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UNIT – I 

Introduction to classical control system 

A System is a combination or an arrangement of different physical 

components which act together as an entire unit to achieve certain objective 

➢ Control System 

A control system is a system of devices or set of devices, that manages, 

commands, directs or regulates the behaviour of other device(s) or system(s) to 

achieve desire results. 

A control system is a system, which controls other system. 

❖ The main feature of control system is, there should be a clear 

mathematical relation between input and output of the system. 

❖ When the relation between input and output of the system can be 

represented by a linear proportionality, the system is called linear control 

system. 

❖ when the relation between input and output cannot be represented by single 

linear proportionality, rather the input and output are related by some non- 

linear relation, the system is referred as non-linear control system. 

➢ Requirement of Good Control System 

❖ Accuracy : Accuracy is the measurement tolerance of the 

instrument and defines the limits of the errors made when the 

instrument is used in normal operating conditions. Accuracy can be 

improved by using feedback elements. To increase accuracy of any 

control system error detector should be present in control    system. 

 
❖ Sensitivity : The parameters of control system are always changing 

with change in surrounding conditions, internal disturbance or any 

other parameters. This change can be expressed in terms of 

sensitivity. Any control system should be insensitive to such 

parameters but sensitive to input signals only. 

❖ Noise : An undesired input signal is known as noise. A good control 

system should be able to reduce the noise effect for better 

performance. 

❖ Stability : It is an important characteristic of control system. For the 

bounded input signal, the output must be bounded and if input is zero 



then output must be zero then such a control system is said to be 

stable system. 

❖ Bandwidth : An operating frequency range decides the bandwidth 

of control system. Bandwidth should be large as possible for 

frequency response of good control system. 

❖ Speed : It is the time taken by control system to achieve its stable 

output. A good control system possesses high speed. The transient 

period for such system is very small. 

❖ Oscillation : A small numbers of oscillation or constant oscillation 

of output tend to system to be stable. 

Control Systems can be classified as open loop control systems and closed loop 

control systems based on the feedback path. 

 

 
➢ Open Loop Control System 

A control system in which the control action is totally independent of 

output of the system then it is called open loop control system. 

In open loop control systems, output is not fed-back to the input. So, the 

control action is independent of the desired output. 

Manual control system is also an open loop control system. 

The following figure shows the block diagram of the open loop control system. 
 

Here, an input is applied to a 

controller and it produces an 

actuating signal or 

controlling signal. This 

signal is given as an input to 

a plant or process which is to 

be controlled. So, the plant 

produces an output, which is 

controlled. The traffic lights 

control system which we 

discussed earlier is an 

example of an open loop 

control system. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Block diagram of open loop control system 



❖ Practical Examples of Open Loop Control System 

1. Electric Hand Drier - Hot air (output) comes out as long as you keep your 

hand under the machine, irrespective of how much your hand is dried. 

2. Automatic Washing Machine - This machine runs according to the pre- 

set time irrespective of washing is completed or not. 

3. Bread Toaster - This machine runs as per adjusted time irrespective of 

toasting is completed or not. 

4. Automatic Tea/Coffee Maker - These machines also function for pre 

adjusted time only. 

5. Timer Based Clothes Drier - This machine dries wet clothes for pre- 

adjusted time, it does not matter how much the clothes are dried. 

6. Light Switch - Lamps glow whenever light switch is on irrespective of 

light is required or not. 

7. Volume on Stereo System - Volume is adjusted manually irrespective of 

output volume level. 

❖ Advantages of Open Loop Control System 

1. Simple in construction and design. 

2. Economical. 

3. Easy to maintain. 

4. Generally stable. 

5. Convenient to use as output is difficult to measure. 

❖ Disadvantages of Open Loop Control System 

1. They are inaccurate. 

2. They are unreliable. 

3. Any change in output cannot be corrected automatically. 

➢ Closed Loop Control System 

Control system in which the output has an effect on the input quantity in 

such a manner that the input quantity will adjust itself based on the output 

generated is called closed loop control system. 



In closed loop control systems, output is fed back to the input. So, the 

control action is dependent on the desired output. 

The following figure shows the block diagram of negative feedback closed loop 

control system. 

The error detector 

produces an error 

signal, which is the 

difference between 

the input and the 

feedback signal. 

This feedback 

signal  is  obtained 

from the block 

(feedback 

Figure 1.2:Block diagram of closed loop control system 

elements) by considering the output of the overall system as an input to this 

block. Instead of the direct input, the error signal is applied as an input to a 

controller. 

So, the controller produces an actuating signal which controls the plant. In this 

combination, the output of the control system is adjusted automatically till we 

get the desired response. Hence, the closed loop control systems are also called 

the automatic control systems. Traffic lights control system having sensor at the 

input is an example of a closed loop control system. 

 

 
❖ Practical Examples of Closed Loop Control System 

1. Automatic Electric Iron - Heating elements are controlled by output 

temperature of the iron. 

2. Servo Voltage Stabilizer - Voltage controller operates depending upon 

output voltage of the system. 

3. Water Level Controller - Input water is controlled by water level of the 

reservoir. 

4. Missile Launched and Auto Tracked by Radar - The direction of missile 

is controlled by comparing the target and position of the missile. 



5. An Air Conditioner - An air conditioner functions depending upon the 

temperature of the room. 

6. Cooling System in Car - It operates depending upon the temperature 

which it controls. 

 
 

❖ Advantages of Closed Loop Control System 

1. Closed loop control systems are more accurate even in the presence of non- 

linearity. 

2. Highly accurate as any error arising is corrected due to presence of 

feedback signal. 

3. Bandwidth range is large. 

4. Facilitates automation. 

5. The sensitivity of system may be made small to make system more stable. 

6. This system is less affected by noise. 

 

 
❖ Disadvantages of Closed Loop Control System 

1. They are costlier. 

2. They are complicated to design. 

3. Required more maintenance. 

4. Feedback leads to oscillatory response. 

5. Overall gain is reduced due to presence of feedback. 

6. Stability is the major problem and more care is needed to design a stable 

closed loop system. 



 Comparison of Closed Loop And Open Loop Control System 
 

 Feedback 

If either the output or some part of the output is returned to the input side and 

utilized as part of the system input, then it is known as feedback. Feedback plays 

an important role in order to improve the performance of the control systems. In 

this chapter, let us discuss the types of feedback & effects of feedback. 

Types of Feedback 

There are two types of feedback − 
 

• Positive feedback 

• Negative feedback 

Positive Feedback 

The positive feedback adds the reference input, R(s) and feedback output. The 

following figure shows the block diagram of positive feedback control system. 



 
 

The concept of transfer 

function   will   be 

discussed   in later 

chapters. For the time 

being, consider  the 

transfer  function    of 

positive     feedback 

control system is, 

T=G/(1−GH) (Equation 1) 

Where, 

 

 

 

 

 

 

 

 
 

Figure 1.3: Block diagram of positive feedback system 

 

• T is the transfer function or overall gain of positive feedback control 

system. 

• G is the open loop gain, which is function of frequency. 
 

• H is the gain of feedback path, which is function of frequency. 
 

Negative Feedback 

Negative feedback reduces the 

error between the reference 

input, R(s)R(s) and system 

output. The following figure 

shows the block diagram  of  the 

negative feedback control 

system. 

 

 
Figure 1.4: Block diagram of negative feedback system 

 

Transfer function of negative feedback control system is, 

T=G/(1+GH) (Equation 2) 



Effects of Feedback 

Let us now understand the effects of feedback. 
 

Effect of Feedback on Overall Gain 

• From Equation 2, we can say that the overall gain of negative feedback 

closed loop control system is the ratio of 'G' and (1+GH). So, the overall 

gain may increase or decrease depending on the value of (1+GH). 

• If the value of (1+GH) is less than 1, then the overall gain increases. In this 

case, 'GH' value is negative because the gain of the feedback path is 

negative. 

• If the value of (1+GH) is greater than 1, then the overall gain decreases. In 

this case, 'GH' value is positive because the gain of the feedback path is 

positive. 

In general, 'G' and 'H' are functions of frequency. So, the feedback will increase 

the overall gain of the system in one frequency range and decrease in the other 

frequency range. 

Effect of Feedback on Sensitivity 

Sensitivity of the overall gain of negative feedback closed loop control system 
T 

(T) to the variation in open loop gain (G) is defined as S 
T

 

 
 

=  T  (equation 3) 

G G 

G 
 

Where, ∂T is the incremental change in T due to incremental change in G. 
 

 
We can rewrite Equation 3 as ST  = 

T  G (equation 4) 

G 
G T 

 

Do partial differentiation with respect to G on both sides of Equation 2. 
 

 

From Equation 2, you will get 

 
G 

= 1 + GH 
T 

 

 
(equation 6) 



Substitute Equation 5 and Equation 6 in Equation 4. 
 

 

 

So, we got the sensitivity of the overall gain of closed loop control system as the 

reciprocal of (1+GH). So, Sensitivity may increase or decrease depending on the 

value of (1+GH). 

• If the value of (1+GH) is less than 1, then sensitivity increases. In this case, 

'GH' value is negative because the gain of feedback path is negative. 

• If the value of (1+GH) is greater than 1, then sensitivity decreases. In this 

case, 'GH' value is positive because the gain of feedback path is positive. 

In general, 'G' and 'H' are functions of frequency. So, feedback will increase the 

sensitivity of the system gain in one frequency range and decrease in the other 

frequency range. Therefore, we have to choose the values of 'GH' in such a way 

that the system is insensitive or less sensitive to parameter variations. 

Effect of Feedback on Stability 

• A system is said to be stable, if its output is under control. Otherwise, it is 

said to be unstable. 

• In Equation 2, if the denominator value is zero (i.e., GH = -1), then the 

output of the control system will be infinite. So, the control system 

becomes unstable. 

Therefore, we have to properly choose the feedback in order to make the control 

system stable. 

Effect of Feedback on Noise 

To know the effect of feedback on noise, let us compare the transfer function 

relations with and without feedback due to noise signal alone. 



Consider an open loop control system with noise signal as shown below. 
 

The open loop transfer function due to noise signal alone is 

C(s) 
= G

 

N (s) 
b

 (Equation 7) 

It is obtained by making the other input R(s)R(s) equal to zero. 

Consider a closed loop control system with noise signal as shown below. 
 

The closed loop transfer function due to noise signal alone is 
 

C(s) 
=

 
N (s) 

Gb 

1 + Ga Gb H 

 

(Equation 8) 

It is obtained by making the other input R(s) equal to zero. 

Compare Equation 7 and Equation 8, In the closed loop control system, the gain 

due to noise signal is decreased by a factor of (1+GaGbH) provided that the  term 

(1+GaGbH) is greater than one. 



Block diagrams consist of a single block or a combination of blocks. These are 

used to represent the control systems in pictorial form. 

Basic Elements of Block Diagram 

The basic elements of a block diagram are a block, the summing point and the 

take-off point. Let us consider the block diagram of a closed loop control system 

as shown in the following figure to identify these elements. 
 

The above block diagram consists of two blocks having transfer functions G(s) 

and H(s). It is also having one summing point and one take-off point. Arrows 

indicate the direction of the flow of signals. Let us now discuss these elements 

one by one. 

Block 

The transfer function of a component is represented by a block. Block has single 

input and single output. 

The following figure shows a block having input X(s), output Y(s) and the 

transfer function G(s). 
 

 

 
Transfer Function, 

G(s) = 
Y (s)

 
X (s) 

 
⇒Y(s) = G(s)X(s) 



Output of the block is obtained by multiplying transfer function of the block with 

input. 

Summing Point 

The summing point is represented with a circle having cross (X) inside it. It has 

two or more inputs and single output. It produces the algebraic sum of the inputs. 

It also performs the summation or subtraction or combination of summation and 

subtraction of the inputs based on the polarity of the inputs. Let us see these three 

operations one by one. 

The following figure shows the summing point 

with two inputs (A, B) and one output (Y). Here, 

the inputs A and B have a positive sign. So, the 

summing point produces the output, Y as sum of 

A and B. 

i.e.,Y = A + B. 

 

 
The following figure shows the summing point 

with two inputs (A, B) and one output (Y). Here, 

the inputs A and B are having opposite signs, i.e., 

A is having positive sign and B is having 

negative sign. So, the summing point produces 

the output Y as the difference of A and B. 

Y = A + (-B) = A - B. 

 

 
The following figure shows the summing point 

with three inputs (A, B, C) and one output (Y). 

Here, the inputs A and B are having positive 

signs and C is having a negative sign. So, the 

summing point produces the output Y as 

Y = A + B + (−C) = A + B − C. 



Take-off Point 

The take-off point is a point from which the same input signal can be passed 

through more than one branch. That means with the help of take-off point, we 

can apply the same input to one or more blocks, summing points. 

In the following figure, the take-off point is used to connect the same input, R(s) 

to two more blocks. 
 

In the following figure, the take-off point is used to connect the output C(s), as 

one of the inputs to the summing point. 
 

Disadvantages of Block Diagram Representation 

 No information about the physical construction 

 
 

 Source of energy is not shown 



Advantages of Block Diagram Representation 

 
 

 Very simple to construct block diagram for a complicated system 

 

 Function of individual element can be visualized 

 

 Individual & Overall performance can be studied 

 

 Over all transfer function can be calculated easily. 

