Unit 7

What is Shell in UNIX ?
· A Unix shell is a command line interepreter and script host that provides a user interface for the Unix operating system

· There may be several shell in action one for each user who is logged in
How do a shell work…….
· Whenever we enter a command through a keyboard, the shell thoroughly examines the keyboard input for special characters.

· If it finds any, it rebuilds a simplified command line which is understandable by the UNIX kernel and finally communicate with the kernel to see the command is executed.
· Shell and application communicate with kernel using system calls which are the special routines built into kernel.
EXAMPLE:
· Consider echo command which has lots of spaces between the arguments

 $echo sun solarise

 Output :

 Sun Solarise

 While processing the shell compress all multiple contiguous spaces to a single one.
Types of shells
UNIX offers variety of shell for us to choose from:
· 1.The Bourne family- comprising

· -korn shell (\bin\ksh)

· -bash shell (\bin\bsh)

· 2.The C shell

Bourne Shell…
· The Bourne (or standard) shell, the most compact shell but also the simplest is used in the early version of UNIX operating system.

· Written by Steve Bourne, while at Bell Labs. First distributed with Version 7 Unix.

Features of Bourne Shell…
· Wildcard characters (meta characters) for filename abbreviation.

· Shell variables for customizing your environment.

· Input/output redirection.

· A built-in command set for writing shell programs.
Korn Shell…
· Korn shell (ksh) -- Written by David Korn, while at Bell Labs in the early 1980s.

· Korn shell is a 'shell-scripting' language, as well as a user-level login shell.

· It is backwards-compatible with the Bourne shell and includes many features of the C shell as well, such as a command history,
C Shell…
· The C shell (csh) is a Unix shell developed by Bill Joy for the BSD Unix system.

· The syntax is modeled after the C programing.

· C Shell provides advantages over Bourne shell like :

1. It allows aliasing of commands.

2. C shell has a Command History feature which works like program DOSKEY in MS DOS environment.

SHELL PROGRAM AND SHELL SCRIPTS

We already know that UNIX commands are executed when they are typed in shell prompt. A shell program is nothing but series of such commands. Instead of specifying one job at a time, we give the shell a to-do-list –a program –that carries out an entire procedure, such programs are known as “shell scripts”.

The shell scripts offer new horizons to our computing prowess, combining the collective power of various commands and the versatility of the programming language. In time we shall see for ourselves the tremendous scope allowed by shell programming to develop anything from simple routines to full-fledged, custom made software applications.

UNIX shell is an interface between the user and the operating system itself , and forms one of the component of UNIX operating system. Shell also incorporates a powerful programming language that enables the user to exploit the full power and versatility of UNIX. The shell itself interprets the commands in the shell program and executes them. It does not need compiler.

Since a user cannot interact with the kernel directly, shell programming are a must to be able to exploit the power of UNIX to the fullest extent.

SHELL SCRIPT

#SS1

usage : SS1

Is

Who

EXPLANATION

First line starts with

 # which marks the beginning of a comment.

SS1is the name of file in which we will type this shellscript.

ls will list all the directories and files.

who will tell about the users who are logged in.

DIFFERENCE BETWEEN SHELL SCRIPTING AND COMMANDS IN $ PROMPT

When we execute a shell script instead of accepting the commands from $ prompt the shell accepts them from our shell script.

When we execute commands at $ prompt, they are executed in the shell that was invoked when we logged in. As against this, when we execute a shell script , the log in shell creates a new shell , a new command interpreter & waits idly in the background while the new shell executes our shell script.

When all the commands in our shell script have been completed, the new shell terminates & our log in shell once again takes over the control.

WHERE TO USE SHELL PROGRAMMING AND SCRIPTING

If the task that we wish to carry out is repetitive then if we are to get the task done at command prompt we will have to every time type in the commands necessary to achieve the task at the command prompt.

Thus, the basis of shell programming rests on the fact that the UNIX shell can accept commands not only from the keyboard but also from a file.

INTERACTIVE SHELL SCRIPTS

A worthwhile program needs to talk to the user, and in turn requires a language.

#SS2

#usage: SS2

#An interactive shell script

echo what is your name\?

read name

echo hello $name.

output
what is your name?

Happy programming

Happy programming

EXPLANATION

echo is used to display the output.

read is used to accept input from user.

