
Problem 12.6-2 Determine the polar moment of inertia (IP)C with 
respect to the centroid C for a circular sector (see Case 13, Appendix D). 

Solution 12.6-2 Polar moment of inertia

SECTION 12.6 Polar Moments of Inertia 741

Polar Moments of Inertia

Problem 12.6-1 Determine the polar moment of inertia IP of an isosceles 
triangle of base b and altitude h with respect to its apex (see Case 5, Appendix D)

Solution 12.6-1 Polar moment of inertia

POINT C (CENTROID) FROM CASE 5:

(IP)c �
bh

144
 (4h2 � 3b2)

POINT A (APEX):

IP �
bh

48
 (b2 � 12h2)

�
bh

144
(4h2 � 3b2) �

bh

2
 ¢2h

3
≤

2

IP � (IP)c � A ¢2h

3
≤

2

h

C

b

A
y

2/3 h

POINT O (ORIGIN) FROM CASE 13:

(� � radians)(IP)o �
�r 4

2

A � �r 2

POINT C (CENTROID):

�
r 4

18 �
 (9 �2 � 8 sin2�)

(IP)C � (IP)O � Ay2 �
� r4

2
� �r2 ¢2r sin �

3�
≤

2

y �
2r sin �

3�

y

C

r

O
x

� �y

Problem 12.6-3 Determine the polar moment of inertia IP for a W 8 � 21
wide-flange section with respect to one of its outermost corners.

Solution 12.6-3 Polar moment of inertia
W 8 � 21 I1 � 75.3 in.4 I2 � 9.77 in.4

A � 6.16 in.2

Depth d � 8.28 in.

Width b � 5.27 in.

Ix � I1 � A(d�2)2 � 75.3 � 6.16(4.14)2 � 180.9 in.4

Iy � I2 � A(b�2)2 � 9.77 � 6.16(2.635)2 � 52.5 in.4

IP � Ix � Iy � 233 in.4x

C
1 1

2

2

y

O
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Problem 12.6-4 Obtain a formula for the polar moment of inertia IP with
respect to the midpoint of the hypotenuse for a right triangle of base b and
height h (see Case 6, Appendix D). 

Solution 12.6-4 Polar moment of inertia  

POINT C FROM CASE 6:

(IP)c �
bh

36
 (h2 � b2)

POINT P:

�
bh

24
 (b2 � h2)

IP �
bh

36
 (h2 � b2) �

bh

2
 ¢b

2 � h2

36
≤

�
b2

36
�

h2

36
�

b2 � h2

36

d2 � ¢b
2

�
b

3
≤

2

� ¢h
2

�
h

3
≤

2

A �
bh

2

IP � (IP)c � Ad2

h

h/2 C

b

b/3

b/2

h/3

P

d = CP

Problem 12.6-5 Determine the polar moment of inertia (IP)C with 
respect to the centroid C for a quarter-circular spandrel (see Case 12,
Appendix D). 

Solution 12.6-5 Polar moment of inertia

POINT O FROM CASE 12:

A � ¢1 �
�

4
≤r 2

y �
(10 � 3�)r

3(4 � �)

Ix � ¢1 �
5�

16
≤r 4

POINT C (CENTROID):

COLLECT TERMS AND SIMPLIFY:

(by symmetry)

(IP)C � 2 IxC
�

r4

72
 ¢176 � 84� � 9�2

4 � �
≤

IyC
� IxC

IxC
�

r4

144
 ¢176 � 84 � � 9 �2

4 � �
≤

� ¢1 �
�

4
≤(r 2) B (10 � 3�)r

3(4 � �)
R 2

Ixc � Ix � Ay2 � ¢1 �
5�

16
≤r4

x

y yc

y

r

O

C
xc

x
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Products of Inertia

Problem 12.7-1 Using integration, determine the product of inertia Ixy for the 
parabolic semisegment shown in Fig. 12-5 (see also Case 17 in Appendix D). 

Solution 12.7-1 Product of inertia
Product of inertia of element dA with respect to axes
through its own centroid equals zero.

dIxy � product of inertia of element dA with respect
to xy axes

d1 � x d2 � y �2

Parallel-axis theorem applied to element dA:

dIxy � 0 � (dA)(d1d2) � (y dx)(x)(y �2)

Ixy � �dIxy �
h2

2
 �

b

0

x ¢1 �
x 2

b2≤
2

 dx �
b2h2

12

�
h2x

2
 ¢1 �

x 2

b2≤
2

 dx

dA � y dx � h ¢1 �
x 2

b2≤ dx
y

h

O x
b dx

x

y/2

dA

y � h(1 �      )x2

b2

Problem 12.7-2 Using integration, determine the product of inertia Ixy

for the quarter-circular spandrel shown in Case 12, Appendix D. 

