
I I- B.Tech II SEM Operating Systems Prepared By: BSR 1 | P a g e

N.B.K.R. INSTITUTE OF SCIENCE AND TECHNOLOGY::VIDYANAGAR

(AUTONOMOUS)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

II-B.Tech. II SEM(R-23)

 OPERATING SYSTEMS (23CS22T1)

(Common to CSE AND IT)

I I- B.Tech II SEM Operating Systems Prepared By: BSR 2 | P a g e

UNIT-I

Operating Systems Overview: Introduction, Operating

system functions, Operating systems operations.

System Structures: Operating System Services, User and

Operating-System Interface, system calls, Types of System

Calls, system programs, Operating system Design and

Implementation, Operating system structure.

UNIT-II

Processes: Process Concept, Process scheduling, Operations

on processes, Inter-process communication.

Threads and Concurrency: Multithreading models, Thread

libraries, Threading issues.

 CPU Scheduling: Basic concepts, Scheduling criteria,

Scheduling algorithms, Multiple processor scheduling.

UNIT-III

Synchronization Tools: The Critical Section Problem,

Peterson’s Solution, Mutex Locks, Semaphores, Monitors,

Classic problems of Synchronization.

Deadlocks: system Model, Deadlock characterization,

Methods for handling Deadlocks, Deadlock prevention,

Deadlock avoidance, Deadlock detection, Recovery from

Deadlock.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 3 | P a g e

UNIT-IV

Memory-Management Strategies: Introduction,

Contiguous memory allocation, Paging, Structure of the

Page Table, Swapping.

Virtual Memory Management: Introduction, Demand

paging, Copy-on-write, Page replacement, Allocation of

frames, Thrashing.

Storage Management: Overview of Mass Storage

Structure, HDD Scheduling, RAID.

UNIT-V

File System: File System Interface: File concept, Access

methods, Directory Structure; File system Implementation:

File-system structure, File-system Operations, Directory

implementation, Allocation method, Free space

management; File-System Internals: File System

Mounting, Partitions and Mounting, File Sharing.

Protection: Goals of protection.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 4 | P a g e

UNIT-I

Operating Systems Overview: Introduction, Operating

system functions, Operating systems operations.

System Structures: Operating System Services, User and

Operating-System Interface, system calls, Types of System

Calls, system programs, Operating system Design and

Implementation, Operating system structure.

1.1 Operating Systems Overview: Introduction

An Operating System (OS) is an interface between computer

user and computer hardware. An operating system is

software which performs all the basic tasks like file

management, memory management, process management,

handling input and output, and controlling peripheral

devices such as disk drives and printers.

 The primary purposes of an Operating System

are to enable applications to interact with a computer's

hardware and to manage a system's hardware and software

resources.

 Some popular Operating Systems include Linux

Operating System, Windows Operating System etc. Today,

Operating system is found almost in every device like

mobile phones, personal computers, mainframe computers,

automobiles, TV, Toys etc.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 5 | P a g e

Architecture

We can draw a generic architecture diagram of an Operating

System which is as follows:

Operating System Generations

GENERATION YEAR TECHNOLOGY OPERATING

SYSTEM
SPECIFIC

COMPUTERS

First Generation 1946 – 1959 Vacuum Tubes None
ENIAC, IBM- 701,

IBM-650 etc.

Second

Generation
1959 – 1965 Transistors None

IBM 1401, B5000

etc.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 6 | P a g e

Third Generation 1965 – 1971 ICs Yes

IBM-360, IBM- 370,
 HP 2100A

etc.

Fourth

Generation
1971 – 1980 LSI and VLSI Yes

IBM PC, STAR

1000 etc.

Fifth Generation
1980–

onwards

Artificial Intelligence,

Expert Systems, and

Natural Language
Yes

Desktop, Laptop, Note Book,

Ultra Book etc.

Types of Operating System

The operating system can be of different types. They are as

follows:

a) Batch OS

Jobs with similar requirements are grouped together and

processed as a batch. This saves time and makes the best use

of the computer's resources.

Example: payroll system and Bank statement

b) Time-Shared OS

Time sharing OS allows the user to perform more than one

task at a time, each task getting the same amount of time to

I I- B.Tech II SEM Operating Systems Prepared By: BSR 7 | P a g e

execute. Hence, the name time sharing OS. Multiple jobs are

running at the CPU time and also, they use the CPU

simultaneously.

Example: UNIX

c) Distributed OS

A distributed operating system (DOS) is a type of operating

system that connects multiple independent computer

systems through a single communication channel.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 8 | P a g e

Example: LOCUS

d) Network OS

A network operating system (NOS) is software that connects

multiple devices and computers on the network and allows

them to share resources on the network.

Example: UNIX, LINUX and Microsoft Windows server

2008

e) Real-Time OS

A real-time operating system (RTOS) is a software program

that manages tasks and system resources with a high degree

of precision and reliability, and within strict time

constraints.

Example: Missile systems, robots

1.2 Functions of Operating System

An operating system (OS) has many functions, including:

Managing resources: The OS manages the computer's

resources, such as the CPU, RAM, and hard disk. It uses

these resources to perform tasks like opening applications,

printing documents, and accessing the internet.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 9 | P a g e

Managing files: The OS manages files from creation to

deletion, including their security, status, and storage

location.

Security: The OS protects data and files from unauthorized

access through access controls, user authentication, and data

protection mechanisms.

Monitoring and improving performance: The OS

monitors the system's performance and works to improve it.

It also continuously regulates the system to detect bugs and

errors.

Booting: The OS is loaded into the main memory when the

computer starts, a process called booting.

User interface: The OS provides a graphical user interface

(GUI) that allows the user to interact with the computer.

Managing processes: The OS oversees all running

programs and processes.

Managing memory: The OS manages the computer's

memory.

Device management: The OS controls peripheral devices

like printers and disk drives.

Networking: The OS handles networking.

Task scheduling: The OS schedules tasks.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 10 | P a g e

1.3 Operating systems operations

There are various components of an Operating System to

perform well defined tasks. Though most of the Operating

Systems differ in structure but logically they have similar

components. Each component must be a well-defined

portion of a system that appropriately describes the

functions, inputs, and outputs.

There are following 8-components of an Operating System:

a. Process Management

b. I/O Device Management

c. File Management

d. Network Management

e. Main Memory Management

f. Secondary Storage Management

g. Security Management

h. Command Interpreter System

a) Process Management

Process management in an operating system (OS) is the

process of creating, scheduling, and terminating programs,

or processes, that are running within the system:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 11 | P a g e

Process

A program that is currently running. Each process has a

program counter that represents its current activity, and a set

of resources allocated by the OS.

Process management

The process of managing the creation, scheduling,

termination, and synchronization of processes within the

system.

Purpose

Process management ensures that resources are used

efficiently, the system remains stable, and applications run

smoothly. It also controls how programs interact with each

other.

b) I/O Device Management

Input/Output (I/O) device management in an operating

system (OS) is how the OS handles input and output

operations between the computer and its external devices.

The OS acts as a mediator between the devices and the

running programs, ensuring efficient access to these

resources.

Here are some aspects of I/O device management in an OS:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 12 | P a g e

Device drivers

Responsible for all aspects of device access, management,

and control. This includes how requests are passed from

higher level components to the device and how those

components respond to errors or notifications from the

device.

Buffering

Involves temporarily storing data in memory before it is

written to a storage device, or after it is read from a storage

device. This can improve performance by reducing the

number of I/O operations required.

Direct Memory Access (DMA) controller

A control unit that can transfer blocks of data between I/O

devices and main memory with minimal intervention from

the processor.

Spooling

The process of managing the data flow to devices that can't

handle interleaved data streams, like printers.

Device control

The management of I/O devices such as a keyboard,

magnetic tape, disk, printer, microphone, USB ports,

scanner, camcorder, etc.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 13 | P a g e

c) File Management

File management in an operating system (OS) is the process

of organizing, storing, and manipulating files on a computer.

It's a fundamental and crucial component of an OS.

File management in an OS involves:

 Creating, modifying, and deleting files

 Storing files in a hierarchical file system

 Managing nonvolatile storage

 Ensuring data integrity and security

 Making files easily searchable and retrievable

Some fundamental concepts in file management include:

Consistency: Standardizing file naming, folder structure,

and metadata use

Primary and backup: Protecting the primary copy of data

with backup copies

Originals and derivatives: Storing camera originals

separately from derivatives.

d) Network Management

Network management is the process of configuring,

monitoring, and maintaining a network, and the tools used

to do so. An operating system (OS) plays a key role in

I I- B.Tech II SEM Operating Systems Prepared By: BSR 14 | P a g e

network management by managing the network interface

card (NIC) and network protocols.

Here are some ways an OS manages a network:

NIC management: The OS ensures the NIC works properly

by managing its operation.

Network protocol management: The OS manages network

protocols, which are rules and conventions that govern data

transmission and reception.

Data transmission and reception management: The OS

manages data transmission and reception.

Encapsulation process management: The OS controls the

encapsulation process, which involves packaging data into

packets for transmission on the network.

Network service management: The OS manages network

services like email, file sharing, and print sharing.

Network security management: The OS manages the

firewall, which prevents unauthorized access to a network or

system. The OS also manages the authentication process,

which involves identifying users before granting access to a

network.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 15 | P a g e

e) Main memory Management

Memory management is the process of controlling and

coordinating a computer's main memory. It ensures that

blocks of memory space are properly managed and allocated

so the operating system (OS), applications and other running

processes have the memory they need to carry out their

operations.

 Main memory management in an operating

system (OS) is the process of managing a computer's

primary memory to ensure that the OS, applications, and

other processes have the memory they need to run:

Tracking memory status: Memory management keeps

track of each memory location's status, whether it's allocated

or free.

Allocating memory: Memory management decides which

processes get memory, when they receive it, and how much

they are allowed.

Deallocating memory: Memory management releases

memory space when it's no longer needed.

Moving processes: Memory management moves processes

between main memory and disk during execution.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 16 | P a g e

Optimizing memory usage: Memory management strives

to optimize memory usage so the CPU can access the

instructions and data it needs.

Preventing unauthorized access: Memory management

prevents unauthorized memory access to any process.

f) Secondary Storage Management

Secondary memory management in an operating system

(OS) involves organizing data, controlling access, and

handling data transfers. The OS manages secondary storage

devices, such as hard drives and solid-state drives, using a

variety of methods, including:

File systems: Organizes data on secondary storage devices,

allowing for storage, retrieval, and updating. The file system

also manages free space on the storage device.

Access control: Controls who can access data on a storage

device and what they can do with it.

Buffering: Helps manage secondary storage.

The OS also manages secondary storage by:

 Allocating storage space when new files are written

 Scheduling requests for memory access

I I- B.Tech II SEM Operating Systems Prepared By: BSR 17 | P a g e

Secondary memory is non-volatile and is used for long-term

data storage. It's much slower than RAM, so the OS needs to

ensure that frequently accessed data stays in main memory.

Less-used data is swapped out to secondary storage.

g) Security Management

Security management for an operating system (OS) is the

process of protecting a computer system from internal and

external threats. It involves:

Identifying assets: Cataloguing the assets of the

organization, such as people, technology, data, and physical

facilities

Developing policies: Creating and documenting policies

and procedures to protect the assets

Implementing policies: Putting the policies and procedures

into action

Maintaining policies: Regularly reviewing and improving

the policies and procedures

Training staff: Ensuring that staff are aware of their

security roles and are trained to support security efforts

Monitoring user activity: Assessing how well the security

implementation is working

Some examples of security features in an OS include:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 18 | P a g e

Secure Boot and Trusted Boot: These features work

together to ensure that the system boots up safely and

securely

h) Command Interpreter System

A command interpreter allows the user to interact with a

program using commands in the form of text lines. It was

frequently used until the 1970’s. However, in modern times

many command interpreters are replaced by graphical user

interfaces and menu-driven interfaces.

1.4 System Structures: Operating System Services

An operating system is software that acts as an intermediary

between the user and computer hardware. It is a program

with the help of which we are able to run various

applications. It is the one program that is running all the

time. Every computer must have an operating system to

smoothly execute other programs.

Here are the main categories and types of services typically

provided by an OS:

a. Program execution

b. Input Output Operations

c. Communication between Processes

I I- B.Tech II SEM Operating Systems Prepared By: BSR 19 | P a g e

d. File Management

e. Memory Management

f. Process Management

g. Security and Privacy

h. Resource Management

i. User Interface

j. Networking

k. Error handling

l. Time Management

a) Program Execution

The OS provides an environment for executing applications.

It includes:

 Loading programs into memory.

 Running and terminating programs when the user

or another process instructs it to.

 Memory and resource allocation for applications

and managing execution times.

b) Input Output Operations

The OS manages input and output devices and services for

reading from and writing to devices. Examples include:

 Disk and file I/O for saving and retrieving data.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 20 | P a g e

 Device management for handling printers,

keyboards, display screens, and external storage.

 Device drivers that facilitate communication

between hardware and software.

c) Communication between Processes

The Operating system manages the communication between

processes. Communication between processes includes data

transfer among them. If the processes are not on the same

computer but connected through a computer network, then

also their communication is managed by the Operating

System itself.

d) File Management

The operating system helps in managing files also. If a

program needs access to a file, it is the operating system that

grants access. These permissions include read-only, read-

write, etc. It also provides a platform for the user to create,

and delete files. The Operating System is responsible for

making decisions regarding the storage of all types of data

or files, i.e, floppy disk/hard disk/pen drive, etc. The

Operating System decides how the data should be

manipulated and stored.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 21 | P a g e

e) Memory Management

Memory management is crucial for allocating and

organizing a system’s memory resources, including:

 Allocating memory to processes and deallocating it

when processes terminate.

 Tracking free and used memory to avoid conflicts.

 Virtual memory management, allowing applications

to use more memory than is physically available by

swapping data between RAM and storage.

f) Process Management

Process management services help the OS handle multiple

tasks concurrently. These services include:

 Creating and terminating processes.

 Scheduling to determine which processes run when,

based on priority and availability.

 Inter-process communication (IPC) to enable data

exchange between processes.

 Process synchronization to prevent conflicts when

multiple processes access shared resources.

g) Security and Privacy

Security services help prevent unauthorized access and

ensure data integrity:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 22 | P a g e

 User authentication, including passwords,

biometrics, or multi-factor authentication.

 Access control to restrict access to files, processes,

and devices.

 Encryption for protecting sensitive data, especially

in networked or multi-user environments.

h) Resource Management

The OS monitors and optimizes the use of resources like

CPU, memory, and disk storage:

 CPU and memory allocation based on application or

user needs.

 Resource tracking and usage monitoring to manage

system performance.

 Billing and accounting for resource usage, often used

in cloud or multi-user environments to track resource

consumption.

i) User Interface

 Command-Line Interface (CLI): Allows users to

interact with the OS by typing commands. Common

in UNIX/Linux and Windows (Command Prompt).

 Graphical User Interface (GUI): Provides a visual

interface with windows, icons, and menus for user

I I- B.Tech II SEM Operating Systems Prepared By: BSR 23 | P a g e

interaction, making the system more accessible for

users who prefer graphical navigation.

 Touch Interface: Common in mobile OSs, allowing

users to interact with the device using touch

gestures.

j) Networking

Modern OS provides services for network management,

which is essential for connecting and communicating

over the internet or local networks:

 Network protocols to enable communication,

such as TCP/IP.

 Remote access to allow users to access and

control a system from another location.

 File and resource sharing across the network,

allowing users to share files, printers, and other

resources.

k) Error handling

The OS continuously monitors the system for errors to

ensure smooth operation:

 Detecting hardware and software errors, such as

memory allocation issues or device failures.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 24 | P a g e

 Recovering from errors by attempting corrective

actions.

 Logging errors for system administrators and users

to review

l) Time Management

Time management is the strategic process of organizing and

planning how to allocate one's time effectively for

maximum productivity. Time management is crucial for

efficient handling of multiple processes, system resources,

and task prioritization. The OS is responsible for keeping

track of time and scheduling processes to ensure that each

has fair access to the CPU and that critical tasks are

completed on time.

1.5 User and Operating-System Interface

The User and Operating-System Interface refers to the layer

through which users interact with the operating system (OS)

and access its functionalities. This interface serves as a

bridge between the user and the OS's core features, allowing

users to execute commands, manage files, and configure

system settings. There are two primary types of user

I I- B.Tech II SEM Operating Systems Prepared By: BSR 25 | P a g e

interfaces in an OS: the Command-Line Interface (CLI) and

the Graphical User Interface (GUI).

1. Command-Line Interface (CLI)

The Command-Line Interface provides a text-based way for

users to interact with the operating system by typing

commands. The CLI is common in many operating systems,

especially for technical or server environments where

efficient, script-based management is preferred.

Key Features of CLI:

 Direct Command Entry: Users type commands

directly to control the system, such as managing

files, configuring settings, or running programs.

 Scripting and Automation: Users can create scripts

to automate repetitive tasks, making CLI useful for

system administration.

 Efficiency: For experienced users, the CLI can be

faster and more flexible than a GUI, as it allows

direct access to commands and shortcuts.

Examples of CLI:

 UNIX/Linux Shells: Such as Bash, Zsh, and C

Shell.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 26 | P a g e

 Windows Command Prompt: The command

interpreter for Windows, also known as cmd.exe.

 PowerShell: An advanced command-line interface

in Windows with powerful scripting capabilities.

2. Graphical User Interface (GUI)

The Graphical User Interface is a visual way for users to

interact with the OS through windows, icons, menus, and

other graphical elements. GUIs make the OS more

accessible and user-friendly, especially for general users

who may not be familiar with command-line commands.

Key Features of GUI:

 Point-and-Click Interaction: Users can interact

with the OS by clicking, dragging, and selecting

graphical elements with a mouse, touchpad, or

touchscreen.

 Icons and Windows: Files, folders, applications,

and system functions are represented by icons.

Multiple applications can be opened in separate

windows, making multitasking more intuitive.

 User-Friendliness: GUIs are designed to be visually

intuitive, making them ideal for users with little

technical knowledge.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 27 | P a g e

 Multi-Tasking and Desktop Management: Users

can manage and switch between multiple

applications and windows easily.

Examples of GUI:

 Windows OS Desktop Environment: Provides a

GUI with taskbars, start menus, and windows for

different applications.

 macOS Finder and Dock: macOS provides a

desktop environment with a dock for applications,

Finder for file management, and other graphical

tools.

 Linux Desktop Environments: GNOME, KDE

Plasma, and Xfce are common desktop environments

in Linux, each offering different GUI features and

layouts.

1.6 System Calls, Types of System Calls

A system call is a way for a computer program to request

services from the operating system (OS) it's running on.

System calls are an essential interface between the program

and the OS.

In our computer system, we have two modes available.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 28 | P a g e

User Mode: In this mode, execution is done on behalf of the

user.

Monitor/Kernel-Mode: In this mode, execution is done on

behalf of OS.

So when the process is under execution process executes

under user mode, but when the process requires some OS

resources to complete the task, the process makes a system

call.

Here are some things that a system call can do:

 Access hardware, like a hard disk drive or camera

I I- B.Tech II SEM Operating Systems Prepared By: BSR 29 | P a g e

 Create and run new processes

 Communicate with kernel services, like process

scheduling

 Manage resources, like memory

Some examples of system calls include:

Open: Opens or creates files, and specifies access mode and

permissions

Read and write: Reads and writes data to files

Fork: Creates a child process, which is a copy of the parent

process

Exec: Loads a new program into the current process's

address space

Exit: Terminates a program and returns status to the parent

process.

Types of System Calls

I I- B.Tech II SEM Operating Systems Prepared By: BSR 30 | P a g e

1. Process Control System Calls

Manage and control processes, including their execution and

termination.

Examples include:

fork(): Creates a new process by duplicating an existing

one.

exec(): Replaces the current process memory with a new

program.

wait(): Suspends the calling process until a child process

terminates.

exit(): Ends a process.

getpid(): Returns the process ID.

kill(): Sends a signal to terminate a process.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 31 | P a g e

2. File Management System Calls

Handle files and directories, allowing creation, deletion,

reading, and writing of files.

Examples include:

open(): Opens a file.

read(): Reads data from a file.

write(): Writes data to a file.

close(): Closes an open file.

unlink(): Deletes a file.

lseek(): Moves the read/write pointer within a file.

3. Device Management System Calls

Control device operations, allowing user processes to

interact with hardware devices.

Examples include:

ioctl(): Performs device-specific input/output operations.

read() and write(): Also used for devices as they can be

accessed as files.

open() and close(): Open and close device files.

4. Communication System Calls

Enable processes to communicate, typically in inter-process

communication (IPC) or networked environments.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 32 | P a g e

Examples include:

pipe(): Creates a unidirectional communication channel

between processes.

shmget(), shmat(): Access shared memory.

msgget(), msgsnd(), msgrcv(): Create and access message

queues.

socket(), connect(), send(), recv(): Used for network

communication over sockets.