Block diagram reduction technique 

Because of their simplicity and versatility, block diagrams are often used by 

control engineers to describe all types of systems. A block diagram can be used 

simply to represent the composition and interconnection of a system. Also, it can 

be used, together with transfer functions, to represent the cause-and-effect 

relationships throughout the system. Transfer Function is defined as the 

relationship between an input signal and an output signal to a device. 

Block diagram rules 
 



 



 
 
 

 

 

 
 



Procedure to solve Block Diagram Reduction Problems 

 
 

Step 1: Reduce the blocks connected in series 

Step2: Reduce the blocks connected in parallel 

Step 3: Reduce the minor feedback loops 

Step 4: Try to shift take off points towards right and Summing point towards left 

Step 5: Repeat steps 1 to 4 till simple form is obtained 

Step 6: Obtain the Transfer Function of Overall System 
 
 



Problem 1 

1. Obtain the Transfer function of the given block diagram 
 

 



 

2. Obtain the transfer function for the system shown in the fig 
 



 

3. Obtain the transfer function C/R for the block diagram shown in the fig 
 

Solution 

The take-off point is shifted after the block G2 
 

 
 



 
 

 

4. Obtain the transfer function C/R for the block diagram shown in the fig 

using the block diagram reduction rules. 



Step  1 −  Use  Rule  1  for  blocks G1  and G2.  Use  Rule   2   for   blocks 

G3 and G4. The modified block diagram is shown in the following figure. 

 
 
 
 
 
 
 
 

 
 
 
 

Step 2 − Use Rule 3 for blocks G1G2 and H1. Use Rule 4 for shifting take- 

off point after the block G5. The modified block diagram is shown in the 

following figure. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Step 3 − Use Rule 1 for blocks (G3+G4) and G5. The modified block 

diagram is shown in the following figure. 



 
 

Step 4 − Use Rule 3 for blocks (G3+G4)G5 and H3. The modified block 

diagram is shown in the following figure. 

 
 
 
 
 

 
 
 
 

Step 5 − Use Rule 1 for blocks connected in series. The modified block 

diagram is shown in the following figure. 
 



Step 6 − Use Rule 3 for blocks connected in feedback loop. The modified 

block diagram is shown in the following figure. This is the simplified block 

diagram. 
 

Therefore, the transfer function of the system is 
 

Y (s) G G G 
2 
(G  + G ) 

R(s) 
=  1    2    5 3 4  

(1 + G1G2 H1 )(1 + (G3 + G4 )G5 H3 )G5 − G1G2G5 (G3 + G4 )H 2 

 
 

 Block Diagram Representation of Electrical Systems 

In this section, let us represent an electrical system with a block diagram. 

Electrical systems contain mainly three basic elements — resistor, inductor 

and capacitor. 

Consider a series of RLC circuit as shown in the following figure. Where, Vi(t) 

and Vo(t) are the input and output voltages. Let i(t) be the current passing through 

the circuit. This circuit is in time domain. 
 

By applying the Laplace transform to this circuit, will get the circuit in s-domain. 

The circuit is as shown in the following figure. 



 
 

From the above circuit, we can write 
 

Let us now draw the block diagrams for these two equations individually. And 

then combine those block diagrams properly in order to get the overall block 

diagram of series of RLC Circuit (s-domain). 
 

Equation 1 can be implemented with a block having the transfer function, 
1 

 
 

R + SL 

.The input and output of this block are {Vi(s)−Vo(s)} and I(s). We require a 

summing point to get {Vi(s)−Vo(s)}. The block diagram of Equation 1 is shown 

in the following figure. 

 

 

 

 

 

 

 

 

 

Equation 2 can be implemented with a block having transfer function, 1sC1sC. 

The input and output of this block are I(s)I(s) and Vo(s)Vo(s). The block diagram 

of Equation 2 is shown in the following figure. 



 
 

The overall block diagram of the series of RLC Circuit (s-domain) is shown in 

the following figure. 
 

Similarly, you can draw the block diagram of any electrical circuit or system 

just by following this simple procedure. 

• Convert the time domain electrical circuit into an s-domain electrical 

circuit by applying Laplace transform. 

• Write down the equations for the current passing through all series branch 

elements and voltage across all shunt branches. 

• Draw the block diagrams for all the above equations individually. 
 

• Combine all these block diagrams properly in order to get the overall block 

diagram of the electrical circuit (s-domain). 

The block diagram reduction process takes more time for complicated systems. 

Because, we have to draw the (partially simplified) block diagram after each 

step. So, to overcome this drawback, use signal flow graphs (representation) i.e., 

how to represent signal flow graph from a given block diagram and calculation 

of transfer function just by using a gain formula without doing any reduction 

process. 



 SIGNAL FLOW GRAPHS 
 

For complex control systems, the block diagram reduction technique is 

cumbersome. An alternative method for determining the relationship 

between system variables has been developed by Mason and is based on 

a signal flow graph. A signal flow graph is a diagram that consists  of 

nodes that are connected by branches. A node is assigned to each 

variable of interest in the system, and branches are used to relate the 

different variables. The main advantage for using SFG is that a straight 

forward procedure is available for finding the transfer function in which 

it is not necessary to move pickoff point around or to redraw  the system 

several  times  as  with  block diagram manipulations. 

SFG is a diagram that represents a set of simultaneous linear algebraic 

equations which describe a system. Let us consider an equation, y = a x. 

It may be  represented graphically as, 

 

 

 

Definitions: 
 

Node: A node is a point representing a variable or signal. 

Branch: A branch is a directed line segment joining two nodes. 

Transmittance: It is the gain between two nodes. 

Input node: A node that has only outgoing branche(s). It is also, called as 

source and corresponds to independent variable. 

Output node: A node that has only incoming branches. This is also called as 

sink and corresponds to dependent variable. 

Path: A path is a traversal of connected branches in the direction of branch 

arrow. 

Loop: A loop is a closed path. 



Self loop: It is a feedback loop consisting of single branch. 
 

Loop gain: The loop gain is the product of branch transmittances of the loop. 
 

Nontouching loops: Loops that do not posses a common node. Forward path: A 

path from source to sink without traversing an node more than once. 

Feedback path: A path which originates and terminates at the same node. 

Forward path gain: Product of branch transmittances of a forward path. 

Properties of Signal Flow Graphs: 
 

1) Signal flow applies only to linear systems. 
 

2) The equations based on which a signal flow graph is drawn must be algebraic 

equations in the form of effects as a function of causes. Nodes are used to 

represent variables. Normally the nodes are arranged left to right, following a 

succession of causes and effects through the system. 

3) Signals travel along the branches only in the direction described by the arrows 

of the branches. 

4) The branch directing from node Xk to Xj represents dependence of the 

variable Xj on Xk but not the reverse. 

5) The signal traveling along the branch Xk and Xj is multiplied by branch gain 

akj and signal akjXk is delivered at node Xj. 

Guidelines to Construct the Signal Flow Graphs: The signal flow graph of a 

system is constructed from its describing equations, or by direct reference to 

block diagram of the system. Each variable of the block diagram becomes a node 

and each block becomes a branch. The general procedure is 

1) Arrange the input to output nodes from left to right. 
 

2) Connect the nodes by appropriate branches. 
 

3) If the desired output node has outgoing branches, add a dummy node and a 

unity gain branch. 

4) Rearrange the nodes and/or loops in the graph to achieve pictorial clarity. 



Algebra Addtion rule The value of the variable designated by a node is equal 

to the sum of all signals entering the node. 

Transmission rule The value of the variable designated by a node is transmitted 

on every branch leaving the node. 

Multiplication rule A cascaded connection of n-1 branches with transmission 

functions can be replaced by a single branch with new transmission function 

equal to the product of the old ones. 

Masons Gain Formula The relationship between an input variable and an 

output variable of a signal flow graph is given by the net gain between input and 

output nodes and is known as overall gain of the system. Masons gain formula 

is used to obtain the over all gain (transfer function) of signal flow graphs. 

Gain P is given by       

Where, Pk is gain of kth forward path, ∆ is determinant of graph 

∆=1-(sum of all individual loop gains)+(sum of gain products of all possible 

combinations of two nontouching loops – sum of gain products of all possible 

combination of three nontouching loops) + ∙∙∙ 

∆k is cofactor of kth forward path determinant of graph with loops touching kth 

forward path. It is obtained from ∆ by removing the loops touching the path Pk. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT-II 

 

MATHEMATICAL  MODELING  OF  PHYSICAL SYSTEMS 

 
In this chapter, let us discuss the differential equation modeling of mechanical systems. 

There are two types of mechanical systems based on the type of motion. 

 
• Translational mechanical systems 

• Rotational mechanical systems 

 
Modeling of Translational Mechanical Systems 

 

Translational mechanical systems move along a straight line. These systems 

mainly consist of three basic elements. Those are mass, spring and dashpot or 

damper. 

 

If a force is applied to a translational mechanical system, then it is opposed by 

opposing forces due to mass, elasticity and friction of the system. Since the applied 

force and the opposing forces are in opposite directions, the algebraic sum of the 

forces acting on the system is zero. Let us now see the force opposed by these three 

elements individually. 

 

MASS: 

Mass is the property of a body, which stores kinetic energy. If a force is applied on 

a body having mass M, then it is opposed by an opposing force due to mass. This 

opposing force is proportional to the acceleration of the body. Assume elasticity 

and friction are negligible. 
 

 

 
 

 
 

Fm∝a 

⇒Fm=Ma=Md2x/dt2
 

F=Fm=Md2x/dt2
 

Where, 

 
• F is the applied force 

• Fm is the opposing force due to mass 



• M is mass 

• a is acceleration 

• x is displacement 



SPRING 

Spring is an element, which stores potential energy. If a force is applied on spring K, then it 

is opposed by an opposing force due to elasticity of spring. This opposing force is 

proportional to the displacement of the spring. Assume mass and friction are negligible. 
 

F∝x 

⇒Fk=Kx F=Fk=Kx 

Where, 

 
• F is the applied force 

• Fk  is the opposing force due to elasticity of spring 

• K is spring constant 

• x is displacement 

 

DASHPOT 

If a force is applied on dashpot B, then it is opposed by an opposing force due to friction of 

the dashpot. This opposing force is proportional to the velocity of the body. Assume mass and 

elasticity are negligible 
 

 
 

 

Fb∝ν 



⇒Fb=Bν=Bdx/dt 

F=Fb=Bdx/dt 

 

Where, 

 
• Fb is the opposing force due to friction of dashpot 

• B is the frictional coefficient 

• v is velocity 

• x is displacement 

 

Modeling of Rotational Mechanical Systems 

 
• Rotational mechanical systems move about a fixed axis. These systems mainly consist of three basic 

elements. Those are moment of inertia, torsional spring and dashpot. 

• If a torque is applied to a rotational mechanical system, then it is opposed by opposing torques due to 

moment of inertia, elasticity and friction of the system. Since the applied torque and the opposing 

torques are in opposite directions, the algebraic sum of torques acting on the system is zero. Let us 

now see the torque opposed by these three elements individually. 

 
Moment of Inertia 
 

In translational mechanical system, mass stores kinetic energy. Similarly, in rotational 

mechanical system, moment of inertia stores kinetic energy. 

 

If a torque is applied on a body having moment of inertia J, then it is opposed by an opposing 

torque due to the moment of inertia. This opposing torque is proportional to angular 

acceleration of the body. Assume elasticity and friction are negligible. 
 

 

Tj∝α 

⇒Tj=Jα=Jd2θdt2 

T=Tj=Jd2θdt2 

Where, 

 
• T is the applied torque 



• Tj is the opposing torque due to moment of inertia 

• J is moment of inertia 

• α is angular acceleration 

• θ is angular displacement 

TORSIONAL SPRING 
 

In translational mechanical system, spring stores potential energy. Similarly, in rotational 

mechanical system, torsional spring stores potential energy. 

 

If a torque is applied on torsional spring K, then it is opposed by an opposing torque due to 

the elasticity of torsional spring. This opposing torque is proportional to the angular 

displacement of the torsional spring. Assume that the moment of inertia and friction are 

negligible. 
 

Tk∝θ 

⇒Tk=Kθ T=Tk=Kθ 

Where, 

 
• T is the applied torque 

• Tk is the opposing torque due to elasticity of torsional spring 

• K is the torsional spring constant 

• θ is angular displacement 

 

 

 

Dashpot 
 

If a torque is applied on dashpot B, then it is opposed by an opposing torque due to the 

rotational friction of the dashpot. This opposing torque is proportional to the angular 

velocity of the body. Assume the moment of inertia and elasticity are negligible. 



 

 

 Tb∝ω 

⇒Tb=Bω=Bdθdt 

T=Tb=Bdθdt 
 

Where, 

 
• Tb is the opposing torque due to the rotational friction of the dashpot 

• B is the rotational friction coefficient 

• ω is the angular velocity 

• θ is the angular displacement 

 

Two systems are said to be analogous to each other if the following two conditions are satisfied. 

 
• The two systems are physically different 

• Differential equation modelling of these two systems are same 

 

Electrical systems and mechanical systems are two physically different systems. There are two 

types of electrical analogies of translational mechanical systems. Those are force voltage 

analogy and force current analogy. 
 

Force Voltage Analogy 

In force voltage analogy, the mathematical equations of translational mechanical system 

are compared with mesh equations of the electrical system. 

 

Consider the following translational mechanical system as shown in the following figure. 