Solution 12.7-2 Product of inertia

EQUATION OF CIRCLE:

x 2 � (y � r)2 � r 2

or r2 � x2 � (y � r)2

ELEMENT dA:

d1 � distance to its centroid in x direction
� (r � x)�2

d2 � distance to its centroid in y direction � y
dA � area of element � (r � x) dy
Product of inertia of element dA with respect to axes
through its own centroid equals zero.
Parallel-axis theorem applied to element dA:

Ixy � 1�2�
r

0

y(y � r)2 dy �
r 4

24

�
1

2
 (r 2 � x 2) y dy �

1

2
 (y � r)2y dy

dIxy � 0 � (dA)(d1d2) � (r � x)(dy)¢r � x

2
≤(y)

y
r

x
dA

dy

y

x
(r � x)/2O
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TRIANGLE (CASE 7):

Ixy �
b2h2

24
�

b2(2r)2

24
�

b2r 2

6

SEMICIRCLE (CASE 10):

d1 � r

COMPOSITE AREA (Ixy � 0)

� b � 2rIxy �
b2r 2

6
�

2r 4

3
� 0

Ixy � 0 � ¢�r 2

2
≤(r)¢� 4r

3�
≤� �

2r 4

3

d2 � �
4r

3�
A �

�r 2

2
Ixcyc

� 0

Ixy � Ixcyc
� Ad1d2

yyc

r

x

b
O

C
xc

C � centroid of
        semicircle

Problem 12.7-4 Obtain a formula for the product of inertia Ixy of the 
symmetrical L-shaped area shown in the figure. 

Solution 12.7-4 Product of inertia

y

t

b

b

t

xO

AREA 1:

(Ixy)1 �
t2b2

4

AREA 2:

COMPOSITE AREA:

Ixy � (Ixy)1 � (Ixy)2
�

t2

4
 (2b2 � t2)

�
t 2

4
(b2 � t 2)

� 0 � (b � t)(t)(t�2)¢b � t

2
≤

(Ixy)2 � Ixc yc
� A2d1d2

y

t

b

b

t
xO

A1
A2

b � t

Problem 12.7-3 Find the relationship between the radius r and the 
distance b for the composite area shown in the figure in order that 
the product of inertia Ixy will be zero. 

Solution 12.7-3 Product of inertia

y

r

x

b
O
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Problem 12.7-5 Calculate the product of inertia I12 with respect to the cen-
troidal axes 1-1 and 2-2 for an L 6 � 6 � 1 in. angle section (see Table E-4,
Appendix E). (Disregard the cross-sectional areas of the fillet and rounded
corners.) 

Solution 12.7-5 Product of inertia
y

xO

A1

A2

1 in.

1 in.
5 in.

6 in.

2

2

1 1

y

x

6 in. C

Problem 12.7-6 Calculate the product of inertia Ixy for the composite area
shown in Prob. 12.3-6. 

Solution 12.7-6 Product of inertia

All dimensions in millimeters
A1 � 360 � 30 mm A2 � 90 � 30 mm
A3 � 180 � 30 mm A4 � 90 � 30 mm
d1 � 60 mm d2 � 75 mm

AREA A1: (Ixy)1 � 0 (By symmetry)

AREA A2: (Ixy)2 � 0 � A2 d1d2 � (90 � 30)(60)(75)
� 12.15 � 106 mm4

AREA A3: (Ixy)3 � 0 (By symmetry)

AREA A4: (Ixy)4 � (Ixy)2 � 12.15 � 106 mm4

Ixy � (Ixy)1 � (Ixy)2 � (Ixy)3 � (Ixy)4

� (2)(12.15 � 106 mm4)

� 24.3 � 106 mm4

y

xO

A1

d1

A3

A4

A2
d2

All dimensions in inches.

A1 � (6)(1) � 6.0 in.2

A2 � (5)(1) � 5.0 in.2

A � A1 � A2 � 11.0 in.2

With respect to the x axis:

x � y � 1.8636 in.

y �
Q1 � Q2

A
�

20.5 in.3

11.0 in.2
� 1.8636 in.

Q2 � (5.0 in.2)¢1.0 in.

2
≤� 2.5 in.3

Q1 � (6.0 in.2)¢6 in.

