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Digital system

Every day digital concepts are being applied to problems that could only be solved by
analog methods several years ago. Fast and reliable solutions using digital techniques
proved the tremendous power and usefulness of digital electronics. Now a days digital
circuits are used in wide variety of industrial and consumer products such as automated
industrial machinery, pocket calculators, microprocessors, computers, digital watches, TV
games, signal processing and so on.



Digital vs Analog systems

A digital /discrete signal is a signal that can have one of a finite set of possible
values at any time.
An analog/continuous signal is a signal that can have one of an infinite number
of possible values.
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Advantages of Digital System

Ease of Design : Digital systems are easy to design than analog systems, because
digital design involves logic design, and logic design does not require special maths skill
and its behaviour can be visualized part by part.

To visualize the behaviour of analog systems is somewhat difficult. It needs the special
insights about the analog components such as capacitors, inductors and transistors used in
the analog systems.

Reproducibility of Result : The output of analog systems vary with temperature,
power-supply voltage, component aging, and other factors. So it is difficult to produce the
same result every time with same set of inputs and circuit components. This is not the
case with digital systems. They always produce exactly same results with same set of
inputs and circuit components.

Flexibility : Digital systems are more flexible to design as its design involves set of
logical steps and have various discrete and integrated options.



Functionality : It is easy to provide added functionality in digital systems than analog
systems. For example, in digital systems it is easy to add passward functionality. However,
in analog systems it is a tough job.

Programmability : Nowadays, digital design is carried out by writing programs, in
hardware description language (HDL). These languages allow to simulate and test the
performance of digital circuits. This feature is very useful in designing critical digital
systems.

Speed : Today's digital devices are very fast and they can produce 500 million or more
results as there operating speed is less than 2 nanoseconds.

Economy : Digital circuits can easily be integrated into single chip and can be
produced in large quantity to have low cost.

Upgrading Technology : As digital technology is becoming more and more popular,
more research is going on in this field. Therefore, more technological upgrade is expected
in the digital world, and we know that after about every six months we hear about the
launching of a new processor, new memory technology.



Number Systems

Number system is a basis for counting various items. On hearing the word 'number’,
all of us immediately think of the familiar decimal number system with its 10 digits :
0,1, 2, 3,4,5 6,7, Band 9.

Modern computers communicate and operate with binary numbers which use only the
digits 0 and 1. Let us consider decimal number 18. This number is represented in binary as
10010.

In this chapter, we discuss binary, octal, hexadecimal, and BCD number systems, and
we will see how to convert from decimal to binary, octal and hexadecimal, and vice versa.
In the later section of this chapter we are going to see binary, hexadecimal, Excess-3 and
BCD arithmetic.



Decimal Number System

Before considering any number system, let us consider familiar decimal number
system. In decimal number system we can express any decimal number in units, tens,
hundreds, thousands and so on. When we write a decimal number say, 5678.9, we know
it can be represented as

5000 + 600 + 70 + 8 + 0.9 = 5678.9

The decimal number 5678.9 can also be written as 5678.9,, where the 10 subscript
indicates the radix or base.

In power of 10, we can write as

5$678.9




This says that, the position of a digit with reference to the decimal point determines its
value/weight. The sum of all the digits multiplied by their weights gives the total number
being represented. The leftmost digit, which has the greatest weight is called the most
significant digit and the rightmost digit, which has the least weight, is called the least
significant digit. Fig. 1.2 shows decimal digit and its weights expressed as a power of 10.
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Fig. 1.2 Decimal position values as powers of 10

mmp Example 1.1 : Represent decimal number 98.72 in power of 10.

Solution : N =9x10" + 8x10” + 7x10"" + 2x10°?

The digit 9 has a weight of 10, the digit 8 has a weight of 1, the digit 7 has a weight
of 1/10 and the digit 2 has a weight of 1,/100.



Binary Number System

We know that decimal system with its ten digits is a base-ten system. Similarly, binary
system with its two digits is a base-two system. The two binary digits (bits) are 1 and 0.
Like digital system, in binary system each binary digit commonly known as bit, has its
own value or weight. However in binary system weight is expressed as a power of 2, as
shown in Fig. 1.3.

Binary
point
Fig. 1.3 Binary position values as a power of 2

omp Example 1.2 : Represent binary number 1101.101 in power of 2 and find its decimal
equivalent.
Solution : Representing given binary number in power of 2 we have,
N = 1x23+1x224+0x2" +1x2%+1x2"!
+0x27% 4+ 1%x2°7

B+4+0+1+«05+0+ 0125

= 13.625,,

]



Octal Number System

We know that the base of the decimal number system is 10 because it uses the digits
0 to 9, and the base of binary number system is 2 because it uses digits 0 and 1. The octal
number system uses first eight digits of decimal number system : 0, 1, 2, 3, 4, 5, 6, and 7.
As it uses 8 digits, its base is 8.

mmp Example 1.3 : Represent octal number 567 in power of 8 and find its decimal equivalent.
Solution : The given octal number 567 can be represented in power of 8 as
e

567
5x64 + 6x8 + 7x1
320 + 48 + 7
375,



HexaDecimal Number System

The hexadecimal number system has a base of 16 having 16 digits : 0, 1, 2, 3,4, 5, 6, 7,
8,9, A, B, C, D, E and F. It is another number system that is particularly useful for human
communications with a computer. Although it is somewhat more difficult to interpret than
the octal number system, it has become the most popular. Since its base is a power of 2
(2%), it is easy to convert hexadecimal numbers to binary and vice versa.

Table 1.1 shows the relationship between decimal, binary and hexadecimal. Note that
each hexadecimal digit represents a group of four binary digits, called nibbles, that are
fundamental parts of larger binary words.



Decimal Binary | Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
T 0111 T
8 1000 8
a9 1001 9
10 1010 A
11 1011 B
12 1100 c
13 1101 D
[ e | 10 | e
15 1111 F

Table 1.1 Relation between decimal, binary and hexadecimal numbers



mmp Example 1.4 : Represent hexadecimal number 3FD in power of 16 and find its decimal
equivalent.

Solution : The given hexadecimal number 3FD,, can be represented in power of 16.

B g g
=N

3FD

3x256 + F(15)x16 + D(13)x1
768 + 240 + 13
- 102110



Counting in Radix(r)

In previous sections we have seen number systems with radix (base) r equal to 10, 2, 8
and 16. Each number system has r set of characters. For example, in decimal number
system r equals to 10 has 10 characters from 0 to 9, in binary number system r equals to 2
has 2 characters 0 and 1 and so on. In general we can say that, a number represented in
radix r, has r characters in its set and r can be any value. This is illustrated in Table. 1.2.

Radix (Base) r Characters in set
2 (Binary) 01
3 01,2
4 0,12 3
T 0,12 3,456
8 (Octal) 0,12 3, 4,567
10 (Decimal) 0,12 3,4,56,7,829
16 (Hexadecimal) 0,123, 456,7,89A,8,CD,
E,F

Table 1.2 Radix and character set



nwmp Example 1.5 : Find the decimal equivalent of (231.23),

Solution : N=2x8+3x4 +1 x4 +2x4"+3x4?
= 32 + 12+ 1 + 0.5 + 0.1875
= 45.6875,

mmp Example 1.6 : Count from 0 to 9 in radix 5.

Solution : The Table 1.2 indicates that radix 5 has 5 characters. A count sequence from 0
decimal to 9 decimal is

00, 01, 02, 03, 04, 10, 11, 12, 13, 14.



Number Conversion

The human beings use decimal number system while computer uses binary number
system. Therefore, it is necessary to convert decimal number into its equivalent binary
while feeding number into the computer and to convert binary number into its decimal
equivalent while displaying result of operation to the human beings. However, dealing
with a large quantity of binary numbers of many bits is inconvenient for human beings.
Therefore, octal and hexadecimal numbers are used as a shorthand means of expressing
large binary numbers. But it is necessary to keep in mind that the digital circuits and
systems work strictly in binary; we are using octal and hexadecimal only as a convenience
for the operators of the system.

Before going to see conversions between binary, octal and hexadecimal numbers we
see the number of digits in several number systems. Table 1.3 shows the decimal, binary,
octal and hexadecimal numbers.



Decimal Binary Octal Hexadecimal
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
4 1001 11 9
10 1010 12 A
" 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Table 1.3 Decimal, binary, octal and hexadecimal numbers



Binary to Octal conversion

We know that base for octal numbers is 8 and the base for binary numbers is 2. The
base for octal number is the third power of the base for binary numbers. Therefore, by

grouping 3 digits of binary numbers and then converting each group digit to its octal
equivalent we can convert binary number to its octal equivalent.

mep Example 1.7 : Convert (1 11 101 10 0), to octal equivalent.
7 S B

Octal number = (754),

Solution :



Octal to Binary conversion

Conversion from octal to binary is a reversal of the process explained in the previous
section. Each digit of the octal number is individually converted to its binary equivalent to
get octal to binary conversion of the number.

mp Example 1.8 : Convert (634); to binary.

110 011

Solution :

Binary number = 110 011 100

mmp Example 1.9 : Convert (725.63); to binary.

HEENE =B
1M 010 101 . 110 on

Binary number = 111010101 . 110 011

Solution :




Binary to Hexadecimal conversion

We know that base for hexadecimal numbers is 16 and the base for binary numbers is
2. The base for hexadecimal number is the fourth power of the base for binary numbers.
Therefore, by grouping 4 digits of binary numbers and then converting each group digit to
its hexadecimal equivalent we can convert binary number to its hexadecimal equivalent.

mmp Example 1.10 : Convert (11011000 1001 1011), to hexadecimal equivalent.
D 8 9 B

Hexadecimal number = (D89B)

Solution :



Hexadecimal to Binary conversion

Conversion from hexadecimal to binary is a reversal of the process explained in the
previous section. Each digit of the hexadecimal number is individually converted to its
binary equivalent to get hexadecimal to binary conversion of the number.

P Example 1.11 : Convert (3FD), to binary.

0011 1111 1101

Solution :

Binary number = 0011 1111 1101

mmp Example 1.12 : Convert (5A9.B4)y, to binary.

0101 1010 . 1011

Solution :

Binary number = 0101 1010 1001 . 1011 0100



The easiest way to convert octal number to hexadecimal number is given below.
1. Convert octal number to its binary equivalent.
2. Convert binary number to its hexadecimal equivalent.

mmp Example 1.13 : Convert (615)4 to its hexadecimal equivalent.

Solution :
Step 1 : Octal to binary

110 101
Binary number = 110001101
Step 2 : Binary to hexadecimal

@00y (1o00  (wHod
1 8 D

Hexadecimal number = 18Dy



Hexadecimal to Octal conversion

The easiest way to convert hexadecimal number to octal number is given below.
1. Convert hexadecimal number to its binary equivalent.
2. Convert binary number to its octal equivalent.

iy Example 1.14 : Convert (25B)y to its octal equivalent.
Solution :

Step 1 : Hexadecimal to binary

0010 0101 1011
Binary number = 0010 0101 1011

Step 2 : Binary to octal
R oon  oa  [BEW
1 1 3 3

Octal number = 1133,



Radix to decimal number

mmp  Example 1.15 : Convert binary number 11 0 1. 1 to its decimal equivalent,

Solution : N = 1x2¥ +1x22 +0x2" +1x2% +1x2-1!

B+4+0+1+05

= 13.5,
or

Step 1: 1 1 0 1 1

Step 2 : 8 4 2 1 0.5

Step 3 : B8 +4 +0 + 1 + 05 = 135,

mmp Example 1.16 : Convert (3102.12), to its decimal equivalent.

Solution : N = 3x4* +1x4° +0x4" +2x4" +1x4°' +2x 42

192 + 16 + 0 + 2 + 0.25 + 0.125 = 210.375,,



Decimal to any radix conversion

inmp Example 1.17 : Convert decimal number 37 to its binary equivalent.
Solution : Here r is 2

18
Divide 37 by 2 2 )37 R
- 36
| —= (1] LSD
L
Divide 18 by 2 2)18
- 1R [ ] R
0 —= |0
2 ar 1 [ LSy
4
Divide 9 by 2 2) 9 2 18 o
-8
2 =
Divide4by2 274 21 ¢ 1°
- 4
B — |0 2 2 i)
1 2 1 1 MSD
Divide 2 by 2 2) 2
-2 0
0 —=]0
0
Divide 1 by 2 E_I '; Mote : O : CQuotient
— R : Remaindar

Binary equivalent = 100101,



- Example 1.18 : Convert decimal number 214 to its oclal equitalent.

Solution : Herer is 8

26
Divide 214 by 8 8§ )214 R
- 208
f—= | 6| LSD

3 8| 24|88 ,LSD
Divide 26 by 8 8 ‘u_li |
E |

—_— |2

2
0
Divide 3by8 8) 3

=

a

.
|

3| WD Note : (1 | Cluotient

R : Remainder

The conversion is over when quotient is 0, and we get 326, as octal equivalent to
decimal number 214.



iy Example 1.19 : Convert decimal number 3509 to its hexadecimal equivalent,

Sloution : Here r is 16

219 R
3509
- 1504

§ —e |5

Divide 3509 by 16 16

13
Divide 219 by 16 16 )219
~ 208

Il —=|B
0
Divide 13by 16 16)13
- 0

13 —= D)

LSD

MSD

16

16

Q R

3505 5 B LSD
219 11 === B

13 13— 0 | MSD

Mote : O : Quobtent

R . Remainder

The conversion is over when quotient is 0, and we get DB5,, as hexadecimal

equivalent to decimal number 3509,



immp Example 1.20 : Convert 54,, to radix 4.

Solution : Here 1 is 4

13
Divide 54 by 4 454 R
52
2 — ? LSD a R
3 . 4 i[.SU
Divide 13 by 4 4713
_£ - 13 1
1 — |1
o = 4 3 3 MSD
Divide 3 by 4 4)3 o |
-0
3 — (3| M
5D Note : O : Quolient
R : Remainder

The conversion is over when quotient is 0, and we get (312), as radix 4 equivalent to
decimal number 54.



Decimal fraction to binary conversion

immp Example 1.21 : Convert 0.8125 decimal number to its binary equivalent.

Solution :
Fraction  Radix Result Recorded carries
08125 x 2 = 1625 = 0.625 with a carry of 1 MSD
0.625 x 2 = 125 = 0.25 with a carry of 1
0.25 x 2 = 05 = 05 withacarry of 0
0.5 x 2 = 10 = 00 with a carry of 1 D

Reading carries downward we get,
Binary fraction = 0.1101, which is equivalent to 0.8125 decimal.



immp  Example 1.22 : Convert 0.95 decimal number to its binary equivalent.

Solution :

Fraction Radix Result Recorded carries

095 x 2 = 19 = 09 withacamryofl MSD
09 x 2 = 18 = 08 withacarryofl

08 x 2 = 16 = 06 withacarryofl

06 x 2 = 12 = 02 withacarryofl i
02 x 2 = 04 =04 withacarryof0 |
04 = 2 = 08 = 08 withacarry of 0 L
08 = 2 = 16 = 06 withaarryofl LSD

In this case, 0.8 is repeated and if we multiply further, we will get repeated sequence.
If we stop here, we get 7 binary digits, 0.1111001. This answer is an approximate answer.
To get more accurate answer we have to continue multiplying by 2 until we have as many
digits as necessary for our application.



hemp Example 1.23 : Convert 0.640625 decimal number to its octal equivalent.

Solution :
Fraction Radix Result Recorded carries
0640625 = B = 5125 = 0.125 with a carry of 5 MSD
0.125 x B = 10 = with a carry of 1 LSD

Reading carries downward we get octal fraction = (.51, which is equivalent to 0.640625
decimal.

Iy Example 1.24 : Convert 0,1289062 decimal number to its hex equivalent,

Solution :
Fraction Radix Result Recorded carries
01289062 = 16 = 20625 = 00625 with carry of 2 MSD
0.0625 ¥ 16 = 1.0 = 0 with carry of 1 l LSD

Reading carries downward we get hexadecimal fraction = 0.21,,, which is equivalent to
0.1289062 decimal.



Complements

In this section, we see the complement numbers used in different number systems.
These complement numbers are used in case of subtraction of two numbers in
corresponding number systems.

1’s Complement Representation

The 1's complement of a binary number is the number that results when we change all
1’s to zeros and the zeros to ones.

mwp Example 1.25 : Find 1's complement of (1 1 0 1),.

Solution: 1 1 0 1 & number

0 0 1 0 & 1scomplement

P Example 1.26 : Find 1's complement of 1011 100 1.

Solution : 101 1100 1 number
0100011 0 T1scomplement



2’s Complement Representation

The 2's complement is the binary number that results when we add 1 to the 1's
complement. It is given as

2's complement = 1's complement + 1
The 2's complement form is used to represent negative numbers.
hump Example 1.27 : Find 2's complement of (1 0 0 1),

Solution : 1 0 0 1 number
0110 1's complement
+ 1
0111 2's mmplemenl:

mmp Example 1.28 : Find 2's complement of (1 010 001 1),

Solution : 1010 0011 number
0101 1100 1'scomplement
+ 1

0101 1101 2'scomplement



Boolean Algebra and Logic Gates

S
2.1 Basic Definitions

_In 1854, George Boole introduced a systematic treatment of logic and developed for
this purpose an algebraic system now called Boolean Algebra. In 1938 C.E. Shannon
introduced a two-valued Boolean algebra called_switching algebra. Boolean algebra is a
system of matRematical Togic. Tt differs from both ordinary algebra and the binary number
system. As an illustration, in Boolean, 1 + 1 = 1, in binary arithmetic the result is 10. Thus,
although there are similarities, Boolean algebra is a unique system.

The Boolean algebra is defined with a set of elements, a set of operators and number
of rules, laws, theorems and postulates. The postulates of a mathematical system from the
basic assumption from which it is possible to deduce the rules, law, theorems, and
properties of the system. Boolean algebra is formulated by a defined set of elements,
together with two binary operators, + and - Let us see the definition of postulates used to

formulate the Boolean algebra.

