
Three Phase Circuits 
 

Advantages of three phase system 
 

The three phase system has more advantages than a single phase system both from utility point of view and from 

consumer point of view. Some of the advantages are 

1. The amount of conductor material needed to transfer same amount of power is lesser for three phase 

system than single phase system – thus 3-Ø is economical. 

2. Both domestic and industrial power can be provided from a same source. 

3. For a given size of frame, the 3-Ø generator produces more output than a 1- Ø. 

4. The power in a 1- Ø is pulsating, so the torque produced is also pulsating. Although the power supplied 

by each phase is pulsating, the total 3- Ø power supplied to a 3- Ø circuit is constant at every instant of 

time. Because of this , 3- Ø motors have uniform torque. 

5. As 3- Ø induction motors are self starting while 1- Ø motors are not, 3- Ø are advantageous. 

6. Voltage regulation of a 3- Ø system is better than 1- Ø. 

 
We can conclude that the operating characteristics of 3- Ø are superior to 1- Ø and also the control 

equipment to 3- Ø are smaller, cheaper, lighter in weight and more efficient. Therefore the study of 3- Ø 

circuits has great importance. 

 

Generation of 3- Ø voltages 
 

Three phase voltages can be generated in a stationary armature with a rotating field structure, or in a rotating 

armature with a stationary field as shown in the figure. Generation of 3-phase voltages is also based on Faraday's 

laws of electromagnetic induction. Here the coil where the voltage is induced is stationary whereas the magnetic 

field of the constant magnitude is made to rotate. 

In 3- Ø generator the three phase voltages are generated in three separate but identical sets of windings or coils 

that are displaced by 120o electrical degrees in the armature. So that the voltages generated in them are 120o apart 

in time phase. This arrangement is as shown in the figure. Here RRl constitutes one coil (R-phase) ; YYl 

constitutes one coil (Y-phase) ; BBl constitutes one coil (B-phase). The field magnets are assumed in clockwise 

direction. 

 
Fig. 2.1 Schematic diagram of three windings of stator 

for the generation of three phase balanced voltage (2 pole rotor) 

 
Fig. 2.1 shows a two-pole rotor, the field winding of which is fed from a d.c. source to create magnetic flux for 

the poles. The poles are so shaped that these produce sinusoidal flux in space. The stator has a balanced three- 

phase winding with the axis of each phase displaced by 120°. Now, if the rotor is driven by a prime mover in the 

clockwise direction as shown, at synchronous speed, the voltage induced in the coil will be v x Bl and the 

direction of induced emf will be given as per Flemings right hand rule. Since the three generated voltages are 



sinewaves of the same frequency, mutually out-of-phase by 120°, then they may be represented both on a 

waveform diagram using the same angular or time axis, and as phasors. The corresponding waveform and phasor 

diagram is as shown in the figure. 

 
 

3-Ø waveform phasor diagram 

 

From the phasor diagram that the phasor sum  of the three e.m.fs, VR, VY, and VB is zero. That is 

 
VR+VY+VB = 0 

Since, ER has been taken as the reference phasor, the instantaneous values of the three e.m.fs are given as 

VR  =Emsin ωt 

VY =Emsin(ωt-120⁰) and 

VB  = Em sin (ωt - 240°) = Em sin (ωt + 120°) 
 

Phase sequence 
 

This three-phase supply consists of three phases, generally represented as R, Y and B or A, B and C. The order in 

which the three phase voltages attain their positive peak values is known as the phase sequence. Conventionally 

the three phases are designated as red-R, yellow-Y and blue-B phases. 

The phase sequence is said to be ABC if A attains its peak or maximum value first with respect to the reference  

as shown in the counter clockwise direction followed by B phase 120° later and C phase 240° later than the A 

phase. The phase sequence is said to be ACB if A is followed by C phase120° later and B phase 240° later than 

the A phase. By convention ABC is considered as positive while the sequence ACB as negative. 
 



The phase sequence of the voltages applied to a load is determined by the order in which the 3 phase lines 

are connected. This phase sequence of a three-phase power plays a critical role in controlling the direction of 

rotation of the three-phase-electrical motors. If this sequence is altered, then the direction of the motor gets 

altered. So, it is important to keep the phase in sequence or to maintain the proper phase sequence. 

