Basic Electrical Sciences - Unit:1

UNIT —|
Concept of Electric Circuits: Introduction to circut elements, V-1 relationships of R, L
and C elements, Ideal and Practical Sources, Kirchhoff’s laws, Source Transformation,
Network reduction techniques-series, pardlel, series-paralel and Star-Delta transformeation.

What is an electrical circuit?

Anelectric circuit is a path in which electrons from a voltage or current source flow.
The point where those electrons enter an electrical circuit is called the "source” of electrons.
What do you mean by electrical network?

Anelectrical network is an interconnection of electrical components (e.g. batteries,
resistors, inductors, capacitors, switches) or a model of such an interconnection, consisting
of electrical elements (e.g. voltage sources, current sources, resistances, inductances,
capacitances).

How do electrons flow around a circuit?

Current only flows when acircuit is complete—when there are no gaps in it. In a
complete circuit, the electronsflowfrom the negative terminal (connection) on the power
source, through the connecting wires and components, such as bulbs, and back to the positive
terminal.

Current:
An electric current is aflow of electric charge (electrons).

Unit of Electric current is Ampere

Electric current is measured using adevice called an ammeter.
Voltage:

Voltage is the electromotive force or the electrical potential (Charge) difference
between two points in acircuit.

Unit of Voltage is volt

Voltage is measured using adevice called voltmeter.

Types of network Elements:
The circutt elements are classified into following categories,

1. Passive and active elements.

2. Unilateral and Bilateral elements.

3. Linear and Non-Linear elements.

Passive and Active Elements

Passive Element: The elements that absorbs or stores energy is called passive element.

’ Examples: Resstor (R), Capacitor (C), Inductor (L), Transformer

Active Element: The elements that supply energy to the circuit is called active elemert.
Examples: Voltage and Current sources, Generators, Transistor.

Unilateral and Bilateral Element

Bilateral Element: Conduction of current in both directions in an element with same

magnitude is termed as bilateral element.

Examples: Resistance; Inductance; Capacitance

R, R,
ro—— A - VAN -
—_— 1 R = R. 1 ¢—
Fig 1.1
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Unilateral Element: Conduction of current in one direction in an eement is termed as
unilateral element
Exanples: Diode, Transistor.

Forward biased Reversed biased
R, R,
+ Lo\ z 2 £ +
—/ _/
R, #R,
Fig 1.2

Linear and Non Linear Elements
Linear Element: The elements that obeys ohm’s law and homogeneity principle is called
linear element.

Examples: Resistor (R), Capacitor (C), Inductor (L)

T :

> -
T (C uarrenmt) = I (Current) ————

V- characteristics of non-lincar clement. V-l characteristics of lincar clement.

Fig 1.3

\ (Voltage)

ﬁ
Y (Voluge)

Non-Linear Element: The eclements that does not obey ohm™s law and homogeneity
principle is called Non-Linear element.
Examples: Semiconductors, Diode, Transistor

Types of Sources:
I ndependent_Sources:

Independent sources are those in which generated voltage (Vs or the generated
curent (I are not affected by the load connected across the source terminals or across any
other element that exists elsewhere in the circuit or external to the source.

Ideal and Practical Voltage Sources:
An ided voltage source, which is represented by a model in below fig, is a device that
produces a constant voltage across Its terminals no metter what current is drawn from
it (terminal voltage is independent of load (resistance) connected across the terminals)

The V- | characteristic of ideal voltage source is a straight line parallel to the x-axis.

A
— 1, +
'y * Vo=V
Load T
v
V. g,
v, R,
>
Y ooe 0.0 I, —
Ideal de voltage source V-1 characteristics of ideal voltage source
Fig 1.4

Internal resistance (Rg) of aideal voltage source is zero.
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RS: 0
A practical voltage source, which is represented by a model in below fig, is a device
that does not produces a constant voltage.

The V- | characterigtic of a practical voltage source can be described by the following

equation
V|_ = Vs — |R5
A Internal
V=V } voltage
P | ——az s rrr el drop
F Y
~®— '
R, I T I Vi
/ * o C\) A
Practical V- 2
Source
l u >
0.0 —p 1,
Practical dc voltage source model V-1 characteristics of practical veltage source

Fig 1.5

Ideal and Practical Current Sources:

An ideal current source, which is Erﬁoreﬂ_ented by a model in fig is a device thet
delivers a constant current to any load resistance connected across it, no matter what
the terminal voltage is developed across the load (i.e., independent of the voltage
across its terminals across the terminals).

The V- | characteristic of ideal current source is astraight line paralel to the y-axis.

il s \ e
s W L

T

Ideal current 0.0 > 1
source

>

Ideal carrent source with variable load V-1 characteristic of ideal curvent seurce

Fig 1.6

Internal resistance (RS) of aideal Current source is Irfinity.

Rs =
A practical voltage source, which is represented by a model in below fig, is a device
that does not produces a constant current.

Trﬁﬁ\_/- | characteristic of a practical current source can be described by the following
equation
||_ = |5— VJ_
Rs

EEE - NBKRIST Page 3



Basic Electrical Sciences - Unit:1

Practical current
source

Ideal current source

™1 1 + (R, = =)
NEENE o

10 1]

£ >
Practical current 0.0 — ]

source
Practical current source with variable load2.

V-1 characteristic of practical current source
Fig 1.7

DEPENDENT OR CONTROLLED SOURCES:

In some network, in which some of the voltage sources or current sources are
controlled by changing of current or voltage elsewhere in the circuit. Such sources
are termed as “Dependent or Controlled sources”.

There are four types of dependent sources.

R

Dependent Voltage Source (DVS) Dependent Cument Source (DCS)

Fig 1.8
1 CDVS( Current DVS)
1 CDCS(Current DCS)
1 VDVS(Voltage DVS)
1 VDCS(Voltage DCS)
Resistor:
Resistance (R): The opposition offered to the flow of electric current flowing through the
meterial is called Resistance.
Unit: Ohm(Q)
Laws of Resistance:
Electrical resistance (R) of a conductor is

1. directly proportiona toits length, Ii.e. Roc |,
2. inversely proportional to its area of cross-section, ai.e.

RIC—]

Combining these two laws we get,
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1 _ 1
R g =R = Py
Wherep is a constant depending on the nature of the meterial of the conductor and is known
as it’s Specific Resistance or Resistivity.

Specific Resistance or Resistivity:

Specific Resistance or Resistivity is the resistance of a material with unit length and unit
Cross sectiond area.
The unit of resistivity can be easily determined form its equation

_ 1 _Ra Q-m?
R_po =p =

Conductance:
It is the inverse of resistance. G =

Unit:
G = %: mho (or) Semen

x|~

Conductivity:
It is the inverse of resistivity. o=
Unit:

1

o= Q——mho/m (or) Siemer/m

-m

o |-

Factors affecting the Resistance:

1. Length of the material:

The Resistance “R” is directly proportional with its length: “L”
R« |
As length of the wire increases, resistance aso increases.

2. Cross Sectional Area of the material:

The Resistance “R” is inversely proportiona with its Cross Sectional Area: “A”
el

As Cross Sectional Area of the wire increases, resistance also decreases.

3. Nature of the material:

The Resistance ‘“R” is dependent on the Nature of the material.

» In Conductors, No of free electrons are very high so resistance of the conductor is
very less.

» In Insulators and Semi conductors, No of free electrons are less so resistance of the
conductor is very high.

4. Temperature of the conductor:
The Resistance “R” is dependent on the Temperature of the conductor.
Rz =R (1 + a*AT)

Where ‘o’ is the temperature coeflicient of resistance
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» For Conductors ‘e’ = +ve, as temperature increases, resistance also increases.
» For Insuators and Sem conductors ‘a’ = -ve, as temperature increases, resistance
decreases.

Ohm’s law:

At a constant temperature the voltage across a conducting material is directly
proportional to the current flowing through it.
According to definition

V I N A—"
—_— R -
V=IR ™~ Conductor placed at

constant temperature

Fig 1.9

Where, V =Voltage across the conductor in volts
| = Current flowing through the conductor in Ampere
R = Proportionality constant (resistance in ohms)

|-V Characteristics of Resister

[-V Characteristic of Resistor

Fig 1.10
Power consumed by Resister, P=VI=V4/R=I’R
Energy consumed by Resister, W=VIt = V2/R=I’Rt

| nductor
The property of the coil of inducing emf due to the changing flux linked with it is
known asinductance of the coil. Due to this property all electrical coil can be referred
asinductor.
In other way, an inductor can be defined as an energy storage device which stores
energy in form of magnetic field.
Whenever a time-changing current is passed through a coil or wire, the
voltage across it is proportional to the rate of change of current through the cail.
This proportional relationship may be expressed by the equation is
di
v = Ldt
Where L is the constant of proportionality known as inductance and is measured in
Henrys (H).
Remember v and i are both functions of time.
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_|_ —
Figure 1.11 Model of the inductor

Let us assume that the coil shown in Fig. 1.6 has N turns and the core material has a
high permeability so that the magnetic flux ®is connected within the area A. The changing
flux creates an induced voltage in each turn equal to the derivative of the flux @, so the total
voltage v across N turns is

v=N @
dt .- >1
Since the total flux N®is proportional to current in the coil,
We have N® =Li------- >2
Where L is the constant of proportionality. Substituting equation (2) into equation (1), we get
di
v=1L 7
The power in an inductor is

di
— -— R 4
p—m—i;( t)z

The energy stored in the inductor is

t
w=/ p dT

i(t) 1

=L / i di = —Li* Joules
i(—oa) 2

Note that when ¢ = —co.i(—o0) = 0. Also note that w(t)>=0 for all i(t), so the inductor is a

passive element. The inductor does not generate energy, but only stores energy.

Capacitor
A capacitor is a two-terminal element that is a model of a device consisting of two

conducting plates separated by a dielectric meterial. Capacitance is a measure of the ability of
adevice to store energy in the form of an electric field.

]
—_—

O
+

v C =

O
1.12 Circuit symbol for a capacitor
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Capacitance is defined as the ratio of the charge stored to the voltage difference between the
two conducting plates or wires
c=1
v
The current through the capacitor is given by
_dq Cdfu
Cdt dt
The energy stored in a capacitor is
t

wzfm'd'r

Remember that v and i are b_dth functions of time and could be written as v(t) and i(t).
Since

i

dv
_ oW
E”

We have .
duv
= C— d

w / v = T

0 1 0
= f v dv = —Cv?

( : 2 v(—n0)

Since the capacitor was uncharged at t = —o0, v(—o0) = 0.
Hence
w = w(t)

= %Cruz(t) Joules

Since g =Cv we may write
w(t) = %qp(t) Joules
Note that since w(t) >= 0 for all values of v(t), the element is said to be a passive element.

Kirchhoff Laws:

Gustav Kirchhoff (1824-1887), an eminent Germen physicist did a considerable
amount of work on the principle of governing behavior of electric circuits. He gave his
finding in a set of two laws which together called Kirchhoff’s laws. These two laws are

1. Kirchhoff's Current Law (KCL)

2. Kirchhoff's Voltage Law (KVL)

Kirchhoff’s Current Law (KCL)

Kirchhoff’s Current Law states that the algebraic sum of the current meeting at a
node (junction) isequal to zero
Le., Y. I=0
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This law is illustrated below. Five branches are connected to node O which carries currents
l1, 12, 13, 12 and |5 as shown in figure 1.13. Consider current entering (11, I3 & Is) to the node as
postive and current leaving (12> & 14) from the node as negative.

Fig. 1.13 Five branches are connected to node o
From above diagram
-11- I+ I3+ 14+ 15=0
or
[1+ o= I3+ 14+ |5
I. e, Incoming currents = Outgoing currents
Hence Kirchhoff’s first law can be stated as.
The currentsflowing towards any junction in an eectric circuit isequal to the sum
of the currentsflowing away from the junction

Examples:
Find out the value of unknown current | from the given networks

Example 2
Example 1 anp
5A
5A I
I O
0 10 A
10 A
_ ) Where incoming currents are |, 10A and
Where incoming currents are 5A and 5A
applying KCL at node o —]—5—-10=0 X
I-5-10=0 or
or I=-154
I=154 Unknown current | =-15A
Unknown current | = 15A This minus sign indicates that the actual
current direction is opposite.

Kirchhoff’s Voltage Law (KVL)
The algebraic sum of the all branch voltagesin a loop (or closed path) is equal to

zero
or
Kirchhoff’s Voltage Law states that in a closed circuit, the algebraic sum of all

source voltages must be equal to the algebraic sum of all the voltage drops.

