

UNIT-3
SQL: Basic SQL querying (Select and Project) using where clause
WHERE Clause

WHERE keyword is used for fetching filtered data in a result set. It is used to fetch data according to particular criteria. WHERE keyword can also be used to filter data by matching patterns.

Syntax:
SELECT column1,column2 FROM table_name WHERE column_name operator value;
Parameter Explanation:

1. column1,column2: fields in the table
1. table_name: name of table
1. column_name: name of field used for filtering the data
1. operator: operation to be considered for filtering
1. value: exact value or pattern to get related data in result

List of Operators that Can be Used with WHERE Clause
	Operator
	Description

	>
	Greater Than

	>=
	Greater than or Equal to

	<
	Less Than

	<=
	Less than or Equal to

	=
	Equal to

	<>
	Not Equal to

	BETWEEN
	In an inclusive Range

	LIKE
	Search for a pattern

	IN
	To specify multiple possible values for a column

Query:
CREATE TABLE Emp1(
 EmpID INT PRIMARY KEY,
 Name VARCHAR(50),
 Country VARCHAR(50),
 Age int(2),
 mob int(10)
);
-- Insert some sample data into the Customers table
INSERT INTO Emp1 (EmpID, Name,Country, Age, mob)
VALUES (1, 'Shubham', 'India','23','738479734'),
 (2, 'Aman ', 'Australia','21','436789555'),
 (3, 'Naveen', 'Sri lanka','24','34873847'),
 (4, 'Aditya', 'Austria','21','328440934'),
 (5, 'Nishant', 'Spain','22','73248679');
 Select * from Emp1;
Where Clause with Logical Operators
To fetch records of Employee with ages equal to 24.
Query:
SELECT * FROM Emp1 WHERE Age=24;
Output:
	EmpID
	Name
	Country
	Age
	mobile

	3
	naveen
	srilanka
	24
	34873847

To fetch the EmpID, Name and Country of Employees with Age greater than21.
Query:
SELECT EmpID, Name, Country FROM Emp1 WHERE Age > 21;
Output:
	EmpID
	Name
	Country

	1
	shubham
	india

	2
	Naveen
	srilanka

	3
	Nishant
	spain

Where Clause with BETWEEN Operator
It is used to fetch filtered data in a given range inclusive of two values.
Syntax:
SELECT column1,column2 FROM table_name
WHERE column_name BETWEEN value1 AND value2;
Parameter Explanation:
1. BETWEEN: operator name
1. value1 AND value2: exact value from value1 to value2 to get related data in result set.
To fetch records of Employees where Age is between 22 and 24 (inclusive).
Query:
SELECT * FROM Emp1 WHERE Age BETWEEN 22 AND 24;
Output:

	EmpID
	Name
	Country
	Age
	mobile

	1
	shubham
	India
	23
	738479734

	3
	naveen
	srilanka
	24
	34873847

	5
	Nishant
	spain
	22
	73248679

Where Clause with LIKE Operator
It is used to fetch filtered data by searching for a particular pattern in the where clause.
Syntax:
SELECT column1,column2 FROM
table_name WHERE column_name LIKE pattern;
Parameters Explanation:
1. LIKE: operator name
1. pattern: exact value extracted from the pattern to get related data in the result set.
Note: The character(s) in the pattern is case-insensitive.
To fetch records of Employees where Name starts with the letter S.
Query:
SELECT * FROM Emp1 WHERE Name LIKE 'S%';
The ‘%'(wildcard) signifies the later characters here which can be of any length and value.
Output:
	EmpID
	Name
	Country
	Age
	mobile

	1
	shubham
	India
	23
	738479734

To fetch records of Employees where Name contains the pattern ‘M’.

Query:
SELECT * FROM Emp1 WHERE Name LIKE '%M%';
Output:
	EmpID
	Name
	Country
	Age
	mobile

	1
	shubham
	India
	23
	738479734

	2
	Aman
	Australia
	21
	436789555

Where Clause with IN Operator
It is used to fetch the filtered data same as fetched by ‘=’ operator just the difference is that here we can specify multiple values for which we can get the result set.
Syntax:
SELECT column1,column2 FROM table_name WHERE column_name IN (value1,value2,..);
Parameters Explanation:
1. IN: operator name
1. value1,value2,..: exact value matching the values given and get related data in the result set.
To fetch the Names of Employees where Age is 21 or 23.

Query:
SELECT Name FROM Emp1 WHERE Age IN (21,23);
Output:
	Name

	shubham

	Aman

	Aditya

Operators in SQL

Operators in SQL are symbols that help us to perform specific mathematical and logical computations on operands. An operator can either be unary or binary.
The unary operator operates on one operand, and the binary operator operates on two operands.

Arithmetic Operators
We can use various Arithmetic Operators on the data stored in the tables.
Arithmetic Operators are:
+ [Addition]
- [Subtraction]
/ [Division]
* [Multiplication]
% [Modulus]

Addition (+) :
It is used to perform addition operation on the data items, items include either single column or multiple columns.
Implementation:
SELECT employee_id, employee_name, salary, salary + 100
 AS "salary + 100" FROM addition;
Output:
	employee_id
	employee_name
	salary
	Salary+100

	1
	alex
	25000
	25100

	2
	rr
	55000
	55100

	3
	jpm
	52000
	52100

	4
	ggshmr
	12312
	12412

Here we have done addition of 100 to each Employee’s salary i.e, addition operation on single column.
Let’s perform addition of 2 columns:
SELECT employee_id, employee_name, salary, salary + employee_id
 AS "salary + employee_id" FROM addition;

Output:
	employee_id
	employee_name
	salary
	Salary+employee_id

	1
	alex
	25000
	25001

	2
	rr
	55000
	55002

	3
	jpm
	52000
	52003

	4
	ggshmr
	12312
	12316

Here we have done addition of 2 columns with each other i.e, each employee’s employee_id is added with its salary.
Subtraction (-) :
It is use to perform subtraction operation on the data items, items include either single column or multiple columns.
Implementation:
SELECT employee_id, employee_name, salary, salary - 100
 AS "salary - 100" FROM subtraction;
Output:

	employee_id
	employee_name
	salary
	salary-100

	12
	Finch
	15000
	14900

	22
	Peter
	25000
	24900

	32
	Warner
	5600
	5500

	42
	Watson
	90000
	89900

Here we have done subtraction of 100 to each Employee’s salary i.e, subtraction operation on single column.
Let’s perform subtraction of 2 columns:
SELECT employee_id, employee_name, salary, salary - employee_id
 AS "salary - employee_id" FROM subtraction;

Output:
	employee_id
	employee_name
	salary
	salary-employee_id

	12
	Finch
	15000
	14988

	22
	Peter
	25000
	24978

	32
	Warner
	5600
	5568

	42
	Watson
	90000
	89958

Here we have done subtraction of 2 columns with each other i.e, each employee’s employee_id is subtracted from its salary.
Multiplication (*) :
It is use to perform multiplication of data items.
Implementation:
SELECT employee_id, employee_name, salary, salary * 100
 AS "salary * 100" FROM addition;
Output:
	employee_id
	employee_name
	salary
	Salary*100

	1
	Finch
	25000
	2500000

	2
	Peter
	55000
	5500000

	3
	Warner
	52000
	5200000

	4
	Watson
	12312
	1231200

Here we have done multiplication of 100 to each Employee’s salary i.e, multiplication operation on single column.
Let’s perform multiplication of 2 columns:
SELECT employee_id, employee_name, salary, salary * employee_id
 AS "salary * employee_id" FROM addition;
Output:
	employee_id
	employee_name
	salary
	Salary*employee_id

