)
Primary Key ——————D_No | D_Location
1 Mumbai
2 Deni
12 Noida

image11.png
STUDENT

PERSON

ID
Name
Address

Course

Name
DOB

Passport, Number

License_Number

SSN

image12.png
Keys

Condidate ¢ uper Key Foreign Alternate Composite Artificial

Key Key Key Key Key

image13.png
Employee_ID Primary Key
Employee_Name

Employee_Address
Passport_Number
License_Number

SSN

image14.png
EMPLOYEE

Employee_ID
Employee_Name

Employee_Address
Passport_Number
License_Number
SSN

Condidate Key

image15.png
EMPLOYEE

Employee_ID

Super Key

Employee_Name

Passport_Number

SSN

image16.png
EMPLOYEE EMPLOYEE

Employee_ID

Department_ID
Employee_Name partment

Department_Nam¢
Passport_Number it

License_Number

SSN

Department_ID

image17.png
Employee

Composite Key

image18.jpeg
Database

image19.png
SQL Datatype

Binary
Datatype

Numeric
Datatype

Extract Numeric

String
Datatype

Datatype

image20.png
Customer

CustomerID

EAFNIETEY

CustomerName
shubham
‘Aman

Naveen

Aditya

Nitin

LastName
Thakur
Chopra
Tulasi
Arpan
Jain

Country
India

Australia
srilanka

spain

Age

24
2

Phone.

image21.png
Customer

CustomerID

EAFNIETEY

CustomerName
satyam

Aman

Naveen

Aditya

Nitin

LastName
Thakur
Chopra
Tulasi
Arpan
Jain

Country
UsA
Australia
srilanka

spain

Age

24
2

Phone.

image22.png
id

name

Jessie

Praveen

Bisa

Suraj

Om

Naruto

email

jessie23@gmail.com

praveen_dagger@yahoo.com

dragonBall@gmail.com

srjsunny@gmail.com

OmShukla@yahoo.com

uzumaki@konoha.com

department

Development

HR

Sales

Quality Assurance

IT

Development

image23.png
PRI

name
Praveen
Bisa
suraj

om

email
praveen_dagger@yahoo.com
dragonBall@gmail.com
stisunny@gmail.com

omshukla@yahoo.com

department
HR

sSales

Quality Assurance
m

image24.png
id name email department

empty

image1.jpeg
Gm> Gomd G

Student

image2.jpeg
Student

image3.jpeg
Cote D

Student

DoB