The phase sequence can be reversed by interchanging any one pair of lines without causing any change in 

the supply sequence. Reversal of sequence results in reversal of the direction of rotation in case of induction 

motor. 

Star-Delta Transformation 

  Delta (Δ)- Star(Y) conversion 
 

Before taking up the examples, the formula for Delta(Δ)-Star(Y) conversion and also Star-Delta conversion,  

using impedances as needed, instead of resistance as elements, which is given in the figure , are presented. The 

formulas for delta-star conversion, using resistances are, 
 

 
Let us consider the network shown in figure and assumed the resistances (RAB , RBC , RCA ) in Δ network are 

known. Our problem is to find the values of in Wye (Y) network (RA, RB , RC) that will produce the same 

resistance when measured between similar pairs of terminals. We can write the equivalence resistance between 

any two terminals in the following form. 

 



Subtracting equations (2), (1), and (3) from (4) equations, we can write the express for unknown resistances of 

Wye (Y) network as 

 

Star or Wye to Delta 
 

To convert a Wye (Y) to a Delta (Δ), the relationships must be obtained in terms of the Wye (RA, RB , RC) 

resistances for Δ (RAB , RBC , RCA ) in network. 
 

 

Considering the Y connected network, we can write the current expression through  resistor RA as 

         (1) 

Applying KCL at ‘N’ for Y connected network (assume N has having higher potential than the terminal ABC 

terminals) we have 
 

 

For - Δ network 

 

Current entering at terminal A = Current leaving the terminal ‘A’ 

               (2) 



From equations (1) and (2) 

 
Using the expression VN in the above equation, we get 

 
Equating the coefficients of VAB  and VAC and in both sides of above eq, we obtained the following relationship 

 

Similarly, IB for both the networks are given by 
 

Equating the above two equations and using the value of  VN we get the final expression as 

 
Equating the coefficient of  VBC   in both sides of the above equations we obtain the following relation 

 



VOLTAGES AND CURRENTS RELATIONS IN 3 PHASE SYSTEMS 
 

In a three-phase system, there are two sets of voltages: (i) line voltages, and (ii) phase voltages. Similarly, there are 

two sets of currents: (i) line currents, and (ii) phase currents. We shall now determine the relations between these two 

sets of voltage and two sets of currents in both the star-connected system as well as delta connected system. 

 

(1) Star Connected System 

Assume the e.m.f in each phase to be positive when acting from the neutral point outwards, as shown in figure. 

The rms values of the e.m.fs generated in the three phases are ERN, EYN and EBN. In practice, it is the voltage 

between two lines or between a line conductor and the neutral point that is measured. Due to the impedance 

voltage-drop in the windings, this potential difference (Pd) is different from the corresponding e.m.f generated in 

the winding, except when the generator is on open circuit. Hence, in general it is preferable to work with the 

potential difference, V, rather than the e.m.f, E. 

 

In a three-phase system, there are two sets of voltages we are interested in. One is the set of phase voltages, and 

the other is the set of line voltages. In Fig.10, VRN is the rms value of the voltage drop from R to N. That is, this 

is the phase voltage of phase R. Thus, VRN, VYN and VBN denote the set of three phase voltages. The term 'line 

voltage' is used to denote the voltage between two lines. Thus, VRY represents line voltage between the lines R 

and between the lines R and Y. The other line voltages are VYB and VBR. 

 
A star connected generator supplying a three phase load 

 

To determine the relation between phase voltages and line voltages, we analyze the phasor diagram, shown in 

Figure. Note that a phasor diagram by itself is meaningless. It is essential to relate the quantities in the phasor 

diagram to a circuit diagram and to indicate the directions in which the voltage and current is assumed to be 

positive. The phasor diagram is drawn in terms of effective (or rms) values and it shows voltages (which can be 

measured). In Fig, VRN represents rms value of the voltage of phase R line with respect to the neutral line N. 
By applying Kirchhoff's voltage law, we can get the magnitude and phase angle of the line voltage VRY (which 

is the voltage  drop from R via N to Y, and can be  represented by an unambiguous symbol VRNY): 
VRY = VRN+ VNY 

This equation simply states that the voltage  drop existing from R to Y is equal to the voltage      drop from R to N 

plus the voltage drop from N to Y.  The above equation can be written as 
VRY = VRN + VNY 



= VRN – VYN = VRN + (-VYN) 

This shows that to determine VRY, first we reverse the phasor VYN to get - VYN and then add the phasors VRN   and 
-VYN, as shown in Figure. 