	1
	Finch
	25000
	25000

	2
	Peter
	55000
	110000

	3
	Warner
	52000
	156000

	4
	Watson
	12312
	49248

Here we have done multiplication of 2 columns with each other i.e, each employee’s employee_id is multiplied with its salary.
Modulus (%) :
It is use to get remainder when one data is divided by another.
Implementation:
SELECT employee_id, employee_name, salary, salary % 25000
 AS "salary % 25000" FROM addition;
Output:
	employee_id
	employee_name
	salary
	Salary%25000

	1
	Finch
	25000
	0

	2
	Peter
	55000
	5000

	3
	Warner
	52000
	2000

	4
	Watson
	12312
	12312

Here we have done modulus of 100 to each Employee’s salary i.e, modulus operation on single column.
Let’s perform modulus operation between 2 columns:
SELECT employee_id, employee_name, salary, salary % employee_id
 AS "salary % employee_id" FROM addition;
Output:
	employee_id
	employee_name
	salary
	Salary%25000

	1
	Finch
	25000
	0

	2
	Peter
	55000
	0

	3
	Warner
	52000
	1

	4
	Watson
	12312
	0

Logical Operators
SQL logical operators are used to test for the truth of the condition. A logical operator like the Comparison operator returns a boolean value of TRUE, FALSE, or UNKNOWN. In this article, we will discuss different types of Logical Operators.
Logical operators are used to combine or manipulate the conditions given in a query to retrieve or manipulate data .there are some logical operators in SQL like OR, AND etc.
Types of Logical Operators in SQL
Given below is the list of logical operators available in SQL.
	Operator
	Meaning

	AND
	TRUE if both Boolean expressions are TRUE.

	IN
	TRUE if the operand is equal to one of a list of expressions.

	NOT
	Reverses the value of any other Boolean operator.

	OR
	TRUE if either Boolean expression is TRUE.

	LIKE
	TRUE if the operand matches a pattern.

	BETWEEN
	TRUE if the operand is within a range.

	ALL
	TRUE if all of a set of comparisons are TRUE.

	ANY
	TRUE if any one of a set of comparisons is TRUE.

	EXISTS
	TRUE if a subquery contains any rows.

	SOME
	TRUE if some of a set of comparisons are TRUE.

Example:
In the below example, we will see how this logical operator works with the help of creating a database.
Step 1: Creating a Database
In order to create a database, we need to use the CREATE operator.
Query
CREATE DATABASE xstream_db;
Step 2: Create table employee
In this step, we will create the table employee inside the xstream_db database.
Query
CREATE TABLE employee (emp_id INT, emp_name VARCHAR(255),
 emp_city VARCHAR(255),
 emp_country VARCHAR(255),
 PRIMARY KEY (emp_id));
[image: Create Table]
Create Table
In order to insert the data inside the database, we need to use the INSERT operator.
Query
INSERT INTO employee VALUES (101, 'Utkarsh Tripathi', 'Varanasi', 'India'),
 (102, 'Abhinav Singh', 'Varanasi', 'India'),
 (103, 'Utkarsh Raghuvanshi', 'Varanasi', 'India'),
 (104, 'Utkarsh Singh', 'Allahabad', 'India'),
 (105, 'Sudhanshu Yadav', 'Allahabad', 'India'),
 (106, 'Ashutosh Kumar', 'Patna', 'India');
[image: Insert Value]
Insert Value
Output

	emp_id
	emp_name
	emp_city
	emp_country

	101
	Utkarsh Tripathi
	Varanasi
	India

	102
	Abhinav Singh
	Varanasi
	India

	103
	Utkarsh Raghuvanshi
	Varanasi
	India

	104
	Utkarsh Singh
	Allahabad
	India

	105
	Sudhanshu Yadav
	Allahabad
	India

	106
	Ashutosh Kumar
	Patna
	India

employee Table
Now the given below is the list of different logical operators.
AND Operator
The AND operator is used to combines two or more conditions but if it is true when all the conditions are satisfied.
Query
SELECT * FROM employee WHERE emp_city = 'Allahabad' AND emp_country = 'India';
Output

	emp_id
	emp_name
	emp_city
	emp_country

	104
	Utkarsh Singh
	Allahabad
	India

	105
	Sudhanshu Yadav
	Allahabad
	India

IN Operator
It is used to remove the multiple OR conditions in SELECT, INSERT, UPDATE, or DELETE. and We can also use NOT IN to minimize the rows in your list and any kind of duplicate entry will be retained.
Query
SELECT * FROM employee WHERE emp_city IN ('Allahabad', 'Patna');
Output:
	emp_id
	emp_name
	emp_city
	emp_country

	104
	Utkarsh Singh
	Allahabad
	India

	105
	Sudhanshu Yadav
	Allahabad
	India

	106
	Ashutosh Kumar
	Patna
	India

Outpu
NOT Operator
Query
SELECT * FROM employee WHERE emp_city NOT LIKE 'A%';
Output:

	emp_id
	emp_name
	emp_city
	emp_country

	101
	Utkarsh Tripathi
	Varanasi
	India

	102
	Abhinav Singh
	Varanasi
	India

	103
	Utkarsh Raghuvanshi
	Varanasi
	India

	106
	Ashutosh Kumar
	Patna
	India

 output
OR Operator
The OR operator is used to combines two or more conditions but if it is true when one of the conditions are satisfied.
Query
SELECT * FROM employee WHERE emp_city = 'Varanasi' OR emp_country = 'India';
Output
	emp_id

	emp_name
	emp_city
	emp_country

	101
	Utkarsh Tripathi
	Varanasi
	India

	102
	Abhinav Singh
	Varanasi
	India

	103
	Utkarsh Raghuvanshi
	Varanasi
	India

	104
	Utkarsh Singh
	Allahabad
	India

	105
	Sudhanshu Yadav
	Allahabad
	India

	106
	Ashutosh Kumar
	Patna
	India

LIKE Operator
In SQL, the LIKE operator is used in the WHERE clause to search for a specified pattern in a column.
1. % – It is used for zero or more than one character.
1. _ – It is used for only one character means fixed length.
Query
SELECT * FROM employee WHERE emp_city LIKE 'P%';
	emp_id
	emp_name
	emp_city
	emp_country

	106
	Ashutosh Kumar
	Patna
	India

Output

BETWEEN Operator
The SQL BETWEEN condition allows you to easily test if an expression is within a range of values (inclusive).
Query
SELECT * FROM employee WHERE emp_id BETWEEN 101 AND 104;
Output
	emp_id
	emp_name
	emp_city
	emp_country

	101
	Utkarsh Tripathi
	Varanasi
	India

	102
	Abhinav Singh
	Varanasi
	India

	103
	Utkarsh Raghuvanshi
	Varanasi
	India

	104
	Utkarsh Singh
	Allahabad
	India

output
ALL Operator
The ALL operator returns TRUE if all of the subqueries values matches the condition.
All operator is used with SELECT, WHERE, HAVING statement.
Query
SELECT * FROM employee WHERE emp_id = ALL
 (SELECT emp_id FROM employee WHERE emp_city = 'Varanasi');
Output

	emp_id
	emp_name
	emp_city
	emp_country

	101
	Utkarsh Tripathi
	Varanasi
	India

	102
	Abhinav Singh
	Varanasi
	India

	103
	Utkarsh Raghuvanshi
	Varanasi
	India

output
ANY Operator
The ANY operator:
1. It returns a boolean value as a result
1. It returns TRUE if ANY of the subquery values match the condition
Query
SELECT * FROM employee WHERE emp_id = ANY
 (SELECT emp_id FROM employee WHERE emp_city = 'Varanasi');
Output
	emp_id
	emp_name
	emp_city
	emp_country