2
≤� 18.0 in.3

Coordinates of centroid of area A1 with respect to 1–2 axes:

Product of inertia of area A1 with respect to 1-2 axes:

� (6.0 in.2)(�1.3636 in.)(1.1364 in.) � �9.2976 in.4

Coordinates of centroid of area A2 with respect to 1–2 axes:

Product of inertia of area A2 with respect to 1-2 axes:

� (5.0 in.2)(1.6364 in.)(�1.3636 in.)

� �11.1573 in.4

ANGLE SECTION: I12 � I¿12 � I–12 � �20.5 in.4

I–12 � 0 � A2d1d 2

d2 � � (y � 0.5) � �1.3636 in.

d1 � 3.5 � x � 1.6364 in.

I¿12 � 0 � A1d1d2

d2 � 3.0 � y � 1.1364 in.

d1 � � (x � 0.5) � � 1.3636 in.
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Rotation of Axes

The problems for Section 12.8 are to be solved by using the transformation
equations for moments and products of inertia. 

Problem 12.8-1 Determine the moments of inertia Ix1
and Iy1

and the 
product of inertia Ix1y1

for a square with sides b, as shown in the figure. (Note
that the x

1
y

1
axes are centroidal axes rotated through an angle � with respect

to the xy axes.)

Solution 12.8-1 Rotation of axes

FOR A SQUARE:

Ixy � 0

EQ. (12-25):

 �
Ix � Iy

2
� 0 � 0 �

b4

12

 Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Ix � Iy � �
b4

12

EQ. (12-29):

�

EQ. (12-27):

� 0

Since � may be any angle, we see that all moments
of inertia are the same and the product of inertia is
always zero (for axes through the centroid C).

Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
�

b4

12
Ix1

� Iy1
� Ix � Iy

y

x

x1

y1

b

b

C
�

y

x

x1

y1

b

b

C
�

Problem 12.7-7 Determine the product of inertia Ixcyc
with respect to centroidal axes xc

and yc parallel to the x and y axes, respectively, for the L-shaped area shown in Prob. 12.3-7. 

Solution 12.7-7 Product of inertia

All dimensions in inches.
A1 � (6.0)(0.5) � 3.0 in.2

A2 � (3.5)(0.5) � 1.75 in.2

A � A1 � A2 � 4.75 in.2

With respect to the x axis:

� 9.0 in.3

y �
Q1 � Q2

A
�

9.4375 in.3

4.75 in.2
� 1.9868 in.

Q2 � A2 y2 � (1.75 in.2) (0.25 in.) � 0.4375 in.3
Q1 � A1 y1 � (3.0 in.2) (3.0 in.)

With respect to the y axis:

Product of inertia of area A1 with respect to xy axes:

(Ixy)1 � (Ixy)centroid � A1 d1 d2
� 0 � (3.0 in.2)(0.25 in.)(3.0 in.) � 2.25 in.4

Product of inertia of area A2 with respect to xy axes:

(Ixy)2 � (Ixy)centroid � A2 d1 d2
� 0 � (1.75 in.2)(2.25 in.)(0.25 in.) � 0.98438 in.4

ANGLE SECTION

Ixy � (Ixy)1 � (Ixy)2 � 3.2344 in.4

CENTROIDAL AXES

� 3.2344 in.4 � (4.75 in.2)(0.98684 in.)(1.9868 in.)
� �6.079 in.4

Ixcyc
� Ixy � Ax  y

x �
Q1 � Q2

A
�

4.6875 in.3

4.75 in.2
� 0.98684 in.

Q2 � A2x 2 � (1.75 in.2) (2.25 in.) � 3.9375 in.3
Q1 � A1x 1 � (3.0 in.2) (0.25 in.) � 0.75 in.3

y

xO

A1

A2

3.5

4.0

xc

x

6.0
C

y

yc t = 0.5 in.
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Problem 12.8-2 Determine the moments and product of inertia with 
respect to the x1y1 axes for the rectangle shown in the figure. (Note that 
the x1 axis is a diagonal of the rectangle.) 

Solution 12.8-2 Rotation of axes (rectangle)

y

x

x1

y1

h

b

C

APPENDIX D, CASE 1:

Ixy � 0Iy �
hb3

12
Ix �

bh3

12

ANGLE OF ROTATION:

cos 2� � cos2 � � sin2 �

sin 2� � 2 sin � cos �

SUBSTITUTE INTO EQS. (12-25), (12-29), AND (12-27)
AND SIMPLIFY:

Ix1y1
�

b2h2(h2 � b2)

12(b2 � h2)

Iy1
�

bh(b4 � h4)

12(b2 � h2)
Ix1

�
b3h3

6(b2 � h2)

�
2 bh

b2 � h2

�
b2 � h2

b2 � h2

sin u�
h

�b2 � h2
cos u�

b

�b2 � h2

y

x

x1

y1

h

b

C

�

Problem 12.8-3 Calculate the moment of inertia Id for a W 12 � 50
wide-flange section with respect to a diagonal passing through the centroid
and two outside corners of the flanges. (Use the dimensions and properties
given in Table E-1.) 

