digit

November 2008

ast Track |

YOUR HANDY GUIDE TO EVERYDAY TECHNOLOGY

Fast Track
to

C++

By Team Digit

Credits

The People Behind This Book

EDITORIAL
Robert Sovereign-Smith Assistant Editor
Santanu Mukherjee, Supratim Bose, Nilay Agambagis, Bhaskar Sur Writers

DESIGN AND LAYOUT
Vijay Padaya, U Ravindranadhan Layout Design
Rohit Chandwaskar Cover Design

© 9.9 Interactive Pvt. Ltd.

Published by 9.9 Interactive

No part of this book may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior written permission of the publisher.

November 2008

Free with Digit. Not to be sold separately. If you have paid separately for this book,
please e-mail the editor at editor@thinkdigit.com along with details of location of
purchase, for appropriate action.

R FAST TRACK |3

Chapter 1
11
1.2
13
1.4
15

Chapter 2
2.1
2.2
2.3
2.4

Chapter 3
3.1
3.2
3.3
34
3.5
3.6

Chapter 4
41
4.2

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6

4 ‘ FICHI FAST TRACK

CONTENTS

Object Oriented Programming

Basic Concepts

Data Abstraction And Encapsulation

Inheritance
Polymorphism
Applications Of OOP

Beginning with C++
Introduction To C++
Applications of C++

A Simple C++ Program

An Example Of Class In C++

Basics of C++
Program Structure
Variables

Data Types
Constants
Operators

Basic Input/output

Control Structures
Branching
Looping

Functions

Main Function
Function Prototyping
Call By Reference
Return By Reference
Inline Functions
Function Overloading

O o o o U

11
1
12
12
16

18
21
27
28
32
38

40
40
50

61
61
62
66
68
68
69

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6

Chapter 7
71
7.2
73
7.4
7.5

Chapter 8
8.1
8.2
8.3
8.4

CONTENTS

Classes and Objects
Specifying A Class

Defining Member Functions
A C++ Program With Class
Nesting Of Member Functions
Static Member Functions
Friendly Functions

Constructors and Destructors
Introduction

Constructors

Types of Constructors

Constructing Two Dimensional Arrays
Destructors

Compound Data Types
Arrays

Character Sequences

Pointers

Other Data Types

72
73
76
77
79
81
83

87
87
88
91
97
99

103
103
108
110
116

[IE FAST TRACK |5

Ct+ n

Object Oriented
Programming

bject Oriented Programming (OOP) is a programming

concept, involving objects and their interactions to

design applications and various computer programs.
The highlights included within this programming technique
are encapsulation, modularity, polymorphism, and inheritance.
This concept was not conventionally used in mainstream soft-
ware development and predominantly came into practice in the
early ’90s. These days, most programming languages support
OOP. The main reason for this is the need to remove the flaws
encountered in the typical procedural approach used in archaic
programming through the computing ages.

OOP originates way back to the sixties. Over the years, as the
hardware and software evolved, quality was often compromised.
Analysts and designers were soon looking for ways to address
this problem. OOP focuses on data instead of processes, with
programs composed of self-sufficient modules (objects) that con-
tain all the information needed for manipulation.

‘Simula’ was the first language to introduce OOP to the pro-
gramming world. The various terminologies it brought were
objects, classes, subclasses, virtual methods, co-routines,
garbage collection, and discrete event simulation. The language
was also used for physical modelling. However, the first lan-
guage which was labelled as an ‘Object Oriented’ language was
‘Small Talk’.

The highlights of OOP are:

® Emphasis on data rather than the procedure.
® Programs are divided into entities known as objects.

PR FAST TRACK | 7

8

n Ci+

® Data structures are designed to characterize the objects.

® Functions operating on the data of an object are tied together
in the data structures.

® Data used is generally hidden and cannot be accessed by exter-
nal functions.

@ Functions help objects to communicate with each other.

® New functions and data can easily be added as per need.

® A bottom up approach is followed during program design.

1.1 Basic Concepts

Before delving into OOP, it is important to be familiar with its
concepts. These include:

® Classes

® Objects

® Dynamic Binding
® Message passing

Classes

Classes are used to implement the concept of Abstract Data
Types (ADT). A class is a combination of both properties and
methods used to manipulate properties. In fact, a class is a blue-
print describing the nature of the data structure. For example,
consider the case of the class ‘student’. There are some common
properties shared by all students, such as name, roll, class,
address, and marks. Similarly, there might be some methods
used to manipulate these properties. However, the values of
these properties can differ depending in the student. If we want
to use the class ‘student’, then we need to create instances of
this class, also known as objects. Classes are user-defined data
types and behave like a built-in programming language.

