
Disaster Recovery

UNIT-IV

PART-B



Syllabus

• Disaster Recovery Planning

• Disasters in the Cloud

• Disaster Management



Disaster Recovery Planning

• The Recovery Point Objective

• The Recovery Time Objective



Disaster Recovery Planning

• Disaster recovery deals with catastrophic
failures that are extremely unlikely to occur
during the lifetime of a system.

• If they are reasonably expected failures, they
fall under the auspices of traditional
availability planning.



drkkbaseer@gmail.com



Disaster Recovery Planning

• Defining a disaster recovery plan involves two key metrics:
• Recovery Point Objective (RPO) - The recovery point

objective identifies how much data you are willing to lose
in the event of a disaster. This value is typically specified in
a number of hours or days of data.
– For example, if you determine that it is OK to lose 24 hours of

data, you must make sure that the backups you’ll use for your
disaster recovery plan are never more than 24 hours old.

• Recovery Time Objective (RTO) - The recovery time
objective identifies how much downtime is acceptable in
the event of a disaster.
– If your RTO is 24 hours, you are saying that up to 24 hours may

elapse between the point when your system first goes offline
and the point at which you are fully operational again.



Disaster Recovery Planning



The Recovery Point Objective

• Your RPO is typically governed by the way in which you save
and back up data:
– Weekly off-site backups will survive the loss of your data center

with a week of data loss. Daily off-site backups are even better.
– Daily on-site backups will survive the loss of your production

environment with a day of data loss plus replicating transactions
during the recovery period after the loss of the system. Hourly
on-site backups are even better.

– A NAS/SAN will survive the loss of any individual server, except
for instances of data corruption with no data loss.

– A clustered database will survive the loss of any individual data
storage device or database node with no data loss.

– A clustered database across multiple data centers will survive
the loss of any individual data center with no data loss.



RPO vs RTO



The Recovery Time Objective

• Having up-to-the-second off-site backups does
you no good if you have no environment to
which you can restore them in the event of
failure.

• The ability to assemble a replacement
infrastructure for your disasters—including
the data restore time—governs the RTO.



The Recovery Time Objective

• What would happen if your managed services
provider closed its doors tomorrow? If you
have a number of dedicated servers, it can be
days or weeks before you are operational
again unless you have an agreement in place
for a replacement infrastructure.



The Recovery Time Objective

• In a traditional infrastructure, a rapid RTO is very
expensive. As discussed earlier, you would have to have
an agreement in place with another managed services
provider to provide either a backup infrastructure or an
SLA for setting up a replacement infrastructure in the
event your provider goes out of business.

• Depending on the nature of that agreement, it can
nearly double the costs of your IT infrastructure.

• The cloud—even over virtualized data centers—alters
the way you look at your RTO.



Disasters in the Cloud

• Backup Management
– Fixed data strategy

– Configuration data strategy

– Persistent data strategy (aka database backups)

– Backup security

• Geographic Redundancy
– Spanning availability zones

– Operating across regions
• DNS management

• Database management

• Regulatory Issues

• Organizational Redundancy



Disasters in the Cloud

• Assuming unlimited budget and capabilities,
we focus on three key things in disaster
recovery planning:

– Backups and data retention

– Geographic redundancy

– Organizational redundancy



Backup Management

• Your ability to recover from a disaster is limited by the
quality and frequency of your backups.

• In a traditional IT infrastructure, companies often make
full weekly backups to tape with nightly differentials
and then ship the weekly backups off-site.

• You can do much better in the cloud, and do it much
more cheaply, through a layered backup strategy.

• In disaster recovery, persistent data is generally the
data of greatest concern.

• We can always rebuild the operating system, install all
the software, and reconfigure it, but we have no way of
manually rebuilding the persistent data.



Kind of data Description

Fixed data Fixed data, such as your operating system and common utilities, belong in

your AMI. In the cloud, you don’t back up your AMI, because it has no

value beyond the cloud.

Transient data File caches and other data that can be lost completely without impacting the

integrity of the system. Because your application state is not dependent on

this data, don’t back it up.

Configuration

data

Runtime configuration data necessary to make the system operate properly

in a specific context. This data is not transient, since it must survive

machine restarts. On the other hand, it should be easily reconfigured from a

clean application install. This data should be backed up semi-regularly.