Solution 12.8-3 Rotation of axes

W 12 � 50 Ix � 394 in.4

Iy � 56.3 in.4 Ixy � 0

Depth d � 12.19 in.
Width b � 8.080 in.

� � 56.46º 2� � 112.92º

EQ. (12-25):

� 225 in.4 � 66 in.4 � 159 in.4

�
394 � 56.3

2
�

394 � 56.3

2
 cos (112.92�) � 0

Id �
Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Tan u�
d

b
�

12.19

8.080
� 1.509

�

b

d C x

y
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Problem 12.8-4 Calculate the moments of inertia Ix1
and Iy1

and the product
of inertia Ix1y1

with respect to the x1y1 axes for the L-shaped area shown in the
figure if a � 150 mm, b � 100 mm, t � 15 mm, and � � 30°. 

Solution 12.8-4 Rotation of axes

All dimensions in millimeters.

a � 150 mm b � 100 mm
t � 15 mm � � 30º

� 16.971 � 106 mm4

� 5.152 � 106 mm4

�
1

3
 (135)(15)3 �

1

3
 (15)(100)3

Iy �
1

3
 (a � t)  t 3 �

1

3
 tb3

 �
1

3
 (15)(150)3 �

1

3
 (85)(15)3

 Ix �
1

3
 ta3 �

1

3
 (b � t)  t 3

A = (b�t)(t)

� 1.815 � 106 mm4

SUBSTITUTE into Eq. (12-25) with � � 30º:

� 12.44 � 106 mm4

SUBSTITUTE into Eq. (12-25) with � � 120º:

SUBSTITUTE into Eq. (12-27) with � � 30º:

� 6.03 � 106 mm4

Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
� 9.68 � 106 mm4

Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Ixy �
1

4
 (15)2(150)2 � (85)(15)(57.5)(7.5)

d1 � t �
b � t

2
�d2 �

t

2

Ixy �
1

4
 t 2a2 � Ad1d2

y

a

b x

y1

x1

� � 30°

O

y

t

t

a

b
x

y1

x1

�

O

Problem 12.8-5 Calculate the moments of inertia Ix1
and Iy1

and the product
of inertia Ix1y1

with respect to the x1y1 axes for the Z-section shown in the 
figure if b � 3 in., h � 4 in., t � 0.5 in., and � � 60°. 

h
2
—

h
2
—

y

x

b

b

t t

t

y1

x1

C
�

Probs. 12.8-4 and 12.9-4

Probs. 12.8-5, 12.8-6, 12.9-5 and 12.9-6
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Solution 12.8-5 Rotation of axes

All dimensions in inches.

b � 3.0 in. h � 4.0 in. t � 0.5 in. � � 60º

MOMENT OF INERTIA Ix

Area A1:

� 3.8542 in.4

Area A2:

Area A3:

MOMENT OF INERTIA Iy

Area A1:

� 3.4635 in.4

I¿y �
1

12
 (t)(b � t)3 � (b � t)(t)¢b

2
≤

2

Ix � I¿x � I–x � I‡x � 10.3751 in.4
I‡x � I¿x � 3.8542 in.4

I–x �
1

12
 (t)(h3) � 2.6667 in.4

I¿x �
1

12
 (b � t)(t 3) � (b � t)(t)¢h

2
�

t

2
≤

2

Area A2:

Area A3:

PRODUCT OF INERTIA Ixy

Area A1: 

� �3.2813 in.4

Area A2: Area A3: 

SUBSTITUTE into Eq. (12-25) with � � 60º:

� 13.50 in.4

SUBSTITUTE into Eq. (12-25) with � � 150º:

SUBSTITUTE into Eq. (12-27) with � � 60º:

� 4.76 in.4Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
� 3.84 in.4

Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Ixy � I¿xy � I–xy � I‡xy � �6.5625 in.4
I‡xy � I¿xyI–xy � 0

� �
1

4
 (bt)(b � t)(h � t)

I¿xy � 0 � (b � t)(t)¢�b

2
≤ ¢h

2
�

t

2
≤

Iy � I¿y � I–y � I‡y � 6.9688 in.4

I‡y � I¿y � 3.4635 in.4

I–y �
1

12
 (h)(t 3) � 0.0417 in.4

h
2
—

h
2
—

y

x

b

b
y1

x1

C
�

A2
A3

A1

t = thickness

Problem 12.8-6 Solve the preceding problem if b � 80 mm, h � 120 mm,
t � 12 mm, and � � 30°. 