EEE - NBKRIST Page 9



Basic Electrical Sciences - Unit:1

Steps to follow
Step. 1. Mark all the nodes
Step. 2. Mark all branch currents

Step. 3. Mark voltage drop across each resistor (mark current entering point as
positive and current leaving point as negetive).

Step. 4. Depend up on the number of unknowns write KVL equations (At the time of
writing equations consider the sign which see first for the voltage drops and voltage

sources)

Step. 5. By solving this equetions calculate the unknown branch currents and

determine the desired responses.
[llustration of Kirchhoff’s law

Exanple: Apply KVL and determine current flowing through each element in the circuit

shown below.
AAN—AN
\%
R,
Solution,
Step 1- Mark all the nodes)
A N R B
R
V 3
D R, C

Step 3 - Mark voltage drop across each resistor

A, R 1R B
200V O R,
D 4 C

EEE - NBKRIST

Step 2 - Mark all the branch currents
A R YN

R
200V ’

NV

D n. C
Step 4 — Write KVL equations

From loop — ABCDA

V+V,+V,+V, -V

From ohm’s law

Vi=IXR,V,=1IXR,, V =IXR;& V, =
I X R,, Substitute these values in to equation 1.
IXR,+IXR,+IXR;+IXR, -V =0

Ix(R,+R,+R;+R,) =V
7
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Example:Find out the value of unknown current | from the given networks

200V 25Q
25Q

M\

Step 1- Mark all the nodes) Step 2 - Mark all the branch currents

200V

D C

Step 4 — Write KVL equations
Step 3 - Mark voltage drop across each resisto:

From loop — ABCDA
A 1000 o Ve B

ViV, + V4V, =V =0 s e v eee e (1)
From ohm’s law

¥ VW =1x100,V, =1x50,V; =1x25& V, =1x25,
ZOOVC_ Substitutethesevaluesin to equation 1.
IxX100+1x50+4+1x25+1x%x25,-200=0

I x (100 + 50 + 25 + 25,) = 200
200

Source Transformation
* Not possible to transform ideal current (voltage) sources to ideal voltage (current) sources.

&

Fig 1.14
 But we can transform Practical current (voltage) sources to Practical voltage (current)
SOurces.

RS

a a
V, <:> I, @:Rs
b b

Fig 1.15
Relationships:
Is=Vs/R Vs=IsR
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Resistors in Series
Consder the series combination of N resistors shown in Fig. 1.16 aWe want to smplify the
circuit with replacing the N resistors with a singe resistor Req so that the remainder of the
circutt, in this case only the voltage source, does not redlize that any change has been made.
The current, voltage, and power of the source must be the same before and after the
replacemert.
First, apply KVL:

Vg =V1+Vot---+Vy
and then Ohm’s law:

Vs =R1i +Roi +---+R\i :(R1+R2+---+RN)i
Now compare this result with the simple equation applying to the equivalent circuit shown in
Fig. 1.16 b:

Vs :Reqi
R

AMA—AW—- = ——AMN— | : ]

| + ] — + h — + N — | | |
OGN ORI
| | | |

(- - - - 1 L 1

(a) (h)
Fig 1.16

Thus, the value of the equivalent resistance for N series resstors is
Req =R1+R+---+Ry

Voltage Division

Voltage division is used to express the voltage across one of several series resistors in terms
of the voltage across the combination. In Fig. 1.17, the voltage across R2 is found via KVL
and Ohm’s law:

V:V1+V2:iR1+iR2:i(R1+R2) )
o ! R,

Ry = R

Or Fig 1.17
R;
Vg = ———VU

R+ Ry
and the voltage across R1is, similarly,
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R,
_
R+ R>
If the network of Fig.1l.17 is generdized by removing Rrand replacing it with the series
combination of Ry, Rs. .. RN, then we have the genera result for voltage division across a
string of N series resistors

I_]] =

Ry
— v
Ri+Ry+---+ Ry

which allows us to compute the voltage vk that appears across an arbitrary
resistor Ry of the series.

Uk

Resistors in Parallel

Similar simplifications can be applied to

paralel circuts. A circut contanng N . . —-——
resistors in paralle, as in Fig. 1.18 a, leads to + lf] Lgﬁ lh
the KCL equation '

i, v R R, Ry
is =i+t --+in ! G) : - g N

. v v + + v
l. = — e .o —— -
"R R Ry " . vee

_ v (1)

Req

or, in terms of conductances, as

Geq =G1+Go+---+Gn Iy G) v § R

The simplified (equivalent) circuit is shown
in Fig. 1.18 b.

(b)

Fig 1.18
Current_Division
The dua of voltage divison is current divison. We are now given a total current supplied to
several parallel resistors, asshown in the circuit of Fig. 1.19.

The current flowing through R2 is i
. . + ? . .
v _i(RiR) _ i RiRs i |z
I» = = = —
? R R> Ry Ry + R
Or v R, §R3
A ¢
I» =1— —
- R, + R -
and, smilarly, Fig 1.19
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R>
R+ R
For aparalel combination of N resistors, the current through resistor Ry is

J"|—J'

1
- Ry
T 1

Ry R +Rw

Delta-Star(Wye) Conversion
Star connection and delta connection are the two different methods of connecting three basic
elements which cannot be further simplified into series or parallel.

The two ways of representation can have equivalent circuits in either form.

1—0 A
/ : RA::-:’\)
LRy /K
Ay

R3 h )\‘—A
" C C

i\-\
o
o

Fig 1.20

Assume some Voltage source across the terminals AB.

Req = R1(R2 + Ra)/“ﬁ +R, + Ra)

Therefore Ra + Rb = R1(R2 + RS)X(Rl + Rg + Rg) ............ (1)
Similarly R, + R. = Rs(Ry + Ry)/(Ry4+ Ry + R3)..ev........ )
R. + Ry =Ry(R3 + Ry)/(Ry+ Rz +R3)eeeeeenn. (3)
Subtracting (2) from (1) and adding to (3) ,
R, = RiRy/(Ry + Ry +R3) v, (4)
Ry = RiR3/(Ri+Ry;+R3).eeneeren... (5)
RC = REREX(RI + R2 + RE) ................ (6)

A delta conrection of Ry, Rx Rs can be replaced by an equivalent star connection with the
values from equations (4),(5),(6).
Multiply (4)(5) ; (5)(6) ; (4)(6) and then adding the three we get,
D RaRb + RbRC + RCRH, = RIRZRSI(Rl + Rz + Rg)
Dividing LHS by R, gives R3, by Ry gives Ry, by R; gives R;

R4 = (RgRp + RyR. + R.Ry) / R,

R, = (RqRp + RyR. + R.R,) / Ry,

EEE - NBKRIST Page 14



Basic Electrical Sciences - Unit:1

Ry = (RqRp + RyR. +R.Ry) /R,
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UNIT —1I
Fundamentals of AC circuits:
R.M.S, Average valves, form factor and crest factor for different periodic wave forms,
Snusoidal Alternating Quantities - Phase and Phase Difference, Complex and Polar Forms of
Representations, j-Notation. Concept of Reactance, |mpedance, Susceptance and Admittance.

What is Alternating Voltage?

Alternating voltage is the voltage v = V,, sin mt
which constantly changes in amplitude, and
which reverses direction at regular intervals.

What is Alternating Current (A.C.)?
When the current flowing in the

circuit varies in magnitude as well as in i = 1, sin ot e\ o .
direction periodically is caled as an
aternating current..
Fig 2.2
Advantages of AC system over DC system
1. AC voltages can be efficiently stepped up/down using transformer
2. AC motors are cheaper and sinpler in construction than DC motors
3. Switchgear for AC system is simpler than DC system
Types of Periodic Waveform
Sine wave Complex wave
+V +V
E | |
a0 time 0 L time
: \/‘\/
<L
NV -V
Triangular wave Square wave
+V +V
E | |
a0 time 0 } + + } = fime
E
<L
ayi '
Fig 2.3

Single Phase AC Generator

There are two kinds of sources of electrical power:
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(1) Direct current or voltage source (DC source) in which the current and voltage remains constant
over time.

(2) Alternating current or voltage source (AC source) in which the current or voltage constantly
changes with time. The voltage of the electrical power source that we use in our homes or offices
(line voltage) isasinusoidal signal that goes through a complete cycle 60timesin one second. In this
section we will discuss how single phase AC voltage is generated.

Figure 2.4 shows a conductor placed in a magneticfield. A voltage is induced between its
terminals (x, y) due tothe change in flux linkage when the conductoris rotated in the magneticfield.
The change influx linkage is atits minimum when the conductoris moving parallel to the field and it
is at its maximum when the conductor is moving perpendicular to the magnetic field. In a half
rotation, the conductor moves from being parallel to the field to being perpendicularto the field and
eventually moving back to being parallelto the field. Accordingly, the induced voltage increases from
zero to its maximum value and then back to zero at the end of the half rotation.

| R
L7 /

Figure 2.4: A rotating conductor in a magnetic field*.

Fig. 2.5 shows the changes in the induced voltage as the conductor rotates in the magnetic
field. Duringthe second half of the rotation the flux linkage changes through the conductor the same
way as before; however, itinduces the voltage with the opposite polarity because the position of the
conductors is now reversed. Due to the shape of the poles and the rotary motion of the conductor
the induced voltage turns out to be a sine wave.

o
oo

O VOLTS VOLTS

-
= / 18 280 DEGREES OF
e ROTATION
=] DO 2T
1800
-

uuuuuu
O VOLTS WOLTS 0 VOLTS

Fig 2.5: Induced voltage vs. rotation of the conductor*.
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Properties of Alternating Current
Frequency (f): It is the number of cycles that occur in one second. The unit for
frequency is Hz or cycles/sec.
Period (T): It is the Time Taken in A Maxdmum value
seconds to conplete one cycle of an alternating v —
quarntity.
Wavelength (A): wavelength is measured
in distance per cycle.

A=c/f.
Amplitude: The amplitude of a sine wave "'_"“'"“"““*|
is the value of that sine wave at its peak. This is <+—— Cycle ~——»
the meximum value, postive or negative, that it ¥y~ Time period (T) —
can attain.
Peak-Peak value: The difference between the peak postive value and the peak
negative value is called the peak-to-peak value of the sine wave. Fig

2.6
This value is twice the maximum or peak value of the sine wave.

Instantaneous Value: It is the value of the quantity at any instant.

Average Value

The arithmetical average of an alternating quartity over one cycle is called its average
value. Average Vaue can be determined by Graphical Method or Analytical Method.

From Fig 2.7 average value can calculate by using graphical method as.

F

Current (A)

_ 44y
avg —

v

_ Time (S)
Fig. 1. Current wave form

Fig 2.7
From Fig 2.8 average value can calcuate by usng Analytical method as.
F 3
<
L1 g
lavg = [, idt E
I __ Area under one cycle R
avg Base length | i< Time () i

Fig. 2. Current wave form
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Fig 2.8

RM S Value or Effective Value

The effective or RMS value of an dternating current is the steady current
(D.C) which when flowing through a given resistance for a given time produces the
same amount of heat as produced by a alternating current when flowing through the
same resistance for the same time.
RMS Value can be determined by Graphical Method or Analytical Method.
Graphical Method: This method is best suitable for complicated waveforms, with this

method approximate RMS value can calculate very easlly.

From fig (1) RMS value can calculate as

1=\/11?-'+122 N

I = \/mean (i%)
From fig (2) RMS value can calculate as.
1 T
= |=| i2
| T«’;Jl dt

Where ‘I’ is the RMS value of alternating current, ‘i’ is the instantaneous value of
current and where T is the time period.
Peak Factor (or) Crest Factor

The peak factor of an alternating quartity is defined as the ratio of its maximum value
to the RM'S value.

Maximum value
RMS value

Peak factor =

Form Factor
The form factor of an dlternating quartity is defined as the ratio of RMS value to the

average value.

RMS value
Form factor = ——
average value

Phasor
A phasor is aline of definite length rotating in anti-clock wise direction at a constant
angular velocity (). Length of this phasor is the maximum or RMS value of the alternating
guartity.
W [,orl
P

RM Sand Average Value for Sinusoidal alternating quantity

M aximum Value: Maximum value of the given wave form is I nax=Im
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RM SValue

The given wave form is a symmetrical wave form with a time period 2.

