UNIT- V
AUTOMATIC LOAD FREQUENCY CONTROL: AutomaticLoadfrequencycontrolof singlearea systems,Speed-governingsystem,Turbine generatorresponse,Static performance of speedgovernor,ClosingofALFCloop,Conceptofcontrolarea,Staticresponseofprimary ALFCloop,Integralcontrol,ALFCofmulti-control areasystems(POOLoperation),TheTwo- Areasystem,ModelingtheTie-Line,BlockDiagram representationofTwo-Areasystem,Static responseofTwo-AreasystemandTie-LineBias control.

AUTOMATIC LOAD FREQUENCY CONTROL
BASIC GENERATOR CONTROL LOOPS
In an interconnected power system, load frequency control (LFC) and automaticvoltage regulator (AVR) equipment are installed for each generator. Figure 8.1represents the schematic diagram of the load frequency control (LFC) loop and theautomatic voltage regulator (AVR) loop.
 The controllers are set for a particularoperating condition and take care of small changes in load demand to maintain thefrequency and voltage magnitude within the specified limits. Small changes in real power are mainly dependent on changes in rotor angle “δ”and, thus, the frequency.

The reactive power is mainly dependent on the voltage magnitude(i.e., on thegenerator excitation). The excitation system time constant is much smaller than theprime mover time constant and its transient decay much faster and does not affect theLFC dynamics. Thus, the cross-coupling between the LFC loop and the AVR loop isnegligible, and the load frequency and excitation voltage control are analyzedindependently.
Figure 8.1 Schematic diagram of LFC and AVR of a synchronous generator
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Fig. 8.2 Turbine speed governing system




LOAD FREQUENCY CONTROL (SINGLE AREA CASE):
Load Frequency Control – Let us consider the problem of controlling the power output of the generators of a closely knit electric area so as to maintain the scheduled frequency. All the generators in such an area constitute a coherent groupso that all the generators speed up and slow down together maintaining their relative power angles. 
Such an area is defined as a control area. The boundaries of a control area will generally coincide with that of an individual Electricity Board Company.
To understand the load frequency control problem, let us consider a single turbo-generator system supplying an isolated load.

TURBINE SPEED GOVERNING SYSTEM


1. Fly ball speed governor: This is the heart of the system which senses the change in speed (frequency). As the speed increases the fly balls move outwards and the point B on linkage mechanism moves downwards. The reverse happens when the speed decreases.
2. Hydraulic amplifier: It comprises a pilot valve and main piston .Low power level pilot valve movement is converted into high power level piston valve movement. This is necessary in order to open or close the steam valve against high pressure steam.
3. Linkage mechanism: ABC is a rigid link pivoted at B and CDE is another rigid link pivoted at D. This link mechanism provides a movement to the control valve in proportion to change in speed. It also provides a feedback from the steam valve movement (link 4).
4. Speed changer: It provides a steady state power outputsetting for the turbine. Its downward movement opens the upper pilot valve so that more steam is admitted to the turbine under steady conditions (hence more steady power output). The reverse happens for upward movement of speed changer..

MODEL OF TURBINE SPEED GOVERNING SYSTEM
Assume that the system is initially operating under steady conditions—the linkage mechanism stationary and pilot valve closed, steam valve opened by a definite magnitude, turbine running at constant speed with turbine power output balancing the generator load. Let the operating conditions be characterized by



We shall obtain a linear incremental model around these operating conditions.

Let the point A on the linkage mechanism be moved downwardsby a small amount ΔyA. It is a command which causes the turbine power output to change by [image: image4.png]


 and can therefore be written as 
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where ΔPC is the commanded increase in power.

The command signal ΔPC (i.e. ΔyE) sets into motion a sequence of events—the pilot valve moves upwards, high pressure oil flows on to the top of the main piston moving it downwards; the steam valve opening consequently increases, the turbine generator speed increases, i.e. the frequency goes up.
 Let us model these events mathematically.

Two factors contribute to the movement of C:
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The movement ΔyDdepending upon its sign opens one of the ports of the pilot valve admitting high pressure oil into the cylinder thereby moving the main piston and opening the steam valve by ΔyE. Certain justifiable simplifying assumptions, which can be made at this stage, are:

· Inertial reaction forces of main piston and steam valve are negligible compared to the forces exerted on the piston by high pressure oil.