5. Information Maintenance System Calls

Provide information about processes, files, and system

configuration.

Examples include:

getpid(): Returns the process ID of the current process.

alarm(): Sets a timer that sends a signal after a specified

interval.

sleep(): Delays the process for a specified amount of time.

getcwd(): Gets the current working directory.

setuid(): Sets user ID of a process.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 33 | P a g e

1.7 System Programs

System programs, also known as system software, are a

collection of programs that control a computer's operations

and run in the background. Some examples of system

programs include:

Operating systems: Manages hardware resources and

provides an environment for application software to run.

examples like Windows, macOS, Linux, UNIX, and

Ubuntu.

File management systems: These utility programs help

manage a computer's files.

Device Drivers: Facilitate communication between the OS

and hardware components like printers, graphics cards, and

network adapters.

Utilities: Perform specific, often system maintenance, tasks,

like disk cleanup, antivirus scanning, data backup, or system

monitoring.

Compilers and Interpreters: Translate code written in

programming languages (like C++ or Python) into machine

language so the computer can execute it.

Assemblers: Convert assembly language code into machine

code, essential in low-level programming tasks.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 34 | P a g e

System Libraries: Contain code and data that other

programs can use. They provide a standard way for

applications to access system functions.

Antivirus programs: These programs help protect a

computer from viruses and include examples like McAfee

Antivirus, Quickheal Antivirus, and Windows Defender.

 System programs are fundamental because

they handle low-level operations, ensuring applications can

run smoothly and efficiently on the hardware.

1.8 Operating system Design and Implementation

Designing and implementing an operating system (OS)

involves creating software that manages hardware resources,

runs applications, and provides user interfaces. OS design is

complex because it requires balancing efficiency, reliability,

security, and ease of use. Here's an overview of the key

aspects involved:

1. Design Goals and Requirements

 User Goals: These focus on what users want from

an OS, such as reliability, security, efficiency, and

ease of use.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 35 | P a g e

 System Goals: These include resource utilization,

scalability, and maintainability. System goals often

prioritize efficient use of CPU, memory, and other

resources.

2. Types of Operating Systems

 Batch Systems: Process jobs without user

interaction; commonly used in older systems.

 Time-Sharing (Multitasking) Systems: Allow

multiple users or tasks to share system resources

simultaneously.

 Distributed Systems: Enable multiple computers to

work together over a network, appearing as one

cohesive system.

 Real-Time Systems: Provide immediate processing

for time-sensitive tasks, often used in embedded

systems like medical or automotive devices.

 Embedded Systems: Tailored OS for specific

devices, with limited resources, such as smartphones

or IoT devices.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 36 | P a g e

3. Core Components of OS Design

 Kernel: The core part of the OS, managing system

resources and communication between hardware and

software.

 Monolithic Kernel: A single large kernel that

provides most OS functions (e.g., Linux).

 Microkernel: Minimalist design, only handling

essential functions (e.g., Mach).

 Process Management: Manages processes and

threads, including their scheduling, synchronization,

and termination.

 Memory Management: Allocates and manages

memory space, tracks free memory, and implements

techniques like paging and segmentation.

 File System Management: Manages files and

directories, providing access methods and

maintaining metadata.

 Device Management: Coordinates the operation of

peripheral devices through device drivers.

 Security and Protection: Implements security

measures to protect against unauthorized access,

ensuring safe multitasking.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 37 | P a g e

4. Operating System Interfaces

 Command-Line Interface (CLI): Allows text-

based commands to control the OS. Useful for

advanced users.

 Graphical User Interface (GUI): Uses graphical

elements for user interaction, focusing on ease of

use.

 Application Programming Interface (API):

Provides interfaces for application programs to

access OS services.

5. Process and Thread Management

 Processes: An OS executes programs as processes.

Each process has its memory, execution context, and

resources.

 Threads: Lightweight processes within a single

process. Threads allow multiple sequences of

execution, improving efficiency in multicore

processors.

 Scheduling: Determines the order of process or

thread execution based on algorithms (e.g., round-

robin, priority-based).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 38 | P a g e

6. Memory Management Techniques

 Paging: Divides memory into fixed-sized pages to

manage physical and virtual memory separately.

 Segmentation: Divides memory into segments

based on logical divisions in a program (e.g., code,

data).

 Virtual Memory: Provides the illusion of a larger

memory size by using disk space as an extension of

RAM.

7. File System Design

File Organization: Defines how data is stored, retrieved, and

organized within files and directories.

 Access Methods: Determines how files are

accessed, such as sequential or direct access.

 File Allocation: Techniques like contiguous, linked,

or indexed allocation manage how disk space is

assigned to files.

 Data Structures: Indexing, inodes, and directories

help manage file metadata and improve access times.

8. Security and Protection Mechanisms

 Authentication: Verifies user identity with

passwords, biometrics, or other methods.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 39 | P a g e

 Authorization: Grants permissions based on user

roles or access levels.

 Encryption: Secures data storage and

communication.

 Access Control: Implements policies for user and

process access to resources, often with mechanisms

like Access Control Lists (ACLs).

Implementing an Operating System

Programming Language: OS is often implemented in

C/C++ due to its performance and system-level access.

Development Phases:

 Planning: Defining the OS scope, design goals, and

feature requirements.

 Prototyping: Building basic functionality to test key

components.

 Development: Coding modules like kernel, device

drivers, and system utilities.

 Testing: Running the OS on various configurations

to detect and fix bugs.

 Deployment: Distributing the OS for use, often

followed by periodic updates.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 40 | P a g e

Testing and Debugging

 Simulators and Emulators: Simulate hardware to

test the OS without needing actual hardware.

 Debugging Tools: Tools like kernel debuggers,

profilers, and analyzers help identify issues.

 Continuous Integration and Testing: Ensures that

the OS is stable with new updates and modifications.

Challenges in OS Design

Concurrency: Managing multiple processes and resources

without conflicts or deadlocks.

Resource Management: Balancing efficient use of CPU,

memory, and other hardware with user demands.

Security: Constantly defending against vulnerabilities,

attacks, and unauthorized access.

Portability and Scalability: Ensuring the OS works across

various hardware configurations and scales with

advancements.

 Developing an OS is a complex, iterative process

requiring deep understanding of computer science,

hardware, and software.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 41 | P a g e

1.9 Operating System Structure

The structure of an operating system (OS) defines how its

components are organized and interact. Different OS

structures are designed to balance factors like performance,

security, modularity, and ease of maintenance. Here are the

main types of OS structures:

1. Monolithic Structure

Description: The monolithic operating system is a very

basic operating system in which file management, memory

management, device management, and process management

are directly controlled within the kernel.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 42 | P a g e

Advantages:

 Fast performance due to fewer boundaries between

functions.

 Easy direct access to hardware and system calls.

Disadvantages:

 Large and complex kernel, making it difficult to

maintain and debug.

 Lack of modularity increases the risk of instability

and crashes.

Examples: Early versions of UNIX, MS-DOS, and Linux

(though Linux has since adopted modularity).

2. Layered Structure

Description: In a layered OS structure, the system is

divided into layers, where each layer provides services to

the layer above it and interacts only with the layer directly

below. The bottom-most layer is the hardware, while the

highest layer is the user interface.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 43 | P a g e

Typical Layers:

 Hardware

 CPU scheduling, memory management

 Device management

 File system

 User interface

Advantages:

 Modularity enhances system organization and

improves maintainability.

 Layers can be developed and tested independently,

enhancing reliability.

Disadvantages:

 Potentially slower due to multiple layers of

interaction.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 44 | P a g e

 Rigid structure; each layer depends strictly on the

lower one, which can be limiting.

Examples: THE operating system and some versions of

UNIX have adopted aspects of this design.

3. Microkernel Structure

What is a kernel?

It is the central component of an OS that handles system

resources. It also acts as a bridge between the computer's

application and hardware. It is one of the initial programs

that is loaded when the computer boots up. When an OS is

loaded, the kernel is the first component that loads into

memory and rests there until the OS is shut down. It is in

charge of various activities, including task management,

disk management, and memory management.

Description: The microkernel structure keeps the kernel

minimal, only containing essential services like

communication between processes, basic memory

management, and CPU scheduling. Additional services—

like device drivers, file systems, and network protocols—

run in user space.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 45 | P a g e

In the above figure, the microkernel includes basic needs

like process scheduling mechanisms, memory, and

interprocess communication. It is the only program that

executes at the privileged level, i.e., kernel mode. The OS's

other functions are moved from the kernel-mode and

execute in the user mode.

 The microkernel ensures that the code may be easily

controlled because the services are split in the user space. It

means some code runs in the kernel mode, resulting in

improved security and stability.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 46 | P a g e

Advantages:

 Enhanced security and stability, as most OS services

run in user mode.

 Easier to extend and maintain due to the smaller

kernel.

Disadvantages:

 Potentially slower due to increased context switching

and communication overhead between kernel and

user services.

Examples: Minix, QNX, and macOS (based on the Mach

microkernel).

4. Modular Structure

Description: The modular structure, also known as a hybrid

kernel, combines the benefits of monolithic and microkernel

structures. It has a core kernel but allows dynamic loading

of additional modules, such as device drivers or file

systems.

Advantages:

 High flexibility; modules can be loaded and

unloaded as needed.

 Good performance as modules can still operate in

kernel mode.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 47 | P a g e

 Easier to debug and extend due to modular design.

Disadvantages:

 More complex than a simple monolithic design.

Examples: Linux, which allows dynamic loading of

modules; Windows NT and its successors also use a hybrid

model.

5. Client-Server Model (Distributed OS)

Description: In the client-server model, the OS is structured

as a set of services that communicate over a network or

across a system bus. Services (servers) provide

functionality, while clients request and use these services.

Advantages:

 Scalability and modularity, as services can be

distributed across multiple machines.

 Fault isolation; a crash in one service doesn’t

necessarily affect others.

Disadvantages:

 Can introduce significant overhead due to network

latency and communication.

 More complex to design and manage as compared to

traditional OS.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 48 | P a g e

Examples: Distributed systems like Amoeba, Plan 9, and

some aspects of Windows NT.

6. Virtual Machine Structure

Description: The virtual machine (VM) structure involves

running an OS within a virtual environment, where each

instance of the OS is isolated and can run multiple guest

operating systems on a single hardware system. A

hypervisor, or virtual machine monitor (VMM), manages

these VMs.

Advantages:

 Excellent isolation and security, as each VM runs

independently.

 Efficient resource utilization, allowing multiple OS

instances on one physical machine.

Disadvantages:

 Adds a layer of complexity and overhead, which can

affect performance.

 Challenging to manage and allocate resources among

VMs.

Examples: VMware, VirtualBox, Microsoft Hyper-V, and

Xen.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 49 | P a g e

7. Exokernel Structure

Description: Exokernel design aims to minimize the role of

the kernel by exposing low-level resources to applications.

Instead of abstracting hardware resources, an exokernel

provides minimal abstractions and lets applications manage

their resources directly.

Advantages:

 Potentially higher efficiency, as applications can

directly manage resources.

 Greater flexibility for applications needing fine-

grained control over hardware.

Disadvantages:

 Complexity in application development due to low-

level resource management.

 Less protection and security, as applications have

direct hardware access.

Examples: MIT's Exokernel project.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 50 | P a g e

Summary of OS Structures

Structure Key Characteristics Examples

Monolithic
Single large kernel, high

performance, less modular

UNIX, MS-

DOS

Layered
OS divided into hierarchical

layers

THE OS,

some UNIX

Microkernel

Minimal kernel, essential

services only, user-mode

services

Minix,

macOS

(Mach)

Modular
Core kernel with dynamically

loaded modules

Linux,

Windows NT

Client-Server
Distributed services,

networked communication

Amoeba, Plan

9

Virtual

Machine

Virtual OS instances with

hypervisor

VMware,

Hyper-V

Exokernel
Minimal kernel, direct

hardware access for

applications

MIT's

Exokernel

Each OS structure has strengths and weaknesses, so the

choice of structure depends on factors like the target

application, required performance, security, modularity, and

ease of maintenance.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 51 | P a g e

UNIT-II

Processes: Process Concept, Process scheduling, Operations

on processes, Inter-process communication.

Threads and Concurrency: Multithreading models, Thread

libraries, Threading issues.

CPU Scheduling: Basic concepts, Scheduling criteria,

Scheduling algorithms, Multiple processor scheduling

2.1 Processes: Process Concept

Basically, a process is a simple program. An active program

which running now on the Operating System is known as

the process. The Process is the base of all computing things.

In other words, we write the computer programs in the form

of a text file, thus when we run them, these turn into

processes that complete all of the duties specified in the

program.

a) Components of a Process

It is divided into the following four sections:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 52 | P a g e

Stack

The process stack holds temporary data such as:

Function parameters: Arguments passed to functions

within the program.

Return addresses: Addresses to which control should

return after a function call.

Local variables: Variables defined within a function.

 The stack grows and shrinks dynamically with

function calls and returns, and it’s unique to each process

(and each thread within the process).

Heap

 The heap is a memory region used for dynamic

memory allocation.

 It allows the process to request and allocate memory

at runtime using functions like malloc() in C or new

in C++.

 The heap can grow or shrink as needed, unlike the

fixed size of the stack.

This is the memory that is dynamically allocated to a

process during its execution.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 53 | P a g e

Text

This section contains the actual code or instructions of the

program that the CPU will execute. It is typically read-only,

ensuring that instructions don’t get modified while the

program runs.

Data

The global as well as static variables are included in this

section.

b) Process Life Cycle (States)

Processes in an operating system go through a series of

states from creation to termination. Each state reflects the

current activity and status of the process, helping the OS

manage resources and scheduling. Here are the primary

process states:

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to occur

(such as an I/O completion or reception of a signal).

Ready: The process is waiting to be assigned to a processor.

Terminated: The process has finished execution.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 54 | P a g e

Summary of Process States

State Description Transition to Next State

New

Process is being

created and

initialized.

Moves to Ready once

initialized.

Ready

Process is ready

and waiting for

CPU.

Moves to Running when

CPU is available.

Running

Process is

executing on the

CPU.

Moves to Waiting (if

needing I/O), Ready (if

preempted), or

Terminated (if

I I- B.Tech II SEM Operating Systems Prepared By: BSR 55 | P a g e

State Description Transition to Next State

completed).

Waiting

Process is waiting

for an event, like

I/O.

Moves to Ready once the

event occurs.

Terminated

Process has

completed

execution or been

terminated.

Process is removed from

memory after cleanup.

c) Process Control Block (PCB)

The information about each process is maintained in the

operating system in a process control block, which is also

called a task control block. Figure shows a PCB. The PCB

contains extensive information about the process. The

information present in the PCB includes the following:

Key Components of a Process Control Block (PCB)

Component Description

Process ID (PID) Unique identifier for the process.

Parent Process ID Identifier of the parent process.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 56 | P a g e

Component Description

User and Group

IDs
User and group ownership for security.

Process State
Current state of the process (e.g., Ready,

Running).

Program Counter
Address of the next instruction to

execute.

CPU Registers
Register values to restore during context

switch.

Memory

Management Info

Details on memory allocation (base,

limit, page tables).

Accounting

Information
Usage stats, priority, and resource limits.

I/O Status

Information
Open files and I/O requests in progress.

Scheduling

Information

Priority and queue pointers for

scheduling decisions.

Privileges and

Security
Access rights and security information.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 57 | P a g e

d) Threads

Threads are a fundamental concept in operating systems,

allowing a program to perform multiple tasks concurrently

within a single process. Each thread represents a separate

path of execution, enabling a process to accomplish tasks

more efficiently by dividing work into parallel operations.

Here’s a comprehensive look at threads in an operating

system:

Aspect Description

Definition
A lightweight unit of execution within a

process.

Types User Threads and Kernel Threads.

Thread

Models
One-to-One, Many-to-One, Many-to-Many.

Benefits

Improved responsiveness, efficient resource

sharing, lower cost, and scalability on multi-

cores.

Components

Each thread has its own PC, stack, and

registers but shares code, data, and heap with

the process.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 58 | P a g e

Aspect Description

Operations
Creation, termination, synchronization, and

scheduling.

Challenges
Race conditions, deadlocks, debugging

difficulties, concurrency control.

2.2 Process Scheduling

Process Scheduling is a core function of the operating

system (OS) that determines the order in which processes

are assigned to the CPU for execution. The scheduling

mechanism is essential for managing multitasking and

optimizing CPU utilization, system responsiveness, and

fairness among processes.

a) Objectives of Process Scheduling

 Maximize CPU Utilization: Keep the CPU as busy

as possible by always assigning a process to it when

available.

 Maximize Throughput: Increase the number of

processes that complete their execution in a given

time frame.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 59 | P a g e

 Minimize Turnaround Time: Reduce the time

taken from process submission to completion.

 Minimize Waiting Time: Decrease the time a

process spends waiting in the queue before it gets

CPU time.

 Minimize Response Time: Ensure that interactive

processes get quick responses, enhancing the user

experience.

 Fairness: Ensure that all processes are given an

appropriate share of the CPU based on priority or

need.

b) Types of Scheduling

Pre-emptive Scheduling

 The OS can interrupt a currently running process to

assign the CPU to another process, improving

response time and allowing high-priority tasks to

proceed quickly.

Non-pre-emptive Scheduling

 Once a process starts executing, it continues until it

completes or voluntarily relinquishes control (e.g.,

waiting for I/O).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 60 | P a g e

c) Scheduling Criteria

CPU Utilization: Keep the CPU active as much as possible.

Throughput: Number of processes completed per unit of

time.

Turnaround Time: Time taken for a process to complete

from submission.

Waiting Time: Total time a process spends in the ready

queue.

Response Time: Time taken from submission of a request

until the first response.

4. Types of Process Scheduling Algorithms

Algorith

m

Preempti

ve

Fairnes

s

Respon

se

Time

Waiti

ng

Time

Through

put

Starvati

on

FCFS No

Poor

for

long

jobs

Long High Low
Possibl

e

SJF/SJN No/Yes Good

Short

for

short

jobs

Low

High (for

short

jobs)

Yes,

long

jobs

may

starve

I I- B.Tech II SEM Operating Systems Prepared By: BSR 61 | P a g e

Algorith

m

Preempti

ve

Fairnes

s

Respon

se

Time

Waiti

ng

Time

Through

put

Starvati

on

Priority

Scheduli

ng

Yes/No

Good

with

aging

Varies
Varie

s

High for

high-

priority

jobs

Yes,

without

aging

Round

Robin

(RR)

Yes Good

Mediu

m to

short

Fair Medium No

Multilev

el

Queue

Yes

Fair

with

priority

Varies
Varie

s

Depends

on policy
Yes

Multilev

el

Feedbac

k Queue

Yes
Excelle

nt

Short

for

high-

priority

jobs

Low

for

high-

priorit

y jobs

High for

short

jobs

No,

with

dynami

c

priority

Each scheduling algorithm is optimized for different

performance criteria and system types, making process

scheduling a critical component in achieving effective

multitasking and resource utilization in operating systems.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 62 | P a g e

2.3 Operations on Processes

Process operations in an operating system refer to the

various activities the OS performs to manage processes.

These operations include process creation, process

scheduling, execution and killing the process. Here are the

key process operations:

a) Process Creation

Process creation in an operating system (OS) is the act of

generating a new process. This new process is an instance of

a program that can execute independently.

Forking: The fork() system call is commonly used in

UNIX-based systems to create a new process. The new

process (child) is a duplicate of the calling process (parent)

but with a unique process ID.

Exec: After a process is created, it can replace its memory

space with a new program using exec() in UNIX. This is

often used by the child process to start executing a different

program than the parent.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 63 | P a g e

Windows Process Creation: Windows has a

CreateProcess() function to create a new process, allocate

resources, and initialize the new process.

b) Scheduling

Once a process is ready to run, it enters the ―ready queue.‖

The scheduler’s job is to pick a process from this queue and

start its execution.

c) Execution

Execution means the CPU starts working on the process.

During this time, the process might:

 Move to a waiting queue if it needs to perform an

I/O operation.

 Get blocked if a higher-priority process needs the

CPU.

d) Killing the Process

After the process finishes its tasks, the operating system

ends it and removes its Process Control Block (PCB).

2.4 Inter-process communication.

Inter-process communication (IPC) is a mechanism that

allows processes to exchange data and synchronize their

actions.

Here are the common IPC methods:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 64 | P a g e

a) Pipes

b) Shared Memory

c) Message Queue

d) Direct Communication

e) Indirect communication

f) Message Passing

g) FIFO

I I- B.Tech II SEM Operating Systems Prepared By: BSR 65 | P a g e

a) Pipes

The pipe is a type of data channel that is unidirectional

(unnamed pipes) in nature. It means that the data in this type

of data channel can be moved in only a single direction at a

time. Still, one can use two-channel (Named Pipes) of this

type, so that he can able to send and receive data in two

processes. Typically, it uses the standard methods for input

and output.

Unnamed Pipes: Used primarily for communication

between a parent and child process. Unnamed pipes are one-

way communication channels that exist only for the process

that created them.