 

 

The force balanced equation for this system is 

 

F=Fm+Fb+Fk 

⇒F=M(d
2
x/dt

2 
)+B(dx/dt)+K*x (Equation 1) 

 

Consider the following electrical system as shown in the following figure. This circuit consists 

of a resistor, an inductor and a capacitor. All these electrical elements are connected in a 

series. The input voltage applied to this circuit is V volts and the current flowing through the 

circuit is i Amps. 
 

 

 

 

Mesh equation for this circuit is 

V=Ri+L didt+1c∫idt (Equation 2) 

Substitute, i=dq/dt in Equation 2. 

V=R (dq/dt)+L(d
2
q/dt

2
)+qC 



⇒V=L(d
2
q/dt

2
)+R(dq/dt)+(1c)q (Equation 3) 

By comparing Equation 1 and Equation 3, we will get the analogous quantities of 

the translational mechanical system and electrical system. The following table 

shows these analogous quantities. 
 

Translational Mechanical System Electrical System 

Force(F) Voltage(V) 

Mass(M) Inductance(L) 

Frictional Coefficient(B) Resistance(R) 

Spring Constant(K) Reciprocal of Capacitance (1/c) 

Displacement(x) Charge(q) 

Velocity(v) Current(i) 

Similarly, there is torque voltage analogy for rotational mechanical systems. Let us now 

discuss about this analogy. 
 

Torque Voltage Analogy 

 
In this analogy, the mathematical equations of rotational mechanical system are compared 

with mesh equations of the electrical system. 

Rotational mechanical system is shown in the following figure. 

 
 

The torque balanced equation is 

 

T=Tj+Tb+Tk 

⇒T=Jd
2
θ/dt

2
+Bdθ/dt+kθ (Equation 4) 

By comparing Equation 4 and Equation 3, we will get the analogous quantities of rotational 

mechanical system and electrical system. The following table shows these analogous 

quantities. 
 

Rotational Mechanical System Electrical System 

Torque(T) Voltage(V) 

Moment of Inertia(J) Inductance(L) 

Rotational friction coefficient(B) Resistance(R) 



Torsional spring constant(K) Reciprocal of Capacitance (1c) 

Angular Displacement(θ) Charge(q) 

Angular Velocity(ω) Current(i) 

 

Force Current Analogy 

In force current analogy, the mathematical equations of the translational mechanical system 

are compared with the nodal equations of the electrical system. 

 

Consider the following electrical system as shown in the following figure. This circuit consists 

of current source, resistor, inductor and capacitor. All these electrical elements are connected 

in parallel. 
 

 
The nodal equation is i=V*R+(1/L)∫Vdt+C*dV/dt

 (Equation 5) 

Substitute, V=dΨ/dt  in Equation 5. 

i=(1/R)(dΨ/dt)+(1/L)Ψ+C(d2Ψ/dt2) 

⇒i=C(d
2
Ψ/dt

2
)+(1/R)(dΨ/dt)+(1/L)Ψ   (Equation 6) 

 

By comparing Equation 1 and Equation 6, we will get the analogous quantities of 

the translational mechanical system and electrical system. The following table 

shows these analogous quantities. 
 

Translational Mechanical System Electrical System 

Force(F) Current(i) 

Mass(M) Capacitance(C) 

 

Frictional coefficient(B) Reciprocal of Resistance(1R) 

Spring constant(K) Reciprocal of Inductance(1L) 

Displacement(x) Magnetic Flux(ψ) 

Velocity(v) Voltage(V) 



 

 

Similarly, there is a torque current analogy for rotational mechanical systems. Let us now 

discuss this analogy. 
 

Torque Current Analogy 

 
In this analogy, the mathematical equations of the rotational mechanical system are 

compared with the nodal mesh equations of the electrical system. 

 

By comparing Equation 4 and Equation 6, we will get the analogous quantities of rotational 

mechanical system and electrical system. The following table shows these analogous 

quantities. 
 

Rotational Mechanical System Electrical System 

Torque(T) Current(i) 

Moment of inertia(J) Capacitance(C) 

 

Rotational friction coefficient(B) Reciprocal of Resistance(1R) 

Torsional spring constant(K) Reciprocal of Inductance(1L) 

Angular displacement(θ) Magnetic flux(ψ) 

 

Angular velocity(ω) 

 

Voltage(V) 

 

 
 Example: 

Find the transfer function X(s) / F(s) for the  system given below 

 

Solution: 

Step1: Free-body diagram of mass, spring, and damper system 

 



Applying Laplace transform 

 
 

 

 

 

 
 
 
 
 
 

2. Find the transfer function X(s)/F(s) 
 



Forces on M1 due only to motion of M 
 

Final force on mass1 
 

 

 

Forces on M2 

  

Total force on M2 
 



 

 

By solving above 2 equations 
 

 

3. Find the T.F. of simple mass-spring-damper mechanical system 
 

 
 

 To draw the mechanical network, the points xa, xband the reference are located. The complete mechanical 

network is drawn in fig. below. 

 
 
 

 



 
 

5. Obtain the analogous electrical network for the system shown in fig.5. (AU:Nov./Dec.-2007) 



 

 

 

 

The Mass M1 is under the displacement x1(t). 

The friction B1 is responsible to change the displacement from x1(t) to 

x2(t) The Mass M2 is under the displacement x2(t). 

The friction B2 and spring K1 are responsible to change the displacement from x2(t) 

to x3(t) 

The Mass M3 and spring K2 are under the influence of displacement 

x3(t). The equivalent Mechanical system is shown in fig.5.a. 

 
 
 

The equilibrium equations are  

F(t) = M1(d2x1(t)/ dt2)  +  B1d(x1(t)- x2(t))/dt ---------------------------------- 

-------------- 

 
(1) 



0= B1d(x2(t)- x1(t))/dt + M2(d2x2(t)/ dt2) + K1(x2(t)- x3(t)) + B2d(x2(t)- 

x3(t))/dt -------- 

 
(2) 

0= K1(x3(t)- x2(t))  + B2d(x3(t)- x2(t))/dt + M3(d2x3(t)/ dt2) + K3x3(t) --- 

------------------ 

 
(3) 

 

 
Using force- voltage analogy , 

 
 

Mass is replaced by inductance, friction or dashpot is replaced by resistance, spring is 

replaced by reciprocal of capacitance, displacement is replaced by charge. Rate of change of 

displacement is replaced by current, force is replaced by voltage. 
 

 

 

 
V(t) = L1di1(t)/dt + R1 (i1(t) – i2(t) ) ------------------ (4) 

 

 
0 = R1 (i2(t) – i1(t) ) + L2di2(t)/dt + 1/C1∫(i2(t) – i3(t))dt + R2 (i2(t) – i3(t) )------- (5) 

 

0 = 1/C1∫(i3(t) – i2(t)) dt + R2 (i3(t) – i2 +(t) ) + L3di3(t)/dt + 1/C2∫(i3(t)dt.------- (6) The analogous 

electrical network is shown in fig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6. Draw the equivalent mechanical system of the system shown in fig.. write the set of equilibrium equations for it 

and obtain electrical analogous circuits using i) F-V analogy ii)F-I analogy. 



2 2 

2 2 

 

 
As shown in fig.6. M1,K1,and B1 are under the displacement x1 as K1 and B1 are with respect to rigid support. K2 is 

between x1 and x2 as it is responsible for the change in displacement. While M2 

, K3 and B2 are under the displacement x2. Hence the equivalent mechanical system is as shown in fig 

 
 

The equilibrium equations are 

F(t) = M1(d x1(t)/ dt ) + B1dx1(t)/dt + K1x1(t) + K2(x1(t)- x2(t))  ------(1) 

 
 

0 = M2(d x2(t)/ dt ) + B2dx2(t)/ dt + K2(x2(t)- x1(t)) + K3x2(t)  ------(2) 

 
 

Using force- voltage analogy , 

 

 

Mass is replaced by inductance, friction or dashpot is replaced by resistance, spring is replaced by reciprocal 

of capacitance, displacement is replaced by charge. Rate of change of displacement is replaced by current, 

force is replaced by voltage. 

 
 

V(t) = L1di1(t)/dt + R1 i1(t) + 1/C1∫(i1(t) dt + 1/C2∫(i1(t) – i2(t)) dt ----------(3) 

 

0 = 
L2di2(t)/dt + R1  i2(t) +1/C2∫(i2(t) – i1(t))dt + 1/C3∫(i2(t) dt---4) 

The analogous system for force voltage analogy is shown in fig.6.c. 



 

Using force- current analogy , 

 

 

Mass is replaced by capacitance, friction or dashpot is replaced by reciprocal of 

resistance, spring is replaced by reciprocal of inductance, displacement is replaced by 

flux. Rate of change of displacement is replaced by voltage, force is replaced by current. 

The analogous system for force current analogy is shown in fig 
 

 

I(t) = C1dV1(t)/dt + 1/R1 V1(t) + 1/L1∫(V1(t) dt + 1/L2∫(V1(t) – V2(t)) dt.. (5) 

 
0 = C2dV2(t)/dt + 1/R2 V2(t)+1/L2∫(V2(t) – V1(t))dt + 1/L3∫(V2(t) dt------6) 



Armature Controlled DC Motor Transfer Functions 
 

 

 

 

 



 
 

 

 

 

 
 
 
 
 
 
 



Field Controlled DC Motor 

 



 
 

 



Servo Motor 
 
A servo motor is one of the widely used variable speed drives in industrial 

production and process automation and building technology worldwide. A servo 

motor is a linear or rotary actuator that provides fast precision position control for 

closed-loop position control applications. Unlike large industrial motors, a servo 

motor is not used for continuous energy conversion. 

 
Types of Servo Motors 
 

asically, servo motors are classified into AC and DC servo motors depending upon 

the nature of supply used for its operation. Brushed permanent magnet DC servo 

motors are used for simple applications owing to their cost, efficiency and 

simplicity. 

 

These are best suited for smaller applications. With the advancement of 

microprocessor and power transistor, AC servo motors are used more often due to 

their high accuracy control 

 
DC Servo Motors 
 

A DC servo motor is an assembly of four major components, namely a DC motor, a 

position sensing device, a gear assembly, and a control circuit. The below figure 

shows the parts that consisting in RC servo motors in which small DC motor is 

employed for driving the loads at precise speed and position. A DC reference voltage 

is set to the value corresponding to the desired output. This voltage can be applied 

by using another potentiometer, control pulse width  to voltage converter, or through 

timers depending on the control circuitry. 

 

The dial on the potentiometer produces a corresponding voltage which is then 

applied as one of the inputs to error amplifier. 

 

In some circuits, a control pulse is used to produce DC reference voltage 

corresponding to desired position or speed of the motor and it is applied to a pulse 

width to voltage converter. 

 

In this converter, the capacitor starts charging at a constant rate when the pulse high. 

Then the charge on the capacitor is fed to the buffer amplifier when the pulse is low 

and this charge is further applied to the error amplifier. 

 

So the length of the pulse decides the voltage applied at the error amplifier as a 

desired voltage to produce the desired speed or position. 

 



In digital control, microprocessor or microcontroller are used for generating the 

PWM pluses in terms of duty cycles to produce more accurate control signals. 

 
 

The feedback signal corresponding to the present position of the load is obtained by 

using a position sensor. This sensor is normally a potentiometer that produces the 

voltage corresponding to the absolute angle of the motor shaft through gear 

mechanism. Then the feedback voltage value is applied at the input of error amplifier 

(comparator). 

 

The error amplifier is a negative feedback amplifier and it reduces the difference 

between its inputs. It compares the voltage related to current position of the motor 

(obtained by potentiometer) with desired voltage related to desired position of the 

motor (obtained by pulse width to voltage converter), and produces the error either 

a positive or negative voltage. 

 

This error voltage is applied to the armature of the motor. If the error is more, the 

more output is applied to the motor armature. 

 

As long as error exists, the amplifier amplifies the error voltage and correspondingly 

powers the armature. The motor rotates till the error becomes zero. If the error is 

negative, the armature voltage reverses and hence the armature rotates in the 

opposite direction. 

 
AC Servo Motors 
 

AC servo motors are basically two-phase squirrel cage induction motors and are 

used for low power applications. Nowadays, three phase squirrel cage induction 

motors have been modified such that they can be used in high power servo systems. 

 

The main difference between a standard split-phase induction motor and AC motor 

is that the squirrel cage rotor of a servo motor has made with thinner conducting 

bars, so that the motor resistance is higher. 



 
Working Principle of AC Servo Motor 

 

The schematic diagram of servo system for AC two-phase induction motor is shown 

in the figure below. In this, the reference input at which the motor shaft has to 

maintain at a certain position is given to the rotor of synchro generator as mechanical 

input theta. This rotor is connected to the electrical input at rated voltage at a fixed 

frequency. 
 

 

he three stator terminals of a synchro generator are connected correspondingly to the 

terminals of control transformer. The angular position of the two-phase motor is 

transmitted to the rotor of control transformer through gear train arrangement and it 

represents the control condition alpha. 

 

Initially, there exist a difference between the synchro generator shaft position and 

control transformer shaft position. This error is reflected as the voltage across the 

control transformer. This error voltage is applied to the servo amplifier and then to 

the control phase of the motor. 

 

With the control voltage, the rotor of the motor rotates in required direction till the 

error becomes zero. This is how the desired shaft position is ensured in AC servo 

motors. 