· Because of (i) above, the rate of oil admitted to the cylinder is proportional to port opening ΔyD.
The volume of oil admitted to the cylinder is thus proportional to the time integral of ΔyD,.The movement ΔyE is obtained by dividing the oil volume by the area of the cross-section of the piston. Thus
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It can be verified from the schematic diagram that a positive movement ΔyD causes negative (upward) movement ΔyE accounting for the negative sign used in Eq. (8.4).

Taking the Laplace transform of Eqs. (8.2), (8.3) and (8.4), we get
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Eq (8.5) in Eq (8.6) 
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Eq (8.6B) in Eq (8.7) 
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Dividing both Numerator and Denominator with K5
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Taking K1K3KC outside in the Numerator and Taking K4 outside in the Denominator
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Re arranging the terms,
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---(8.8)

Where
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Equation (8.8) is represented in the form of a block diagram in Fig. 8.3.



TURBINE MODEL
Let us now relate the dynamic response of a steam turbine in terms of changes in power output to changes in steam valve opening ΔyE. Figure 8.4a shows a two stage steam turbine with a reheat unit. 
The dynamic response is largely influenced by two factors, (i) entrained steam between the inlet steam valve and first stage of the turbine, (ii) the storage action in the reheater which causes the output of the low pressure stage to lag behind that of the high pressure stage. Thus, the turbine transfer function is characterized by two time constants.
 For ease of analysis it will be assumed here that the turbine can be modelled to have a single equivalent time constant. Figure 8.4b shows the transfer function model of a steam turbine. Typically the time constant Tt lies in the range 0.2 to 2.5 sec.



GENERATOR LOAD MODEL
The increment in power input to the generator-load system is
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where ΔPG = ΔPt incremental turbine power output (assuming generator incremental loss to be negligible) and ΔPD is the load increment.

This increment in power input to the system is accounted for in two ways:

· Rate of increase of stored kinetic energy in the generator rotor. At scheduled frequency (f° ), the stored energy is
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wherePr is the kW rating of the turbo-generator and H is defined as its inertia constant.

The kinetic energy being proportional to square of speed (frequency), the
kinetic energy at a frequency [image: image32.png]of (f°+ Af) is given by
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Rate of change of kinetic energy is therefore
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· As the frequency changes, the motor load changes being sensitive to speed, the rate of change of load with respect to frequency, i.e. δPD/δf can be regarded as nearly constant for small changes in frequency Δf and can be expressed as
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where the constant B can be determined empirically. B is positive for a predominantly motor load.

Writing the power balance equation, we have
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Dividing throughout by Pr and rearranging, we get
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Taking the Laplace transform, 
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we can write ΔF(s) as
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Re arranging the terms,
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Dividing Both Numerator and Denominator with B,
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Let  
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Therefore,


[image: image48.wmf][

]

÷

÷

ø

ö

ç

ç

è

æ

+

D

-

D

=

D

s

T

K

s

P

s

P

s

F

ps

ps

D

G

1

)

(

)

(

)

(

 ---- (8.13)
Equation (8.13) can be represented in block diagram form as in Fig. 8.5.



COMPLETE BLOCK DIAGRAM REPRESENTATION OF LOAD FREQUENCY CONTROL OF AN ISOLATED POWER SYSTEM
A complete block diagram representation of an isolated power system comprising turbine, generator, governor and load is easily obtained by combining the block diagrams of individual components, i.e. by combining Figs. 8.3, 8.4 and 8.5. The complete block diagram with feedback loop is shown in Fig. 8.6.