Objects

Objects are the basic runtime entities in an object oriented sys-
tem. In fact, it is the instance of a class. An object can be a per-
son, place, bank account or even a table of data that the pro-

FCH FAST TRACK

Ct+ n

gram needs to handle. Objects may also represent user-defined
data such as vectors, time and lists. When a program gets exe-
cuted, the objects interact by sending suitable messages to one
another. For example, any student will be an object in the class
‘student’. Similarly, if we consider a fruit to be a class, then
mango, apple, and guava will be objects in this class.

Dynamic Binding

The term binding refers to linking a procedure call to the code
that needs to be executed as a response to this call. Similarly,
‘Dynamic Binding’ or late binding refers to the code that
remains unknown until the procedure is called during run
time. Dynamic binding is also associated with polymorphism
and inheritance. For example, let us consider a procedure called
‘calculation’ declared in a class. Some classes may inherit that
class. The definitions (code) associated with the procedure ‘cal-
culation’ are written such that they perform different opera-
tions in each derived class. For example, in one class, the code is
written for addition, while in another class for subtraction, and
so on and so forth. For objects of different classes, the procedure
will provide different results and will be unknown till the exe-
cution is complete.

Message Passing

Message passing is the process by which one object sends data to
another, or asks the other object to invoke a method. This con-
cept is also known as interfacing in some programming lan-
guages. In an object-oriented language, objects communicate
with each other by sending and receiving various types of infor-
mation. The message for an object is related to the request for
execution of a procedure, and thus invokes a function in the
receiving object, thereby generating the desired result.

Message passing also involves specifying the name of the

object, the name of the message and the information to be sent.
For example,

PR FAST TRACK |9

10

n Ci+

Employee. earnings (name);
In the above statement, the employee is regarded as the
object, earnings as the message, and name as the information.

In addition, the following needs to be mentioned:
@ Data Abstraction and Encapsulation

@ Inheritance
® Polymorphism

1.2 Data Abstraction And Encapsulation

Data abstraction and Encapsulation are fundamental to OOP.
The process of wrapping up data and functions into a single
unit is called ‘encapsulation’. In other words, encapsulation
hides the functional details of a class from objects that send
messages to it. Data is not generally accessible to the outside
class and only functions wrapped in the class can access it.
Encapsulation is also achieved by specifying the particular class
using objects of another class.

Abstraction refers to the act of representing essential fea-
tures and characteristics without detail. Classes use the concept
of data abstraction and are known as ‘Abstract Data Types’.

1.3 Inheritance

This is another important feature of OOP. By Inheritance, class-
es can acquire the properties and methods of another class or
classes. Inheritance supports hierarchical classification. In
other words, the process by which the subclasses inherit the
attributes and behaviour of the parent class is termed as
‘Inheritance’.

For instance, the class ‘Dog’ may have sub-classes as Spitz,

FCH FAST TRACK

Ct+ n

Alsatian, and Golden Retriever. Consider the class ‘Dog’ defines
a method called bark () and a property called furColor. Each
of its sub-classes (Spitz, Alsatian, and Golden Retriever) will
inherit these members. Therefore, the programmer needs to
write the code for them just once. Subclasses can also add new
members. For instance, take the case of the subclass ‘Alsatian’. It
can add another method, say, tremble. C++ also supports multi-
ple inheritance, where a subclass inherits properties from more
than one ancestral class.

1.4 Polymorphism

A Greek term, Polymorphism is the ability to represent oneself
in multiple forms. It helps the programmers to treat derived
class members, just like their parent class members. By imple-
menting this concept, one can use an operator to perform dif-
ferent operations depending on the operands used.

For instance, if we consider two numbers, the operation
‘addition” will generate a sum. Similarly, if the operands are
strings, then the operation will produce a third string by con-
catenation. This phenomenon of making an operator to exhibit
various behaviours in different instances is termed as operator
overloading.

It is also possible to use same name for different procedures
or methods, but the arguments or return types should be
unique for each one of them. Different codes are executed
accordingly depending on the arguments or the return type.

Let us assume there are three methods of a class sharing the
same name ‘sum’. One takes two integers as an argument and
returns an integer, the other takes three integers as an argu-
ment and returns an integer, while the third method takes two
floats as an argument and returns a float value. After creating
an object in the class, these functions will be called and the

PR FAST TRACK |11

12

n Ci+

method that matches the arguments and return type is execut-
ed. For example, if the method is called using two integers as an
argument and returns an integer value, then the first method is
executed. Similarly, the other two methods are executed as a
result of the corresponding argument and return type. This phe-
nomenon is known as method overriding. The same name can
be used for methods in the parent and derived class.

1.5 Applications Of OOP

In terms of benefits, OOP offers various benefits to both the
designer and the user of the program. The various benefits of
OOP are as follows:

® Through the process of inheritance, redundant codes can be
eliminated and the use of classes can be extended.

® Programs can be built from standard working modules that
communicate with each other. This saves development time
and increases productivity.

® Data hiding helps the programmer to build secure programs
that cannot be touched by the code of other components of
the program.

® OOP allows multiple instances of an object to co-exist without
any interference.

® Mapping objects in the problem domain is also possible by OOP.