 

Alternatively, modern AC servo drives are embedded controllers like PLCs, 



microprocessors and microcontrollers to achieve variable frequency and variable 

voltage in order to drive the motor. 

SYNCHRO :- 
 

INTRODUCTION 

 
The term synchro is a generic name for a family of inductive devices which works on the 

principle of a rotating transformer (Induction motor). The trade names for synchronous 

are Selsyn, Autosyn and Telesyn. Basically they are electro mechanical devices or 

electromagnetic transducer which produces an output voltage depending  upon angular 

position of the rotor. 
 

A Synchro system is formed by interconnection of the devices called the Synchro 

Transmitter and the synchro control transformer. They are also  called  as  synchro pair. 

The synchro pair measures and compares two angular displacements  and  its  output 

voltage is approximately linear with angular difference of the axis of both the shafts. They 

can be used in the following two  ways. 

 
i. To control the angular position of load from a remote place / long   distance. 

 

ii. For automatic correction of changes due to disturbance in the angular position of the 

load. 

 
SYNCHRO TRANSMITTER 

The constructional features, electrical circuit and a schematic symbol of Synchro Transmitter 
are shown in figure-2. The two major parts of Synchro Transmitters are stator and rotor.The 
stators identical to the stator of three phase alternator. It is made     of laminated silicon steel 
and slotted on the inner periphery to accommodate a balance three phase winding. The stator 
winding is concentric type with the axis of the three   coil 120° apart. The stator winding is star 
connected(Y -  connection). 
 

The rotor is of dumb bell construction with a single winding. The ends of the rotor winding 

are terminated on two slip rings. A single phase AC excitation voltage is  applied to the 

rotor through the slip  rings. 

 
Working Principles 

 
When the rotor is excited by AC voltage, the rotor current flows, and a magnetic  field   is 

produced. The rotor magnetic field induces an emf in the stator coil by transformer action. 

The effective voltage induced in any stator coil depends upon the  angular position of the 

coils axis with respect to rotor  axis. 

 
Constructional Features of Synchro  Transmitter 
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Fig: Constructional Features of Synchro  Transmitter 

 
 

Let er =  Instantaneous value of AC voltage applied to  rotor. 
 

e ,e ,es1s2 s3 =  Instantaneous value of emf induced in  stator coils S  ,S  ,  S  with  

respect to12 3 neutral respectively. 

Er  =  Maximum value of rotor excitation voltage.  

T = Angular frequency of rotor excitation voltage. 

Kt     = Turns ratio of stator and rotor winding. 

Kc     = Coupling coefficient. 
 

2  = Angular displacement of rotor with respect to  reference. 
 

The instantaneous value of excitation voltage, e = Er sinrTt ----  (1) 
 

Let the rotor rotates in antic lock wise direction. When the rotor rotates by an angle, 

2 emfs are induced in stator coils. The frequency of induced emfs is same as that of rotor 

frequency. The magnitude of induced emfs is proportional to the turn’s ratio   and coupling 

coefficient. The turns ratio , K is a constant, but a coupling coefficient, K is a function of 

rotor angular position. tc 

Induced emf in stator coil = K K E since rTt------ (2   ) 

 
SYNCHRO TRANSMITTER / RECEIVER 

Let e be reference vector. With reference to figure 2, when 2 = 0,  the  flux  linkage of coil 
s i Zero. Hence the flux linkage of coil S is function of cos22 (K = K )  Cos c1 2 for coil S ). The 
flux2 linkage of coil S will be maximum after a rotation of 120°in anti-clock wise direction and 
that3 of S after a rotation of  240°.1 
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Coupling coefficient, K for coil – S1 

Coupling coefficient, K for coil – S2 

Coupling coefficient, K for coil –  S3 

 
 

Fig:Induced emf in stator coils 
 

When 2 = 0, from equation 3 we can say that maximum emf is induced in coil S. But from2 

equation 8, it is observed that the coil - to coil voltage ES3S1 is zero. This  position of the 

rotor is defined as the electrical zero of the   transmitter 



 
 

 

angular position of its rotor shaft and the output is a set of three stator coil-to-coil voltages. 

By measuring and identifying the set of voltages at the stator terminals, it is possible to 

identify the angular position of the rotor. [A device called synchro / digital converter is 

available to measure the stator voltages and to calculate the  angular  measure and then 

display the direction and angle of rotation of the  rotor]. 



SYNCHRO CONTROL TRANSFORMER 

 
Construction 

 

 

Fig:Constructional Features 
 

The  constructional  features  of synchro   control   transformer are  similar  to   that   of 

Synchro Transmitter, except the shape of rotor. The rotor of the  control  transformer is 

made cylindrical so that the air gap is practically uniform. This feature    of the control 

transformer minimizes the changes in the rotor impedance with  the rotation of the shaft. 

The constructional features, electrical circuit and a schematic symbol of control 

transformer are shown in figure  4. 
 

Fig:Schematic Symbol of synchro control transformer 
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Fig: Electrical Circuit of synchro control transformer 

 
Working 

The generated emf of the Synchro Transmitter is applied as input to the stator coils     of 
control transformer. The rotor shaft  is connected to  the load whose position has to   be 
maintained at the desired value. Depending on the current position of the rotor and  the 
applied emf on the stator, an emf is induced on the rotor winding. This emf can be 
measured and used to drive a motor so that the position of the load is   corrected. 
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UNIT-III 

 

3.1 Time-domain Analysis of Control Systems 

In time-domain analysis the response of a dynamic system to an input is expressed as a function 

of time. It is possible to compute the time response of a system if the nature of input and the 

mathematical model of the system are known. 

Usually, the input signals to control systems are not known fully ahead of time. In a radar 

tracking system, the position and the speed of the target to be tracked may vary in a random 

fashion. It is therefore difficult to express the actual input signals mathematically by simple 

equations. The characteristics of actual input signals are a sudden shock, a sudden change, a 

constant velocity, and constant acceleration. The dynamic behavior of a system is therefore 

judged and compared under application of standard test signals – an impulse, a step, a constant 

velocity, and constant acceleration. Another standard signal of great importance is a sinusoidal 

signal. 

The time response of any system has two components: transient response and the steady-state 

response. Transient response is dependent upon the system poles only and not on the type of 

input. It is therefore sufficient to analyze the transient response using a step input. The steady-

state response depends on system dynamics and the input quantity. It is then examined using 

different test signals by final value theorem. 

Standard test signals 

a) Step signal:    ( ) ( ).r t Au t=

  

b) Ramp signal:    ( ) ;   0.r t At t= 

  

c) Parabolic signal:
2( ) / 2;   0.r t At t=   

d) Impulse signal:   ( ) ( ).r t t=  

Time-response of first-order systems 

Let us consider the armature-controlled dc motor driving a load, such as a video tape. The 

objective is to drive the tape at constant speed. Note that it is an open-loop system.  

 

1( )
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m
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k kW s
G s

R s s
= =

+
; If ( ) ( )r t au t= , 1 1 1( )

1 1/

m m m
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=  = −
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−
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→

 = =  

( )ssw t is the steady-state final speed. If the desired speed is rw , choosing 
1

r

m

w
a

k k
= the motor 

will eventually reach the desired speed.  

We are interested not only in final speed, but also in the speed of response. Here, m is the time 

constant of motor which is responsible for the speed of response. 

The time response is plotted in the Figure in next page. A plot of 
/ mt

e
−

is shown, from where it 

is seen that, for 5 mt  the value of 
/ mt

e
−

is less than 1% of its original value. Therefore, the 



speed of the motor will reach and stay within 1% of its final speed at 5 time constants.  

 
Figure: Time responses 

 

 

 

 

 

 

 

 

 

Let us now consider the closed-loop system shown below. 

 

Here, 
1 1 1

1 2 1 2
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where, 
1 21

m
o

m

k
k

k k k
=

+
and 

1 21

m
o

mk k k


 =

+
. 

If ( )r t a= , the response would be, 
/

1 1( ) ot

o ow t ak k ak k e
−

= − . 

If a is properly chosen, the tape can reach a desired speed. It will reach the desired speed in 5

o seconds. Here, o m  . Thus, we can control the speed of response in feedback system. 

Although the time-constant is reduced by a factor 1 2(1 )mk k k+ , in the feedback system, the motor 

gain constant is also reduced by the same factor. In order to compensate for this loss of gain, 



the applied reference voltage must be increased by the same factor. 

 

Ramp response of first-order system 

Let, 1 0 1k k =  for simplicity. Then, 

1 ( )
( )

1 ( )o

W s
T s

s R s
= =

+
. Also, let, ( ) ( )r t tu t= . 

Then, 

2
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The error signal is, ( ) ( ) ( )e t r t w t= −  

Or, 
/

( ) (1 ) ( )ot

oe t e u t
 −

= −  

( )ss oe t  =  

Thus, the first-order system will track the unit ramp input with a steady-state error o , which is 

equal to the time-constant of the system. 

Time-response of second-order systems 

 

Consider the antenna position control system. Its transfer function from r to y is, 
2

1 2 1 2

2 2 2
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where, we define, 
2

1 2 /n m mk k k = and 
1

2 n

m




= . The constant  is called the damping 

ratio and n is called the natural frequency. The system above is in fact a standard second order 

system. 

The transfer function ( )T s has two poles and no zero. Its poles are,  

  2

1 2, 1n n ds s j j    = −  − = −  . 

Here,  is called the damping factor, d is called damped or actual frequency.  

The location of poles for different  are plotted in Figure below. For 0 = , the two poles nj  

are purely imaginary. If 0 1  , the two poles are complex conjugate. All possible cases are 

described in a table shown below. 

  

 

 

 

 

Unit step response of second-order systems 

Suppose, ( ) ( ),r t u t=
1
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Or, 
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Performing inverse Laplace transform,  

       2 2

2
( ) 1 cos( 1 ) sin( 1 )

1

n nt t

n ny t e t e t
  
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−
 

Natural frequency, n 

The natural frequency of a second order system is the frequency of oscillation of the system without 

damping.  

 

Damping ratio,  

The damping ratio is defined as the ratio of the damping factor,   to the natural frequency n .        

Suppose,  
2
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Comparing with standard equation, 2 na = and 
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or, 
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,where, 21d n  = − and
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d
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

−= − +  ……………………………………………………….(01)  

The plot of sin( )t

de t  − + is shown in Figure.  

The steady-state response is,  

     ( ) lim ( ) 1ss
t

y t y t
→

= =  

Thus, the system has zero steady-state error.  

The pole of ( )T s dictates the response,   

     sin( )t

de t  − + . 

 

The response ( )y t for different  is shown in Figure below. 

 

3.2 Time response specifications 

Control systems are generally designed with damping less than one, i.e., oscillatory step 

response. Higher order control systems usually have a pair of complex conjugate poles with 

damping less than unity that dominate over the other poles. Therefore the time response of 

second- and higher-order control systems to a step input is generally of damped oscillatory 

nature as shown in Figure next (next page).  

In specifying the transient-response characteristics of a control system to a unit step input, we 

usually specify the following: 



1. Delay time, dt  

2. Rise time, rt  

3. Peak time, pt  

4. Peak overshoot, pM  

5. Settling time, st   

6. Steady-state error, sse  

 

 
1.  Delay time, dt : It is the time required for the response to reach 50% of the final value in first 

attempt. 

2.  Rise time, rt : It is the time required for the response to rise from 0 to 100% of the final value 

for the underdamped system.  

3.  Peak time, pt : It is the time required for the response to reach the peak of time response or 

the peak overshoot. 

4.  Settling time, st : It is the time required for the response to reach and stay within a specified 

tolerance band ( 2% or 5%) of its final value. 

5.  Peak overshoot, pM : It is the normalized difference between the time response peak and 

the steady output and is defined as,  

( ) ( )
% 100%

( )

p

p

c t c
M

c

− 
= 


 

6.  Steady-state error, sse : It indicates the error between the actual output and desired output as 

‘t’ tends to infinity.  

      lim[ ( ) ( )]ss
t

e r t c t
→

= − . 

 

Let us now obtain the expressions for the rise time, peak time, peak overshoot, and settling time 

for the second order system.   

1.  Rise time, rt : Put ( ) 1y t =  at rt t= , sin( ) 0 sind rt   + = = , r

d

t
 



−
 = ;

1cos −= . 

2.  Peak time, pt : Put 0
dy

dt
= and solve for pt t= ; 0 sin( ) cos( )t tn

d n d
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e t e t 
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

− −= + − +



. 
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Peak overshoot occurs at k = 1. 2/ / 1p d nt      = = − . 

3. Settling time, st : For 2% tolerance band, 0.02stn

d

e




−
= , 

4
4st T


  = . 

4.  Steady-state error, sse : It is found previously that steady-state error for step input is zero. 

Let us now consider ramp input, ( ) ( )r t tu t= .    

Then, 
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Therefore, the steady-state error due to ramp input is
2

n




. 

Steady-state error and error constants 

The steady-state performance of a stable control system is generally judged by its steady-state 

error to step, ramp and parabolic inputs. For a unity feedback system,  
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It is seen that steady-state error depends upon the input ( )R s and the forward transfer function

( )G s . The steady-state errors for different inputs are derived as follows: 

1. For unit-step input: 
1

( ) ( ), ( )r t u t R s
s

= =  

 
0 0

1 1 1
lim ( ) lim

1 ( ) 1 (0) 1
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s s
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e sE s
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; pk is called position error constant. 