STEADY STATES ANALYSIS
STATIC RESPONSE OF AUTOMATIC LOAD FREQUENCY CONTROL LOOP:
The model of Fig. 8.6 shows that there are two important incremental inputs to the load frequency control system -ΔPC, the change in speed changer setting; and ΔPD, the change in load demand. Let us consider a simple situation in which the speed changer has a fixed setting (i.e. ΔPC = 0) and the load demand changes. This is known as free governor operation. For such an operation the steady change in system frequency for a sudden change in load demand by an amount



is obtained as follows:



[image: image120.jpg]Fig. 8.13 Two interconnected control areas (single tie line)





While the gain Kt is fixed for the turbine and Kps is fixed for the power system, Ksg, the speed governor gain is easily adjustable by changing lengths of various links. Let it be assumed for simplicity that Ksg is so adjusted that



It is also recognized that Kps = 1/B, where B = δPD/δf / Pr (in pu MW/unit change in frequency). Now




The above equation gives the steady state changes in frequency caused by changes in load demand. Speed regulation R is naturally so adjusted that changes in frequency are small (of the order of 5% from no load to full load). Therefore, the linear incremental relation (8.16) can be applied from no load to full load. With this understanding, Fig. 8.7 shows the linear relationship between frequency and load for free governor operation with speed changer set to give a scheduled frequency of 100% at full load. The ‘droop’ or slope of this relationship is



Power system parameter B is generally much smaller* than 1/R (a typical value is B = 0.01 pu MW/Hz and 1/R = 1/3) so that B can be neglected in comparison. Equation (8.16) then simplifies to

   

The droop of the load frequency curve is thus mainly determined by R, the speed governor regulation.

It is also observed from the above that increase in load demand (ΔPD) is met under steady conditions partly by increased generation (ΔPG) due to opening of the steam valve and partly by decreased load demand due to drop in system frequency. From the block diagram of Fig. 8.6 (with KsgKt≈1)


Of course, the contribution of decrease in system load is much less than the increase in generation. For typical values of B and R quoted earlier



Consider now the steady effect of changing speed changer setting



with load demand remaining fixed (i.e. ΔPD = 0). The steady state change in frequency is obtained as follows.
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If



If the speed changer setting is changed by ΔPC while the load demand changes by ΔPD, the steady frequency change is obtained by superposition, i.e.



According to Eq. (8.21) the frequency change caused by load demand can be compensated by changing the setting of the speed changer, i.e.



Figure 8.7 depicts two load frequency plots—one to give scheduled frequency at 100% rated load1 and the other to give the same frequency at 60% rated load.
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» A coherent area is called a control area in
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[image: image65.png]Proportional Plus Integral Control

Speed governing system installed on each machine, the
steady load frequency characteristics for a given speed
changer setting has considerable droop,

e.g. for the system being used for the illustration above,
the steady state droop in frequency will be 2.9 Hz [ from
no load to full load.

System frequency specifications are rather stringent and,
therefore, so much change in frequency cannot be
tolerated.

In fact, it is expected that the steady change in frequency
will be zero




[image: image66.png]While steady state frequency can be brought
back to the scheduled value by adjusting speed
changer setting, the system could under go
intolerable dynamic frequency changes with
changes in load.

It leads to the natural suggestion that the speed
changer setting be adjusted automatically by
monitoring the frequency changes.

For this purpose, a signal form Af is fed through
an integrator to the speed changer resulting in
the block diagram configuration

The system now modifies to a proportional plus
integral controller, which, as is well known from
control theory, gives zero steady state error, i.e.
Af steady state = 0.
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[image: image69.png]Area Control Error (ACE)

» The change in frequency in a central load
frequency control of a given control area is
the area control error.

» The additional signal fed back in the
modified control scheme presented above
is the integral of ACE.




Load frequency Control and Economic Dispatch Control:
Load frequency Control and Economic Dispatch Control – Load frequency control with integral controller achieves zero steady state frequency error and a fast dynamic response, but it exercises no control over the relative loadings of various generating stations (i.e. economic dispatch) of the control area. For example, if a sudden small increase in load (say, 1%) occurs in the control area, the load frequency control changes the speed changer settings of the governors of all generating units of the area so that, together, these units match the load and the frequency returns to the scheduled value (this action takes place in a few seconds).

However, in the process of this change the loadings of various generating units change in a manner independent of economic loading considerations. In fact, some units in the process may even get overloaded. Some control over loading of individual units can be exercised by adjusting the gain factors (Ki) included in the signal representing integral of the area control error as fed to individual units. However, this is not satisfactory.