Persistent

data

Your application state, including critical customer data such as purchase

orders. It changes constantly and a database engine is the best tool for

managing it. Your database engine should store its state to a block device,

and you should be performing constant backups. Clustering and/or

replication are also critical tools in managing the database.

Table: Backup requirements by data type



Fixed data strategy

• If you are fixated on the idea of backing up your
machine images, you can download the images out of
S3 and store them outside of the Amazon cloud.

• If S3 were to go down and incur data loss or corruption
that had an impact on your AMIs, you would be able to
upload the images from your off-site backups and
reregister them.

• It’s not a bad idea and it is not a lot of trouble, but the
utility is limited given the uniqueness of the failure
scenario that would make you turn to those backups.



Configuration data strategy

• A good backup strategy for configuration
information comprises two levels.

– The first level can be either a regular filesystem
dump to your cloud storage or a filesystem
snapshot

– The second approach is to check your application
configuration into a source code repository
outside of the cloud and leverage that repository
for recovery from even minor losses



Configuration data strategy

• At some point, you do need to get that data out
of the cloud so that you have off-site backups in a
portable format. Here’s what we recommend:
– Create regular—at a minimum, daily—snapshots of

your configuration data
– Create semi-regular—at least less than your RPO—

filesystem archives in the form of ZIP or TAR files and
move those archives into Amazon S3

– On a semi-regular basis—again, at least less than your
RPO—copy your filesystem archives out of the
Amazon cloud into another cloud or physical hosting
facility



Persistent data strategy (aka database 
backups)

• It is recommended that using a relational database to
store customer information and other persistent data.

• After all, the purpose of a relational database is to
maintain the consistency of complex transactional
data.

• The challenge of setting up database backups is doing
them regularly in a manner that does not impact
operations while retaining database integrity.

• MySQL, like all database engines, provides several
convenient tools for backups, but you must use them
carefully to avoid data corruption.



Persistent data strategy (aka database 
backups)

• The first line of defense is either multimaster replication
or clustering.

– A multimaster database is one in which two master servers
execute write transactions independently and replicate the
transactions to the other master. A clustered database
environment contains multiple servers that act as a single logical
server. Under both scenarios, when one goes down, the system
remains operational and consistent.

• Instead, you can perform master-slave replication.

– Master-slave replication involves setting up a master server that
handles your write operations and replicating transactions over
to a slave server. Each time something happens on the master, it
replicates to the slave.



Persistent data strategy (aka database 
backups)

• Replication in itself is not a “first line of defense,” since
replication is not atomic with respect to the transactions that
take place on the master. In other words, a master can crash
after a transaction has completed but before it has had time
to replicate to the slave. To get around this problem, generally
do the following:
– Set up a master with its data files stored on a block storage device.

– Set up a replication slave, storing its data files on a block storage
device.

– Take regular snapshots of the master block storage device based on
my RPO.

– Create regular database dumps of the slave database and store them
in S3.

– Copy the database dumps on a semi-regular basis from S3 to a
location outside the Amazon cloud.



Persistent data strategy (aka database 
backups)

• Snapshots are available in most cloud environments and 
provide an important approach for maintaining database 
integrity without completely shutting down application 
processing—even with large data sets in databases such as 
MySQL.

• You need to freeze the database only for an instant to create 
your snapshot. The process follows these steps:
– Lock the database.

– Sync the filesystem (this procedure is filesystem-dependent).

– Take a snapshot

– Unlock the database.

• The whole process should take about one second.



Persistent data strategy (aka database 
backups)

• On Amazon EC2, you will store your snapshots directly onto block
storage. Unfortunately, the snapshots are not portable, so you can’t
use them for off-site storage. You therefore will need to do
database dumps.

• The steps for creating the database dump are:
– Execute the database dump
– When complete, encrypt the dump and break it into small,

manageable chunks
– Move the dump over to S3

• Amazon S3 limits your file size to 5 GB. As a result, you probably
need to break your database into chunks, and you should definitely
encrypt it and anything else you send into Amazon S3.

• Now that you have a portable backup of your database server, you
can copy that backup out of the Amazon cloud and be protected
from the loss of your S3 backups.



Backup security

• Your filesystems are encrypted to protect the
snapshots you are making for your backups from
prying eyes. The harder part is securing your
portable backups as you store them in S3 and
move them off site.

• We typically use PGP-compatible encryption for
my portable backups. You need to worry about
two issues:
– Keeping your private decryption key out of the cloud.
– Keeping your private decryption key some place that it

will never, ever get lost.