Solution 12.8-6 Rotation of axes

All dimensions in millimeters.

b � 80 mm h � 120 mm
t � 12 mm � � 30º

MOMENT OF INERTIA Ix

Area A1: 

� 2.3892 � 106 mm4

Area A2: 

Area A3: 

Ix � I¿x � I–x � I‡x � 6.5065 � 106 mm4

I‡x � I¿x � 2.3892 � 106 mm4

I–x �
1

12
 (t)(h3) � 1.7280 � 106 mm4

I¿x �
1

12
 (b � t)(t 3) � (b � t)(t)¢h

2
�

t

2
≤

2

h
2
—

h
2
—

y

x

b

b

y1

x1

C
�

A2
A3

A1

t � thickness

(Continued)
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Principal Axes, Principal Points, and Principal Moments of Inertia

Problem 12.9-1 An ellipse with major axis of length 2a and minor axis 
of length 2b is shown in the figure. 

(a) Determine the distance c from the centroid C of the ellipse to the 
principal points P on the minor axis (y axis). 

(b) For what ratio a/b do the principal points lie on the circumference 
of the ellipse? 

(c) For what ratios do they lie inside the ellipse? 

Solution 12.9-1 Principal points of an ellipse

MOMENT OF INERTIA Iy

Area A1: 

� 1.6200 � 106 mm4

Area A2: 

Area A3: 

PRODUCT OF INERTIA Ixy

Area A1: 

� 1.7626 � 106 mm4

Area A2: Area A3: 

Ixy � I¿xy � I–xy � I‡xy � �3.5251 � 106 mm4

I‡xy � I¿xyI–xy � 0

� �
1

4
 (bt)(b � t)(h � t) �

I¿xy � 0 � (b � t)(t)  ¢�
b

2
≤ ¢h

2
�

t

2
≤

Iy � I¿y � I–y � I‡y � 3.2573 � 106 mm4

I‡y � I¿y � 1.6200 � 106 mm4

I–y �
1

12
 (h)(t 3) � 0.01728 � 106 mm4

I¿y �
1

12
 (t)(b � t)3 � (b � t)(t)¢b

2
≤

2

SUBSTITUTE into Eq. (12-25) with � � 30º:

� 8.75 � 106 mm4

SUBSTITUTE into Eq. (12-25) with � � 120º:

SUBSTITUTE into Eq. (12-27) with � � 30º:

� �0.356 � 106 mm4

Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
� 1.02 � 106 mm4

Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

y

c

c b

a a

b

x

P

P

C

(a) LOCATION OF PRINCIPAL POINTS

At a principal point, all moments of inertia are equal.

At point P1: Eq. (1)Ixp
� Iy

From Case 16: 

A � �ab

Parallal-axis theorem:

Substitute into Eq. (1):

Solve for c: c �
1

2
�a2 � b2

�ab3

4
� �abc2 �

�ba3

4

Ixp
� Ix � Ac2 �

�ab3

4
� �abc2

Ix �
�ab3

4

Iy �
�ba3

4

y

c

c b

a a

b

x

P1

P2

C

xp
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Problem 12.9-2 Demonstrate that the two points P1 and P2, 
located as shown in the figure, are the principal points of the 
isosceles right triangle. 

Solution 12.9-2 Principal points of an isosceles right triangle

(b) PRINCIPAL POINTS ON THE CIRCUMFERENCE

� c � b and 

Solve for ratio :
a

b
� �5

a

b

b �
1

2
�a2 � b2

(c) PRINCIPAL POINTS INSIDE THE ELLIPSE

� 0 � c � b For c � 0: a � b and 

For c � b:

� 1 �
a

b
6 �5

a

b
� �5

a

b
� 1

y

xb—
6

b—
6

b
—
2

b
—
2

b
—
2

b
—
6

P2

C
P1

CONSIDER POINT P1:

because y1 is an axis of symmetry.

because areas 1 and 2 are symmetrical about
the y2 axis and areas 3 and 4 are symmetrical 
about the x2 axis.

Two different sets of principal axes exist at point P1.
� P1 is a principal point

Ix2 y2
� 0

Ix1 y1
� 0

CONSIDER POINT P2:

because y3 is an axis of symmetry.

(see above).