1L Set : A set of element is a group of objects having a common property. If S is a set
and X and Y are certain objects, then X € S denotes that X is an element of set S and Y €5

denotes that Y is not an element of set S.
2. Closure : A particular set is closed with respect to a binary operator if, a every pair
of elements of a set obtains a unique element of the same set after being operated by the -

operator.
3. Associative law : A binary o
(A+B)s C= A+ (B+ C) forall A, B,CeS.
4 Commutative law : A binary operato
whenever.
asb=bwsa forall abes
5. Identity element : A set S is said to have an identity element with respect to binary

operator * on § if there exists an element € € § with the property.
\ ate:e-a=aforwerya¢5.
For example : The element 0 is an identity with resp

. . ] . .
perator * on a set S is said to be associative whenever

r%»on a setSis said to be commutative

ect to binary operator + since

a+0=0+a=a

(2-1)
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& Distributive law : 1f A and * are two operators on a set S, A is said to be distriby,;,
over * whenever,

AAMBR O) = (AABRYAAD

2.2 Axiomatic Definition of Boolean Algebra
Boolean algebra is formulated by a defined set of elements, together with two bin,,,
aperators, + and , provided that the following axioms or postulates are satisfied.
* Qlosure (@) :  Closure with respect to the operator +
When twe binary elements are operated by operator + the result is a unique bing,
dlemont
* Qlosure () : Closure with respect to the operator - (dot).

Wew two binary elements are operated by operator - (dot), the result is a unique binar,
clemen?

* An identity element with respect to +, designated by

o {ATT=TTA=A)
* An wdentity element with respect to -, designated by 1:{A -1 =1-A = A
+B=B+A]

¢ Commutative with respect to + :E

* Commutative with respectto- :([A-B=B-A

¢ Duwstributive property of - over + :
B
\We.0 - (A-B)+(A.O)

* Dustributive property of + over - :
V.m.q = (A+B) (A+0)

* For ¢Very Binary element, there exists complement element. For example, if A is
an evlement, we have A is a complement ofeA. ie. if@nd if

irx =1, A=0)
r"’w
o “Fhere Exsts at least two elements, say A and B in the set of binary elements

such that A = B

2.3 Basic Rules, Laws, Theorems and Properties of Boolean Algebra

2.3.1 Rules in Boolean Algebra
I The symbol which represent an arbitrary elements of an Boolean algebra is known
as variable. Any single variable or a function of several variables can have either ¢
1 or O value For example, in expression Y = A + BC, variables A, B and C can
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- The logical OR operator of two va
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and function Y also can have either a 1 or 0 value;
however its value depends on the value of Boolean expression,

A complement of a variable ig represented by a "bar" over the letter. For example,
the complement of a varjable A will be denoted by A . Soif A = 1, A =0 and if

A =0 A= 1 Sometimes a prime symbo) (') Is used to denote the complement. For
example, the complement of A can be written as A’

The logical AND operator of two variables is represented either by writing a dot
(*) between two variables, such a8 A Bor by s

+ mply writting two variables, such as
Mﬂ*g* AND operation between three variables can be represented as
A B Cor ABC,

tiables is represented by writing a '+ sign
between the two variables such as A+ B Similarly, OR operation between three
variables can be represented as A + B 4 .

The logical OR operator in the B
a0oral gives following results.
0+0=0 1+0=1
O¢1=1 l+1=1

oolean algebra with variables having value either

From the above results following rules are defined in the Boolean algebra.

Rule 1 : = 0+A=AorA+0=A

Rule 2 :

| .

Rule 3 ;: [ |-
. o
| T
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a AtA=1or A+ A=

6 The logieal AND operator in the Boolean algebra with variables having value
either a 0 or a 1 glves following results,

0:0)=0 10w
"le(l I'lr-'l’
From the above resull following rules are defined in the Boolean algebra,

DA=0o0rA 0Om0

Rule 6 : 1LA=AorA l1=A

7. The NOT operator in the Boolean algebra with variable having value either a 0 or
a 1 gives following results,

Gul 0=0
Tuwd 1a.l
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From the previous result following rule is defined in Boolean algebra

Rule 9 :

2.3.2 Laws of Boolean Algebra

Three of the basic laws of Boolean algebra are the same as in ordinary algebra: the
- commutative laws, associative laws, and the distributive law, ’

Commutative Laws

LAW 1: A + B =B + A : This states that the order in which the variables are ORed
makes no difference in the output. The truth tables are identical. Therefore, A OR B is

same as B OR A.

A B %% : A
0 o o , o
0 1 . o 1
1 . 1 o
1 ] 1 1

Table 2.1 Truth table for commutative law for OR gates

LAW 2 : AB = BA : The commutative law of multiplication states that the order in
which the variables are ANDed makes no difference in the output. The truth tables are

- = o olm
- 0 = ol|»P

le for commutative law for AND gates

be extended to any number of
A+B+C=B+A+C,and

note that the commutative laws can
since A + B = B + A, it follows that
B+A+C=B+C+A. Similarly,

It is important to
 Yariables, For example,
e A+ C=C + A, it is true that
ABCD = BACD = BADC = ABDC, and so on.
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Associative Laws

LAW 1:A 4+ (B +C) =(A+B)+C: This law states that in the ORing of sever,|
variables, the result is the same regardless of the grouping of the variables. For three
variables, A OR B ORed with C is the same as A ORed with B OR C.

Al B]|C A|lB | C B+C
0 0 0 0 0 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
0 1 1 = 0 1 1 1
1 0 0 1 0 o 0
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1 1

Table 2.3 Truth tables for associative law for OR gates

LAW 2 : (AB) C = A (BC) : The associative law of multiplication states that it makes

no difference in what order the variables are grouped when ANDing several variables. For
three variables, A AND B ANDed with C is the same as A ANDed with B and C.

A|lB|C A|[B|cC BC
0| o 0|01 o 0
0] o0 1 0| o |1 0
010 0] 1] o0 0
0 1 1 = 0 1 1. 1
100 110 o 0
1 0 1 1 0 1 0
1110 110 0
1|1 1 1 1 1 1

Table 2.4 Truth table for associative law for AND gates
Distributive Law

LAW : A (B + C) = AB + AC : The distributive law states that ORing several variables
and ANDing the result with a single variable is equivalent to ANDing the result with a
single variable with each of the several variables and then ORing the products,
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—

..-—5-‘“’*8 = LA B c AB | AC 4 A ,
o | °© ° 0 ] 0 | 00 |0 [ubd
0 0 1 0 o 1 ) ;

1 1 0 0 1 0 0 0

| = 1 1 0 1 1 0 0
1 0 4 1 0 o| o0 |oO
Gl L tonfia, | 4 el 4
1 1 i 1 1 0 10
: : : 1 1 1] 1|1

Table 2.5 Truth table for distributive law
It is important to note that the distributive property is often used in reverse; i.e., given
AB + AC, we replace it by its equivalent, A (B + C). As in ordinary algebra, this process is
called factoring. We factored A out of the expression AB + AC.
23.3 Additional Rules in Boolean Algebra

and simplificélltion.df Boolean algebra three more rules are defined in

For manipulation
' Boolean algebra. These are :

e A+AB=A
e A+AB=A+B f
« A+By(A+CQ)=A+BC

These rules are derived from the basic rules and laws of the Boolean algebra.

Rule 10 : A-{-AB:A

Proof : A+ AB= A +B) ; Distributive law
= A1) ';~Rule2:(1+B)=1
= A Rule6: (A1) =A

Rule 11 : A+AB=A+B

Proof : A +AB = A+ AB+AB Rule 10: A + AB= A
= A+B((A+ A) Distributive law
_ A+B(1) Ruled4:A+A=1
_ A+B Rule 6 : (B:1) =1

Fry (A+B)(A+C)=A+BC BC Distributive law

AB + stribu
Proof : B A+C)=AA+AC+
¥ 3.4 Rule7:A-A=A

A + AC + AB + BC
= A(]+C+B)+BC
A + BC

Distributive law
Rule2:1+A=1
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2.3.4 Theorems in Boolean Algebra
DeMorgan's Theorems

DeMorgan suggested two theorems that form an important part of Boolean algebra. |,
the equation form, they are :

1) AB=A+B
The complement of a product is equal to the sum of the complements. This is
illustrated by truth Table 2.6.

Truth Table :

A B
0

0 1
1 0
1 1

Table 2.6
2)A+B=AB

The complement of a sum is equal to the product of the complements. The  truth
Table 2.7 illustrates this law.

Truth Table :

A B
0 0
0 1
1 0
1 1

Table 2.7
Consensus Theorem

In simplification of Boolean expression, an expression of the form AB+ AC+BC the
term BC js redundant and can be eliminated to form the equivalent expression AB+ AC .
The theorem used for this simplification is known as consensus theorem and it is stated as

AB+ AC+BC = AB+AC

The key to recognize the consensus terms is to first find a pair of terms, one of which
contains a variable and the other contains its complement. Now we have to find the third
term which should contain the remaining variables from pair of terms eliminating selected
variable and its complement.



proof : AB+ AC+ BC

AB+ AC+ (A + A)BC
AB+ AC+ AB+ AC

AB+ AC

1]

mp Example 2.1 = Solve the given expression using consensus theorem.
AB+AC+BC+BC+AB

Solution C + B+ AB= A B+ AC+BC+ AB
AB+AC+BC
AB+AC+BC+BC+AB = AB+AC+BC

pual of Consensus Theorem

The dual form of consensus theorem is stated as

(A+B)(A+C)(B+C) = (A+B)(A+C)
Proof :
(AA + AC+ AB+BC) (B+C) = AA+AC+AB+BC
(AC+ AB+BC) (B+C) = AC+AB+BC
ABC+ ABB+ BCC+ ACC+ ABC+BCC = AC+AB+BC
(A + A)BC+ AB+ BC; AC = AC+AB+BC
AB+BC+AC = AC+AB+BC

(A+B)(A +C)(B+C)(A +D)(B+D)

Note : The brackets indicate how the consensus terms are identified.

pigital Logic Design 2.9 Boolean Algebra and Logic Gates
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... Proved

" Example 2.2 : Solved the following Boolean expression using dual of consensus theorem

Solution ; *q* (A +D) (B+D) E T l i
= (A+C)

= (A+B)(A+C)(A+D)
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2.4 Boolean Function

Soolean expressions are constructed by connecting the Boolean constants and variabj,,
with the Boolean operations. These Boolean expressions are also known as Booleg,
formulas. We use Boolean expressions to describe Boolean functions. For example, if the

Soolean expression (A + B) C is used to describe the function f, then Boolean function is
whtten as

fA.B,C) = (A+B)Cor f=(A+B)C

Sased on the structure of Boolean expression, it can be categorized in different
tormwlas. One  such categorization are the normal formulas. Let us consider the
four-variable Boolean function.

Product terms

$ A ) § ) ¥ N e \t
f(AB.C.D)= bl T EBICI Y A AU
I I | | (1)

In this Boolean function the variables are a

ppeared either in a complemented

SRR TR SN
3 Y Y R—

* C}) e A + C
N LRAR R o
'\&Tam\ & ) &r\\kﬁx\&\\m S

lerms. A sum term is defined as either a literal or a sum (also called disjunction) of

three sum terms, namely, (B + D), (A + B + C) and (A + O
rranged in one of the two forms

* Sum of product form (SOP) and
® Product of sum form (POS).

Z

These literals and terms are a
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2.4.1 Sum of Product Form

The words sum and product are derived from the symbolic representations of the OR
and AND functions by + and . (addition and multiplication), respectively. But we realize
(hat these are not arithmetic operators in the usual sense, A product tem}: ‘is an of
literals that are ANDed together. For example, ABC, XY and so on. A sum th;‘: O:F;n
group of literals that are ORed together such as A + B + C, X + Y and so on. A sum o);
prndufts (SOP) is a group of product terms ORed together. Some examples of ‘this form

are -

l r—- sum

1 f(A, B, C) =

product terms

r sum

2, f(P,QR,S)

Product terms

Each of these sum of products expressions consist of two or more product terms
(AND) that are ORed together. Each product term consists of one or more literals
appearing in either complemented or uncomplemented form. For example, in the sum of
- products expression ABC+ ABG, the first product term contains literals A, B and C in their
uncomplemented form. The second product term contains B and C in their complemented
(inverted) form. The sum of product form is also known as disjuctive normal form or

disjunctive normal formula.

2.4.2 Product of Sum Form

A product of sums is any groups of sum terms ANDed together. Some examples of

this form are -

Product

1. f(A,B,C) =

~Sum terms



S
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i ey

iPaRy « BRA) o (ReT) o (Pas)

l ! |

Sum terms

fy

Each of these product of sums expressions consist of two or more sum terms (OR) that .
e ANDad together. Bach sum term consists of one or more literals appearing in either
omplementad or uncomplemented form. The product of sum form is also known as
conjuctive normal form or conjunctive normal formula.

2.5 Canonical and Standard Forms

The canonical forms are the special cases of SOP and POS forms. These are also |
nown as standard SOP and POS forms.

23.1 Standard SOP Form or Minterm Canonical Form

We can realize that in the SOP form, all the individual terms do not involve all literals.
Ror example, in expression AB + ABC the first product term do not contain literal C. If
cach term in SOP form contains all the literals then the SOP form is known as standard or
canomical SOP form. Each individual term in the standard SOP form is called minterm.
Theretore, canonical SOP form is also known as minterm canonical form.

In expression ABC+ABC+ABC+ABC all the literals are present in each product
term In other words we can Say that a sum of products is a standard (canonical) sum of

products if every product term involves every literal or its complement. One standard sum
of products expression is as shown in Fig. 2.1, ‘

f(AB.C) =

Each product term consists of ' e
all literals in either complemented :
form or uncomplemented form

Fig. 2.1 Standard SOP form

252 Standard POS Form or Maxterm Canonical Form

If each term in POS form contains all the literals then the POS form is known as
standard or canonical POS form. Each individual term in the standard POS form is called
maxterm Therefore, canonical POS form is also known as maxterm canonical form. In
other words, we can say that a product of sums is a standard or canonical product of

sums if every sum term involves every literal or its complement. One standard product of
sums expression is as shown in Fig. 2.2,

-
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=]

(P+Q) ¢ (R+5) ¢ (P+8)

| [Pl

Sum terms

2 fPQRS) =

Each of these product of sums expressions consist of two or more sum terms (QR)'that
are ANDed together. Each sum term consists of one or more literals a!;)pearmg in either
complemented or uncomplemented form. The product of sum form is also known as
conjuctive normal form or conjunctive normal formula.

2.5 Canonical and Standard Forms

The canonical forms are the special cases of SOP and POS forms. These are also .
known as standard SOP and POS forms.

2.5.1 Standard SOP Form or Minterm Canonical Form

We can realize that in the SOP form, all the individual terms do not involve all literals.
For example, in expression AB + ABC the first product term do not contain literal C. If
each term in SOP form contains all the literals then the SOP form is known as standard or
canonical SOP form. Each individual term in the standard SOP form is called minterm.
Therefore, canonical SOP form is also known as minterm canonical form.

In expression ABC+ABC+ABC+ABC all the literals are present in each product
term. In other words we can say that a sum of products is a standard (canonical) sum of

products if every product term involves every literal or its complement. One standard sum
of products expression is as shown in Fig. 2.1.

f(A,B,C) =

E?Ch product term consists of ’
all literals in either complemented
form or uncomplemented form

Fig. 2.1 Standard SOP form

2.5.2 Standard POS Form or Maxterm Canonical Form

If each term in POS form contains all the literals
standard or canonical POS form. Each individual term i
maxterm. Therefore, canonical POS form is also know
other words, we can say that a product of sums is a
sums if every sum term involves every literal or its com
sums expression is as shown in Fig. 2.2,

then the POS form is known as
n the standard POS form is called
N as maxterm canonical form. In
standard or canonical product of
plement. One standard product of
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(ABC)= (AFBYE) heBrey

s vl

Each sum tar'm consists of
all literals in either complemented
form or uncomplemented form

Fig. 2.2 Standard POS form

2.5.3 Converting Expressions in Standard SOP or POS Forms

Sum of products form can be converted to standard sum of products by ANDing the
\erms in the expression with terms formed by ORing the literal and its complement which
are not present in that term. For example for a three literal expression with literals A, B
and C, if there is a term AB, where S is missing, then we form term (C + C) and AND it
with AB. Therefore, we get AB (C + C) = ABC + ABC.

Steps to convert SOP to standard SOP form

Step 1: Find the missing literal in each product term if any.

Step 2 : AND each product term having missing literal/s with term/s form by ORing
the literal and its complement.

Step 3 : Expand the terms by applying distributive law and reorder the literals in the
product terms.

Step 4 : Reduce the expression by omitting repeated product terms if any. Because
A+ A=A

sy Example 2.3 : Convert the given expression in standard SOP form.
f(A, B, C)=AC + AB + BC

Solution : Step 1 : Find the missing literal /s in each product term

o
)+ 5L
57 AT

Literal A is missing
Literal C is missing
Literal B is missing

Step 2 : AND product term with (missing literal + it's complement)

Original product terms

g @B ¢ & (e+D ¢

!

nd their complemonls

Missing literals a
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Step 3 : Expand the terms and reorder literals. _ =

Expand: f(A,B,C) = AcB+Ac§+ABC+ABC+BE§LBCA
B C B

Recorder:f(A,B,C)=ABC+ABC+ABC+ABC+ABC+A

t t
Note : After having sufficient practice student should expand product term ang
reorder literals in it in a single step.

Step 4 : Omit repeated product terms

f(A,B,C) = ABC+ABC+ABC
~ f(A,B,C) = ABC+ABC+ABC+ABC

mmp  Example 2.4 : Convert the given expression in standard SOP form.

Solution : Step 1: Find the missing literal/s in each product term

Literals B and C are missing
Step 2 : AND product term with (missing literal + its complement)

Original terms

K(88)-(c+D)

T

Missing literals and their complements

f(A B C) =

Step 3 : Expand the terms and reorder literals

H&&C):ABC+ABE+A§C+A§E+ABC

Step 4 : Omit repeated product term
Repeated product

f(A/BC) = ABC+ABT+ABC+ABT 4}
'.'f(AtBJrC)

ABC+ABC+ABC+ABC

H

Steps to convert POS to standard POS form

Step 1: Find the missing literals in each sum term if any

Step 2: OR each sum term havin

g missing literal/s with term/s form by ANDing the
literal and its complement,
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Step 3 Expand the terms by applying distributive law and reorder the literals in the

sum terms.

step 4 : Reduce the expression by omittin .
P Because A ‘A = A y g repeated sum terms if any.

wp Example 2.5 : Convert the given expression in standard PO
" "H(A B, O=(A+B) (B+C) (A +C) rd POS form.

solution : Step 1: Find the missing literal/s in each sum term

f(A B,C) =

Literal B is missing
Literal A is missing
Literal C is missing

Step 2 : OR sum term with (missing literal .« its complement)

Original sum terms

S
Tk

f(A,B,C) = (7A /

g,
%

Missing literals and their complements

Step 3 : Expand the terms and reorder literals

Expand :
Since A+BC = (A + B) (A + C) we have,
f(A B C) = (A+B+C)(A+B+6)(B+C+A)(B+C+K)
(A+C+B)(A+C+§)
Reorder ; :
f(A,B,C) = (A+B+C)(A+B+E)(A+B+C)(A+B+C)

(A+B+C)(A+B+0)
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Step 4 : Omit repeated sum terms

Repeated sum terms

.
B«

8

3

f(A.B,C)=(A+B+C)(A+B+C) (A+B*C

* E(A, B, Q) = A+B+C)(A+B+CO)(A+B+C)(A+B+C)
mmp Example 2.6 : Convert the given expression in standard POS form.