 

Fig.1 Phasor diagram of star connected system 

 

Analytical Analysis: 

In a balanced system, each  phase voltage has the same magnitude. So, we can write 

 

|VRN|= |VYN|= |VBN|= Vph 

 

The three phasors representing the set of phase voltages can be written as 
 

Geometrical Analysis : 

Because of the symmetry in Fig, it is evident that the line voltages are equal and are spaced 120° apart. 

Further, since sides of all the parallelograms are of equal length, the diagonals bisect one another at right angles. 

Also, they bisect the angle of their respective parallelograms. 

Since the angle between VRN and -VYN is 60°, we have 

VRY= 2(VRNCOS30°) or VL =2 Vph(0.866) = √3Vph 

In a star connection, any current that flows out of the line terminal R must be the same as that which flows due to 

the phase source voltage appearing between terminals Rand N. Therefore, for star-connection, we have IL = Iph 



(2) Delta-Connected System 

Let IR'R, IY′Y, IB'B, be the rms values of the phase currents in the three windings of the generator. Their assumed 

positive directions are indicated by arrows in Fig. Since the load is assumed balanced, these currents are equal in 

magnitude and differ in phase by 120°, as shown in the phasor diagram. 

 

A delta-connected generator supplying power to a 3 phase load 
 

Above vector addition of IR'R and - IB'B is shown in the phasor diagram of Fig. From the symmetrical geometry of 

the diagram, it is evident that the line currents are equal in magnitude and differ in phase by 120°. From Fig. it is 

obvious that the line voltage VRY is same as the phase voltage VRR′. Hence for a delta connected system, we have 

 



 
Phasor diagram of  Delta connected system 

 

 

Important Points about Three-Phase Systems 

Following important points should be noted while dealing with three-phase systems: 

(i) For a three-phase system, unless otherwise mentioned, it is normal practice to specify the values of the line 

voltages and line currents. 

(ii) The current in any phase can be determined by dividing the phase voltage by its impedance. 

(iii) The power factor of Z is the same as the cosine of the phase difference between phase voltage Vph and phase 

current Iph. 

 

 
POWER IN THREE-PHASE SYSTEM WITH A BALANCED LOAD 

 

Consider one phase only. For this load, the voltage is Vph and the current is Iph. The average active power 

consumed by this load is given by 

P1 = Vph x Iph  x Cos Φ 

where Φ is the phase angle of the load. 

As the load is balanced, the power in other two phase circuits will also be the same. Hence, the total power 

consumed is 

P = 3P1 = 3Vph x Iph x CosΦ 

Above expression for the total power is in terms of phase voltage and phase current. However, it is a normal 

practice to mention line voltage and line current in a three-phase system. Hence, the expression for the total 

power in terms of VL and IL: 

For a star-connected system, we have VL = √3 Vph and IL = Iph. Hence, 

P = 3(VL/ √3) IL Cos Φ = √3 VL IL CosΦ 

 
For a delta-connected system, we have VL = Vph and IL =√3 Iph Hence, 

P = 3 VL ( IL / √3) Cos Φ = √3 VL IL CosΦ 

 

Thus, it follows that, for any balanced load (connected in either Y or A), the total power is given as 

P = √3 VL IL CosΦ 



MEASUREMENT OF POWER 
 

The method of measurement of total power in three-phase depends upon the type of system and that of the load. 

There exist the following methods: 
 

(i) Three-Wattmeter Method: This is the simplest and straight forward method. One wattmeter is inserted in 

each of the phases. The power consumed by the load is the algebraic sum of the three wattmeter readings. 
 

(ii) One-Wattmeter Method This can be used to Determine the total power consumed by a star connected 

balanced load, with neutral point accessible. The current coil of the wattmeter is connected in one line and the 

potential coil is  connected between that line and the neutral point,  as shown in Fig. 
 

The reading of the wattmeter gives the power per phase.  Therefore, Total power = 3 x wattmeter reading 

 
 

Star connected balanced load 

 

(iii) Two-Wattmeter Method This can be used for any balanced or unbalanced load, star or delta connected. 