Backup security

• You really have no reason for ever giving out the private
decryption key to an instance in the cloud unless you are
automating the failover between two different cloud
infrastructures. The cloud needs only your public
encryption key so it can encrypt the portable backups.

• You can’t store your decryption key with your backups.
Doing so will defeat the purpose of encrypting the backups
in the first place. Because you will store your decryption
key somewhere else, you run the risk of losing your
decryption key independent of your backups.

• On the other hand, keeping a bunch of copies of your
decryption key will make it more likely it will fall into the
wrong hands.



Backup security

• The best approach? Keep two copies:
– One copy stored securely on a highly secure server in your

internal network.
– One copy printed out on a piece of paper and stored in a safety

deposit box nowhere near the same building in which you house
your highly secure server.

• More than one person should know the locations of these
copies. A true disaster can unfortunately result in the loss
of personnel, so personnel redundancy is also important for
a disaster recovery plan.

• If you are automating the recovery from portable backups,
you will also need to keep a copy of the private decryption
key on the server that orchestrates your automated
recovery efforts.



Geographic Redundancy

• Turning now to your Recovery Time Objective,
the key is redundancy in infrastructure.

• If you can develop geographical redundancy,
you can survive just about any physical
disaster that might happen. With a physical
infrastructure, geographical redundancy is
expensive. In the cloud, however, it is
relatively cheap.



Geographic Redundancy

• You don’t necessarily need to have your
application running actively in all locations, but
you need the ability to bring your application up
from the redundant location in a state that meets
your Recovery Point Objective within a timeframe
that meets your Recovery Time Objective.

• If you have a 2-hour RTO with a 24-hour RPO,
geographical redundancy means that your second
location can be operational within two hours of
the complete loss of your primary location using
data that is no older than 24 hours.



Geographic Redundancy

• Amazon provides built-in geographic redundancy
in the form of regions and availability zones.

• If you have your instances running in a given
availability zone, you can get them started back
up in another availability zone in the same region
without any effort. If you have specific
requirements around what constitutes
geographic redundancy,‡ Amazon’s availability
zones may not be enough—you may have to span
regions.



drkkbaseer@gmail.com



Spanning availability zones

• Just about everything in your Amazon
infrastructure except block storage devices is
available across all availability zones in a given
region.

• Although there is a charge for network traffic
that crosses availability zones, that charge is
generally well worth the price for the
leveraging ability to create redundancy across
availability zones.



Spanning availability zones

FIGURE: By spanning multiple availability zones, you can achieve geographic redundancy



Spanning availability zones

• If you lose the entire availability zone B, nothing happens. The
application continues to operate normally, although perhaps with
degraded performance levels.

• If you lose availability zone A, you will need to bring up a new load
balancer in availability zone B and promote the slave in that
availability zone to master. The system can return to operation in a
few minutes with little or no data loss. If the database server were
clustered and you had a spare load balancer running silently in the
background, you could reassign the IP address from the old load
balancer to the spare and see only a few seconds of downtime with
no data loss.



Spanning availability zones

• The Amazon SLA provides for a 99.95% uptime of at least two
availability zones in each region. If you span multiple availability
zones, you can actually exceed the Amazon SLA in regions that have
more than two availability zones. The U.S. East Coast, for example,
has three availability zones. As a result, you have only a 33% chance
of any given failure of two availability zones being exactly the two
zones you are using.

• Even in the event that you are unfortunate enough to be operating
in exactly the two zones that fail, you can still exceed Amazon’s SLA
as long as the region you are operating in has more than two
availability zones. The trick is to execute your disaster recovery
procedures and bring your infrastructure back up in the remaining
availability zone. As a result, you can be operational again while the
other two availability zones are still down.



36

Operating across regions

• Amazon supports two regions: us-east-1 (Eastern United

States) and eu-west-1 (Western Europe). These regions share

little or no meaningful infrastructure.

• The advantage of this structure is that your application can

basically survive a nuclear attack on the U.S. or EU (but not

on both!) if you operate across regions.

• On the other hand, the lack of common infrastructure

makes the task of replicating your environments across regions

more difficult.



Operating across regions

• Each region has its own associated Amazon S3 region.
Therefore, you cannot launch EC2 instances in the EU
using AMIs from the U.S., and you cannot use IP
addresses formerly associated with a load balancer in
the EU with a replacement in the U.S.