Y = A(A+B+C)
Solution : Step 1 : Find the missing literal/s in each sum term

f (A, B, C). = §§\(A+B+C)
Literals B and C are missing

Step 2 : OR sum term with (missing literal « its complement)
f(A,B,C) = (A+B-B+C-C)(A+B+C()
Step 3 : Expand the terms and reorder literals
Since A + BC = (A + B) (A + C) we have,
f(A,B,C) = (A+B-B+C)(A+B-B+C)(A +B+C)
= (A+B+C)(A+B+C)(A+B+T)(A+B+C)(A+B+C)

Step 4 : Omit repeated sum terms

Repeated sum
term

(A+B+C)(A+B+C)(A +B+C)(A+B+T) (4
(A+B+C)(A+B+C)(A +B+C)(A+B+T)

f (A, B, C)
% $(A;B,C)

2.5.4 M-Notations : Minterms and Maxterms

Each individual term in standard SOP form is called ‘minterm and each individual
term in standard POS form is called maxterm. The concept of minterms and maxte.rms
allows us to introduce a very convenient shorthand notations to express logical functions.
Table 2.8 gives the minterms and maxterms for a three literal/variable logical function
where the number of minterms as well as maxterms is 23 = 8. [n general, fo 8 able
logical function there are 2" minterms and an equal number of maxterms‘ D=
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___Vari.bhs Minterms Maxterms
2 . m M
o | 0| O ABC=m, A+B+C=M,
o | © 1 ABC=m, A+B+C=M,
0 1 0 ABC=m, A+B+C=M,
0 1 1 ABC=m, A+B+C =My
1 0 0 ABC=m, A+B+C=M,
1 0 1 ABC =mg A+B+C=Mg
1 1110 ABC=mg A+B+C=Mg
1 1 1 ABC=m, A+B+C=M,;
Table 2.8 Minterms and maxterms for three variables

As shown in Table 2.8 each minterm is represented by m; and each maxterm is
represented by M, where the subscript i is the decimal number equivalent of the natural
' pinary number. With these shorthand notations logical function can be represented as
follows : :

1 f(A,B,C) = ABC+ABC+ABC+ABC
= mg+ m + m3.+ Mg
= Y m(0,1,3,6)
2 f(A,B,C)=(A+B+C)(A+‘B+E)(K+'B+C)

M, * Ms. + Me

xM(1,3,6)

where ¥ denotes sum of product while n denotes product of sum.

We know that logical expression can be represented in the truth table form. It is
Pussible to write logical expression in standard SOP or POS form corresponding to a given
tuth table, The logical expression corresponding to a given truth table can be written in a
andard sym of products form by writing one product term for each input combination
"hat produces an output of 1. These product terms are ORed together to create the
“andard sym of products. The product terms are expressed by writing complement of a
‘ariable when it appears as an input 0, and the variable itself when it appears as an

1
"Put 1. Consider, for example, the following truth table :



Table 2.9 §.t
The product corresponding to input combination 010 is ABC, the producs |
corresponding to input combination 011 is ABC, and product corresponding to input
combination 110 is ABC. Thus the standard sum of products form is
f (A, B,C) = ABC + ABC + ABC

= m, + m; + mg :

The logic expression corresponding to a truth table can also be written in a standard
product of sums form by writing one sum term for each output 0. The sum terms are
expressed by writing complement of a variable when it appears as an input 1, and the

vanable itself when it appears as an input 0. Consider, for example, the following truth
table -

«A+B+C

Table 2.10 f—
The sum corresponding to input combinations 010 is A + B + C, and the sum
corresponding to input 101isA+_B+C.lhus,ﬂu_:_ standard product of sums form is :
f(A,B,C):(A+B+C)(A+B+C)
o M, + .M

2.5.5 Complements of Canonical Formulae

A product of sums form derived from a truth table is logically equivalent to a sum "‘
products form derived from the Truth Table 2.10. Let us write the standard SOP and POS
from the previous truth table :

SOP form : f(A,B,C)=ABC+ABC+ABC+ABC+ABC+ABC
POS form : f(A,B,C)=(A+B+C)(A+B+C)
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Now by simplifying equation in the POS form we have,
“&BJD=‘AK+AB+AC+KE+B§+§E+KC+BC+CE
AB+AC+AB+BC+AC+BC
Coverting to standard sum of products we have,
f(ABC) = ABC+O+ACB+B+ABC+O+BC(A+A)
+ACB+B)+BC(A+A)

= ABC+ABC+ABC+ABC+ABC+ABC+ABC

- +ABC+ABC+ABC+ABC+ABC
= ABC+ABC+ABC+ABC+ABC+ABC

Rearranging terms we have,
= ABC+ABC+ABC+ABC+ABC+ABC

Therefore, we can say that POS and SOP derived from the same truth table are

logically equivalent. In terms of minterms and maxterms we can then write

>+

f(A,B,C) = mp+m +my+ my+ mg+ my =M2+M5
f(A,B,C) = >m(0,1,3,4,6,7)
= [IM (2, 5)

From the above expressions we can easily notice that there is a complementary type of
relationship between a function expressed in terms of maxterms. Using this complementary
relationship we can find logical function in terms of maxterms if function in minterms is

known or vice-versa. For example, for a four variables if
f(A,B,C,D) = Y. m(0, 24,6, 810,12, 14)

then f(A,B,C,D) = MM(L, 3,5,7,9, 11,13, 15)

26 Other Logic Operations

" Inr d‘?Ptef 1, we have seen the basic logic operators - AND, OR‘.
NAN tion of these basic operators we can perform additional logic o
D, NOR, exclusive-OR and exclusive NOR.

u e NAND operation is the complement of AND operation an
of N’(‘;;\[D. Similarly, the NOR is the complement of OR gperation ludes the
- Comp; ',OR' The exclusive-OR, abbreviated XOR, is similar to QR' el 1or0

Mation of same two variables. For example, if both binary variables are logic )

the X0y, -
R : ‘ . : iated XNOR’ opel'ﬁtlcm
Bieg o, Feration gives logic 0 output. The exclusive-NOR, abbrevmtt;h are 0 or both are

L3 u(;" tPut 1 when the two binary variables are equal, i.e, When bo o The exclusive
O 5, “*lusive-NOR operation is also known as equivalence operation
“Quivalence operations are the complements of each other.

and NOT. Using the
perations such as

d is an abbreviation of
and is an abbreviation
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2.7 Digital Logic Gates

Logic gates are the basic elements that make up a digital system. The electronic gate j
a arcuit that is able to operate on a number of binary inputs in order to perform ,
particular logical function. The types of gates available are the NOT, AND, OR, NAND,

NOR. exclusive-OR, and the exclusive-NOR. Except for the exclusive-NOR gafe, they are
available in monolithic integrated circuit form.

The gate is a digital circuit with one or more input voltages but only (_me'ourput
voltage. By connecting the different gates in different ways, we can build circuits that

perform arithmetic and other functions associated with the human brain because they
simulate mental processes.

The operation of a logic gate can be easily understood with the help of “truth table” :
A truth table is a table that shows all the input-output possibilities of a logic circuit; je.
the truth table indicates the outputs for different possibilities of the inputs.

2.7.1 Inverter : NOT Gate

The mverter (NOT circuit) performs a basic logic function called “inversion” or

“complementation”. The inverter changes one logic level to its opposite level. In terms of
bits, it changes a logic 1 to a logic 0 and a logic 0 to a logic 1. The Fig. 2.3 shows the 3
svmbol for the inverter.

e

Fig. 2.3 Inverter symbol

The bubble [ o ] appearing on the output is the negation (inversion) indicator.
Inverter Operation :

Inverter Truth Table :

Input | Output Input Output

LOwW HIGH 0 A

HIGH Low 1 0
Table 2.11
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;_;; AND Gate

The AND gate performs logical multiplication, more commonly known as the AND
function. The AND gate may have two or more inputs and a single output, as indicated by
the standard loglc symbols shown in the Fig, 2.4,

A e
A B o
8 YsA'B £ il Y
D o
Fig. 2.4 (a) Two Inputs to AND gate Fig. 2.4 (b) Four inputs to AND gate

Gates with two and four inputs are shown in Fig. 2.4; however, an AND gate can have
any number of inputs greater than one. The operation of the AND gate is such that the
output is HIGH only when all of the inputs are HIGH. When any of the inputs are LOW,
the output is LOW. Hence, the AND gate determines when certain conditions are
simultaneously true, as indicated by HIGH levels on all of its inputs, and to produce a
HIGH on its output indicating this conditions. The Fig. 2.5 illustrates a two-input AND
gate with all four possibilities of input combinations, and the resulting output for each.

LOW -

LOW —
LOW — ) L HIGH — ) o
HIGH — HIGH —
LOW — )_ LOW HIGH — ) eiod

Fig. 2.5 Four possible inputs for two input AND gate and resulting outputs

The truth table for a two-input AND gate is shown in Table 2.12. This table can be
expanded for any number of inputs. For any AND gate, regardless of the number of

inputs, the output is high only when all inputs are HIGH.

Inputs Output
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.12 Truth table for 2 input AND gate
Fig. 2.6 shows one way to build a 2-input AND gate. The inputs are labelled A and B,
While the output is Y. Let us assume a supply voltage Ve of +5 V. Also we will assume
the input voltages are either 0 V (Low) or +5 V (High). With 2 inputs, there are four
 Possible input cases and we will now obm_'ﬁ the output for all four input cases.
‘ e
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Case 1: Ais low and B is loy .
*Vee When both input voltages

low, the cathode of each diode n
R grounded. Therefore, the positiv.
supply forward-biases h)thdl(ﬂg
in parallel. Because of this.
output voltage s ideally zer,
(practically 07 V for Si) Ths
means Y is low.

B Y=A'B

Fig. 2.6 2-input AND gate

Case2: Aislowand B is high: When A is low, the upper diode =
forward-biased (ON), and it pulls the output down to a low voltage, ie. Y = 0. With the B
input high, the lower diode goes into reverse bias (OFF).

Case 3: Ais high and B is low : Because of the symmetry of the circuit the

circuit operation is similar to case 2. But in this case, upper diode is reverse biased (OFF)
lower diode is forward biased (ON), and Y is low.

Case 4 : A is high and B is high : When both inputs are at +5 V, both diodes |

are reverse biased and there is no current through diodes and resistor R. This pulls up the
output Y to the supply voltage. Therefore, Y is high. |

2.7.3 The OR Gate

The OR gate performs logical addition, more commonly known as the OR function. An
OR gate has two or more inputs and one output, as indicated by the standard logic _
symbol in Fig. 2.7, where OR gates with two and four inputs are illustrated. An OR gate

A—)
A ]
D i

Fig- 27 (a) Two inputs to OR gate  Fig. 2.7 (b) Four inputs to OR gate ;i

produces a HICH on the output when any of the inputs is HIGH. The output is LOW f
ce, the purpose of an OR gate is to determine.

only when all of the inputs are LOW. Hen

Low —{ LOW —
L \GH
Low —1>_ oy HIGH ‘D‘ 4
. HIGH
HIGH — HIGH _‘D— HIGH
LOW — HGH —

Fig. 2.8 Four possible inputs for two input OR gate and resulting outputs




Boolean Algebra and Logic Gates

Kical operation of the Wosdnput OR gate, The truth

ol Inputs; howeyer o
' e Tegardlens of th
f the inputs i HIGH the number of

he truth table 213 describen the 1o
can be expanded  for any numbe

o :
fable output is HIGH when any o

puts the

Inputs

' N—

40.;@1.
<
i

#—..‘OO)

Table 2.13 Truth table for 2-input OR gate

Fig. 29 shows one way to build a 2-input OR gate. The inputs are labelled A and B,
while the output is Y. Let us assume the input \ |

voltages are either 0 V (Low) or +§ vV (High). With
2nputs, there are four possible input cases and we B
will now observe the output for all four input cases. Yoird

Case 1: Als low and B is low': When bhoth
nput voltages are low, the anodes of both the diodes
are grounded. Therefore, the diodes are reverse biased

and output, Y is low, \

Fig. 2.9 2-Input OR gate
Case 2: A is low and B Is high : Vshen B input is high, it forward-biases lower

diode, producing an output voltage high (ideally +5 V and practically + 4.3 V). Note that
the upper diode is reverse biased.

Case 3 : A Is high and B Is low : Because of the symmetry of the SO .
“euit operation s similar to case 2. But in this case, upper diode is forward biased (ON),
nd lower diode is reverse biased.

Case 4 : A s high and B Is high : When both inputs are at +5 V, both diodes
“ward biased, Since the input voltages are in parallel, the outpt\nt voltage is ideally +5
" practically +4.3 V., Therefore, output Y is high.

z-?n‘ Th. NAND G.t. \ . | | |
The term NAND is a contraction of NOT-AND and implies an AND function with .;
tu"""“mtﬂnted (inverted) output. A standard logic symbol for a two-input NAND gate anc

| x\]uivalvncy to an AND gate followed by an Inverter are shown in Fig, 2.10.

A ot
IO-ve = i DODeen

Fig. 2.10 NAND gate symbol and equivalent clreult

e

are

\

I



Digital Logic Design 2-24 Boolean Algebra and Logie E_“._‘_:

The NAND gate i o universal gate as it can be used to c'tmstruct’an AND ?ate, :tfw OR
gate an inverter, or any combination of these functions, T he logical :}E: lzvnhen the
NAND gate is such that a LOW output occurs only when al'l inputs ‘afe | , i ;:,y
of the inputs is LOW, the output will be HIGH, Note that this operatlon':s]o;)pos " fai
of the AND as far as output is concerned. Fig. 2.11 illustrates the logical operation o a
twosinput NAND gate for all four input combinations.

LOW =
LOW

LOW —

HIGH

MHIGH ==

LOW — HIGH

Y Y

-
=D

HIGH —

LOW

Fig. 2.11 Four possible Inputs for two input NAND Gate and resulting outputs

The truth table 2.14 summarizes the logical operation of the two input NAND gate.

Inputs Output
A B Y
0, 1
0 1 ' 1
1 0 1
1 1 0

Taple 2.14 Truth table for 2-input NAND gate
2.7.5 The NOR Gate
on of NOT-OR and im

symbol for a two-in
own in the Fig. 2,12.

A — w—— A
B___‘}Yﬂm _— B:» Y=m

Fig. 2.12 NOR gate symbol

plies an OR function ‘with an

inverted output, A standard logic Put NOR gate and its equivalent OR

gate followed by an inverter is sh

and equivalent circuit

Similar to NAND gate, the NOR gate is a universal gate, i.e. NOR gate can be used to
construct an AND gate, an OR gate, an inverter, or any combination of these functions.
The logic operation of the NOR gate is that a LOW output ocqurs w

hen any of its
inputs is HIGH. Only when all of its inputs are LOW, the output is HIGH.
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sig. 2,13 illustrates the logi i
e Fig ! ogical operation i
meRe S p of a two-input NOR gate for all four
POS!
Low —{
‘ LOW
W _l>_ HIGH = Low

HIGH -

HIGH :‘} L& HIGH —

LOW HIGH — R
Fig. 2.13 Four possible inputs for two input NOR gate and resulting outputs

The truth table for a two-input NOR gate is shown in Table 2.15 -

Inputs Output
A B Y
0 | 0 : 1
0 1 : 0
1 0 0
1 1 0 -

Table 2.15 Truth table for 2-input NOR gate

216 The Exclusive-OR Gate

The EX-OR gate is an abbreviation for Exclusive-OR gate. An EX-OR gate has two or
more inputs and one output, as indicated by the standard logic symbol in Fig. 2.14 where
EXOR gates with two and four inputs are shown.

\

A —‘"

— B —
A } Y=A®B - Y
B—Il—~ b —)

Fig. 2.14 (b) Four input EX-OR

f ones. This means that fgr
g 215 illustrates the logic

Fig. 214 (a) Two input EX-OR

. fecognizes only the words that have an odd number 0
’f"mber of ones, output of EX-OR gate is high. Th.e - binations.
"ation for 5 two-input EX-OR gate for all four possible input com I



- Ty

L

le'm Logle Design a2l Duveen BRI ONG Vet S

e

LOW © LOW =
HIGH -\ , iy :)D_\ow .
LOW -}“"3“ MIGH

Fig. 2.18 Four possible inputs for two input EX-OR gate and resulting outputs
The truth table 2.16 describes the logical operations of the twominput EXCOR gate.

nputs Qutput
A 8 ¥
0 Q Q
0 1 !
1 ; ) 1
1 1 0

Table 216 Truth table for 2input EX-OR gate
The truth table can be expanded for any number of inputs; however, regardiess of the
number of inputs, the output is high only when odd number of inputs are HIGH.

2.7.7 The Exclusive-NOR Gate

The term EX-NOR is a contraction of NOT-X-OR, NOT exclusive OR gate It »
logically equivalent to an EX-OR gate followed by an inverter. An EX-NOR gate has twe
Of more inputs and one output, as indicated by the standard logic symbol in Rg 2

where EX-NOR gates with two and four inputs are shown.