A satisfactory solution is achieved by using independent controls for load frequency and economic dispatch. While the load frequency controller is a fast acting control (a few seconds), and regulates the system around an operating point; the economic dispatch controller is a slow acting control, which adjusts the speed changer setting every minute (or half a minute) in accordance with a command signal generated by the central economic dispatch computer.

Figure 8.12 gives the schematic diagram of both these controls for two typical units of a control area. The signal to change the speed changer setting is constructed in accordance with economic dispatch error, [PG (desired) — PG (actual)], suitably modified by the signal representing integral ACE at that instant of time. The signal PG (desired) is computed by the central economic dispatch computer (CEDC) and is transmitted to the local economic dispatch controller (EDC) installed at each station. The system thus operates with economic dispatch error only for very short periods of time before it is readjusted.
TWO AREA LOAD FREQUENCY CONTROL:
Two Area Load Frequency Control – An extended power system can be divided into a number of Two Area Load Frequency Control areas interconnected by means of tie lines. Without loss of generality we shall consider a two-area case connected by a single tie line as illustrated in Fig. 8.13.
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The control objective now is to regulate the frequency of each area and to simultaneously regulate the tie line power as per inter-area power contracts. As in the case of frequency, proportional plus integral controller will be installed so as to give zero steady state error in tie line power flow as compared to the contracted power.

It is conveniently assumed that each control area can be represented by an equivalent turbine, generator and governor system. Symbols used with suffix 1 refer to area 1 and those with suffix 2 refer to area 2.

In an isolated control area case the incremental power (ΔPG-ΔPD) was accounted for by the rate of increase of stored kinetic energy and increase in area load caused by increase in frequency. Since a tie line transports power in or out of an area, this fact must be accounted for in the incremental power balance equation of each area.

Power transported out of area 1 is given by
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Eq 8.26 can be expressed in Per Unit as,
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For incremental changes in δ1 and δ2, the incremental tie line power can be expressed as
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For smaller changes in angle, 
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Since incremental power angles are integrals of incremental frequencies, 
i.e. 
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Then, we can write Eq. (8.27) as


[image: image83.wmf][

]

ò

ò

D

-

D

=

D

dt

f

dt

f

T

pu

P

tie

2

1

12

1

,

2

2

)

(

p

p



[image: image84.wmf][

]

ò

ò

D

-

D

=

D

dt

f

dt

f

T

pu

P

tie

2

1

12

1

,

2

)

(

p

   ---- (8.28)

where Δf1 and Δf2 are incremental frequency changes of areas 1 and 2, respectively.

Similarly the incremental tie line power out of area 2 is given by
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Where
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With reference to Eq. (8.12), the incremental power balance equation for area 1 can be written as
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Taking the Laplace transform of Eq. (8.31),
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Let 
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Compared to Eq. (8.13) of the isolated control area case, the only change is the appearance of the signal ΔPtie,1(s) as shown in Fig. 8.14.

Taking the Laplace transform of Eq. (8.28), the signal ΔPtie,1(s) is obtained as
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The corresponding block diagram is shown in Fig. 8.15.



For the control area 2, ΔPtie,2(s) is given by [Eq. (8.29)]
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From Eq 8.30,  
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which is also indicated by the block diagram of Fig. 8.15.

Let us now turn our attention to ACE (area control error) in the presence of a tie line. In the case of an isolated control area, ACE is the change in area frequency which when used in integral control loop forced the steady state frequency error to zero. In order that the steady state tie line power error in a two-area control be made zero another integral control loop (one for each area) must be introduced to integrate the incremental tie line power signal and feed it back to the speed changer. This is accomplished by a single integrating block by redefining ACE as a linear combination of incremental frequency and tie line power. Thus, for control area 1
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where the constant b1 is called area frequency bias.
Equation (8.36) can be expressed in the Laplace transform as
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Similarly, for the control are a 2, ACE2 is expressed as
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Combining the basic block diagrams of the two control areas corresponding to Fig. 8.6, with ΔPC1(s) and ΔPC2(s) generated by integrals of respective ACEs (obtained through signals representing changes in tie line power and local frequency bias) and employing the block diagrams of Figs. 8.14 to 8.15, we easily obtain the composite block diagram of Fig. 8.16.