• How you manage operations across regions depends
on the nature of your web application and your
redundancy needs. It’s entirely likely that just having
the capability to rapidly launch in another region is
good enough, without actually developing an
infrastructure that simultaneously operates in both
regions.

• The issues you need to consider for simultaneous
operation include:



DNS management

• DNS management software is computer software that controls

Domain Name System (DNS) server clusters. DNS data is

typically deployed on multiple physical servers.

• The main purposes of DNS management software are: to reduce

human error when editing complex and repetitive DNS data.

• You can use round-robin DNS to work around the fact that IP

addresses are not portable across regions, but you will end

up sending European visitors to the U.S. and vice versa (very

inefficient network traffic management) and lose half your traffic

when one of the regions goes down.





Database management

• Clustering across regions is likely not practical (but you can

try it). You can also set up a master in one region with

a slave in the other. Then you perform write operations

against the master, but read against the slave for traffic

from the region with the slave.

• Another option is to segment your database so that the

European region has “European data” and the U.S. region has

“American data.” Each region also has a slave in the other

region to act as a recovery point from the full loss of a region.



Database management



Regulatory issues

• The EU does not allow the storage of certain
data outside of the EU. As a result, legally you
may not be allowed to operate across regions,
no matter what clever technical solutions you
devise.

• In reality, an Amazon+GoGrid or
Amazon+Rackspace approach to redundancy
may be more effective than trying to use
Amazon’s two cross-jurisdictional regions.



Regulatory issues



Organizational Redundancy

• Physical disasters are a relatively rare thing, but
companies go out of business everywhere every
day—even big companies like Amazon and
Rackspace.

• Even if a company goes into bankruptcy
restructuring, there’s no telling what will happen
to the hardware assets that run their cloud
infrastructure.

• Your disaster recovery plan should therefore have
contingencies that assume your cloud provider
simply disappears from the face of the earth.



Organizational Redundancy

• You probably won’t run concurrent environments
across multiple clouds unless it provides some
level of geographic advantage.

• Even in that case, your environments are not
likely to be redundant so much as segmented for
the geographies they are serving.

• Instead, the best approach to organizational
redundancy is to identify another cloud provider
and establish a backup environment with that
provider in the event your first provider fails.



Organizational Redundancy

• The issues associated with organizational redundancy
are similar to the issues I discussed earlier around
operating across Amazon EC2 regions. In particular, you
must consider all of the following concerns:
– Storing your portable backups at your secondary cloud

provider.
– Creating machine images that can operate your

applications in the secondary provider’s virtualized
environment.

– Keeping the machine images up to date with respect to
their counterparts with the primary provider.

– Not all cloud providers and managed service providers
support the same operation systems or filesystems. If your
application is dependent on either, you need to make sure
you select a cloud provider that can support your needs.



Disaster Management

• Monitoring

• Load Balancer Recovery

• Application Server Recovery

• Database Recovery



Disaster Management

• You are performing your backups and have an
infrastructure in place with all of the appropriate
redundancies.

• To complete the disaster recovery scenario, you
need to recognize when a disaster has happened
and have the tools and processes in place to
execute your recovery plan.

• One of the coolest things about the cloud is that
all of this can be automated. You can recover
from the loss of Amazon’s U.S. data centers while
you sleep.



Disaster Management



Monitoring

• Monitoring your cloud infrastructure is extremely
important. You cannot replace a failing server or
execute your disaster recovery plan if you don’t
know that there has been a failure.

• The trick is that your monitoring systems cannot
live in either your primary or secondary cloud
provider’s infrastructure.

• They must be independent of your clouds. If you
want to enable automated disaster recovery, they
also need the ability to manage your EC2
infrastructure from the monitoring site.



Monitoring

• There are many other more common things that
you should check on in a regular environment. In
particular, you should be checking capacity issues
such as disk usage, RAM, and CPU.

• In the end you will need to monitor for failure at
three levels:
– Through the provisioning API (for Amazon, the EC2

web services API)

– Through your own instance state monitoring tools

– Through your application health monitoring tools



Load Balancer Recovery

• One of the reasons companies pay absurd amounts of
money for physical load balancers is to greatly reduce
the likelihood of load balancer failure.

• With cloud vendors such as GoGrid—and in the future,
Amazon—you can realize the benefits of hardware load
balancers without incurring the costs.