A

A \ B
> YoAw c Y

0

Fig. 2.6 (a) Two input EX-NOR Fig. 2.18 (b) Four input EX-NOR

It recognizes only the words that have an even number of ones and wpats having &
zeroes. This means that for even number of anes at the mput, or nputs having all serces
the output of EX-NOR gate is high. The Fig. 217 illustrates '

_ > the logie operation: for a two
input EX-NOR gate for all four possible input combinations. A
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ey

Low —]

vow HIGH —H} il
HIGH HiGH —)
Low—-u} s I-HGH-—T[} S

fig. 2.17 Four possible inputs for two input EX-NOR gate and resuiting outputs

The truth table 2:17 describes the logical operations of the two input EX-NOR gate.
The truth table can be expanded for any number of input; however, regardless of the
mumber of inputs, the output is high when even number of inputs are high or when all
mput are Zeroes.

ek

Inputs Output
A B Y ]
0 0 o -
0 ' 1 0 1
1 0 0 '
1 : - 1

Table 2.17 Truth table for 2-input EX-NOR

212 Boolean Functions for Logic Gates

L NOT gate function : Theq:eratumofanmvaﬁer(NOTcntmt)mbeexp:&edas
follows : If the input variable is A and the output variable is Y; then Y= A. The

output is complement of the input.

Z AND gate function : Let the two input variables be A and B and the output
variable Y; then the Boolean expression is Y = AB.
If there are four input variables A, B, C, D, then the output Y = ABCD.
The output is 1 (HIGH) only when all the inputs are 1s (HIGH).

3 OR gate function : If one input is A, the other input is B, and the output is Y;
then the Boolean expression for OR function is Y = A+B.
If there are four input variables A, B, C, D; then the output is Y = A+ B+ C+ D,
The output is a 1 (HIGH) when any one or more of the inputs are 1 (HIGH).

3 Nm?“w The Boolean expression for NAND function is Y = AB.

This expression tells that the two input variables, A and B, are first ANDed and
then complemented, as indicated by the bar over the AND expression. The NAND
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expression can be extended to more than two input variables by mclu«.h,q,ll

additional letters to represent all the variables.

5. NOR gate function : The Boolean expression for NOR function is Y = A+B .
t variables are first ORed and the,

This equation says that the two inpu

complemented.
6. EX-OR function : If one input is A, the other input is B, and the output is Y They

the Boolean expression for EX-OR function is Y = AB + AB = A @ B.

7. EX-NOR function : If one input is A, the other input is B, and the output is y
Then the Boolean expression for EX-NOR function is Y = AB + A B = A®B o

AQOB
This equation says that the two input variables are first EX-ORed and then

complemented.
The following Table 2.18 summarizes the logic expressions for all logic gates.

NOT : A—D— Y=A AND : ::} Y = AB or AB

A Y """“I —— —_—
OR: BD— Y=A+B NAND : 4 }Y: ‘B or AB
B— N
el e A—\ -
NOR : B—-1>‘Y=A+‘B EX-OR : B__u} Y=A‘B*.KB¢A?3 |

A -
i B —| Y=AB+AB=ADB or AOB

Table 2.18

2.7.9 Universal Gates

The NAND and NOR gates are known as universal i ‘
| _ gates, since any logic function can
be implemented using NAND or NOR gates. This is illustrated in &)llowinggsectim ‘

2.7.9.1 NAND Gate

The NAND gate can be used to generate the NOT funct; : 4
function, and the NOR function. unction, the AND function, the OR

NOT Function :

At Sl o By made from a NAND gate by connecting all of the inputs together
and creating, in effect, a single common input, as shown in Fig, 2.18, for a tWO-input?xate
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T it IO
A B AB
Y=1i
Y=0
Fig. 2.18 NOT function using NAND gate
AND Function :

An AND function can be generated using only NAND gates. It is generated by simply
mwerting output of NAND gate; ie. AB = AB, Fig. 2.19 shows the two input AND gate

ssing NAND gates.

A~ ) D
B_

Fig. 2.19 AND function using NAND gates

Y=

]

A B AB

0 0 0

0 1 0

1 0 0

1 1 1
OR Function :

OR function is generated using only NAND gates as follows :

expression for OR gate is
Y

W

]

n

> >

>\

o

wel)

+ o+
Wl @

AB

—
—
—

A —

B—

AB

Al B | A | 2
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 2.19 Truth Table

We know that Boolean

Rule 9 : [A = A

DeMorgan’s Theorem 1

P FEVEAE 5 NET NS

Lo % YW
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The above equation is implemented using only NAND gates as o FigZZﬁ

A A
2 D12 D
o>l
B
~d
- D7
Fig. 2.20 OR function using only NAND gates
Note : Bubble at the mput of NAND gate indicates inverted mput

<

"
)!l
|
"
>
+
ey

NOR Function -

: 4

]
>
3
ve)

DeMorgan’s Theorem 2

) ' Rule 9 : [-K=-‘\]
I'he above equation is implemented using only NAND gates, as shown in the Fje 2 21
’ e lg‘ —

A

B-q }h

Fig. 2.21 NOR function using only NAND gates

g ?
N
2
gl
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~Tal B kR .
Sasieh Al B | AB | XB | 1B
) v 0 0 1 0 l *; 18
0 1 . 1 - .
: 39 1 0 0 1 0
RS- R | o

27.9.2 NOR Gate

gimilar to NAND gate, the NOR gate is also a universal gate, since it can be used to
generate the NOT, AND, OR and NAND functions.

NOT Function :

An inverter can be made from a NOR gate by connecting all of the inputs together

and creating, in effect, a single common input, as shown in Fig. 2.22.
AN

X
. Al 8 | &®
..\\. \“:\ \ .\‘.\‘\\\‘ -\\\\:
A %50 b \\ \\\ %;_\-\tﬁ' y=1
X—ED»— Y=ATB-XTX-X
B 0 1 0

1 0 0
| | g |-

Fig. 2.22 NOT function using NOR gate

'OR Function :

An OR function can be generated using only NOR gates. It can be generated by simply
ie. A+B = A + B. Fig. 223 shows the two input OR gate

Fiﬂverting output of NOR gate;
using NOR gates.

|
F
E A+B

‘ 2+ R +

FA—‘ A+B -=-A+B=A+B - A——‘>—d>——¥=A+B=A+B
8 s i e

Fig. 2.23 OR function using NOR gates

}Jl

—

PPRTCNFET o S L

ten | il i O NS
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A 8 A B A+B "
0 0 0 0 1
0 1 - 0 1 0
1 0 1 0 0
\ , 1 1 0

Table 2.21 Truth table

AND Function :

AND function is generated using only NOR gates as follows : We know that Boolezn
expression for AND gate is

Y = AB
= Kﬁ Rule9:[i=;q
= A+B DeMorgan’s Theorem 2

The above equation is implemented using only NOR gates as shown in the Fig. 224

Fig. 2.24 AND function using NOR gates
Note : Bubble at the input of NOR gate indicates inverted input,

A B A B A+B
1 - 0 1 1

1 0 1 0 1

1 ! 1 1 0

Table 2.22 Truth table
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gt
NAND Function : .

NAND function is generated using only NOR gates as follows : We know that Boolean
on for NAND gate is

Y = A:B
= A+B DeMorgan’s Theorem 1
= A+B Rule 9 : [A = A]

The above equation is implemented using only NOR gates, as shown in the Fig. 2.25.

7

Z

0
1
0

- — (=] [e=)

- 0 = O
]

- .- 0O O

.
Q i o -

1
‘Truth table 2.23

2710 Conversion of AND/OR/NOT Logic to NAND/NOR Logic using
Graphical Procedure
When we implement any Boolean expression most of the times we find that it involves
Various logic gates. We know that logic gates are available in standard IC packages.
efore to implement given Boolean expression we need various standard ICs. Many
all gates within the standard ICs are not utilized.

For example, to implement Boolean expression AB + CD, we require two AND gates,
OR gate and one inverter. This requires three standard ICs. Two AND gates from
AND IC and only one OR gate and one inverter are utilized from OR and inverter ICs,
Zpecﬁvely. Other gates from these three ICs are not utilized. To improve utilization of

and to reduce number of ICs required, one can use only NAND/NOR gates to
lement Boolean expression. To do this, we have to convert given AND/OR/NOT
lean expression logic to NAND/NOR logic. This is explained in this section.
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Steps for converting to NAND/NOR logle using graphleal procedure

I Draw AND/OR Jogle,

21 NAND hardware hawn been chosen, add bubbles on the output of each ANT) Bl
and bubbles on input side to all OR gates,

31 NOR hardware haw been chosen add bubbles on output of each OR gate and
bubble on input of each AND gate,

4. Add or subtract an inverter on each Hne that received a bubble In wtep 2 or 3
8 Replace bubbled OR by NAND and bubbled AND by NOR,
6. Eliminate double inversions,

W= Example 2.7 1 Boolean Lxpression ((Auli)l‘) D

Original Circuit

A—‘Dﬂ (A+B)C_ ATBIC
B —f D——Do— Ye(R+BC)D
D oy

D

Fig. 2,26
NAND Circult

Z:D_ﬁ}D'—D_Y

A Elimination of double inversion
‘ R e P
B | P et
By ;1_,.:‘1.- 5 i .'*F
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— v

NOR Circuit

(a)

Elimination of double inversion

(c)
Fig. 2.28

The straight forward method for implementing the given expression uses two AND
gates, one OR gate and one inverter, as shown in the Fig. 2.26. Now we will see
implementation of this circuit accomplished by replacing each AND gate, OR gate and
inverter by its equivalent NAND gate using steps mentioned earlier. This is illustrated in
1g. 2.27. If we now compare original circuit and the circuit with NAND gates, we find
that three ICs are required (AND, OR, and INVERTER) to implement original circuit,
Whereas only two NAND ICs are required for the circuit with NAND gates. (With two
NAND ICs we have 8 NAND gates and only 6 NANDs are required to implement the
Hdogic circuits). )

e Applying similar steps for NOR gate we get NOR circuit as shown in Fig. 2.28. Here,
\We need only two ICs of NOR gate.

2.7.11 Extension to Multiple Inputs

Except inverter and buffer, the gate can be extended to have multiple inputs if the
inary operation it represents is commutative and associative,

AND and OR functions in boolean algebra are both commutative and associative and
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« ABCHACCAANTH ARGy BRC RO
= ABC+ARC fuile b - [M-ul
mmp Example 2.9 1 Simplify each of the following uwing Demorgan’s thearem

a_)iA+§iiA+ Bi b)ARCD
Solution : ) (A+B)(A+ B)

A+D+A+B DeMorgan’s theorem |

= AD+A B DeMorgan’s theorem )
> = A B+AB H-ulav:['A'-sA]
= A®B
b) XEE':SB = ABC+D DeMorgan’s theorem |
= ABC+D Rulc‘v:[x»A]
= (A+B)c+ D N DeMorgan’s theorem |

iy Example 2.10 : Verify the following Boolean algebraie manipulation. Justlfy each step
with a reference to a postulate or theorem ;

DX+Y +XY) (X+Y)XY = 0
ii) (AB+C+D) (C +D) (C+D+E) = ABC +D
Solution : i) (X+Y +XY) (X+Y) (XY)

= (X+Y4X) (X+7) (XY) " A+ABs A+B
= (X+Y) (X+Y) (RY) Al
= (X+Y)(XY)
= XX+ YXY

"W A+AdA
" A,A.A
v AR =08

ii) (AB+C+D) (C+1) (C+D+ )
“ (AB+C+D) (CCH+CD4CR+CD DDy DE)
“ (AB4C4+D) (C+TD+ TR+ CD+ D4 DR
“ (AB+C+D) [C+DEC+Ca148)+ CE |
“ (AB+C+D) (Co+Dy CR)

YA O

“ Ael = AN
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(AB+C+D) [C+(1+E)+D]

(AB+C+D)(C+D)
ABC+ABD+CC+CD+CD+D

ABC+ABD+CD+CD+D
ABC+D(AB+C+C+1)
ABC+D

msp Example 2.11 : Simpl_zﬁ; thf following expression

a+ab+abC+ab d+

Solution : a+a b+a bT+a bt d+.....

mup Example 2.12 : Prove that
(a+b) (@+c) (b+c)=(a+b) (@+c)

Solution :(a+b) (@+c) (b+¢)

"™ Example 2.13 : Prove from fundamentals the following expressions :
)Xy +X+yz=X zZ+Xxy
) XYz+Xyz+xy=xy=Xz+xy

Solution : i) xy +x 24y

W

z

—
—_

—
—_—

=

(@aa+ac+ab+bc)(b+0)
(ac+ab+bc) (b+0)

abc+ acc+abb+abc+bbc+ bcc
abc+ac+ab+abc+bc+bc
ac(+1)+ ab+bc(@+1+1)
ac+ab+bc

ac+ ab+ bc+aa

c(a+b)+ a(a+b)

(@a+b)@+c ... Proved.

Xy +Xz+yz (x+X)
Xy + XZ+XyZ +Xyz
xy(1+2z)+Xz(1+y)
Xy + Xz ... Proved.

A+l =A
AA =0

- A+l1=A
v K¥l=1
AA=0
AA=A
A+l=1
aa=0
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Example 1.47. Add 33 3/8 maszza ;/8_:;» ol(’)‘on::u
i 22 58 = 10110.101
111000.000 = (56),
(111000,
:......o. 1.48. Add 101.11, 1101.01 and 10000.001.
Solution. 101.11 —(5.75),
1101.01 —(13.25),,
10000.001 —(16.125),,
100011.001 = (35.125),,
= (100011.001),
Example 1.49. Add 4.25, 7.75 and 8.0 in binary.
Selution. 4.25 —100.01
7.75 —111.11
8.0 —1000.00
(20.00),, = 10100.00
» (10100),

1.8.2 Binary Subtraction

Binary subtraction can be carried out in either of the two different ways. a
(1) Direct subtraction.

(2) Complement subtraction.

1.8.2.1 Direct subtraction
The rules for performing the binary subtraction are given in the Table 1.6.

Table 1.6. Binary subtraction

A B Difference Borrow

(Minuend) (Subtrahend) D B

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Example 1.50. Subtract 10101 from 11011.

Solution. 11011 = 27
- 10101 = 21
00110 = 6

— (110),
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Example 1.51. Use binary arithmetic to subtract 10 from (a) 16 (b) 22.

Solution.
(a) 10000 — 16
1010 — 10
00110 6
N (110),
(b) 10110 — 22
1010 —_1_9_
01100 — 12
- (1100), _
Example 1.52. Subtract the following by using binary arithmetic.
(a) 7.25 from 9.50 (b) 6.25 from 10.75

Solution. (a) 1001.10 — 9.50
-0111.01 — 7.25
0010.01 2.25

= (10.01),

(b) 1010.11 — 10.75
0110.01 — 6.25
0100.10 4.50

= (100.10),
Signed—magnitude representation or si

Until now, we have considered only unsigned numbers, numbers without any positive
or negative sign. These unsigned numbers represent only magnitude. To perform 'fhe
subtraction, representation of negative number is needed. In the decimal system, a + sign
is used to denote positive numbers, and — sign is used to denote negative numbers. This
type of representation of numbers is known as ‘signed numbers’. To indicate this sign we
must use a symbol, and in a digital circuit either O or 1, generally. O is used as Most
Significant Bit (MSB) to represent a positive (+) number and 1 is used as Most Significant

Bit (MSB) to represent a negative (-) number.
These numbers are represented by the signed magnitude format. Fig. 1.7 shows the

signed magnitude format for 8-bit signed number.
B, By B, B, B, B, B, B,

gned binary numbers

——
sign magnitude

Fig. 1.7 Signed magnitude representation.

f the number. If MSB is 1,

Here, the most significant bit (MSB) represents sign 0 :
maining (seven) bits

number is negative and if MSB is 0, number is positive. The re
represent magnitude of the number.
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Some examples for signed-magnitude numbers,
Example. (1) 01000100 is a (+68)10

(2) 11000100 is a (-68),,

(3) 10001110 is a (-—14)10'

(4) 00011001 is a (+25)10

‘ 55. For signed
In case of unsigned 8-bijt binary numbers, the decimal range l?é’ ;:oi 255 to 127,
magnitude 8-bit binary numbers, the largest magnitude is reduce Shmithomn.
Sign-magnitude numbers require much hardware for addition and su

1.8.2.2 Complement subtraction tion
Complements are used in digital computers for simplifying the subtraction I—
and for logical manipulation
There are two

(2) Diminisheq radix complement (r—

(r-1)’s Complement. Given positiy

1)’s complement.
(1)
‘n’ digits and fractionga] part of ‘ny’ digits, th

e number ‘N’ in base-r having an integer part of
en the (r-1)’s complement of ‘N’ is defined as
(" — rm _N)

for only integer part ie., m = @

The (r-1)’s complement of N

(16 - 1)’s complement is called 15’s complement.

Complement ie.,
(2) Radix complement (or) r’s complement. Fo, a

. - ? lement A
For decimal number system, r 10, thfa“." s comp s called o 1.
! umber systems r = 2, then it Is called 2’s COmplemepy o °°mplement.
For binary n sy . = lo con
system r = 8 then it is called 8's complement. For hexadecimaj SYstem , _ Numbe,
called 16’s complement. | .
’ o a
’s complement and 2§ comp emen.
ghreaij ;re nl:ore useful in binary subtraction.
numbe

f a number exists for any base ¢ it
's complement o
Note: (1) r's ¢

binary Numbe, represent a

>
. i the (l‘—])’s comp)]
is obtained by adding 1 to Plemep,
’ lement is o
(2) r’s comp

1
since " - N = [("-1) - N] +

and an
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(3) Complement of complement = original number.
P-N=r-(m-N =N
or MmM-1-N =rm-1-("-1-N) =N

1’s complement system (representation)

The 1's complement of any binary number is performed by simply changing all 1's

into 0’s and O’s into 1's. i.e., each bit is replaced by its complement (complement of 1
is 0 and complement of 0 is 1).

So, 1’'s complement of a number (N) = (2" - 27" - N)
i.e., each bit is subtracted from binary ‘1’.
i.e., 1-0=1and
1-1=0
which causes the bit change, from 0 to 1 and from 1 to 0.
Example 1.53. Find the 1’s complemenf of (1011),.

Solution. given number = 1011, n=4m =20
1’s complement of the number = (2% - 2° - 1011) = 100
=16 -1 -1011
= 15 - 1011

= 1111 - 1011 = 0100
Example 1.54. Find the 1’s complement of 1001.1.

