
UNIT-II
PART - A

Improving Software Economics: Reducing
Software product size, improving software
processes, improving team effectiveness,
improving automation, Achieving required
quality, peer inspections.



Introduction

• Improvements in the economics of software
development have been not only difficult to
achieve but also difficult to measure and
substantiate (prove).

• If an organization focuses too much on improving
only one aspect of its software development
process, it will not realize any significant
economic improvement even though it improves
this one aspect spectacularly.



Introduction

• The key to substantial improvement is a balanced attack
across several inter-related dimensions.

• The presentation of the important dimensions around the
five basic parameters of the software cost model presented
earlier.

1. Reducing the size or complexity of what needs to be
developed

2. Improving the development process
3. Using more-skilled personnel and better teams (not

necessarily the same thing)
4. Using better environments (tools to automate the

process)
5. Trading off or backing off on quality thresholds



Introduction

• These parameters are given in priority order for most
software domains.

• Below table lists some of the technology
developments, process improvement efforts, and
management approaches targeted at improving the
economics of software development and integration.

• Most software experts would also stress the significant
dependencies among these trends.

• For example, tools enable size reduction and process
improvements, size-reduction approaches lead to
process changes, and process improvements drive
tool requirements.



Important trends in improving software economics



Introduction

• Two decades ago, teams developing a user interface
would spend extensive time analyzing operations,
human factors, screen layout, and screen dynamics.

• All this would be done on paper because it was
extremely expensive to commit designs, even
informal prototypes, to executable code.

• Therefore, the process emphasized a fairly
heavyweight set of early paper artifacts and user
concurrence so that these “requirements” could be
frozen and the high construction costs could be
minimized.



Introduction

• Graphical user interface (GUI) technology is a
good example of tools enabling a new and
different process.

• As GUI technology matured, the conventional
user interface process became obsolete.

• GUI builder tools permitted engineering
teams to construct an executable user
interface faster and at less cost.



Introduction

• Another important factor that has influenced
software technology improvements across the
board is the ever-increasing advances in
hardware performance.

• The availability of more cycles, more memory,
and more bandwidth has eliminated many
sources of software implementation complexity.

• Simpler, brute-force solutions are now possible,
and hardware improvements are probably the
enabling advance behind most software
technology improvements of substance.



Reducing Software product size

• The most significant way to improve
affordability and return on investment (ROI) is
usually to produce a product that achieves the
design goals with the minimum amount of
human-generated source material.

• Component-based development is introduced
here as the general term for reducing the
“source” language size necessary to achieve a
software solution.



Reducing Software product size

• Reuse, object-oriented technology, automatic code
production, and higher order programming languages are
all focused on achieving a given system with fewer lines of
human-specified source directives (statements).

• This size reduction is the primary motivation behind
improvements in higher order languages (such as C++, Ada
95, Java, Visual Basic, and fourth-generation languages),
automatic code generators (CASE tools, visual modeling
tools, GUI builders), reuse of commercial components
(operating systems, windowing environments, database
management systems, middleware, networks), and object-
oriented technologies (Unified Modeling Language, visual
modeling tools, architecture frameworks).



Reducing Software product size

– By choosing the type of the language

– By using Object-Oriented methods and visual
modeling

– By reusing the existing components and building
reusable components

– By using commercial components, we can reduce
the product size of a software



Languages

• Universal function points (UFPs) are useful estimators
for language-independent, early life-cycle estimates.

• The basic units of function points are external user
inputs, external outputs, internal logical data groups,
external data interfaces, and external inquiries.

• SLOC metrics are useful estimators for software after a
candidate solution is formulated and an
implementation language is known.

• Substantial data have been documented relating SLOC
to function points .

• Some of these results are shown in below table.



Languages

Table: Language expressiveness of some of today’s popular languages



Object Oriented Methods And Visual 
Modeling

• There has been a widespread movements in
the 1990s toward Object-Oriented technology.

• Some studies concluded that Object-Oriented
programming languages appear to benefit
both software productivity and software
quality.

• One of such Object-Oriented method is UML-
Unified Modeling Language.



Object Oriented Methods And Visual 
Modeling

• Booch described the following three reasons for the
success of the projects that are using Object-Oriented
concepts:

1. An Object-Oriented model of the problem and its solution
encourages a common vocabulary between the end user
of a system and its developers, thus creating a shared
understanding of the problem being solved.

2. The use of continuous integration creates opportunities to
recognize risk early and make incremental corrections
without weaken the entire development effort.

3. An Object-Oriented architecture provides a clear
separation among different elements of a system, creating
firewalls that prevent a change in one part of the system
from the entire architecture.