• Under the current AWS offering, you have to use less-
reliable EC2instances. Recovering a load balancer in the
cloud is lightning fast.

• As a result, the downside of a failure in your cloud-
based load balancer is minor.



Load Balancer Recovery

• Recovering a load balancer is simply a
matter of launching a new load
balancer instance from the AMI and
notifying it of the IP addresses of its
application servers.

• You can further reduce any downtime by
keeping a load balancer running in an
alternative availability zone and then
remapping your static IP address upon the
failure of the main load balancer.





Application Server Recovery

• If you are operating multiple application
servers in multiple availability zones, your
system as a whole will survive the failure of
any one instance—or even an entire
availability zone.

• You will still need to recover that server so
that future failures don’t affect your
infrastructure.



Application Server Recovery

• The recovery of a failed application server is only

slightly more complex than the recovery of a failed load

balancer.

• Like the failed load balancer, you start up a new instance

from the application server machine image. You then pass

it configuration information, including where the database

is. Once the server is operational, you must notify the load

balancer of the existence of the new server (as well as

deactivate its knowledge of the old one) so that the new

server enters the load-balancing rotation.



Application Server Recovery



Database Recovery

• Database recovery is the hardest part of
disaster recovery in the cloud. Your disaster
recovery algorithm has to identify where an
uncorrupted copy of the database exists.

• This process may involve promoting slaves
into masters, rearranging your backup
management, and reconfiguring application
servers.



Database Recovery

• The best solution is a clustered database that
can survive the loss of an individual database
server without the need to execute a complex
recovery procedure.

• Absent clustering, the best recovery plan is
one that simply launches a new database
instance and mounts the still functional EC2
volume formerly in use by the failed instance.



Database Recovery



Database Recovery

• When an instance goes down, however, any
number of related issues may also have an impact
on that strategy:
– The database could be irreparably corrupted by

whatever caused the instance to crash

– The volume could have gone down with the instance.

– The instance’s availability zone (and thus the volume
as well) could be unavailable

– You could find yourself unable to launch new
instances in the volume’s availability zone



Database Recovery

• On the face of it, it might seem that the likelihood of both things
going wrong is small, but it happens. As a result, you need a fallback
plan for your recovery plan. The following process will typically
cover all levels of database failure:
1. Launch a replacement instance in the old instance’s availability zone

and mount its old volume.
2. If the launch fails but the volume is still running, snapshot the

volume and launch a new instance in any zone, and then create a
volume in that zone based on the snapshot.

3. If the volume from step 1 or the snapshot from step 2 are corrupt,
you need to fall back to the replication slave and promote it to
database master.

4. If the database slave is not running or is somehow corrupted, the
next step is to launch a replacement volume from the most recent
database snapshot.

5. If the snapshot is corrupt, go further back in time until you find a
backup that is not corrupt.


	Disaster Recovery
	Syllabus
	Disaster Recovery Planning
	Disaster Recovery Planning
	Slide 5 
	Disaster Recovery Planning
	Disaster Recovery Planning
	The Recovery Point Objective
	RPO vs RTO
	The Recovery Time Objective
	The Recovery Time Objective
	The Recovery Time Objective
	Disasters in the Cloud
	Disasters in the Cloud
	Backup Management
	Slide 16 
	Fixed data strategy
	Configuration data strategy
	Configuration data strategy
	Persistent data strategy (aka database backups)
	Persistent data strategy (aka database backups)
	Persistent data strategy (aka database backups)
	Persistent data strategy (aka database backups)
	Persistent data strategy (aka database backups)
	Backup security
	Backup security
	Backup security
	Geographic Redundancy
	Geographic Redundancy
	Geographic Redundancy
	Slide 31 
	Spanning availability zones
	Spanning availability zones
	Spanning availability zones
	Spanning availability zones
	Slide 36 
	Operating across regions
	DNS management
	Slide 39 
	Database management
	Database management
	Regulatory issues
	Regulatory issues
	Organizational Redundancy
	Organizational Redundancy
	Organizational Redundancy
	Disaster Management
	Disaster Management
	Disaster Management
	Monitoring
	Monitoring
	Load Balancer Recovery
	Load Balancer Recovery
	Slide 54 
	Application Server Recovery
	Application Server Recovery
	Application Server Recovery
	Database Recovery
	Database Recovery
	Database Recovery
	Database Recovery
	Database Recovery