Solution. given number = 10011, n=4 m=1
1’s complenfent of the number = (24 - 21 = N) = 10000.1 - 1001.1
= (0110.0),
Some more examples
binary number 1’s complement

010001 101110
11110101 00001010
1010.0101 0101.1010
1100.001 0011.110
10010.000 01101.111
10010.10 01101.01
0000.11 1111.00
0000.00 1111.11

1’s complement subtraction method

Subtraction between the binary numbers can be performed by using 1's complement
method. Here, instead of subtracting a number, we add the 1's complement of the number

£
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In the 1’s complement subtraction, we have two cases.

Case (#) Subtraction of smaller number from larger number.

Procedure :

(1) Determine 1’s complement of the smaller number (subtrahend). ‘ -

(2) Add 1's complement to the larger number (minuend) and the result is a positive
number.

(3) Canty will be generated after the addition which is called “End-Around Carry’ (EAC)
Remove the EAC and add it to the result,

Example 1.55. Subtract 101011 from 111101 using 1’s complement method.
Solution. 111101

1’s complement 010100
of 101011 is EAC ®010001

1 Add end around carry

010010
= (10010), = (18)10
Example 1.56. Perform the binary subtraction for the following using 1’s complement method.
(a) 28 - 8 (b) 30 - 25 (c) 255 - 12.25 (d) 10.625 - 8.75.
Solution. (a) 28,, = 11100
810 = 01000 I's complement of 8 = _ 8
= 10111
11100 - Minuend
10111 - 1’5 complement of subtrahend
EAC ®10011
+ 1 Add EAC
10100
= (10100), = (20),0
(b) 30, = 11110 255 = 11001

Minuend = 11110
I's complement of subtrahend = 00110

EAC ©00100
+ 1 Add EAC
00101
= (101), = (5),
(c) 25.5 = 11001.1

Binary of 12.25 = 01100.011
1’s complement of 12.25 = 10011.100
11001.10
10011.10
EAC ©01101.00
1 Add EAC
- 1101.01
(1101.01), = (13.25),,
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(d) Minuend 10.625
Subtrahend 8.75

1’'s complement of 8.75

1010.101

0111.001

EAC ©0001.110

1

1.111

= (1.111),

29

= 1010.101
= 1000.110
= 0111.001

Add EAC

= (1.875),

Case (#) Subtraction of larger number from smaller number.

Procedure:

(1) Determine the 1's complement of the larger number (subtrahend)
(2) Add 1’s complement to the smaller number (minuend)

(3) After addition, no carry will be generated but answer is in 1’s compleme..: form
(negative number). To get the answer in true form, take the 1’s complement of it and assign

negative sign to the answer.

Example 1.57. Perform the binary subtraction operation using 1’s complement method

for the following.

(a) 43 - 57 (b) 8 - 10 (c) 8.75 - 10.625
3 13 5 7
‘ %" 16 (€ g~ g (f) 11.125 - 16.875
Solnﬂon.
(a) (57);o = 111001
(43),, = 101011
Minuend 101011
1’s complement of subtrahend 000110
110001

The result has no carry, so the answer is in 1’s complement form
1’s complement of (110001) is —(001110)

answer in true form = (-14);

(b) (8);0 = 1000 Minuend = 1000

(10);, =1010 1’s complement of subtrahend = _2191_

No carry, so the answer is in 1's complement form. 1101
True answer = - (0010),

= (-2)y9
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(c) (8.75);p = 1000.110
(10.625);, = 1010.101
Minuend = 1000.110
1’'s complement of subtrahend = 0101.010

1110.000
There is no carry, so the answer is in the 1’s complement form
True answer =- (1.111),
3
(d) Z =0.1100 Minuend = 0.1100
13
E =0.1101 1’s complement of subtrahend = 0.0010
: 0.1119
There is no carry, so the answer is in

1’s complement form.,
True answer = -— (0.0001)2

s (_i)

(e) =0.101

Minuend = 0.101

0[N oo|wm

7
=0.111 I’s complement of g subtrahend = 0.00Q

————

_ 0.101
There is no carry,

so the answer is in 1’s complement form.
True answer =-— (0.010), = (~2/8)10

(f 16.875 - 11.125
16.875 =10000.111

Minuend = 01011.001
11.125 =01011.001

1’s complement of subtrahend = 01111.000
01010.001

There is no carry, so the answer is in I's complement form.
True answer =- (0101.110)2

=~ (5.75),

Advantages of 1's complement subtraction

1. The 1's complement subtraction can be accomplished with a bina ry adder. Therefore
this method is useful in arithmetic logic circuits.

2. It is very easy to find the 1's com
where N is a number.

plement of a number ie. to get the (-NJ,
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Disadvantage :

1. In 1's complement method, hardware implementation is difficult and it gives the
concept of negative zero.

2. It also gives one value less to represent negative values.

2's complement system (representation)

The 2’s complement of any binary number is determined by adding 1 to 1's complement
of that number. If N is a binary word and N is its 1'¢ complement. Then the 2’s complement
of the binary word N is N+1.

* 2's complement of number = 1's complement of a number +1.

* 2's complement form is used to represent —ve numbers.
* 2's complement of one (1) is 1.
* 2's complement of zero is 10.

Example 1.58. Find the 2's complement of the following binary numbers.

(a) (1010), (b) 1111

(c) 11.01

Solution. (a) Given binary number = 1010
1’s complement of 1010 = 0101
By adding 1 to 1's complement = +1
0110
2’s complement of 1010 = (0110),
(b) Given binary number = 1111
1's of 1111 is = 0000
By adding 1 to 1's complement @ L
0001
2's complement of 1111 = (0001),
(¢) Given binary number = 11.01
1's complement of 11.01 = 00.10
1
By adding 1 to 1’s complement =
S . P 00.11

2's complement of 11.01 is = (00.11),

Note : From the above examples, we can conclude that the 2's complement of a number
can be obtained by leaving all least significant O's and the first one (1) unchanged, and replacing
all 1's with O's and 0's with 1's in all other higher significant bits,

Example 1.59. Convert the following decimal numbers into binary and find their 2’s
complements.

(a) 40 (b) 18 (c) 16.5
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Solution. (a) The binary equivalent of 40 is (101000),
1's complement of 40 = (010111),

By adding 1 to its 1's complement =-(71—1-6€0_1_
2's complement of 40 = (011000),

(b) The binary equivalent of 18 = (10010),
2's complement of 18 = (01110),

(c) The binary equivalent of 16.5 = 10000.1

2's complement of 16.5 = (01111.1),

2’s complement subtraction method

~ Like 1"s complement subtraction in 2’s complement subtraction also, the subtraction
Is accomplished by addition only. For subtraction of two numbers we have two cases.

Case (i) : Subtraction of a smaller number from larger number.
Procedure :

1. Determine the 2’s complement of the small number (subtrahend)
2. Add 2's complement to the larger number (minuend)
3. Discard the carry generated.

Note. Always a carry is generated in this case.

Example 1.60. Perform the following subtraction operations using 2’s complement

method
(a) (111001), - (101011), (b) '(1111)2 - (1010), (c) (112),, - (65)10
(d) 22-7 (e) (100.5);, - (50.75)4,
Solution. (a) Minuend 111001 = 57

2’s complement of subtrahend 010101 43
discard carry ©®001110 = 14

111001 - 101011 = (1110), = (14)4,
(b) Minuend = 1111
2’s complement of subtrahend = 0110
discard carry @©0101
1111 - 1010 = (101), = (5),,
(c) (112)19 - (65)19
binary equivalent of 112 = 1110000
binary equivalent of 65 = 1000001
Minuend = 1110000
2’s complement of subtrahend 0111111
discard carry  ®0101111
112 - 65 = (101111), = (47),,
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(d) 22 = 10110 and 7 = 00111
Minuend = 10110
2’s complement of subtrahend _ 11001
discard carry @®01111
22 - 7 = (1111), = (15)¢,

(e) (100.5);, = (1100100.10),
(50.75);, = (0110010.11),
Minuend = 1100100.10
2’s complement of subtrahend = 1001101.01
discard carry ©0110001.11
(100.5);5 - (50.75);9 = (110001.11), = (49.75),,

Case (ii) : Subtraction of a larger number from smaller number.
Procedure :

1. Determine the 2’s complement of the larger number (subtrahend)
2. Add the 2’s complement to small number (minuend)

3. Answer is in 2’s complement form. To get the answer in the true form, take the
2’s complement and assign negative sign to the answer.

Note : Here, no camnry is generated.

Example 1.61. Perform the following subtraction operations using 2’s complement method.

(a) 7 - 22 (b) 13 - 27 (c) 10 - 28 (d) 16.5 - 24.75
-Solution. (a) (7)o =00111 Minuend = 00111
(22),, =10110 2's complement of subtrahend =01010
No carry 0‘05’.‘\ 511D 10001
B True answer =Ehe?2’s complement of (1001) is - (1111), = (-15),,
(b) (13),, = 01101 Minuend = 01101
, (27);0 =11011 2’s complement of subtrahend = 00101
No carry 10010
250 True answer =The 2's complement of (10010) is - (1110), = - (14),,
(c) (10);, =01010 Minuend = 01010
(28);9 =11100 2’s complement of subtrahend = 00100
No carry 1110
True answer = The 2's complement of (01110) = (~10010), = —(18),,
(d) 16.5 =10000.10 Minuend = 10000.10
24.75 =11000.11 2's complement of subtrahend = 00111,01
10111.11

True answer =2’s complement of 10111.11 = -(01000.01), = -(8.25),,
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Advantage : Reduction in hardware.

Note : In 2's complement subtraction, carry indicates whether-the answer is positive or
negative. When the carry is 1, the answer is positive. When there is no carry, the answer i
negative and is the 2's complement of the actual magnitude.

The comparison of the three signed-number systems is shown in Table 1.7.

Table 1.7. Comparison of three signed-number systems

Number system — Signed magnitude Signed 1's Signed 2's |
parameters { complement complement
1. Representation 0 0 0
of a positive number N e
sign magnitude sign magnitude sign magnitude
2. Representation 1 2m _N -1 2m _ N
of negative number

sign magnitude

Plus zero = 00...0 Plus zero = 00...0 | Plus zero = 00._00
Minus zero = 10..0| Minus zero = 11..13

3. Form of zero

No minus zero
4. Negative numbers No Yes Yes
in complement form
5. Sign bit involved No Yes Yes
in addition or
subtraction
6. Use end-around Yes Yes No
carry
7. Method for detecting | Canry from the Negative sum Negative sum
over flow in adding mag. bits
two positive numbers
8. Method for detecting | Carry from the Positive sum Positive sum

over flow in adding mag. bits
two negative numbers

1.8.3 Binary Multiplication

The process of binary multiplication is almost similar to the process of decimal multiplication.
Binary multiplication is just a matter of shifting and adding. The rules for binary multiplication
are given in Table 1.8.

Table 1.8. Rules for binary multiplication

Muiltiplicand Multiplier Product
A B P
0 0 0
0 1 0
1 0 0
1 1 1
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Note : The product of two binary numbers is 1. onlv if both the bits are 1, otherwise it
i O

To handle large numbers, number with several bits: Binary multiplication involves the

partial products, shifting each successive pavtial product left to one place (bit), and then
adding all the partial products.

Example 1.62. Perform the binary multiplication for the following

(@) 7X 93

@3S x 1
8 4

Solution. (a)

(b)

(c)

(d)

(b) 22 X 6 (c) 27 x 21
(e) 4.75 x 3.625
(Mo =111 Multiplicand = 111
(8)yp =101 Multiplier = 101
111
X 301

111 Partial product 1°
000 Partial product 2
'\111 Partial . product 3
100011 Final product
(100011), = (35);,
(22),, =10110

(6)yp = x 110
132 00000 = (10000100), = (132)y,
10110
10110
10000100 = Final product .. (10000100), = (132);y
27 = 11011
21 =x 10101
11011
00000
11011
00000
11011
1000110111 Final product = (1000110111); = (567)y
3 o011 0.011
? x_0.01
— =0.01 0011
" 0000 _
0.00011

(0.00011), = [3—)
3210
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(e) 4,75 = 100.110
3.625 = x 11.101
100110
000000
100110
100110
100110
10001.001110

7
= (10001.00111), = (17.21875),, = (175)
10

1.8.4 Binary Division
Bir.nary division is camied out in a similar manner to division using decimal numbers ie.,
comparison and subtraction till the final remainder is obtained.

Suppose the divisor has two bits then, if the first three digits of th
] ) i
or larger than the divisor, put 1 in the i gits of the dividend are qual to,

the procedure.

The rules for division by binary bits is as follows.
0+1=0
1+1=1

Note : Division by zero is not permitted.
Let us consider the different examples for binary division.
Example 1.63. (a) Divide 50 by 5 using binary division.
(b) Divide 11001 by 100.
(c) Divide 10.5 by 5.25 by using binary division.
(d) Divide 1100.10 by 010.
Solution. (a) Divisor =5 = 101
Dividend =50 = 110010
The quotient =101 = (5),,

101 « quotient
101 5110010
101

00101
101

000 « remainder

|
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(b) 110.01 Hence, result = 110.01 = (6.25),,
100) 11001
100
0100
100
00100
100
000
(c) Dividend =10.5 = 1010.10
Divisor =5.25 = 101.01
10
101.01)1010.10
101
0000 .00
000.00
0000

quotient = (10); = (2)1g

(d) 110,01 resulé<s-'(110.01)5"'= (6.2
107 1700.00
10

——

10

00

00
01
00

00
1.9. THE 9’S AND 10’S COMPLEMENTS
In any number system, the complement of a digit g, is denoted by a or @ is defined as
a=(b-1-a
i.e., the complement @ is the difference between the largest digit in base b and the digit a.

9’s complement : The (r - 1)’s complement of a decimal system (r =10),is called 9's
complement. The 9's complement of a number N = N =[(10" —10'"')—N]

wsbid
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1.12 BINARY CODES

The electronic digital systems like computers, microprocessors, ...efc., are required to hancye
data (represent and manipulate) which may be consisting of numbers, alphab.ets.or special
characters. But the digital systems use signals that have two distinct values and circuit elements
that have two stable states. Hence the numerals, alphabets, special characters and contro]
functions are to be converted into binary format.

The process of conversion into binary format is known as ‘binary coding’. The combination
of binary bits that represent numbers, (may be decimal numbers, octal, hexadecimal number
etc.), alphabets, symbols or control functions are called ‘binary codes (or) digital codes’. When
decimal number is represented by its equivalent binary, we call it “straight binary coding”. The
codes must be in binary because computers can only process 1’s and 0’s. Representation of
a group of 2" distinct elements in a binary code requires a minimum of n bits. This is because
it is possible to arrange n bits in 2" distinct ways.

For example, a group of four distinct quantities can be represented by a two bit code, with

each quantity assigned one of the following bit combinations : 00, 01, 10, 11. A group of eight

elements requires a three-bit code, with each element assigned to one and only one of the
following: 000, 001, 010, 011, 100, 101, 110, 111.

- The .exax'rnples show that the distinct bit combinations of an n-bit code can be found by
counting in binary from 0 to (27 —1). The minimum number of bits required to code 2" distinct
quantities is n, there is no maximum number of bits that may be used for a binary code.

Basically, binary codes are classified as numeric or alphanumeric. Numeric codes are used

to represent numbers. On the other hand, alphanumeric codes are used to represent characters:
alphabetic letters and numerals.

In these codes, a numeral is treated sim

ply as another symbol rather than of a number
or numeric value.

1.12.1 Classification of Binary Codes

The binary codes are classified in different ways as (1) Weighted Codes (2) Non-weighted
Codes (3) Reflective Codes (4) Sequential Codes (5) Alphanumeric Codes (6) Error Detecting
and Correcting Codes.

(1) Weighted Codes. The main characteristic of a weighted code is, each binary bit is
assigned by a “weight” and values depend on the position of the binary bit.

The sum of the weights of these binary bits, whose value is 1 is equal to the decimal digit

which they represent. :

In other words, if w;,wy, w,, and w, are the weights of the binary digits, and X1, X9, X3

and x4 are the corresponding bit values, then the decimal digit
?- N = wy x4 + wg xg+ Wy x, + wy x; is represgn'tefl by the l?‘inary sequence x4Xsx,x;. A
| sequence of binary bits which represents a decimal digit is called a“code word”. Thus X4X3XoXy
is a code word of N. Examples for these codes are: BCD, 8421, 6421, 4221, 5211, 3321,

8421 etc.
. R -weighted codes are those codes in
2) Non-weighted Codes. Non-weighted cod.es or_tfn w.elg les L coc
whicf(l '1he digit value does not depend upon their position i.e., each digit position within the
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number is not assigned fixed value. Most commonly used non-weighted codes are : unweighted
BCD code, Excess-3 code and gray code.

Comparison between weighted and non-weighted codes is shown in Table 1.9.
Table 1.9. Comparison between weighted and non-weighted codes

| SI. No.| Particulars Weighted codes Non-weighted codes
1 Weight In this code, each bit position In this code, no specific
is assigned a specific weight. weights are assigned to
the bit positions.
2. Value Each bit position represents a Each position within the
fixed value. binary number is not
assigned any fixed value.
3. Examples BCD, 4221, 5211, Examples. Ex-3 code,
8421, 6421, 842 1. Gray code.
4, Applications | These codes are used in These codes are used
(a) Data manipulation during (a) To perform certain
arithmetic operations. arithmetic operations.
(b) For input/output operations in (b) Shift position encodes.
digital circuits.
(c) To represent the (c) Used for error detecting
decimal digits in calculators, purpose.
volt meters etc.

(3) Reflective Codes (or) Self Complimenting Codes. A code is said to be a reflective code,
if the code word of the 9’s complement of N i.e.,, 9 — N can be obtained from the code word
of N by interchanging all the 1’s as O's and O’s as 1’s. i.e., the code word for 9 is the
complement for the code 0, 8 for 1, 7 for 2, 6 for 3 and 5 for 4. Note that 4221, 5211
6, 4, 2, -3 and Ex-3 codes are reflective, whereas 8421 code is not.

Example. In 6423, the decimal 5 is represented by = 1011
9 _-N =9 -5 = 4 decimal 4 is represented by = 0100

ie., 9s complement of 5 is obtained just by complementing each bit in 5.

Necessary condition. A weighted code is said to be self complementing code if the sum of all
weights is equal to ‘9.

Totally there are 13 possible self complementing weighted codes which include positive and
negative weights.

Example. 5211, 4221, 3321, 8421 etc.

Note: Ex-3 code is a non-weighted self complementing code.

Reflective codes are used to perform 9’s complement subtraction.