Reuse

• Reusing existing components and building reusable
components have been natural software engineering
activities since the earliest improvements in
programming languages.

• Software design methods have always dealt implicitly
with reuse in order to minimize development costs
while achieving all the other required attributes of
performance, feature set, and quality.

• Beware of “open” reuse libraries sponsored by
nonprofit organizations. They lack economic
motivation, trustworthiness, and accountability for
quality, support, improvement, and usability.



Reuse

• Organizations that translates reusable components
into commercial products has the following
characteristics:
– They have an economic motivation for continued support.

– They take ownership of improving product quality, adding
new features and transitioning to new technologies.

– They have a sufficiently broad customer base to be
profitable.

• The cost of developing a reusable component is not
trivial. Below figure examines the economic trade-offs.

• The steep initial curve illustrates the economic obstacle
to developing reusable components.



Reuse

Figure: Cost and schedule investments necessary to achieve reusable components



Commercial Components

• A common approach being pursued today in
many domains is to maximize integration of
commercial components and off-the-shelf
products.

• While the use of commercial components is
certainly desirable as a means of reducing custom
development, it is not proven straight forward in
practice.

• Below table identifies some of the advantages
and disadvantages of using commercial
components desirable as a means of reducing
custom development.



Commercial Components



Improving Software Processes

• Process is overloaded term for software oriented
organizations, there are many processes and sub
processes. It use three distinct process
perspectives.

1. Metaprocess
– It is an Organization’s policies, procedures, and

practices for pursuing a software- intensive line of
business.

– The focus of this process is of organizational
economics, long-term strategies, and a software ROI.



Improving Software Processes

2. Macroprocess

– A project’s policies, and practices for producing a
complete software product within certain cost,
schedule, and quality constraints.

– The focus of the macroprocess is on creating an
sufficient instance of the metaprocess for a
specific set of constraints.



Improving Software Processes

3. Microprocess
– A projects team’s policies, procedures, and practices

for achieving an artifact of a software process.

– The focus of the microprocess is on achieving an
intermediate product baseline with sufficient
functionality as economically and rapidly as practical.

• Although these three levels of process overlap
somewhat, they have different objectives,
audiences, metrics, concerns, and time scales, as
shown in below table.



Improving Software Processes
Table: Three levels of process and their attributes



Improving Software Processes

• To achieve success, most software projects require an
incredibly complex web of sequential and parallel steps.

• As the scale of a project increases, more overhead steps
must be included just to manage the complexity of this
web.

• All project processes consist of productive activities and
overhead activities.

• Productive activities result in tangible progress toward the
end product.

• For software efforts, these activities include prototyping,
modeling, coding, debugging, and user documentation.



Improving Software Processes

• Overhead activities that have an intangible impact on
the end product are required in plan preparation,
documentation, progress monitoring, risk assessment,
financial assessment, configuration control, quality
assessment, integration, testing, late scrap and rework,
management, personnel training, business
administration, and other tasks.

• The objective of process improvement is to maximize
the allocation of resources to productive activities and
minimize the impact of overhead activities on
resources such as personnel, computers, and schedule.



Improving Software Processes

• Schedule improvement has at least three
dimensions.

1. We could take an N-step process and improve
the efficiency of each step.

2. We could take an N-step process and eliminate
some steps so that it is now only an M-step
process.

3. We could take an N-step process and use more
concurrency in the activities being performed or
the resources being applied.



Improving Software Processes

• In a perfect software engineering world with an
immaculate problem description, an obvious solution
space, a development team of experienced geniuses,
adequate resources, and stakeholders with common goals,
we could execute a software development process in one
iteration with almost no scrap and rework.

• Because we work in an imperfect world, however, we need
to manage engineering activities so that scrap and rework
profiles do not have an impact on the win conditions of any
stakeholder.

• This should be the underlying premise for most process
improvements.



Improving Team Effectiveness

• Balance and coverage are two of the most
important features of excellent teams.
Whenever a team is out of balance, it is
vulnerable.

• It is the responsibility of the project manager
to keep track of his teams. Since teamwork is
much more important than the sum of the
individuals.



Improving Team Effectiveness

• Some maxims of team management include
the following:
– A well-managed project can succeed with a

nominal engineering team.

– A mismanaged project will almost never succeed,
even with an expert team of engineers.

– A well-architected system can be built by a
nominal team of software builders.

– A poorly architected system will flounder even
with an expert team of builders.



Improving Team Effectiveness

• In examining how to staff a software project, Boehm offered
the following five staffing principles:

1. The principle of top talent: Use better and fewer people.

2. The principle of job matching: Fit the tasks to the skills and
motivation of the people available.

3. The principle of career progression: An organization does
best in the long run by helping its people to self-actualize.