Fig 2.9
T
Z| 2
ngl .dt
1 2“(1 nwd? d t_Im2 2m 1—c052mt)d .
_2 fn m Sin @ wt = 211[0 > W
2m
12 =4—[ 1 du)t— cosZwt dwt]
27{ I 2 I 2
= 4—[ 1.dwt — cos2wt. dmt] =4 [2m—0)—-0]= e X 2T
_T
1—1‘“—07071
V2o "
Average Value

The given wave form is a symmetrical wave form, consider only alternation.

1 T/2
I =— idt
avg T/ZIO i

1 T
[avg = —f ([m Sil’l(.l)t) dowt
TJo
Im T . lm lm 0
lavg=—xX | sinwtdwt =— X [—coswt]j = — X [coswt]7
T ), T T

I
=—x[14+1
= x [1+1]

21,
lavg = - = 0.6366 1,
RMSvalue  0.707

Averagevalue 0.6366 I,
Maximum value |-

= =1.414
RMS value 0.707 I,

Form factor =

=111

Peak factor =
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Phasor Representation:
An dternating quantity can be represented using
1) Waveform
ii) Equations
iii) Phasor

A sinusoidal alternating quantity can be represented by a rotating line called a Phasor.
A phasor in a line of definite length rotating in anticlockwise direction at a constant angular
velocity.

The waveform and equation representation of an alternating currert is as shown in Fig
2.10. This sinusoidal quantity can also be represented using phasors.

+Im /\
0 \/271 wt

i =1 sinart

Fig 2.10

In phasor form the above wave is written as | = Im£0°
Draw a line OP of length equal to Im. This line OP rotates in the anticlockwise

direction with a uniform angular velocity o rad/sec and follows the circular trgjectory shown
in figure 2.11. At any indtant, the projection of OP on the y-axis is given by OM=0Psinf =
Imsinwt. Hence the line OP is the phasor representation of the sinusoidal current.

--w rad/sec
N

- s [\u"] /

i
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Fig 2.11

Phase
Phase is defined as the fractional part of time period or cycle through which the

quartity has advanced from the selected zero position of reference.
Phase of +Em is @/2rad or T/4 sec
Phase of -Em is n/2rad or 3T/4 sec

>
+Emk - - —
Emf - -1
i
/T
o7 ™ B2 2
!

\ | /
el NS
-Cim

' T
Fig 2.12

Phase Difference
When two adternating quarntities of the same frequency have different zero points,
they are said to have a phase difference. The angle between the zero points is the angle of

phase difference.

// / \\ N
¥ 7 \ \
g oi \
: £ \ \1'\ 7 .
——» / /
o A / fwt
\ X, //‘ 7
\\\/./
Fig 2.13

In Phase
Two waveforms are said to be in phase, when the phase difference between them is

zexo.
Thet is the zero points of both the waveforms are same. The waveform, phasor and

equation representation of two sinusoidal quartities which are in phase is as shown. The
figure 2.14 shows that the voltage and current are in phase.
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Vm -

Q
o

¥
m

/./
|
N\
o |
£
=3
<

Fig 2.14
v = v, sin(wt)
i = i,,sin(wt)
Lagging
In the figure 2.15, the zero point of the current waveform is after the zero point of the
voltage waveform. Hence the current is lagging behind the voltage. The waveform, phasor

Vn- = -;,——-{
il = = S T
|-/ 5 \\ 1
. / \ "\,
[e—— T, % >
¥ \\ \\.\ /rr wt ~9 Vi
\ e

and eguation representation is as shown.
Fig 2.15
v = v, sin(wt) =>V = 1,20°
i =ip,sin(wt—0)=>1=1,2-0°
Leading
In the figure 2.16, the zero point of the current waveform is before the zero point of
the voltage waveform.  Hence the current is leading the voltage. The waveform, phasor and

Vid - - 5~

A i
m/[\\l\x /_;/E'JP

" rh
o P Q\\ /2” wt —_— Ve

eguation representation is as shown.
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Fig 2.16
v = v, sin(wt) =>V = 1,20°
i =ip,sin(wt+8)=>1=1,20°

Complex Numbers in Rectangular and Polar Form

To represent complex nurmbers (x+jy) geometricaly, we use the rectangular
coordinate system with the horizontal axis representing the real part and the vertical axis
representing the imaginary part of the complex number.

Imaginary axis

y) Real axis
1 1 1 1 1 1 = X
T T T 1 O T T T 1
2-3i
3 P
Fig 2.17

We sketch a vector with initial point (0, 0) and terminal point P(x, y). The length r of
the vector is the absolute value or modulus of the complex number and the angle © with the
postive x-axis is the is called the direction angle or argument of x+ jy.

Fig 2.18
y
A
P
X +yi
|
r | y
|
o\ m|
0 = > X

Conversions between rectangular and polar form follows the same rules asit does for vectors.
Rectangular to Polar

For acomplex number x+yi

+yil=r=Jx*+)?
tanf = %,x:ﬁ(]

Polar to Rectangular
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X =r1c0sO
yrsin O
The polar form r(cos© + 1 sin®) is sometimes abbreviated r cis ©
and written as T£© and read as ‘r at an angle ©”
Example
Convert — /3 + i to polar form.
Solution
x=-4y3 andy = 1 so that

r=m=2

1

tanf = ——
-3

0 = 150°

and

Example
Converting polar to rectangular form is straightforward.

4c¢1s240° = 4¢c0s8240° + isin240°

()
=-2-2i/3

Addition and Subtraction of complex numbers
To add or subtract two complex numbers, you add or subtract the real parts and the
imaginary parts.
(@a+bi) +(c+id) =(@a+c) + (b +dji.
(@+bi) - (c+id) =(a-c) + (b- d)i.
Example 1:
(3-5)+(6+7)=(3+6)+(-5+7)i=9+2i.
(3-5)-(6+7)=3-6)+(-5-7)i=-3-12i.

Product and Quotient Theorems
The advantage of polar form is that multiplication and divison are easier to accormplish.

Product Theorem
(ricis@1)(r2cis@2) = riracis(01 + 602)

Quotient Theorem
(i"l CiSQl) _Fl

(racisf2) HCiS(Gl —62)

The advantage of usng polar form will become even more pronounced when we
calculate powers.
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Example
Find (2cis45°)(3 cis 135°) and convert the answer to rectangular form.
Solution

(2¢is45°)(3cis 135°) = 2 - 3cis(45° + 135°)

= 6¢is180°
In rectangular form, this answer is —6.
Example
il —A0©
Find % and convert the answer to rectangular form.
Solution

% = % cis(=60° — 150°)
= 2cis(-210°)
Converting the polar result gives
2cis(-210°) = 2(cos(-210°) + isin(-210°)

= 2(cos(210°) —isin(210°))

i)

IMPEDANCE :
“Impedance is the total resistance/opposition offered by the circuit elements to the
flow of alternating or direct current!”

OR
“The impedance of a circuit is the ratio of the phasor voltage (V) to the phasor
current (I)”
It is denoted by Z. Z=VII

Fig 2.19

As complex quartity, we can write as. Z=R+jX
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It is a vector (two-dimensional) quantity consisting of two independent scalar (one-
dimensional) phenomena: resistance and reactance !

RESISTANCE:

“Resistance of an element denotes its ability to resists the flow of electric current”

OR

“It is a measure of the extent to which a substance 0pposes the movement of electrons
among its atoms”’

It is denoted by R.

The more easly the atoms give up and/or accept electrons, the lower the resistance,
which is measured in ohms.

It is observed with aternating current (AC) and also with direct current (DC).

Types of Resistance:
HIGH RESISTANCE:
Substances with High-resstance are called insulators or dielectrics, and include
materials such as polyethylene, mica, and glass.

LOW RESISTANCE:
Substances with low-resistance are called electrical conductors, and include meaterials
such as copper, siiver, and gold.

INTERMEDIATE RESISTANCE:
Substances with intermediate levels of resstance are called semiconductors, and
include meterials such assilicon, germanium, and gallium arsenide.

REACTANCE:
“Reactance is a form of opposition that electronic components exhibit to the passage of AC
(alternating current) because of capacitance or inductance”

It is denoted by X.
It is expressed in ohns.
It is observed for AC (aternating current), but not for DC (direct curren).

TYPES OF REACTANCE:

INDUCTIVE REACTANCE:

When AC (dternating current) passes through a component that contains reactance,
energy might be stored and released in the form of a magnetic field which is known as
inductive reactance.

It is denoted by +j X
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CAPACITIVE REACTANCE:

When AC (alternating current) passes through a component that contains reactance,
energy might be stored and released in the form of an eectric field which is known as
capacitive reactance.

It is denoted by -] Xc

EXPLANATION:

Reactance is conventionally multiplied by the postive square root of -1, which is the
unit imaginary number caled thej operator, to expressZas aconmplex number of the
formR+ jX_ (when the net reactance is inductive) or R- jXc (when the net reactance is
capacitive).

ADMITTANCE:
“Admittance is the allowance of circuit elements to the flow of alternating current or
direct current *.

OR
“It is the inverse of impedance”
It is denoted by Y.

We can write as:
Y=1/Z=IN

As complex quantity, we can write as.
Y=G+|B

Admittance is a vector quantity comprised of two independent scalars
phenomena: conductance and susceptance

CONDUCTANCE:
“Conductance is the ability of an element to conduct electric current.”
OR
“It is the inverse of resistance”
It is denoted by G.
G=1R

The more easly the charge carriers move in response to a given applied electric
potertial, the higher the conductance, which is expressed in positive real-number (Siemens)
or (Mhos).

Conductance is observed with AC and also with direct current DC.

SUSCEPTANCE:
“Susceptance is an expression of the readiness with which an electronic component,
circuit, or system releases stored energy as the current and voltage fluctuate”
OR
“It is a reciprocal of reactance”
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It is denoted by B.

B=1/X
Susceptance is expressed in imaginary number Siemens.
Susceptance is observed with AC, but not for DC.

TYPES OF SUSCEPTANCE:
INUDUCTIVE SUSCEPTANCE:

When AC (alternating current) passes through a component that contains susceptance,
energy might be stored and released in the form of a magnetic field which is known is
inductive susceptance.

It is denoted by - jB

CAPACITIVE SUSCEPTANCE:

When AC (alternating current) passes through a component that contains susceptance,
energy might be stored and released in the form of an electric field which is known is
capacitive susceptance.

It is denoted by + B¢

EXPLANATION:

Admittance is the wvector sum of conductance and susceptance. Susceptance is
conventionally multiplied by the postive square root of -1, the unit imaginary number called
symbolized byj, to expressYas a complex quantity G - jB | (when the net susceptance is
inductive) or G + B ¢ (when the net susceptance is capacitive).

In paralel circuits, conductance and susceptance add together independently to yield
the composite admittance. In series circuits, conductance and susceptance combine in a more
complicated manner. In these gtuations, it is easer to convert conductance to resistance,
susceptance to reactance, and then calculate the composite impedance.

| mpedance & Admittance:

IMPEDENCE ADMITTANCE
ELEMENT
Z=VII Y =INV
R ZR=R YR= 1R
L ZL= jwL YL= LjwL
C ZC= 1jwC YC= jwC

EEE - NBKRIST
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UNIT -1l
Single Phase AC Circuits: Concept of Active and reactive power, power factor —power triangle.
Examples Steady state Analysis of R, L and C elements (in series, parallel and series parallel
combinations) —with sinusoidal Excitation - Phasor diagrams-Examples

Power:
In an AC circuit, the various powers can be classified as
1. Real or Active power or Average power.
2. Reactive power
3. Apparent power
Real or active power in an AC circuit is the power that does useful work in the
circuit. Reactive power flows in an AC circuit but does not do any useful work. Apparent power is the
total power in an AC circuit.

[Cos®

\%\|* V

|Sin®
Fig 3.1

Instantaneous Power:
The instantaneous power is product of instantaneous values of current and voltages and it can be
derived as follows

P=vi

p = Vpsin(wt + 0,)* L,sin(wt + 6;)

From trigonometric expression:

cos(A — B) — cos(A + B) = 2sin(A) sin(B)

= —mem (cos(6, — 6;) — cos2wt + 6, + 6;))

p= —COS(B —-0;)— cos(th)

The instantaneous power consists of two terms. The first term is called as the constant power term
and the second term is called as the fluctuating power term.

Average Power:
From instantaneous power we can find average power over one cycle as following.

— [} (™ cos (B, — ;) — 2 cos(2wt + 6, + 6,))d(wt)

1 (Viplm 1 r2 Vinlm
P =1 (2 cos(9, — 6;) * (27 — 0)) — = [ — 2% cos(2wt) d(wt)

erm
P =—"cos(08, —06;) = T J‘ = Vems * Igmscos(6, — 6;)

As seen above the average power is the product of the RMS voltage and the RMS current.