(4) Sequential Codes. In sequential codes, each succeeding code is one binary number
greater than its preceeding code. The examples for this code are 8421, and Ex-3 codes,
whereas 4221 and 5211 are not sequential codes, These codes are greatly used in mathematic
manipulation of data.
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Alphanumeric Codes. Many applications of digital computers require the hang,
mm(ilmdnozcs\b;numb;:mdkﬁm.Tomm@m(d%g;
i.sne\mytofonnuhhabinuycode.Anaiphanunwﬁccharadzrset:saseto(%,}a
includes the 10 decimal digits, the 26 letters of alphabets, and a number of specia! ‘
Suchammnmm%mﬂemnsﬂonlywpitﬂkﬁasmehﬂﬂed,q%
&ml?&dmmtsifbothuppataseandmmleﬂmminduded.lnﬂ\eﬁmcase_.‘;
need a binary code of six bits and in the second, we need a binary code of seven bits

m:odcwhid\mmlmealpinnunmﬁcchmadasetaeaﬂed'dphmwm%'

deﬁthm.mmtmwkmmM'%
for conveying intelligible information. ]

The most commonly used alphanumeric codes are -

ASCHl (American Standard Code for Information Interchange)

EBCD!C(EﬂmdedBinaryCodedDedndhterdxangeCode)and

l"‘“"ﬂ'iﬂ\ﬁtlde.Althesecodesarenon—weigl-ltedcodes.

(6) EnwDetecﬁngmrdConecﬁngCodes.“ﬂxenﬂlebMarymformaﬁmishansning
fromonecircuitorsystemtoanothercircuitorsystem, there is a chance of error
occurance.Theerrormayocmrattheh'ansmiﬁer,mceiverminﬁnechamd.ﬂﬁsm@m
a0 m?ybe changed as 1 and vice-versa due to the presence of different types of nois=.
To maintain the data integrity between transmitter and receiver, exira bit(s) are added &
xﬁ:tt:.mesembﬁsaﬂowﬂ]edetecﬁonandsmneﬁm& correction of error(s) in

called ‘errordetaﬂngmadcarectngwda’-&amplefmamrddedmgmdespaﬁga:
error detection and correction or error comecting code is Hamming code
Fig 18reprm1tsﬂ\edas:ﬁczhonofvaﬁalsdlglaloodes(or)bumycodes.
Binaayl code
, v - $ T =
Weighted Non-weighted Reflective Sequential Alphanumeric Error detecting
and correciing
(a) Binary-8421 (a) Ex-3 (a) 2421 8421 ASCH (a) Parity
{(b) BCD-—4221, (b) Gray (b) 5211 Ex-3 EBCDIC (b) Hamming
3321, 5211 (c) Five-bit (c) Ex-3 Hollerith code
5421, 6311, BCD codes
7421, 7421,
8421

Fig. 1.8 Classification of binary codes.

1.12.2 BCD Codes or 8421 Code

BCDBanabbmviaﬁonmethodedDednnlhwhkﬂxdedndcﬁgsOﬂm{gx;:
reptaentedbyﬂwirbinaryequivalatﬁuﬁngfmubﬂsia,BCDisa{xmwkwden
eachdedmddgitbremmtedbvawwwde.dfmn_bmme.mm%
BCD code is 8-4-2-1. In this code, the binary weights associated with four bits are

o
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(ie., 23,22 21 and 2°) from left to right. This means that bit 3 has weight 8, bit 2 has weight

4, bit 1 has weight 2 and bit 0 has weight 1.
The 8421 code is a mixed-base code; it is binary within each group of 4 bits, but it

decimal from group to group.

is

Note: The four bit BCD codes use only 10 of 16 possible states (because 2* = 16). There are

16! possible codes, approximately 8008 codes.

16! x 10!
Table 1.10 shows the 4 bit 8421 BCD-code used to represent a single decimal digit.

Table 1.10. 8421 BCD code

Decimal BCD code
digit 8 4 2« 71
0 0 0 0 O
1 VU + ™3
2 0O O 3+
3 0 0 1 1
4 0 1 g 0
5 0 1 g rog
6 0 1 1 0
7 0 1 1 1
8 1 0 W+ e
9 1 g agesit 3

With four bits, 24 i.e., sixteen numbers can be represented. But in this code, we are using
only ten. The result of six codes combinations are not used i.e., 1010 to 1111 are invalid in
this BCD code.

In multi-digit coding, each decimal digit is individually coded with 8421 BCD code. For

example, 78 in decimal can be encoded in 8421 BCD as 0111 1000.

Comparison between BCD and binary
In multi-digit coding of 8421 BCD numbers, we require 4-bits per decimal digit. Therefore,

total 8-bits are required to encode 78 in 8421 BCD. When we represent the same number
78 in binary : 1001110, we require only 7 bits. The straight binary code takes the complete
decimal number and represents it in binary: the BCD code converts each decimal digit to
binary individually. This means that representing numbers 8421 BCD is less efficient than pure

binary number system. The advantage of a BCD code is that it is easy for conversion to
decimal and vice-versa. The disadvantage of BCD is, in this arithmetic operations are more

complex than in pure binary.
Example 1.71. Convert each of the following decimal numbers into BCD.

(@) (97)10 (b) (63.4),, (c) 78.216



Solution.

(a) (97)y0 - 1001 0111

(b) (634),, - 0110 0011.0100 .
(¢) 78216 - 0111 1000.00100001011

Note : If a number in any number system other than decimal is to ble ignv;r(t:eg inté)'
first it m‘ust be converted into decimal and, from -d“iT:Ma & do.ne i
the conversion is required from BCD to other number system, it mus ys

Example 1.72. Convert given numbers into BCD

(a) (7A)4 (b) 1000010 (¢) 1110110.0001
Solution.

(a) (TA)g = 7 x 16 + 10 = 112 + 10 = 122
‘ 122 0001 0010 0010
(b) 1000010 64 + 2 = 66
0110 0110
() 1110110.0001 = 64 + 32 + 16 + 4 + 2.0625
= 118.0625

= 0001 0001 1000 . 0000 0110 . 0010 0101
(36)g = 24 + 6 = 30 = 0110 0000
Example 1.73. Convert the given BCD numbers into
(a) decimal (b) binary

‘ (c) octal and
(i) 1000110‘1. (i) 10100.001 (iii) 100110.100110
Solution.

(d)

(i) (a) ~T=(89)Io (b) 1011001

() (131)8°
(i) 10100.0010
(a) (14.2),,
(b) 1110.0011
(i) 100110.100110
(a) (26.98),,
(b) 11110.1111

1.12.2.1 BCD addition

We can perform BCD addition provided
does not exceed 9. Then only the results a

(d) (59),

(c) (16.146),
(d) (E.33),6

(c) (32.7655),
(d) (1AFA),

that in each case, the s
re valid BCD numbers,

SWITCHING THEORY AND LOG)c DEg;,

BCD"CO‘JQ
m llaf‘y if

Via decimy

(d) (36),

(d) hexadecimal

um in any four-bit column
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Examples 1.74. Add the following BCD numbers.
(i) 1000 0100 and 0001 0011
(i) 0101 0010 and 0011 0110
(i) 0100 0110.010 and 01000010.001
(iv) 1001 1000 and 0010 1000
Solution.
(i) 10000100 : 84 (i) Ql_OlQOlO b2 -
+ +
000_10101 15 00110116, 36
10011001 99 10001000 88
(i) 0100 0110.01Q0 464 (iv) 1001 1000 98 \
+ + :
0100 0010.0010 42.2 0010 1000 28
1000 1000.0110 88.6 1001.0000 126
Note: In the above examples (i), (ii) and (iii) are valid BCD additions, because in all cases, the

four-bit sum is equal to or less than 9.

But example (iv) is an invalid BCD addition. Because here four bit sum is greater than
9 and also carry out of group is generated. Hence BCD addition can’t be performed.

1.12.3 Other 4-bit BCD Codes

There are various other weighted 4-bit BCD codes, each developed to have certain
properties useful for special applications. Table 1.11 shows these codes, identified by the
weights assigned to their bit positions. Among those 2421, 3321 and 4221 are the self
complementing codes. In the 2421 BCD code, the weights are 2-4-2-1, meaning that bit 1
and bit 2 have the same weight two (2). It is sometimes referred to as 2*-4-2-1 code, where
the asterisk simply distinguishes one position with weight 2 from the other. In the above three
codes, two positions have same weight, there are two possible bit patterns that could be used
to represent same decimal digit, but only one of these patterns is actually assigned.

The 7421 and 8421 codes are some what different than other codes. Here 21 indicate§
that they are negative weights. When 1 occurs in either of the two right most positions, it
means that the weight of that position is subtracted, rather than added to determine the

decimal value. In the above two codes, 8421 is a self complementing code.

Table 1.11. Weighted 4-bit BCD codes

Decimall 2421 | 8321 | 4221 | 5211 | 5311 | 5421 | 6311 | 7421 7427 |84 21

o 10000 | 0000 | 0000 | 0000 | 0000 | 00OO | 0000 | 0OOO | 0000 | 0000
1 looot | ooor | ooo1 | 0001 | 0oo1 | ooo1 | ooo1 | ooor | 0111 {0111
o |oo1o| 0010 | 0010 | 0011 | 0011 | 0010 | 0O11 | 0010 | 0110 | 0110

| 3 [oo11 | o011 | oo11 | o101 | 0100 | o011 | 0100 | 0011 [ 0101 | 0101

— — — — — — — — — —
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0 T 6111 T 9161 T 0160 ] 0101 [0100 [ 6705 B
| 4™ ToT00 [o1oq 1000 | 0111 1000 | o111 | 0101 | 1010 | "
010 | 0111 | 1000 | 1000
° L 1001 | 1000 | 0110 | 1001 101
6 1100 | 1100 | 1100 | 1001 | 1001 1001 | 1000 | 1000 .
7 1101 | 1101 | 1101 | 1011 | 1011 1010 100t | 111 |
8 1110 [ 1110 | 1110 | 1101 1100 | 1011 10(1)(1) it 1(1)(1)?
1
9 1111 | 1111 | 11171 1111 | 1101 | 1100 | 1 — L7
1.12.4 Non-Weighted Codes
1.12.4.1 Excess-3 code :
: fr
Excess-3 code is a modifieg form of BCD code. The Excetshs 3df°<3:l gebew;‘:thm;’e:eﬁsg
€ natural BCD code by adding 3 to each coded number ie., te' tgl o
Y adding 3 to each decimal digit-ang then converting the resy in
as ‘Excess-3 code’ (X83) (or) EX

-bit binary s known

In this code also, we have 16(2%) possible code combinations, oyt of these or.lly ten code
combinations are used as shown in Table 1.12. The remaining six code combinations are
invalid. These are 0000, 0001 00010,1101, 1110 and 1111.

Table 1.12. The excess-3 code

Decimal BCD Excess-3

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100
Example 1.75. Find the Ex-3 code for the following decimq] Numbers,
(@) 7 (b) 36

(c) 72.9
Solution.

i 7 is
-3 code for the decimal
i) T poes 7 +3 =10 - 1010
The excess-3 code for the decimal 7 = 1010.
.. The

(d) 5481
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(b) 3 6
+3 +3 = 0110 1001
6 9

c) 7 2. 9 (1010 0101.1100)
+3 +3 +3

105 .12

(d) 5481 (1000 0111 1011 0100)
3333

87114

& Note : (1) The special feature of this unweighted code is self-complementing. That is, 1's

complement of an excess-3 code number is the excess-3 code for the 9's complement of the respective
decimal number.

F'or example: The excess-3 code for decimal 4 is 0111. Then it's one’s complement is 1000. This
llll)s&nemSoodeformedednxals,whichisthe9’soomplementof4.

Thk&ﬁaxnplanmﬁngpmperwmﬂmexmewdeuseﬁﬂmwmaﬁﬂ\meﬁcopemﬁom.

(2)Foradigitmanynumberwstemtobeoonwrtedintoﬁxscode,ﬁxstitshouldbeconwrted
inio BCD and then into Ex-3 code and vice versa ie. conversions between any number system and
: Ex-3 can be done via BCD code (decimal).

Example 1.76. Convert each of the following numbers of various number sysiems into
Fx-3 code.

(o) (1011), (b) (436)g (c) (3A)46 (d) (1100.011), (e) (10.8)
Solution.
(a) 1011 = (11)4 (b) (436)g =64 x4 +3 x8+6
Ex3 code = 1 1 (0100 0100) = 256+ 24 + 6 = (286),,
+3 +3 Ex-3 code = 2 8 6 (0101 1011 1001)
4 4 33 3
5119
(c) (3A016 = 16 x 3 + 10 (d)(1100.011), = 12.375
= (58),9 Ex-3 code = 33 333
Ex3 code = 5 8 456 108
= +3 +3 = 01000101 0110.1010 1000
8 11
= 1000 1011
8

(e) (1C8)16 =16 x 1 + 12 + —

16
16 + 12 + 05 = (285),,

Y

V4

w M
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Caseﬂl(ﬁ) : Whenever t.he sum of decimal digits exceeds 9, there will be a carry from one
group to’ e next. When this happens, the group that produced the carry will revert to #421
form. This occurs because of the Ex-6 and six unused four-bit groups. To restore the answer
to Ex-3 code, we must add 3 to the group that produced the carry,

Example 1.79. Add the following in Ex-3 code

(a) 28 + 36 (b) 9 + 8 (c) 87.6 + 12.6

Solution.

(a) 28 =0101 10173 Excess -3 code for 28
36 0110 1001 Excess -3 code for 36

1100 0100 First result
- 001 1+0011 Subftract and add 3
1001 0111 Ex-3 for 64

(b) Ex-3 code for 9 = 1100
Ex-3 code for 8 = 1011
First result 10111
Add 3 0011

11010 = Ex-3 code for 17.
1000 0111 . 0110
0011 0011 0011
1011 1010 . 1001
Ex-3 code for 12.6 0001 0010 . 0110
0011 0011 0011
0100 0101 . 1001

(c) Ex-3 code for 87.6

Add Ex-3 of 87.6 and 12.6
= 1011 1010 . 1001

0100 0101 . 1001
100000000 . 0010
Add 0011 0011
100000000 . 0101
= 100.5
Advantages : (1) In the Ex-3 code,additionoperaﬁonusemeordinarybinaryaddiﬁm-
(2) The 1’s and 2’s complements can be used to subtract Ex-3 numbers.

' 01 20403 G’ﬂ m

ﬂwcode%idnexh’bitsmﬂyaénglebﬁchmtgeﬁmmnumbawthenenkknm
as ‘gray code’ ie.,inmiscodebebueenanywomwsi%codewords,ﬁ\erewﬂlbedmnge
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¢ distance code’ or ‘cyclic code’. Aq the

e

" This ¢ called as ‘unl
in only one position. This code s also code is an unweighted code. Gra,

is no specific weight assigned to each bit position, this
is also known as ‘reflected code’, because n-bit gray ¢
(n-1)™ bit code.

The Table 1.13 shows the bit pattern assigne

Table 1.13. Gray code representation

C
ode can be generated by reﬂecﬁng(:iz

d for gray code from decimal 0 to decimg | ;

Decimal code Gray code
0 - 0000
1 = 0001
2 4 0011
3 i 0010
4 = 0110
5 < 0111
6 E 0101
7 - 0100
8 - 1100
9 - 1101
10 - 1111
11 - 1110
12 - 1010
13 - 1011
14 ~ 1001
15 - 1000

Gray code belongs to a class of codes called ‘minimum’ changes codes’, in which only one
bit in the code group changes when going from one step to the next. Because of this, this code
is not suitable for arithmetic operations.

Another property of gray code is that the gray-coded number corresponding to the
decimal number 2"-1, for any n; differs from gray coded O (0000) in one bit position only
(i.e., at n value position). For example, for n = 2, 3 and 4, we see that 22 -1 = 3, 10 =
0 01 0 in gray code -+ change at position 1.

23 _ 1 = 7 = 0100 in gray code -: change at position 3.

24 _ 1 = 15 = 1000 in gray code . change at position 4.

We can observe the reflection property of the gray code in Table 1.14(a), (b) and (c)-

Table 1.14. 2 bit gray code, 3 bit gray code, and 4 bit gray code

2-bit gray code 3-bit gray code 4-bit gray code
(a) (b) (c)
g1 % 92 81 % g3 92 91 9
00 000 0000
01 X 001 0001
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=T ——— - - BTT
10 D10 010
110 0110
111 0111

101 0101 «

100 0100«

11004

1101 &
3%
1110
1010
1011
1001
1000

Advantages

(1) This code is useful for Input/Ouput devices, A to D convertes, and other peripheral
equipment.

(2) The Gray code exhibits a single bit change from one code number to the next. This
property is useful in shaft position encoders, where error susceptibility increases with the
number of bit changes between adjacent numbers in sequence.

(3) This code is useful when other codes such as binary etc. produce undefined or ambiguous
results during the transition from one number to next, For example, to change from 7
to 8 i.e, 0111 to 1000, four changes are needed.

(4) Very easy for conversion between gray and binary.

(5)

Gray code is used to represent the analog data by continous change of a shaft postion.
The shaft is partitioned into segments, and each segment is assigned a number. If the
adjacent segments are made to correspond with the gray code sequence, ambiguity is
eliminated when detection is sensed in the line that separtes any two segments shown
in Fig. 1.9. .

111 101

B,
B,100

110 B,

010 000

011 001

Fig. 1.9 Rotating disk.
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Gray to binary conversion : The Gray to binary code conversion can be achieyey sy

the following steps :

(1) The MSB of the binary number is same as the MSB of the gray code Number, g, Wi
it down.

(2) To obtain the next binary bit, perform exclusive OR mod-2 addition or additiop, with
neglecting carry between the just written down binary bit and the next gray code bit
Write down the result

(3)  Repeat the step 2 until all gray code bits have been completed i.e,, until LSB of Gray
code number is reached.

Note : (1
and vice-versa,

(2) The conversion process starts from MSB and moves towards [ SB.