Named Pipes: These allow bidirectional communication

between unrelated processes and have a name within the file

system, making them accessible across processes.

b) Shared Memory

It can be referred to as a type of memory that can be used or

accessed by multiple processes simultaneously. It is

primarily used so that the processes can communicate with

each other.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 66 | P a g e

c) Message Queue

Message queues are data structures that allow processes to

send and receive messages in a queued manner.

d) Direct Communication

In this type of communication process, usually, a link is

created or established between two communicating

processes. However, in every pair of communicating

processes, only one link can exist.

e) Indirect communication

Indirect communication can only exist or be established

when processes share a common mailbox, and each pair of

these processes shares multiple communication links. These

shared links can be unidirectional or bi-directional.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 67 | P a g e

f) Message Passing

It is a type of mechanism that allows processes to

synchronize and communicate with each other. However, by

using the message passing, the processes can communicate

with each other without restoring the hared variables.

 Usually, the inter-process communication

mechanism provides two operations that are as follows:

 send (message)

 received (message)

g) FIFO

It is a type of general communication between two unrelated

processes. It can also be considered as full-duplex, which

means that one process can communicate with another

process and vice versa.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 68 | P a g e

Summary Table of IPC Mechanisms

IPC

Mechanism

Communicatio

n Type
Pros Cons

Pipes

Unidirectional

(Unnamed),

Bidirectional

(Named)

Simple,

lightweight

Limited to

local

communica

tion

Message

Queues

Bidirectional

Asynchronous,

queued

messages

Slower for

large data

Shared

Memory

Bidirectional
Fast, direct

memory access

Needs

synchroniz

ation

Sockets
Bidirectional

Network

communication

Complex

setup

Signals
Asynchronous

Quick

notifications

Limited

informatio

n transfer

Semaphores

Synchronization

only

Effective for

synchronization

No direct

data

communica

tion

I I- B.Tech II SEM Operating Systems Prepared By: BSR 69 | P a g e

IPC

Mechanism

Communicatio

n Type
Pros Cons

Memory-

Mapped

Files

Bidirectional
Persistent

storage

Requires

file

manageme

nt

RPC
Synchronous

Remote

procedure

execution

Complex

setup,

network

latency

2.5 Threads and Concurrency: Multithreading models

In operating systems, threads allow a process to split its

tasks into multiple concurrent units of execution, improving

efficiency and resource sharing. Multithreading models

determine how threads are managed and how they interact

with the OS. Here’s an overview of the main multithreading

models:

a) Many-to-One Model

b) One-to-One Model

c) Many-to-Many Model

I I- B.Tech II SEM Operating Systems Prepared By: BSR 70 | P a g e

a) Many-to-One Model

Description: Multiple user-level threads are mapped to a

single kernel thread.

In this model, we have multiple user threads mapped to one

kernel thread. In this model when a user thread makes a

blocking system call entire process blocks. As we have only

one kernel thread and only one user thread can access kernel

at a time, so multiple threads are not able access

multiprocessor at the same time.

The thread management is done on the user level so it is

more efficient.

b) One-to-One Model

Description: Each user-level thread is mapped to a

separate kernel thread.

In this model, one to one relationship between kernel and

user thread. In this model multiple thread can run on

I I- B.Tech II SEM Operating Systems Prepared By: BSR 71 | P a g e

multiple processor. Problem with this model is that creating

a user thread requires the corresponding kernel thread.

As each user thread is connected to different kernel , if any

user thread makes a blocking system call, the other user

threads won’t be blocked.

c) Many-to-Many Model

Description: Multiple user-level threads are mapped to

multiple kernel threads, with the exact mapping determined

by the OS or the thread library.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 72 | P a g e

Summary Table of Multithreading Models

Model

User-

Level

Threads

Kernel-

Level

Threads

Concurrency Parallelism Complexity

Many-

to-

One

Multiple One Limited None Low

One-

to-

One

One per

thread

One per

thread
High High Moderate

Many-

to-

Many

Multiple Multiple High
Depends on

mapping
High

Two-

Level

Mix of

both

Mix of

both
High

High (when

bound)
Very High

2.6 Thread libraries

Thread libraries provide APIs to create, manage, and control

threads, making it easier for developers to implement

multithreaded applications. Different operating systems and

environments offer various thread libraries, each with

I I- B.Tech II SEM Operating Systems Prepared By: BSR 73 | P a g e

distinct features and capabilities. Here are some of the most

widely used thread libraries:

1. POSIX Threads (Pthreads)

Description: Pthreads is a widely used thread library

following the POSIX standard, primarily used on UNIX-

based systems (Linux, macOS, etc.).

Key Functions:

pthread_create(): Creates a new thread.

pthread_join(): Waits for a thread to finish.

pthread_exit(): Terminates the calling thread.

pthread_mutex_lock() and pthread_mutex_unlock():

Lock and unlock mutexes for thread synchronization.

pthread_cond_wait() and pthread_cond_signal(): Use

condition variables for signaling between threads.

2. Windows Threads

Description: Windows provides its own native threading

library, integrated into the Windows API, specifically

designed for the Windows operating system.

Key Functions:

CreateThread(): Creates a new thread.

ExitThread(): Ends the calling thread.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 74 | P a g e

WaitForSingleObject(): Waits for a specific thread or

other object to finish.

CreateMutex() and ReleaseMutex(): Create and release

mutexes for synchronization.

CreateEvent(): Used for signaling between threads.

3. Java Threads (java.lang.Thread)

Description: Java provides its own threading library,

allowing cross-platform multithreading as part of the Java

API.

Key Classes:

Thread: Represents a thread of execution.

Runnable: Functional interface that represents a task to be

executed by a thread.

ExecutorService: Manages a pool of threads for executing

tasks.

synchronized keyword: Provides synchronized methods

and blocks for thread-safe code.

wait() and notify(): Used for inter-thread communication.

4. C++ Standard Library Threads (C++11 and above)

Description: C++11 introduced standard threading support,

providing basic thread management and synchronization

mechanisms as part of the C++ Standard Library.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 75 | P a g e

Key Classes and Functions:

std::thread: Represents an individual thread.

std::mutex and std::lock_guard: Basic mutexes for

locking and synchronization.

std::condition_variable: Allows threads to wait for specific

conditions.

std::async and std::future: Enable asynchronous function

execution and result retrieval.

5. OpenMP (Open Multi-Processing)

Description: OpenMP is a portable, high-level API

primarily for parallel programming on shared-memory

systems, focusing on multithreading for scientific and

engineering applications.

Key Directives:

#pragma omp parallel: Creates a team of threads.

#pragma omp for and #pragma omp sections: Divide

tasks among threads in a team.

#pragma omp critical: Defines critical sections to avoid

race conditions.

#pragma omp barrier: Synchronization point where

threads wait until all reach it.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 76 | P a g e

6. Intel Threading Building Blocks (TBB)

Description: Intel TBB is a C++ template library for

parallel programming, focusing on task-based parallelism

instead of explicit thread management.

Key Features:

 Task-based parallelism abstracts threads, allowing

the library to handle workload distribution.

 Synchronization primitives like mutexes, condition

variables, and atomic operations.

 Support for parallel algorithms and data structures,

such as parallel loops, concurrent containers, and

pipelines.

Summary Table of Thread Libraries

Library Platform Key Features Typical Use Case

I I- B.Tech II SEM Operating Systems Prepared By: BSR 77 | P a g e

Library Platform Key Features Typical Use Case

Pthreads

UNIX/Linux,

macOS

Low-level,

flexible, POSIX

standard

UNIX-based systems,

HPC, real-time

applications

Windows

Threads

Windows

Native Windows

API, supports

thread pooling

Windows-based

applications, GUI,

enterprise software

Java

Threads

Cross-

platform

High-level,

managed by

JVM,

ExecutorService

Cross-platform,

server-side, web

services

C++

Standard

Library

Threads

Cross-

platform

Simple C++

threading, async,

futures

Real-time systems,

games, system-level

software

OpenMP

Cross-

platform

Directives-based,

shared-memory

parallelism

HPC, scientific

computing, numerical

simulations

Intel TBB

Cross-

platform

Task-based,

optimized for

multi-core CPUs

Data processing,

scientific and

financial modeling

I I- B.Tech II SEM Operating Systems Prepared By: BSR 78 | P a g e

2.7 Threading issues

Threading issues can arise when multiple threads operate

concurrently, especially when they share resources or

interact with each other. These issues often lead to

unintended behavior, performance degradation, or system

instability. Here are some common threading issues:

1. Race Conditions

Description: A race condition occurs when multiple threads

access shared data simultaneously and the outcome depends

on the order of execution.

2. Deadlocks

Description: A deadlock happens when two or more threads

are waiting indefinitely for resources held by each other,

creating a cycle of dependency that halts execution.

3. Starvation

Description: Starvation occurs when a thread is unable to

access necessary resources or execute because other threads

monopolize them.

4. Priority Inversion

Description: Priority inversion happens when a high-

priority thread is waiting for a resource held by a lower-

priority thread, while a medium-priority thread preempts the

I I- B.Tech II SEM Operating Systems Prepared By: BSR 79 | P a g e

low-priority thread, effectively delaying the high-priority

thread.

5. Concurrency Issues in Read-Write Operations

Description: When multiple threads read and write shared

data without proper synchronization, inconsistencies can

occur, leading to unpredictable behavior.

6. Thread Leaks

Description: A thread leak occurs when a program

repeatedly creates threads without properly terminating or

joining them, which can exhaust system resources.

Summary Table of Threading Issues and Solutions

Threading Issue Description Solution

Race Conditions

Concurrent access to

shared data causes

errors

Use locks or

synchronization

primitives

Deadlocks

Threads wait

indefinitely for each

other’s resources

Avoid circular wait,

use deadlock

detection

Livelocks
Threads keep

adjusting but make

Use random delays

or prioritized

I I- B.Tech II SEM Operating Systems Prepared By: BSR 80 | P a g e

Threading Issue Description Solution

no progress handling

Starvation

Threads are

indefinitely delayed

by others

Fair scheduling,

priority aging

Priority

Inversion

High-priority thread

waits for lower-

priority thread

Use priority

inheritance

Read-Write

Concurrency

Issues

Uncoordinated read-

write leads to data

inconsistency

Use reader-writer

locks

Thread Leaks

Threads are created

without proper

termination

Use thread pooling,

ensure proper

termination

Context

Switching

Overhead

Frequent context

switches slow

performance

Use thread pools,

fewer threads

Memory Threads see Use memory

I I- B.Tech II SEM Operating Systems Prepared By: BSR 81 | P a g e

Threading Issue Description Solution

Consistency

Errors

inconsistent

memory views

barriers, atomic

variables

Improper

Thread-Local

Storage Use

Incorrect sharing of

local data

Limit use of TLS,

encapsulate

properly

2.8 CPU Scheduling: Basic concepts

CPU scheduling is the process of determining which

processes in the ready queue should be allocated CPU time

for execution. Since CPU time is a limited resource,

efficient CPU scheduling is essential to maximize CPU

utilization, improve system throughput, and ensure fair

allocation among processes.

Key Concepts in CPU Scheduling

1. CPU and I/O Bursts

CPU Burst: A period during which a process is actively

using the CPU to execute instructions.

I/O Burst: A period during which a process is waiting for

an I/O operation (e.g., reading data from a disk).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 82 | P a g e

2. Scheduling Criteria

CPU Utilization: Aim to keep the CPU as busy as possible

(ideally close to 100%).

Throughput: The number of processes completed per unit

of time.

Turnaround Time: The total time taken from the process's

arrival to its completion (including waiting, execution, and

I/O).

Waiting Time: The total time a process spends waiting in

the ready queue.

Response Time: The time from a request submission to the

first response, particularly important in interactive systems.

Fairness: Ensuring that each process gets a fair share of

CPU time and avoids starvation.

3. Preemptive vs. Non-Preemptive Scheduling

Preemptive Scheduling: The scheduler can interrupt a

currently running process to allocate the CPU to another

process (e.g., due to higher priority or a time quantum

expiring).

Non-Preemptive Scheduling: Once a process is given the

CPU, it runs until it either finishes or enters the waiting state

(e.g., for I/O).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 83 | P a g e

2.9 Scheduling Criteria

Scheduling criteria are essential in evaluating and

comparing different CPU scheduling algorithms. These

criteria help determine how effectively an algorithm

manages system resources, maximizes performance, and

meets the requirements of various types of applications.

Here are the primary scheduling criteria:

1. CPU Utilization

Definition: Measures the percentage of time the CPU is

actively working on processes rather than being idle.

2. Throughput

Definition: The number of processes that are completed per

unit of time.

3. Turnaround Time

I I- B.Tech II SEM Operating Systems Prepared By: BSR 84 | P a g e

Definition: The total time taken for a process to complete,

from its arrival in the system to its completion.

4. Waiting Time

Definition: The total time a process spends in the ready

queue waiting for CPU allocation.

5. Response Time

Definition: The time from when a request is submitted until

the first response is produced (not the completion of the

process).

6. Fairness

Definition: Ensuring that each process receives a fair share

of CPU time and that no process is indefinitely postponed.

7. Predictability

Definition: The ability of a scheduling algorithm to

consistently provide the same level of service, with stable

waiting and turnaround times.

Summary of Scheduling Criteria

Scheduling

Criterion
Description Objective

CPU Utilization
Percentage of time CPU is

actively working
Maximize

I I- B.Tech II SEM Operating Systems Prepared By: BSR 85 | P a g e

Scheduling

Criterion
Description Objective

Throughput
Number of processes

completed per unit time
Maximize

Turnaround

Time

Total time from process arrival

to completion
Minimize

Waiting Time
Total time a process spends in

the ready queue
Minimize

Response Time
Time from request submission

to first response
Minimize

Fairness
Ensures all processes receive

equitable CPU access
Maximize

Predictability

Consistent service levels,

stable wait, and turnaround

times

Maximize

I I- B.Tech II SEM Operating Systems Prepared By: BSR 86 | P a g e

2.10 Scheduling algorithms

CPU Scheduling is a process in operating systems that

determines which process in the ready queue should be

allocated to the CPU for execution. Since the CPU can only

execute one process at a time, efficient scheduling is

essential to maximize CPU utilization, improve system

performance, and ensure processes run smoothly.

Key Goals of CPU Scheduling

Maximize CPU Utilization: Keep the CPU as busy as

possible.

Maximize Throughput: Increase the number of processes

completed in a given time frame.

Minimize Waiting Time: Reduce the time processes spend

in the ready queue.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 87 | P a g e

Minimize Turnaround Time: Reduce the total time a

process takes from arrival to completion.

Minimize Response Time: For interactive systems, it’s

crucial to minimize the time taken from when a request is

submitted until the first response is produced.

Types of CPU Scheduling Algorithms

First-Come, First-Served (FCFS):

 Processes are scheduled in the order they arrive.

 Simple but may lead to high waiting times,

especially with long processes.

Shortest Job First (SJF):

 Processes with the shortest burst time are scheduled

first.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 88 | P a g e

 Efficient but can cause starvation for longer

processes.

Priority Scheduling:

 Each process is assigned a priority, and the CPU is

allocated to the process with the highest priority.

 Works well but can lead to starvation for lower-

priority processes.

Round Robin (RR):

 Each process gets a fixed time slice (quantum) in a

cyclic order.

 Good for time-sharing and interactive systems;

however, performance depends on the time quantum

size.

Multilevel Queue Scheduling:

 Processes are grouped into different queues, each

with its scheduling algorithm.

 Often used when there are distinct classes of

processes, like system and user processes.

Multilevel Feedback Queue Scheduling:

 Similar to multilevel queue scheduling but allows

processes to move between queues based on their

behavior and requirements.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 89 | P a g e

 Adaptive and efficient but complex to implement.

Preemptive vs. Non-Preemptive Scheduling

Preemptive Scheduling: Allows a process to be interrupted

and moved to the ready queue if a higher-priority process

arrives or based on other conditions.

Non-Preemptive Scheduling: Once a process is given the

CPU, it keeps it until it finishes or voluntarily yields.

Algorith

m
Type Advantages

Disadvantag

es
Use Case

FCFS
 Non-

preemptive

Simple, fair in

arrival order
Convoy effect

Batch

processing

SJF/SJ

N

Non-

preemptiv

e

Minimizes

average

waiting time

Requires

burst-time

prediction,

starvation

Known burst

times,

simulations

SRTF
Preemptiv

e

Minimizes

waiting time,

more

responsive

Hard to

predict burst

time,

starvation

Short task

scheduling

Round

Robin

(RR)

Preemptive

Fair, good for

interactive

systems

High context

switching if

quantum is

too low

Time-sharing

systems

Priority

Schedul

ing

Can be

both

Prioritizes

important

tasks

Starvation

without aging

Real-time or

mission-

critical tasks

Multilevel Can be Separates and Starvation for Multi-purpose

I I- B.Tech II SEM Operating Systems Prepared By: BSR 90 | P a g e

Queue both prioritizes

tasks by type

low-priority

queues

systems with

varied

workloads

Multilevel

Feedback

Queue

Preemptive

Flexible,

adaptive,

reduces

starvation

Complex

configuration

General-

purpose

systems,

OSes

Earliest

Deadline

First

Preemptive

Meets real-

time

deadlines

High

overhead

Real-time

systems

Lottery

Scheduling
Preemptive

Fair

distribution,

allows

priority

assignment

Less

predictable

Systems with

approximate

fairness needs

I I- B.Tech II SEM Operating Systems Prepared By: BSR 91 | P a g e

1. First Come First Serve

2. Shortest Job First

3. Priority Scheduling

4. Round Robin (RR)

1. First-Come, First-Served (FCFS) is one of the simplest

CPU scheduling algorithms. In FCFS scheduling, the

process that arrives first is executed first, without

interruption, until it finishes. It follows a non-preemptive

approach, meaning once a process starts executing, it runs

until it completes.

Important Abbreviations

CPU - - - > Central Processing Unit

FCFS - - - > First Come First Serve

AT - - - > Arrival Time

BT - - - > Burst Time

WT - - - > Waiting Time

TAT - - - > Turn Around Time

CT - - - > Completion Time

FIFO - - - > First In First Out

How FCFS Scheduling Works

 Processes are scheduled in the order of their arrival

times.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 92 | P a g e

 Each process holds the CPU until it completes, after

which the next process in line begins execution.

Advantages of FCFS

 Simple and easy to implement.

 Fair in terms of process arrival time (first come, first

served).

Disadvantages of FCFS

 Convoy Effect: If a long process is ahead in the

queue, shorter processes must wait, leading to

increased waiting times and inefficient CPU

utilization.

 High Average Waiting Time: Processes arriving

later can experience significant delays if earlier

processes have long burst times.

Example of FCFS Scheduling

Suppose we have the following processes arriving in the

order shown below, with their respective CPU burst times:

Process
Arrival

Time
Burst Time

P1 0 5

P2 1 3

P3 2 8

P4 3 6

I I- B.Tech II SEM Operating Systems Prepared By: BSR 93 | P a g e

Step-by-Step Execution

Calculate Start and Finish Times for Each Process

Calculate Waiting and Turnaround Times

Waiting Time = Start Time - Arrival Time

Turnaround Time = Finish Time - Arrival Time

Process
Arrival

Time

Burst

Time

Start

Time

Finish

Time

Waiting

Time

Turnaround

Time

P1 0 5 0 5 0 5

P2 1 3 5 8 4 7

P3 2 8 8 16 6 14

P4 3 6 16 22 13 19

Calculate Average Waiting Time and Turnaround Time

 Average Waiting Time = (0 + 4 + 6 + 13) / 4 = 5.75

 Average Turnaround Time = (5 + 7 + 14 + 19) / 4

= 11.25

Gantt Chart

| P1 | P2 | P3 | P4 |

0 5 8 16 22

In this example, P4 has to wait a significant time due to the

non-preemptive nature of FCFS, illustrating the convoy

effect, where shorter jobs wait behind a longer one (P3).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 94 | P a g e

Example2:

Consider the given table below and find Completion time

(CT), Turn-around time (TAT), Waiting time (WT),

Response time (RT), Average Turn-around time and

Average Waiting time.

Gantt chart

For this problem CT, TAT, WT, RT is shown in the given

table −

I I- B.Tech II SEM Operating Systems Prepared By: BSR 95 | P a g e

Average Waiting time = (9+8+0+4+12)/5 = 33/5 = 6.6 time

unit (time unit can be considered as milliseconds)

Average Turn-around time = (11+14+4+11+16)/5 = 56/5

= 11.2 time unit (time unit can be considered as

milliseconds).