2. For unit-ramp input: 
2
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; vk is called velocity error constant. 

3. For unit-parabolic input: 2

3

1
( ) / 2, ( )r t t R s

s
= =  
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lim ( ) lim lim

1 ( ) ( )
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s s s
a
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; ak  is called acceleration error 

const. 

3.3 Types of Feedback Control System 

The open-loop transfer function of a system can be written as,  

 1 2 3 1 2 3

1 2 3 1 2 3
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If n = 0, the system is called type-0 system, if n = 1, the system is called type-1 system, if n = 

2, the system is called type-2 system, etc. Steady-state errors for various inputs and system types 

are tabulated below. 



 
The error constants for non-unity feedback systems may be obtained by replacing G(s) by 

G(s)H(s). Systems of type higher than 2 are not employed due to two reasons: 

1. The system is difficult to stabilize. 

2. The dynamic errors for such systems tend to be larger than those  

       types-0, -1 and -2. 

 

Effect of Adding a Zero to a System 

Let a zero at s = -z be added to a second order system. Then we have, 

  
2 2 2

2 2 2 2 2 2
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.   

The multiplication term is adjusted to make the steady-state gain of the system unity. This gives   

css = 1 when the input is unit step. Let cz(t) be the response of the system given by the above 

equation and c(t) is the response without adding the pole. Manipulation of the above equation 

gives, 

  
1

( ) ( ) ( ).z

d
c t c t c t

z dt
= +      

 The effect of added derivative term is to produce a pronounced early peak to the system 

response which will be clear from the figure in the next page. Closer the zero to origin, the more 

pronounce the peaking phenomenon. Due to this fact, the zeros on the real axis near the origin 

are generally avoided in design. However, in a sluggish system the artful introduction of a zero 

at the proper position can improve the transient response. We can see from equation (03) that 

as z increases, i.e., the zero moves further into the left half of the s-plane, its effect becomes less 

pronounced.   

 
 

 

Design Specifications of Second-order Systems 



 A control system is generally required to meet three time 

response specifications: steady-state accuracy, damping factor  

(or peak overshoot, Mp) and settling time ts. Steady-state accuracy 

requirement is met by suitable choice of Kp, Kv, or Ka depending 

on the type of the system. For most control systems  in the range 

of 0.7 – 0.28 (or peak overshoot of 5 – 40%) is considered 

acceptable. For this range of , the closed-loop pole locations are 

restricted to the shaded region of the s-plane as shown in Figure. 

For the antenna position control system, 1 2 /n m mk k k = ;

1

2 n m


 

= ;
ramp

2
ss

n

e



= ;

4
s

n

t


= . Here, 2k is only the adjustable parameter. If we increase 2k

, n will increase and thus settling time will decrease. At the same time,  will decrease, this 

indicates the increase in peak overshoot. Thus by merely increasing gain, we cannot improve 

both transient and steady-state error specifications. We need to add additional components to 

the system. These are called compensators. It will allow improvement of both transient and 

steady-state specifications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-IV 

 

 Routh Hurwitz Stability Criterion 

After reading the theory of network synthesis, we can easily say that any pole of the system lies 

on the right hand side of the origin of the s plane, it makes the system unstable. On the basis of 

this condition A. Hurwitz and E.J.Routh started investigating the necessary and sufficient 

conditions of stability of a system. We will discuss two criteria for stability of the system. A 

first criterion is given by A. Hurwitz and this criterion is also known as Hurwitz Criterion for 

stability or Routh Hurwitz Stability Criterion. 

Hurwitz Criterion 

With the help of characteristic equation, we will make a number of Hurwitz determinants in 

order to find out the stability of the system. We define characteristic equation of the system as

 

Now there are n determinants for nth order characteristic equation. 

Let us see how we can write determinants from the coefficients of the characteristic equation. 

The step by step procedure for kth order characteristic equation is written below: 

Determinant one : The value of this determinant is given by |a1| where a1 is the coefficient of  

sn-1 in the characteristic equation. 

 

Determinant two : The value of this determinant is given by Here number of elements 

in each row is equal to determinant number and we have determinant number here is two. The 

first row consists of first two odd coefficients and second row consists of first two even 

coefficients. 

Determinant three : The value of this determinant is given by Here number of 

elements in each row is equal to determinant number and we have determinant number here is 

three. The first row consists of first three odd coefficients, second row consists of first three 

even coefficients and third row consists of first element as zero and rest of two elements as first 

two odd coefficients. 

Determinant four: The value of this determinant is given by, Here number 

of elements in each row is equal to determinant number and we have determinant number here 

is four. The first row consists of first three four coefficients, second row consists of first four 

even coefficients, third row consists of first element as zero and rest of three elements as first 

three odd coefficients the fourth row consists of first element as zero and rest of three elements 

as first three even coefficients. 

By following the same procedure we can generalize the determinant formation. The general 
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form of determinant is given below: Now in order to 

check the stability of the above system, calculate the value of each determinant. The system will 

be stable if and only if the value of each determinant is greater than zero, i.e. the value of each 

determinant should be positive. In all the other cases the system will not be stable. 

Routh Stability Criterion 

This criterion is also known as modified Hurwitz Criterion of stability of the system. We will 

study this criterion in two parts. Part one will cover necessary condition for stability of the 

system and part two will cover the sufficient condition for the stability of the system. Let us 

again consider the characteristic equation of the system as

1) Part one (necessary condition 

for stability of the system): In this we have two conditions which are written below: 

1. All the coefficients of the characteristic equation should be positive and real. 

2. All the coefficients of the characteristic equation should be non zero. 

2) Part two (sufficient condition for stability of the system): Let us first construct routh array. 

In order to construct the routh array follow these steps: 

• The first row will consist of all the even terms of the characteristic equation. Arrange them 

from first (even term) to last (even term). The first row is written below: a0 a2 a4a6............ 

• The second row will consist of all the odd terms of the characteristic equation. Arrange them 

from first (odd term) to last (odd term). The first row is written below: a1 a3 a5a7........... 

• The elements of third row can be calculated as: 

(1) First element : Multiply a0 with the diagonally opposite element of next column (i.e. a3) 

then subtract this from the product of a1 and a2 (where a2 is diagonally opposite element of 

next column) and then finally divide the result so obtain with a1. Mathematically we write 

as first element 

 

(2) Second element : Multiply a0 with the diagonally opposite element of next to next column 

(i.e. a5) then subtract this from the product of a1 and a4 (where, a4 is diagonally opposite element 

of next to next column) and then finally divide the result so obtain with a1. Mathematically we 

write as second element Similarly, we can calculate all the elements of the 

third row. 

(d) The elements of fourth row can be calculated by using the following procedure: 

(1) First element : Multiply b1 with the diagonally opposite element of next column (i.e. a3) then 

subtract this from the product of a1 and b2 (where, b2 is diagonally opposite element of next 

column) and then finally divide the result so obtain with b1. Mathematically we write as first 

element  

(2) Second element : Multiply b1 with the diagonally opposite element of next to next column 



(i.e. a5) then subtract this from the product of a1 and b3 (where, b3 is diagonally opposite element 

of next to next column) and then finally divide the result so obtain with a1. Mathematically we 

write as second element Similarly, we can calculate all the elements of the 

fourth row. 

Similarly, we can calculate all the elements of all the rows. 

Stability criteria if all the elements of the first column are positive then the system will be stable. 

However if anyone of them is negative the system will be unstable. 

Now there are some special cases related to Routh Stability Criteria which are discussed below: 

(1)Caseone: 

If the first term in any row of the array is zero while the rest of the row has at least one non zero 

term.  

In this case we will assume a very small value (ε) which is tending to zero in place of zero. By 

replacing zero with (ε) we will calculate all the elements of the Routh array. After calculating 

all the elements we will apply the limit at each element containing (ε). On solving the limit at 

every element if we will get positive limiting value then we will say the given system is stable 

otherwise in all the other condition we will say the given system is not stable.  

(2)Casesecond: 

When all the elements of any row of the Routh array are zero. In this case we can say the system 

has the symptoms of marginal stability. Let us first understand the physical meaning of having 

all the elements zero of any row. The physical meaning is that there are symmetrically located 

roots of the characteristic equation in the s plane. Now in order to find out the stability in this 

case we will first find out auxiliary equation. Auxiliary equation can be formed by using the 

elements of the row just above the row of zeros in the Routh array. After finding the auxiliary 

equation we will differentiate the auxiliary equation to obtain elements of the zero row. If there 

is no sign change in the new routh array formed by using auxiliary equation, then in this we say 

the given system is limited stable. While in all the other cases we will say the given system is 

unstable.  

 

3.5 Root Locus Technique in Control System | Root Locus Plot 

The root locus technique in control system was first introduced in the year 1948 by Evans. 

Any physical system is represented by a transfer function in the form of

 
We can find poles and zeros from G(s). The location of poles and zeros are crucial keeping view 

stability, relative stability, transient response and error analysis. When the system put to service 

stray inductance and capacitance get into the system, thus changes the location of poles and 

zeros. In root locus technique in control system we will evaluate the position of the roots, 

their locus of movement and associated information. These information will be used to comment 

upon the system performance. 

Now before I introduce what is a root locus technique, it is very essential here to discuss a few 

of the advantages of this technique over other stability criteria. Some of the advantages of root 

locus technique are written below. 

Advantages of Root Locus Technique 

1. Root locus technique in control system is easy to implement as compared to other methods. 

2. With the help of root locus we can easily predict the performance of the whole system. 

3. Root locus provides the better way to indicate the parameters. 

Now there are various terms related to root locus technique that we will use frequently in this 

article. 
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1. Characteristic Equation Related to Root Locus Technique : 1 + G(s)H(s) = 0 is known as 

characteristic equation. Now on differentiating the characteristic equation and on equating 

dk/ds equals to zero, we can get break away points. 

2. Break away Points : Suppose two root loci which start from pole and moves in opposite 

direction collide with each other such that after collision they start moving in different 

directions in the symmetrical way. Or the break away points at which multiple roots of the 

characteristic equation 1 + G(s)H(s)= 0 occur. The value of K is maximum at the points 

where the branches of root loci break away. Break away points may be real, imaginary or 

complex. 

3. Break in Point : Condition of break in to be there on the plot is written below : Root locus 

must be present between two adjacent zeros on the real axis. 

4. Centre of Gravity : It is also known centroid and is defined as the point on the plot from 

where all the asymptotes start. Mathematically, it is calculated by the difference of 

summation of poles and zeros in the transfer function when divided by the difference of total 

number of poles and total number of zeros. Centre of gravity is always real and it is denoted 

by σA 

.

Where, N is number of poles and M is number of zeros. 

5. Asymptotes of Root Loci : Asymptote originates from the center of gravity or centroid and 

goes to infinity at definite some angle. Asymptotes provide direction to the root locus when 

they depart break away points. 

6. Angle of Asymptotes : Asymptotes makes some angle with the real axis and this angle can 

be calculated from the given formula, 

 
Where, p = 0, 1, 2 ....... (N-M-1) 

N is the total number of poles 

M is the total number of zeros. 

7. Angle of Arrival or Departure : We calculate angle of departure when there exists complex 

poles in the system. Angle of departure can be calculated as 180-{(sum of angles to a 

complex pole from the other poles)-(sum of angle to a complex pole from the zeros)}. 

8. Intersection of Root Locus with the Imaginary Axis : In order to find out the point of 

intersection root locus with imaginary axis, we have to use Routh Hurwitz criterion. First, 

we find the auxiliary equation then the corresponding value of K will give the value of the 

point of intersection. 

9. Gain Margin : We define gain margin as a by which the design value of the gain factor can 

be multiplied before the system becomes unstable. Mathematically it is given by the formula

 
10. Phase Margin : Phase margin can be calculated from the given formula:

 
11. Symmetry of Root Locus : Root locus is symmetric about the x axis or the real axis. 

How to determine the value of K at any point on the root loci? Now there are two ways of 

determining the value of K, each way is described below. 



1. Magnitude Criteria : At any points on the root locus we can apply magnitude criteria as,

Using this formula we can calculate the value of K at any desired 

point. 

2. Using Root Locus Plot : The value of K at any s on the root locus is given by

 

3.6 Root Locus Plot 

This is also known as root locus technique in control system and is used for determining the 

stability of the given system. Now in order to determine the stability of the system using the 

root locus technique we find the range of values of K for which the complete performance of 

the system will be satisfactory and the operation is stable. 

Now there are some results that one should remember in order to plot the root locus. These 

results are written below: 

1. Region where root locus exists : After plotting all the poles and zeros on the plane, we can 

easily find out the region of existence of the root locus by using one simple rule which is 

written below, 

Only that segment will be considered in making root locus if the total number of poles and 

zeros at the right hand side of the segment is odd. 

2. How to calculate the number of separate root loci ? : A number of separate root loci are equal 

to the total number of roots if number of roots are greater than the number of poles otherwise 

number of separate root loci is equal to the total number of poles if number of roots are 

greater than the number of zeros. 

Procedure to Plot Root Locus 

Keeping all these points in mind we are able to draw the root locus plot for any kind of system. 

Now let us discuss the procedure of making a root locus. 

1. Find out all the roots and poles from the open loop transfer function and then plot them on 

the complex plane. 