Parallel-axis theorem:

Parallel-axis theorem:

Two different sets of principal axes (x3y3 and x4y4)
exist at point P2.
� P2 is a principal point

Ix4y4
� �

b4

288
�

b2

4
 ¢� b

6�2
≤

2

� 0

d1 � d2 � �
b

6�2
Ix4y4

� Ixcyc
� Ad1d2

Ixcyc
� � ¢b

2

4
≤ ¢ b

6�2
≤

2

� �
b4

288

A �
b2

4
      d � d1 � d2 �

b

6�2
Ix2y2

� Ixcyc
� Ad1d2

Ix2 y2
� 0

Ix3 y3
� 0

y1

x1

P1

x2
y2

1 4

2 3

y3

xC

P2

x2y2

x4
yC

y4

C

x3

d
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Problem 12.9-3 Determine the angles �p1
and �p2

defining the orientations
of the principal axes through the origin O for the right triangle shown in the
figure if b � 6 in. and h � 8 in. Also, calculate the corresponding principal
moments of inertia I1 and I2. 

Solution 12.9-3 Principal axes

y

x

h

b
O

x1

y1

�

RIGHT TRIANGLE

b � 6.0 in. h � 8.0 in.

CASE 7:

Ixy �
b2h2

24
� 96 in.4

Iy �
hb3

12
� 144 in.4

Ix �
bh3

12
� 256 in.4

EQ. (12-30): tan 

2�p ��59.744º and 120.256º

�p ��29.872º and 60.128º

SUBSTITUTE into Eq. (12-25) with � � �29.872º:

SUBSTITUTE into Eq. (12-25) with � � 60.128º:

THEREFORE, I1 � 311.1 in.4

I2 � 88.9 in.4

NOTE: The principal moments of inertia can be
verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 60.13�

up1
� � 29.87�

Ix1
� 88.9 in.4

Ix1
� 311.1 in.4

2up � �
2Ixy

Ix � Iy

� �1.71429

y

x

h

b
O

x1

y1

�

Problem 12.9-4 Determine the angles �p1
and �p2

defining the orientations
of the principal axes through the origin O and the corresponding principal
moments of inertia I1 and I2 for the L-shaped area described in Prob. 12.8-4
(a � 150 mm, b � 100 mm, and t � 15 mm). 

Solution 12.9-4 Principal axes

ANGLE SECTION

a � 150 mm b � 100 mm t � 15 mm

FROM PROB. 12.8-4:

Ix � 16.971 � 106 mm4

Iy � 5.152 � 106 mm4 Ixy � 1.815 � 106 mm4

EQ. (12-30):

2�p � �17.07º and 162.93º
�p � �8.54º and 81.46º

tan 2up � �
2 Ixy

Ix � Iy

� � 0.3071

y

a

b x

y1

x1

�

O

t � thickness

}
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Problem 12.9-5 Determine the angles �p1
and �p2

defining the orientations of 
the principal axes through the centroid C and the corresponding principal centroidal
moments of inertia I1 and I2 for the Z-section described in Prob. 12.8-5 (b � 3 in., 
h � 4 in., and t � 0.5 in.). 

Solution 12.9-5 Principal axes

SUBSTITUTE into Eq. (12-25) with � � �8.54º:

SUBSTITUTE into Eq. (12-25) with � � 81.46º:

Ix1
� 4.88 � 106 mm4

Ix1
� 17.24 � 106 mm4

THEREFORE,

I1 � 17.24 � 106 mm4

I2 � 4.88 � 106 mm4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 81.46�

up1
� �8.54�

Z-SECTION

t � thickness � 0.5 in.
b � 3.0 in h � 4.0 in

FROM PROB. 12.8-5:

Ix � 10.3751 in.4 Iy � 6.9688 in.4

Ixy ��6.5625 in.4

EQ. (12-30):

2�p � 75.451º and 255.451º

�p � 37.726º and 127.726º

SUBSTITUTE into Eq. (12-25) with � � 37.726º:

SUBSTITUTE into Eq. (12-25) with � � 127.726º:

THEREFORE, I1 � 15.45 in.4

I2 � 1.89 in.4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 127.73�

up1
� 37.73�

Ix1
� 1.892 in.4

Ix1
� 15.452 in.4

tan 2up � �
2 Ixy

Ix � Iy

� 3.8532

h
2
—

h
2
—

y

x

b

y1

x1

C

�

Problem 12.9-6 Solve the preceding problem for the Z-section described 
in Prob. 12.8-6 (b � 80 mm, h � 120 mm, and t � 12 mm). 

