
UNIT-II
PART - B

The Old Way and the New: The Principles of
Conventional Software Engineering,
Principles of Modern Software
Management, Transitioning to an Iterative
Process.



Introduction

• Over the past two decades there has been a significant re-
engineering of the software development process.

• Many of the conventional management and technical
practices have been replaced by new approaches that
combine recurring themes of successful project experience
with advances in software engineering technology.

• This transition was motivated by the insatiable demand for
more software features produced more rapidly under more
competitive pressure to reduce cost.

• In the commercial software industry, the combination of
competitive pressures, profitability, diversity of customers,
and rapidly changing technology caused many
organizations to initiate new management approaches.



The Principles of Conventional 
Software Engineering

• There are many descriptions of engineering
software “the old way.”

• After years of software development experience,
the software industry has learned many lessons
and formulated many principles (nearly 201 by –
Davis’s). Of which Davis’s top 30 principles are:

1. Make quality #1

– Quality must be quantified and mechanisms put into
place to motivate its achievement.



The Principles of Conventional 
Software Engineering

2. High-quality software is possible
– In order to improve the quality of the product you need to

involving the customer, select the prototyping, simplifying
design, conducting inspections, and hiring the best people.

3. Give products to customers early
– No matter how hard you try to learn user’s needs during the

requirements phase, the most effective way to determine real
needs is to give users a product and let them play with it.

4. Determine the problem before writing the requirements
– Whenever a problem is raised most engineers provide a

solution. Before you try to solve a problem, be sure to explore
all the alternatives and don’t be blinded by the
understandable solution.



The Principles of Conventional 
Software Engineering

5. Evaluate design alternatives
– After the requirements are agreed upon, you must examine a variety

of architectures and algorithms and choose the one which is not
used.

6. Use an appropriate process model
– For every project, there are so many prototypes (process models). So

select the best one that is exactly suitable to our project.

7. Use different languages for different phases
– Our industry’s main aim is to provide simple solutions to complex

problems. In order to accomplish this goal choose different
languages for different modules/phases if required.

8. Minimize intellectual distance
– You have to design the structure of a software is as close as possible

to the real-world structure.



The Principles of Conventional 
Software Engineering

9. Put techniques before tools
– An un disciplined software engineer with a tool becomes a

dangerous, undisciplined software engineer.

10. Get it right before you make it faster
– It is very easy to make a working program run faster than it is to

make a fast program work. Don’t worry about optimization during
initial coding.

11. Inspect the code
– Examine the detailed design and code is a much better way to find

the errors than testing.

12. Good management is more important than good technology
– The best technology will not compensate for poor management, and

a good manager can produce great results even with minimum
resources. Good management motivates people to do their best,
but there are no universal “right” styles of management.



The Principles of Conventional 
Software Engineering

13. People are the key to success
– Highly skilled people with appropriate experience, talent, and training are

key. The right people with insufficient tools, languages, and process will
succeed. The wrong people with appropriate tools, languages, and process
will probably fail.

14. Follow with care
– Everybody is doing something but does not make it right for you. It may be

right, but you must carefully assess its applicability to your environment.
Object orientation, measurement, reuse, process improvement, CASE,
prototyping-all these might increase quality, decrease cost, and increase
user satisfaction. The potential of such techniques is often oversold, and
benefits are by no means guaranteed or universal.

15. Take responsibility
– When a bridge collapses we ask “What did the engineer do wrong?”

Similarly if the software fails, we ask the same. So the fact is in every
engineering discipline, the best methods can be used to produce poor
results and the most out of date methods to produce stylish design.



The Principles of Conventional 
Software Engineering

16. Understand the customer’s priorities
– It is possible the customer would tolerate 90% of the

functionality delivered late if they could have 10% of it on
time.

17. The more they see, the more they need
– The more functionality (or performance) you provide a user,

the more functionality (or performance) the user wants.

18. Plan to throw one away
– One of the most important critical success factors is whether

or not a product is entirely new. Such brand-new applications,
architectures, interfaces, or algorithms rarely work the first
time.

19. Design for change
– The architectures, components, and specification techniques

you use must accommodate change.



The Principles of Conventional 
Software Engineering

20. Design without documentation is not design
– I have often heard software engineers say, “I have finished the

design. All that is left is the documentation.”

21. Use tools, but be realistic
– Software tools make their users more efficient.

22. Avoid tricks
– Many programmers love to create programs with tricks-

constructs that perform a function correctly, but in an obscure
way. Show the world how smart you are by avoiding tricky
code.