Real Power:

The power due to the active component of current is called as the active power or real power. It is
denoted by P.

P =V xIcos(®) = I*?Rcos(0)

EEE - NBKRIST Page 1



Basic Electrical Sciences - Unit: 3

Real power is the power that does useful power. It is the power that is consumed by the resistance.
The unit for real power is Watt (W).
Reactive Power:
The power due to the reactive component of current is called as the reactive power. It is denoted by Q.
Q =V = Isin(@) = 12X, sin(®)
Reactive power does not do any useful work. It is the circulating power in the L and C components.
The unit for reactive power is Volt Amperes Reactive (VAR).
Apparent Power:
The apparent power is the total power in the circuit. It is denoted by S.
S=VI=1IZ
S=4/P?+Q?
The unit for apparent power is Volt Amperes (VA).

Power Triangle:
From the impedance triangle, another triangle called the power triangle can be derived as shown.
wlk

wh

7 122 S
12X
D . ® J D
R 2R P
Fig.3.2a Fig.3.2b Fig3.2c

The power triangle is right angled triangle with P and Q as two sides and S as the hypotenuse.
The angle between the base and hypotenuse is ®. The power triangle enables us to calculate the
following things.

Apparent Power § = ,/P? 4+ (02

P
Power factor = cos(Q) =— =
Q Apparent power

Real power

The power Factor in an AC circuit can be calculated by any one of the following Methods

= Cosine of angle betweenV and |
Resistance _ R

Impedance zZ

Real power

Apparent power

Single phase circuits with Sinusoidal AC excitation
Pure Resistance

Consider a perfect (pure) resistor, connected to an a.c. supply, as shown in Fig. 3.3. The current
flowing at any instant is directly proportional to the instantaneous applied voltage, and inversely
proportional to the resistance value. The voltage is varying sinusoidally, and the resistance is a
constant value. Thus the current flow will also be sinusoidal, and will be in phase with the applied
voltage. This can be written as follows
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|
-
-

i =— amp

R

but, v =V  sinwt volt
v @ L:| R V
R

therefore, i = sin @t amp

but, i = I, sinwt amp

Fig.3.3
Hence,

% %
I, = % amp,orl = 2 amp

The relevant waveform and phasor diagrams are shown in Figs. 3.4a. and 3.4b. respectively.

(rad)

(b)

(a)

Fig.3.4
The instantaneous power ( p) is given by the product of the instantaneous values of voltage and
current. Thus p = vi. The waveform diagram is shown in Fig.3.4a. From this diagram, it is obvious
that the power reaches its maximum and minimum values at the same time as both voltage and
current. Therefore

P =V

m m-m

VZ
hence, P = VI = [?R = = watt

Note: When calculating the power, the r.m.s.values must be used.
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average
power

Fig.3.5
From these results, we can conclude that a pure resistor, in an a.c. circuit, behaves in exactly the same
way as in the equivalent d.c. circuit.

Pure Inductance
Consider a pure inductor, connected to an a.c. supply, as shown in Fig.3.6.

|
-
—

J (Y o| It

Fig.3.6
An alternating current will now flow through the circuit. Since the current is continuously changing,
then a back emf, e will be induced across the inductor. In this case, e will be exactly equal and
opposite to the applied voltage, v. the equation for this back emf is
e=—L E volt
dr

E will have its maximum values when the rate of change of current, d i/d t, is at its maximum values.
These maximum rates of change occur as the current waveform passes through the zero position. The
related waveforms are shown in Fig. 3.7 a . From this waveform diagram, it may be seen that the
applied voltage, V leads the circuit current, I, by = /2 rad, or 90°. The corresponding phasor diagram
is shown in Fig. 3.7 b.
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Fig.3.7

N ot
(rad)

Fig.3.7c

Inductive Reactance
Inductive reactance is defined as the opposition offered to the flow of a.c., by a perfect inductor. It is
measured in ohms, and the quantity symbol is X L
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e = —JLE volt, and e = —v
dr

therefore, v = L% volt

. . d i
Now, i = [, sin wt amp, so,v = L — ([, sinwi)
dr
therefore, v = wlLl,, cos wt
attimer=0,v=1V,; andcoswr=1

hence, V,, = wLl,; and dividing by [,
‘{:H' V
I/ 1

m

= wl ohm

s0, inductive reactance is:

X; = oL = 2nfL ohm

Pure Capacitance

Consider a perfect capacitor, connected to an a.c. supply, as shown in Fig.3.8a. The charge on the
capacitor is directly proportional to the p.d. across it. Thus, when the voltage is at its maximum, so too
will be the charge, and so on. The waveform for the capacitor charge will therefore be in phase with
the voltage. Current is the rate of change of charge. This means that when the rate of change of charge
is a maximum, then the current will be at a maximum, and so on.. The resulting waveforms are shown
in Fig.3.8b. It may therefore be seen that the current now leads the voltage by n/2 rad, or 90°.

I
-
r

. |
. Ve 2
v q :: ¢ ’ \ ) ot
K
©
(®) v
(@)
Fig.3.8
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Fig.3.8d

Capacitive Reactance(X ¢)
It is defined as the opposition offered to the flow of a.c. through a perfect capacitor

dg

g = vC coulomb; andi= I amp
'}
therefore, i = C d_V
dr
and since v = V_ sinwt volt, then
. d .
i=C—(V, sinwr)
dr
= wCV, cosal
whentimer=0,/=1[ :and coswt = 1
therefore, I, = oCV,
v
and —% = E = L ohm
I, I oC
capacity reactance,
1 1
ANEES ohm
wC 2afC

Impedance
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This is the total opposition, offered to the flow of a.c. current, by a circuit that contains both resistance
and reactance. It is measured in ohms, and has the quantity symbol Z.

V
Thus, Z = — ohm
I
Where V is the circuit applied voltage, and I is the resulting circuit current.

Inductance and Resistance in Series

A pure resistor and a pure inductor are shown connected in series in Fig....... The circuit current, I,
will produce the p.d. V R across the resistor, due to its resistance, R. Similarly, the p.d. V | results
from the inductor’s opposition, the inductive reactance, X . Thus, the only circuit quantity that is
common, to both the resistor and the inductor, is the circuit current, 1. For this reason, the current is
chosen as the reference phasor.

R L
1 I Y VYTV e
[
|
[
- > >
Vg Vi
LA
v
B i
O o ®
Fig.3.9

The p.d. across the resistor will be in phase with the current through it (@ = 0). The p.d. across the
inductor will lead the current by 90° ( @ = 90°). The total applied voltage, V, will be the phasor sum
of V g and V .. This last statement may be considered as the ¢ a.c. Version’ of Kirchhoff’s voltage
law. In other words, the term ‘ phasor sum ’ has replaced the term ‘algebraic sum ’ , as used in d.c.
circuits. The resulting phasor diagram is shown in Fig.3.10. The angle @, shown on this diagram, is
the angle between the circuit applied voltage, V,and the circuit current, LIt is therefore known as the
circuit phase angle.

||qu j[ ------ \") k

Y
=4

Fig.3.10
The applied voltage Vis the phasor sum of the circuit p.d.s. These p.d.s form horizontal and vertical
components.
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VZ=VZ+V}?
Now, Vp = IR; V; = IX;; and V = [Z volt

and substituting these into equation

we have:
(IZ)* = (IR)* + UXL)2

and dividing through by I* we have:
72 =R’ + X}

therefore, Z = \|R? + X} ohm

From the last equation, it may be seen that Z, R and X, also form a right-angled triangle. This is
known as the impedance triangle, and is shown in Fig.3.11.

H
Fig.3.11
From both the voltage and impedance triangles, the following expressions for the circuit phase angle,

@, are obtained:

é R Vg
CoOs p=—=—
VA Vv
X V
or,singp=-Lt=_"*%L
Z Vv
X 1%
or,tan p = L =_L
R Vz

Resistance and Capacitance in Series
Figure 3.12 shows a pure capacitor and resistor connected in series, across an a.c. supply. Again,

being a series circuit, the circuit current is common to both components. Each will have a p.d.
developed. In this case however, the p.d. across the capacitor will lag the current by 90°.
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R C
— | | |
| [ 1
|
|
- >l >
Vg Ve
Al
N A4 -
O f Hz O
Fig.3.12
V,
Z > | VR
¢' 1 ¢,
1
]
I
1
1
!
1
1 (
Vv V
vci__________'v ©
() (b)
Fig.3.13

The voltage and impedance triangles of RC circuit are shown in Figs.3.13. and .3.14.

H L.
0
z Xe
y
Fig.3.14
The following equations result:
Z = ,fRZ + X% ohm
R
=cos™! —
¢ Z
- Xe _ Ve
sin Q@ = — = —
¢ Z Vv
and tan ¢ = = = Ye
R Ve
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Resistance, Inductance and Capacitance in Series
These three elements, connected in series, are shown in Fig. 3.15. Of the three p.d.s, Vr will be in

phase with the current I, V_ will lead I by 90°, and V¢ will lag I by 90°. The associated phasor
diagram is shown in Fig.3.16.

R L C
I I | |
| |
| |
- R > >
Vg Vi Ve
(A
A
e :
O fHz O
Fig.3.15
VA

Ve Y

Fig.3.16

The applied voltage V is the phasor sum of the circuit p.d.s. These p.d.s form horizontal and vertical
components.

V2 = V2 +(V, — V.2
but, V = IZ, V, = IR, V, = IX, and V. = IX,. volt
therefore, (IZ)*> = (IR)*> + (IX, — IX.)?
hence, Z> = R* + (X, — X, )?

and, Z = \[R? + (X, — X¢)* ohm

The associated impedance triangle is shown in Fig.3.17. Note that if X ¢ X |, then the circuit phase
angle ¢ will be lagging, instead of leading as shown.
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. R . X, — X-
cos ¢ = —; sinp = ——;
¢ Z ' Z
X, —X
and tan ¢p = = —C€
R
Z
(XL —Xc)
¢
.
H
Fig.3.17
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NETWORK TOPOLOGY
When all the elements in a network are replaces by lines with circles or dots at both ends,
configuration is called the graph of the network.

Graph: A graph is a collection of nodes joined by edges (line segments), the fig. 4.1 shows a
small graph.

A graph with n = 4 nodes and m = 5 edges

Fig. 4.1
Directed (or Oriented) graph:- A graph is said to be directed (or oriented ) when all the
nodes and branches are numbered or direction assigned to the branches by arrow.

The graph of Fig 4 1with a direction on each edge.
Fig. 4.2

Sub graph:- A graph Gs said to be sub-graph of a graph G if every node of Gs is a hode of G
and every branch of Gs is also a branch of G.

Sub Graph of the Fig 4.2

Fig. 4.3

Connected Graph:- When at least one path along branches between every pair of a graph
exits , it is called a connected graph

A. Terminology used in network graph:-

(i) Path:-A sequence of branches traversed in going from one node to another is called a
path.

(i)  Node:-A node point is defined as an end point of a line segment and exits at the
junction between two branches or at the end of an isolated branch.

(iii) Degree of a node: - It is the no. of branches incident to it. Example for Degree of node
as shown in fig. 4.4

2-degree 3-degree
Fig. 4.4
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(iv) Tree: - It is a connected sub graph with no closed loops. It has only one path between
any pair of nodes. A Graph has many trees. Some of the trees of graph shown in fig.

Fig. 4.5 some of the Trees of Graph shown in fig. 4.1

Properties of a Tree-

(i) It consists of all the nodes of the graph.

(ii) If the graph has N nodes, then the tree has (N-1) branch.

(iii) There will be no closed path in a tree.

(iv) There can be many possible different trees for a given graph depending on the no. of
nodes and branches.

(v) Co-Tree: collection of branches that are not part of the tree.

(vi) Tree branch (Twig):- It is the branch of a tree. It is also named as twig.
(vii) Tree link (or chord):-It is the branch of a co-tree.

(viii) Loop:- This is a closed path in a graph.

Relation between twigs and links-

Let N=no. of nodes

L= total no. of links

B= total no. of branches

No. of twigs= N-1

Then, L= B-(N-1)
Incidence matrix (Node-Incidence Matrix):- Any oriented graph can be described
completely in a compact matrix form. Here we specify the orientation of each branch in the
graph and the nodes at which this branch is incident. This matrix is called incident matrix.
When one row is completely deleted from the matrix the remaining matrix is called a
reduced incidence matrix.