Example 3

Consider the given table below and find Completion time

(CT), Turn-around time (TAT), Waiting time (WT),

Response time (RT), Average Turn-around time and

Average Waiting time.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 96 | P a g e

Solution

Gantt chart −

For this problem CT, TAT, WT, RT is shown in the given

table –

Average Waiting time = (0+0+2+4+8)/5 = 14/5 = 2.8 time

unit (time unit can be considered as milliseconds)

Average Turn-around time = (2+1+5+9+13)/5 = 30/5 = 6

time unit (time unit can be considered as milliseconds)

2. Shortest Job First

 Shortest Job First (SJF) is a scheduling algorithm

commonly used in operating systems to manage

processes in the CPU. It selects the process with the

I I- B.Tech II SEM Operating Systems Prepared By: BSR 97 | P a g e

shortest execution time (burst time) to execute next,

reducing the average waiting time for processes.

Types of SJF

Non-preemptive SJF: Once a process starts executing, it

cannot be interrupted until it completes.

Preemptive SJF (Shortest Remaining Time First -

SRTF): The currently running process can be interrupted if

a new process arrives with a shorter burst time than the

remaining time of the current process.

 We'll solve both Non-preemptive SJF and

Preemptive SJF (Shortest Remaining Time First -

SRTF) using the same set of processes.

Example Problem

Consider the following set of processes with their arrival

time and burst time:

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

I I- B.Tech II SEM Operating Systems Prepared By: BSR 98 | P a g e

We'll solve this using both Non-preemptive SJF and

Preemptive SJF (SRTF).

1. Non-preemptive SJF

In Non-preemptive SJF, once a process starts executing, it

cannot be interrupted until it completes.

 At time 0, P1 is the only process available, so it

starts executing.

 P1 completes at time 8 (0 + 8).

 At time 8, all other processes (P2, P3, and P4) have

arrived. The process with the shortest burst time is

P2 (4), so P2 executes next.

 P2 completes at time 12 (8 + 4).

 Now at time 12, the remaining processes are P3 and

P4. The shortest burst time is P4 (5), so P4 executes

next.

 P4 completes at time 17 (12 + 5).

 Finally, P3 is the only process left, so it executes.

 P3 completes at time 26 (17 + 9).

Non-preemptive SJF Execution Order

The order of execution is P1 P2 P4P3.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 99 | P a g e

Process
Arrival

Time

Burst

Time

Completion

Time

Turnaround

Time

Waiting

Time

P1 0 8 8 8 0

P2 1 4 12 11 7

P3 2 9 26 24 15

P4 3 5 17 14 9

Turnaround Time = Completion Time - Arrival Time

Waiting Time = Turnaround Time - Burst Time

Average Waiting Time

Average Waiting Time=0+7+15+9/4 =7.75 units

2. Preemptive SJF (Shortest Remaining Time First -

SRTF)

 In Preemptive SJF (SRTF), the CPU can switch to a

new process if it arrives with a shorter remaining

time than the currently executing process.

 At time 0, P1 is the only process available, so it

starts executing.

 At time 1, P2 arrives with a burst time of 4, which is

less than the remaining time of P1 (7). So, P1 is

preempted, and P2 starts executing.

 P2 completes at time 5 (1 + 4).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 100 | P a g e

 At time 5, P1 (with 7 remaining time), P3 (burst time

9), and P4 (burst time 5) are available. The shortest

remaining time is P4 (5), so P4 executes next.

 P4 completes at time 10 (5 + 5).

 At time 10, P1 (remaining time 7) and P3 (burst time

9) are available. P1 has the shorter remaining time,

so P1 resumes execution.

 P1 completes at time 17 (10 + 7).

 Finally, P3 executes since it's the only process left

and completes at time 26 (17 + 9).

Pre-emptive SJF Execution Order

The order of execution is P1 P2 P4 P1 P3.

Process
Arrival

Time

Burst

Time

Completion

Time

Turnaround

Time

Waiting

Time

P1 0 8 17 17 9

P2 1 4 5 4 0

P3 2 9 26 24 15

P4 3 5 10 7 2

I I- B.Tech II SEM Operating Systems Prepared By: BSR 101 | P a g e

Average Waiting Time

Average Waiting Time=9+0+15+24/4=6.5 units

Summary

Algorithm Average Waiting Time

Non-preemptive SJF 7.75 units

Preemptive SJF (SRTF) 6.5 units

In this example, the Preemptive SJF (SRTF) algorithm

provides a lower average waiting time than Non-

preemptive SJF.

3. Priority Scheduling

Priority Scheduling is a CPU scheduling algorithm in which

each process is assigned a priority, and the CPU is allocated

to the process with the highest priority. If two processes

have the same priority, they are scheduled according to their

arrival order (First-Come, First-Served basis). Priority

scheduling can be implemented as either preemptive or non-

preemptive.

Types of Priority Scheduling

Preemptive Priority Scheduling:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 102 | P a g e

 If a new process arrives with a higher priority than

the currently executing process, the CPU is

preempted and allocated to the new process.

 This ensures that high-priority processes are always

executed first.

Non-preemptive Priority Scheduling:

 Once a process starts execution, it continues until it

finishes.

 The CPU only selects a new process from the ready

queue when the current process finishes execution.

Example

Consider the following set of processes with arrival time,

burst time, and priority (where a lower priority number

means a higher priority):

Process Arrival Time Burst Time Priority

P1 0 10 3

P2 1 1 1

P3 2 2 4

P4 3 1 5

I I- B.Tech II SEM Operating Systems Prepared By: BSR 103 | P a g e

Process Arrival Time Burst Time Priority

P5 4 5 2

1. Non-preemptive Priority Scheduling

 At time 0, P1 arrives and starts executing because

it’s the only process.

 P1 completes at time 10.

 At time 10, the remaining processes (P2, P3, P4, and

P5) have arrived. The process with the highest

priority (lowest priority number) is P2 (priority 1).

 P2 completes at time 11 (10 + 1).

 Now at time 11, the remaining processes are P3, P4,

and P5. The process with the next highest priority is

P5 (priority 2).

 P5 completes at time 16 (11 + 5).

 The remaining processes are P3 and P4, with P3

having a higher priority.

 P3 completes at time 18 (16 + 2).

 Finally, P4 executes and completes at time 19 (18 +

1).

Non-preemptive Priority Scheduling Execution Order

The order of execution is P1 P2 P5P3P4.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 104 | P a g e

Process
Arrival

Time

Burst

Time

Priori

ty

Completion

Time

Turnaroun

d Time

Waiting

Time

P1 0 10 3 10 10 0

P2 1 1 1 11 10 9

P3 2 2 4 18 16 14

P4 3 1 5 19 16 15

P5 4 5 2 16 12 7

 Turnaround Time = Completion Time - Arrival

Time

 Waiting Time = Turnaround Time - Burst Time

Average Waiting Time

Average Waiting Time=50+9+14+15+7/5 =9 units

2. Preemptive Priority Scheduling

In preemptive priority scheduling, a new process with a

higher priority will preempt the current running process.

 At time 0, P1 is the only process, so it starts

executing.

 At time 1, P2 arrives with a higher priority than P1.

P1 is preempted, and P2 starts executing.

 P2 completes at time 2.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 105 | P a g e

 P1 resumes execution at time 2 since it has the next

highest priority.

 At time 3, P4 arrives but has a lower priority than

P1, so P1 continues.

 At time 4, P5 arrives with a higher priority than P1,

so P1 is preempted, and P5 starts executing.

 P5 completes at time 9.

 At time 9, P1 resumes and completes at time 17.

 Now only P3 and P4 remain, with P3 having a

higher priority, so P3 executes next.

 P3 completes at time 19, and finally, P4 executes

and completes at time 20.

Preemptive Priority Scheduling Execution Order

The order of execution is P1 P2P1P5P1P3

P4.

Proces

s

Arriv

al

Time

Burs

t

Tim

e

Priorit

y

Completi

on Time

Turnarou

nd Time

Waitin

g Time

P1 0 10 3 17 17 7

I I- B.Tech II SEM Operating Systems Prepared By: BSR 106 | P a g e

Proces

s

Arriv

al

Time

Burs

t

Tim

e

Priorit

y

Completi

on Time

Turnarou

nd Time

Waitin

g Time

P2 1 1 1 2 1 0

P3 2 2 4 19 17 15

P4 3 1 5 20 17 16

P5 4 5 2 9 5 0

Average Waiting Time

Average Waiting Time=7+0+15+16+0/5=7.6 units

Summary

Algorithm Average Waiting Time

Non-preemptive Priority 9 units

Preemptive Priority 7.6 units

I I- B.Tech II SEM Operating Systems Prepared By: BSR 107 | P a g e

4. Round Robin (RR)

Round Robin (RR) is a CPU scheduling algorithm

designed for time-sharing systems. It allocates the CPU to

each process in the ready queue for a fixed time slice or

quantum, in a cyclic order. If a process does not complete

within its time slice, it is moved to the end of the queue, and

the next process is scheduled.

Example

Consider the following set of processes with arrival time

and burst time. Assume a time quantum of 4 units.

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Execution Steps

1. At time 0: P1 starts execution (only process

available). It runs for 4 units (quantum size).

o Remaining burst time for P1 = 8 - 4 = 4.

o Time = 4.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 108 | P a g e

2. At time 4: P2, P3, and P4 have arrived. Next in the

queue is P2.

o P2 executes for 4 units, completing its burst

time.

o Remaining burst time for P2 = 4 - 4 = 0

(process completed).

o Time = 8.

3. At time 8: Next in the queue is P3.

o P3 executes for 4 units (quantum size).

o Remaining burst time for P3 = 9 - 4 = 5.

o Time = 12.

4. At time 12: Next in the queue is P4.

o P4 executes for 4 units (quantum size).

o Remaining burst time for P4 = 5 - 4 = 1.

o Time = 16.

5. At time 16: The queue cycles back to P1 (still has 4

units remaining).

o P1 executes for 4 units, completing its burst

time.

o Remaining burst time for P1 = 4 - 4 = 0

(process completed).

o Time = 20.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 109 | P a g e

6. At time 20: Next in the queue is P3 (still has 5 units

remaining).

o P3 executes for 4 units (quantum size).

o Remaining burst time for P3 = 5 - 4 = 1.

o Time = 24.

7. At time 24: Next in the queue is P4 (still has 1 unit

remaining).

o P4 executes for 1 unit, completing its burst

time.

o Time = 25.

8. At time 25: Finally, P3 executes for 1 unit,

completing its burst time.

o Time = 26.

Execution Order

P1P2P3P4P1P3P4P3

Summary Table

Process
Arrival

Time

Burst

Time

Completion

Time

Turnaround

Time

Waiting

Time

P1 0 8 20 20 12

P2 1 4 8 7 3

P3 2 9 26 24 15

I I- B.Tech II SEM Operating Systems Prepared By: BSR 110 | P a g e

Process
Arrival

Time

Burst

Time

Completion

Time

Turnaround

Time

Waiting

Time

P4 3 5 25 22 17

Turnaround Time = Completion Time - Arrival Time

Waiting Time = Turnaround Time - Burst Time

Average Times

1. Average Turnaround Time:

Average Turnaround Time=20+7+24+22/4=18.25 un

its

2. Average Waiting Time:

Average Waiting Time=12+3+15+17/4=11.75 units

Advantages of Round Robin

 Ensures fairness as every process gets an equal share

of the CPU.

 Suitable for time-sharing and interactive systems.

 Avoids starvation since no process is left waiting

indefinitely.

Disadvantages of Round Robin

 Context switching overhead can be high if the

quantum is too small.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 111 | P a g e

 Longer processes may take a long time to complete

as they repeatedly cycle through the queue.

2.11 Multiple Processor Scheduling

Multiple-processor scheduling in operating systems refers to

the techniques and strategies used to manage the execution

of processes on systems with more than one processor

(multi-core or multi-CPU systems). Its main objectives are

to optimize resource utilization, increase throughput, and

ensure fairness.

Key Concepts in Multiple Processor Scheduling

a) Processor Types:

 Homogeneous Processors: All processors are

identical and can execute any process.

 Heterogeneous Processors: Processors have

different capabilities, and processes may need to be

assigned based on compatibility.

b) Scheduling Models:

 Symmetric Multiprocessing (SMP): All processors

share the same responsibilities and operate

independently.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 112 | P a g e

 Asymmetric Multiprocessing (AMP): One

processor (the master) manages scheduling (master

and slave), while others execute assigned tasks.

c) Processor Affinity:

Tendency to keep a process on the same processor for

improved cache performance.

 Soft Affinity: Preferred processor, but not

mandatory.

 Hard Affinity: Strictly bound to a specific

processor.

d) Load Balancing:

Ensures even distribution of processes across all processors.

Types:

 Push Migration: Overloaded processors push tasks

to others.

 Pull Migration: Idle processors pull tasks from busy

ones.

Scenario

Imagine a data center running an operating system with four

processors: P1, P2, P3, and P4. The system receives the

following jobs:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 113 | P a g e

Job Burst Time (ms) Priority

J1 10 High

J2 20 Medium

J3 15 Low

J4 25 High

J5 30 Medium

J6 5 Low

Final Outcome

The jobs are executed across the processors in parallel,

reducing the overall completion time for all tasks compared

to single-processor scheduling.

Processor Executed Jobs Total Time Taken (ms)

P1 J1 → J3 → J6 30

P2 J4 25

P3 J2 20

I I- B.Tech II SEM Operating Systems Prepared By: BSR 114 | P a g e

Processor Executed Jobs Total Time Taken (ms)

P4 J5 30

Total Time for Completion: 30 ms

In single-processor scheduling, the total time would have

been 105 ms (sum of all burst times).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 115 | P a g e

UNIT-III

Synchronization Tools: The Critical Section Problem,

Peterson’s Solution, Mutex Locks, Semaphores, Monitors,

Classic problems of Synchronization.

Deadlocks: system Model, Deadlock characterization,

Methods for handling Deadlocks, Deadlock prevention,

Deadlock avoidance, Deadlock detection, Recovery from

Deadlock.

3.1 Synchronization Tools: The Critical Section Problem

Synchronization tools in an operating system are

mechanisms used to coordinate the execution of processes

or threads, ensuring safe access to shared resources and

maintaining data integrity. Below are some of the most

commonly used synchronization tools in operating systems:

1. Mutex (Mutual Exclusion Object)

Purpose: Ensures that only one thread or process accesses a

critical section at a time.

Key Characteristics:

Binary state: Locked (1) or Unlocked (0).

A process acquires the mutex before entering the critical

section and releases it after exiting.

Usage:

Thread synchronization.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 116 | P a g e

Preventing race conditions.

Examples in OS:

POSIX Mutexes, Windows Critical Section.

2. Semaphores

Purpose: Synchronize access to shared resources.

Types:

Binary Semaphore: Similar to a mutex, it can take values 0

or 1.

Counting Semaphore: Keeps track of resource availability

with a counter.

Operations:

wait() / P(): Decrements the semaphore value.

signal() / V(): Increments the semaphore value.

Examples:

Used in producer-consumer problems.

Managing multiple readers and writers.

3. Condition Variables

Purpose: Allow threads to wait for certain conditions to be

true before proceeding.

Operations:

wait(): Releases the lock and puts the thread to sleep.

signal(): Wakes one waiting thread.

broadcast(): Wakes all waiting threads.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 117 | P a g e

Examples:

Used with monitors for thread communication.

Often paired with mutexes.

4. Read-Write Locks

Purpose: Allow multiple threads to read simultaneously but

ensure exclusive access for writing.

Advantages:

Improves performance in scenarios with frequent reads and

rare writes.

Use Cases:

Managing databases or file systems.

5. Message Passing

Purpose: Synchronization through communication rather

than shared memory.

Mechanisms:

Message queues.

Pipes.

Signals.

Advantages:

Avoids race conditions by not sharing memory directly.

Suitable for distributed systems.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 118 | P a g e

6. Software Algorithms

Used when hardware support is unavailable:

Peterson’s Algorithm: Ensures mutual exclusion between

two processes.

Dekker’s Algorithm: Handles synchronization between two

processes.

Lamport’s Bakery Algorithm: Manages multiple processes.

Conclusion

Synchronization tools are crucial for maintaining

consistency and preventing race conditions in multi-

threaded and multi-process systems. The choice of tool

depends on the application's requirements, such as

performance, fairness, and complexity.

3.2 The Critical Section Problem

Critical Section is the part of a program which tries to

access shared resources. That resource may be any resource

in a computer like a memory location, Data structure, CPU

or any IO device.

The critical section cannot be executed by more than one

process at the same time; operating system faces the

I I- B.Tech II SEM Operating Systems Prepared By: BSR 119 | P a g e

difficulties in allowing and disallowing the processes from

entering the critical section.

 The critical section problem is used to design a

set of protocols which can ensure that the Race condition

among the processes will never arise.

Key Issues in the Critical Section Problem

When multiple processes execute concurrently, the

following issues can arise if access to the critical section is

not managed properly:

Race Conditions:

Occur when the outcome of a process depends on the timing

or sequence of other processes accessing shared resources.

Data Corruption:

Without proper synchronization, conflicting operations on

shared resources can lead to inconsistencies.

Deadlocks:

Processes may block each other indefinitely if not managed

correctly.

 In order to synchronize the cooperative processes,

our main task is to solve the critical section problem. We

need to provide a solution in such a way that the following

conditions can be satisfied.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 120 | P a g e

Requirements of Synchronization mechanisms

Primary

a) Mutual Exclusion

Our solution must provide mutual exclusion. By Mutual

Exclusion, we mean that if one process is executing inside

critical section then the other process must not enter in the

critical section.

b) Progress

Progress means that if one process doesn't need to execute

into critical section then it should not stop other processes to

get into the critical section.

Secondary

a) Bounded Waiting

A process won't wait indefinitely to enter the critical

section.

.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 121 | P a g e

b) Architectural Neutrality

Our mechanism must be architectural natural. It means that

if our solution is working fine on one architecture then it

should also run on the other ones as well.

3.3 Peterson’s Solution

Peterson’s Solution is a classical algorithm used in operating

systems to address the Critical Section Problem. It is a

software-based solution designed to synchronize two

processes that share a resource, ensuring mutual exclusion,

progress, and bounded waiting without requiring special

hardware support.

Key Features of Peterson’s Solution

Mutual Exclusion: Ensures that only one process can enter

the critical section at a time.

Progress: If no process is in the critical section, one of the

waiting processes must be allowed to enter.

Bounded Waiting: A process won't wait indefinitely to enter

the critical section.

Two-Process Limitation: Peterson's solution works for two

processes. Extensions exist for more processes but become

less practical.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 122 | P a g e

How Peterson’s Solution Works

It uses two shared variables:

flag[2]:

 Indicates whether a process wants to enter the

critical section.

 flag[0] corresponds to process P0, and flag[1]

corresponds to process P1.

turn:

Indicates whose turn it is to enter the critical section if both

processes want to enter.

Algorithm for Two Processes

Let’s assume two processes, P0 and P1, need to access a

critical section.

Shared Variables:

int flag[2] = {0, 0}; // Indicates interest in critical section

int turn = 0; // Determines whose turn it is

Process P0 Code:

flag[0] = 1; // Indicate P0 wants to enter

turn = 1; // Allow P1 the opportunity to enter

while (flag[1] == 1 && turn == 1); // Wait if P1 wants to enter

and it's P1's turn

I I- B.Tech II SEM Operating Systems Prepared By: BSR 123 | P a g e

// Critical Section

...

flag[0] = 0; // Indicate P0 is done

Process P1 Code:

flag[1] = 1; // Indicate P1 wants to enter

turn = 0; // Allow P0 the opportunity to enter

while (flag[0] == 1 && turn == 0); // Wait if P0 wants to enter

and it's P0's turn

// Critical Section

...

flag[1] = 0; // Indicate P1 is done

Visualization

Scenario 1: Both Processes Want to Enter

P0 sets flag[0] = 1 and turn = 1.

P1 sets flag[1] = 1 and turn = 0.

Both processes check the while condition:

P0 waits because flag[1] == 1 and turn == 1.

P1 enters the critical section because flag[0] == 1 but turn !=

1.

After P1 exits, it sets flag[1] = 0, allowing P0 to proceed.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 124 | P a g e

Scenario 2: Only One Process Wants to Enter

If P0 is the only process that wants to enter, it proceeds

without waiting because flag[1] == 0

Advantages

 Simple and easy to understand.

 Does not require any special hardware support (purely

software-based).

 Satisfies all three conditions of the critical section

problem.

Disadvantages

Limited to Two Processes:

 The original algorithm is designed for only two

processes. Extending it to multiple processes is complex

and inefficient.

Busy Waiting:

 Processes spin in a loop while waiting, wasting CPU

cycles.

Not Suitable for Modern Multicore Architectures:

 Memory consistency issues can arise in modern systems

where caches are used.

Example Usage

Peterson’s solution is mostly a teaching tool in operating

systems. Practical implementations often use advanced

I I- B.Tech II SEM Operating Systems Prepared By: BSR 125 | P a g e

synchronization primitives like semaphores, mutexes, or

hardware support (e.g., atomic instructions).

Conclusion

Peterson's Solution provides a simple, elegant way to

understand and solve the critical section problem for two

processes. While not widely used in modern systems due to

its limitations, it is a foundational algorithm in the study of

process synchronization.