® The data-centred design approach in OOP captures more
detail of a model.

@ It also helps in proper communication between objects by var-
ious message passing techniques, simplifying the interface
description.

FCH FAST TRACK

o
Beginning With C++

2.1 Introduction To C++
During the sixties, the rapid development on computers led to the
evolution of several new programming languages. Among all,
Algol 60, was developed as an alternative to Fortran. Algol 68 devel-
oped during this period, directly influenced the data types used in
C. However, being a non specific language, it was not very popular
in solving commercial tasks.

In 1963, Combined Programming language (CPL) evolved, and
was more efficient in addressing concrete programming tasks as
compared to Algol and Fortran. However, this was rather bulkier,
and difficult to learn and implement. Four years later, in 1967,
Martin Richards developed the Basic Combined Programming
Language (BCPL). This was a simplified version of CPL, but was
extremely abstract.

In 1970, Ken Thompson started developing UNIX at the Bell Labs
and created B. It proved to be an effective simplification of CPL.
Unfortunately, B too, had limitations. It compiled to a threaded,
rather than executable code, thereby generating a slower code dur-
ing program execution. Therefore, it was inadequate for the devel-
opment of an operating system. In such an environment, Dennis
Ritchie started the development of a B compiler in 1971, which was
able to directly generate executable code. The resulting language
was named “New B”, and finally known as the “C” language.

Ritchie developed the basic structure for C in 1973. Several con-
cepts such as arrays and pointers were incorporated in this new

language, without being transformed into a high-level language.

Bjarne Stroustrap, also from Bell Labs, began development
work of C++ in 1980, and published the first manual in 1985. The

PR FAST TRACK |13

14

n Ci+

ANSI committee X3]16 started developing a standard for C++ in
1990, and by 1998, C++ emerged as one of the leading program-
ming languages, and became the preferred language to develop
professional applications across all platforms. Currently, C++
development is on full swing, with a new language C++09 being
developed. It is expected to be released by the end of 2009, with
several new features.

2.2 Applications of C++

C++ is suitable for various programming tasks due to its versatili-
ty in handling complex and tedious programs. Various tasks such
as developing an editor, a database, communication systems and
various real-life application systems can be developed by this lan-
guage. The reason is as follows:

® It allows you to create various hierarchy-related objects, and
helps to develop special object-oriented libraries that can be
used by programmers.

® Being an object-oriented language, C++ is able to effectively map
real-world problems, while on the other hand, the C part of C++

gives the language the ability to define machine-level details.

® Maintenance and expansion is easy.

2.3 A Simple C++ Program

Now let us deal with a simple C++ program. The program helps to
print a certain string on the screen.
Printing a particular string

include <iostream.h> // a header file
int main ()

{

cout<<” let us learn a wonderful language”;

FCH FAST TRACK

Ct+ n

return 0;

}
The output of the program is as follows:

let us learn a wonderful language

Now let us analyse the program and its statements in detail.
The first line, # include <iostream.h> isan integral part of the
program. #include is the directive used in the program and caus-
es the pre-processor to add the contents of the input-output
stream file to the program. This directive also contains the decla-
ration of the identifier cout and the operator <<.

‘//’is a comment symbol. In C++, comments always starts with
a //. They always terminate at the end of the line. The comment
following a ‘//’ is generally a single-line comment. int main() is
the most important line in the program. Every C++ program must
have a main () function, and the actual execution of any C++ pro-
gram starts from this point. This function is called by the system
and returns a value to the system if required. In the above exam-
ple, it will return a value of 0. If there is no value to return, then
int can be replaced by void. The parenthesis () is used to specify
an argument. In the absence of an argument, () can remain blank
or be replaced with void.

The next line, cout<<”let us learn a wonderful lan-
guage”; prints the output on the screen. This line introduces two
new features, namely, cout and <<. ‘cout’ is an identifier, a prede-
fined object that resembles a standard output stream. << is known
as insertion operator that sends bytes to an output stream object.

return 0; is the function-return statement. This statement
returns a variable or value to the process called by the function. In

this case, it returns 0 to the system as mentioned above.

Additional C++ Statements
In C++ programming, statements play a major role. Statements are

PR FAST TRACK |15

n Ci+

basically program elements that control manipulations of objects,
and also their order of manipulation. There can be various types
of statements in C++. Some of the most important statements are
listed below:

® Expression Statements: These evaluate an expression for vari-
ous side effects, or determine its return value.

o Null Statements: These acts as a replacement for certain condi-
tions when a statement is required by the C++ programming syn-
tax, but not requiring any action.

® Compound Statements: Widely used in the programming lan-
guage, compound statements are basically groups of statements
enclosed in curly braces ({}). These statements can be conve-
niently used whenever we use a single expression.

® Selection Statements: Various tests can be performed with the
help of these statements. A particular section of code is execut-
ed if the test expression evaluated is true. On the other hand, if
the test expression evaluated is false, additional sections of code
are executed.