2. All the root loci starts from the poles where k = 0 and terminates at the zeros where K tends 

to infinity. The number of branches terminating at infinity equals to the difference between 

the number of poles & number of zeros of G(s)H(s). 

3. Find the region of existence of the root loci from the method described above after finding 

the values of M and N. 

4. Calculate break away points and break in points if any. 

5. Plot the asymptotes and centroid point on the complex plane for the root loci by calculating 

the slope of the asymptotes. 

6. Now calculate angle of departure and the intersection of root loci with imaginary axis. 

7. Now determine the value of K by using any one method that I have described above. 

By following above procedure you can easily draw the root locus plot for any open loop 

transfer function. 

8. Calculate the gain margin. 

9. Calculate the phase margin. 

10. You can easily comment on the stability of the system by using Routh array. 

 

Types of Controllers | Proportional Integral and Derivative Controllers 

Before I introduce you about various controllers in detail, it is very essential to know the uses 

of controllers in the theory of control systems. The important uses of the controllersare written 



below: 

1. Controllers improve steady state accuracy by decreasing the steady state errors. 

2. As the steady state accuracy improves, the stability also improves. 

3. They also help in reducing the offsets produced in the system. 

4. Maximum overshoot of the system can be controlled using these controllers. 

5. They also help in reducing the noise signals produced in the system. 

6. Slow response of the over damped system can be made faster with the help of these 

controllers. 

Now what are controllers? A controller is one which compares controlled values with the desired 

values and has a function to correct the deviation produced. 

3.7 Types of Controllers 

Let us classify the controllers. There are mainly two types of controllers and they are written 

below:  

Continuous Controllers: The main feature of continuous controllers is that the controlled 

variable (also known as the manipulated variable) can have any value within the range of 

controller’s output. Now in the continuous controller’s theory, there are three basic modes on 

which the whole control action takes place and these modes are written below. We will use the 

combination of these modes in order to have a desired and accurate output. 

1. Proportional controllers. 

2. Integral controllers. 

3. Derivative controllers. 

Combinations of these three controllers are written below: 

4. Proportional and integral controllers. 

5. Proportional and derivative controllers. 

Now we will discuss each of these modes in detail. 

Proportional Controllers 

We cannot use types of controllers at anywhere, with each type controller, there are certain 

conditions that must be fulfilled. With proportional controllers there are two conditions and 

these are written below: 

1. Deviation should not be large, it means there should be less deviation between the input and 

output. 

2. Deviation should not be sudden. 

Now we are in a condition to discuss proportional controllers, as the name suggests in a 

proportional controller the output (also called the actuating signal) is directly proportional to the 

error signal. Now let us analyze proportional controller mathematically. As we know in 

proportional controller output is directly proportional to error signal, writing this 

mathematically we have, 

Removing the sign of proportionality we have,

Where, Kp is proportional constant also known as controller gain. 

It is recommended that Kp should be kept greater than unity. If the value of Kp is greater than 

unity, then it will amplify the error signal and thus the amplified error signal can be detected 

easily. 

Advantages of Proportional Controller 

Now let us discuss some advantages of proportional controller. 

1. Proportional controller helps in reducing the steady state error, thus makes the system more 

stable. 

2. Slow response of the over damped system can be made faster with the help of these 

controllers. 
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Disadvantages of Proportional Controller 

Now there are some serious disadvantages of these controllers and these are written as follows: 

1. Due to presence of these controllers we some offsets in the system. 

2. Proportional controllers also increase the maximum overshoot of the system. 

Integral Controllers 

As the name suggests in integral controllers the output (also called the actuating signal) is 

directly proportional to the integral of the error signal. Now let us analyze integral controller 

mathematically. As we know in an integral controller output is directly proportional to the 

integration of the error signal, writing this mathematically we have, 

Removing the sign of proportionality we have,

Where, Ki is integral constant also known as controller gain. 

Integral controller is also known as reset controller. 

Advantages of Integral Controller 

Due to their unique ability they can return the controlled variable back to the exact set point 

following a disturbance that’s why these are known as reset controllers. 

Disadvantages of Integral Controller 

It tends to make the system unstable because it responds slowly towards the produced error. 

Derivative Controllers 

We never use derivative controllers alone. It should be used in combinations with other modes 

of controllers because of its few disadvantages which are written below: 

1. It never improves the steady state error. 

2. It produces saturation effects and also amplifies the noise signals produced in the system. 

Now, as the name suggests in a derivative controller the output (also called the actuating signal) 

is directly proportional to the derivative of the error signal. Now let us analyze derivative 

controller mathematically. As we know in a derivative controller output is directly proportional 

to the derivative of the error signal, writing this mathematically we have,

Removing the sign of proportionality we have, Where, Kd is 

proportional constant also known as controller gain. Derivative controller is also known as rate 

controller. 

Advantages of Derivative Controller 

The major advantage of derivative controller is that it improves the transient response of the 

system. 

Proportional and Integral Controller 

As the name suggests it is a combination of proportional and an integral controller the output 

(also called the actuating signal) is equal to the summation of proportional and integral of the 

error signal. Now let us analyze proportional and integral controller mathematically. As we 

know in a proportional and integral controller output is directly proportional to the summation 

of proportional of error and integration of the error signal, writing this mathematically we have,



Removing the sign of proportionality we have,

Where, Ki and kp proportional constant and integral 

constant respectively. 

Advantages and disadvantages are the combinations of the advantages and disadvantages of 

proportional and integral controllers. 

Proportional and Derivative Controller 

As the name suggests it is a combination of proportional and a derivative controller the output 

(also called the actuating signal) is equals to the summation of proportional and derivative of 

the error signal. Now let us analyze proportional and derivative controller mathematically. As 

we know in a proportional and derivative controller output is directly proportional to summation 

of proportional of error and differentiation of the error signal, writing this mathematically we 

have, Removing the sign of proportionality we have,

Where, Kd and kp proportional constant and derivative 

constant respectively. 

Advantages and disadvantages are the combinations of advantages and disadvantages of 

proportional and derivative controllers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 



UNIT V 

Frequency Domain Analysis 
The response of a system can be partitioned into both the transient response and the steady state response. 

We can find the transient response by using Fourier integrals. The steady state response of a system for an 

input sinusoidal signal is known as the frequency response. In this chapter, we will focus only on the 

steady state response. 

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it produces the 

steady state output, which is also a sinusoidal signal. The input and output sinusoidal signals have the same 

frequency, but different amplitudes and phase angles. 

Let the input signal be − 

r(t)=Asin(ω0t)r(t)=Asin⁡(ω0t) 

The open loop transfer function will be − 

G(s)=G(jω)G(s)=G(jω) 

We can represent G(jω)G(jω) in terms of magnitude and phase as shown below. 

G(jω)=|G(jω)|∠G(jω)G(jω)=|G(jω)|∠G(jω) 

Substitute, ω=ω0ω=ω0 in the above equation. 

G(jω0)=|G(jω0)|∠G(jω0)G(jω0)=|G(jω0)|∠G(jω0) 

The output signal is 

c(t)=A|G(jω0)|sin(ω0t+∠G(jω0))c(t)=A|G(jω0)|sin⁡(ω0t+∠G(jω0)) 

•  

The amplitude of the output sinusoidal signal is obtained by multiplying the amplitude of the input 

sinusoidal signal and the magnitude of G(jω)G(jω) at ω=ω0ω=ω0 . 

• The phase of the output sinusoidal signal is obtained by adding the phase of the input sinusoidal 

signal and the phase of G(jω)G(jω) at ω=ω0ω=ω0 . 

Where, 

• A is the amplitude of the input sinusoidal signal. 

• ω0 is angular frequency of the input sinusoidal signal. 

We can write, angular frequency ω0ω0 as shown below. 

ω0=2πf0ω0=2πf0 

Here, f0f0 is the frequency of the input sinusoidal signal. Similarly, you can follow the same procedure for 

closed loop control system. 

Frequency Domain Specifications 
The frequency domain specifications are resonant peak, resonant frequency and bandwidth. 

Consider the transfer function of the second order closed loop control system as, 

T(s)=C(s)R(s)=ω2ns2+2δωns+ω2nT(s)=C(s)R(s)=ωn2s2+2δωns+ωn2 

Substitute, s=jωs=jω in the above equation. 

T(jω)=ω2n(jω)2+2δωn(jω)+ω2nT(jω)=ωn2(jω)2+2δωn(jω)+ωn2 

⇒T(jω)=ω2n−ω2+2jδωωn+ω2n=ω2nω2n(1−ω2ω2n+2jδωωn)⇒T(jω)=ωn2−ω2+2jδωωn+ωn2=ωn2ωn2(1

−ω2ωn2+2jδωωn) 

⇒T(jω)=1(1−ω2ω2n)+j(2δωωn)⇒T(jω)=1(1−ω2ωn2)+j(2δωωn) 

Let, ωωn=uωωn=u Substitute this value in the above equation. 

T(jω)=1(1−u2)+j(2δu)T(jω)=1(1−u2)+j(2δu) 

Magnitude of T(jω)T(jω) is - 

M=|T(jω)|=1(1−u2)2+(2δu)2−−−−−−−−−−−−−−√M=|T(jω)|=1(1−u2)2+(2δu)2 



Phase of T(jω)T(jω) is - 

∠T(jω)=−tan−1(2δu1−u2)∠T(jω)=−tan−1(2δu1−u2) 

Resonant Frequency 

It is the frequency at which the magnitude of the frequency response has peak value for the first time. It is 

denoted by ωrωr . At ω=ωrω=ωr , the first derivate of the magnitude of T(jω)T(jω) is zero. 

Differentiate MM with respect to uu . 

dMdu=−12[(1−u2)2+(2δu)2]−32[2(1−u2)(−2u)+2(2δu)(2δ)]dMdu=−12[(1−u2)2+(2δu)2]−32[2(1−u2

)(−2u)+2(2δu)(2δ)] 

⇒dMdu=−12[(1−u2)2+(2δu)2]−32[4u(u2−1+2δ2)]⇒dMdu=−12[(1−u2)2+(2δu)2]−32[4u(u2−1+2δ2)

] 

Substitute, u=uru=ur and dMdu==0dMdu==0 in the above equation.  

0=−12[(1−u2r)2+(2δur)2]−32[4ur(u2r−1+2δ2)]0=−12[(1−ur2)2+(2δur)2]−32[4ur(ur2−1+2δ2)] 

⇒4ur(u2r−1+2δ2)=0⇒4ur(ur2−1+2δ2)=0 

⇒u2r−1+2δ2=0⇒ur2−1+2δ2=0 

⇒u2r=1−2δ2⇒ur2=1−2δ2 

⇒ur=1−2δ2−−−−−−√⇒ur=1−2δ2 

Substitute, ur=ωrωnur=ωrωn in the above equation. 

ωrωn=1−2δ2−−−−−−√ωrωn=1−2δ2 

⇒ωr=ωn1−2δ2−−−−−−√⇒ωr=ωn1−2δ2 

Resonant Peak 

It is the peak (maximum) value of the magnitude of T(jω)T(jω) . It is denoted by MrMr . 

At u=uru=ur , the Magnitude of T(jω)T(jω) is - 

Mr=1(1−u2r)2+(2δur)2−−−−−−−−−−−−−−−√Mr=1(1−ur2)2+(2δur)2 

Substitute, ur=1−2δ2−−−−−−√ur=1−2δ2 and 1−u2r=2δ21−ur2=2δ2 in the above equation. 

Mr=1(2δ2)2+(2δ1−2δ2−−−−−−√)2−−−−−−−−−−−−−−−−−−√Mr=1(2δ2)2+(2δ1−2δ2)2 

⇒Mr=12δ1−δ2−−−−−√⇒Mr=12δ1−δ2 

Resonant peak in frequency response corresponds to the peak overshoot in the time domain transient 

response for certain values of damping ratio δδ . So, the resonant peak and peak overshoot are correlated 

to each other. 

Bandwidth 

It is the range of frequencies over which, the magnitude of T(jω)T(jω) drops to 70.7% from its zero 

frequency value. 

At ω=0ω=0 , the value of uu will be zero. 

Substitute, u=0u=0 in M. 

M=1(1−02)2+(2δ(0))2−−−−−−−−−−−−−−−−√=1M=1(1−02)2+(2δ(0))2=1 

Therefore, the magnitude of T(jω)T(jω) is one at ω=0ω=0 . 

At 3-dB frequency, the magnitude of T(jω)T(jω) will be 70.7% of magnitude of T(jω)T(jω) at ω=0ω=0 . 

i.e., at ω=ωB,M=0.707(1)=12√ω=ωB,M=0.707(1)=12  

⇒M=12–√=1(1−u2b)2+(2δub)2−−−−−−−−−−−−−−−√⇒M=12=1(1−ub2)2+(2δub)2 

⇒2=(1−u2b)2+(2δ)2u2b⇒2=(1−ub2)2+(2δ)2ub2 

Let, u2b=xub2=x  

⇒2=(1−x)2+(2δ)2x⇒2=(1−x)2+(2δ)2x 

⇒x2+(4δ2−2)x−1=0⇒x2+(4δ2−2)x−1=0 

⇒x=−(4δ2−2)±(4δ2−2)2+4−−−−−−−−−−−√2⇒x=−(4δ2−2)±(4δ2−2)2+42 

Consider only the positive value of x. 

x=1−2δ2+(2δ2−1)2+1−−−−−−−−−−−√x=1−2δ2+(2δ2−1)2+1 

⇒x=1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√⇒x=1−2δ2+(2−4δ2+4δ4) 

Substitute, x=u2b=ω2bω2nx=ub2=ωb2ωn2  

ω2bω2n=1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√ωb2ωn2=1−2δ2+(2−4δ2+4δ4) 

⇒ωb=ωn1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√−−−−−−−−−−−−−−−−−−−−−−√⇒ωb=ωn1−2δ2+(2



−4δ2+4δ4) 

Bandwidth ωbωb in the frequency response is inversely proportional to the rise time trtr in the time domain 

transient response. 