3.4 Mutex Locks

A Mutex (Mutual Exclusion) Lock is a synchronization

mechanism used in operating systems to protect critical sections,

ensuring that only one thread or process can access shared

resources at a time. It helps prevent race conditions and ensures

mutual exclusion.

Key Features of Mutex Locks

a) Mutual Exclusion:

Ensures only one thread or process accesses the critical

section at any time.

Lock and Unlock Mechanism:

A thread must acquire the lock before entering the critical

section and release it after exiting.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 126 | P a g e

c) Blocking:

If a thread attempts to acquire a lock that is already held, it

is put in a waiting state until the lock becomes available.

d) No Busy Waiting:

Unlike simple spinlocks, mutex locks avoid busy waiting by

putting threads in a waiting queue.

How Mutex Locks Work

Steps:

1) A thread requests the mutex lock before entering the

critical section.

2) If the lock is free, the thread acquires it and enters the

critical section.

3) If the lock is already held by another thread, the

requesting thread waits until the lock is released.

4) Once the thread completes its task, it releases the lock,

allowing other threads to proceed.

Mutex Lock Operations

Lock (acquire):

A thread/process requests the mutex. If the lock is available,

it acquires it; otherwise, it waits.

The definition of acquire() is as follows:

acquire() {

while (!available)

I I- B.Tech II SEM Operating Systems Prepared By: BSR 127 | P a g e

; /* busy wait */

available = false;

}

Unlock (release):

The thread/process releases the mutex after completing its

operation, making it available for others.

The definition of release() is as follows:

release() {

available = true;

}

Trylock (optional):

Attempts to acquire the lock without blocking. If the lock is

unavailable, it returns immediately.

Advantages of Mutex Locks

Simple and Easy to Use:

 Provides a straightforward mechanism for ensuring

mutual exclusion.

No Busy Waiting:

 Threads are blocked and do not consume CPU cycles

while waiting.

Portable:

 Supported by most operating systems and threading

libraries.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 128 | P a g e

Disadvantages of Mutex Locks

Deadlocks:

 Improper use can result in deadlocks if multiple

threads block each other indefinitely.

Priority Inversion:

 A higher-priority thread may wait indefinitely if a

lower-priority thread holds the mutex.

Overhead:

 Blocking and unblocking threads involve overhead

compared to spinlocks.

Applications of Mutex Locks

Multithreaded Programs:

 Used to synchronize threads accessing shared

resources.

Operating Systems:

 Protects shared data structures in the kernel.

Database Systems:

 Ensures data consistency during transactions.

Conclusion

Mutex locks are a fundamental synchronization tool in

operating systems and multithreaded programming. They

provide a simple and effective way to prevent race

conditions, ensuring the correct execution of critical sections

I I- B.Tech II SEM Operating Systems Prepared By: BSR 129 | P a g e

while avoiding busy waiting. Proper use of mutex locks is

essential to avoid pitfalls like deadlocks and priority

inversion.

3.5 Semaphores

A semaphore is a synchronization mechanism used in

operating systems to control access to shared resources by

multiple processes or threads. Semaphores help prevent race

conditions, ensure mutual exclusion, and manage resource

allocation in concurrent systems.

Types of Semaphores

a) Binary Semaphore:

 Can have only two values: 0 or 1.

 Acts like a mutex lock: 0 indicates the resource is

locked, and 1 indicates it is available.

b) Counting Semaphore:

 Can have a non-negative integer value.

 Used to manage a limited number of resources. The

value of the semaphore represents the number of

available resources.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 130 | P a g e

Semaphores Operations

Semaphores support two atomic operations:

a) Wait (P or Down):

 Decrements the semaphore value.

 If the value becomes less than zero, the

process/thread is put to sleep (blocked).

 The definition of wait() is as follows:

 wait(S)

 {

 while (S <= 0)

 ; // busy wait

 S--;

 }

b) Signal (V or Up):

 Increments the semaphore value.

 If there are processes/threads waiting, one is woken

up to proceed.

 The definition of signal() is as follows:

signal(S)

{

S++;

I I- B.Tech II SEM Operating Systems Prepared By: BSR 131 | P a g e

}

Semaphore Pseudocode

Initialization:

Semaphore S = initial_value; // Semaphore initialized with a

value

Wait Operation:

wait(S):

 S = S - 1;

 if (S < 0)

 block(); // Put the process to sleep

Signal Operation:

signal(S):

 S = S + 1;

 if (S <= 0)

 wakeup(); // Wake up a blocked process

Advantages of Semaphores

Supports Multiple Resources:

 Can manage more than one resource (via counting

semaphore).

Synchronization:

 Effectively synchronizes processes or threads.

Flexibility:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 132 | P a g e

 Can be used to implement different synchronization

primitives like mut-exes or barriers.

Disadvantages of Semaphores

Complexity:

 Difficult to use correctly in large systems,

leading to issues like deadlocks.

Deadlocks:

 Improper usage can cause processes to block

indefinitely.

Priority Inversion:

 A high-priority thread can be blocked by a

lower-priority thread holding the semaphore.

Applications of Semaphores

Producer-Consumer Problem:

 Synchronizing production and consumption of

shared resources.

Reader-Writer Problem:

 Managing access to shared data for multiple

readers and writers.

Operating Systems:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 133 | P a g e

 Used in managing shared resources like CPU

scheduling, memory management, and disk

access.

Conclusion

Semaphores are a powerful tool for process and thread

synchronization. They provide a robust mechanism for

ensuring mutual exclusion and resource allocation.

However, their complexity requires careful implementation

to avoid synchronization issues like deadlocks or starvation.

3.6 Monitors

A monitor is a high-level synchronization construct used in

operating systems and programming languages to manage

access to shared resources by multiple threads or processes.

Monitors encapsulate shared data, procedures to manipulate

that data, and the synchronization mechanisms required to

ensure mutual exclusion and condition synchronization.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 134 | P a g e

Key Features of Monitors

Encapsulation:

 Monitors encapsulate shared data and operations

(methods) that manipulate that data.

 Threads can access the shared resource only through

the monitor's methods, ensuring controlled access.

Mutual Exclusion:

 Only one thread can execute a monitor's method at a

time.

 This is achieved by associating a lock with the

monitor. A thread must acquire the lock before

executing any method within the monitor.

Condition Variables:

 Monitors include condition variables that allow

threads to wait for certain conditions to be met.

Operations:

 Wait(): A thread releases the monitor lock and waits

for a signal.

 Signal(): Wakes up one waiting thread.

 Broadcast(): Wakes up all waiting threads.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 135 | P a g e

Implicit Locking:

Monitors automatically handle locking and unlocking

mechanisms, reducing the burden on the programmer and

minimizing errors.

How Monitors Work:

 When a thread enters a monitor, it acquires the

associated lock.

 Other threads attempting to access the monitor are

blocked until the lock is released.

 A thread that completes its operation or calls Wait()

releases the lock, allowing other threads to acquire it.

Advantages of Monitors:

 Simplifies synchronization in concurrent

programming.

 Reduces the risk of errors like deadlocks and race

conditions by centralizing resource management.

Limitations of Monitors:

Limited Flexibility:

 Monitors may not work well in situations requiring

fine-grained control over locking mechanisms.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 136 | P a g e

Potential for Deadlocks:

 Improper use of condition variables and nested

monitors can lead to deadlocks.

Performance Overhead:

 Synchronization mechanisms in monitors can

introduce latency in highly concurrent systems.

Monitor vs. Semaphore:

Aspect Monitor Semaphore

High-Level

Abstraction
Yes No

Encapsulation
Encapsulates data

and methods

No encapsulation;

operates with counters

Condition

Variables
Built-in

Requires explicit

implementation

Mutual

Exclusion
Automatic

Must be manually

implemented

I I- B.Tech II SEM Operating Systems Prepared By: BSR 137 | P a g e

3.7 Classic problems of Synchronization

Synchronization problems in operating systems arise when

multiple processes or threads need to access shared

resources without conflicts. Classic synchronization

problems serve as fundamental examples for studying and

solving concurrency issues. Here are the most well-known

problems:

1) The Producer-Consumer Problem

2) The Readers-Writers Problem

3) The Dining Philosophers Problem

4) The Sleeping Barber Problem

5) The Cigarette Smokers Problem

1. The Producer-Consumer Problem

The producer-consumer problem is a well-known

synchronization issue in operating systems that involves two

types of processes: producers and consumers.

Producer

Creates data and puts it into a shared buffer

Consumer

Takes data out of the shared buffer and uses it

I I- B.Tech II SEM Operating Systems Prepared By: BSR 138 | P a g e

Scenario:

 A producer thread produces data items and places

them in a bounded buffer.

 A consumer thread consumes items from the buffer.

 The producer must wait if the buffer is full, and the

consumer must wait if the buffer is empty.

Key Challenges:

 Avoid race conditions when accessing the buffer.

 Ensure proper signaling between producer and

consumer.

Solution:

 Use semaphores for mutual exclusion (mutex) and

signaling (full and empty semaphores).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 139 | P a g e

 Alternatively, monitors or condition variables can be

used.

2) The Readers-Writers Problem

The readers-writers problem is a common problem in

computer science and operating systems that occurs when

multiple processes share access to a resource, but only one

process can write to it at a time:

Readers: Processes that only want to read data from the

shared resource

Writers: Processes that want to write data into the shared

resource.

Scenario:

 Multiple readers and writers access a shared resource

(e.g., a database).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 140 | P a g e

 Readers can read simultaneously, but a writer needs

exclusive access.

Key Variants:

 First Readers-Writers Problem: No reader is kept

waiting unless a writer has acquired the resource.

 Second Readers-Writers Problem: No writer is kept

waiting for a reader to release the resource.

Key Challenges:

 Allow multiple readers but ensure mutual exclusion

for writers.

 Prevent starvation of either readers or writers.

Solution:

 Use semaphores or locks to synchronize readers and

writers.

 Prioritize readers or writers to avoid starvation.

3) The Dining Philosophers Problem

The dining philosophers problem is a classic

synchronization problem in operating systems that illustrates

how to resolve issues that arise when multiple processes

interact:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 141 | P a g e

Problem

Five philosophers sit around a table and take turns eating

and thinking. Each philosopher needs both their left and

right chopsticks to eat, and can only eat if both are available.

If a philosopher can't eat, they put their forks down and

continue thinking.

Scenario:

 Five philosophers alternately think and eat.

 They share a circular table with five forks (one fork

between each pair of philosophers).

 A philosopher needs both forks adjacent to them to

eat.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 142 | P a g e

Key Challenges:

 Prevent deadlock (e.g., if every philosopher picks up

one fork and waits for the other).

 Avoid starvation (some philosophers never get to

eat).

Solution:

 Introduce rules to reduce contention:

 Limit the number of philosophers who can pick up

forks at the same time.

 Use a waiter process to manage fork allocation.

 Ensure that a philosopher picks up both forks

simultaneously or none.

4) The Sleeping Barber Problem

The sleeping barber problem is a classic computer science

example of how multiple operating system processes can

cause synchronization issues. It was first proposed in 1965

by Edsger Dijkstra, a computer science pioneer.

The problem is based on a barbershop with a barber and a

waiting room:

No customers: The barber sleeps in the barber chair.

Customer arrives: The customer wakes up the barber to get

a haircut.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 143 | P a g e

Multiple customers: If there are other customers waiting,

they sit in the waiting room if there are empty seats, or they

leave if there are no empty seats.

 The sleeping barber problem is a demonstration of

inter-process communication and synchronization

challenges in concurrent systems.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 144 | P a g e

Scenario:

 A barber sleeps if no customers are present.

 When a customer arrives, they either wake the

barber if sleeping or wait in a waiting room if the

barber is busy.

 If the waiting room is full, the customer leaves.

Key Challenges:

 Synchronize the barber and customer threads.

 Manage the limited number of chairs in the waiting

room.

Solution:

 Use semaphores to coordinate sleeping, waking, and

chair availability.

 Use mutex locks to ensure proper access to shared

resources.

5) The Cigarette Smokers Problem

Suppose a cigarette requires three ingredients, tobacco,

paper and match. There are three chain smokers. Each of

them has only one ingredient with infinite supply. There is

an agent who has infinite supply of all three ingredients. To

make a cigarette, the smoker has tobacco (resp., paper and

match) must have the other two ingredients paper and match

I I- B.Tech II SEM Operating Systems Prepared By: BSR 145 | P a g e

(resp., tobacco and match, and tobacco and paper). The

agent and smokers share a table. The agent randomly

generates two ingredients and notifies the smoker who needs

these two ingredients. Once the ingredients are taken from

the table, the agent supplies another two. On the other hand,

each smoker waits for the agent's notification. Once it is

notified, the smoker picks up the ingredients, makes a

cigarette, smokes for a while, and goes back to the table

waiting for his next ingredients.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 146 | P a g e

Scenario:

 Three smokers need three ingredients (tobacco,

paper, and matches) to make a cigarette.

 An agent places two random ingredients on a table,

and the smoker with the third ingredient takes them.

Key Challenges:

 Ensure that only the smoker with the missing

ingredient acts.

 Avoid deadlock and ensure fairness.

Solution:

 Use semaphores to signal which smoker should act.

 Use mutex locks to ensure mutual exclusion for the

table.

Common Techniques to Solve Synchronization

Problems:

Semaphores:

 Use counting and binary semaphores to manage

resource access and signaling.

Monitors:

 Encapsulate shared resources and synchronization

mechanisms in high-level constructs.

Locks:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 147 | P a g e

 Use mutexes or spinlocks to enforce mutual

exclusion.

Condition Variables:

 Facilitate signaling and waiting for specific

conditions.

Deadlock Prevention Techniques:

 Resource hierarchy, timeout mechanisms, or

avoiding circular waits.

 These problems are central to understanding and

addressing synchronization issues in modern

operating systems and multithreaded applications.

3.8 Deadlocks: system Model

A deadlock in an operating system occurs when a group of

processes becomes stuck in a state where none of them can

proceed because each process is waiting for a resource held

by another process. Deadlocks are a fundamental issue in

concurrent programming and resource management, as they

can cause a system to hang indefinitely.

Conditions for Deadlock

For a deadlock to occur, the following four conditions must

hold simultaneously:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 148 | P a g e

Mutual Exclusion:

At least one resource must be held in a non-shareable mode.

Only one process can use the resource at a time.

Hold and Wait:

A process holding at least one resource is waiting to acquire

additional resources that are currently held by other

processes.

No Preemption:

Resources cannot be forcibly removed from a process

holding them; the process must release them voluntarily.

Circular Wait:

A set of processes exists where each process is waiting for a

resource held by the next process in the set, forming a

circular chain.

If any one of these conditions is broken, a deadlock cannot

occur.

Summary Table

Aspect Explanation

Definition
A state where processes are stuck waiting

for resources held by one another.

Conditions Mutual Exclusion, Hold and Wait,

I I- B.Tech II SEM Operating Systems Prepared By: BSR 149 | P a g e

Aspect Explanation

No Preemption, Circular Wait

Handling

Strategies

Prevention, Avoidance, Detection &

Recovery, Ignorance

Key Tools
Resource Allocation Graph, Banker’s

Algorithm

Examples

Resource Allocation Deadlock, Dining

Philosophers Problem, Producer-Consumer

Deadlock

System Model in Operating Systems

The system model in operating systems provides a

framework to understand how resources are allocated to

processes and how these allocations affect system

performance and behavior. It helps in modeling and

analyzing situations such as deadlocks, resource scheduling,

and process synchronization.

Key Components of the System Model

Processes:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 150 | P a g e

 Independent entities (programs in execution) that

require resources to execute tasks.

 Processes may request, hold, and release resources

during their lifecycle.

Resources:

 Entities required by processes to perform operations.

 Resources can be hardware (e.g., CPU, memory, I/O

devices) or software (e.g., files, locks).

Classified into:

 Reusable Resources: Can be used by one process at

a time and returned (e.g., CPU, memory, printers).

 Consumable Resources: Can be produced and

consumed, disappearing after use (e.g., messages,

signals).

States of Resources:

 Resources can exist in one of the following states:

Free: Not allocated to any process.

Allocated: Currently in use by a process.

Requested: A process is waiting for the resource.

Resource Types and Instances:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 151 | P a g e

 Each resource type may have one or more instances

(e.g., a printer type may have three physical

printers).

System Representation:

 The system can be represented using a Resource

Allocation Graph (RAG) or a matrix-based approach

for analysis and management.

Operations in the System Model

Resource Request:

A process requests a resource. If the resource is available, it

is allocated; otherwise, the process is put in a waiting state.

Resource Allocation:

The resource is assigned to the requesting process.

Resource Release:

The process releases the resource after its operation is

complete, making it available to other processes.

Resource Allocation Graph (RAG)

The Resource Allocation Graph, also known as RAG is a

graphical representation of the state of a system. It has all

the information about the resource allocation to each process

and the request of each process.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 152 | P a g e

Example

Let'sconsider 3 processes P1, P2 and P3, and two types of

resources R1 and R2. The resources are having 1 instance

each.

 According to the graph, R1 is being used by P1, P2 is

holding R2 and waiting for R1, P3 is waiting for R1 as well

as R2.

 The graph is deadlock free since no cycle is being

formed in the graph.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 153 | P a g e

System States in the Model

Safe State:

The system can allocate resources to all processes in some

order without causing a deadlock.

Defined by algorithms like the Banker’s Algorithm.

Unsafe State:

The system may not be able to allocate resources safely to

all processes.

Unsafe states may lead to a deadlock but do not guarantee

one.

Deadlocked State:

Processes are waiting for resources in a circular chain, and

no progress is possible.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 154 | P a g e

3.9 Deadlock characterization

A deadlock is a condition in a multi-process system where a

group of processes is stuck because each process is waiting

for a resource held by another process in the group.

Deadlock characterization explains the conditions that lead

to deadlock and provides the basis for its detection,

prevention, and resolution.

Necessary Conditions for Deadlock

Four conditions must be met simultaneously for a deadlock

to occur:

Mutual exclusion: Only one process can use a resource at a

time.

Hold and wait: A process is holding at least one resource

and waiting for other resources.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 155 | P a g e

No preemption: A process can't use a resource until it is

released by other processes.

Circular wait: A set of processes are waiting for each other

in a circular manner.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 156 | P a g e

Resource Allocation Graph (RAG) and Deadlocks

 A Resource Allocation Graph (RAG) is a directed

graph representing processes and resource

relationships.

Vertices:

Processes (circles) and resources (rectangles).

Edges:

 Request Edge: From a process to a resource

(indicating the process is waiting for the resource).

 Assignment Edge: From a resource to a process

(indicating the resource is allocated to the process).

Cycle Detection in RAG:

 If there is no cycle, there is no deadlock.

If a cycle exists:

 If each resource has only one instance, a deadlock is

guaranteed.

 If resources have multiple instances, further analysis

is required to confirm deadlock.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 157 | P a g e

Deadlock Example

Scenario:

Processes: P1,P2

Resources: R1,R2

State:

P1 holds R1 and requests R2.

P2 holds R2 and requests R1.

 RAG Representation:

P1→R2→P2→R1→P1

 Analysis:

A cycle exists, and since each resource has one instance, the

system is in a deadlock state.

3.10 Methods for handling Deadlocks

Handling deadlocks in a system is crucial to maintain the

system's stability and prevent performance issues. Here are

several methods to handle deadlocks:

1. Prevention

Mutual Exclusion: Make sure that at least one resource is

not shared among processes. This prevents circular wait by

I I- B.Tech II SEM Operating Systems Prepared By: BSR 158 | P a g e

ensuring that at least one process does not hold resources

and wait for others.

Hold and Wait: This method breaks the hold-and-wait

condition by forcing processes to release all their resources

before requesting any new ones.

No Preemption: Preemption can be used to forcibly take

back resources from processes. However, this approach can

lead to additional complexity and should be used with

caution.

Circular Wait: A simple technique is to require that all

processes request resources in a predefined order, which

prevents circular wait by ensuring that processes can only

request resources in a specific sequence.

2. Avoidance

Resource Allocation Graph: By maintaining a resource

allocation graph, the system can determine if a new resource

allocation would lead to a deadlock. The Banker's

Algorithm is a classic method for deadlock avoidance.

Safe State: Only grant a request if it does not lead to an

unsafe state (where the system might enter a deadlock). This

approach requires that the system maintains information

I I- B.Tech II SEM Operating Systems Prepared By: BSR 159 | P a g e

about the resources currently allocated and the potential

future requests of all processes.

3. Detection and Recovery

Detection: By periodically checking for deadlocks in the

system using algorithms like Dijkstra’s or Raghavan and

Singhal’s algorithm, the system can identify a deadlock

cycle.

Recovery: Once a deadlock is detected, the system can

resolve it by aborting one or more processes or by rolling

back their execution to a safe state.

4. Deadlock Timeout

Timeouts: The system can be configured to abort processes

that wait for a resource for too long, thereby preventing

I I- B.Tech II SEM Operating Systems Prepared By: BSR 160 | P a g e

deadlocks. This approach does not guarantee deadlock

resolution but can alleviate the system's resource contention

issues.