Solution 12.9-6 Principal axes

Z-SECTION

t � thickness
� 12 mm

b � 80 mm
h � 120 mm

FROM PROB. 12.8-6:

Ix � 6.5065 � 106 mm4 Iy � 3.2573 � 106 mm4

Ixy ��3.5251 � 106 mm4

h
2
—

h
2
—

y

x

b

y1

x1

C

�

}

(Continued)
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Problem 12.9-7 Determine the angles �p1
and �p2

defining the 
orientations of the principal axes through the centroid C for the 
right triangle shown in the figure if h � 2b. Also, determine the 
corresponding principal centroidal moments of inertia I1 and I2. 

Solution 12.9-7 Principal axes

Eq. (12-30):

2�p � 65.257º and 245.257º
�p � 32.628º and 122.628º

SUBSTITUTE into EQ. (12-25) with � � 32.628º:

SUBSTITUTE into Eq. (12-25) with � � 122.628º:

Ix1
� 1.000 � 106 mm4

Ix1
� 8.763 � 106 mm4

tan 2up � �
2 Ixy

Ix � Iy

� 2.1698 THEREFORE,

I1 � 8.76 � 106 mm4

I2 � 1.00 � 106 mm4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 122.63�

up1
� 32.63�

y

x

h

b

C

x1

y1

�

RIGHT TRIANGLE

h � 2b

CASE 6

Ixy � �
b2h2

72
� �

b4

18

Iy �
hb3

36
�

b4

18

Ix �
bh3

36
�

2b4

9

EQ. (12-30):

2�p � 33.6901º and 213.6901º
�p � 16.8450º and 106.8450º

SUBSTITUTE into Eq. (12-25) with � � 16.8450º:

SUBSTITUTE into Eq. (12-25) with � � 106.8450º:

THEREFORE, I1 � 0.2390 b4

I2 � 0.0387 b4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 106.85�

up1
� 16.85�

Ix1
� 0.03873 b4

Ix1
� 0.23904 b4

tan 2up � �
2 Ixy

Ix � Iy

�
2

3

y

x

h � 2b

b

C

x1

y1

�

}

}
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Problem 12.9-8 Determine the angles �p1
and �p2

defining the orientations
of the principal centroidal axes and the corresponding principal moments of
inertia I1 and I2 for the L-shaped area shown in the figure if a � 80 mm, 
b � 150 mm, and t � 16 mm. 

Solution 12.9-8 Principal axes (angle section)

a

C

t

t

b

�

y1
yc

x1

xc

a � 80 mm b � 150 mm t � 16 mm
A1 � at � 1280 mm2

A2 � (b � t)(t) � 2144 mm2

A � A1 � A2 � t (a � b � t) � 3424 mm2

LOCATION OF CENTROID C

� 68,352 mm3

� 188,192 mm3

MOMENTS OF INERTIA (xy AXES)

Use parallel-axis theorem.

� (2144)(8)2

� 2.91362 � 106 mm4

 �
1

12
(16)(80)3 � (1280)(40)2 �

1

12
(134)(16)3

Ix �
1

12
(t)(a3) � A1 ¢a2≤

2

�
1

12
(b � t)(t 3) � A2 ¢ t

2
≤

2

x �
Qy

A
�

188,192 mm3

3,424 mm2 � 54.9626 mm

Qy � a Ai xi � (at)  ¢ t

2
≤� (b � t)(t)¢b � t

2
≤

y �
Qx

A
�

68,352 mm3

3,424 mm2 � 19.9626 mm

Qx � a Ai yi � (at)  ¢a
2
≤� (b � t)(t)¢ t

2
≤

� 18.08738 � 106 mm4

MOMENTS OF INERTIA (xcyc AXES)

Use parallel-axis theorem.

� 1.54914 � 106 mm4

� 7.74386 � 106 mm4

PRODUCT OF INERTIA

Use parallel-axis theorem: Ixy � Icentroid � A d1d2

Area A1: 

� (1280)(8 � 54.9626)(40 � 19.9626)

� � 1.20449 � 106 mm4

Area A2: 

� (2144)(83 � 54.9626)(8 � 19.9626)

� � 0.71910 � 106 mm4

SUMMARY

IxCyC
� � 1.92359 � 106 mm4

IyC
� 7.74386 � 106 mm4IxC

� 1.54914 � 106 mm4

IxCyC
� I¿xCyC

� I–xCyC
� �1.92359 � 106 mm4

I–xCyC
� 0 � A2B b � t

2
� xR B�¢y �

t

2
≤ R

I¿xCyC
� 0 � A1B � ¢x �

t

2
≤ R B e

2
� yR

IyC
� Iy � Ax2 � 18.08738 � 106 � (3424)(54.9626)2

IxC
� Ix � Ay2 � 2.91362 � 106 � (3424)(19.9626)2

� (2144)¢166

2
≤

2

�
1

12
(80)(16)3 � (1280)(8)2 �

1

12
(16)(134)3

� A2 ¢b � t

2
≤

2

Iy �
1

12
(a)(t 3) � A1 ¢ t

2
≤

2

�
1

12
(t)(b � t 3)

a

C

b

�

y1

yc
x1

xc

x
A1

A2

y
x

O

y

t � thickness

Probs. 12.9-8 and 12.9-9

(Continued)
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Problem 12.9-9 Solve the preceding problem if a � 3 in., b � 6 in., 
and t � 5/8 in. 