	101
	Utkarsh Tripathi
	Varanasi
	India

	102
	Abhinav Singh
	Varanasi
	India

	103
	Utkarsh Raghuvanshi
	Varanasi
	India

EXISTS Operator
In SQL,Exists operator is used to check whether the result of a correlated nested query is empty or not.
Exists operator is used with SELECT, UPDATE, INSERT or DELETE statement.
Query
SELECT emp_name FROM employee WHERE EXISTS
 (SELECT emp_id FROM employee WHERE emp_city = 'Patna');
Output

	emp_id
	emp_name
	emp_city
	emp_country

	101
	Utkarsh Tripathi
	Varanasi
	India

	102
	Abhinav Singh
	Varanasi
	India

	103
	Utkarsh Raghuvanshi
	Varanasi
	India

	104
	Utkarsh Singh
	Allahabad
	India

	105
	Sudhanshu Yadav
	Allahabad
	India

	106
	Ashutosh Kumar
	Patna
	India

SQL Date and Time Functions

In SQL, dates are complicated for newbies, since while working with a database, the format of the data in the table must be matched with the input data to insert. In various scenarios instead of date, datetime (time is also involved with date) is used.
For storing a date or a date and time value in a database,MySQL offers the following data types:
	DATE
	format YYYY-MM-DD

	DATETIME
	format: YYYY-MM-DD HH:MI: SS

	TIMESTAMP
	format: YYYY-MM-DD HH:MI: SS

	YEAR
	format YYYY or YY

Now, come to some popular functions in SQL date functions.
NOW()
Returns the current date and time.
Query:
SELECT NOW();
Output:
[image: now method output image]
CURDATE()
 Returns the current date.
Query:
SELECT CURDATE();
Output:
[image: OUTPUT2]
CURTIME()
 Returns the current time.
Query:
SELECT CURTIME();
Output:

[image: OUTPUT3]
DATE()
Extracts the date part of a date or date/time expression. Example: For the below table named ‘Test’
	Id
	Name
	BirthTime

	4120
	Pratik
	1996-09-26 16:44:15.581

Query:
SELECT Name, DATE(BirthTime)
AS BirthDate FROM Test;
Output:
	Name
	BirthDate

	Pratik
	1996-09-26

EXTRACT()
Returns a single part of a date/time.
Syntax
EXTRACT(unit FROM date);
Several units can be considered but only some are used such as MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, YEAR, etc. And ‘date’ is a valid date expression. Example: For the below table named ‘Test’
	Id
	Name
	BirthTime

	4120
	Pratik
	1996-09-26 16:44:15:581

Query:
SELECT Name, Extract(DAY FROM
BirthTime) AS BirthDay FROM Test;
Output:

	Name
	Birthday

	Pratik
	26

Query:
SELECT Name, Extract(YEAR FROM BirthTime)
AS BirthYear FROM Test;
Output:
	Name
	BirthYear

	Pratik
	1996

Query:
SELECT Name, Extract(SECOND FROM
BirthTime) AS BirthSecond FROM Test;
Output:

	Name
	BirthSecond

	Pratik
	581

DATE_ADD()
 Adds a specified time interval to a date.
Syntax:
DATE_ADD(date, INTERVAL expr type);
Where, date – valid date expression, and expr is the number of intervals we want to add. and type can be one of the following: MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, YEAR, etc. Example: For the below table named ‘Test’

	Id
	Name
	BirthTime

	4120
	Pratik
	1996-09-26 16:44:15.581

Query:
SELECT Name, DATE_ADD(BirthTime, INTERVAL
1 YEAR) AS BirthTimeModified FROM Test;
Output:

	Name
	BirthTimeModified

	Pratik
	1997-09-26 16:44:15.581

Query:
SELECT Name, DATE_ADD(BirthTime,
INTERVAL 30 DAY) AS BirthDayModified FROM Test;
Output:

	Name
	BirthDayModified

	Pratik
	1996-10-26 16:44:15.581

Query:
SELECT Name, DATE_ADD(BirthTime, INTERVAL
 4 HOUR) AS BirthHourModified FROM Test;
Output:
	Name
	BirthSecond

	Pratik
	1996-10-26 20:44:15.581

DATE_SUB()
 Subtracts a specified time interval from a date. The syntax for DATE_SUB is the same as DATE_ADD just the difference is that DATE_SUB is used to subtract a given interval of date.
DATEDIFF()
 Returns the number of days between two dates.
Syntax:
DATEDIFF(interval,date1, date2);
interval – minute/hour/month/year,etc
date1 & date2- date/time expression
Query:
SELECT DATEDIFF(month,'2017-01-13','2017-01-03') AS DateDiff;
Output:

	DateDiff

	10

DATE_FORMAT()
 Displays date/time data in different formats.
Syntax:
DATE_FORMAT(date,format);

Numeric Functions:

Numeric Functions are used to perform operations on numbers and return numbers. Following are the numeric functions defined in SQL:
ABS(): It returns the absolute value of a number.
Syntax: SELECT ABS(-243.5);
Output: 243.5

SQL> SELECT ABS(-10);
+--------------------------------------+
| ABS(10)
+--------------------------------------+
| 10
+--------------------------------------+
CEIL(): It returns the smallest integer value that is greater than or equal to a number.
Syntax: SELECT CEIL(25.75);
Output: 26
FLOOR(): It returns the largest integer value that is less than or equal to a number.
Syntax: SELECT FLOOR(25.75);
Output: 25
GREATEST(): It returns the greatest value in a list of expressions.
Syntax: SELECT GREATEST(30, 2, 36, 81, 125);
Output: 125
LEAST(): It returns the smallest value in a list of expressions.
Syntax: SELECT LEAST(30, 2, 36, 81, 125);
Output: 2
LN(): It returns the natural logarithm of a number.
Syntax: SELECT LN(2);
Output: 0.6931471805599453
MOD(): It returns the remainder (aka. modulus) of n divided by m.
Syntax: SELECT MOD(18, 4);
Output: 2
POWER(m, n): It returns m raised to the nth power.
Syntax: SELECT POWER(4, 2);
Output: 16
SIGN(): It returns a value indicating the sign of a number. A return value of 1 means positive; 0 means negative.
Syntax: SELECT SIGN(255.5);
Output: 1
SQRT(): It returns the square root of a number.
Syntax: SELECT SQRT(25);
Output: 5
TRUNCATE(): This doesn’t work for SQL Server. It returns 7.53635 truncated to n places right of the decimal point.
Syntax: SELECT TRUNC(7.53635, 2);
Output: 7.53