Details of this method are explained below. 

Power Measurement by Two-Wattmeter Method 

Suppose that the three loads L1, L2 and L3 are connected in star, as shown in Fig. The current coils (CC) of the 

two wattmeters W1 and W2 are connected in any two lines,  say, the R and B lines. The potential coils (PC)  of 

the wattmeters are connected between these lines and the third line. The sum of the wattmeter readings gives the 

average value of the total power  absorbed by the three phases. 

 

Star connected unbalanced load 



Proof Let VRN, VYN and VBN be the instantaneous values of the voltages across the loads, with the positive 

direction marked by arrows in the diagram. Let IR,IY and IB be the corresponding instantaneous values of the line 

(and phase) currents. 

Total instantaneous power = VRN  IR  + VYN  IY + VBN IB 

Since the current through the current coil of W1 is IR ,and the potential across its potential coil is VRN - VYN, we 

have  the instantaneous power measured by W1 = IR (VRN - VYN) 

Similarly, the instantaneous power measured by W2 = IB (VBN - VYN) 

Hence, the sum of the instantaneous powers of W1 and W2 is 

P1 + P2 = IR  (VRN - VYN) + IB  (vBN - VYN) = IR VRN + IB  VBN - VYN  (IR + IB) 

From KCL, the algebraic sum of the instantaneous currents at N is zero, i.e., 

IR + IY + IB = 0 

IY  = - (IR  + IB ) 

P = IR VRN + IB  VBN + VYN  IY = total instantaneous power 
 

The power measured by each wattmeter varies from instant to instant, but due to the inertia of the moving system 

the pointer stays at the average value of the power. 

Since the above proof does not assume a balanced load or a sinusoidal waveform, it follows that the sum of the 

two wattmeter readings gives the total power under all conditions. The above proof was derived for a star- 

connected load. One could derive the same conclusion for a delta-connected load. 

 

Power Factor Measurement by Two-Wattmeter Method 
 

Consider a balanced three-phase inductive load at a power factor Cos Φ (lagging), connected to a 3-wire, 3-phase 

system, as shown in Fig. The phase sequence is R Y B. The current coils of the two wattmeters W1 and W2 are 

connected in the line conductors Rand Y; respectively. Their potential coils are connected between the corresponding 

line conductor and the third line conductor B. 
 

 

Connection of Two Wattmeters 
 

 
Let IR, IY and IB be the three line currents, and VRN, VYN and VBN be the three phase-voltages·. Since the load is 

balanced, the three line currents and the three line voltages will have same magnitude, i.e., 

IR = IY = IB = Iph and VRN = VYN = VBN = Vph 

Each line current lags by angle Φ its corresponding voltage as shown in the phasor diagram of Fig . 

Since VRB = VRN - VBN, and VYB = VYN - VBN, we can determine the line voltages VRB and VYB by phasor method. It 

is seen from Fig 1. that the line voltage VRB lags the phase voltage VRN by 30° and VYB leads VYN by 30°. Thus, the 

phase  angle between the line voltage VRB and the line  current IR is (30° - Φ). 



Similarly, the phase angle between the line voltage VYB and the line current IY is (30° + Φ). 

Therefore, the readings of the two wattmeters are 

P1 = VRB IR Cos(30° - Φ) = VL IL Cos(30° - Φ) 

and 

P2 = VYB IY Cos(30° + Φ) = VL IL Cos(30° + Φ) 

Adding P1 and P2 

P1 + P2 = VL IL Cos(30° - Φ) + VL IL Cos(30° + Φ) 

= VL IL {Cos(30° - Φ) + Cos(30° + Φ)} 

= VL IL 2Cos30° Cos Φ 

Subtracting P1 and P2 

P1 - P2 = VL IL Cos(30° - Φ) - VL IL Cos(30° + Φ) 

= VL IL {Sin(30° - Φ) + Sin(30° + Φ)} 

= VL IL 2Sin30° Sin Φ 

 



1 If the load p.f. > 0.5 (i.e. φ< 60°); both meters will give a positive reading. 

2 If the load p.f.= 0.5 (i.e. φ =60°); W1 indicates the total power and W2 indicates zero. 

3 If the load p.f <0.5 (i.e. φ >60°); W2 attempts to indicate a negative reading. In this case, the connections to the 

voltage coil of W2 need to be reversed, and the resulting reading recorded as a negative value. Under these 

circumstances, the total load power will be P = P1-P 2 . 