® Iteration Statements: These statements are among the most
important statements used in C++. They perform repeated execu-
tion of blocks of code, until a certain termination criterion is met.

@ Jump Statements: Mainly used for two purposes, either for trans-
ferring control to another location to execute a particular func-
tion, or returning control from a function.

® Declaration Statements: These declare the variables, methods
and functions used in the program.

Now let us come to a slightly complex program based on the
above statements. Our aim is to add two numbers and determine
their average. As expected, we will key-in our inputs through a
standard keyboard. The program is as follows:

16 ‘ PR FAST TRACK

C++

include <iostream.h>
int main ()

{
float x, vy;
float sum, ave;

cout<<”Enter two numbers: “;
cin>> x;

cin>> y;

sum = xX+y;

ave = sum/2;

cout <<”Sum =" <<sum<<”\n”;
cout<<”Average = “<<ave<<”\n”;
return 0;

}
The output of the program is as follows:

Enter two numbers: 4 6
Sum = 10
Average = 5

After the main() function, two variables (x and y) are
declared. The variables are declared as float, which is nothing but
the data type. In the next statement, another set of float type vari-
ables ‘sum’ and ‘ave’ are declared. These two statements can be
replaced by the following statement.

float x,y,sum,ave;

The statement following tells the user to enter two numbers.
The cin identifier and >> operator (extraction operator that is
used to get bytes from input stream class) then accepts two valid
numbers via the keyboard. Next the values of the variables x any y
are added and stored in variable ‘sum’. The variable ‘ave’ is used to

PR FAST TRACK |17

n Ci+

store the result (sum/2), and determines the average of the two
numbers. The identifier ‘cout’ and insertion operator << prints
the sum and the average of the two numbers.

2.4 An Example Of Class In C++

In C++, classes play a major role, and provide suitable methods for
binding data together, along with functions operating on this
data. Now let us consider a program involving classes.

// classes example
#include <iostream.h>

class Rect {
int x, y;
public:
void setting values (int,int);
int area () {return (x*y);}

b

void Rect::setting values (int a, int b) {

X = a;
y = b;
}
int main () {

Rect rec;
rec.setting values (7,8);
cout << “area: “ << rec.area();
return 0;

}
The output of the program is as follows:
area: 56

In the above code, the scope resolution operator (: :) is used in

18 | A FAST TRACK

Ct+ n

the definition of setting values (). The main purpose of this
operator is to define a class member from outside the class defini-
tion. First a class named Rect is declared, with two variables (of
type integer) also declared within it. These two variables are x and
y, respectively. The function area () has been defined within the
definition of the class ‘Rect’. Further, the setting values
method has only its prototype declared within the class but is
actually defined outside of it.

Further, the scope resolution operator is used for specifying
the function which is actually a member of the class ‘Rect’ and
only its prototype is declared within the class.

The scope resolution operator also specifies the class to which
the member being declared belongs. Two parameters, a and b, of
the type int within the setting values method are passed. The
values are then stored within x and y in the method declaration
part as shown above.

Next we come to the main method or the main function defi-
nition part. An object of the type ‘Rect’ is then instantiated. This
object is named as ‘rec’. The object then accesses the
setting values method by the (.) operator and two numerical
values (7, 8) are passed. Then the method area () is called using
the name of object and the (.) operator. Multiplication is done
based on these two values stored in the variables x and vy.
According to the prototype of the method area (), it will return
an integer value. In this case, the result of multiplication will be
returned. The returned value is printed using cout and <<.

PR FAST TRACK |19

o
Basics Of C++

3.1 Program Structure

The following is a program that displays ‘Hello World’:
// This is the basic program in C++
#include <iostream.h>

int main ()

{
cout << “Hello World!”;
return 0;

Its output will be:
Hello World!

We see the text after compiling and executing the program.
Our compiler defines the compilation and editing process
involved in the program. Besides, they also depend on the version
and the interface (with variation in case of a Development
Interface) of the compiler. This example includes most of the com-
ponents in a C++ program.

In order to understand it better, let us take a closer look at it.

//this is the basic program in C++

The program starts with a double slash, indicating a comment
and has no implication on the function or purpose of the pro-

gram. You can add any comment to your program, but the only cri-
terion is that it should be preceded with a double slash. These are

PR FAST TRACK |21

22

m Ci+

the short notes to the source code meant for programmers for
future reference.

#include <iostream.h>

The second line of our program starts with a hash (#) symbol.
Visibly, these are not typical lines with expressions. #include
<iostream.h> instructs the compiler’s pre-processor to hold the
iostream.h standard library file. In C++, the declarations of the
basic standard library of input and output are included in the
‘iostream.h’ standard file, which is used by the program in the
later sections of the program.

int main ()

This is the beginning of the main function of the program.
This point onwards, execution is independent of source code in
the case of C++. That is to say, all C++ programs must begin with a
‘main’ function. Also, we can see two parentheses after ‘main’.
This is a function declaration. These parentheses indicate the dif-
ference between a function declaration and the other expressions
in the source code. You can add a list of parameters within paren-
theses. The body of the main function follows the parentheses and
enclosed in braces ({ }).