String functions

String functions are used to perform an operation on input string and return an output string. Following are the string functions defined in SQL:
1. ASCII(): This function is used to find the ASCII value of a character.
Syntax: SELECT ascii('t');
Output: 116
1. CHAR_LENGTH(): Doesn’t work for SQL Server. Use LEN() for SQL Server. This function is used to find the length of a word.
Syntax: SELECT length('Hello!');
Output: 6
1. CHARACTER_LENGTH(): Doesn’t work for SQL Server. Use LEN() for SQL Server. This function is used to find the length of a line.
Syntax: SELECT CHARACTER_LENGTH('geeks for geeks');
Output: 15
1. CONCAT(): This function is used to add two words or strings.
Syntax: SELECT 'Geeks' || ' ' || 'forGeeks' FROM dual;
Output: ‘Geeks forGeeks’
1. CONCAT(): This function is used to add two words or strings with a symbol as concatenating symbol.
Syntax: SELECT CONCAT('_', 'geeks', 'for', 'geeks');
Output: geeks_for_geeks
6.INSTR(): This function is used to find the occurrence of an alphabet.
Syntax: INSTR('geeks for geeks', 'e');
Output: 2 (the first occurrence of ‘e’)
Syntax: INSTR('geeks for geeks', 'e', 1, 2);
Output: 3 (the second occurrence of ‘e’)
7.LCASE(): This function is used to convert the given string into lower case.
Syntax: LCASE ("GeeksFor Geeks To Learn");
Output: geeksforgeeks to learn
8.LENGTH(): This function is used to find the length of a word.
Syntax: LENGTH('GeeksForGeeks');
Output: 13
9.LOWER(): This function is used to convert the upper case string into lower case.
Syntax: SELECT LOWER('GEEKSFORGEEKS.ORG');
Output: geeksforgeeks.org
10.LPAD(): This function is used to make the given string of the given size by adding the given symbol.
Syntax: LPAD('geeks', 8, '0');
Output:
000geeks
11.LTRIM(): This function is used to cut the given sub string from the original string.
Syntax: LTRIM('123123geeks', '123');
Output: geeks
12.REPEAT(): This function is used to write the given string again and again till the number of times mentioned.
Syntax: SELECT REPEAT('geeks', 2);
Output: geeksgeeks
13.REPLACE(): This function is used to cut the given string by removing the given sub string.
Syntax: REPLACE('123NBKRIST123', '123');
Output: NBKRIST
14.REVERSE(): This function is used to reverse a string.
Syntax: SELECT REVERSE(RAJI');
Output: ‘IJAR’
15.RPAD(): This function is used to make the given string as long as the given size by adding the given symbol on the right.
Syntax: RPAD('geeks', 8, '0');
Output: ‘geeks000’
16.RTRIM(): This function is used to cut the given sub string from the original string.
Syntax: RTRIM('geeksxyxzyyy', 'xyz');
Output: ‘geeks’
17.STRCMP(): This function is used to compare 2 strings.
4. If string1 and string2 are the same, the STRCMP function will return 0.
4. If string1 is smaller than string2, the STRCMP function will return -1.
4. If string1 is larger than string2, the STRCMP function will return 1.
Syntax: SELECT STRCMP('google.com', 'geeksforgeeks.com');
Output: -1
18.SUBSTR(): This function is used to find a sub string from the a string from the given position.
Syntax:SUBSTR('WELCOME', 2, 5);
Output: ‘ELCOM’
19.SUBSTRING(): This function is used to find an alphabet from the mentioned size and the given string.
Syntax: SELECT SUBSTR('HELLO, 2, 1);
Output: ‘G’
Implementation of Integrity Constraints in SQL
Integrity Constraints are an essential part of SQL databases, as they ensure the accuracy and consistency of data stored. They define rules for maintaining data integrity and protect the database from data issues.
There are several types of Integrity Constraints in SQL,
1. Domain Integrity Constraints in SQL

Domain Integrity Constraints define the permissible values for a given column. By applying these constraints, you can restrict the data entered into a specific column, ensuring consistent data values across your database.
Some commonly used domain integrity constraints include:
· Data type – The column must contain values of a specific data type
· Data format – The format of the values in a column must follow a defined pattern
· Range – The values must fall within a specified range
· Enumeration – The values in the column can only be taken from a predefined set of values
For example, if you have a table containing information about employees' salaries, you might enforce a domain integrity constraint on the "salary" column to ensure that only numeric values within a specific range are entered.
2. Entity Integrity Constraints in SQL

Entity Integrity Constraints involve uniquely identifying the rows in a database table, such that there are no duplicate or null values in a primary key column. A primary key is a unique column in a table that uniquely identifies every row in the table. This constraint helps maintain the uniqueness and integrity of data by preventing the existence of duplicate rows.
For example in a table storing customer information, a unique identification number (‘customer_id’) can be assigned as the primary key to uniquely identify every customer.
3.Referential Integrity Constraint in SQL
Referential Integrity Constraint ensures that relationships between tables are maintained consistently. It is enforced by using foreign keys, which are columns in a table that refer to a primary key in another table. The foreign key helps to maintain the referential integrity between two related tables by making sure that changes in one table's primary key are reflected in the corresponding foreign key in another table.
There are two main rules to uphold when it comes to Referential Integrity Constraints:
· If a primary key value is updated or deleted, the corresponding foreign key values in the related table must be updated or deleted as well.
· Any new foreign key value added to the related table must have a corresponding primary key value in the other table.
· CREATE TABLE OrderDetails (
· OrderID INT NOT NULL,
· ProductID INT NOT NULL,
· Quantity INT NOT NULL,
· Email_id VARCHAR(20) UNIQUE,
· PRIMARY KEY (OrderID, ProductID),
· FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),
· FOREIGN KEY (ProductID) REFERENCES Products(ProductID)
·);
·
· CREATE TABLE TABLE ProductDetails
· ProductID INT NOT NULL,
· OrderID INT NOT NULL,
· ProductName VARCHAR(20),
· ProductPrice INT
·
·);
	OrderID
	ProductID
	Quantity
	Email_id

	240911
	100
	10
	abc@gmail.com

	240912
	121
	5
	def@gmail.com

	240913
	122
	50
	ghi@gmail.com

	240914
	123
	40
	jkl@gmail.com

OrderDetails	
	ProductID
	OrderID
	ProductName
	ProductPrice

	100
	240911
	Mobile
	10000

	121
	240912
	Laptop
	20000

	122
	240913
	Gun
	500

	123
	240914
	Ball
	100

Nested Queries
One of the most powerful features of SQL is nested queries. A nested query is a query that has another query embedded within it; the embedded query is called a subquery. When writing a query, we sometimes need to express a condition that refers to a table that must itself be computed. The query used to compute this subsidiary table is a subquery and appears as part of the main query. A subquery typically appears within the WHERE clause of a query. Subqueries can sometimes appear in the FROM clause or the HAVING clause
Nested queries are a way to perform complex queries by embedding one query within another. The outer query can apply some conditions on the results of the inner query. Let use STUDENT, COURSE, STUDENT_COURSE tables for understanding nested queries.
STUDENT

	S_ID
	S_NAME
	S_ADDRESS
	S_PHONE
	S_AGE

	S1
	RAM
	DELHI
	9455123451
	18

	S2
	RAMESH
	GURGAON
	9652431543
	18

	S3
	SUJIT
	ROHTAK
	9156253131
	20

	S4
	SURESH
	DELHI
	9156768971
	18

COURSE
	C_ID
	C_NAME

	C1
	DSA

	C2
	Programming

	C3
	DBMS

STUDENT_COURSE

	S_ID
	C_ID

	S1
	C1

	S1
	C3

	S2
	C1

	S3
	C2

	S4
	C2

	S4
	C3

 There are mainly two types of nested queries:
1. Independent Nested Queries: In independent nested queries, query execution starts from innermost query to outermost queries. The execution of inner query is independent of outer query, but the result of inner query is used in execution of outer query. Various operators like IN, NOT IN, ANY, ALL etc are used in writing independent nested queries.

IN: If we want to find out S_ID who are enrolled in C_NAME ‘DSA’ or ‘DBMS’, we can write it with the help of independent nested query and IN operator. From COURSE table, we can find out C_ID for C_NAME ‘DSA’ or DBMS’ and we can use these C_IDs for finding S_IDs from STUDENT_COURSE TABLE.

1. STEP 1: Finding C_ID for C_NAME =’DSA’ or ‘DBMS’ Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

1. STEP 2: Using C_ID of step 1 for finding S_ID
1. Select S_ID from STUDENT_COURSE where C_ID IN (SELECT C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME=’DBMS’);
1. The inner query will return a set with members C1 and C3 and outer query will return those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case). So, it will return S1, S2 and S4.
1. Note: If we want to find out names of STUDENTs who have either enrolled in ‘DSA’ or ‘DBMS’, it can be done as: Select S_NAME from STUDENT where S_ID IN

1. (Select S_ID from STUDENT_COURSE where C_ID IN(SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

NOT IN: If we want to find out S_IDs of STUDENTs who have neither enrolled in ‘DSA’ nor in ‘DBMS’, it can be done as:
Select S_ID from STUDENT where S_ID NOT IN
(Select S_ID from STUDENT_COURSE where C_ID IN (SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