Let the step changes in loads ΔPD1 and ΔPD2 be simultaneously applied in control areas 1 and 2, respectively. When steady conditions are reached, the output signals of all integrating blocks will become constant and in order for this to be so, their input signals must become zero. We have, therefore, from Fig. 8.16
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From Eqs. (8.28) and (8.29)
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Hence Eqs. (8.39) — (8.41) are simultaneously satisfied only for
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Thus, under steady condition change in the tie line power and frequency of each area is zero. This has been achieved by integration of ACEs in the feedback loops of each area.

Dynamic response is difficult to obtain by the transfer function approach (as used in the single area case) because of the complexity of blocks and multi-input (ΔPD1,ΔPD2)  and multi-output (ΔPtie,1,ΔPtie,2,Δf1,Δf2) situation. A more organized and more conveniently carried out analysis is through the state space approach (a time domain approach). Formulation of the state space model for the two-area system will be illustrated in Sec. 8.5.

The results of the two-area system (ΔPtie, change in tie line power and Δf, change in frequency) obtained through digital computer study are shown in the form of a dotted line in Figs. 8.18 and 8.19. The Two Area Load Frequency Control are assumed to be identical with system parameters given by


[image: image114.wmf]sec

4

.

0

=

sg

T

, 
[image: image115.wmf]sec

5

.

0

=

t

T

, 
[image: image116.wmf]sec

20

=

ps

T


[image: image123.png]Steam I

=] rurbine ==

ar |

Excitation Automatic voltage]
system regulator (AVR)'

Gen. field Voleage sensor

f

Valve control AP
mechaniam.
APc  [Toad freguenc: Frequenc:
control (BFCH ] sensor Y|





[image: image117.wmf]100

=

ps

K

, R=3, b=0.425, 
[image: image118.wmf]09

.

0

=

i

K

, 
[image: image119.wmf]05

.

0

2

12

=

T

p


24

_1585478370.unknown

_1585478387.unknown

_1585478403.unknown

_1585478412.unknown

_1585478416.unknown

_1585478420.unknown

_1585478422.unknown

_1671362786.unknown

_1585478423.unknown

_1585478421.unknown

_1585478418.unknown

_1585478419.unknown

_1585478417.unknown

_1585478414.unknown

_1585478415.unknown

_1585478413.unknown

_1585478408.unknown

_1585478410.unknown

_1585478411.unknown

_1585478409.unknown

_1585478405.unknown

_1585478407.unknown

_1585478404.unknown

_1585478395.unknown

_1585478399.unknown

_1585478401.unknown

_1585478402.unknown

_1585478400.unknown

_1585478397.unknown

_1585478398.unknown

_1585478396.unknown

_1585478391.unknown

_1585478393.unknown

_1585478394.unknown

_1585478392.unknown

_1585478389.unknown

_1585478390.unknown

_1585478388.unknown

_1585478379.unknown

_1585478383.unknown

_1585478385.unknown

_1585478386.unknown

_1585478384.unknown

_1585478381.unknown

_1585478382.unknown

_1585478380.unknown

_1585478374.unknown

_1585478376.unknown

_1585478377.unknown

_1585478375.unknown

_1585478372.unknown

_1585478373.unknown

_1585478371.unknown

_1585478354.unknown

_1585478362.unknown

_1585478366.unknown

_1585478368.unknown

_1585478369.unknown

_1585478367.unknown

_1585478364.unknown

_1585478365.unknown

_1585478363.unknown

_1585478358.unknown

_1585478360.unknown

_1585478361.unknown

_1585478359.unknown

_1585478356.unknown

_1585478357.unknown

_1585478355.unknown

_1585478346.unknown

_1585478350.unknown

_1585478352.unknown

_1585478353.unknown

_1585478351.unknown

_1585478348.unknown

_1585478349.unknown

_1585478347.unknown

_1585478342.unknown

_1585478344.unknown

_1585478345.unknown

_1585478343.unknown

_1585478340.unknown

_1585478341.unknown

_1585478339.unknown