The Bode plot or the Bode diagram consists of two plots − 

• Magnitude plot 

• Phase plot 

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis represents the 

magnitude (linear scale) of open loop transfer function in the magnitude plot and the phase angle (linear 

scale) of the open loop transfer function in the phase plot. 

The magnitude of the open loop transfer function in dB is - 

M=20log|G(jω)H(jω)|M=20log⁡|G(jω)H(jω)| 

The phase angle of the open loop transfer function in degrees is - 

ϕ=∠G(jω)H(jω)ϕ=∠G(jω)H(jω) 

Note − The base of logarithm is 10. 

Basic of Bode Plots 
The following table shows the slope, magnitude and the phase angle values of the terms present in the open 

loop transfer function. This data is useful while drawing the Bode plots. 

Type of 

term 
G(jω)H(jω) 

Slope(dB/

dec) 
Magnitude (dB) Phase angle(degrees) 

Const

ant 
KK  00  20logK20log⁡K  00  

Zero 

at 

origin 

jωjω  2020  20logω20log⁡ω  9090  

‘n’ 

zeros 

at 

origin 

(jω)n(jω)n  20n20n  20nlogω20nlog⁡ω  90n90n  

Pole 

at 

origin 

1jω1jω  −20−20  −20logω−20log⁡ω  −90or270−90or270  

‘n’ 

poles 

at 

origin 

1(jω)n1(jω)n  
−20n−2

0n  
−20nlogω−20nlog⁡ω  −90nor270n−90nor270n  

Simpl

e zero 
1+jωr1+jωr  2020  

0forω<1r0forω<1r  

20logωrforω>1r20log⁡ωrforω>1

r  

0forω<1r0forω<1r  

90forω>1r90forω>1r  

Simpl

e pole 11+jωr11+jωr  −20−20  

0forω<1r0forω<1r  

−20logωrforω>1r−20log⁡ωrfor

ω>1r  

0forω<1r0forω<1r  

−90or270forω>1r−90or

270forω>1r  

Secon ω2n(1−ω2ω2n+2jδωωn)ωn2(1−ω 4040  40logωnforω<ωn40logωnforω<ω 0forω<ωn0forω<ωn  



d 

order 

deriva

tive 

term 

2ωn2+2jδωωn)  n  

20log(2δω2n)forω=ωn20log(2δ

ωn2)forω=ωn  

40logωforω>ωn40logωforω>ωn  

90forω=ωn90forω=ωn  

180forω>ωn180forω>ω

n  

Secon

d 

order 

integr

al 

term 

1ω2n(1−ω2ω2n+2jδωωn)1ωn2(1−ω2ωn

2+2jδωωn)  
−40−40  

−40logωnforω<ωn−40logωnforω

<ωn  

−20log(2δω2n)forω=ωn−20log(

2δωn2)forω=ωn  

−40logωforω>ωn−40logωforω>

ωn  

−0forω<ωn−0forω<ωn  

−90forω=ωn−90forω=ω

n  

−180forω>ωn−180forω

>ωn  

Consider the open loop transfer function G(s)H(s)=KG(s)H(s)=K . 

Magnitude M=20logKM=20log⁡K dB 

Phase angle ϕ=0ϕ=0 degrees 

If K=1K=1 , then magnitude is 0 dB. 

If K>1K>1 , then magnitude will be positive. 

If K<1K<1 , then magnitude will be negative. 

The following figure shows the corresponding Bode plot. 

 

 

The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself is the 

magnitude plot when the value of K is one. For the positive values of K, the horizontal line will shift 

20logK20log⁡K dB above the 0 dB line. For the negative values of K, the horizontal line will shift 

20logK20log⁡K dB below the 0 dB line. The Zero degrees line itself is the phase plot for all the positive 

values of K. 

Consider the open loop transfer function G(s)H(s)=sG(s)H(s)=s . 



Magnitude M=20logωM=20log⁡ω dB 

Phase angle ϕ=900ϕ=900  

At ω=0.1ω=0.1 rad/sec, the magnitude is -20 dB. 

At ω=1ω=1 rad/sec, the magnitude is 0 dB. 

At ω=10ω=10 rad/sec, the magnitude is 20 dB. 

The following figure shows the corresponding Bode plot. 

 

 

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started at ω=0.1ω=0.1 rad/sec 

having a magnitude of -20 dB and it continues on the same slope. It is touching 0 dB line at ω=1ω=1 

rad/sec. In this case, the phase plot is 900 line. 

Consider the open loop transfer function G(s)H(s)=1+sτG(s)H(s)=1+sτ . 

Magnitude M=20log1+ω2τ2−−−−−−−√M=20log1+ω2τ2 dB 

Phase angle ϕ=tan−1ωτϕ=tan−1⁡ωτ degrees 

For ω<1τω<1τ , the magnitude is 0 dB and phase angle is 0 degrees. 

For ω>1τω>1τ , the magnitude is 20logωτ20log⁡ωτ dB and phase angle is 900. 

The following figure shows the corresponding Bode plot. 



 

 

The magnitude plot is having magnitude of 0 dB upto ω=1τω=1τ rad/sec. From ω=1τω=1τ rad/sec, it is 

having a slope of 20 dB/dec. In this case, the phase plot is having phase angle of 0 degrees up to ω=1τω=1τ 

rad/sec and from here, it is having phase angle of 900. This Bode plot is called the asymptotic Bode plot. 

As the magnitude and the phase plots are represented with straight lines, the Exact Bode plots resemble the 

asymptotic Bode plots. The only difference is that the Exact Bode plots will have simple curves instead of 

straight lines. 

Similarly, you can draw the Bode plots for other terms of the open loop transfer function which are given in 

the table. 

In this chapter, let us understand in detail how to construct (draw) Bode plots. 

Rules for Construction of Bode Plots 
Follow these rules while constructing a Bode plot. 

• Represent the open loop transfer function in the standard time constant form. 

• Substitute, s=jωs=jω in the above equation. 

• Find the corner frequencies and arrange them in ascending order. 

• Consider the starting frequency of the Bode plot as 1/10th of the minimum corner frequency or 0.1 

rad/sec whichever is smaller value and draw the Bode plot upto 10 times maximum corner frequency. 

• Draw the magnitude plots for each term and combine these plots properly. 

• Draw the phase plots for each term and combine these plots properly. 

Note − The corner frequency is the frequency at which there is a change in the slope of the magnitude plot. 

Example 

Consider the open loop transfer function of a closed loop control system 



G(s)H(s)=10s(s+2)(s+5)G(s)H(s)=10s(s+2)(s+5) 

Let us convert this open loop transfer function into standard time constant form.  

G(s)H(s)=10s2(s2+1)5(s5+1)G(s)H(s)=10s2(s2+1)5(s5+1) 

⇒G(s)H(s)=s(1+s2)(1+s5)⇒G(s)H(s)=s(1+s2)(1+s5) 

So, we can draw the Bode plot in semi log sheet using the rules mentioned earlier. 

Stability Analysis using Bode Plots 
From the Bode plots, we can say whether the control system is stable, marginally stable or unstable based 

on the values of these parameters. 

• Gain cross over frequency and phase cross over frequency 

• Gain margin and phase margin 

Phase Cross over Frequency 

The frequency at which the phase plot is having the phase of -1800 is known as phase cross over 

frequency. It is denoted by ωpcωpc . The unit of phase cross over frequency is rad/sec. 

Gain Cross over Frequency 

The frequency at which the magnitude plot is having the magnitude of zero dB is known as gain cross over 

frequency. It is denoted by ωgcωgc . The unit of gain cross over frequency is rad/sec. 

The stability of the control system based on the relation between the phase cross over frequency and the 

gain cross over frequency is listed below. 

• If the phase cross over frequency ωpcωpc is greater than the gain cross over frequency ωgcωgc , 

then the control system is stable. 

• If the phase cross over frequency ωpcωpc is equal to the gain cross over frequency ωgcωgc , then 

the control system is marginally stable. 

• If the phase cross over frequency ωpcωpc is less than the gain cross over frequency ωgcωgc , then 

the control system is unstable. 

Gain Margin 

Gain margin GMGM is equal to negative of the magnitude in dB at phase cross over frequency. 

GM=20log(1Mpc)=20logMpcGM=20log⁡(1Mpc)=20logMpc 

Where, MpcMpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) is dB. 

Phase Margin 

The formula for phase margin PMPM is 

PM=1800+ϕgcPM=1800+ϕgc 

Where, ϕgcϕgc is the phase angle at gain cross over frequency. The unit of phase margin is degrees. 

The stability of the control system based on the relation between gain margin and phase margin is listed 

below. 

• If both the gain margin GMGM and the phase margin PMPM are positive, then the control system 

is stable. 

• If both the gain margin GMGM and the phase margin PMPM are equal to zero, then the control 

system is marginally stable. 

• If the gain margin GMGM and / or the phase margin PMPM are/is negative, then the control system 

is unstable. 

In the previous chapters, we discussed the Bode plots. There, we have two separate plots for both magnitude 

and phase as the function of frequency. Let us now discuss about polar plots. Polar plot is a plot which can 

be drawn between magnitude and phase. Here, the magnitudes are represented by normal values only. 

The polar form of G(jω)H(jω)G(jω)H(jω) is 



G(jω)H(jω)=|G(jω)H(jω)|∠G(jω)H(jω)G(jω)H(jω)=|G(jω)H(jω)|∠G(jω)H(jω) 

The Polar plot is a plot, which can be drawn between the magnitude and the phase angle of 

G(jω)H(jω)G(jω)H(jω) by varying ωω from zero to ∞. The polar graph sheet is shown in the following 

figure. 

 

This graph sheet consists of concentric circles and radial lines. The concentric circles and the radial lines 

represent the magnitudes and phase angles respectively. These angles are represented by positive values 

in anti-clock wise direction. Similarly, we can represent angles with negative values in clockwise direction. 

For example, the angle 2700 in anti-clock wise direction is equal to the angle −900 in clockwise direction. 

Rules for Drawing Polar Plots 
Follow these rules for plotting the polar plots. 

• Substitute, s=jωs=jω in the open loop transfer function. 

• Write the expressions for magnitude and the phase of G(jω)H(jω)G(jω)H(jω) . 

• Find the starting magnitude and the phase of G(jω)H(jω)G(jω)H(jω) by substituting ω=0ω=0 . So, 

the polar plot starts with this magnitude and the phase angle. 

• Find the ending magnitude and the phase of G(jω)H(jω)G(jω)H(jω) by substituting ω=∞ω=∞ . So, 

the polar plot ends with this magnitude and the phase angle. 

• Check whether the polar plot intersects the real axis, by making the imaginary term of 

G(jω)H(jω)G(jω)H(jω) equal to zero and find the value(s) of ωω . 

• Check whether the polar plot intersects the imaginary axis, by making real term of 

G(jω)H(jω)G(jω)H(jω) equal to zero and find the value(s) of ωω . 

• For drawing polar plot more clearly, find the magnitude and phase of G(jω)H(jω)G(jω)H(jω) by 

considering the other value(s) of ωω . 

Example 



Consider the open loop transfer function of a closed loop control system. 

G(s)H(s)=5s(s+1)(s+2)G(s)H(s)=5s(s+1)(s+2) 

Let us draw the polar plot for this control system using the above rules. 

Step 1 − Substitute, s=jωs=jω in the open loop transfer function. 

G(jω)H(jω)=5jω(jω+1)(jω+2)G(jω)H(jω)=5jω(jω+1)(jω+2) 

The magnitude of the open loop transfer function is 

M=5ω(ω2+1−−−−−√)(ω2+4−−−−−√)M=5ω(ω2+1)(ω2+4) 

The phase angle of the open loop transfer function is 

ϕ=−900−tan−1ω−tan−1ω2ϕ=−900−tan−1⁡ω−tan−1⁡ω2 

Step 2 − The following table shows the magnitude and the phase angle of the open loop transfer function 

at ω=0ω=0 rad/sec and ω=∞ω=∞ rad/sec. 

Frequency (rad/sec) Magnitude Phase angle(degrees) 

0 ∞ -90 or 270 

∞ 0 -270 or 90 

So, the polar plot starts at (∞,−900) and ends at (0,−2700). The first and the second terms within the 

brackets indicate the magnitude and phase angle respectively. 

Step 3 − Based on the starting and the ending polar co-ordinates, this polar plot will intersect the negative 

real axis. The phase angle corresponding to the negative real axis is −1800 or 1800. So, by equating the 

phase angle of the open loop transfer function to either −1800 or 1800, we will get the ωω value as 2–√2 . 

By substituting ω=2–√ω=2 in the magnitude of the open loop transfer function, we will get M=0.83M=0.83 

. Therefore, the polar plot intersects the negative real axis when ω=2–√ω=2 and the polar coordinate is 

(0.83,−1800). 