4 The load power factor may be determined from the two wattmeter readings from the equation 

 

hence, power factor, cos φ can be determined 

 

 

PROBLEMS AND SOLUTION ON THREE PHASE CIRCUITS 

 

1. A 3 phase 230 V supply is given to balanced load which is delta connected. Impedance in each phase of 

the load is 8+j6,Determine the phase current and the total power consumed 

Solution: 

Phase voltage = 230 V 

balanced delta connected load 

Impedance in each phase of the load = 8 + j6 = 10∟36.86 ⁰ ohm 

phase current = phase voltage / impedance 

= 230 / 10∟36.86 ⁰ = 23∟- 36.86 ⁰ Amp. 

Total power consumed = 3 Vph Iph cos(Vph, Iph ) 

= 3 x 230 x 23 x cos(36.86) = 12696 w or 12.696kW 

2. A balanced 3-phasestar connected load of 150kW takes a leading current of 100 A with a line voltage of 

1100 V, 50Hz. Find the circuit constants of the load per phase. 

Solution: 

Load power = 150kW, Line current = 100 A, 

Line voltage = 1100 V, 50Hz. 
Power = √3 VL ILcosΦ 

150 x 103 = √3 x 1100 x 100 cosΦ; 

cosΦ = 0.7873; impedance angle, Φ = - 38.06⁰ 
Impedance = phase voltage / phase current = (1100/√3)/100 

= 635.08/100 = 6.35∟- 38.06⁰ ohm = (5 – j 3.914) ohm 

Resistance, R = 5 ohm, capacitive reactance, XC = 3.914 ohm 

Capacitance C = 1/(ω Xc) = 813.67 μF. 

3. Three identical coils each having a resistance of 10 and a reactance of 10 are connected in delta, across 

400 V, 3-phase supply. Find the line current and the reading on the two Wattmeters connected to measure 

the power. 

Solution: 

Coil resistance = 10 ohm 

coil reactance = 10 ohm. Delta connection. 

Supply voltage = 400 V. 

Impedance = 10 +j 10 = 14.14 ∟45⁰ ohm. 

Phase current = phase voltage / impedance 

= 400 / 14,14 ∟45⁰ = 28.28 ∟- 45⁰ Amp. 

Line current = √3 x phase current = 48.98 A 

Wattmeter reading W1 = VLILcos(30 - ∟(Vph, Iph) ) 
= 400 x 28.28 x cos(30 - 45) = 10926.55 watt. = 10.926kW 

Wattmeter reading W2 = VLILcos(30 + ∟(Vph, Iph) ) 

= 400 x 28.28 x cos(30 + 45) = 2927.76 w = 2.927kW. 



4. Three similar choking coils each having resistance 10 Ω and reactance 10 Ω are connected in star across a 

440 V, 3 phase supply. Find the line current and reading of each of two wattmeters connected to measure 

Power. 

Solution: 

Coil resistance = 10 ohm 

coil reactance = 10 ohm. Star connection. 

Supply voltage = 440 V. 

Impedance = 10 +j 10 = 14.14 ∟45⁰ ohm. 

Phase current = phase voltage / impedance 

= (440/√3) / 14,14 ∟45⁰ = 8.983 ∟- 45⁰ Amp. 
Line current = phase current = 8.983 A 

Wattmeter reading W1 = VLILcos(30 - ∟(Vph, Iph) ) 

= 440 x 8.983 x cos(30 - 45) = 3817.84 watt. = 3.82kW 

Wattmeter reading W2 = VLILcos(30 + ∟(Vph, Iph) ) 

= 440 x 8.983 x cos(30 + 45) = 1022.65 W = 1.02265 kW 

5. Three similar impedances are connected in delta across a 3 phase supply. The two wattmeters connected to 

measure the input power indicate 12 KW. Calculate Power input and Power factor of the load. 
Solution: 

Delta connection. 

The two wattmeters connected to measure the input power indicating 12 KW. (both are reading equal) 

Wattmeter reading W1 = VLILcos(30 - Φ) = 12kW 

Wattmeter reading W2 = VLILcos(30 + Φ) = 12kW 

Power input = 12 + 12 = 24kW. 