FORMATION OF INCIDENCE MATRIX:-
» This matrix shows which branch is incident to which node.

« Each row of the matrix being representing the corresponding node of the graph.
 Each column corresponds to a branch.

« If a graph contain N- nodes and B branches then the size of the incidence matrix [A] will be
NXB.
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A. Procedure:-

(1) If the branch j is incident at the node | and oriented away from the node, aj; =1. In other
words, when ajj =1, branch j leaves away node i.

(i) If branch j is incident at node j and is oriented towards node i, aij =-1. In other words j
enters node i.

(iii) If branch j is not incident at node i. ajj =0.
The complete set of incidence matrix is called augmented incidence matrix.

Example:

1 2 3 4 5 6

0 0o 0 0 -1 -1 -1

4 = 1 1 1 0 1 0 0
’ 2 0o -1 1 0 1 0
31 -1 0 -1 0 0 1

Isomorphism:- It is the property between two graphs so that both have got same incidence
matrix.

Cut-Set:- It is that set of elements or branches of a graph that separated two parts of a
graph(network). If any branch of the cut-set is not removed, the network remains connected.

Example: cut-Sets: i) {f, b, d, c} ii) {f, a, c} iii) {c, d, e} and
iv) {a, b, d}
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Basic cutest: it is a cut set containing only one tree branch.

Example:

So, there are t basic cutsets in a graph.

In this example, the basic cutsets are
{1,3,6}
{2,3,5}
{4,507}

!

tree branches

The importance of basic cutsets is the L+i;—-1g = 0
formulation of independent KCL equations: Ih—Iy—1; = 0
Li+ L+l = 0

Basic cutset matrix (Q-matrix):

e The Q-matrix describes the way the basic cutset is chosen.

e Each column corresponds to a branch (b

columns).

e Each row corresponds to a basic cutset (t rows).

Construction
For each row:

1. Puta “+1” in the entry corresponding to the cutset tree branch.
2. Put a “0” in the entry corresponding to other tree branches.

3. Puta “+1” or “~1” in the entry corresponding to each cutset co-tree branch; “+” if it is

consistent with the tree branch direction and “— otherwise.

1 2 4 3 5 6

1 1 0 0 1 0 —1

Q@ = 2 o1 0f—-1 -1 0

4 0 0 1 0 1 1
Q=[I|Q1]

Basic loop: It is a loop containing only one co-tree branch.

Example:

DEPARTMENT OF EEE - NBKRIST
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The importance of basic loops is the formulation of

independent KVL equations:

i+ Va4V = 0
Vet Vs—Vy = 0
A-Vi-Vs = 0

Basic loop matrix (B-matrix):

e The B-matrix describes the way the basic loop is chosen.
e Each column corresponds to a branch (b columns).
e Each row corresponds to a basic loop (b-t rows).

Construction

1. For each row: Put a “+1” in the entry corresponding to the loop co-tree branch.

2. Puta “0” in the entry corresponding to other co-tree branches.

3. Puta “+1” or “~1” in the entry corresponding to each loop tree branch; “+” if it is

consistent with the co-tree branch direction and “— otherwise.

1 2 4 3 5 6
3 [ -1 1 o|l1 0o
= 5 01 —1|0 1 O
6 1 0 —1f{0 0 1
|B=[5,111]
Relationship between Q and B
1 2 4 e I 1 2 4 3 5 6
1|1 00 0 -1 3| -1 1 0f1 00
G = 21010 -1 0 H = 4 01 =1]0 1 0
11001 11 f I 0 =1|{0 0 1
Q=[1]¢] B=[511]
It is always true that Q, =—B,T or B, =-Q,T

Thus, once we have Q, we know B, and vice versa.

Tie-Set:- It is a set of branches forming a loop through which link current flows.
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Example:

Tie-Sets :{ 1, 2, 3}, {2, 4, 5}, {1, 4, 6}
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Duality and Dual net works

Duals: Two circuits are said to be duals of one another if they are described by the same
characterizing equations with the dual pairs interchanged.

(Or) Two networks are said to be duals, if mesh equations characterize one of them has the
same mathematical form as the nodal equations that characterize the other.

Principle of duality: Identical behavior patterns observed between voltage and currents,
between two independent circuits illustrate the principle of duality.

Example:

MV

R1

CT) V() c1 =

Mesh > KVL > -V+iR +Z [idt=0
1

Procedure to Construct Dual Circuits

- 1.
V=IR+=[idt

) iw Zoi=g; <

Nodal > KCL> -1+V Gy [ vdt
1

T+ L
I=VG Llfvdt

Dual Pairs

Resistance (R)

Conductance (G)

Inductance (L)

Capacitance (C)

\oltage (V) Current (i)
\oltage Source Current Source
v(t) i(t)
Vsinot Icosmt

Node Mesh/Loop
Series Path Parallel Path
Open Circuit Short Circuit
KVL KCL

Thevenin Norton

Switch in series(getting closed) | Switch in parallel (getting opened)

1. Place a node at the center of each mesh of the circuit.

2. Place a reference node (ground) outside of the circuit.

3. Draw lines between nodes such that each line crosses an element.
4. Replace the element by its dual pair.
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5. Determine the polarity of the voltage source and direction of the current source.

A voltage source that produces a positive mesh current has as its dual a current source
that forces current to flow from the reference ground to the node associated with that mesh.

Example:
Ra Ca
Wy ' 1
Tk 50uF

4N —
- — Rb §4k MUY La Re §1k C\J/ 20mA

Follow the first three steps

Follow the 4™ step replace the elements by its dual pairs

Component in Original circuit | Its Dual

Voltage source (4 V) Current source (4 A)

Resistor Ra (1 kW) Conductor R1 (1/1kW =1 mW)
Resistor Rb (4 kW) Conductor R2 (1/4kW = 0.25 mW)
Resistor Rc (4 kW) Conductor R3 (1/1kW =1 mW)
Inductor La (3 mH) Capacitor C1 (3 mF)

Capacitor Ca (50 mF) Inductor L1 (50 mH)

Current Source (20 mA) Voltage source (20 mV)

Follow the 5% step
e In the original circuit:
® The voltage source forces current to flow towards Ra.
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e |ts dual should force current to flow from the reference ground to the
node that is shared by the current source and R1, the dual of Ra.
e The current source causes current to flow from the node where Rc is

connected towards the other meshes.
e |ts dual should cause current to flow from the node between it and R3

to distributed node (reference) of the rest of the circuit.

Draw Dual Circuit
Ra

Its dual circuit is

R2 C1 R3
AAA | AV
3mF im
0.25m
L1 -4 20mv

@D A § ? r; 50uH =
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Nodal Analysis:

The aim of nodal analysis is to determine the voltage at each node relative to the
reference node (or ground). Once you have done this you can easily work out anything else
you need.

The procedure for analyzing a circuit with the node method is based on the following steps.
1. Clearly label all circuit parameters and distinguish the unknown parameters from the
known.
2. ldentify all nodes of the circuit.
3. Select a node as the reference node also called the ground and assign to it a potential of
OVolts. all other voltages in the circuit are measured with respect to the reference node.
There are a few general guidelines that for the selection of the reference node.
i) A useful reference node is one which has the largest number of elements connected to
it.
i) A useful reference node is one which is connected to the maximum number of voltage
sources.
4. Label the voltages at all other nodes.
5. Assign and label polarities.
6. Apply KCL at each node and express the branch currents in terms of the node voltages.
7. Solve the resulting simultaneous equations for the node voltages.
8. Now that the node voltages are known, the branch currents may be obtained from Ohm’s
law.

Example: Determine the current 11 in the following circuit

10 £2 200 nQ
I N S E———
| S | S|

10 w e Otw

Sol.
1. Label all circuit parameters and distinguish the unknown parameters from the known.
2. ldentify all nodes of the circuit and label node voltages.
3. Select a node as the reference node.

V=50 10Q2 V 200 V. 0 Q V=100
1= — 3 — £ — 4=
—_— — —

50 \'T () Reference 150 .’ll 250 C) T 100 V

node

4. Apply KCL at node 2(V2) and 3(Vs)
50-V, V,-V, 0-V,
4 + =

10 20 15 -1
Vo -V 100-V; 0-Vo o
20 30 25 2
Solving the above two equations gives
V2=3234V
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V3=40.14V

and the required current is given by
V3 4044V
250 25Q

1

Nodal analysis with floating voltage sources (or) The Supernode.

If a voltage source is not connected to the reference node it is called a floating voltage
source.
In the circuit of Figure 6 the voltage source Vy is not connected to the reference node and thus it
is a floating voltage source.

supernode
. Ve .
R1 ' n2 = n3
ni 4 1 — = * .
* 1—b~m "vz '||| va) .
i 1~
i ,21*5 +
| i2
= T _?RE ! ,}Rﬂ
L ]
.

Figure 6. Circuit with a supernode.

The part of the circuit enclosed by the dotted ellipse is called a supernode. Kirchhoff’s current
law may be applied to a supernode in the same way that it is applied to any other regular node.

In our example application of KCL at the supernode gives
11=12+i3------------- 1
In term of the node voltages Equation (4.22) becomes:
Vx-v2_v2 v3
R1T R2 R3 ______. 2
The relationship between node voltages v2 and v3 is the constraint that is needed in order to
completely define the problem. The constraint is provided by the voltage source. Vy

Example:
] 12V 1
) .
+ ~ +
15 ACD vaS6Q 35 A vb§39

X
Determine the values of the node voltages, A and v, for this circuit.

Sol:
Identify the supernode corresponding to the voltage source(Shown below in vowel shape).

DEPARTMENT OF EEE - NBKRIST

Page 12



BASIC ELECTRICAL SCIENCES - UNIT 4

1.5 A , 3Q

-

Apply KCL to the supernode to get
v, oV v, v,
I5=—+35+— = -20=—"+—
6 3 6 3

The voltage source voltage is related to the node voltages at by
ve—v, =12 = v,=v +12 )
By solving the 1 and 2 equations
v.=-12V and v, =0V

Mesh Analysis
The aim of this method is to find branch currents and Mesh analysis is only applicable to
a circuit that is planar.

e A planar circuit is one that can be drawn in a plane with no branches crossing one

another.
Example:
planar " nonplanar 0
_ T
S0 vy
2Q E =
Ay - i = - P i e
62 -
. = . < WA — 30
14 = § ;:— . W
L E 10 : [ 130 o s
3422 WY 08 4, 4) S,/ o 9§
= 5 T AN B0
30 = 70 = ‘ I’/ f’
i 1‘ 1

100 L2
The procedure for obtaining the solution with mesh analysis as follow the steps are given
below.
1. Clearly label all circuit parameters and distinguish the unknown parameters from the
known.
2. Identify all meshes of the circuit.
e A mesh is defined as a loop which does not contain any other loops.
3. Assign mesh currents and label polarities.
4. Apply KVL at each mesh and express the voltages in terms of the mesh currents.
5. Solve the resulting simultaneous equations for the mesh currents.
6. Now that the mesh currents are known, the voltages may be obtained from Ohm’s law.
Example:
Our circuit example has three loops but only two meshes as shown on Figure 9. Note
that we have assigned a ground potential to a certain part of the circuit.
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Figure 9. Identification of the meshes

Identify the meshes, they are mesh1 and mesh2 and assign the mesh currents, define
current direction and voltage polarities.

R1
AVATAY

g R3

-+

— mesh1 mesh2
Vs — g R2
- § R4
" 2

Figure 10. labeling mesh current direction

R1
AN
+ _
+
- §R3
+ + Iz - -
— mesh1 mesh2
Vs — §R2 n ng +
— _ + §R4
7} 12 -
Figure 11. Sub-circuit for meshl Figure 12. Sub-circuit for mesh2

Apply KVL to mesh1 and mesh2 write the KVL equations as follows

1MR1+(11-12)R2 - Vs =0 —eeee. 1
12(R3+R4)+(12-11)R2=0 ____. 2
Rewrite the equations 1 and 2
I1(R1+R2)-12R2=Vs
-1MR2+12(R2+R3+R4)=0| _______ 3

Solve the equation for the mesh currents 11 and 12
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Magnetically Coupled Circuits

The circuits we have considered so far may be regarded as conductively coupled,
because one loop affects the neighboring loop through current conduction. When two loops
with or without contacts between them affect each other through the magnetic field generated
by one of them, they are said to be magnetically coupled.

The transformer is an electrical device designed on the basis of the concept of
magnetic coupling. It uses magnetically coupled coils to transfer energy from one circuit to
another. Transformers are key circuit elements.