1. The innermost query will return a set with members C1 and C3. Second inner query will return those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case) which are S1, S2 and S4. The outermost query will return those S_IDs where S_ID is not a member of set (S1, S2 and S4). So it will return S3.
1. Co-related Nested Queries: In co-related nested queries, the output of inner query depends on the row which is being currently executed in outer query.
1. e.g.; If we want to find out S_NAME of STUDENTs who are enrolled in C_ID ‘C1’, it can be done with the help of co-related nested query as: Select S_NAME from STUDENT S where EXISTS (select * from STUDENT_COURSE SC where S.S_ID=SC.S_ID and SC.C_ID=’C1’);
1. For each row of STUDENT S, it will find the rows from STUDENT_COURSE where S.S_ID = SC.S_ID and SC.C_ID=’C1’.
1. If for a S_ID from STUDENT S, atleast a row exists in STUDENT_COURSE SC with C_ID=’C1’, then inner query will return true and corresponding S_ID will be returned as output.
Example IN SQL Code:
SELECT StudentName
FROM Students
WHERE StudentID IN (SELECT StudentID FROM Grades	WHERE Subject = ‘Mathematics’ AND Score > 90);
Grade
	S_ID
	Subject
	Score
	Grade

	S1
	Math
	90
	A+

	S2
	Hindi
	80
	B

	S3
	Math
	95
	A+

	S4
	Tel
	95
	A+

	S5
	Math
	96
	A+

1. Co-related Nested Queries: In co-related nested queries, the output of inner query depends on the row which is being currently executed in outer query. e.g.; If we want to find out S_NAME of STUDENTs who are enrolled in C_ID ‘C1’, it can be done with the help of co-related nested query as:

EXISTS:
1. Select S_NAME from STUDENT S where EXISTS (select*from STUDENT_COURSE SC where S.S_ID=SC.S_ID and SC.C_ID=’C1’
1. For each row of STUDENT S, it will find the rows from STUDENT_COURSE where S.S_ID = SC.S_ID and SC.C_ID=’C1’. If for a S_ID from STUDENT S, atleast a row exists in STUDENT_COURSE SC with C_ID=’C1’, then inner query will return true and corresponding S_ID will be returned as output.

EXAMPLE IN SQL CODE:

SELECT StudentName
FROM Students
WHERE StudentID IN (
SELECT StudentID
FROM Grades
WHERE Subject = ‘Mathematics’ AND Score > 90
);
Inner Query Output
	S_ID

	S3

	S5

Output:
	Sname

	SUJIT

	HARI

In SQL a Subquery can be simply defined as a query within another query. In other words we can say that a Subquery is a query that is embedded in WHERE clause of another SQL query. Important rules for Subqueries:
1. You can place the Subquery in a number of SQL clauses: WHERE clause, HAVING clause, FROM clause. Subqueries can be used with SELECT, UPDATE, INSERT, DELETE statements along with expression operator. It could be equality operator or comparison operator such as =, >, =, <= and Like operator.
1.
1. A subquery is a query within another query. The outer query is called as main query and inner query is called as subquery.
1. The subquery generally executes first when the subquery doesn’t have any co-relation with the main query, when there is a co-relation the parser takes the decision on the fly on which query to execute on precedence and uses the output of the subquery accordingly.
1. Subquery must be enclosed in parentheses.
1. Subqueries are on the right side of the comparison operator.
1. Use single-row operators with single row Subqueries. Use multiple-row operators with multiple-row Subqueries.
Syntax: There is not any general syntax for Subqueries. However, Subqueries are seen to be used most frequently with SELECT statement as shown below:

SELECT column_name
FROM table_name
WHERE column_name expression operator
 (SELECT column_name FROM table_name WHERE ...);

Sample Table:
DATABASE
	NAME
	ROLL_NO
	LOCATION
	PHONE_NUMBER

	Ram
	101
	Chennai
	9988775566

	Raj
	102
	Coimbatore
	8877665544

	Sasi
	103
	Madurai
	7766553344

	Ravi
	104
	Salem
	8989898989

	Sumathi
	105
	Kanchipuram
	8989856868

STUDENT
	NAME
	ROLL_NO
	SECTION

	Ravi
	104
	A

	Sumathi
	105
	B

	Raj
	102
	A

Sample Queries:

1. To display NAME, LOCATION, PHONE_NUMBER of the students from DATABASE table whose section is A
SELECT NAME, LOCATION, PHONE_NUMBER
FROM DATABASE
WHERE ROLL_NO IN (SELECT ROLL_NO
 FROM STUDENT
 WHERE SECTION='A');
1. Explanation : First subquery executes “ SELECT ROLL_NO from STUDENT where SECTION=’A’ ” returns ROLL_NO from STUDENT table whose SECTION is ‘A’.Then outer-query executes it and return the NAME, LOCATION, PHONE_NUMBER from the DATABASE table of the student whose ROLL_NO is returned from inner subquery. Output:
	NAME
	ROLL_NO
	LOCATION
	PHONE_NUMBER

	Ravi
	104
	Salem
	8989898989

	Raj
	102
	Coimbatore
	8877665544

1. Insert Query Example:
Table1: Student1
	NAME
	ROLL_NO
	LOCATION
	PHONE_NUMBER

	Ram
	101
	chennai
	9988773344

	Raju
	102
	coimbatore
	9090909090

	Ravi
	103
	salem
	8989898989

Table2: Student2
	NAME
	ROLL_NO
	LOCATION
	PHONE_NUMBER

	Raj
	111
	chennai
	8787878787

	Sai
	112
	mumbai
	6565656565

	Sri
	113
	coimbatore
	7878787878

1. To insert Student2 into Student1 table:

INSERT INTO Student1
SELECT * FROM Student2;
1. Output:
	NAME
	ROLL_NO
	LOCATION
	PHONE_NUMBER

	Ram
	101
	chennai
	9988773344

	Raju
	102
	coimbatore
	9090909090

	Ravi
	103
	salem
	8989898989

	Raj
	111
	chennai
	8787878787

	Sai
	112
	mumbai
	6565656565

	Sri
	113
	coimbatore
	7878787878

GROUPING (GROUP BY)
The GROUP BY Statement in SQL is used to arrange identical data into groups with the help of some functions. i.e. if a particular column has the same values in different rows then it will arrange these rows in a group.
Features
1. GROUP BY clause is used with the SELECT statement.
1. In the query, the GROUP BY clause is placed after the WHERE clause.
1. In the query, the GROUP BY clause is placed before the ORDER BY clause if used.
1. In the query, the Group BY clause is placed before the Having clause.
1. Place condition in the having clause.

Syntax:
SELECT column1, function_name(column2)
FROM table_name
WHERE condition
GROUP BY column1, column2
ORDER BY column1, column2;

Explanation:
1. function_name: Name of the function used for example, SUM() , AVG().
1. table_name: Name of the table.
1. condition: Condition used.

[image: Lightbox]
[image: Lightbox]
Group By single column
Group By single column means, placing all the rows with the same value of only that particular column in one group. Consider the query as shown below:
Query:
SELECT name, SUM(sal) FROM emp
GROUP BY name;
The above query will produce the below output:
	name
	SUM(sal)

	Aarav
	125000.75

	Aditi
	60000.5

	Anjali
	45000.25

	Chetan
	80000

	Divya
	220000.75

	Gaurav
	103000.75

 Output
As you can see in the above output, the rows with duplicate NAMEs are grouped under the same NAME and their corresponding SALARY is the sum of the SALARY of duplicate rows. The SUM() function of SQL is used here to calculate the sum. The NAMES that are added are Aarav, Divya and Gaurav.

Group By Multiple Columns
 Group by multiple columns is say, for example, GROUP BY column1, column2. This means placing all the rows with the same values of columns column 1 and column 2 in one group. Consider the below query:

Query:
SELECT SUBJECT, YEAR, Count(*)
FROM Student
GROUP BY SUBJECT, YEAR;
Output:
	Subject
	Year
	Count(*)

	English
	2
	2

	Mathematics
	1
	2

	Science
	3
	2

 Output
Output: As you can see in the above output the students with both the same SUBJECT and YEAR are placed in the same group. And those whose only SUBJECT is the same but not YEAR belong to different groups. So here we have grouped the table according to two columns or more than one column. The Grouped subject and years are (English,2) , (Mathematics,1) and (Science,3). The above mentioned all groups and years are repeated twice.