5. Resource Preallocation

Preallocate Resources: By pre-allocating the maximum

required resources to a process upfront, the system reduces

the chances of deadlock as processes do not need to request

additional resources once they start executing.

Each method has its trade-offs and is often used in

combination to effectively handle deadlocks in a system.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 161 | P a g e

UNIT-IV

Memory-Management Strategies: Introduction,

Contiguous memory allocation, Paging, Structure of the

Page Table, Swapping.

Virtual Memory Management: Introduction, Demand

paging, Copy-on-write, Page replacement, Allocation of

frames, Thrashing.

Storage Management: Overview of Mass Storage

Structure, HDD Scheduling, RAID.

4.1 Memory-Management Strategies: Introduction

Memory management is a critical function of an operating

system (OS) that involves managing the computer's memory

hierarchy to optimize system performance. Memory serves

as a bridge between the CPU and storage, allowing

programs and data to be accessed efficiently. Effective

memory-management strategies ensure optimal utilization

of the available memory resources, supporting multitasking,

process isolation, and efficient execution.

Key Objectives of Memory Management

Efficient Resource Utilization: Ensure memory is allocated

and utilized effectively without wastage.

Process Isolation: Protect processes from interfering with

each other's memory space.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 162 | P a g e

Multiprogramming Support: Allow multiple processes to

execute simultaneously by sharing memory resources.

Minimized Latency: Reduce the time spent in accessing and

allocating memory.

Security and Protection: Safeguard memory against

unauthorized access or malicious attacks.

Components of Memory Management

Logical and Physical Addressing

 Logical addresses are generated by the CPU and are

independent of the physical memory.

 Physical addresses refer to actual locations in the

memory hardware.

 The Memory Management Unit (MMU) translates

logical addresses to physical addresses.

Memory Allocation

 Allocating memory to processes dynamically or

statically during their execution.

 Strategies include contiguous and non-contiguous

memory allocation.

Memory Hierarchy

 Memory consists of layers: registers, cache, main

memory (RAM), and secondary storage (disk).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 163 | P a g e

 Memory management optimizes data flow between

these layers to enhance performance.

Fragmentation Management

 Fragmentation (internal or external) occurs when

memory is inefficiently utilized.

 Memory-management strategies aim to reduce

fragmentation.

Types of Memory-Management Strategies

a) Contiguous Memory Allocation

 Memory is allocated in a single contiguous block for

each process.

Includes:

 Fixed Partitioning: Divides memory into fixed-size

partitions.

 Variable Partitioning: Allocates memory

dynamically to fit process sizes.

b) Paging

 Divides memory into fixed-size blocks called pages.

 Logical memory is divided into pages, and physical

memory into frames.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 164 | P a g e

 Eliminates external fragmentation but introduces

page table overhead.

c) Segmentation

 Divides memory into segments based on logical

divisions (e.g., code, data, stack).

 Segments vary in size, improving logical

organization.

d) Virtual Memory

 Enables execution of processes larger than physical

memory by using disk storage as an extension of

RAM.

 Uses paging or segmentation to manage the virtual

address space.

e) Swapping

Temporarily moves processes between main memory and

secondary storage to manage limited memory.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 165 | P a g e

Importance of Memory-Management Strategies

System Stability: Ensures that processes do not interfere

with one another, preventing crashes.

Enhanced Performance: Optimizes memory usage to support

multitasking and quick process execution.

Scalability: Supports increasing demands on system

resources as workloads grow.

User Experience: Minimizes delays, making applications

and the system more responsive.

 By employing appropriate memory-management

strategies, operating systems maintain balance between

resource allocation, protection, and system efficiency.

4.2 Contiguous memory allocation

Contiguous memory allocation is a memory management

technique used in operating systems to allocate memory in a

single continuous block. This method is one of the simplest

and oldest ways to manage memory, and it ensures that a

process is assigned a single contiguous block of memory for

execution.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 166 | P a g e

 Continuous Memory Management Techniques.

Memory Management Techniques are classified broadly

into two categories:

 Contiguous

 Non-contiguous

Contiguous Memory Management Techniques

Below are two Contiguous Memory Management

Techniques.

1. Fixed Partition Scheme

2. Variable Partition Scheme

I I- B.Tech II SEM Operating Systems Prepared By: BSR 167 | P a g e

1. Fixed Partition Scheme

The Fixed Partition Scheme is a memory management

technique in contiguous memory allocation where the

memory is divided into fixed-sized partitions at the time of

system initialization. Each partition can hold exactly one

process, and the size of partitions is predetermined and

remains constant throughout system operation.

Advantages:

Simple Implementation:

The simplicity of design and implementation makes it easier

to manage memory allocation and deallocation.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 168 | P a g e

Efficient for Small Systems:

Ideal for systems with predictable workloads where

processes have relatively uniform memory requirements.

Fast Allocation:

Allocation decisions are quick since partitions are pre-

defined.

Disadvantages:

Internal Fragmentation:

Occurs when the process size is smaller than the allocated

partition, leading to wasted memory within the partition.

External Fragmentation:

If no partition is large enough to accommodate a process, it

results in wasted space, even if the total free memory is

sufficient.

Inflexibility:

Predefined partition sizes cannot adapt to processes with

highly variable memory demands, reducing overall memory

utilization.

Fixed Number of Processes:

The number of processes that can be accommodated at a

time is limited by the number of partitions, regardless of

whether free memory is available.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 169 | P a g e

2. Variable Partition Scheme

The Variable Partition Scheme is a memory management

technique where memory is allocated dynamically based on

the size of the process. Unlike the fixed partition scheme,

memory is not divided into fixed-size blocks; instead,

partitions are created as needed, and their sizes are tailored

to the memory requirements of processes.

Advantages:

Reduced Internal Fragmentation:

Memory is allocated exactly as needed, leaving little to no

wasted space within partitions.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 170 | P a g e

Better Utilization of Memory:

The scheme adapts to process requirements, making better

use of available memory.

No Predefined Limits:

There is no fixed limit on the number of processes, as

partitions are created dynamically.

Disadvantages:

External Fragmentation:

Over time, free memory becomes fragmented into small,

non-contiguous blocks, making it difficult to allocate

memory to large processes.

Compaction Overhead:

To address external fragmentation, the operating system

may need to periodically perform memory compaction,

which is resource-intensive.

Allocation Overhead:

Finding a suitable free memory block for a process can take

time, especially as fragmentation increases.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 171 | P a g e

Comparison:

Aspect Fixed Partitioning
Variable

Partitioning

Partition Size
Fixed and pre-

defined

Dynamic and

variable

Fragmentation
Internal

fragmentation

External

fragmentation

Flexibility Inflexible Flexible

Efficiency
Lower memory

utilization

Higher memory

utilization

Complexity
Simple

implementation

More complex to

manage

4.3 Paging

Paging is a memory management technique in operating

systems that eliminates the need for contiguous memory

allocation and minimizes fragmentation by dividing both the

physical memory and a process's logical memory into fixed-

size blocks. These blocks are called pages (in logical

memory) and frames (in physical memory).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 172 | P a g e

Key Components:

Page:

A fixed-size block of logical memory.

Frame:

 A fixed-size block of physical memory, matching the

page size.

Page Table:

 Maintains the mapping between page numbers

(logical addresses) and frame numbers (physical

addresses).

 Each process has its own page table.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 173 | P a g e

Logical and Physical Address:

 Logical Address: An address generated by the CPU,

consisting of a page number and an offset within the

page.

 Physical Address: The actual location in physical

memory, calculated using the frame number and

offset.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 174 | P a g e

Example

A process has a logical memory size of 8 KB, and the

physical memory size is 16 KB. The page size is 1 KB.

Given:

Logical memory = 8 KB

Physical memory = 16 KB

Page size = 1 KB

Logical to Physical Mapping:

Suppose the operating system assigns the process’s pages to

the following physical frames:

Page Number Frame Number

0 5

1 8

2 2

3 12

4 7

5 10

I I- B.Tech II SEM Operating Systems Prepared By: BSR 175 | P a g e

Page Number Frame Number

6 3

7 14

Logical Address:

A logical address is represented as:

 Page Number (P): Identifies the page.

 Page Offset (d): Specifies the position within the

page.

Example Logical Address:

Logical Address: 2050

 Page size = 1 KB = 1024 bytes.

 Calculate

Physical Address Translation:

Using the page table, Page 2 maps to Frame 2. The physical

address is calculated as:

Result:

Logical Address 2050 maps to Physical Address 2050.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 176 | P a g e

4.4 Structure of the Page Table

Page Table is a data structure used by the virtual memory

system to store the mapping between logical addresses and

physical addresses is commonly known as Page Table.

Logical addresses are generated by the CPU for the pages

of the processes therefore they are generally used by the

processes.

Physical addresses are the actual frame address of the

memory. They are generally used by the hardware or more

specifically by RAM subsystems.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 177 | P a g e

Techniques used for Structuring the Page Table

Some of the common techniques that are used for

structuring the Page table are as follows:

1. Single-Level Page Table

Description:

 A single table contains entries mapping each logical

page to its corresponding physical frame.

 Suitable for systems with small logical address

spaces.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 178 | P a g e

Advantages:

 Simple and easy to implement.

Disadvantages:

 Becomes impractical for large address spaces due to

the size of the table.

2. Multi-Level Page Table

Description:

 Divides the page table into levels. The first-level

table points to second-level tables, and so on.

 Reduces memory overhead by only allocating space

for page table entries that are needed.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 179 | P a g e

Example:

Logical address is divided into:

Index 1: Points to a second-level page table.

Index 2: Points to the frame number in the second-level

table.

Offset: Specifies the location within the page.

Advantages:

Saves memory by allocating page table entries on demand.

Disadvantages:

Increases translation time as multiple memory lookups are

required.

3. Inverted Page Table

Description:

 A single global table shared by all processes.

 Each entry maps a physical frame to the

corresponding logical page and process.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 180 | P a g e

Advantages:

 Reduces memory overhead by having only one page

table for the entire system.

Disadvantages:

 Slower address translation since a search is required

for each reference.

 Typically combined with a hash table for faster

lookups.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 181 | P a g e

4. Hashed Page Table

Description:

 Uses a hash function to map logical page numbers to

physical frame numbers.

 Each entry includes a linked list to handle collisions.

We would understand the working of the hashed page table

with the help of an example. The CPU generates a logical

address for the page it needs. Now, this logical address

needs to be mapped to the physical address. This logical

address has two entries, i.e., a page number (P3) and an

offset, as shown below.

 The page number from the logical address is directed

to the hash function.

 The hash function produces a hash value

corresponding to the page number.

 This hash value directs to an entry in the hash table.

 As we have studied earlier, each entry in the hash

table has a link list. Here the page number is

compared with the first element's first entry. If a

match is found, then the second entry is checked.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 182 | P a g e

In this example, the logical address includes page number

P3 which does not match the first element of the link list as

it includes page number P1. So we will move ahead and

check the next element; now, this element has a page

number entry, i.e., P3, so further, we will check the frame

entry of the element, which is fr5. We will append the offset

provided in the logical address to this frame number to reach

the page's physical address. So, this is how the hashed page

table works to map the logical address to the physical

address.

Advantages:

 Efficient for sparse address spaces.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 183 | P a g e

 Reduces the size of the page table by focusing only

on mapped pages.

Disadvantages:

 Hashing can introduce overhead, and collisions can

increase lookup time.

5. Hierarchical (Tree-Based) Page Table

Description:

 Treats the page table as a tree structure, with

intermediate nodes pointing to lower-level nodes.

 The root points to higher-level page tables, and

leaves contain frame numbers.

Advantages:

Dynamic and scalable for large address spaces.

Disadvantages:

More complex implementation and longer address

translation times.

6. Segmented Page Table

Description:

 Combines segmentation and paging.

 Each segment has its own page table.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 184 | P a g e

Advantages:

 Provides flexibility of segmentation with the

efficiency of paging.

 Allows variable-sized segments.

Disadvantages:

 Adds complexity due to managing segments and

page tables simultaneously.

7. Clustered Page Table

Description:

 Modifies traditional page tables to map multiple

pages (a cluster) to a single frame table entry.

 Reduces the number of entries for large address

spaces.

Advantages:

Saves memory space for systems with clustered or

contiguous allocation needs.

Disadvantages:

Less granular control, as clusters may lead to internal

fragmentation.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 185 | P a g e

8. Shadow Page Tables

Description:

 Used in virtualized environments.

 Maintains a shadow copy of the guest's page table

for use by the hypervisor.

Advantages:

Allows efficient memory management in virtualized

systems.

Disadvantages:

Adds overhead for synchronization between guest and

shadow page tables.

Comparison of Techniques

Technique
Memory

Usage

Address

Translation

Speed

Complexity

Single-Level High Fast Low

Multi-Level Moderate Moderate Moderate

Inverted Low Slow Moderate

Hashed Moderate Fast (with good Moderate

I I- B.Tech II SEM Operating Systems Prepared By: BSR 186 | P a g e

Technique
Memory

Usage

Address

Translation

Speed

Complexity

hash function)

Hierarchical Low Slow High

Segmented Moderate Moderate High

Clustered Low Moderate Moderate

Shadow

(Virtualization)

High Moderate High

4.5 Swapping

Swapping is a memory management scheme in which any

process can be temporarily swapped from main memory to

secondary memory so that the main memory can be made

available for other processes. It is used to improve main

memory utilization. In secondary memory, the place where

the swapped-out process is stored is called swap space.

The purpose of the swapping in operating system is to

access the data present in the hard disk and bring it to RAM

so that the application programs can use it. The thing to

I I- B.Tech II SEM Operating Systems Prepared By: BSR 187 | P a g e

remember is that swapping is used only when data is not

present in RAM.

Although the process of swapping affects the performance

of the system, it helps to run larger and more than one

process. This is the reason why swapping is also referred to

as memory compaction.

The concept of swapping has divided into two more

concepts: Swap-in and Swap-out.

 Swap-out is a method of removing a process from

RAM and adding it to the hard disk.

 Swap-in is a method of removing a program from a

hard disk and putting it back into the main memory

or RAM.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 188 | P a g e

Swapping Process Flow

1. The process is selected for swapping based on

scheduling or priority.

2. The entire process image is copied from RAM to the

swap space.

3. The process is removed from memory, and memory

is freed for other processes.

4. When required, the process is reloaded into RAM,

and execution resumes from where it was swapped

out.

Swapping vs. Paging

Feature Swapping Paging

Granularity Entire process Individual pages

Overhead High Moderate

Efficiency
Less efficient for

large processes

More efficient due to

smaller swaps

Disk Usage
Requires larger disk

space

Requires smaller disk

space

I I- B.Tech II SEM Operating Systems Prepared By: BSR 189 | P a g e

4.6 Virtual Memory Management: Introduction

Virtual memory is a critical concept in modern computing

that allows a computer system to extend its physical

memory using disk storage. This technique provides a

mechanism for the execution of processes that may not fully

fit into the physical memory available. It offers a larger,

more flexible address space for programs and enhances

system security and efficiency.

 Virtual memory is a memory management

technique that allows computers to run programs when they

don't have enough physical memory.

 All open programs require a share of RAM, as do the

files you are working on.

 Some files and programs are simply too big to fit

into the RAM available. This is particularly true

when creating videos and large graphics.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 190 | P a g e

 Alternatively, you may just have too many files or

programs open at any one time.

 The operating system will utilise virtual memory

(your hard drive) when the physical RAM in a

computer system is not sufficient to cope with the

files and applications currently in use.

 Virtual memory will allow you to continue

multitasking and accessing large files despite your

RAM being limited or full.

How it works

Virtual memory uses a computer's hard disk to extend the

amount of available memory. It temporarily moves data

from a computer's RAM to the hard disk or solid-state drive

(SSD) when it's not being used. This frees up RAM so that

the computer can run multiple programs at once.

Thrashing

Thrashing in an operating system (OS) is when a system

spends more time swapping pages between memory and

disk than performing useful tasks. This can be caused by a

high number of page faults, which happen when the system

needs to retrieve a page from the disk because it is not

I I- B.Tech II SEM Operating Systems Prepared By: BSR 191 | P a g e

present in memory. Thrashing can lead to low CPU

utilization and make the system unresponsive and slow.

Advantages of Virtual Memory

Efficient Memory Use:

Allows multiple processes to run simultaneously, even if the

combined memory requirements exceed physical memory.

Flexibility:

Applications can use more memory than what is physically

available on the system.

Isolation:

Enhances security by isolating processes from one another.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 192 | P a g e

Simplified Programming:

Developers do not need to worry about managing physical

memory allocation.

Disadvantages of Virtual Memory

Performance Overhead:

Frequent page swaps between RAM and disk (thrashing)

can slow down the system.

Storage Dependency:

Requires significant disk space for swap areas.

Complexity:

Implementation of virtual memory increases the complexity

of the operating system.

4.7 Demand paging

Demand paging is a memory management technique used in

operating systems where pages of a program are loaded into

physical memory (RAM) only when they are required,

rather than preloading all pages at once. This method is part

of the virtual memory system and helps efficiently utilize

limited physical memory resources.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 193 | P a g e

How Demand Paging Works

Initial State:

 When a program starts, none (or only a minimal

number) of its pages are loaded into memory.

 The operating system keeps track of the pages in a

page table.

Page Access:

 When the program accesses a page, the OS checks if

the page is in memory.

 If the page is already in memory, the program

continues execution.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 194 | P a g e

Page Fault:

 If the page is not in memory, a page fault occurs.

 The OS pauses the program, fetches the required

page from secondary storage (e.g., disk), loads it into

memory, updates the page table, and resumes

execution.

Steps in Demand Paging

Check for Page:

 The system checks the page table for the requested

page.

 Handle Page Fault:

 If the page is not in memory, a page fault is

triggered.

Load Page:

 The required page is loaded into memory, potentially

replacing another page if memory is full.

Resume Execution:

 The program resumes from where it was interrupted.

Advantages of Demand Paging

Efficient Memory Use:

 Only the required pages are loaded into memory,

leaving space for other processes.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 195 | P a g e

Fast Program Startup:

 Programs can start running without loading the

entire memory footprint.

Supports Large Programs:

 Allows programs to use more memory than the

system's physical RAM by loading pages on

demand.

Disadvantages of Demand Paging

Page Fault Overhead:

Frequent page faults can slow down performance.

Disk Dependency:

Heavy reliance on disk I/O for page fetching may lead to

thrashing if memory is overcommitted.

Complexity:

Managing page tables and handling faults adds complexity

to the operating system.

4.8 Copy-on-write

Copy-on-Write (COW) is an optimization strategy used in

computer science, particularly in operating systems and

memory management, to efficiently handle resource sharing.

The main idea behind COW is to delay copying data until a

I I- B.Tech II SEM Operating Systems Prepared By: BSR 196 | P a g e

modification is required. This helps conserve memory and

improves performance by avoiding unnecessary duplication

of data.

 Let us take an example where Process A creates

a new process that is Process B, initially both these

processes will share the same pages of the memory.

Figure: Above figure indicates parent and child process

sharing the same pages

Now, let us assume that process A wants to modify a page

in the memory. When the Copy-on-write(CoW) technique is

used, only those pages that are modified by either process

are copied; all the unmodified pages can be easily shared by

the parent and child process.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 197 | P a g e

Whenever it is determined that a page is going to be

duplicated using the copy-on-write technique, then it is

important to note the location from where the free pages will

be allocated. There is a pool of free pages for such requests;

provided by many operating systems. And these free pages

are allocated typically when the stack/heap for a process

must expand or when there are copy-on-write pages to

manage.

Advantages of Copy-on-Write

Memory Efficiency:

Reduces memory usage by sharing data until it is modified.

Performance:

Avoids unnecessary copying, especially for read-only data.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 198 | P a g e

Fast Process Creation:

Used during process creation (e.g., with fork() in Unix-like

systems), allowing the child process to share the parent’s

memory until modifications occur.

Disadvantages of Copy-on-Write

Complexity:

Increases the complexity of the memory management

system.

Page Fault Overhead:

Writing to a shared page triggers a page fault, adding

overhead.

4.9 Page replacement

Page replacement is a mechanism used in operating systems

to manage memory efficiently when a program tries to

access a page not currently in physical memory (a page

fault) and all memory frames are occupied. The operating

system must decide which page to remove from memory to

make room for the new page.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 199 | P a g e

Why Page Replacement is needed

Limited Physical Memory:

 Systems typically have less RAM than the total

memory demands of running processes.

Virtual Memory:

 Programs can use more memory than physically

available using virtual memory. When memory is

full, page replacement ensures the necessary pages

are loaded.

Page Replacement Process

Page Fault Occurs:

A process requests a page not currently in physical memory.

Identify a Victim Page:

The OS selects a page to evict based on a page replacement

algorithm.

Swap Out:

The selected page is moved to the swap space on disk.

Load New Page:

The required page is loaded into the freed frame.