Let g oor... 919y designate a code word in the (n + 1) bit gray code. Let by 4ubs, b,
designate the corresponding binary number, where,

suffix O indicates |SB and n indicates MSB, Then, ith bit of 8; can be otabined as

9 =b®bp , O<is<sn-1
where, b, represents the ™ bit in the binary code,

) The number of bits in a gray code = number of bits in the equivalent binary NUmbegy

8, = b,
for gray-binary
b, g

(a) 101101 (b) 10101111 (c) 101011
Solution,
(@)  Gray code l/c_g'oﬁ{l}g‘lﬂo/@)'
Binary code IEEERY i R sog
(b) Gray code Lo Qo Juii0s <Ll e 1
Binary code Leseds Qo S04 fog 0
(e) Gray code 104 0 1 1
Binary code 1 1.0 0 1 0

Binary to gray conversion Conversion of given binary number into gray code involves
the following steps :

(1)  Record the MSB, that is, the MSB of gray code is same as MSB of the binary number.

(2)  Add this bit to the next position bit to get next bit in gray code, nelgecting carry if any
and record the sum. (Here also Ex- or mod-2 arithmetic is used for addition).

(3)  Continue recording sums until LSB is reached.
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Example 181, Convert the following binary number Into gray code |

(a) 110110 (h) 11001010 (c) 110010,
Solution,

i AN
Gray code | | B

(b) | 1_\ 0 ()\ (:\ \ (l)
WA N

MY
1.12.4.4 Unweighted BCD code

We know that BCD code is 8421 code, Using this code each decimal digit is represented
as weighted 8421 code, If we take decimal number in which each digit is represented using

8421 code hence it becomes unweighted code, The decimal numbers after 9, that is 10, 11,
12 efc. are represented separately for each digit.

ie, 10 in unweighted BCD is 00010000
11 in unweighted BCD is 00010001 etc,

1.13 5-BIT CODES

Five bit codes also exist. Although only 4.bits are needed to encode any decimal digit
from 0 to 9, an extra-bit will allow us to decode the number more easily. Table 1.15 shows

mS—bﬁBa)codahavingspedalchmacwmﬁa.Thmspecidchmmdﬁ\ewde
are useful for error detection.

Table 1.15. Five-bit BCD codes

Decimal 51111 Shift counter 86421 63210 (2-out of-5)
0 00000 00000 00000 00110 00011
1 00001 00001 00001 00011 00101
2 00011 00011 00010 00101 00110
3 00111 00111 00011 01001 01001
4 01111 01111 00100 01010 01010
5 10000 11111 00101 01100 01100
6 11000 11110 01000 10001 10001
7 11100 11100 01001 10010 10010
8 11110 11000 10000 10100 10100
9 11111 10000 10001 11000 11000 i
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The 9876543210 code, sometimes called the ‘counter code’ uses only a single 1 in each
code group; this makes it easy to decode and to detect errors. The code has the disadvantage
of requiring more electronic circuitry than the simpler 4-and 5-bit codes.

The 5043210 code, also called the ‘biquinary code’ is occasionally used in electronic
counters (note that biquinary means two-five). Each member of this code contains a group
of 2 bits and a group of 5 bits. The group of two bits indicates whether the number is more
or less than 5. The group of five bits denotes the count. Reliable error detection is possible
because a single 1 is in the group of 2 bits and a single 1 is in the group of 5 bits.

The 543210 code is like biquinary code, except that 6 bits are used instead of 7. The most
significant digit (for left) indicates whether the number is less than 5 or not. This code is
sometimes used in electronic counters.

1.15 ALPHA NUMERIC CODES

In addition to numerical data, a computer must be able to handle non-numerical
information. In other words, a computer should recognize codes that represent letters of the
alphabet, punctuation marks and special characters as well as numbers. We can say that an
alpha numeric code represents all of the various characters and functions that are found on
a standard typewriter (or computer) keyboard.

The standard binary code for the alphanumeric characters is ASCIL. It uses 7 bits to code
(27 = 128) characters, as shown in Table 1.17. The ASCII (Pronounced “ask-ee”) code contains
94 graphic characters that can be printed and 34 non printing characters used for various
control functions. The graphic characters consist of the 26 upper case letters. (A through Z),
26 lower case letters (a through z), 10 numbers (0 to 9), and 32 special printable characters
such as %, *, $, &, + and - so on. The 34 control characters are designed in the ASCII table
with abbreviated names. They are lighted in the table with their full functional names. The
control characters are used for routing data and arranging the printed text into a prescribed
format. There are three types of control characters : format effectors, information separators,

and communication-control characters.
Table 1.17. ASCII codes

ASCIHl | Character | ASCII | Character ASCII | Character | ASCII | Character
Code Code Code Code

00 NUL 21 ! 42 B 63 c

01 SOH 22 " 43 C 64 d

02 STX 23 # 44 D 65 e

03 ETX 24 $ 45 E 66 f

04 EOT 25 % 46 F 67 g

05 ENQ 26 & 47 G 68 h

06 ACK 27 ' 48 H 69 i

07 BEL 28 ( 49 | 6A j

08 BS 29 ) 4A J 6B k

09 HT 2A " 4B K 6C I

R, D WP I -0 W, S L 70 (O TR L N N
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alC DESIQ 1

N
62 — e e e
o BT b T i e o ol
—oB [ VT . ‘ 4B N 6F 0
oc | FF £0 ' AF 0 70 p
oD | CR 2E : %0 p 71 q
13 SO 2F 0 r, 1 Q 72 r
OF | Sl 30 X 52 R 73 8
10 | DLE e [rogeol o s 74 t
11 | DC1(X-on) | 82 2 9 ¥ 76 h
12 | DC2(Tape) | 33 3 54 8
13 | DC3 (X-off) | 34 4 55 U g
14 | pca 35 5 56 v 77 W
15 | Nak 36 6 57 W 78 X
16 | SYN 37 7 58 X 79 y
17 | ETB 38 8 59 Y 7A z
18 | caN 39 9 5A Z 7B {
19 | EM 3A : 5B [ 7C |
1A SUB 3B . 5C \ 7D } (ALT mode)
1B | ESC 3C < 5D ] 7E ~
1C | S 3D - 5E ~M 7F DEL
1D | GS 3E > 5F - («) (RUB OUT)
1E | RS 3F ? 60 ‘
1F us 40 @ 61 a
20 | sp 41 A 62 b
Format effectors are characters tha

t control the layout of Printing. They include the farniliar
er contrals such as back space (BS), horizontal tab

ulation (HT), and carriage return (CR).
used to separate the data i

| characters are useful d
remote terminals. They are STX (start-of-text) and ETX (end of text)
a text message when transmitted through telephone wires.

The seven bit code format is b6b5b4b3b2b1b0. The first 3-bits (rightmost 3 bits) are taken
from the column in which symbol appears and the last 4 bits correspond to the row, For
instance, the letter 5 appears as follows : 101 0011,

ASCIl is a 7-bit code

mission of text between
which are used to frame
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(a) Discrete method- Here, single light source produces each symbol ex : nixie tube.
(b) Bar-matrix method - In this method, one or more light sources may be involved in
the display of a particular symbol.

(c) Dot-matrix method - Here, many individual sources are shaped like dots. A typical
example is the 5 x 7 LED matrix.

EBCDIC codes: EBCDIC stands for Extended Binary Coded Decimal Interchange Code.
It is pronounced as “ebb-see-dick”. It is a standard code for large computers. It is an 8-bit-code.
It provides more extensive character set than ASCII. But it does not provide for parity with an
8-bit byte. It is longer than ASCII. Table 1.18 shows EBCDIC code.

Table 1.18. EBCDIC codes

Characters or Hex codes for Characters or Hex codes
Control characters EBCDIC Control characters for EBCDIC
NUL 00 SUB 3F
- SOH 01 SP 40
STH 02 BLANK EO
ETS 03 ¢ 4A
HT 05 ; 4B
DEL 07 , 6B
VT OB ? 6F
FF : 0oC » 7A
CR 0D ; SE
SO OE ! 5A
s1 OF ’ a3
DLE 10 . ol
DC1 11 + -
DC2 12 - e
DC3 13 2 i
RES 14 . =5
NL 15 / 61
BS 16 = TE
CAN 18 < o
EM 19 > 56
FLS 1C ( 4D
GS 1D ) 5D
RDS 1E { 88
US 1F } 9B
TRAE. TN LA NN WIS N N R P LS P
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1.16 ERROR CORRECTING AND DETECTING CODES

The digital information in the form of binary is transmitted from one device to ancther
or circuit (or) system to another. In this, there is a chance for occurring of error. This means
a signal corresponding to 0 may change to 1 or vice-versa due to the presence of different
types of noise. A reliable system must have a mechanism for detecting and corvecting such
errors. For this purpose, extra bit (or) more than one bit are added in the data. These extra
bits allow the detection and some times correction of errors in the data.

1.16.1 Types of Errors

Whmeverandechmnagneﬁcsignalﬂm»sﬁmnmpdntwanoﬂla.hiswbjeaed
to unpredictable interference from heat, magnetism and other forms of electricity. This
htafaencemndwygeﬂ\eshapemﬁmmgdﬂwsigzwLHﬁwsigndismyingbmaxy
data, such changes can alter the meaning of the data changing 0 to 1 or 1 to 0. Bits can
be changed singly or in cdlumps. There are three types of possible errors that may occur-

Single-bit Exror : The term single bit error means that only one bit of a given data
unit is changed from 1 to 0 or 0 to 1. The data unit may be a byte, character or packet
etc. Example: The sender transmitting a data is 00100100, if the received message is
00000100. Here the 6th position of data is changed from 1 to O.

Multiple-bit Error : The term multipie-bit error means that two or more non
consecutive bits in data unit have changed from 1 to 0 or from 0 to 1.

The Fig. 1.10{a) shows an example of multiple-bit error.

:

olijojojojoj1ijo ojojojoj1ioj1}]o
Sent Received

4

Fig. 1.10(a) : Multiple-bit emror.

Burst Frror : The term burst error means that two or more consecutive bits in the
data unit have changed from 1 to 0 or 0 to 1 see Fig. 1.10(b).

SentjO0}| 1]J]0}0}1]1]C}O0
_l&lstemxs

L J
Recetved: {0 ] O] 1|10 |1 (|0 |0

Fig. 1.10(b) : Burst error.

1.16.2 Ervor Detection

Even if we know, what type of errors can occur, we can recognize those, if we have a copy of
the intended transmission for comparison. But if we don't have a copy of the original we will have
no way of knowing that we have received an error. There are several mechanisims, they are exact
count encoding and redundancy. These codes are used only fo detect errors, not 1o prevent the
occurvence of ervor or not to correct the occurred ermror.
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: . of I's in each ¢
t encoding, the no. o ata
i(;:;u:cheme is the ARQ code. In ARQ code eac;

d therefore a simple count of the NUmbe, .
ion error has occurred or not,

Exact-count Encoding : Wit? e::occg
is same. An example of exact c_O‘il’n 1en it, an
data unit (character) has three 1's iransmiss
1's received can determine whether .a lves transmitting of each data unit twice, ¢ sam

| 3 The redundancy Involv it occun'ed. |

Redﬁnd?t‘?e’ceived twice in succession, a tfansm‘ss‘onbe??: \22?1! i i suThe sam,
data unit is nbe used for messages. This system is accurate bu l't iy PPortap
cloncelglto::nnly would the transmission time double, but the time it take mpare ey,
slow.
unit by bit must be added.

The major problem with this is, if the error has occurred at the same position of bot

data units, it is not possible to recognize it even though there is an error, beCaUSei
comparison all bits of both data units are same.

So instead of transmitting every data unit twice, a shorter group of bits Mmay §
appended to the end of each data unit. This technique is called redundancy, because th
extra bits are redundant to the information; and they are discarded as soon as th
accuracy of transmission has been ‘determined.

As soon as data unit is generated,
that analyzes it and adds an appropr
data unit is traveled over the physical

stream through a checking function, i

f there is no error, the data position of data unit
accepted and the redundant bits are discarded (See Fig. 1.11).

Four types of redundancy checks are used : Vertical Redundancy Check (VRC
Longitudinal Redundancy Check (LRC), Cyclic Redundancy Check (CRC) and checksun
Generally VRC, LRC and CRC are used with ij
in the inter-network

it passes through a device called generating functio;
iately coded redundancy check bits. This expande

n the network and checksum is use
, it is also implemented by transport layer.

Data
(101000101071

Generating Checking
function function

Reject

Redundancy check bits

Sender :
Redundancy check and data Receiver
1001 101000101011

p
. s S In the data unit becomes either even (¥
parity) or (odd parity). Both sending an i

even-parity data unit is transmitteq and Parity is received, the receiver knows t’
the data unit has an error. g -
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For example, if we consider each data unit as a ASCII character, the length of each
character is seven bits, including parity, total length of data unit is eight bits.

Suppose we want to transmit a character ‘C’, the binary value is 1000011 (43 hex).
Before transmitting we pass it through a generating function (See Fig. 1.12). Here the
generating function is a even-parity generator, it counts the number of 1's and append
the appropriate parity bit i.e., 1 with this parity bit the data unit is 11000011, the total
number of 1’s is a even number. The system now transmits this data unit to the receiver.
At the receiver, the checking function counts number of 1’s, if the number of 1’s is an
even number, then the data unit passes, otherwise it will be rejected.

[ Checking function|
D A/t if - R'\t'f
ccepti eject i
I 1000011] total no of  total no of
1's are even 1's are odd
Even-parity e v
generator
100011
VRC
Sender

Fig. 1.12 Even parity VRC.

Two types of parity generator circuits are used as a generating function at the transmitter
and checking function at the receiver: serial and parallel see Fig. 1.13.

(a) Serial

i

(b) Parallel

|

Fig. 1.13 Parity generators.

Bias bit

D__~ Parity bit

Bias bit

In the sequential parity generator by is XORed with b;, the result is XORed with -b2
and so on. The result of last XOR operation is compared with bias bit. For even parity,



SWITCHING THEORY AND LOGiC DES‘C!(
o

\ 9’ utput of the circuit is 5 ...
this bit made logie 0, and for odd parity it is logic ‘1°. The outpu

44

ombinational Generat,.
bit, which Is appended to the data unit same as in parallel or ¢

or
: . A parity chec
Some circuits can be used as parity checkers in the mcdeiit\i':; :{ ¥ tf?nal X ok:: Uses thf.
same procedure as a parity generator except that logic Cocr:dd i % 1 Panson i
used to determine if a parity violation has occurred (for p

indicates an ep,,
and ‘0" indicates no error, for even parity a 1 indicates an error and 0 indicates nq erroy
Reliability

1. VRC can detect all single errors. It can also detect multiple-bit or burst erTors a
long as the number of bits changed is odd (1, 3, 5... etc.).

2. It can not detect an e
if it has received as 111101

ven number of errors, for example if the data unit is 11(11)11(1)11_
receiver can not recognize,

10011, even though there is an error, the checking function ¢ the
because the total number of 1's are even.

1.16.2.2 Longitudinal redundancy check (LRC)

The longitudinal redundan
groups a predetermined num

cy check is a VRC in two dimensions. In LRC error detection
together into a block.

ber of data

1001110 | 1010101 1010011

0011011 | 1010011

LRC Data — Direction of mo
| Direction of transfer
of whole block
(a) Data Block with VRC and LRC.
LRC ‘FO 1 1 1 1
1 0 1 1 1 Direction of
o] (o] 8] (8| nsra
0 1 1 1 1 each unit
0 0 0 0 0
&‘ g 1 1 0 1)
VRCs

(b) Checking of VRC and LRC at the receiver.

Fig. 1.14
Reliability

1. It determines all single-bit, multiple
errors.

-bit and burst errors except one pattern of
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2. If two bits in. one data unit are damaged, and two bits in exactly the same positions
in another data unit are also damaged, the LRC checker will not detect an error.

1.16.2.3 Cyclic redundancy check (CRC)

It is -the most powerful redundancy checking technique, based on the binary division.
Polynomial codes are used for generating check bits in the form of cyclic redundancy check.

: The CRC bits are e.xp.pended at the end of each data unit so that the resulting data
unit b_ecomes exa.ctl.y d.lvxsible by a second, predetermined number. At the receiver, the
incoming data unit is divided by the same number. If there is no remainder, the data unit

is assumed to be intact and is therefore accepted. A remainder indicates that data unit is
damaged (See Fig. 1.15(a)).

[00..0] Data | CRC Data
n bus\/ n bits
Divisor |n + 1 bits — CRC | Data |—» | Divisor |
Remainder 1
CRC |n bits
Zero, accept
non-zero, reject

Sender Receiver

Fig. 1.15(a) CRC generator and checker.

In polynomial codes the information symbols, the code words and the error vectors
are represented by polynomial with binary coefficients. The K information bits (i) _;,
i i) are used for the information polynomial of degree k - 1.

i) = i _pk~l + Qg X2 4L+ 0 x + g
The encoding process takes i(x) and produces a code word polynomial ‘b (x)’ that contains
information bits and additional check bits and that satisfy certain pattern. To detect errors, the
receiver checks for this pattern-whether it is same or not. The polynomial code specified by the
generator is called generator polynomial g (x). If the data unit has n bits in which k are information
bits and n — k are check bits. We refer this type of code as an (n, k) code. The generating polynomial
for such a code has degree n — k and has the form
g(x) = x"* + g, 1 x4+ 0+ gy x+ 1
where g, , 1, Gp2--» 91 A€ binary numbers.
Steps involved in calculation of CRC:
1. Multiply i(x) by x"* (put zeros in (n-k) low order .positions)
2. Divide x"* i(x) by g(x)
x"k i(x) = g(x) g(x) + r(x) —» remainder
quotient
3. The remainder polynomial r(x) provides the CRCs, add remainder r(x) to x™1 i(x)
(i.e., put check bits in the n-k low order position)
b(x) = x"* i(x) + r(x)
where b(x) is a transmitted codeword/data unit.

lk_z, ..... N il,

\ ™.
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1
A
the generating p
? ' The glven Information 18 x3 +dx2 and Yo,
q | le 1.83. e glv e
il . x3 +E:‘ :“ ';,._ﬂnd the CRC and transmitted c‘:odex3 gl
Solution. Generating polynomial g(J;) 2
‘3 Information: (1, 1, 0, 0) 4r I(x) = J;‘OOO ‘
Encoding x3 i(x) = x6 + x° = 110 . s
SLAE 1011) 1100000
} 2 4+ x + 1)x6 +
b 4+ x4 4+ X3
f' S+ x+ i3
P P 4+ x3 4+ x2
' x4 + x?
x4 + x2 4+ x

CRC - «x
Transmitted codeword b(x) = x6 + x5 + x

b = b(x) + CRC = 119,

A 1

data Cr

2

Example 1.84. For the given information x” + x5 + x* + x

generating polynomial is x* + x* + x + 1. Calculate CRC and verify the data s e
received or not at receiving side.