The next line in our program begins with a brace, indicating
the beginning of the body of the function. The statements men-
tioned in the body of the main function define the execution
process of the function. This opening brace is followed by our next
line of code.

cout << “Hello World!”;

cout is a statement in C++, and generates visual effects. It
defines the standard output stream and is declared in the

FCH FAST TRACK

Ct+ m

‘iostream.h’ library file. Once executed, this statement displays
the string “Hello World”. Don’t miss out on the semi colon that
indicates the end of the statement. Missing out on this semi colon
is the most common error committed by programmers.

return 0;

The main function terminates with the return statement. A
return value is usually follows the return statement, in this case
the value is 0. The main () function usually has a return value of
0. Missing out on this return statement results in errors and warn-
ing messages during compilation.

The closing brace indicates the end of the body of the main
function, and the end of the program.

Although this example had each statement on separate lines,
in C++, you can also insert a number of statements on a single line
of code, separated by semi colons. As an example, consider the fol-
lowing piece of code:

int main () { cout << “Hello World!”; return 0; }

You can add some more statements to the earlier example:

//this is the basic progam in C++

#include <iostream.h>

int main ()

{

cout << “Hello World! “;

cout << “I am Learning Basic Structure of C++”;

return 0;

The output of this program will be:

PR FAST TRACK |23

m Ci+

Hello World! I am Learning Basic Structure of C++
As you can see, this program has statements on separate lines.
If typed on a single line, it would appear as follows:

int main () { cout << “ Hello World! “; cout <<

w

I am Learning Basic Structure “; return 0; }

AN}

The output will still remain the same.

3.2 Variables

A ‘variable’ is used to store a declared value that is used during the
execution of the program. As a programmer, you must declare a
variable before using it. The following is a general form of a dec-
laration:

type variable list;

Here, ‘type’ is a valid data type or modifier. ‘variable list’
usually includes a single name for an identifier. Multiple identifi-
er names are separated by commas.

To understand it better, take a closer look at the following
lines:

int 1i,3,1;

short int si;

unsigned int ui;

double balance, profit, loss;

Now consider the following program,
// declaration of a variable
#include <iostream.h>

int main ()

{
24 ‘ PR FAST TRACK

C++

// declaring variables:
int x, vy;

int total;

// process:

x = 5;
y = 2;
x = x + 1;

total = x - y;

// print out the result:
cout << total;

// terminate the program:
return 0;

The output will be:

There are three ways you can assign a variable:

® Inside a function, i.e. Local variables. (also known as Automatic
variables)

o In the definition of a function parameter, i.e. formal parameters.

® Outside all functions, i.e. Global variables.

Local Variable/Automatic Variable

The Local or Automatic variables are those that are usually

declared within a function. Local variables lose their significance

outside the blocks of functions within which they are declared.
These Local variables gain significance as long as we are in the

body of the functions. Similarly, they lose their values once we exit

the functions.

Consider the following program:

P FAST TRACK |25

m Ci+

#include<iostream.h>

int main()

{

int a;

a=10;

void show a(void); // prototype of function
show a

show _a();

return 0;

}

void show a(void)

{

cout<<a;

}

This program will generate an error on execution. Since the
variable ‘a’ is declared in the main () function, it cannot be
accessed by the function show_a () because the scope of the vari-
able ‘a’ is within the main () function. Therefore, we can use same
name for variables in different functions.

Let us look at the example below:

void call (void)
{

int A;

A = 20;

}

void cal2 (void)
{

int A;

A = -299;

}

Here we can see that we have declared the integer variable ‘A’
twice. It is first declared in the function call () and then again in
function cal?2 (). Here, A in call () has no relation with that in
cal2().

26 | FEH FAST TRACK

Ct+ m

Formal Parameter

We can insert Formal parameters in the function prototype as well
as in the function header of the definition. We also assign values
to the local variables using the argument while calling a function.

When a function involves arguments, it declares variables that
accept the values of the arguments passed while calling the func-
tion. These variables are called variables with formal parameters.
When they are inserted within a function then they behave as
local variables.

Example:

/* Return 2 if x is part of string y; 0 otherwise
*/

finclude<iostream.h>

int main ()

{

char *a;

char b;

a="jsgcjg”;

b=" ¢ ;

int is in(char *,char);

cout<<is inf(a, b);

return 0;

}

int is in(char *y, char x)

{

while (*y)

if (*y==x) return 2;

else y++;

return 0;

}

The output of the above program will be:

PR FAST TRACK |27

28

m Ci+

This program uses the function is_in() that takes two argu-
ments ‘a’ and ‘b’. During the execution of the function, the values
for ‘a’ and ‘b’ are stored in the variables ‘y’ and ‘x’, respectively.
Hence, the local variables ‘y’ and ‘x’ of the function is in(),
accept the values of the argument while calling the function. The
function returns ‘2’ if any character of ‘y’ is similar to the value of
‘x’, or else it returns ‘0’. With the values used here, the function
will return ‘2’ and is displayed as usual.