Update Page Table:

The page table is updated with the new page’s location.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 200 | P a g e

Page Replacement Algorithms

First-In-First-Out (FIFO):

Replaces the oldest page in memory.

Least Recently Used (LRU):

Replaces the page that has not been used for the longest

time.

Optimal Page Replacement (OPT):

Replaces the page that will not be needed for the longest

time in the future.

Page fault

When the processor need to execute a particular page, that

page is not available in main memory, this situation is said

to be ―Page fault‖. When the page fault is happened, the

page replacement will be need.

Page replacement algorithms

 FIFO

 Optimal

 LRU

1.FIFO

The idea behind this is ― Replace a page that page is the

oldest page of all the pages of main memory‖

I I- B.Tech II SEM Operating Systems Prepared By: BSR 201 | P a g e

Example

Reference string: 0 1 2 3 0 1

 2 3 0 1 2 3 4

 5 6 7 for a memory with 3 frames.

Sol:

Page fault rate = Number of page faults / Number of bits in

the reference string

16/16=100%

Advantages of FIFO

Simple to Implement:

Easy to maintain a queue of pages.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 202 | P a g e

Predictable Behavior:

Always removes the oldest page.

Disadvantages of FIFO

Belady’s Anomaly:

Increasing the number of frames can sometimes result in

more page faults.

Ignores Page Usage:

Does not account for how frequently or recently a page is

accessed.

2. Optimal Page replacement algorithm

The idea behind this is ―Replace a page that will not be used

for the longest period of time‖

Example

Reference string: 1 2 3 2 5 6

 3 4 6 3 4 6 3

 7 3 1 5 3 6 3

 4 2 4 3 4 5 1

 assume that the memory size is 4 frames.

Page fault: 11/24

I I- B.Tech II SEM Operating Systems Prepared By: BSR 203 | P a g e

Advantages of OPT

Optimal Performance:

Minimizes page faults in theory.

Ideal for Predictive Systems:

Useful in simulated environments where future memory

access patterns can be predicted.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 204 | P a g e

Disadvantages of OPT

Theoretical and Impractical:

Real systems cannot foresee future page accesses.

Complex to Implement:

Requires significant overhead to track and predict future

accesses.

3. LRU (Least Recently Used) Algorithm

The idea behind this is ―Replace a page that has not been

used for the longest period of time‖. This strategy is the

―Page replacement algorithm looking backward in time,

rather than forward‖.

Example

Reference string: 0 1 2 3 0 1

 2 3 0 1 2 3 4

 5 6 7 with 3 main frames.

Sol: 16/16 =100%

I I- B.Tech II SEM Operating Systems Prepared By: BSR 205 | P a g e

Advantages of LRU

Efficient Memory Use:

 Minimizes page faults in comparison to simpler

algorithms like FIFO.

Practical and Intuitive:

 Based on recent usage patterns, which align with

real-world access patterns.

Disadvantages of LRU

Implementation Complexity:

Requires additional data structures like stacks, linked lists,

or timestamps.

Overhead:

Tracking and updating usage information adds overhead.

Not Always Optimal:

It doesn’t account for future access patterns, unlike the

theoretical Optimal Page Replacement algorithm.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 206 | P a g e

Comparison Table of FIFO, OPT, and LRU Page

Replacement Algorithms

Feature FIFO OPT LRU

Definition

Evicts the

oldest page in

memory.

Selects the

page that will

not be used

for the longest

time in the

future.

Evicts the

least recently

used page.

Page Fault Rate

Generally

higher than

LRU and OPT.

Ideal

scenario,

yields the

least page

faults with

future

knowledge.

Efficient,

minimizes

page faults in

real

scenarios.

Complexity

Simple to

implement, uses

a queue.

High

complexity,

requires

tracking

future

Moderate

complexity,

requires

tracking

usage

I I- B.Tech II SEM Operating Systems Prepared By: BSR 207 | P a g e

Feature FIFO OPT LRU

accesses. patterns.

Future

Knowledge

Does not

require

knowledge of

future memory

access.

Requires

knowledge of

future

memory

access.

Does not

require

knowledge of

future

memory

access.

Predictive

Power

No predictive

power; relies on

FIFO order.

Best

predictive

power in

theory, but

impractical.

Good

predictive

power based

on recent

history.

Performance

Poor for

workloads with

non-uniform

access patterns.

Best

theoretical

performance

but not

feasible in

real systems.

Good for

real-world

access

patterns, but

not optimal.

Implementation Straightforward, Complex, Practical,

I I- B.Tech II SEM Operating Systems Prepared By: BSR 208 | P a g e

Feature FIFO OPT LRU

uses a simple

queue.

requires

sophisticated

data

structures.

uses stacks

or counters

for tracking.

Real-World

Use

Limited; used

when other

methods are too

complex.

Rarely used

due to

impracticality.

Widely used

in modern

operating

systems due

to its balance

of simplicity

and

effectiveness.

4.10 Allocation of frames

In an operating system, the memory available for processes

is divided into smaller sections called frames. The allocation

of frames to processes is a critical aspect of memory

management and can affect system performance

significantly. There are different strategies to allocate

I I- B.Tech II SEM Operating Systems Prepared By: BSR 209 | P a g e

frames to processes, each with its advantages and

disadvantages.

Types of Frame Allocation Strategies

1. Fixed Allocation:

Description: A fixed number of frames is allocated to each

process.

Advantages:

 Simple to implement and manage.

 Easy to calculate the maximum memory required by

each process.

Disadvantages:

 Inefficient use of memory if processes do not use all

their allocated frames.

 Fixed allocation may lead to fragmentation, causing

wasted memory.

2. Variable Allocation:

Description: The number of frames allocated to each

process can vary depending on demand.

Advantages:

 More efficient use of memory compared to fixed

allocation.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 210 | P a g e

 Allows processes to grow or shrink in memory

requirements dynamically.

Disadvantages:

 Complexity increases due to the need for dynamic

memory management.

 Potential for fragmentation if the system does not

allocate frames efficiently.

3. Proportional Allocation:

Description: Each process is allocated memory in

proportion to its needs. For example, a process requiring

30% of the memory might be allocated 30% of the total

frames.

Advantages:

 Ensures fair memory allocation among processes.

 Useful for systems where processes have different

memory requirements.

Disadvantages:

 Can lead to inefficiencies if the allocation ratio is not

well calculated.

 May not provide enough memory for processes with

high memory demands.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 211 | P a g e

4. Priority Allocation:

Description: Frames are allocated based on the priority of

the process. High-priority processes are given more

memory.

Advantages:

 Allows critical processes to have more memory.

 Prioritizes processes based on importance.

Disadvantages:

 Can lead to starvation if lower-priority processes are

repeatedly denied memory.

 Inefficient memory usage if not managed carefully.

5. Demand Paging:

Description: Frames are allocated on demand, meaning a

process gets a frame only when it is required.

Advantages:

 Reduces page faults by allocating frames only when

necessary.

 Efficient use of memory by swapping out unused

pages.

Disadvantages:

 Complexity in managing memory as frames are

dynamically allocated.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 212 | P a g e

 Higher overhead due to frequent checks for page

faults.

Example Scenario

Imagine a system with 10 frames and three processes: P1,

P2, and P3.

P1 needs 5 frames.

P2 needs 3 frames.

P3 needs 2 frames.

Depending on the chosen strategy:

Fixed Allocation: Allocate a fixed number of frames (e.g.,

3, 3, 4).

Variable Allocation: Adjust frames dynamically based on

process demand.

Proportional Allocation: Distribute frames in proportion to

each process’s needs.

Priority Allocation: Allocate more frames to higher

priority processes.

Demand Paging: Frames are allocated only when a page

fault occurs.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 213 | P a g e

4.11 Thrashing.

Thrashing in an operating system (OS) is when a system

spends more time swapping pages between memory and

disk than performing useful tasks. This can be caused by a

high number of page faults, which happen when the system

needs to retrieve a page from the disk because it is not

present in memory. Thrashing can lead to low CPU

utilization and make the system unresponsive and slow.

Example Scenario

Consider a system with 4GB of physical memory and three

processes (P1, P2, P3) competing for memory. If the system

only has 2GB of physical memory and allocates insufficient

frames:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 214 | P a g e

 P1 needs 1GB but is allocated 256MB.

 P2 needs 1GB but is allocated 256MB.

 P3 needs 1GB but is allocated 256MB. Each process

will experience frequent page faults because it does

not have enough memory.

 P1 will continuously load and unload pages as it

accesses more memory than it can hold.

 This can lead to thrashing, where the system is

constantly swapping pages between disk and

memory without actually executing useful

instructions.

In such a case, even though the system appears to have

enough memory, the lack of sufficient frames causes

performance degradation.

4.12 Storage Management: Overview of Mass Storage

Structure

Mass storage is the backbone of computer systems,

providing long-term data storage and retrieval capabilities. It

plays a crucial role in ensuring data persistence, system

performance, and access speed. Understanding the structure

I I- B.Tech II SEM Operating Systems Prepared By: BSR 215 | P a g e

and components of mass storage is essential for effective

storage management in operating systems.

 Mass storage is a collection of devices and

systems that store large amounts of data. The structure of

mass storage devices is made up of platters, tracks, sectors,

and cylinders:

Platters: Rigid metal platters for hard disk drives, or flexible

plastic platters for floppy disks

Tracks: Concentric rings on the working surface of a platter

Sectors: Divisions within a track that typically contain 512

bytes of data

Cylinders: Collection of tracks that are the same distance

from the edge of the platter

I I- B.Tech II SEM Operating Systems Prepared By: BSR 216 | P a g e

 The storage capacity of a disk drive is calculated

by multiplying the number of heads, tracks, sectors, and

bytes per sector.

Some examples of mass storage devices include:

Hard disk drives (HDDs)

A common internal storage device with a magnetized

surface that spins at 60–120 revolutions per second

Magnetic tape drives

A cheap way to store large amounts of data, often used as a

backing store for mainframe computers

Optical disc drives

Can store more data than floppy disks, with CD-ROMs, CD-

Rs, and CD-RWs being the three main types

Solid-state drives (SSDs)

A type of mass storage device

Storage management is the process of ensuring that data is

accessible quickly while also maintaining data integrity,

compliance with policies and regulations, and efficient use

of storage resources.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 217 | P a g e

4.13 HDD Scheduling

Hard Disk Drive (HDD) scheduling refers to the methods

used by operating systems to manage and prioritize requests

for read and write operations on a hard disk. The goal of

HDD scheduling is to minimize the seek time and rotational

latency, thereby optimizing the overall performance of disk

access and reducing wait times for processes.

Key Scheduling Algorithms

1. First-In, First-Out (FIFO):

Description: Requests are processed in the order they arrive.

The oldest request is served first. Consider in the following

sequence the wild swing from cylinder 122 to 14 and then

back to 124:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 218 | P a g e

2. Shortest Seek Time First (SSTF):

Description: Selects the request with the shortest seek time

(distance) from the current head position.

3.SCAN (Elevator Algorithm):

Description: Moves the disk arm from one end to the other,

servicing requests along the way.

Upward Direction: Moves from one end of the disk to the

other in one continuous motion.

Downward Direction: After reaching the end, it reverses

direction and continues servicing requests.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 219 | P a g e

4. C-SCAN (Circular SCAN):

Description: Similar to SCAN, but after reaching the end,

the head immediately jumps back to the beginning of the

disk without serving requests between.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 220 | P a g e

5. C-LOOK (Circular LOOK):

Description: A variation of LOOK, where the disk arm

moves only as far as the last request, then jumps back to the

beginning, ignoring idle requests.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 221 | P a g e

4.14 RAID

RAID (redundant array of independent disks) is a way of

storing the same data in different places on multiple hard

disks or solid-state drives (SSDs) to protect data in the case

of a drive failure. There are different RAID levels

 RAID (Redundant Array of Independent Disks) is a

data storage virtualization technology that combines

multiple physical hard drives into a single logical unit to

achieve performance improvement, fault tolerance, or both.

It is widely used in operating systems for data management

I I- B.Tech II SEM Operating Systems Prepared By: BSR 222 | P a g e

and reliability. RAID can be implemented in software (via

the OS) or hardware (via a dedicated RAID controller).

Key Concepts of RAID:

Redundancy: Provides data duplication to prevent data loss

in case of disk failure.

Performance: Improves read/write operations by

distributing data across multiple drives.

Logical Storage: Abstracts multiple physical drives into a

single logical volume visible to the OS.

RAID Levels

There are several RAID levels, each serving different

purposes:

1. RAID 0 (Striping)

Purpose: Performance.

How it works:

 This configuration has striping but no redundancy of

data. It offers the best performance, but it does not

provide fault tolerance.

 Data is split into blocks and written across all drives.

Advantages: High read/write speeds.

Disadvantages: No redundancy; failure of one drive leads

to data loss.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 223 | P a g e

2. RAID 1 (Mirroring)

Purpose: Fault tolerance.

How it works:

 Also known as disk mirroring, this configuration

consists of at least two drives that duplicate the

storage of data. There is no striping. Read

performance is improved, since either disk can be

read at the same time. Write performance is the same

as for single disk storage.

 Data is duplicated across two or more drives.

Advantages: High reliability; data remains accessible if one

drive fails.

Disadvantages: Storage cost doubles since each bit of data

is stored twice.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 224 | P a g e

3. RAID 5 (Striping with single Parity)

Purpose: Fault tolerance and performance.

How it works: Data and parity information are striped

across all drives. Parity allows recovery in case of a single

drive failure.

Advantages: Efficient storage and fault tolerance.

Disadvantages: Slightly slower write speeds due to parity

calculations.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 225 | P a g e

4. RAID 6 (Striping with Double Parity)

Purpose: Enhanced fault tolerance.

How it works: Similar to RAID 5 but with two sets of

parity.

Advantages: Can tolerate two simultaneous drive failures.

Disadvantages: Slower writes and requires more storage.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 226 | P a g e

5. RAID 10 (1+0, or Mirroring and Striping)

Purpose: High performance and fault tolerance.

How it works: Combines RAID 1 and RAID 0. Data is

mirrored and then striped.

Advantages: High speed and redundancy.

Disadvantages: Expensive due to high storage overhead.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 227 | P a g e

RAID Implementation in Operating Systems

RAID controller

A RAID controller is a device used to manage hard disk

drives in a storage array. It can be used as a level of

abstraction between the OS and the physical disks,

presenting groups of disks as logical units. Using a RAID

controller can improve performance and help protect data in

case of a crash.

A RAID controller may be hardware- or software-based. In

a hardware-based RAID product, a physical controller

manages the entire array. The controller can also be

designed to support drive formats such as Serial Advanced

Technology Attachment and Small Computer System

Interface. A physical RAID controller can also be built into

a server's motherboard.

With software-based RAID, the controller uses the

resources of the hardware system, such as the central

processor and memory. While it performs the same

functions as a hardware-based RAID controller, software-

based RAID controllers may not enable as much of a

I I- B.Tech II SEM Operating Systems Prepared By: BSR 228 | P a g e

performance boost and can affect the performance of other

applications on the server.

If a software-based RAID implementation is not compatible

with a system's boot-up process and hardware-based RAID

controllers are too costly, firmware, or driver-based RAID,

is a potential option.

Firmware-based RAID controller chips are located on the

motherboard, and all operations are performed by the central

processing unit (CPU), similar to software-based RAID.

However, with firmware, the RAID system is only

implemented at the beginning of the boot process. Once the

OS has loaded, the controller driver takes over RAID

functionality. A firmware RAID controller is not as pricey

as a hardware option, but it puts more strain on the

computer's CPU. Firmware-based RAID is also called

hardware-assisted software RAID, hybrid model RAID and

fake RAID.

1. Software RAID

 Configured at the operating system level.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 229 | P a g e

 No special hardware required.

Example tools:

Linux: Logical Volume Manager (LVM).

Windows: Disk Management or Storage Spaces.

Pros:

 Cost-effective.

 Flexible configuration.

Cons:

 Relies on CPU for RAID processing, potentially

reducing system performance.

2. Hardware RAID

 Managed via a dedicated RAID controller card.

 Transparent to the OS.

Pros:

 Offloads RAID processing to the hardware.

 Often faster and more reliable.

Cons:

 Higher cost.

 Potential vendor lock-in.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 230 | P a g e

UNIT-V

File System: File System Interface: File concept, Access

methods, Directory Structure; File system Implementation:

File-system structure, File-system Operations, Directory

implementation, Allocation method, Free space

management; File-System Internals: File System Mounting,

Partitions and Mounting, File Sharing.

Protection: Goals of protection.

5.1 File System: File System Interface: File concept

A file system is a critical component of an operating system

that manages how data is stored and retrieved on storage

devices like hard drives or SSDs. The file concept is

foundational to how users and applications interact with data

on a computer.

a) What is a File?

A file is a logical collection of related data, stored on

secondary storage, such as a hard disk, SSD, or removable

media.

b) Attributes of a File

Each file typically has a set of attributes that describe its

properties:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 231 | P a g e

Name: A unique identifier for the file within its directory.

Type: Indicates the kind of data in the file (e.g., .txt, .jpg,

.exe).

Location: The physical or logical location on the storage

device.

Size: The current size of the file, often measured in bytes.

Protection: Permissions that control who can read, write, or

execute the file.

Timestamps: Information about when the file was created,

last modified, and last accessed.

Ownership: Identifies the user or group that owns the file.

c) File Types

Operating systems often classify files into types based on

their purpose:

Regular Files: Contain user data like text, images, or

executables.

Directories: Special files that store lists of file names and

their attributes.

Device Files: Represent hardware devices (e.g., /dev files in

Linux).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 232 | P a g e

Special Files: Pipes, sockets, or symbolic links used for

interprocess communication or shortcuts

d) Common Operations in File Systems

Create: Allocates space and initializes file metadata.

Read: Retrieves file content.

Write: Updates or appends data to a file.

Delete: Removes file entries and reclaims space.

Open/Close: Prepares a file for access and releases

resources afterward.

e) Importance of the File Concept

The file concept abstracts the complexity of hardware and

presents a user-friendly interface, enabling:

Data Organization: Simplifies storing and retrieving data.

Collaboration: Allows multiple users or processes to

interact with the same data.

Data Persistence: Ensures data is saved even after the

system shuts down.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 233 | P a g e

d) Advantages of File Systems

Efficient Data Access: Optimized for quick reads and

writes.

Data Organization: Hierarchical structure simplifies

navigation.

Data Persistence: Ensures data remains intact across

reboots.

Fault Tolerance: Protects against hardware and software

failures

 By providing these capabilities, the file system

interface is essential for the functionality and usability of

modern operating systems.

5.2 Access methods

Access methods in a file system determine how data stored

in files can be retrieved and manipulated.

File Access Methods:

Sequential Access: Data is read/written in sequence.

Random Access: Allows jumping to any location within a

file.

Indexed Access: Uses indexes for fast data retrieval.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 234 | P a g e

Sequential-Indexed Access: Combines sequential access

and indexing for efficient data retrieval.

1. Sequential Access:

In an operating system, sequential access is a file access

method that reads a file word by word in a linear order. It's

similar to flipping through a book, where you can't jump

directly to a specific page.

How it works

A pointer is maintained which initially points to the base

address of the file. If the user wants to read first word of the

file then the pointer provides that word to the user and

increases its value by 1 word. This process continues till the

end of the file.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 235 | P a g e

Advantages

Simple and efficient for sequentially structured data.

Disadvantages

Inefficient for non-sequential access

2. Random Access:

In an operating system, random access is the ability to

access data at any location within a file or data structure

without having to go through other elements sequentially.

This is in contrast to sequential access, where data is

accessed in a predetermined, linear sequence.

Description: Data can be accessed directly by specifying

its location in the file.

How it works: A file is treated as a series of fixed-size

logical blocks, each with a unique address. Applications

use these addresses to read or write data directly.

Advantages:

Fast access to specific parts of the file.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 236 | P a g e

Disadvantages:

More complex to implement compared to sequential

access.

3. Indexed Access:

The indexed access method is a file access technique in an

operating system that uses an index to access records in a

file:

Description: Uses an index to keep track of the locations

of data blocks within a file, similar to an index in a book.

How it works: An index is maintained, and each entry

points to the data's physical location in the file.

Advantages:

Combines fast access with structured organization.

Disadvantages:

Additional storage is required for maintaining the index.

4. Sequential-Indexed Access

Description: Combines sequential access and indexing for

efficient data retrieval.

Operations:

Use the index to locate a starting point.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 237 | P a g e

Read sequentially from that point.

Characteristics:

Optimized for datasets requiring both types of access

patterns.

Use Cases:

Large, sorted datasets (e.g., customer records, sorted logs).

Advantages:

Balances flexibility and efficiency.

Disadvantages:

Index management introduces overhead.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 238 | P a g e

5. Content-Based Access

Description: Files are accessed based on their content, often

using keywords or metadata.

Operations:

Search for files or records matching a specific query.

Characteristics:

Requires full-text indexing or metadata tagging.