Solution 12.9-9 Principal axes (angle section)

PRINCIPAL AXES

Eq. (12-30):

2�p � �31.8420° and 148.1580°

�p � �15.9210° and 74.0790°

SUBSTITUTE into Eq. (12-25) with � � � 15.9210°

Ix1
� 1.0004 � 106 mm4

tan 2up � �
2Ixy

Ix � Iy

� � 0.621041

SUBSTITUTE into Eq. (12-25) with � � 74.0790°

THEREFORE,

I1 � 8.29 � 106 mm4

I2 � 1.00 � 106 mm4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� �15.92�

up1
� 74.08�

Ix1
� 8.2926 � 106 mm4

a � 3.0 in.
b � 6.0 in.
t � 5�8 in.

A1 � at � 1.875 in.2

A2 � (b � t)(t) � 3.35938 in.2

A � A1 � A2 � t (a � b � t) � 5.23438 in.2

LOCATION OF CENTROID C

� 3.86230 in.3

� 11.71387 in.3

x �
Qy

A
�

11.71387 in.3

5.23438 in.2
� 2.23787 in.

Qy � a Ai xi � (at)  ¢ t

2
≤� (b � t)(t)¢b � t

2
≤

y �
Qx

A
�

3.86230 in.3

5.23438 in.2
� 0.73787 in.

Qx � a Aiyi � (at)  ¢a
2
≤� (b � t)(t)¢ t

2
≤

MOMENTS OF INERTIA (xy AXES)

Use parallel-axis theorem.

� 6.06242 in.4

� 45.1933 in.4

MOMENTS OF INERTIA (xcyc AXES)

Use parallel-axis theorem.

� 3.21255 in.4

� 18.97923 in.4
IyC

� Iy � Ax2 � 45.1933 � (5.23438)(2.23787)2

IxC
� Ix � Ay2 � 6.06242 � (5.23438)(0.73787)2

� (3.35938)¢6.625

2
≤

2

�
1

12
(3.0)¢5

8
≤

3

� (1.875)¢ 5

16
≤

2

�
1

12
 ¢5

8
≤(5.375)3

� A2 ¢b � t

2
≤

2

Iy �
1

12
(a)(t 3) � A1 ¢ t

2
≤

2

�
1

12
(t)(b � t 3)

� (3.35938)¢ 5

16
≤

2

�
1

12
¢ 5
8
≤(3.0)3 � (1.875)(1.5)2 �

1

12
(5.375)¢5

8
≤

3

Ix �
1

12
(t)(a3) � A1 ¢a2≤

2

�
1

12
(b � t)(t 3) � A2 ¢ t

2
≤

2

a

C

b

�

y1

yc
x1

xc

x
A1

A2

y
x

O

y

}
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PRODUCT OF INERTIA

Use parallel-axis theorem: Ixy � Icentroid � A d1d2

Area A1: 

� (1.875)(�1.92537)(0.76213)

� �2.75134 in.4

Area A2: 

� (3.35938)(1.07463)(�0.42537)

� �1.53562 in.4

SUMMARY

PRINCIPAL AXES

EQ. (12-30):

2�p � �28.5374° and 151.4626°
�p � �14.2687° and 75.7313°

tan 2up � �
2Ixy

Ix � Iy

� �0.54380

IxCyC
� � 4.28696 in.4

IyC
� 18.97923 in.4IxC

� 3.21255 in.4

IxCyC
� I¿xCyC

� I–xCyC
� �4.28696 in.4

I–xCyC
� 0 � A2B b � t

2
� xR B ˇ�¢y�

t

2
≤ R

I¿xCyC
� 0 � A1B ˇ�¢x �

t

2
≤ R B a

2
� yR

SUBSTITUTE into Eq. (12-25) with � � �14.2687°

SUBSTITUTE into Eq. (12-25) with � � 75.7313º

THEREFORE,

I1 � 20.07 in.4

I2 � 2.12 in.4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� �14.27�

up1
� 75.73�

Ix1
� 20.0695 in.4

Ix1
� 2.1223 in.4

}