Global Variable

Global variables are created by declaring variables outside a func-
tion. Here, all expressions are independent of the blocks of code
they are inserted into. Any code can use global variables. These
variables can hold the values while executing the program. In the
following example, we can see that the variable ‘calculate’ is
declared outside all functions of the program. A global variable is
best used when declared at the start of the program.

Example:
finclude <iostream.h>
int calculate; /* calculate is global */

void call (void) ;
void cal2 (void) ;
int main (void)

{

calculate = 100;
call();

return 0;

}

void call (void)
{

int temp;

temp = calculate;
cal2();

FCH FAST TRACK

Ct+ m

cout<<”calculate is “<<temp; /* will print 100 */
}

void cal2 (void)

{

int calculate;

for (calculate=1; calculate<l10; calculate++)
cout<<’ .’ ;

}
The output of the program will be:
.calculate is 100

Here, ‘calculate’ is declared as a global variable. This means
that it can be accessed by any function in the program. ‘calcu-
late’ is initialized with 100 in the function main (). Next, its
value is assigned to the variable ‘temp’ in the function call ().
Subsequently, a variable ‘calculate’ is declared in the function
cal2 (), which is a local variable for the cal2 () function.

We should always remember that C++ is a case-sensitive pro-
gramming language and hence we should always be careful while
naming a variable. The variable names are called identifiers. They
may be a single letter, multiple letter, or even an underscore or a
numeral. Spaces, punctuation mark and other symbols are not
regarded as variables. Variable identifiers are significant in C++, as
they distinguish one variable from the others. We should also be
careful while using upper or lower case. You can name the identi-
fier using any word. However, the following set of words is restrict-
ed in C++:

asm, auto, bool, break, case, catch, char, class,
const, const cast, continue, default, delete, do,
double, dynamic cast, else, enum, explicit, export,
extern, false, float, for, friend, goto, if, inline,
int, long, mutable, namespace, new, operator, pri-
vate, protected, public, register, reinterpret cast,

PR FAST TRACK |29

m Ci+

return, short, signed, sizeof, static, static cast,
struct, switch, template, this, throw, true, try,
typedef, typeid, typename, union, unsigned, using,
virtual, void, volatile, wchar t, while.

In addition, the following words are alternative representa-
tives for some other operators, and hence cannot be used.

and, and eq, bitand, bitor, compl, not, not eq,
or, or_eq, XOor, Xor ed.

3.3 Data Types

There are various data types in the C++ programming language.
These are used to hold different types of values. Here are the vari-
ous types of data and the description of the data type:

Name Description

Char Declares characters or small integers.
ASCII characters can be used with this
type of data.

short int (short) Declares short integers.

int Declares integers and whole numbers in a
program. These numbers may be positive
or negative.

long int (long) Declares longer numbers.

bool Declares the Boolean value. Value can be
either ‘true’ or ‘false’.

float Declares floating point decimal numbers.

double Declares double precision floating point
numbers.

long double Declares long double precision floating

point numbers.

30 ‘ PR FAST TRACK

Ct+ m

3.4 Constants

Constants always have a fixed value in a program. Similar to the
case of variables, constants also include various data types. They
are as follows:

® Decimal Notation

® Octa Notation

® Hexadecimal Notation

o String Constant

® Back Slash Constant

Decimal Notation: Only the numbers are represented.

Octa Notation: A number is headed by a zero.

Hexadecimal Notation: A number is headed by the characters 0x.

String Constant: Set of characters enclosed in double quotation
mark.

Back Slash Constant: Character constants that are headed by a
back slash, and are often referred to as the escape sequence.

Now let us look at the following back slash constants and their
meanings:

Code Meaning
\b Backspace
\ £ Form feed

\n New line
\r Carriage return
\t Horizontal tab

PR FAST TRACK |31

\ 7
\I
\O
A\
\v
\a
\7?
\N

C++

Double quote

Single quote

Null

Backslash

Vertical tab

Alert

Question mark

Octal constant (where N is an octal constant)

\xN Hexadecimal constant (where N is a hexadecimal constant)

Let us look at the example below:
25 represent decimal

0125 represent octal

0x125 represent hexadecimal

We can define our desired names for the commonly used con-

stants by using the ‘#define’ pre-processor directive. Let us look
at the syntax of it:

#define identifier value

Now let us look at the example below:
#define NI 1.123456789

ffdefine NEW “\n’/

Here, the ‘NI’ and ‘NEW constants are defined. After defining

these constants, we can use these in the remaining code just like
any other regular constants.