4. The principle of team balance: Select people who will
complement and synchronize with one another.

5. The principle of phase-out: Keeping a misfit on the team
doesn’t benefit anyone.



Improving Team Effectiveness

• Software project managers need many leadership qualities
in order to enhance team effectiveness. Although these
qualities are intangible.

• The following are some crucial attributes of successful
software project managers that deserve much more
attention:

1. Hiring skills
– Few decisions are as important as hiring decisions. Placing the

right person in the right job seems obvious but is surprisingly
hard to achieve.

2. Customer-interface skill
– Avoiding adversarial relationships among stake-holders is a

prerequisite for success.



Improving Team Effectiveness

3. Decision-making skill
– The jillion books written about management have failed to provide a

clear definition of this attribute. We all know a good leader when we
run into one, and decision-making skill seems obvious despite its
intangible definition.

4. Team-building skill
– Teamwork requires that a manager establish trust, motivate progress,

exploit eccentric prima donnas, transition average people into top
performers, eliminate misfits, and consolidate diverse opinions into a
team direction.

5. Selling skill
– Successful project managers must sell all stakeholders (including

themselves) on decisions and priorities, sell candidates on job
positions, sell changes to the status quo in the face of resistance, and
sell achievements against objectives. In practice, selling requires
continuous negotiation, compromise, and empathy.



Improving Automation Through 
Software Environments

• The tools and environment used in the
software process generally have a linear effect
on the productivity of the process.

• Planning tools, requirements management
tools, visual modeling tools, compilers,
editors, debuggers, quality assurance analysis
tools, test tools, and user interfaces provide
crucial automation support for evolving the
software engineering artifacts.



Improving Automation Through 
Software Environments

• Above all, configuration management
environments provide the foundation for
executing and instrumenting the process.

• At first order, the isolated impact of tools and
automation generally allows improvements of
20% to 40% in effort.

• However, tools and environments must be
viewed as the primary delivery vehicle for process
automation and improvement, so their impact
can be much higher.



Improving Automation Through 
Software Environments

• An important emphasis of a modern approach is to define the
development and maintenance environment as a first-class artifact of the
process.

• A robust, integrated development environment must support the
automation of the development process.

• This environment should include requirements management, document
automation, host/target programming tools, automated regression
testing, continuous and integrated change management, and
feature/defect tracking.

• A common thread in successful software projects is that they hire good
people and provide them with good tools to accomplish their jobs.

• Automation of the design process provides payback in quality, the ability
to estimate costs and schedules, and overall productivity using a smaller
team.

• Integrated toolsets play an increasingly important role in
incremental/iterative development by allowing the designers to traverse
quickly among development artifacts and keep them up-to-date.



Improving Automation Through 
Software Environments

• The following are the some of the configuration management
environments which provide the foundation for executing and
implementing the process.

• Round-trip engineering is a term used to describe the key capability
of environments that support iterative development. As we have
moved into maintaining different information repositories for the
engineering artifacts, we need automation support to ensure
efficient and error-free transition of data from one artifact to
another.

• Forward engineering is the automation of one engineering artifact
from another, more abstract representation. For example,
compilers and linkers have provided automated transition of source
code into executable code.

• Reverse engineering is the generation or modification of a more
abstract representation from an existing artifact (for example,
creating a visual design model from a source code representation).



Improving Automation Through 
Software Environments

• One word of caution is necessary in describing
the economic improvements associated with
tools and environments.

• It is common for tool vendors to make relatively
accurate individual assessments of life-cycle
activities to support claims about the potential
economic impact of their tools.

• For example, it is easy to find statements such as
the following from companies in a particular tool
niche:



Improving Automation Through 
Software Environments

• Requirements analysis and evolution activities consume 40% of life-
cycle costs.

• Software design activities have an impact on more than 50% of the
resources.

• Coding and unit testing activities consume about 50% of software
development effort and schedule.

• Test activities can consume as much as 50% of a project’s resources.
• Configuration control and change management are critical activities

that can consume as much as 25% of resources on a large-scale
project.

• Documentation activities can consume more than 30% of project
engineering resources.

• Project management, business administration, and progress
assessment can consume as much as 30% of project budgets.



Achieving Required Quality

• Software best practices are derived from the
development process and technologies.

• Below table summarizes some dimensions of
quality improvement.