HAVING Clause in GROUP BY Clause

We know that the WHERE clause is used to place conditions on columns but what if we want to place conditions on groups? This is where the HAVING clause comes into use. We can use the HAVING clause to place conditions to decide which group will be part of the final result set. Also, we can not use aggregate functions like SUM(), COUNT(), etc. with the WHERE clause. So we have to use the HAVING clause if we want to use any of these functions in the conditions.

Syntax:
SELECT column1, function_name(column2)
FROM table_name
WHERE condition
GROUP BY column1, column2
HAVING condition
ORDER BY column1, column2;
Explanation:
1. function_name: Name of the function used for example, SUM() , AVG().
1. table_name: Name of the table.
1. condition: Condition used.

Example:

SELECT NAME, SUM(sal) FROM Emp
GROUP BY name
HAVING SUM(sal)>50000;

Output:
	name
	SUM(sal)

	Aarav
	125000.75

	Aditi
	60000.5

	Anjali
	45000.25

	Chetan
	80000

	Divya
	220000.75

	Gaurav
	103000.75

 Output
Aggregate functions

SQL Aggregate functions are functions where the values of multiple rows are grouped as input on certain criteria to form a single value result of more significant meaning.
It is used to summarize data, by combining multiple values to form a single result.
SQL Aggregate functions are mostly used with the GROUP BY clause of the SELECT statement.Various Aggregate Functions
1. Count()
1. Sum()
1. Avg()
1. Min()
1. Max()
Aggregate Functions in SQL
Below is the list of SQL aggregate functions, with examples
Count():
1. Count(*): Returns the total number of records .i.e 6.
1. Count(salary): Return the number of Non-Null values over the column salary. i.e 5.
1. Count(Distinct Salary): Return the number of distinct Non-Null values over the column salary .i.e 5.
Sum():
1. sum(salary): Sum all Non-Null values of Column salary i.e., 3120.
1. sum(Distinct salary): Sum of all distinct Non-Null values i.e., 3120..
Avg():
1. Avg(salary) = Sum(salary) / count(salary) = 3120 / 5 = 624
1. Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary) = 3120 / 5 = 624
Min():
1. Min(salary): Minimum value in the salary column except NULL i.e., 403.
Max():
1. Max(salary): Maximum value in the salary i.e., 802.

examples:
	Id
	Name
	Salary

	1
	A
	802

	2
	B
	403

	3
	C
	604

	4
	D
	705

	5
	E
	606

	6
	F
	NULL

Queries
--Count the number of employees
SELECT COUNT(*) AS TotalEmployees FROM Employee;

-- Calculate the total salary
SELECT SUM(Salary) AS TotalSalary FROM Employee;

-- Find the average salary
SELECT AVG(Salary) AS AverageSalary FROM Employee;

-- Get the highest salary
SELECT MAX(Salary) AS HighestSalary FROM Employee;

-- Determine the lowest salary
SELECT MIN(Salary) AS LowestSalary FROM Employee;
Output
TotalEmployees
6
TotalSalary
3120
AverageSalary
624
HighestSalary
802
LowestSalary
403

Ordering (ORDER BY)

The ORDER BY statement in SQL is used to sort the fetched data in either ascending or descending according to one or more columns. It is very useful to present data in a structured manner.
SQL ORDER BY default mode is sorting data into ascending order. To sort data in descending order use the DESC keyword with ORDER BY clause.
Syntax
The syntax to use ORDER BY clause in SQL is:
SELECT * FROM table_name ORDER BY column_name ASC | DESC
Key Terms:
1. table_name: name of the table.
1. column_name: name of the column according to which the data is needed to be arranged.
1. ASC: to sort the data in ascending order.
1. DESC: to sort the data in descending order.
SQL ORDER BY Clause Examples
Let’s look at some examples of the SQL ORDER BY clause to understand it’s working in SQL.
We will use the following table in examples.
[image: demo sql table]
Student_Table
Sort According To a Single Column using ORDER BY Clause Example
In this example, we will fetch all data from the table Student and sort the result in descending order according to the column ROLL_NO.
Query:
SELECT * FROM students ORDER BY ROLL_NO DESC;
Output:
[image: sort according to a single column using order by clause example output]
In the above example, if we want to sort in ascending order we have to use ASC in place of DESC.
Sort According To Multiple Columns using ORDER BY Clause Example
To sort according to multiple columns, separate the names of columns by the (,) operator.
Syntax:
SELECT * FROM table_name ORDER BY column1 ASC|DESC , column2 ASC|DESC
In this example, we will fetch all data from the table Student and then sort the result in descending order first according to the column age. and then in ascending order according to the column name.

Query:
SELECT * FROM students ORDER BY age DESC , name ASC;
Output:
[image: sort according to multiple columns using order by clause example output]
Sort_Multiple_Column
In the above output, we can see that first the result is sorted in descending order according to Age. There are multiple rows of having the same Age. Now, sorting further this result-set according to name will sort the rows with the same Age according to name in ascending order.

Implementation of different types of JOIN
SQL JOIN clause is used to query and access data from multiple tables by establishing logical relationships between them. It can access data from multiple tables simultaneously using common key values shared across different tables.
We can use SQL JOIN with multiple tables. It can also be paired with other clauses, the most popular use will be using JOIN with WHERE clause to filter data retrieval.
SQL JOIN Example
Consider the two tables below as follows:
Student:
[image: student table]StudentCourse :
[image: course table]
Both these tables are connected by one common key (column) i.e ROLL_NO.
We can perform a JOIN operation using the given SQL query:
SELECT s.roll_no, s.name, s.address, s.phone, s.age, sc.course_id
FROM Student s
JOIN StudentCourse sc ON s.roll_no = sc.roll_no;
Output:
	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	COURSE_ID

	1
	HARSH
	DELHI
	XXXXXXXXXX
	18
	1

	2
	PRATIK
	BIHAR
	XXXXXXXXXX
	19
	2

	3
	RIYANKA
	SILGURI
	XXXXXXXXXX
	20
	2

	4
	DEEP
	RAMNAGAR
	XXXXXXXXXX
	18
	3

	5
	SAPTARHI
	KOLKATA
	XXXXXXXXXX
	19
	1

Types of JOIN in SQL
There are many types of Joins in SQL. Depending on the use case, you can use different type of SQL JOIN clause.
Here are the frequently used SQL JOIN types:
Table of Content
· INNER JOIN
· LEFT JOIN
· RIGHT JOIN
· FULL JOIN
· Natural join
SQL INNER JOIN
The INNER JOIN keyword selects all rows from both the tables as long as the condition is satisfied. This keyword will create the result-set by combining all rows from both the tables where the condition satisfies i.e value of the common field will be the same.

Syntax:
The syntax for SQL INNER JOIN is:
SELECT table1.column1,table1.column2,table2.column1,....
FROM table1
INNER JOIN table2
ON table1.matching_column = table2.matching_column;
Here,
1. table1: First table.
1. table2: Second table
1. matching_column: Column common to both the tables.

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as INNER JOIN.
[image: sql inner join visual representation]
INNER JOIN Example
Let’s look at the example of INNER JOIN clause, and understand it’s working.
This query will show the names and age of students enrolled in different courses.

Query:

SELECT StudentCourse.COURSE_ID, Student.NAME, Student.AGE FROM Student
INNER JOIN StudentCourse
ON Student.ROLL_NO = StudentCourse.ROLL_NO;

Output:
[image: sql inner join example output]
SQL LEFT JOIN
LEFT JOIN returns all the rows of the table on the left side of the join and matches rows for the table on the right side of the join. For the rows for which there is no matching row on the right side, the result-set will contain null. LEFT JOIN is also known as LEFT OUTER JOIN.