Self Inductance
Self inductance is the ration between the induced Electro Motive Force (EMF) across

a coil to the rate of change of current through this coil. Self inductance is related term to self
induction phenomenon. Because of self induction self inductance generates. Self-inductance
or Co-efficient of Self-induction is denoted as L. Its unit is Henry (H). First we have to know
what self induction is. Self induction is the phenomenon by which in a coil a change in
electric current produces an induced Electro Motive Force across this coil itself. This induced
Electro Motive Force (g) across this coil is proportional to the current changing rate. The
higher the rate of change in current, the higher the value of EMF.

We can write that,

£ X da or, € = LE
dat’ 7 T dt
L :% = self inductance or co— ef ficient of sel f induction
dt
dl
£ = —LE

But the actual equation is This Induced EMF across this coil is always opposite to the
direction of the rate of change of current as per Lenz’s Law.

When current (1) flows through a coil some electric flux produces inside the coil in
the direction of the current flowing. At that moment of self induction phenomenon, the
induced EMF generates to oppose this rate of change of current in that coil. So their values
are same but sign differs. Look at the figure below.

) Flux Lines (?)

| "induced EMF_-

Switch Battery
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Take a closer look at a coil that is carrying current. The magnetic field forms
concentric loops that surround the wire and join to form larger loops that surround the coil.
When the current increases in one loop the expanding magnetic field will cut across some or
all of the neighboring loops of wire, inducing a voltage in these loops.

Induced Current
(from the changing magnetic field)

Magnetic Field [
(from the primary current) LT —}
) nduced Current
Opposes
Primary Current

Primary Current

AC

Mutual Inductance

Mutual Inductance is the ratio between induced Electro Motive Force across a coil
to the rate of change of current of another adjacent coil in such a way that two coils are in
possibility of flux linkage.Mutual induction is a phenomenon when a coil gets induced in
EMF across it due to rate of change current in adjacent coil in such a way that the flux of one
coil current gets linkage of another coil. Mutual inductance is denoted as ( M ), it is called co-
efficient of Mutual Induction between two coils.

Mutual inductance for two coils gives the same value when they are in mutual induction
with each other. Induction in one coil due to its own rate of change of current is called self
inductance (L), but due to rate of change of current of adjacent coil it gives mutual
inductance (M).

From the above figure, first coil carries current i1 and its self inductance is Li. Along with its
self inductance it has to face mutual induction due to rate of change of current i2 in the second
coil. Same case happens in the second coil also. Dot convention is used to mark the polarity
of the mutual induction. Suppose two coils are placed nearby.
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Coil 2

Coil 1 carries Iy current having N1 number of turn. Now the flux density created by the coil 1
is B1. Coil 2 with N2 number of turn gets linked with this flux from coil 1. So flux linkage in
coil 2is N2 . @21 [@21 is called leakage flux in coil 2 due to coil 1].

Consider @21 is also changing with respect to time, so an EMF appears across coil 2. This
EMF is called mutually induced EMF.

dw
€, = —Nos. P21 volt.

dl
Again, €, = — My, . — volt.

’ dt

Now it can be written from these equations,
M. — N2
21 I‘]_

Again, coil 1 gets induced by flux from coil 2 due to current 12 in the coil 2.

In same manner it can be written that for coil 1.

P31 N>
I,

My, =

However, using the reciprocity theorem which combines Ampere’s law and the Biot-Savart
law, one may show that the constants are equal. i.e. M1z = M2 = M. M is the mutual
inductance for both coil in Henry. The value of mutual inductance is a function of the self-
inductances Suppose two coils are place nearby such that they are in mutual induction. L1
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and L, are co-efficient of self-induction of them. M is the mutual inductance.
N2 E].A]_ N2Z. Q.Aa
Now, L, = % and L, = %.‘,ﬂf& L, and M a L,

1 2
So, M? a Ly. Ly

OT‘, M? = k. Li. Ly

OT] .ﬂff = F{.\/ﬂfl ﬂ'fz

Here, K is called co-efficient of coupling and it is defined as the ratio of mutual inductance
actually present between the two coils to the maximum possible value. If the flux due to first
coil completely links with second coil, then kK = 1, then two coils are tightly coupled. Again if
no linkage at all then K = 0 and hence two coils are magnetically isolated. Merits and demerits
of mutual inductance: Due to mutual inductance, transformer establishes its operating
principle. But due to mutual inductance, in any circuit having inductors, has to face extra
voltage drop.

Dot Convention

The self-inductance of a circuit is intimately associated with the magnetic field linking the
circuit. The self-inductance emf may be thought of as the emf induced in the circuit by a
magnetic field produced by the circuit current.

O O

Figure 2: Schematic Representation
of Mutual Inductance

Fig .5.2

Since a magnetic field exists in the region around the current that develops it, there is also
may a possibility that an emf be induced in the other circuits linked by the field. Two circuits
linked by the same magnetic field are said to be coupled to each other. The circuit element
used to represent magnetic coupling is shown in Figure 5.2 and is called mutual inductance.
It is represented by symbol M and is measured in henrys. The volt-ampere relationship is one
which gives the induced emf in one circuit by a current in another and is given as

di
o= M
“ @t
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0 - i o o—" M o
e v u[e e P I .
ng ?L_ _mE L'% EL_ _ 1;‘;'
L ]
o 0 o o
(er)
(ch
h
— M .
o o] e
s [ + o A o
s
di
f_|§ EL_ =-M dr ng éi M ;|||f|
r * 8] - *
o o

()
(e}

How to find out Leq in a circuit having mutual inductance with dot convention Suppose
two coils are in series with same place dot.

L1 L2
@fm ® o

* A

L'l I-2

Mutual inductance between them is positive.
SG] Lﬂq B I"l + Lz + 2}[{12

Suppose two coils are in series with opposite place dot.

L, L,
jﬁrm e
3 A
; M12
L, L,
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SG, Lﬁ'-'f — I"l + L2 — Eﬂflg

When a few numbers of inductors are in series with mutual inductances.

L 1 L 2 L 3
J{});}:’ki —HEET e ® AT
4y k A A ‘
Ny qu My . ‘a
Lo =1
oq e =
Mis Mus ‘
« )
- £111R
L 5

qu L L]_ ‘I— LQ —|— L:_; —|— L4 + L.Er - 2.114-12 + 2.1“14-13 + 2.!":{!-15 — 211{{23 —|— 24’1’1-45

Inductor in parallel

Let us consider two coils of inductance L1 and L. connected in parallel as shown in figure 8

Figure 8: Inductor in Parallel

The supply circuit divides into two components i: and i.following through the coils.

ie. I = 'El'l + é‘?
div diy  diy
==
or clt dt dt
dr
| epa= L=
Self-induced emf in coil A, dt

Mutually induced emf in coil A due to change of current in coil B,
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d1
Eryfa = — 1l_lrd—;

Where M is the mutual coefficient of inductance

Resultant emf induced in coil A,

dil dlf)
=€+ €, L + M—
era+eya=—(L1—- a’t 7 )
Similarly, resultant emf induced in coil B
di dr
_ (L2 4 M2

dt dt

As both coils are connected in parallel, therefore, resultant emf induced in both of the coils

must be equal

dll diy dh dll
Lot o M2 =24 ML
U Mg o Mg

dll dla
Li—M Lo — M
o (L1 )dt (Lo ) — g
drq B [Lg — M . dy
odt  Ly—Mdt (an
diy diy (L= M di
o dt T at L —M @

di _ LitLy— zﬁ-f)d-zig

dt Li—M dt . (12)
If L is the equivalent inductance of the combination then induced emf
Ld L
dt

Since induced emf in parallel combination = Induced emf in either of the coils.
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di diy dis
P S N Y e
T T E

Or
diy . dis
Li— +M=*=
Py
di
dt
diy Ly — M. diy di L+ Ly —2M di

Substituting dt "Ly — M dt from equation (11) and df

equation (12) we get
Lo — M . diy dis
- © 4+ M—=
Li—AMdt " dt
[L1 —+ Lg — 2M . d'i-g
Li—M 't

Ly
L =

I — LiLy — L{M+ LM — M?
or N L1 —+ Lg —2M

L Ll - A
or N L1 —+ Lg —2M

When mutual flux helps the individual flux

L_.&@—ﬂﬁ
or B Li+ Lo+ 2M

When mutual flux opposes the individual flux.
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Resonance & Locus Diagram

In many electrical circuits, resonance is a
very important phenomenon. The study of
resonance is very useful, particularly in the
area of communications. For example, the
ability of a radio receiver to select a certain
frequency, transmitted by a station and to
eliminate frequencies from other stations
is based on the principle of resonance. In a
series RLC circuit, the current lags behind,
or leads the applied voltage depending upon
the values of X, and X.. X causes the total
current to lag behind the applied voltage,
while X causes the total current to lead the
applied voltage. When X; > X, the circuit is
predominantly inductive, and when X > X,

the circuit is predominantly capacitive. However, if one of the parameters of the

series RLC circuit is varied in such a way that the current in the circuit is in

phase with the applied voltage, then the circuit is said to be in resonance.

Consider the series RLC circuit shown in Fig. 8.1.
The total impedance for the series RLC circuit is

Z=R+j(X,_—X(.)=R+j[u,L__I_
wC

Z=R+j(X,_—Xcv)=R+j[mL__l_
wC

L c
g BT It It is clear from the circuit that the

current [ = Vi /Z.
The circuit is said to be in resonance
Vs if the current is in phase with the
applied voltage. In a series RLC circuit,
series resonance occurs when X, = X
Fig. 8.1 The frequency at which the resonance
occurs is called the resonant frequency.
Since X; = X, the impedance in a series RLC circuit is purely resistive. At the
resonant frequency, f,, the voltages across capacitance and inductance are equal in
magnitude. Since they are 180° out of phase with each other, they cancel each other
and, hence zero voltage appears across the LC combination.
At resonance

VR - VL — - VC —_—

X, =X, ie wL=
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1

2wf L=
2uf,.C
1
2 _
I 4wl LC
fo_ 1 _
" 2mfLC

In a series RLC circuit, resonance may be produced by varying the frequency,
keeping L and C' constant; otherwise, resonance may be produced by varying either
L or C for a fixed frequency.

Example 5.1 For the circuit shown 50 *+j25 ~J Xc
in Fig. 8.2, determine the value of S 1R {f
capacitive reactance and impedance af |
Besonance. |
S |
Ve
Fig. 8.2

Solution At resonance

Since X, = 250
1

Xe=250 . —=125
The value of impedance alm resonance is
Z=R
Z=3501)

DEPARTMENT OF EEE - NBKRIST
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The impedance of a series RLC circuit is

2
1
S— 2 - —
|z] = ‘jR +[wL

The variation of X and X, with frequency is shown in Fig. 8.4.

X =L

-

xc:.i
wC

Fig. 8.4

At zero frequency, both X and Z are infinitely large, and X, is zero because at
zero frequency the capacitor acts as an open circuit and the inductor acts as a short
circuit. As the frequency increases, X decreases and X, increases. Since X_. is larger
than X, at frequencies below the resonant frequency f, Z decreases along with X..
At resonant frequency f,, X~ = X, and Z = R. At frequencies above the resonant
frequency f,, X, is larger than X, causing Z to increase. The phase angle as a function
of frequency is shown in Fig. 8.5.

At a frequency below the resonant frequency, current leads the source voltage
because the capacitive reactance is greater than the inductive reactance. The phase
angle decreases as the frequency approaches the resonant value, and is 0° at resonance.
At frequencies above resonance, the current lags behind the source voltage, because

the inductive reactance is greater than capacitive reactance. As the frequency goes
higher, the phase angle approaches 90°.
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a
2 S RS S =
lags V,
oo 2
!, f
S Inductive
—90° capacitive /lags V
lleads V, fieads v, e
Fig. 8.5
kbl il  FoOr the circuit shown 10 @ 0.1H 10 uF
in Fig. 8.6, determine the impedance AANA—FT it .
at resonant frequency, 10 Hz above
resonant frequency., and 10 Hz below |
resonant frequency. '
|
O |
7
Vs
Fig. 8.6

Solution Resonant frequency
1

Sr = 2uJLC
- . — 159.2 Hz
2770.1x10=<10"°
At 10 Hz below 7. = 159.2 — 10 = 149.2 Hz

At 10 Hz above f, = 159.2 + 10 = 169.2 H=
Impedance at resonance is egual to R

. Z2=101%2
Capacitive reactance at 149.2 Hz is
W 1 1

' @, C 2w x<1492x10 ©° x10
. Xg, = 106.6 0
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Capacitive reactance at 169.2 Hz is
I 1
WO 2mx169.2x10%10°
oo X, = 94.06 O
Inductive reactance at 149.2 Hz is

X, = woL = 27 % 149.2 X 0.1

93.75 1}
Inductive reactance at 169.2 Hz is

Xy

-2

= w,l = 29 > 169.2 % 0.1 = 106.31 {2
Impedance at 149.2 Hz is

12| = JR? + (X, — X )

= J(10)? +(93.75 —106.6)*
=16.28 {2

Here X is greater than X} , so Z is capacitive.
Impedance at 169.2 Hz is

12| = JR® +(Xx,, — X )

— J(10)* 4 (106.31 - 94.06)°

=15.81 12
Here X; is greater than X, so £ is inductive.