Solution. g(x) = x5 + x4 + x! + x0 or 110011

ix) = x7 + x5 + 5% + 52 + x1 4 40 or 10110111
Encoding = i(x) x5 = x12 4 x10 x9 4 47 4 46 4 x9
= 1011011100000
11010111
110011) 1011011100000
110011
111101
110011/ |
111010
110011 |
100100
‘ 110011
{ , 101110
" 110011
| 111010
110011
01001 - CRC
Transmitted data = b(x) = i(x) + CRC
_ 10110111 01001
~ data CRC

At the receiver, the transmitted data is again divided by g(x)
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11010111
110011) 1011011101001
110011
111101
110011
111010
110011
100110
110011
101010
110011
110011
110011
00000 — remainder = 0
no error has occurred.

Reliablility
1. With CRC, approximately 99.95% of all transmission errors are detected.

2. It cannot detect those errors, where the change in bit value of a block of code is
exactly the value of the divisor or its multiple values. The standard polynomial code or
CRC codes are shown in Table 1.19.

Table 1.19. Standard generator polynomials

Name Polynomic Used in

CRC-8 B+ x2+x+1 ATM header error check

CRC-10 x10 4 x2 + x5 + x4+ x + 1 ATM AALCRC

CRC-12 x12 4+ x11 + 3+ x2+x+1 Bisync

CRC-16 x16 4+ x15 4+ x2 + x + 1 Bisync

CCITT-16 | x16 + x12 + x® + 1 HDLC, XMODEM, V.41

CCITT-32 | 5% + x%6 + x2 + x22 + x16 + IEEE802, DOD, V.42AALs
124 511 4 x10 4 5B 4 x7 + x® + x4
+x2 +x + 1

check, we can use the shift register circuit. Let us see a circuit

To generate the CRC
b)) after 7 clock pulses the contents

for generating CRC bits of example 2.1 (see Fig. 1.15(

of registers are r(x) = 010
Encoder for g(x) = x3 + x + 1

g3=1
() (—{Reg 1}—{Reg 2}——
i(x) =X3 + x2

Fig. 1.15(b) Shift register circuit for generated polynomial.
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higher layer protocol is called check

1.16.2.4 Check sum
dundancy. Several internet protocols

The error detection
sum. The check sum is
(IR TCP, UDP) use check

method used in the network
based on the concept of re
bits to detect errors.

Check sum generator

At the sender, the ch

1. The data is divided into k sections, eac

2 Sections 1 and 2 are added together using 1’
way that the total is also n bits long.

3. In this way all the k sections are added.

4. The final result (sum) is then complemented and app
data unit as redundancy bits, called checksum field.

5 The extended data unit is transmitted across the network, so the sum of data
segment is T, the checksum is T (see Fig. 1.16).

Section K Section 2 Section 1

n bits|~ = ~| n bits | n bits

ecksum, is generated by the following steps:

h of n bits (usually-16)
s complement arithmetic in such a

ended to the end of original

Section 1 Section 1 | n bits

Section 2 Section 2 | n bits
Section K [ n bits ¥ n bits | n bits | = — —| n bits | n bits —»| Section K | n bits
Sum | n bits
Checksum i
Complement I =
e Sum | n bits
All 1’s, accept
Sen(;z;ecksum otherwise, reject
Receiver

(a) Checksum calculation

Sender Checksum Data Receiver
-T T

(b) Checksum and data unit

Checksum checker g 1.6

The receiv ivi
extended data i;ifl;:?:z:\dcis t;he data unit and adds all the segments together. If the
chetkeum field dhaodd e ze’ro (eTtotlal valqu found by adding the data segments 'and the
Plus ~T is 0). If the result is not zero, there is an errof

2 B I‘QSUIt iti i
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Reliablility
1. It detects all errors involving odd number of bits, as well as most errors involving

even number of bits.

2. However, if one or more bits of a segment are errors and the corresponding bit
or bits of opposite value in a second segment are also damaged, the sum of these
columns will not change and receiver will not detect a problem.

1.16.3 Error Correction

The mechanisms that we have covered upto this point detect error but cannot correct
errors. The error correction can be handled in two ways

1. When an error is discovered, the receiver can have the sender re-transmit the
entire data unit.

2. A receiver can use an error correcting code, which automatically corrects certain errors.

The number of bits required to correct a multiple-bit or burst error is so high that
in most cases it is inefficient to do so. For this reason in most cases error correction is
limited to one, two or three bit errors, For a code to be error detecting, its minimum
distance must be further increased. The distance between the code words is the number
of digits that must change in one word so that the other word results. For example, the
distance between the 1010 and 0100 is three, since the code words differ in three bit
positions. The minimum distance of a code is the smallest number of bits in which any
code word differ.

A code is an error detecting code only if its minimum distance is two or more. A code
is said to be error correcting code if the correct code word can be deduced from the

erroneous word.

If the minimum distance of a code is three, then any single error changes a valid code word
into an invalid one, which is a distance one away from the original code word a distance two away
from any other valid code word. For example, if we consider two valid code words 000 and 111.
A single eror occurs in the first code word it can be changed to 001, 010 or 100. The second

code word can be changed due to a single error to 110, 101 or 011.

1.16.3.1 Single bit error correction
The key to error correction, is that it must be possible to detect and locatc erroneous
digits. If the location of an error has been determined, then by complementing the

erroneous digit the message is corrected.

For example, to correct a single bit in an ASCII character the error correction code must
determine which of the seven bits has changed. In this case we have to distinguish between
eight different sates: no error, error in position 1, error in position 2 and so on up to error
in position 7. To do so requires enough redundancy bits to show all eight states.

At first glance, it looks a three bit redundancy code should be adequate because
three bits can show eight different states (000 to 111) and can therefore indicate the
locations of eight different possibilities. But what if an error occurs in the redundancy bits
themselves 7 bits of data plus 3-bits of redundancy equals to 10 bits. Three bits, however
can identify only eight possibilities, Additional bits are necessary to cover all possible error

locations, .
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1.16.3.2 Redundancy bits

To calculate the number of redundancy bits (r) required to correct a given

Numbe,
data bits (m), we must find the relation between m and r. The total length of resulting COdec;i
m + r bits.

¥ the total transmitting unit is ‘'m + r' length then ‘r' must be able to indi

Cate at least
m + v+ 1 different states, of these one state means no error and m + r state indicates
the location of an error in each of the m + r positions.
Som 4+ r + 1 states must be discoverable by r-bits and r-bits indicate 2’ different states
Z22m+r+1 (1.1
The relation between r and m is shown in Table 1.20.
Table 1.20. Relation between data and redundancy bits
Number of data bits Number of redundancy Total bits (m + )
(m) bits (r)
1 2 3
2 3 5
3 3 6
4 3 7
o 4 9
6 4 10
7 4 11

1.16.3.3 Hamming code

So far, we have examined the number
single bit error states in a transmission.
which bit (digit) has error ? A technique

Positions of the redundancy bits

The Hamming code can be applied to data units of any length by using the equation (1.1).
For example, a seven bit ASCIl code requires four
added to the end of the data unit or interpersed with ori

bits are placed in a positions 1, 2, 4 and 8 (powers of
ry, T4 and rg (see Fig. 1.17),

of bits required to cover al| of the the possible
But how to manipulate those bits to discover
was developed by R.W. Hamming.

redundancy bits, that can be
ginal data bits. Generally, thes¢
2). These bits are referred as ry:
1 10 9 8 7 6 5 4 3 2 1

d7 |dg|ds|rg |da|da|d2|rs|dq|ra]ry

Fig. 1.17 Positions of redundancy bits in Hamming code.

In the Hamming code, each r bit is the vertical redundancy check bit for one combinatio”
of data bits.

ry is selected so as to establish even parity in bit positions 1, 3, 5 7,9 11
ry is selected to establish even parity in bit positions 2, 3, 6, 7, 10, 11

r. is selected to establish even parity in bit positions 4, 5, 6, 7
4

- m—

i
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rg is selected to establish even parity in bit positions 8, 9, 10, 11 *

To see the pattern behind this strategies, the r, bit is calculated using all bit positions
wh:se l?ln:;y rleprzsentation includes 1 in the right most position (at weight equal to 1)
and rp is calculated using all bit positions with 1 in second ition (at weight
2) and so on (see Table 1.21). position (at weight equal to

Table 1.21. Redundancy bits calculation

Position number Binary rule

s g 2 o
1 0 o | o | 1
z 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1

See Table 1.21, under column r, the bit 1 contains by the positions 4 5 6 and 7
only as explained earlier.

Error detection and Error Correction

Now, as soon as the data unit is received, the receiver starts calculating new vertical
redundancy checks using some set of bits used by the sender plus relevant parity (r) bit
for each set. If in any combination, the number of 1’s are even number, assign the
corresponding ‘c’ value as ‘0’ else ‘1°. Like this, after knowing the values of cg, ¢4, ¢ and
¢, the error bit location can be identified by c’s position {cgcscoc,). All the values of c's
is zero, indicates no error has occurred.

Example 1.85. Cosider the message is 1001101 is transmitted through the channel,
obtain the redundancy bits and transmitting unit needed. Assume bit number 8 has been
changed. How to locate it.

Solution.

Data bits = 1001101

Total number of data bits = m = 7

The number of redundancy bits required r = 4 (from Table 1.20).

Total number of bits in a transmitted data = m + r =7 + 4 = 11

Positions of redundancy bits is 1, 2, 4 and 8. (ry, r,, 14 and 7g).

Calculation of r’s:
r, is calculated so that the bit positions 1, 3, 5, 7, 9, 11 contains an even number of 1’s.
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'Slf,‘“

6 5 4 3 j
Positions 11 10 9 8 7 = r £ E\]
m. mg | mg rg | mg | my _Og 4 m |, ?
Original data 1 0 0 1 1 Ny
[~
1

\
—t
r, (to give
even-parity at 1 0 1 0 1
positions 1, 3,
5 7,9 and 11)
ro (to give
even-parity at 1 0 1 1 1
positions 2, 3,
6,7,10,11)

ry (to give
even-parity at 1 1
positions 4, 5,
6, 7)

rg (to give
even-parity at 1 0 0 1
positions 8, 9,
10, 11)

coded message = 1001 11 00101

As per the problem, the 8th pit g changed from 1 to 0 i.e., the message is receive
as 10001 00101. To calculate the position

of error occurred at the receiver, recalculat
all the values of C1» Cg, €4, cg with the received data.

/

Positions 11{10 |9 |8 [7 6 |54 32

Message received 110 Olof11]1]0 Ofl11]0

1, 3, 5, 7,9 11 bits ¢; = 0 since
even parity check 1 0 1 0 1 1 [even parity
2,3,6,17, 10, 11 bits c, =0 s%nce
even parity check 110 R | 110 even parity |
4, 5, 6, 7 bits ¢y =0 s?nce
even parity check 1 11]01|0O0 even parity |
8, 9, 10, 11 bits cg = lfince
even parity check 110 |0 |1 odd parity

Ther error location = Cg C4 Cp €
10 00O

' it in
which means that the location of error is in position 8. To correct the error, the digit
position 8 is complemented and the correct message 10011100101 is obtained.

rs
Example 1.86. The Hamming code 101101101 is received. Correct it if any €/
There are four parity bits and odd parity is used.

|

<l
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Solution.

Bit positions 9 8 7 6 5 4 3 2 1
Bit d.esignation ms | rg Mg | ma | my | 1y my | ry | Error position
Received data 1 0 1 1 0 1 1 0 1 | Bit value
1, 3,5, 7and | 1 1 0 | = inc
9 bits for odd : :)Iddu I1r‘i:?m
parity check Po
2,3, 6 and 7 1 1 1 0 Number of 1s
bit positions is odd:
checking for CHy = 0
odd parity ?
Bit positions Number of 1s
4, 5 6 and 7 1 1 0 1 is odd:
for checking ¢ =0
odd parity ’
Bit positions Number of 1s
8 and 9 for 1 0 is odd:
checking odd cg =0
parity

. The resultant word, that is, error position = ¢ = cg ¢4
the bit in the number 1 location is in error. First bit position value should be 0 instead
of 1. Hence the correct code is 101101100 and the message is 11101.

c; = 0001. This says that

Example 1.87. Determine which bit, if any, is in error in the even parity. Hamming

coded character is 1100111. Decode the message.

Solution.

Bit positions

4

Error position

Bit designation

Ty

Bit value

Received data

0

even parity
{check

Bit positionis 1,
3, 6, and 7 for

C1=1

even parity
check

Bit positions 2,
3, 6 and 7 for

Y
]
=)

even parity
check

Bit positions 4,
5, 6 and 7 for
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The resultant word, that is, error position

cC = (h‘ (‘? (-] - ml

This says that the bit in the number 1 location is In error. First bit Positiona| valy
should be O instead of 1. Hence the correct code is 1100110 and the message |g 1101!

Example 1.88. Message has been coded in Hamming code for BCD and tfammme
through a noisy channel. Decode the message assuming that at most a single error hd
occurred in each codeword. 100100101110011110110001 1011, O

Solution. The given bit stream has four Hamming coded BCD codes of 7 b, each
Therefore, the received words are

1. 1001001 2. 0111001
3. 1110110 4. 0011011

For finding the error positions in
Ex 1.87 and then get the correct data.

Example 1.89. Fn
15-bit hamming code.

each word, each word can be checked as in

BltdeSIQ‘ ml] mlo m9 m8 m7 m6 m5 r8 m4 m3 m2
nation

. Hamming coded message
Bit location 151 14 [ 1312 111101 9 | 8 7 6 5

_ = 011011110101110
Data bits 0 1

'l (tO ine
even parity at
Positions 1, 3,| 0 1 1
57,9 11,
13, 15)

ry (to give

even parity at
positions 2, 3.| 0o 1 111 011
6, 7, 10, X1,
14, and 15)

rq (to give

eéven parity at
positions 4, 5| 0 1 110 0] 1 0|1
6, 7, 12, 13,
14 and 15) _

| &
}__
|

I

|
F

|
i_i
|

|
-

|

|

|

|

|

!

|

:

|
ki
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RPN TR T T T F Iy ey rer Ty
even parity at
ons8 9 10 1 110111111 1

10, 11,12,
13, 14 and 15)
1.17 SOLVED PROBLEMS

Problem 1. List the first 16 numbers in base 12 Use the letters A and B to represent the
lost two digits.
Solution. 0, 1, 2.3, 4,5 6,7, 8 9 A B, 10, 11, 12, 13.

Problem 2. What is the largest binary number that can be obtained with 16 bits 7 What
& s decimal equivalent ?

Solution. The largest 16-bit binary number is 1111 1111 1111 1111 and its decimal
equivalent = 65535,

Problem 3. Convert the following numbers.

fa) 101110, 1110101.11, 110110100 and 11001010.0101 to base 10

(b) (121 21)y (4310)5 (50), (198),5 (1431)g to base 10
(c) (1231), (673.23), 104, 2004, (3.1415...),, and 175.175 to base 2.
(d) Convert the following decimal numbers to the indicated bases
(i) 7562.45 to octal (ii) 1938.257 to hexadecimal
(iii) (1776) to base 6 (iv) 1984 to base 8.
(v) 3.1415... to base 8. (vi) 0.875 into binary trinary and quinary
{e) Convert the following binary numbers into octal, hexadecimal and base-4 number system.
i) 11011 (ij) 100110.11001 (iii) 1111000.0001
(f) Convert the following octal number into binary, hexadecimal and decimal
(i) 347 (i) 444 (i) 576.402 (lv) 1431
(g) Convert the following hexadecimal numbers into binary, octal and decimal
(i) AC (ii) BD (i) 2002.A3
Solution.
(a) 101110 =32 + 8 + 4 + 2 = 46
111010.11 =32 + 16 + 8 + 2 + 05 + 025
= 58.75
110110100 =256 + 128 + 32 + 16 + 4
= 336
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Digital Logic Design
t of Sums Expresslons(Mlnlmal Products)

dered the boolean expressioq _in sum ¢
s to get the simplified boolg

3.2.6 Simplification of Produc

. X onsi
In the above discussion, we have c

jacent one )
DRSS g o %’ . é::l:i‘;lzestl:(:i }:cesigner should examine both the sum g
i i ra ’
expression in the same form. In P

i ich i simplified. We hay,
sroducts and product of sums reductions to ascertain W:“Thels 12‘:;:‘1 h pma p. Once g
].;lready i B e 4 y Profefc: 3: rsr:lfij\go the groups of ones, we have'
ion is plotted on the K-map InS it s nothing buthl

prime implicate. The technique for using maps for POS reduc \

it is simi lier.
rocess and it is similar to the one usec‘l ear
" 1. Plot the K-map and place 0Os In those cells correspon

table or maxterms in the products of sum expression. - . '..1
2. Check the K-map for adjacent 0s and encircle those 0s which are not a ]acent-::
any other 0s. These are called isolated Os. -
3. Check for those Os which are adjacent to only one other 0 and encircle such pain :
4. Check for quads and octets of adjacent Os even if it contains some 0s th_at. |
already been encircled. While doing this make sure that there are mini un
number of groups. :
5. Combine any pairs necessary to include any Os that have not yet been grouped.; :
6. Form the simplified SOP expression for F by summing product terms of all i
groups. a
(Note : The simplified expression is in the complemented form because we
grouped Os to simplify the expression.)

ding to the Os in the

7. Use DeMorgan's theorem on F to produce the simplified expression in POS form.
To get familiar with these steps we will solve some examples. '
mmp Example 3.14 : Minimize the expression
Y=(A+B+C)(A+B+C)(A+B+C)(A+B+C)HA+B+C)
Solution : (A_+B+E)=Ml,(A+§+E)=M3,(K+§+E)=Mw
(A+ B + C) =M4,(A+B+C)=M0

Step 1: Fig. 3.22 (a) shows the K- : i i
given maxl:ermsg ® Prmap for three variable and it is plotted according ¥

Step 2 : There are no isolated 0s
BC g

| Step 3 : 0 in the cell 4 is adjacent only to 0 A Og %? B1$ ?Ot
in the cell 0 and 0 in the cell 7 is adjacent only X0
to 0 in the cell 3, These two pairs are combined o 3.9 :

and referred to as group 1 and group 2 Al o
respectively. _ 3 5 S

Step 4 : There are no quads and octets.