So, we can draw the polar plot with the above information on the polar graph sheet. 

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop control systems 

by varying ω from −∞ to ∞. That means, Nyquist plots are used to draw the complete frequency response 

of the open loop transfer function. 

Nyquist Stability Criterion 
The Nyquist stability criterion works on the principle of argument. It states that if there are P poles and Z 

zeros are enclosed by the ‘s’ plane closed path, then the corresponding G(s)H(s)G(s)H(s) plane must encircle 

the origin P−ZP−Z times. So, we can write the number of encirclements N as, 

N=P−ZN=P−Z 

•  

If the enclosed ‘s’ plane closed path contains only poles, then the direction of the encirclement in 

the G(s)H(s)G(s)H(s) plane will be opposite to the direction of the enclosed closed path in the ‘s’ 

plane. 

• If the enclosed ‘s’ plane closed path contains only zeros, then the direction of the encirclement in 

the G(s)H(s)G(s)H(s) plane will be in the same direction as that of the enclosed closed path in the 

‘s’ plane. 

Let us now apply the principle of argument to the entire right half of the ‘s’ plane by selecting it as a closed 

path. This selected path is called the Nyquist contour. 

We know that the closed loop control system is stable if all the poles of the closed loop transfer function are 

in the left half of the ‘s’ plane. So, the poles of the closed loop transfer function are nothing but the roots of 



the characteristic equation. As the order of the characteristic equation increases, it is difficult to find the 

roots. So, let us correlate these roots of the characteristic equation as follows. 

• The Poles of the characteristic equation are same as that of the poles of the open loop transfer 

function. 

• The zeros of the characteristic equation are same as that of the poles of the closed loop transfer 

function. 

We know that the open loop control system is stable if there is no open loop pole in the the right half of the 

‘s’ plane. 

i.e.,P=0⇒N=−ZP=0⇒N=−Z  

We know that the closed loop control system is stable if there is no closed loop pole in the right half of the 

‘s’ plane. 

i.e.,Z=0⇒N=PZ=0⇒N=P  

Nyquist stability criterion states the number of encirclements about the critical point (1+j0) must be 

equal to the poles of characteristic equation, which is nothing but the poles of the open loop transfer function 

in the right half of the ‘s’ plane. The shift in origin to (1+j0) gives the characteristic equation plane. 

Rules for Drawing Nyquist Plots 
Follow these rules for plotting the Nyquist plots. 

• Locate the poles and zeros of open loop transfer function G(s)H(s)G(s)H(s) in ‘s’ plane. 

• Draw the polar plot by varying ωω from zero to infinity. If pole or zero present at s = 0, then varying 

ωω from 0+ to infinity for drawing polar plot. 

• Draw the mirror image of above polar plot for values of ωω ranging from −∞ to zero (0− if any pole 

or zero present at s=0). 

• The number of infinite radius half circles will be equal to the number of poles or zeros at origin. The 

infinite radius half circle will start at the point where the mirror image of the polar plot ends. And 

this infinite radius half circle will end at the point where the polar plot starts. 

After drawing the Nyquist plot, we can find the stability of the closed loop control system using the Nyquist 

stability criterion. If the critical point (-1+j0) lies outside the encirclement, then the closed loop control 

system is absolutely stable. 

Stability Analysis using Nyquist Plots 
From the Nyquist plots, we can identify whether the control system is stable, marginally stable or unstable 

based on the values of these parameters. 

• Gain cross over frequency and phase cross over frequency 

• Gain margin and phase margin 

Phase Cross over Frequency 

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 1800) is known as 

the phase cross over frequency. It is denoted by ωpcωpc . 

Gain Cross over Frequency 

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain cross over 

frequency. It is denoted by ωgcωgc . 

The stability of the control system based on the relation between phase cross over frequency and gain cross 

over frequency is listed below. 



• If the phase cross over frequency ωpcωpc is greater than the gain cross over frequency ωgcωgc , 

then the control system is stable. 

• If the phase cross over frequency ωpcωpc is equal to the gain cross over frequency ωgcωgc , then 

the control system is marginally stable. 

• If phase cross over frequency ωpcωpc is less than gain cross over frequency ωgcωgc , then the control 

system is unstable. 

Gain Margin 

The gain margin GMGM is equal to the reciprocal of the magnitude of the Nyquist plot at the phase cross 

over frequency. 

GM=1MpcGM=1Mpc 

Where, MpcMpc is the magnitude in normal scale at the phase cross over frequency. 

Phase Margin 

The phase margin PMPM is equal to the sum of 1800 and the phase angle at the gain cross over frequency. 

PM=1800+ϕgcPM=1800+ϕgc 

Where, ϕgcϕgc is the phase angle at the gain cross over frequency. 

The stability of the control system based on the relation between the gain margin and the phase margin is 

listed below. 

• If the gain margin GMGM is greater than one and the phase margin PMPM is positive, then the 

control system is stable. 

• If the gain margin GMGM is equal to one and the phase margin PMPM is zero degrees, then the 

control system is marginally stable. 

• If the gain margin GMGM is less than one and / or the phase margin PMPM is negative, then the 

control system is unstable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT VI 

1. Compensator design using Bode plot 

 

A compensator or controller is added to a system to improve its steady 

state as well as dynamic responses. 

 

Nyquist plot is difficult to modify after introducing controller. 

 

Instead Bode plot is used since two important design criteria, phase 

margin and gain crossover frequency are visible from the Bode plot 

along with gain margin. 

 
Points to remember 

 
• Low frequency asymptote of the magnitude curve is indicative of one of the error 

constants Kp,Kv,Ka depending on the system types. 

 
• Specifications on the transient response can be translated into phase margin (PM), gain 

margin (GM), gain crossover frequency, bandwidth etc. 

 
• Design using bode plot is simple and straight forward. 

 
• Reconstruction of Bode plot is not a difficult task. 

 
Phase lead, Phase lag and Lag-lead compensators 

 

Phase lead, phase lag and lag-lead compensators are widely used in 

frequency domain design. 

 

Before going into the details of the design procedure, we must remember the 

following. 

 
• Phase lead compensation is used to improve stability margins. It increases system 

bandwidth thus improving the speed of the response. 

 
• Phase lag compensation reduces the system gain at high frequencies without reducing low 

frequency gain. Thus the total gain/low frequency gain can be increased which in turn will 

improve the steady state accuracy. High frequency noise can also be attenuated. But stability 

margin and bandwidth reduce. 

 
• Using a lag lead compensator, where a lag compensator is cascaded with a lead 

compensator, both steady state and transient responses can be improved. 



Bi-linear transformation transfers the loop transfer function in z -plane to w -

plane. 

 
Since qualitatively w -plane is similar to s -plane, design technique used in s 

-plane can be employed to design a controller in w -plane. 

 

Once the design is done in w -plane, controller in z -plane can be determined 

by using the inverse transformation from w -plane to z -plane. 

 

In the next two lectures we will discuss compensator design in s -plane and 

solve examples to design digital controllers using the same concept. 

 
1.1) Phase lead compensator 

 

If we look at the frequency response of a simple PD controller, it is 

evident that the magnitude of the compensator continuously grows 

with the increase in frequency. 

 

The above feature is undesirable because it amplifies high frequency noise 

that is typically present in any real system. 

 

In lead compensator, a first order pole is added to the denominator of the PD 

controller at frequencies  higher than the corner frequency of the PD 

controller. Frequency response of a lead compensator is shown in the figure 

1.1. 

 

A typical lead compensator has the following transfer function. 
 

 Is the ratio between the pole zero break point (corner) 

frequencies. Magnitude of the lead compensator is 

 

 

And the phase contributed by the lead compensator is given by 

 



Thus a significant amount of phase is still provided with much less 

amplitude at high frequencies. 

 

The frequency response of a typical lead compensator is shown in Figure 

1 where the magnitude varies from 

 

to  

and maximum phase is always less than 90° (around 60° in general). 
 

 

 
 

 

Figure 1.1: Frequency response of a lead compensator 

 

It can be seen that the frequency where the phase is maximum is given 

by 

 
 

The maximum phase corresponds to 



 
 

The magnitude of 

 
 
1.2) Lag Compensator Design 

 

In the previous lecture we discussed lead compensator design. In this lecture 

we would see how to design a phase lag compensator 

 
Phase lag compensator 

 

The essential feature of a lag compensator is to provide an increased low 

frequency gain, thus decreasing the steady state error, without changing the 

transient response significantly. 

 

For frequency response design it is convenient to use the following transfer 

function of a lag compensator. 
 

 
Where 

 
 

The above expression is only the lag part of the compensator. The overall 

compensator is 

 

 

Frequency response of a lag compensator is shown in fig: 1.2. Typical 

objective of lag compensator design is to provide an additional gain of α in 



the low frequency region and to leave the system with sufficient phase 

margin. 

The frequency response of a lag compensator, with α=4 and τ=3, is shown in 

Figure 1 where the magnitude varies from 

 

 dB to 0 dB. 
 

Figure 1.2: Frequency response of a lag compensator 

 

 
Since the lag compensator provides the maximum lag near the two corner 

frequencies, to maintain the PM of the system, zero of the compensator should 

be chosen such that ω = 1/ τ is much lower than the gain crossover frequency 

of the uncompensated system. 

 

In general, τ is designed such that 1/ τ is at least one decade below the gain 

crossover frequency of the uncompensated system. Following example 

will be comprehensive to understand the design procedure. 

 
1.3) Lag -lead Compensator 

 

When a single lead or lag compensator cannot guarantee the specified design 

criteria, a lag- lead compensator is used. 

Frequency response of a lag-lead compensator is shown in fig: 1.3 .In lag-lead 

compensator the lag  part precedes the lead part. A continuous time lag-lead 



compensator is given by 

 

 

where, 
 

The corner frequencies are 

, , ,  . 

The frequency response is shown in Figure 1. 
 

 
Figure 1.3: Frequency response of a lag-lead compensator 

 
• If it is not specified which type of compensator has to be designed, one should first check 

the PM and BW of the uncompensated system with adjustable gain K. 

 
• If the BW is smaller than the acceptable BW one may go for lead compensator. If the BW is 

large, lead compensator may not be useful since it provides high frequency amplification. 



• One may go for a lag compensator when BW is large provided the open loop system is 

stable. 

 
• If the lag compensator results in a too low BW (slow speed of response), a lag-lead 

compensator may be used. 

 
1.4) Lead or Phase-Lead Compensator Using Root Locus 

 

A first-order lead compensator can be designed using the root locus. A lead 

compensator in root locus form is given by 

 

where the magnitude of z is less than the magnitude of p. A phase-lead 

compensator tends to shift the root locus toward the left half plane. This results 

in an improvement in the system's stability and an increase in the response 

speed. 

 

When a lead compensator is added to a system, the value of this intersection 

will be a larger negative number than it was before. The net number of zeros 

and poles will be the same (one zero and one pole are added), but the added 

pole is a larger negative number than the added zero. Thus, the result of a lead 

compensator is that the asymptotes' intersection is moved further into the left 

half plane, and the entire root locus will be shifted to the left. This can increase 

the region of stability as well as the response speed. 

 
1.5) Lag or Phase-Lag Compensator Using Root Locus 

 

A first-order lag compensator can be designed using the root locus. A lag 

compensator in root locus form is given by 

 

where the magnitude of z is greater than the magnitude of p. A phase-lag 

compensator tends to shift the root locus to the right, which is undesirable. For 

this reason, the pole and zero of a lag compensator must be placed close together 

(usually near the origin) so they do not appreciably change the transient 

response or stability characteristics of the system. 

 

When a lag compensator is added to a system, the value of this intersection will 

be a smaller negative number than it was before. The net number of zeros and 

poles will be the same (one zero and one pole are added), but the added pole is a 

smaller negative number than the added zero. Thus, the result of a lag 

compensator is that the asymptotes' intersection is moved closer to the right half 

plane, and the entire root locus will be shifted to the right. 

 
1.6) Lead-lag Compensator using either Root Locus or Frequency Response 



 

A lead-lag compensator combines the effects of a lead compensator with those 

of a lag compensator. The result is a system with improved transient response, 

stability and steady- state error. To implement a lead-lag compensator, first 

design the lead compensator to achieve the desired transient response and 

stability, and then add on a lag compensator to improve the steady-state 

response. 

3. Feedback compensation: 

 

3.1) Necessary of Compensation 

1. In order to obtain the desired performance of the system, we use compensating 

networks. Compensating networks are applied to the system in the form of feed 

forward path gain adjustment. 

2. Compensate an unstable system to make it stable. 

3. A compensating network is used to minimize overshoot. 

4. These compensating networks increase the steady state accuracy of the system. An 

important point to be noted here is that the increase in the steady state accuracy 

brings instability to the system. 

5. Compensating networks also introduces poles and zeros in the system thereby causes 

changes in the transfer function of the system. Due to this, performance specifications 

of the system change. 

 
3.2) Methods of Compensation 

1. Connecting compensating circuit between error detector and plants known as 

series compensation as shown in fig 1.7 

.  

Fig 1.7: Series Compensator 

 

 

When a compensator used in a feedback manner as shown in fig 1.8 it is 



called feed back compensation 

 

 

 

 
Fig 1.8 feedback compensator 

 

A combination of series and feedback compensator is called load compensator 

as shown in fig 1.9.

 

 

Fig 1.9 Load compensator 
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