Table: General quality improvement with a modern process 



Achieving Required Quality
• Key practices that improve overall software

quality include the following:
– Focusing on driving requirements and critical use

cases early in the lifecycle

– Focusing on requirements completeness and
traceability late in the life cycle

– Focusing throughout the life cycle on a balance
between requirements evolution, design
evolution, and plan evolution

– Using metrics and indicators to measure the
progress and quality of an architecture as it
evolves from a high-level prototype into a fully
compliant product



Achieving Required Quality
– Providing integrated life-cycle environments that

support early and continuous configuration
control, change management, rigorous design
methods, document automation, and regression
test automation

– Using visual modeling and higher level languages
that support architectural control, abstraction,
reliable programming, reuse, and self-
documentation

– Early and continuous close look into performance
issues through demonstration-based evaluations



Achieving Required Quality

• Improved insight into run-time performance issues is even
more important as projects incorporate mixtures of
commercial components and custom-developed
components.

• Conventional development processes stressed early sizing
and timing estimates of computer program resource
utilization.

• The typical chronology of events in performance
assessment was as follows:
– Project inception
– Initial design review
– Mid-life-cycle design review
– Integration and test



Achieving Required Quality

• Project inception
– The proposed design was asserted to be low risk with

adequate performance margin.

• Initial design review
– Optimistic assessments of adequate design margin were

based mostly on paper analysis or rough simulation of the
critical threads. In most cases, the actual application
algorithms and database sizes were fairly well understood.
However, the infrastructure—including the operating
system overhead, the database management overhead,
and the interprocess and network communications
overhead—and all the secondary threads were typically
misunderstood.



Achieving Required Quality

• Mid-life-cycle design review
– The assessments started whittling away at the margin,

as early benchmarks and initial tests began exposing
the optimism inherent in earlier estimates.

• Integration and test
– Serious performance problems were uncovered,

necessitating fundamental changes in the
architecture. The underlying infrastructure was
usually the scapegoat, but the real culprit was
immature use of the infrastructure, immature
architectural solutions, or poorly under-stood early
design trade-offs.



Peer Inspections: A Pragmatic View

• Peer inspections are frequently overhyped as
the key aspect of a quality system.

• Peer reviews are valuable as secondary
mechanisms, but they are rarely significant
contributors to quality compared with the
following primary quality mechanisms and
indicators, which should be emphasized in the
management process:



Peer Inspections: A Pragmatic View

➢ Transitioning engineering information from one artifact set to
another, thereby assessing the consistency, feasibility,
understandability, and technology constraints inherent in the
engineering artifacts

➢ Major milestone demonstrations that force the artifacts to be
assessed against tangible criteria in the context of relevant use
cases

➢ Environment tools (compilers, debuggers, analyzers, automated test
suites)that ensure representation rigor, consistency, completeness,
and change control

➢ Life-cycle testing for detailed insight into critical trade-offs,
acceptance criteria, and requirements compliance

➢ Change management metrics for objective insight into multiple-
perspective change trends and convergence or divergence from
quality and progress goals



Peer Inspections: A Pragmatic View

• Inspections are also a good vehicle for holding
authors accountable for quality products.

• All authors of software and documentation
should have their products scrutinized as a
natural by-product of the process.

• Therefore, the coverage of inspections should
be across all authors rather than across all
components.



Peer Inspections: A Pragmatic View

• In all but trivial cases, architectural issues are exposed
only through more rigorous engineering activities such
as the following:
– Analysis, prototyping, or experimentation
– Constructing design models
– Committing the current state of the design model to an

executable implementation
– Demonstrating the current implementation strengths and

weaknesses in the context of critical subsets of the use
cases and scenarios

– Incorporating lessons learned back into the models, use
cases, implementations, and plans


	UNIT-II PART - A
	Introduction
	Introduction
	Introduction
	Important trends in improving software economics
	Introduction
	Introduction
	Introduction
	Reducing Software product size
	Reducing Software product size
	Reducing Software product size
	Languages
	Languages
	Object Oriented Methods And Visual Modeling
	Object Oriented Methods And Visual Modeling
	Reuse
	Reuse
	Reuse
	Commercial Components
	Commercial Components
	Improving Software Processes
	Improving Software Processes
	Improving Software Processes
	Improving Software Processes
	Improving Software Processes
	Improving Software Processes
	Improving Software Processes
	Improving Software Processes
	Improving Team Effectiveness
	Improving Team Effectiveness
	Improving Team Effectiveness
	Improving Team Effectiveness
	Improving Team Effectiveness
	Improving Automation Through Software Environments
	Improving Automation Through Software Environments
	Improving Automation Through Software Environments
	Improving Automation Through Software Environments
	Improving Automation Through Software Environments
	Improving Automation Through Software Environments
	Achieving Required Quality
	Slide 46 
	Achieving Required Quality
	Achieving Required Quality
	Achieving Required Quality
	Achieving Required Quality