23. Encapsulate
– Information-hiding is a simple, proven concept that results in

software that is easier to test and much easier to maintain.



The Principles of Conventional 
Software Engineering

24.Use coupling and cohesion
– Coupling and cohesion are the best ways to measure

software’s inherent maintainability and adaptability.

25.Use the McCabe complexity measure
– Although there are many metrics available to report

the inherent complexity of software, none is as
intuitive and easy to use as Tom McCabe’s.

26.Don’t test your own software
– Software developers should never be the primary

testers of their own software.



The Principles of Conventional 
Software Engineering

27. Analyze causes for errors
– It is far more cost-effective to reduce the effect of an error by

preventing it than it is to find and fix it. One way to do this is to
analyze the causes of errors as they are detected.

28. Realize that software’s entropy increases
– Any software system that undergoes continuous change will

grow in complexity and become more and more disorganized.

29. People and time are not interchangeable
– Measuring a project solely by person-months makes little

sense.

30. Expert excellence
– Your employees will do much better if you have high

expectations for them.



The Principles of Modern Software 
Management

• Although the current software management principles
described in previous Section evolved from and
improved on conventional techniques, they still do not
emphasize the modern principles.

• Building on Davis’s format, here are top 10 principles of
modern software management.

1. Base the process on an architecture-first approach
– This requires that a demonstrable balance be achieved

among the driving requirements, design decisions, and the
life-cycle plans before the resources are committed for
full-scale development.



The Principles of Modern Software 
Management

2. Establish an iterative life-cycle process that
confronts risk early.
– With today’s sophisticated software systems, it is not

possible to define the entire problem, design the
entire solution, build the software, then test the end
product in sequence. Instead, an iterative process that
refines the problem understanding, an effective
solution, and an effective plan over several iterations
encourages a balanced treatment of all stakeholder
objectives.

– Major risks must be addressed early to increase
predictability and avoid expensive downstream scrap
and rework.



The Principles of Modern Software 
Management

3. Transition design methods to emphasize
component-based development.
– Moving from a line-of-code mentality to a component-

based mentality is necessary to reduce the amount of
human-generated source code and custom
development.

– A component is a cohesive set of preexisting lines of
code, either in source or executable format, with a
defined interface and behavior.

4. Establish a change management environment.
– The dynamics of iterative development, including

concurrent workflows by different teams working on
shared artifacts, necessitates objectively controlled
baselines.



The Principles of Modern Software 
Management

5. Enhance change freedom through tools that support round-trip
engineering.
– Round-trip engineering is the environment support necessary to

automate and synchronize engineering information in different
formats (such as requirements specifications, design models, source
code, executable code, test cases).

– Change freedom is a necessity in an iterative process, and establishing
an integrated environment is crucial.

6. Capture design artifacts in rigorous, model-based notation.
– A model-based approach (such as UML) supports the evolution of

semantically rich graphical and textual design notations.
– Visual modeling with rigorous notations and a formal machine-

processable language provides more objective measures than the
traditional approach of human review and inspection of ad hoc design
representations in paper documents.





The Principles of Modern Software 
Management

7. Instrument the process for objective quality control and progress
assessment.
– Life-cycle assessment of the progress and the quality of all

intermediate products must be integrated into the process.
– The best assessment mechanisms are well-defined measures derived

directly from the evolving engineering artifacts and integrated into
all activities and teams.

8. Use a demonstration-based approach to assess intermediate
artifacts.
– Transitioning the current state-of-the-product artifacts (whether the

artifact is an early prototype, a baseline architecture, or a beta
capability) into an executable demonstration of relevant scenarios
stimulates earlier convergence on integration, a more tangible
understanding of design trade-offs, arid earlier elimination of
architectural defects.



The Principles of Modern Software 
Management

9. Plan intermediate releases in groups of usage scenarios with
evolving levels of detail.
– It is essential that the software management process drive toward

early and continuous demonstrations within the operational context
of the system, namely its use cases.

– The evolution of project increments and generations must be
commensurate with the current level of understanding of the
requirements and architecture.

– Cohesive usage scenarios are then the primary mechanism for
organizing requirements, defining iteration content, assessing
implementations, and organizing acceptance testing.

10. Establish a configurable process that is economically scalable.
– No single process is suitable for all software developments.
– A pragmatic process framework must be configurable to a broad

spectrum of applications. The process must ensure that there is
economy of scale and return on investment by exploiting a common
process spirit, extensive process automation, and common
architecture patterns and components.