VOLTAGES AND CURRENTS IN A SERIES RESONANT CIRCUIT

The variation of impedance and current with frequency is shown in Fig. 8.7.

At resonant frequency, the capacitive reactance is equal to inductive reactance,
and hence the impedance is minimum. Because of minimum impedance, maximum
current flows through the circuit. The current variation with frequency is plotted.

The voltage drop across resistance, inductance and capacitance also varies
with frequency. At /= 0, the capacitor acts as an open circuit and blocks current.
The complete source voltage appears across the capacitor. As the frequency increases,
X decreases and X, increases, causing total reactance X — X, to decrease. As a
result. the impedance decreases and the current increases. As the current increases,
Vg also increases, and both V- and F; increase.

When the frequency reaches its resonant value /. the impedance is equal to R,
and hence, the current reaches its maximum value, and Fj is at its maximum value.

As the frequency is increased above resonance, X; continues to increase and X
continues to decrease, causing the total reactance, X, — X- to increase. As a result
there is an increase in impedance and a decrease in current. As the current decreases,
Vg also decreases, and both V- and V; decrease. As the frequency becomes very high,
the current approaches zero, both ¥, and V- approach zero, and ¥, approaches V.

DEPARTMENT OF EEE - NBKRIST Page 6



BASIC ELECTRICAL SCIENCES - UNIT 6

Z

Fig. 8.7
The response of different voltages with frequency is shown in Fig. 8.8.

4
v Ve Vi

A I L
Fig. 8.8

The drop across the resistance reaches its maximum when /= f,. The maximum
voltage across the capacitor occurs at /= f_. Similarly, the maximum voltage across
the inductor occurs at /' = f.

The voltage drop across the inductor is

Vv, = IX,

where [ = -’i

Z
: wlV
l’L =
JR2+[¢»L— -2
wC

To obtain the condition for maximum voltage across the inductor, we have to take
the derivative of the above equation with respect to frequency, and make it equal to zero.

B
-
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d¥V;
P Y

If we solve for w, we obtain the value of w when F is maximum.

=0

2 W2

Ve _ d oLy R*+[m1.—-1—
dm o wiZ

—1z

2 2L 1
LV|R +w [ —== -—]
[ [ w C?
e S e Y
[
=1
R* +w?l? —5"-:'
) C‘I

From this

Rz~%+2fm Cc? =0

2LC — RAC?

Similarly, the voltage across the capacitor is

F-"',,r.:.i_’.ji'l::-:L

wC
v, = ¥ . 1
5 1 P wC
R® +|wlL — ——
[m wC]
To get maximum value ﬁ =10
dw

If we solve for w, we obtain the value of w when V- is maximum.
dv, 1 2|71 1 1
[ 2
— =wC—|R 2wl ———|| L
Y2 +[m [ [m mC][ +m1c]l

o
+ R“+[ Lm—] C=0
T e

LU0
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From this
2 1 R?
@y =——~—
2 AL
G oom ’L_R_z
e LG 2L
1 1 R?
Je=3:\Ic 2L

The maximum voltage across the capacitor occurs below the resonant frequency;
and the maximum voltage across the inductor occurs above the resonant frequency.

Example 8.4 A series circuit with R = 100, L = 0.1 Hand C = 50 pF has an
applied voltage V = 50.20° with a variable frequency. Find the resonant frequency,
the value of frequency at which maximum voltage occurs across the inductor and
the value of frequency at which maximum voltage occurs across the capacitor.

Solution The frequency at which maximum voltage occurs across the inductor is

T

e

2L

1 1
(10)* x50 x10°°

2mJ0.1x50%10~°

2x0.1
= 72.08 Hz
N 1 1 R?
Similartly  fe =Z-\7¢ 2L

_LJ 1 _(10)2
2w ¥ 0.1x50x10°% 2x0.1

= —‘—Jzooooo —500
2

= 71.08 Hz

1 ]
2nJLC  2440.1x50%107°

It is clear that the maximum voltage across the capacitor occurs below the resonant
frequency and the maximum inductor voltage occurs above the resonant frequency.

= T71.18 Hz

Resonant frequency f, =
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The bandwidth of any system is the range of frequencies for which the current or
output voltage is equal to 70.7% of its value at the resonant frequency, and it is
denoted by BW. Figure 8.9 shows the response of a series RLC circuit.

Vorl

0.707

f21=IL f

Fig. 8.9

Here the frequency f, is the frequency at which the current is 0.707 times the
current at resonant value, and it is called the lower cut-off frequency. The frequency f,
is the frequency at which the current is 0.707 times the current at resonant value
(i.e. maximum value), and is called the upper cut-off frequency. The bandwidth,
or BW, is defined as the frequency difference between f; and f,.

BW =f,~,
The unit of B is hertz (Hz).
If the current at P, is 0.707/,,,,, the impedance of the circuit at this point is V2R,
and hence
1
— -, L=R (8.1)

@,

R (8.2)

Similarly, w,L — =
Y 2 w,C

If we equate both the above equations, we get

1 1

L(w, +w,) = llm] (8.3)
Cl ww,

From Eq. 8.3, we get
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W, = —
2 1
we have w, = —
LC
w? = w,m, (8.4)

If we add Eqs 8.1 and 8.2, we get

e Ltwl—— 2R

wy C )
(w; —w))L +L[u] — 2R (8.5)
Cl wyw,
Since C = i
w L

and ww, = w?,

2
(g — oy )L + —~ ““3_,_ “1) _ap (8.6)
Lad

r

From Eq. 8.6, we have

), = 8.7
Wy — )y 7 (8.7)
R
Y 2.8
Ja— A L (8.8)
or BW =i
2wl
From Eq. 8.8, we have
. R
S h =g
R
O e
R
S = mt
The lower frequency limit  f, = f, — o (8.9)
4wl
The upper frequency limit  f, = [, +i (8.10)
4l

If we divide the equation on both sides by /., we get

- R
ﬁfﬁ=2ﬂf‘£ (8.11)
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Here an important property of a coil is defined. It is the ratio of the reactance of the
coil to its resistance. This ratio is defined as the Q of the coil. O is known as a figure of
merit, it is also called quality factor and is an indication of the quality of a coil.

X, 2ufL
2L _ = 8.12
Q R R (8.12)
If we substitute Eq. 8.11 in Eq. 8.12, we get
SH-h _ 1 (8.13)
I 0

The upper and lower cut-off frequencies are sometimes called the half-power
Jrequencies. At these frequencies the power from the source is half of the power

delivered at the resonant frequency.
At resonant frequency, the power is

2
: I
At frequency f;, the risP =|—/—=| R=
q Y.ﬁ powe 1 [JE] 5

Similarly, at frequency f;. the power is

7 2
P, —|Imax | B
- (%)
_ T R
2
The response curve in Fig. 8.9 is also called the selectivity curve of the circuit.

Selectivity indicates how well a resonant circuit responds to a certain frequency and
eliminates all other frequencies. The narrower the bandwidth, the greater the selectivity.

Determine the quality factor of a coil for the series circuit
consisting of R =104, L = 0.1 Hand C = 10 p.F

: k 7
Soluti uality factor = =1
ution Q ty Qo B

IR S : —159.2 Hz
27JLC  27+J0.1%10x10~°

At lower half power frequency, X > X

!
—2nf,L=R
mfic 2

o 2
T R++R*+4L/C

4L

At upper half power frequency X; > X

DEPARTMENT OF EEE - NBKRIST Page 12



BASIC ELECTRICAL SCIENCES - UNIT 6

1

2nf,C
2
From which f = XX+ “f :‘”"C
3 1y

Bandwidth BW = ——'
andwi fzf, s

= 21rfL 2xmwx159.2x0.1

Hence
Q= BW R 10
e to

e i
"ECT ON B! '

The quality factor, Q, is the ratio of the reactive power in the inductor or capacitor to
the true power in the resistance in series with the coil or capacitor.

The quality factor

0 =2mx maximum energy stored
energy dissipated per cycle

LI~
2
) 2
Enel’sydiSSipatedpercycle=[—[-] rRxT=1TRT
lLl
Quality factor of the coil Q=21rx722R—1-
2.7
_ 2nfL _m_._[._
R 2 cp?

Similarly, in a capacitor, the max energy stored is given by

The energy dissipated per cycle = (f/ J2R RxT
The quality factor of the capacitance circuit
[mﬂ‘ ]

—R—
2

wl 1
. f‘ — — .
In series circuits, the quality factor @ =

We have already discussed the relation between bandwidth and quality factor,

hich is 0 = 2.
which is O —
A higher value of circuit Q results in a smaller bandwidth. A lower value of 0

causes a larger bandwidth.
Page 13
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el Rt For  the 90 Q 100 puF
circuit shown in Fig. 8.10, Vv i
determine the value of Q at 1m0
resonance and bandwidth
of the circuit. 1oV
SH
Fig. 8.10

Solution The resonant frequency,

1

Iy 2mwJLC
1

2mJ5%100x10~°

= 7.12 Hz
Quality factor Q = X,/R = 2uf L/R

_ 2t x7.12%5 =224
100
Bandwidth of the circuitis BW =22 = 112 _3 178 Hz
0 224

@XID MAGNIFICATION IN RESONANCE

If we assume that the voltage applied to the series RLC circuit is V, and the current at
resonance is /, then the voltage across L is ¥V, = IX; = (V/R) o L
Similarly, the voltage across C

V

e Rt

Since Q= l/w,CR = w, L/R
where w, is the frequency at resonance.
Therefore V, = VQ

Ve=VQ

The ratio of voltage across either L or C to the voltage applied at resonance can
be defined as magnification.
Magnification = Q = V,/Vor VJ/V
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Basically, parallel resonance occurs when X, =X,. The frequency at which
resonance occurs is called the resonant frequency. When X = X, the two branch
Re % currents are equal in magnitude and

180° out of phase with each other.
Therefore, the two currents cancel each

other out, and the total current is zero.
R, X; Consider the circuit shown in Fig. 8.11.
v @ The condition for resonance occurs
when X; = X
In Fig. 8.11, the total admittance
Fig. 8.11 I |

¥ +
R, + joL  R-—(j/wC)

w?C?
R i 1/wC wlL
B T i S o L
Ri+o’l” p2, ° RE4 | [Ri+w'L
w’C? w’C?
At resonance the susceptance part becomes zero
1
Sl (8.15)
R; +w;L R(2.+—l—
wa'z
w,L|R% + T [R2+w2L2]
’ wic?| et
2| p2 S SR DY ¢ e e
w, |R- + 22 —LC[RL+w,L]
2
2020 @, L 1 5, 1
w —— e T em— —
Re ¢ I R
2ln2 L | B8 ST
o AR > R
‘”’[RC c] LC| & c]
2
1 RL—-(L/C) ®.16)

“r=JIc\R -(L/C)

The condition for resonant frequency is given by Eq. 8.16. As a special case, if
R; = R, then Eq. 8.16 becomes
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1

W = —
" JLC
1
Therefore =
% 2uaJLC
Example 8.7 E ('nid
the resonant: frequency in
the ideal parallel LC circuit .
shown in Fig. 8.12. ‘°"’§ 3 50 mH 1001
Fig. 8.12
1
Solution -
s 21r~/LC
M) (S
2150107 x0.01x10

=7117.6 Hz
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oz 1

The parallel resonant circuit is generally called a tank circuit because of the fact
that the circuit stores energy in the magnetic field of the coil and in the electric
field of the capacitor. The stored energy

—+X,

i is transferred back and forth between the
capacitor and coil and vice-versa. The tank
circuit is shown in Fig. 8.13. The circuit is

—‘;;"'—;‘x"—' said to be in resonant condition when the
. - susceptance part of admittance is zero.
S The total admittance is
RS et !
: Y= — o — (8.17)
Fig. 8.13 R +jX, —JjXc
Simplifying Eq. 8.17, we have
yR—iX,  J
Rz +X 12. Xe
R 41 X
et e
To satisfy the condition for resonance, the susceptance part is zero.
L =2 (8.18)
Xc R +X] ’
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wl
owoC=—__ 8.19)
R} +w?I? (
From Eq. 8.19, we get

R 4@ =

2
wi= _Ri
LC I?
{3 X - 520
IC I (329
The resonant frequency for the tank circuit is
_ 111 R
5 Ic 2 820

Example 8.8 For the tank circuit

10 O01H
shown in Fig. 8.14, find the resonant o - .
frequency. :
|
fé
10uF
S
10V
Fig. 8.14

Solution The resonant frequency

. 1 ~ (10)°
2mw\0.1x10x10~° (0,1)2
, ;

(10)° —(10)* = 2—;—(994.98) =158.35 Hz

The impedance of a parallel resonant circuit is maximum at the resonant frequency
and decreases at lower and higher frequencies as shown in Fig. 8.15.