We have W1 = W2 

VLILcos(30 - Φ) = VLILcos(30 + Φ) ; Φ = 0⁰ 
Power factor of the load = cos(0) = 1, unity power factor. 

OR 

Wattmeter reading W1 = VLILcos(30 - Φ) = 12kW 

Wattmeter reading W2 = VLILcos(30 + Φ) = 12kW 

power factor angle Φ = tan -1{√3 (WA – WB)/(WA + WB)} 

with WA = WB = 12kW, Φ = 0⁰ 
Therefore the power factor Cos Φ = 1 

 

6. The power flowing in a 3 Phase,3 Wire balanced load system is measured by two wattmeter method. The 

reading in Wattmeter A is 750 Watts and Wattmeter B is 1500 Watts. What is the power factor of the system? 

Solution: 

Wattmeter A = 750 Watts 

Wattmeter B = 1500 Watts. 

power factor angle 

Φ = tan -1{√3 (WA – WB)/(WA + WB)} 

= tan– 1{√3(750 – 1500)/(750+1500)} = -30⁰ 
power factor of the system = cos(- 30 ⁰) 
= 0.866 lagging. 

7. Three similar coils each having resistance of 10 Ohm and reactance of 8 Ohm are connected in star across a 

400 V, 3 Phase supply, Determine the i)Line current ii)Total Power and iii)Reading of each of two wattmeters 

connected to measure the power. 

Solution: 

Coil impedance = 10 + j 8 Ohm 

Star connected. 
Supply : 400 V, 3 Phase supply, 

i) Line current = phase voltage / impedance 

= (400/√3)/(10 + j 8) = 230.94 /12.8 ∟38.66 

= 18.042 ∟- 38.66 Amp 

Ii) Total Power = √3 x 400 x 18.042 x cos(38,66) = 10 kW 

iii) Reading of each of two wattmeters: 



W1 = VLILcos(30 – Φ) = 400 x 18.042 x cos(68.66) = 2.626kW 

8. Three similar impedances are connected in delta across a 3 Phase supply. The two Wattmeters connected to 

measure the input power indicate 12 KW and 7KW calculate: Power input and Power factor of the load. 

Solution: 

Wattmeter A = 12kW = 12000 Watts 

Wattmeter B = 7kW = 7000 Watts. 

 
power factor angle 

Φ = tan -1{√3(WA – WB)/(WA + WB)} 

= tan– 1{√3(12 – 7)/(12 + 7)} = 24.5⁰ 
power factor of the system = cos 24.5 

= 0.9099 lagging. 

9. The input power to a three phase motor was measured by two wattmeter method. The readings were 5kW 

and – 1.7kW, and the line voltage was 400 V. Calculate: (a) the total power; (b) the power factor; and (iii) the 

line current. 

Solution: 

Wattmeter A = 5 kW = 5000 Watts 

Wattmeter B = - 1.7 kW = 1700 Watts. 
Total Power = WA + WB = 5 – 1.7 = 3.3 kW = 3300 W 

power factor angle 

Φ = tan -1{√3(WA – WB)/(WA + WB)} 

= tan– 1{√3(5 – (- 1.7))/(5 + (- 1.7))} = 74.12⁰ 
power factor of the system = cos 74.12 = 0.2735 lagging 

Line current = Total power /{√3 x VL x cos Φ} = 3300 / {√3 x 400 x 0.2735} = 17.415 A 

10. Three similar coils, connected in star, takes a total power of 1.5kW, at a power factor of 0.2, from a three 

phase, 400V, 50Hz supply. Calculate: (a) the resistance and inductance of each coil, and (b) the line currents. 

Solution: 
Input = 1.5 kW = 1500 W 

= √3 x line voltage x line current x power factor. 

Line current = 1500 / [ √3 x 400 x 0.2] = 10.8253 A 

Power factor angle = cos – 1 (0.2) = 78.46 
Impedance per phase = Phase voltage / phase current = (400/√3)/(10.8253∟-78.46) 

= 21.33∟78.46 Ohm 

= 4.267 + j 20.898 

Resistance of the coil = 4.267 Ohms 

Inductive reactance = 20.898 = ω L = 2π f L, where L is the inductance of the coil. 

Inductance L = 20.898 / 314 = 0.0665 Henry. 



 