// This is defined constants: determine the lim-

its

#include <iostream.h>

#define NI 1.12345

32 | FE FAST TRACK

Ct+ m

#define NEW “\n’

int main ()
{
double r=5.0; // This variable
is created for radius
double circle;

circle = 2 * NI * r;
cout << circle;
cout << NEW;

return 0;

The output of this program will be as follows:
11.1234

In the above example, ‘#define’is not a C++ directive. Rather,
it is a directive for the pre-processor. Therefore, there is no need to

insert a semi colon at the end of it, as it presumes the entire line
as a directive.

Besides, C++ has built in constants that we can directly use in
our code. These constants have fixed names, so that we can recog-
nize these constants. The minimum value of the short integer is
named as SHRT MIN and the maximum value of the short integer
is named as SHRT MAX. Consider, the following example:

#include <iostream.h>
finclude <limits.h>
int main ()
{
cout << “The minimum signed character: “ <<
SCHAR MIN << “\n”;

cout << “The maximum signed character: “ <<
SCHAR MAX << ™\n”;

PR FAST TRACK |33

cout <<

“The minimum short integer is:

SHRT MIN << ™\ n”;

cout <<

“The maximum short integer is:

SHRT MAX << ™\n\n”;

return 0;

}

The output of this program will be:

The
The
The
The

minimum
maximum
minimum
maximum

signed character:
signed character:
short integer is:
short integer is:

C++

n oo

w oo

-128
127
-32768
32767

The constants defined in the climits/limits library are as fol-

lows:

CHARfB IT INT MAX LONGfMAX S CHARfMAX S HRT MAX

CHARfMAX INT MIN LONGfMIN SCHARfMIN SHRTiMIN

CHARfMIN UINT MAX ULONGiMAX UCHARfMAX Us HRT MAX
MB LEN MAX

In the cfloat library, we can get some double precision num-

bers provided by C++. These are as follows:

DBL_DIG
DBL_EPSILON
DBL_MANT DIG
DBL_MAX

DBL_MAX 10 EXP

DBL_MAX EXP
DBL_MIN

DBL MIN 10 EXP

DBL_MIN EXP
FLT RADIX

FLT DIG

FLT EPSILON
FLT MANT DIG
FLT MAX

FLT MAX 10 EXP
FLT MAX EXP
FLT MIN

FLT MIN 10 EXP
FLT MIN EXP

LDBL_DIG
LDBL_EPSILON
LDBL_MANT DIG
LDBL_MAX
LDBL MAX 10 EXP
LDBL_MAX_ EXP
LDBL_MIN
LDBL MIN 10 EXP
LDBL_MIN EXP

There is also a constant, called NULL. We can use this constant
to assign a task, to which the pointer will not hold a valid value.
The definition of the NULL constant is available in the cstddef

library.

34 ‘ PR FAST TRACK

C++

3.5 Operators

Operators help us to operate variables as well as constants.
Operators in C++ comprise various symbols. These are categorical-

ly divided into various groups.

® Assignment Operator (=):

The Assignment Operator is used in any valid expression in C++.
Assume ‘x’ is a variable and we want to assign a value ‘10’ to it.
Here, we can use the following Assignment Operator:

x=10;

In this case, ‘10’ is the integer value. The part on the left of the
Assignment Operator is the ‘lvalue’ or left value and the right
part of the Assignment Operator is the ‘rvalue’ or the right value.

Example:

// This is an example of assignment operator

#include <iostream.h>

int main

{

int

KX KX

cout
cout
cout
cout

X,
10;

= 4;

Vi
7;

<<
<<
<<
<<

0

yi

return 0;

// x:?,

y:?

!/
//
//
//

X
X
X
X

:10,

:10,
14,
14,

y:?
y:4
y:4
y:7

PR FAST TRACK |35

m Ci+

The output of the above program will be:
x:4 y:7

In the above program, two variables ‘x’ and ‘y’ are declared.
Here ‘x’ is assigned ‘4’ and ‘y’ is assigned ‘7. Here, we have
declared x=y using the Assignment operator, hence modification

of ‘y” affects ‘x’ variable.

® Arithmetic operators:
There are five Arithmetical operators in C++:

Arithmetic Operators Function the Operators

+ addition

- subtraction

* multiplication
/ division

% modulo

@ Compound assignment :

Symbols that are regarded as Compound assignments and are as
follows: +=, -=, *=, /=, %=, >>=, <<=, &=, "=, |=.

Compound assignment is the combination of two operators.
Example:

// This 1is an example of compound assignment
operators

#include <iostream.h>
int main ()
{

int x, y=4;

X =Yy,

36 ‘ PR FAST TRACK

Ct+ m

x+=3; // this compound assignment
is equivalent to x=x+3
cout << x;
return 0;
}
The output of this program is as follows:

® Increase (++) and decrease(--) Operator:
The increase operator (++) increases the value stored in a variable,
while the decrease operator (--) performs the opposite.