Use Cases:

Search engines, document management systems.

Advantages:

Flexible and powerful queries.

Disadvantages:

High computational and storage overhead for indexing.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 239 | P a g e

Comparison Table

Access

Method
Speed Complexity Use Case Drawback

Sequential

Access

Slow for

random

access

Simple

Log files,

media

playback

Inefficient for

random access

Direct

Access

Fast for

random

access

Moderate

Databases,

media

editing

Requires fixed

block size

Indexed

Access

Fast for

large

files

Complex

Databases,

inventory

systems

Overhead for

index storage

Sequential

Indexed

Moderate

to fast
Moderate

Sorted

datasets

Index

maintenance

overhead

Hierarchical

Access
Moderate

Simple to

use

File

navigation

Slower

navigation in

deep hierarchies

Content-

Based

Access

Fast for

searches
High

Search

engines,

documents

Computationally

expensive

I I- B.Tech II SEM Operating Systems Prepared By: BSR 240 | P a g e

5.3 Directory Structure

A directory structure is a hierarchical or organizational

framework used by operating systems to organize files and

directories (or folders). It provides a way to manage, access,

and retrieves data efficiently, ensuring that the file system

remains navigable and structured.

a) Directory Operations

Create: Add a new directory.

Delete: Remove a directory (usually requires it to be

empty).

Rename: Change the name of a directory.

Traverse: Navigate through directories to locate files.

Search: Find files or directories based on criteria.

List: Display the contents of a directory.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 241 | P a g e

b) Components of a Directory Structure

Root Directory:

 The top-most directory in a hierarchical structure.

 All other files and directories branch out from here.

 Denoted as / in Unix/Linux and C:\ (or similar drive

letters) in Windows.

Subdirectories:

 Directories within another directory.

 Allow hierarchical organization, enabling logical

grouping of related files.

Files:

 Actual data stored within directories.

Paths:

 Specifies the location of a file or directory.

Absolute Path: Full path from the root (e.g.,

/home/user/file.txt).

Relative Path: Path relative to the current directory (e.g.,

../documents/file.txt).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 242 | P a g e

c) Types of Directory Structures

1. Single-Level Directory

2. Two-Level Directory

3. Hierarchical Directory

4. Acyclic-Graph Directory

5. General Graph Directory

1. Single-Level Directory

Description:

All files are stored in a single directory.

The simplest method is to have one big list of all the files on

the disk. The entire system will contain only one directory

which is supposed to mention all the files present in the file

system. The directory contains one entry per each file

present on the file system.

Advantages:

 Simple and easy to implement.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 243 | P a g e

Disadvantages:

 Difficult to manage when the number of files

increases.

 No logical grouping or user separation.

2. Two-Level Directory

Description:

Each user has a separate directory within the root

directory.

In two level directory systems, we can create a separate

directory for each user. There is one master directory which

contains separate directories dedicated to each user. For

each user, there is a different directory present at the second

level, containing group of user's file. The system doesn't let

a user to enter in the other user's directory without

permission.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 244 | P a g e

Advantages:

 Better file organization.

 User separation ensures privacy and avoids name

collisions.

Disadvantages:

 Limited to two levels; cannot organize files

hierarchically within a user's directory.

3. Hierarchical Directory

Description:

 Directories are organized in a tree-like structure.

 Users can create subdirectories within directories,

allowing unlimited levels.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 245 | P a g e

Advantages:

 Flexible and scalable.

 Logical grouping of files and directories.

Disadvantages:

 Complexity increases with deep structures.

4. Acyclic-Graph Directory

Description:

 Allows directories to share files and subdirectories

via links (hard links or symbolic links).

Advantages:

 Avoids duplication of data by enabling sharing.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 246 | P a g e

 Saves storage space.

Disadvantages:

 Complicated management due to multiple

references.

 Deletion must be handled carefully to avoid dangling

references.

5. General Graph Directory

A general-graph directory structure in an operating system

(OS) is a flexible directory structure that allows files and

directories to have multiple parent directories. This structure

is adaptable for complex organizational needs and permits

cycles, which allows for more intricate and flexible linking

of directories.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 247 | P a g e

Description:

Directories can contain cycles, meaning files and directories

can refer to each other in loops.

Advantages:

Highly flexible.

Disadvantages:

 Complex to manage.

 Requires garbage collection to deal with loops and

ensure proper deletion.

5.4 File System Implementation: File-system structure

File system implementation encompasses various aspects of

designing, organizing, and managing data on storage

devices. It involves the following key components:

1. File-system structure

The file-system structure is organized into layers, each

responsible for specific tasks. Most of the Operating

Systems use layering approach for every task including file

systems. Every layer of the file system is responsible for

some activities.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 248 | P a g e

The image shown below, elaborates how the file system is

divided in different layers, and also the functionality of each

layer.

The file-system structure is organized into layers, each

responsible for specific tasks.

Logical Layer:

 Provides abstraction for file operations like create,

read, write, and delete.

 Manages metadata, including file names, access

permissions, and timestamps.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 249 | P a g e

File-Organization Layer:

 Maps logical files to physical storage blocks.

 Handles file allocation, storage structure, and

metadata storage.

Storage Management Layer:

 Deals with block allocation and deallocation.

 Maintains free-space lists and optimizes storage

usage.

I/O Control Layer:

 Interfaces with device drivers to interact with

hardware.

 Handles low-level operations like reading/writing

physical blocks.

Physical Storage Layer:

 Represents the actual storage devices like hard disks,

SSDs, and flash drives.

2. File-System Operations

File-system operations can be categorized into file

operations and directory operations:

a) File Operations

Create: Allocates metadata and space for a new file.

Open: Maps a file to an in-memory data structure.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 250 | P a g e

Read/Write: Access or modify file contents.

Close: Releases in-memory data structure after use.

Delete: Frees allocated space and removes metadata.

c) Directory Operations

Create Directory: Adds a new directory in the hierarchy.

List Directory: Displays the contents of a directory.

Delete Directory: Removes a directory (requires it to be

empty).

Rename Directory: Changes the name of a directory.

Traverse: Access files and subdirectories within a

directory.

Other Operations

Mount: Integrates a file system into the operating system's

directory structure.

Unlink: Removes a file's directory entry without deleting its

data immediately (useful for shared files).

3. Directory Implementation

There is the number of algorithms by using which, the

directories can be implemented. However, the selection of

an appropriate directory implementation algorithm may

significantly affect the performance of the system.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 251 | P a g e

A directory is a special file that stores information about

other files.

The directory implementation algorithms are classified

according to the data structure they are using. Different

methods can be used to implement directories:

a. Linear List

In this algorithm, all the files in a directory are maintained

as singly lined list. Each file contains the pointers to the data

blocks which are assigned to it and the next file in the

directory.(A simple list of file names and metadata).

Advantages:

Easy to implement.

Disadvantages:

Slow for searching in large directories.

b. Hash Table

To overcome the drawbacks of singly linked list

implementation of directories, there is an alternative

I I- B.Tech II SEM Operating Systems Prepared By: BSR 252 | P a g e

approach that is hash table. This approach suggests to use

hash table along with the linked lists.

 A key-value pair for each file in the directory gets

generated and stored in the hash table. The key can be

determined by applying the hash function on the file name

while the key points to the corresponding file stored in the

directory.

 Now, searching becomes efficient due to the fact that

now, entire list will not be searched on every operating.

Only hash table entries are checked using the key and if an

entry found then the corresponding file will be fetched using

the value.(Uses a hash function to map file names to

metadata).

Advantages:

Faster lookups compared to a linear list.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 253 | P a g e

Disadvantages:

Hash collisions require extra handling.

c. Tree-Based Structure

Organizes directories hierarchically (e.g., binary search tree

or B+ tree).

 The tree-structured directory structure in an

operating system (OS) is a hierarchical way to organize files

and directories, similar to a tree upside down. It's commonly

used in personal computers and offers several advantages,

including:

Efficient searching: Files can be located using either

absolute or relative paths.

Logical organization: Files of the same type can be

grouped together in the same directory.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 254 | P a g e

Scalability: It's easy to create or remove directories and

subdirectories.

Reduced name collisions: The likelihood of name

collisions within a directory is lower.

Flexibility: Users can create any number of directories

within their User File Directory (UFD)

Advantages:

Efficient searching, insertion, and deletion.

Disadvantages:

Slightly more complex to implement.

d. Acyclic Graph

An acyclic graph directory structure in an operating system

allows a file to be accessed from multiple directories, which

is a generalization of the tree directory structure. This

structure is useful when multiple users need access to the

same file, such as when two programmers are working

together.(Allows files or directories to be linked across

directories).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 255 | P a g e

Advantages:

Supports shared files and directories.

Disadvantages:

Risk of dangling links; requires careful management.

4. File Allocation Methods

There are various methods which can be used to allocate

disk space to the files. Selection of an appropriate allocation

method will significantly affect the performance and

efficiency of the system. Allocation method provides a way

in which the disk will be utilized and the files will be

accessed.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 256 | P a g e

 There are following methods which can be used

for allocation

a) Contiguous Allocation:

If the blocks are allocated to the file in such a way that all

the logical blocks of the file get the contiguous physical

block in the hard disk then such allocation scheme is known

as contiguous allocation.

In the image shown below, there are three files in the

directory. The starting block and the length of each file are

mentioned in the table. We can check in the table that the

contiguous blocks are assigned to each file as per its need.

Advantages: Simple and fast.

Disadvantages: Prone to fragmentation and resizing issues.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 257 | P a g e

b) Linked Allocation:

Linked List allocation solves all problems of contiguous

allocation. In linked list allocation, each file is considered as

the linked list of disk blocks. However, the disks blocks

allocated to a particular file need not to be contiguous on the

disk. Each disk block allocated to a file contains a pointer

which points to the next disk block allocated to the same

file. (Each block points to the next block in the file).

Advantages: Flexible, no fragmentation.

Disadvantages: Slower access due to sequential traversal.

c) Indexed Allocation:

Instead of maintaining a file allocation table of all the disk

pointers, Indexed allocation scheme stores all the disk

pointers in one of the blocks called as indexed block.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 258 | P a g e

Indexed block doesn't hold the file data, but it holds the

pointers to all the disk blocks allocated to that particular file.

Directory entry will only contain the index block address.

(An index block stores pointers to all file blocks).

Advantages: Efficient random access.

Disadvantages: Additional overhead for maintaining index

blocks.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 259 | P a g e

5. Free space management

A file system is responsible to allocate the free blocks to the

file therefore it has to keep track of all the free blocks

present in the disk. There are mainly two approaches by

using which, the free blocks in the disk are managed.

(Efficient free-space management ensures that unused

blocks are reused effectively).

a. Bitmap or Bit vector

Each bit represents a block: 1 if allocated, 0 if free.

A Bitmap or Bit Vector is series or collection of bits where

each bit corresponds to a disk block. The bit can take two

values: 0 and 1: 0 indicates that the block is free and 1

indicates an allocated block. The given instance of disk

blocks on the disk in Figure 1 (where green blocks are

allocated) can be represented by a bitmap of 16 bits as:

1111000111111001.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 260 | P a g e

Advantages:

 Compact representation.

 Fast search using bitwise operations.

Disadvantages:

Requires scanning for contiguous free blocks.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 261 | P a g e

b. Linked List

In this approach, the free disk blocks are linked together i.e.

a free block contains a pointer to the next free block. The

block number of the very first disk block is stored at a

separate location on disk and is also cached in memory.

In Figure-2, the free space list head points to Block 5 which

points to Block 6, the next free block and so on. The last

free block would contain a null pointer indicating the end of

I I- B.Tech II SEM Operating Systems Prepared By: BSR 262 | P a g e

free list. A drawback of this method is the I/O required for

free space list traversal.

Free blocks are linked together.

Advantages:

Simple and dynamic.

Disadvantages:

Slow traversal for large disks.

c) Grouping

Maintains linked lists of free blocks in groups.

This approach stores the address of the free blocks in the

first free block. The first free block stores the address of

some, say n free blocks. Out of these n blocks, the first n-1

blocks are actually free and the last block contains the

address of next free n blocks

I I- B.Tech II SEM Operating Systems Prepared By: BSR 263 | P a g e

Advantages:

Faster allocation than simple linked lists.

Disadvantages:

Slightly more complex.

d) Counting

This approach stores the address of the first free disk block

and a number n of free contiguous disk blocks that follow

the first block. Every entry in the list would contain:

 Address of first free disk block.

 A number n.

(Tracks contiguous free blocks as ranges).

Advantages:

Efficient for large contiguous free spaces.

Disadvantages:

Inefficient for highly fragmented storage.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 264 | P a g e

File-System Internals: File System Mounting, Partitions

and Mounting, File Sharing.

Protection: Goals of protection.

5.5 File-System Internals

A file system is a software layer that manages files and

folders on a storage device, such as a hard disk or flash

memory. It organizes files and directories, and provides a

way for users to access them.

Common file systems include:

 Windows: NTFS, FAT32, exFAT.

 Linux: ext4, XFS, Btrfs.

 Mac: APFS, HFS+.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 265 | P a g e

File System Structure

Boot Block: Contains bootstrapping information, necessary

to start the operating system.

Superblock: Holds metadata about the file system (e.g.,

size, block counts, free blocks).

Inode Table: Maintains information about files, such as

ownership, permissions, and locations on disk.

Data Blocks: Store the actual content of files.

1. File System Mounting

Definition: File system mounting is the process of making a

file system accessible to the operating system and its users.

It involves associating a storage device (or partition) with a

directory in the system's file hierarchy.

Process:

 Identify the file system type (e.g., NTFS, ext4,

FAT32).

 Use a system call (e.g., mount in Unix/Linux) to link

the file system to a directory (called a mount point).

 The system verifies the file system structure to

ensure it's valid and consistent.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 266 | P a g e

Dynamic Mounting: Modern systems allow on-demand

mounting, such as when plugging in a USB device.

2. Partitions and Mounting

Partitions: A disk is divided into sections called partitions,

each of which can hold a different file system or data

structure.

Primary Partition: Can boot the system or hold the

primary file system.

Extended Partition: A special partition that can contain

multiple logical partitions.

Logical Partition: A partition within an extended partition.

Why Partitions?

 Separate system and user data.

 Enable multi-boot setups.

 Improve data management and security.

Mounting Partitions: Each partition must be mounted to a

directory in the file system hierarchy for access. For

example, /dev/sda1 might be mounted to /home.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 267 | P a g e

Mounting Indifferent Operating Systems

a. Linux-Unix based OS

We want to mount /dev/sdb1 to an existing directory /mnt.

sudo mount /dev/sdb1 /mnt/mydisk

After mounting, we have to unmount after use

sudo umount /mnt/mydisk

b. Windows OS

In windows mounting is very easy for a user. When we

connect the external storage devices, windows automatically

detect the file system and mount it to the drive letter. Drive

letter may be D: or E:.

Steps:

 Connect an external storage device to your PC.

 Windows detects the file system on the drive (e.g.,

FAT32 or NTFS) and assigns it a drive letter, such

as "E:".

 You can access the derive by going through, THIS

PC --> FILE EXPLORER -->"E:" drive

 Access the data.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 268 | P a g e

c. Mac OS

In Mac OS when we connect an external storage it will

automatically mount, and it will be accessible via Finder. As

an advanced mounting method user can also use the

command diskutil in Terminal.

Method 2(Using diskutil):

To mount a drive with a known identifier: disk2s1

diskutil mount /dev/disk2s1

To unmount:

diskutil unmount /dev/disk2s1

3. File Sharing

File Sharing in an Operating System(OS) denotes how

information and files are shared between different users,

computers, or devices on a network; and files are units of

data that are stored in a computer in the form of

documents/images/videos or any others types of information

needed.

For Example: Suppose letting your computer talk to another

computer and exchange pictures, documents, or any useful

data. This is generally useful when one wants to work on a

I I- B.Tech II SEM Operating Systems Prepared By: BSR 269 | P a g e

project with others, send files to friends, or simply shift stuff

to another device. Our OS provides ways to do this like

email attachments, cloud services, etc. to make the sharing

process easier and more secure.

Local File Sharing: Multiple users on the same machine

can access shared files with proper permissions.

Remote File Sharing:

a) Network File System (NFS): Allows file access over a

network as if it were local.

 NFS is a distributed based file sharing protocol

mainly used in Linux/Unix based operating System. It

allows a computer to share files over a network as if they

were based on local. It provides a efficient way of transfer

of files between servers and clients.

Example: Many Programmer/Universities/Research

Institution uses Unix/Linux based Operating System. The

Institutes puts up a global server datasets using NFS. The

Researchers and students can access these shared directories

and everyone can collaborate on it.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 270 | P a g e

b)Server Message Block (SMB): Used for sharing files

between Windows systems and others.

 SMB is like a network based file sharing protocol

mainly used in windows operating systems. It allows our

computer to share files/printer on a network. SMB is now

the standard way for seamless file transfer method and

printer sharing.

Example: Imagine in a company where the employees have

to share the files on a particular project . Here SMB is

employed to share files among all the windows based

operating system.orate on projects. SMB/CIFS is employed

I I- B.Tech II SEM Operating Systems Prepared By: BSR 271 | P a g e

to share files between Windows-based computers. Users can

access shared folders on a server, create, modify, and delete

files.

3. File Transfer Protocol (FTP)

It is the most common standard protocol for transferring of

the files between a client and a server on a computer

network. FTPs supports both uploading and downloading of

the files, here we can download,upload and transfer of files

from Computer A to Computer B over the internet or

between computer systems.

Example: Suppose the developer makes changes on the

server. Using the FTP protocol, the developer connects to

the server they can update the server with new website

content and updates the existing file over there.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 272 | P a g e

4. Cloud-Based File Sharing

It involves the famous ways of using online services like

Google Drive, DropBox , One Drive ,etc. Any user can store

files over these cloud services and they can share that with

others, and providing access from many users. It includes

collaboration in realtime file sharing and version control

access.

Example: Several students working on a project and they

can use Google Drive to store and share for that purpose.

They can access the files from any computer or mobile

devices and they can make changes in realtime and track the

changes over there.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 273 | P a g e

Challenges:

 Synchronization of access.

 Security and access control.

 Latency in networked environments.

5.6 Protection: Goals of protection

Protection in operating systems refers to mechanisms that

control access to resources and ensure that users and

programs interact with system resources in a controlled,

safe, and predictable manner. The goals of protection are

fundamental to maintaining system integrity, confidentiality,

and availability. These goals include:

I I- B.Tech II SEM Operating Systems Prepared By: BSR 274 | P a g e

Goals of Protection

1. Preventing Unauthorized Access

 Ensure that only authorized users, processes, and

programs can access system resources (e.g., files,

memory, devices).

 Protect against malicious or accidental misuse of

resources.

 Example: A payroll file should only be accessible to

authorized HR personnel.

2. Ensuring Data Integrity

 Protect data from unauthorized modification or

corruption.

 Prevent processes from altering critical system data

or another user’s data.

 Example: A banking application should ensure that

only valid transactions modify account balances.

3. Confidentiality

 Ensure sensitive information is not disclosed to

unauthorized users or processes.

 Protect secrets like passwords, personal data, and

proprietary information.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 275 | P a g e

 Example: Encryption mechanisms ensure that

intercepted communication remains confidential.

4. Controlled Access

 Regulate access to resources based on predefined

policies.

 Access should be granted based on principles like

need-to-know or least privilege.

 Example: A user with "read" permission should not

be able to delete files.

5. Isolation of Resources

 Prevent one process or user from interfering with

others.

 Ensure that a failure in one part of the system does

not compromise the entire system.

 Example: Sandboxing isolates untrusted code to

prevent it from affecting the broader system.

6. Accountability

 Keep a record of actions performed by users and

processes.

 Detect and track malicious or unauthorized activity.

 Example: Audit logs can show which user modified

a file and when.

I I- B.Tech II SEM Operating Systems Prepared By: BSR 276 | P a g e

7. Availability

 Ensure that legitimate users have uninterrupted

access to resources when needed.

 Protect against Denial-of-Service (DoS) attacks and

resource starvation.

 Example: A web server must serve pages to

authorized users even under heavy load.

8. Flexibility

 Support dynamic adjustments to protection policies

as system requirements evolve.

 Example: Temporarily grant administrative access to

a user during maintenance.

9. Enforcement of Policy

 Ensure that all resource accesses strictly follow the

specified security and access control policies.

 Example: A system should deny a user's attempt to

modify a read-only file, regardless of the method

used.

Mechanisms for Achieving Protection Goals

Authentication: Verify the identity of users or processes

(e.g., passwords, biometrics).

I I- B.Tech II SEM Operating Systems Prepared By: BSR 277 | P a g e

Authorization: Define permissions and determine what

actions are allowed.

Access Control: Implement mechanisms like Access

Control Lists (ACLs) or Role-Based Access Control

(RBAC).

Encryption: Protect data confidentiality during storage and

transmission.

Auditing: Log system activities to detect and prevent

violations.