Syntax:
The syntax of LEFT JOIN in SQL is:

SELECT table1.column1,table1.column2,table2.column1,....
FROM table1
LEFT JOIN table2
ON table1.matching_column = table2.matching_column;
Here,
1. table1: First table.
1. table2: Second table
1. matching_column: Column common to both the tables.

Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both are the same.
[image: Left_Join]
LEFT JOIN Example
Let’s look at the example of LEFT JOIN clause, and understand it’s working
SELECT Student.NAME,StudentCourse.COURSE_ID
FROM Student
LEFT JOIN StudentCourse
ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:
[image: sql left join example output]

SQL RIGHT JOIN
RIGHT JOIN returns all the rows of the table on the right side of the join and matching rows for the table on the left side of the join.It is very similar to LEFT JOIN For the rows for which there is no matching row on the left side, the result-set will contain null. RIGHT JOIN is also known as RIGHT OUTER JOIN.
Syntax:
The syntax of RIGHT JOIN in SQL is:
SELECT table1.column1,table1.column2,table2.column1,....
FROM table1
RIGHT JOIN table2
ON table1.matching_column = table2.matching_column;
Here,
1. table1: First table.
1. table2: Second table
1. matching_column: Column common to both the tables.

Note: We can also use RIGHT OUTER JOIN instead of RIGHT JOIN, both are the same.
[image: sql right join visual representation]
RIGHT JOIN Example:
Let’s look at the example of RIGHT JOIN clause, and understand it’s working
SELECT Student.NAME,StudentCourse.COURSE_ID
FROM Student
RIGHT JOIN StudentCourse
ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:
[image: right join example output]
SQL FULL JOIN
FULL JOIN creates the result-set by combining results of both LEFT JOIN and RIGHT JOIN. The result-set will contain all the rows from both tables. For the rows for which there is no matching, the result-set will contain NULL values.

[image: Full_Join]
Syntax
The syntax of SQL FULL JOIN is:
SELECT table1.column1,table1.column2,table2.column1,....
FROM table1
FULL JOIN table2
ON table1.matching_column = table2.matching_column;
Here,
1. table1: First table.
1. table2: Second table
1. matching_column: Column common to both the tables.

FULL JOIN Example
Let’s look at the example of FULL JOIN clause, and understand it’s working
SELECT Student.NAME,StudentCourse.COURSE_ID
FROM Student
FULL JOIN StudentCourse
ON StudentCourse.ROLL_NO = Student.ROLL_NO;
Output:

	NAME
	COURSE_ID

	HARSH
	1

	PRATIK
	2

	RIYANKA
	2

	DEEP
	3

	SAPTARHI
	1

	DHANRAJ
	NULL

	ROHIT
	NULL

	NIRAJ
	NULL

	NULL
	4

	NULL
	5

	NULL
	4

SQL Natural join (?)
Natural join can join tables based on the common columns in the tables being joined. A natural join returns all rows by matching values in common columns having same name and data type of columns and that column should be present in both tables.
Both table must have at least one common column with same column name and same data type.
The two table are joined using Cross join.
DBMS will look for a common column with same name and data type Tuples having exactly same values in common columns are kept in result.
Natural join Example:
Look at the two tables below- Employee and Department

	Employee

	Emp_id
	Emp_id
	Dept_id

	1
	Ram
	10

	2
	Jon
	30

	3
	Bob
	50

	Department table

	Dept_id
	Dept_name

	10
	IT

	30
	HR

	40
	TIS

Problem: Find all Employees and their respective departments.

Solution Query: (Employee) ? (Department)

	Employee data
	Department data

	Emp_id
	Emp_name
	Dept_id
	Dept_id
	Dept_name

	1
	Ram
	10
	10
	IT

	2
	Jon
	30
	30
	HR

Updatable and Non-updatable Views
Some views are updatable and references to them can be used to specify tables to be updated in data change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to update the contents of the underlying table. Derived tables and common table expressions can also be specified in multiple-table UPDATE and DELETE statements, but can only be used for reading data to specify rows to be updated or deleted. Generally, the view references must be updatable, meaning that they may be merged and not materialized. Composite views have more complex rules.
For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the rows in the underlying table. There are also certain other constructs that make a view nonupdatable. To be more specific, a view is not updatable if it contains any of the following:
· Aggregate functions or window functions (SUM(), MIN(), MAX(), COUNT(), and so forth)
· DISTINCT
· GROUP BY
· HAVING
· UNION or UNION ALL
· Subquery in the select list
Non-dependent sub-queries in the select list fail for INSERT, but are okay for UPDATE, DELETE. For dependent sub-queries in the select list, no data change statements are permitted.
· Certain joins (see additional join discussion later in this section)
· Reference to non up-datable view in the FROM clause
· Sub-query in the WHERE clause that refers to a table in the FROM clause
· Refers only to literal values (in this case, there is no underlying table to update)
[bookmark: _GoBack]If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected. (Even if a view is updatable, it might not be possible to insert into it, as described elsewhere in this section.)
The updatability of views may be affected by the value of the updatable_views_with_limit system variable.
For the following discussion, suppose that these tables and views exist:
CREATE TABLE t1 (x INTEGER);
CREATE TABLE t2 (c INTEGER);
CREATE VIEW vmat AS SELECT SUM(x) AS s FROM t1;
CREATE VIEW vup AS SELECT * FROM t2;
CREATE VIEW vjoin AS SELECT * FROM vmat JOIN vup ON vmat.s=vup.c;

INSERT, UPDATE, and DELETE statements are permitted as follows:
· INSERT: The insert table of an INSERT statement may be a view reference that is merged. If the view is a join view, all components of the view must be updatable (not materialized). For a multiple-table updatable view, INSERT can work if it inserts into a single table.
This statement is invalid because one component of the join view is non updatable:
INSERT INTO vjoin (c) VALUES (1);
This statement is valid; the view contains no materialized components:
INSERT INTO vup (c) VALUES (1);

· UPDATE: The table or tables to be updated in an UPDATE statement may be view references that are merged. If a view is a join view, at least one component of the view must be updatable (this differs from INSERT).
In a multiple-table UPDATE statement, the updated table references of the statement must be base tables or updatable view references. Nonupdated table references may be materialized views or derived tables.
This statement is valid; column c is from the updatable part of the join view:
UPDATE vjoin SET c=c+1;
This statement is invalid; column x is from the non updatable part:
UPDATE vjoin SET x=x+1;
This statement is valid; the updated table reference of the multiple-table UPDATE is an updatable view (vup):
UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET c=c+1;
This statement is invalid; it tries to update a materialized derived table:
UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET s=s+1;
· DELETE: The table or tables to be deleted from in a DELETE statement must be merged views. Join views are not allowed (this differs from INSERT and UPDATE).
This statement is invalid because the view is a join view:
DELETE vjoin WHERE ...;
This statement is valid because the view is a merged (updatable) view:
DELETE vup WHERE ...;
This statement is valid because it deletes from a merged (updatable) view:
DELETE vup FROM vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...;
Additional discussion and examples follow.
Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple column references (for example, if it contains columns that are expressions or composite expressions). Although such a view is not insertable, it can be updatable if you update only columns that are not expressions. Consider this view:
CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;
This view is not insertable because col2 is an expression. But it is updatable if the update does not try to update col2. This update is permissible:
UPDATE v SET col1 = 0;
This update is not permissible because it attempts to update an expression column:
UPDATE v SET col2 = 0;
If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(), because the side effects of inserting default values into columns not part of the view should not be visible.