Transitioning to an Iterative Process

• Modern software development processes have moved
away from the conventional waterfall model, in which each
stage of the development process is dependent on
completion of the previous stage.

• Development then proceeds as a series of iterations,
building on the core architecture until the desired levels of
functionality, performance, and robustness are achieved.

• An iterative process emphasizes the whole system rather
than the individual parts.

• Risk is reduced early in the life cycle through continuous
integration and refinement of requirements, architecture,
and plans. The downstream surprises that have plagued
conventional software projects are avoided.



Transitioning to an Iterative Process

• The economic benefits inherent in transitioning from the
conventional waterfall model to an iterative development
process are significant but difficult to quantify.

• As one benchmark of the expected economic impact of
process improvement, consider the process exponent
parameters of the COCOMO II model.

• This exponent can range from 1.01 (virtually no diseconomy
of scale) to 1.26 (significant diseconomy of scale).

• The parameters that govern the value of the process
exponent are application precedentedness, process
flexibility, architecture risk resolution, team cohesion, and
software process maturity.



Transitioning to an Iterative Process

• The following attributes map the process exponent
parameters of COCOMO II to top 10 principles of a modern
process.

1. Application precedentedness
– Domain experience is a critical factor in understanding how to

plan and execute a software development project.
– For unprecedented systems, one of the key goals is to confront

risks and establish early precedents, even if they are incomplete
or experimental.

– This is one of the primary reasons that the software industry has
moved to an iterative life-cycle process.

– Early iterations in the life cycle establish precedents from which
the product, the process, and the plans can be elaborated in
evolving levels of detail.



Transitioning to an Iterative Process

2. Process flexibility
– Development of modern software is characterized by such a

broad solution space and so many interrelated concerns that
there is a paramount need for continuous incorporation of
changes.

– These changes may be inherent in the problem understanding,
the solution space, or the plans.

– Project artifacts must be supported by an efficient change
management environment commensurate with project needs.

– Both a rigid process and a chaotically changing process are
destined for failure except with the most trivial projects.

– A configurable process that allows a common framework to be
adapted across a range of projects is necessary to achieve a
software return on investment.



Transitioning to an Iterative Process

3. Architecture risk resolution
– Architecture-first development is a crucial theme

underlying a successful iterative development process.
– A project team develops and stabilizes an architecture

before developing all the components that make up the
entire suite of applications components.

– An architecture-first and component-based development
approach forces the infrastructure, common mechanisms,
and control mechanisms to be elaborated early in the life
cycle and drives all component make/buy decisions into
the architecture process.

– This approach initiates integration activity early in the life
cycle as the verification activity of the design process and
products.



Transitioning to an Iterative Process

4. Team cohesion
– Successful teams are cohesive, and cohesive teams are successful. It is not

sure which is the cause and which is the effect, but successful teams and
cohesive teams share common objectives and priorities.

– Cohesive teams avoid sources of project turbulence and entropy that may
result from difficulties in synchronizing project stakeholder expectations.

– While there are many reasons for such turbulence, one of the primary reasons
is miscommunication, particularly in exchanging information solely through
paper documents that present engineering information subjectively.

– Advances in technology (such as programming languages, UML, and visual
modeling) have enabled more rigorous and understandable notations for
communicating software engineering information, particularly in the
requirements and design artifacts that previously were ad hoc and based
completely on paper exchange.

– These model-based formats have also enabled the round-trip engineering
support needed to establish change freedom sufficient for evolving design
representations.



Transitioning to an Iterative Process

5. Software process maturity
– The Software Engineering Institute's Capability

Maturity Model (CMM) is a well-accepted benchmark
for software process assessment.

– Software process maturity is crucial for avoiding
software development risks and exploiting the
organization's software assets and lessons learned.

– One of the key themes is that truly mature processes
are enabled through an integrated environment that
provides the appropriate level of automation to
instrument the process for objective quality control.


	UNIT-II PART - B
	Introduction
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Conventional Software Engineering
	The Principles of Modern Software Management
	The Principles of Modern Software Management
	The Principles of Modern Software Management
	The Principles of Modern Software Management
	Slide 16 
	The Principles of Modern Software Management
	The Principles of Modern Software Management
	Slide 19 
	Transitioning to an Iterative Process
	Transitioning to an Iterative Process
	Transitioning to an Iterative Process
	Transitioning to an Iterative Process
	Transitioning to an Iterative Process
	Transitioning to an Iterative Process
	Transitioning to an Iterative Process