SHELL VARIABLE

Thee are an integral part of shell programming .They provide the ability to store & manipulate information within a shell program. The variables are completely under our control. We can create & destroy any no. of variables.

RULES FOR BINDING SHELL VARIABLE

1. It is a combination of alphabets, digits and underscore.

2. No commas nor blanks

3. First character must be alphabet or underscore

4. Variable name should be of reasonable length.

5. These are case sensitive.

SHELL KEYWORDS

Those words whose meaning already has been explained to shell.

Eg: echo, break, for, if etc.

TYPES OF VARIABLES

1. UNIX defined variables.
These are standard variables which are always accessible. The shell provides the values for these variables. These are usually used by system itself. They govern the environment.

Eg. LOGNAME stores the login name of the user.

 PATH defines the path which the shell must search in order to execute any command or file.

2. User defined variables.

These are defined by us (the user).These are used most extensively in shell programming.

Eg. $a=20

SHELL PROGRAMS

ADDITION OF TWO NUMBERS

echo "enter a number: "

read x

echo "enter another number: "

read y

Here's where we have the two options:

The expr method:

exprans=`expr $x + $y`

The bc method:

bcans=`echo $x + $y | bc`

 The language is slightly different for the two commands; expr parses an expression passed to it as arguments : expr something function something whereas bc takes the expression as its input : echo something function something | bc. Also, for expr, you must put spaces around the arguments: “expr 1+2” doesn’t work. “expr 1 + 2” works.

SCRIPT TO SEE WHETHER ARGUMENT IS POSITIVE OR NEGATIVE USING IF ELSE FI
Script to see whether argument is positive or negative
#
if [$# -eq 0]
then
echo "$0 : You must give/supply one integers"
exit 1
fi
if test $1 -gt 0
then
echo "$1 number is positive"
else
echo "$1 number is negative"
fi

OUTPUT:
$ sh pn.sh

5number is positive

$ sh pn.sh
-45 number is negative
USING FOR LOOP-TO CREATE A CHESSBOARD
$ vi chessboard

for ((i = 1; i <= 9; i++)) ### Outer for loop ###
do
 for ((j = 1 ; j <= 9; j++)) ### Inner for loop ###
 do
 tot=`expr $i + $j`
 tmp=`expr $tot % 2`
 if [$tmp -eq 0]; then
 echo -e -n "\033[47m "
 else
 echo -e -n "\033[40m "
 fi
 done
 echo -e -n "\033[40m" #### set back background colour to black
 echo "" #### print the new line ###
doneRun the above script as follows:
$ chmod +x chessboard
$./chessboard
[image: image1.jpg]
Above shell script cab be explained as follows:

	Command(s)/Statements
	Explanation

	for ((i = 1; i <= 9; i++))
do
	Begin the outer loop which runs 9 times., and the outer loop terminets when the value of i exceeds 9

	for ((j = 1 ; j <= 9; j++))
do
	Begins the inner loop, for each value of i the inner loop is cycled through 9 times, with the varible j taking values from 1 to 9. The inner for loop terminates when the value of j exceeds 9.

	tot=`expr $i + $j`
tmp=`expr $tot % 2`
	See for even and odd number positions using these statements.

	if [$tmp -eq 0]; then
 echo -e -n "\033[47m "
else
 echo -e -n "\033[40m "
fi
	If even number posiotion print the white colour block (using echo -e -n "\033[47m " statement); otherwise for odd postion print the black colour box (using echo -e -n "\033[40m " statement). This statements are responsible to print entier chess board on screen with alternet colours.

	Done
	End of inner loop

	echo –e -n "\033[40m"
	Make sure its black background as we always have on our terminals.

	echo ""
	Print the blank line

	Done
	End of outer loop and shell scripts get terminted by printing the chess board.

THE WILDCARDS
Symbols used to represent any value when selecting specific files.

Foreg: 1. The * wildcard

 2. The ? wildcard

The * wildcard

The character * is called a wildcard, and will match against none or more character(s) in a file (or directory) name. For example, in yourunixstuff directory, type

% ls list*

This will list all files in the current directory starting with list....
Try typing

% ls *list

This will list all files in the current directory ending withlist
The ? wildcard

The character ? will match exactly one character.
So ?ouse will match files like house and mouse, but not grouse.
Try typing

% ls ?list