SQL Set Operation
The SQL Set operation is used to combine the two or more SQL SELECT statements.
Types of Set Operation
Set Operations
The following standard operations on sets are also available in relational algebra: union (∪), intersection (∩), set-difference (−), and cross-product (×).
Union: R∪S returns a relation instance containing all tuples that occur in either relation instance R or relation instance S (or both). R and S must be unioncompatible, and the schema of the result is defined to be identical to the schema of R.
Two relation instances are said to be union-compatible if the following conditions hold:
– they have the same number of the fields, and
– corresponding fields, taken in order from left to right, have the same
Note that field names are not used in defining union-compatibility. For convenience, we will assume that the fields of R ∪ S inherit names from R, if the fields of R have names. (This assumption is implicit in defining the schema of R ∪ S to be identical to the schema of R, as stated earlier.)
Intersection: R∩S returns a relation instance containing all tuples that occur in both R and S. The relations R and S must be union-compatible, and the schema of the result is defined to be identical to the schema of R.
Set-difference: R−S returns a relation instance containing all tuples that occur in R but not in S. The relations R and S must be union-compatible, and the schema of the result is defined to be identical to the schema of R.
Cross-product: R ×S returns a relation instance whose schema contains all the fields of R (in the same order as they appear in R) followed by all the fields of S (in the same order as they appear in S). The result of R × S contains one tuple < r, s> (the concatenation of tuples r and s) for each pair of tuples r ∈ R, s ∈ S.
The cross-product operation is sometimes called Cartesian product.

1. Union
· The SQL Union operation is used to combine the result of two or more SQL SELECT queries.
· In the union operation, all the number of datatype and columns must be same in both the tables on which UNION operation is being applied.
· The union operation eliminates the duplicate rows from its result set.
Syntax
SELECT column_name FROM table1
UNION
SELECT column_name FROM table2;

Example:
The First table
	ID
	Name

	1
	Ramu

	2
	Ravi

	3
	Rajesh

The Second table
	ID
	Name

	3
	Rajesh

	4
	Arvindh

	5
	Ramesh

Union SQL query will be:
SELECT * FROM First UNION SELECT * FROM Second;

The resultset table will look like:
	ID
	Name

	1
	Ramu

	2
	Ravi

	3
	Rajesh

	4
	Arvindh

	5
	Ramesh

2. Union All
Union All operation is equal to the Union operation. It returns the set without removing duplication and sorting the data.
Syntax:
SELECT column_name FROM table1
UNION ALL
SELECT column_name FROM table2;

Example: Using the above First and Second table.
Union All query will be like:
SELECT * FROM First UNION ALL SELECT * FROM Second;

The result-set table will look like:
	ID
	Name

	1
	Ramu

	2
	Ravi

	3
	Rajesh

3. Intersect
· It is used to combine two SELECT statements. The Intersect operation returns the common rows from both the SELECT statements.
· In the Intersect operation, the number of datatype and columns must be the same.
· It has no duplicates and it arranges the data in ascending order by default.
Syntax
SELECT column_name FROM table1
INTERSECT
SELECT column_name FROM table2;
Example:
Using the above First and Second table.
Intersect query will be:
SELECT * FROM First INTERSECT SELECT * FROM Second;

The result set table will look like:
	ID
	Name

	3
	Rajesh

4. Minus or set-difference
· It combines the result of two SELECT statements. Minus operator is used to display the rows which are present in the first query but absent in the second query.
· It has no duplicates and data arranged in ascending order by default.
Syntax:
SELECT column_name FROM table1
MINUS
SELECT column_name FROM table2;
Example
Using the above First and Second table.
Minus query will be:
SELECT * FROM First MINUS SELECT * FROM Second;
The resultset table will look like:
	ID
	Name

	1
	Ramu

	2
	Ravi

Department of CSE,NBKRIST,Vidyanagar Prepared by Smt. B.Rajani

image3.png
Number of Records: 1

Now()

2023-04-04 07:29:38

image4.png
Number of Records: 1

CURDATE()

2023-04-04

image5.png
Number of Records: 1

CURTIME()

07:32:24

image6.png
Emp

emp_no

Vv E® N o AW N =

S

name
Aarav
Aditi
Aarav
Anjali
Chetan
Divya
Gaurav
Divya
Gaurav

Divya

sal
50000
60000.5
75000.75
45000.25
80000
65000
55000.5
72000.75
48000.25
83000

age
25
30

28
32
27
29
31

26

image7.png
Student
name
Alice
Bob
Charlie
David
Emily
Frank

year

w N

subject
Mathematics
English
Science
Mathematics
English

Science

image8.png
roli_no age name address phone

Shubham . .
1 18 123 Main St, Mumbai 9876543210
Thakur
2 18 Mohit Thakur 321 Main St, Mumbai 9876543201
3 19 Abhishek 567 New Way, Mumbai 9876543219
4 19 Aman Chopra 456 Park Ave, Delhi 9876543211
. 789 Broadway,
5 20 Naveen Tulasi 9876543212
Ahmedabad
6 21 Aditya arpan 246 5th Ave, Kolkata 9876543213

7 22 Nishant Jain 369 3rd St, Bengaluru 9876543214

image9.png
roll_no

age

22

21

20

19

19

18

18

name

Nishant Jain

Aditya arpan

Naveen Tulasi

Aman Chopra

Abhishek

Mohit Thakur

Shubham
Thakur

address

369 3rd St, Bengaluru

246 5th Ave, Kolkata

789 Broadway,
Ahmedabad

456 Park Ave, Delhi

567 New Way, Mumbai

321 Main St, Mumbai

123 Main St, Mumbai

phone

9876543214

9876543213

9876543212

9876543211

9876543219

9876543201

9876543210

image10.png
roll_no

age

22

21

20

19

19

18

18

name

Nishant Jain

Aditya arpan

Naveen Tulasi

Abhishek

Aman Chopra

Mohit Thakur

Shubham
Thakur

address

369 3rd St, Bengaluru

246 5th Ave, Kolkata

789 Broadway,
Ahmedabad

567 New Way, Mumbai

456 Park Ave, Delhi

321 Main St, Mumbai

123 Main St, Mumbai

phone

9876543214

9876543213

9876543212

9876543219

9876543211

9876543201

9876543210

image11.png
ROLL NO NAME ADDRESS PHONE Age
1 HARSH DELHI XIOOHKK 18
2 PRATIK BIHAR XIOOHKK 19
3 RIYANKA SILIGURI XKL 20
a DEEP RAMNAGAR | XXXi00000K 18
5 SAPTARHI KOLKATA | 300000000 19
6 DHANRAJ BARABAJAR | X3CCOCCOIN 20
7 ROHIT BALURGHAT | XXXXKXKK 18
8 NIRAJ ALIPUR JCOORO0K 19

image12.png
COURSE_ID ROLL_NO
1 1
2 2
2 3
3 4
1 5
4 9

10

11

image13.png
Table A Table B

image14.png
COURSE_ID NAME Age
1 HARSH 18
2 PRATIK 19
2 RIYANKA 20
3 DEEP 18
1 SAPTARHI 19

image15.png

image16.png
NAME

COURSE_ID

HARSH

1

PRATIK

2

RIYANKA

DEEP

SAPTARHI

DHANRAJ

NULL

ROHIT

NULL

NIRAJ

NULL

image17.png
Table A Table B

image18.png
NAME

COURSE_ID

HARSH

PRATIK

RIYANKA

DEEP

SAPTARHI

NULL

NULL

NULL

image19.png
mawm

Table A Table B

L\

image1.png
CREATE TABLE employee (emp_id INT, emp_name VARCHAR(255),
emp_city VARCHAR(255),
emp_country VARCHAR(255),
PRIMARY KEY (emp_id));

image2.png
INSERT INTO employee VALUES (101, 'Utkarsh Tripathi', 'varanasi', 'India‘),
(102, 'Abhinav Singh', ‘Varanasi‘, 'India‘),
(103, 'Utkarsh Raghuvanshi', 'Varanasi', 'India’),
(104, 'Utkarsh Singh', 'Allahabad’, 'India‘),
(105, 'sudhanshu Yadav', ‘Allahabad’, ‘India’),
(106, 'Ashutosh Kumar', ‘Patna’, 'India’);