DEPARTMENT OF EEE - NBKRIST
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z At very low frequencies, X is very small
4 > and X is very large, so the total impedance

: is essentially inductive. As the frequency
increases, the impedance also increases,
and the inductive reactance dominates until
the resonant frequency is reached. At this
point X; = X and the impedance is at its
maximum. As the frequency goes above
resonance, capacitive reactance dominates
and the impedance decreases.

— X > Xp —rfrﬂ-— Xz Xp —

Fig. 8.15
- Q FACTOR OF PARALLEL |

Consider the parallel RLC circuit shown in Fig. 8.16.
In the circuit shown, the condition for resonance occurs when the susceptance

part is zero.
Iy Admittance Y =G+ jB (8.22)
I i, Yo
=—+4 jwl +—
v @ R L = C 7 Jwl
—L+ 'm(:'—L (8.23)
Fig. 8.16 “rR wl '
The frequency at which resonance occurs is
m,C—L= 0 (8.24)
w L
o (8.25)
r \/’E .

The voltage and current variation with frequency is shownin Fig. 8.17. At resonant
frequency, the current is minimum.

The bandwidth, BW = f, - f|
For parallel circuit, to obtain the lower half power frequency,

1 1
PPN Gy OB - Tk 8.26
! w, L R ( )

From Eq. 8.26, we have
L =0 ' ' (8.27)

If we simplify Eq. 8.27, we get
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v & I E
vm ]
0.707 Vi
r'| fr fz f
Fig. 8.17
2
oy = — +J[ 1 ] . (8.28)
2RC 2RC LC
Similarly, to obtain the upper half power frequency
0,C—— =1 (8.29)

w,l R
From Eq. 8.29, we have

1 1 V¥
w, = + [ ] + (8.30)
2RC 2RC) | LC

Bandwidth BH = w, —wu,

~ RC
The quality factor is defined as O, = L
Ll ady
‘el
= —"= RC
O =1rrc _“r

In other words,

MAaXN MM energy stored
Energy dissipated /cycle
In the case of an inductor,

CF = v

The maximum energy stored = % Li*

2
Energy dissipated per cycle = [TIE_} = R= T
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- 2
The quality factor (O s 24w > /22(L1 l)
— R>x—
¥
2
> eaz) =
= 27 x —
Qo i
AR
2 f
_2mfLR R
w?I? wl
For a capacitor, maximum energy stored = 1/2 (C¥F?2)
v? 1
Ene dissipated percycle = PxT = SFin,
2
The quality factor Q = 2mwx —2CV")
sles -
2R f

= 27fCR = wCR

8.11

Current magnification occurs in a parallel resonant circuit. The voltage applied to the
parallel circuit, V' = IR

V
For the capacitor, [ = e IRw,C = 10,
w

r

Therefore, the quality factor O, = I, /I or I/T

The effect of variation of frequency on the reactance of the parallel circuit is shown
in Fig. 8.18.
The effect of inductive susceptance,

B, 2_1
2nfL

Inductive susceptance is inversely proportional to the frequency or w. Hence it is
represented by a rectangular hyperbola, MN. It is drawn in fourth quadrant, since B, is
negative. Capacitive susceptance, B, = 27fC. It is directly proportional to the frequency
S or w. Hence it is represented by OP, passing through the origin. Net susceptance
B = B.— B,. Itis represented by the curve JK, which is a hyperbola. At point w,, the total
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Admittance

_// -
/J ,/ M

Fig. 8.18

susceptance is zero, and resonance takes place. The variation of the admittance Y and the
current / is represented by curve V. The current will be minimum at resonant frequency.

A phasor diagram may be drawn and is expanded to develop a curve; known as a
locus. Locus diagrams are useful in determining the behaviour or response of an
RLC circuit when one of its parameters is varied while the frequency and voltage
kept constant. The magnitude and phase of the current vector in the circuit depends
upon the values of R, L, and C and frequency at the fixed source voltage. The path
traced by the terminus of the current vector when the parameters R, L or C are varied
while fand v are kept constant is called the current locus.

The term circle diagram identifies locus plots that are either circular or semi-circular
loci of the terminus (the tip of the arrow) of a current phasor or voltage phasor. Circle
diagrams are often employed as aids in analysing the operating characteristics of
circuits like equivalent circuit of transmission lines and some types of AC machines.

Locus diagrams can be also drawn for reactance, impedance, susceptance and admittance
when frequency is variable. Loci of these parameters furnish important information for use
in circuit analysis. Such plots are particularly useful in the design of electric wave filters.

Series Circuits

To discuss the basis of representing a series circuit by means of a circle diagram consider
the circuit shown in Fig. 8.19 (a). The analytical procedure is greatly simplified by
assuming that inductance elements have no resistance and
I N that capacitors have no leakage current.

The circuit under consideration has constant
reactance but variable resistance. The applied voltage
v 21? will be assumed with constant rms voltage V. The
power factor angle is.designated by 8. If R =0, [,

is obviously equal to ' and has maximum value.
Fig. 8.19 (a) Also [ lags F by 90°. Thlis. is shown in Fig. 8.19 (b).
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If R is increased from zero value, ;}1&
magnitude of [ becomes less than =

L
and 6 becomes less than 90° and finally
when the limit is reached, i.e. when R
equals to infinity, / equals to zero and
B equals to zero. It is observed that the

» tip of the current vector represenis a

Rew VX R=o ! semicircle as indicated in Fig. 8.19 (b).
Fig. 8.19 (b) n ge“ﬁ"“]
I =—
I Ix-c L zZ
X
sinf = E
v R
/? or 7= "irf.
sin B
I= M (1] £.31
Fig. 8.19 (c) =5, o (8.31)

For constant " and X, Eq. 8.31 is the
polar equation of a circle with diameter
¥ Figure 8.19 (b) shows the plot of
X
EqL. 8.31 with respect to F as reference.

The active component of the current
I, in Fig. 8.19 (b) is OJ; cos 6 which is
proportional to the power consumed in
the RL circuit. In a similar way we can
draw the loci of current if the inductive

Fig. 8.19 (d) reactance is replaced by a capacitive
reactance as shown in Fig. 8.19 (c).
The current semicirele for the RC circuit with variable R will be on the left-hand side

of the voltage vector OF with diameter ?F- as shown in Fig. 8.19 (d). The current

vector O leads ¥ by 8°. The active cumpcfnent of the current /X in Fig. 8.19 (d) is
Ol cos 8 which is proportional to the power consumed in the RC circuit.

fa) Circle Equations for an RL Circuit

Fixed reactance and variable resistance. The X-co-ordinate and ¥-co-ordinate of /, in
Fig. 8.19 (b) respectively are I, = I, sin8; I, = I, cos 8.

Where .'L=%;sinﬂz%;cusﬂzg;ﬂ':\fﬁ]d—l’f
VX X
J, =—. 2L _p. 2L 832
x=7 22 ( )
V R R
Iy ==V -—
r=7'7 -2 (8.33)
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Squaring and adding Eqs 8.32 and 8.33, we obtain

2> g2 &

Iy +1Iy = —5—— (8.34)

T TR x?
From Eq. 8.32

X
Z2=R'+ Xl =Vv.ZL
{y
: : . 2 ,2_F
.. Equation 8.34 can be writtenas [y + /[y = e Ay
Vv L
or Iy 4+1lf——1,=0
X ¥ X‘r_ X
i 2
Adding [2 ] to both sides the above equation can be written as
L
2 2
V V
I, — + 1y =|— (8.35)
2X, 2X;
Equation 8.35 represents a circle whose radius is and the co-ordinates of
L
the centre are , 0.
2X,

In a similar way we can prove that for a series RC circuit as in Fig. 8.19 (c),
with variable R, the locus of the tip of the current vector is a semi-circle and is
given by

2 FI
[;X+ ] +2= (836)

2X, Caxt

The centre has co-ordinates of —

. 0 and radius as
L 2‘;‘I'.I'.
{b) Fixed Resistance, Variable Reactance

Consider the series RL circuit with constant resistance R but variable reactance X, as
shown in Fig. 8.20 (a).

V & X'L= D
&
hpee- I
I R
WR
v Ix, :
L
X;=oa ()
Fig. 8.20 (a) Fig. 8.20 (b} -« ®
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When X; = 0; /; assumes maximum ‘nFﬂ]l.lEﬂfE and 8 = 0, the power factor of the

circuit becomes unity; as the value X] is mmseéq from zero, [, is reduced and finally
when X is o, current becomes zero and 8 will be lagging behind the voltage by 90° as
shown in Fig. 8.20 (b). The current vector describes a semicircle with diameter ¥ and
lies in the right-hand side of voltage vector OVF. The active component of the cffnTent
OI; cos B is proportional to the power consumed in the RL circuit.

Equation of Circle

) Ve
Consider Eq. 8.34 [} +[; = ————
- YT R+ X2
2 2 2 F-R
From Eq. 8.33 2% = R* + X} = — (8.37)
Substituting Eq. 8.37 in Eq. 8.34 ’
I+ I} = E.r,. (8.38)
R
v

2 2
Iy +17 =2 Iy =0

2
Adding[%] to both sides the above equation can be written as

VY (¥ Y
f§+[.r,.uﬁ] =[-ﬂ;] (8.39)

Equation 8.39 represents a circle whose radius is % and the co-ordinates of the
centre are 0; L
2R

Let the inductive reactance in Fig. 8.20 (a) be replaced by a capacitive reactance
as shown in Fig. 8.21 (a).

v
X,=0
~
f,: ’:'r
. R
> Ay VIR
4 i
v - X, _' (]
T
e o X==
Fig- 8.21 (a) Fig. 8.21 (b)
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The current semicircle of a RC circuit wnth variable X, will be on the left-hand
side of the voltage vector OV with diameter ©_ . The current vector Ol -leads V'by 6°.

R
As before, it may be proved that the equation of the circle shown in Fig. 8.21 (b) is

£

2R 2R

Example 8.9 For the circult st in 1250
Fig. 8.22 (a) plot the locus of the current, mark

the range of I for maximum and minimum values ggon

of R, and the maximum power consumed in 0 Q
the circuit. Assume X, = 25 ) and R = 50 (L.

The voitage is 200 V; 50 Hz.

Fig. 8.22 (a)

Solution Maximum value of current

200

Iy =——=8A;0=90°
25

Minimum value of current

Iin = 200 =3.777A;0 = 27.76°

J(50)* +(25)?

The locus of the current is shown in Fig. 8.22 (b).
Power consumed in the circuit is
Vi proportional to / cos 6 for constant V.
The maximum ordinate possible in the
semicircle (4B in Fig. 8.22 (b)) represents
the maximum power consumed in the
circuit. This is possible when 6 = 45°,
R under the condition power factor cos

0 =cos45° = —.
V2

Hence, the maximum powelr consumed
in the circuit =V x AB =V x -2
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Example 8.13 Draw

————,

the
locus of I, and I for the parallel
circuit shown in Fig. 8.29 (a).

— \‘
e & ~
t”‘ ‘\‘
/ \
\
o
U
1
Fig. 8.29 (b)
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—>>—AAN v din
L R Xe,

V. f >
Fig. 8.29 (a)

Solution |, leads the voltage by a fixed

: -1 X¢
angle 0, given by tan  —

R,

1, varies according to the value of X,

I, is maximum when X, = 0 and is
in phase with V

1, is zero when X, = = as shown in
Fig. 8.29 (b).
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