® Relational and Equality operators:
While comparing two expressions, Relational and Equality
Operators are used. Relational Operators always return a Boolean
value (either True or False). The functions of various Relational
and Equality Operators are as follows:

Operators Function of the Operator
== Equal to
= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

® Logical operators:

There are three types of Logical Operators: *!’, ‘&&” and ‘II’. We use
‘1’ in order to perform the ‘NOT’ Boolean operation. ‘&&’ (AND) and
the ‘II’ (OR) operators are used to evaluate two expressions in
order to get a single result.

‘&’ returns ‘TRUE’ if both expressions are separated. If either
of these expressions is false, then the operator returns ‘FALSE’.

P FAST TRACK |37

m Ci+

‘||’ returns if any of the expressions or both expressions
returns true.

Example:

((6 == 6) && (4 > 7)) // This operator can
evaluate to false (true && false).

((6 == 6) || (4 > 7)) // This operator can
evaluate to true (true || false).

o Conditional operator
The symbol (?) is used as the Conditional operator. Look at the syn-
tax of the Conditional Operator:

condition? resultl: result2

This operator can evaluate an expression and return a value if
that is true. If the expression is incorrect i.e. If the condition
returns true then it yields a different value. In the above syntax, if
the condition returns true, resultl is executed, or else result2
is executed.

Example:

// This is an example of conditional operator

#include <iostream.h>

int main ()

{

cout << z;

return 0;

38 ’ PR FAST TRACK

Ct+ m

The output of the above program is as follows:

7

Three variables of integer type are declared in the first line of
the program above. Next, the value ‘2’ is assigned to ‘x’ and ‘7’ is
assigned to ‘y’. Further, a conditional operator is used. If the value
of ‘x’ is greater than that of ‘y’, then ‘x’ is assigned to ‘z’, else ‘y’
is assigned to ‘z’. Here, the value of ‘x’ is not greater than that of
‘y’. Therefore, the value of ‘y’ (7) is assigned to ‘z’. Finally, the
value of ‘z’ is displayed on the screen as seen above.

o Comma operator
The comma (,) is regarded as the Comma Operator and is used to
separate two expressions.

Example:

X = (YZBI y+2)'.

In the above line, ‘x’ and ‘y’ are two variables. Here, y=3 and
y+2 are separated by a Comma Operator.

@ Bitwise Operators:
Symbols that are regarded as the Bitwise Operators are: &, |, *,

~, <<, >,

These are used to modify variables that can consider bit pat-
terns and can represent the values stored by them.

Operator asm equivalent Description of the Operator

& AND Bitwise AND

| OR Bitwise Inclusive OR

~ XOR Bitwise Exclusive OR

~ NOT Unary complement (bit inversion)
<< SHL Shift Left

PR FAST TRACK |39

m Ci+

>> SHR Shift Right

@ Explicit type casting operator:

We can convert the datum of a given type to another type by using
the Explicit type casting operator that accepts a single parameter.
This parameter can be either a type or another variable. sizeof ()
is regarded as an Explicit type casting operator.

Example:

x = sizeof (char);

® Precedence of operators:

While writing a complex expression involving multiple operands,
we may encounter difficulties in deciding the sequence of
operands in the preferred order.

Let us look at the priority order from greatest to lowest:

Operator Description Grouping
scope Left-to-right

() [l . => ++ -- dynamic_cast

static_cast reinterpret cast

const cast typeid postfix Left-to-right
++ -— ~ | sizeof new delete unary (prefix) Right-to-left
* & indirection and reference Right-to-left
+ - unary sign operator Right-to-left
(type) type casting Right-to-left
K> F pointer-to-member Left-to-right
* /% multiplicative Left-to-right
+ - additive Left-to-right
<< >> shift Left-to-right
< > <= >= relational Left-to-right
= I= equality Left-to-right
& bitwise AND Left-to-right
~ bitwise XOR Left-to-right
| bitwise OR Left-to-right
&& logical AND Left-to-right

40 ‘ PR FAST TRACK

Ct+ m

[logical OR Left-to-right
?: conditional Right-to-left
=F= /= %= += —= >>= <=

&= "= |= assignment Right-to-left
s comma Left-to-right

By using the standard Input Output library, we can interact with
users by displaying messages on the screen. Here, users can pro-
vide inputs by typing via a keyboard. C++ uses the concept of
‘streams’ to perform input and output operations. This is nothing
but an object where programmers can either insert to, or extract
characters from. In several programs used here, we have seen that
the programs start with a header i.e. ‘iostream.h’. The standard
C++ library comprises the header file of ‘iostream.h’.

The screen is the standard output of a program and ‘cout’ is
defined as the C++ stream object that is to be accessed. The pro-
grammers use ‘cout’ with an insertion operator that is inserted
after a double less-than sign.

The keyboard is the standard input device, and is handled by
inserting the >> sign on the ‘cin’ stream. After the operator, a
variable is inserted and this variable can store the data that is later
extracted from the stream.

Example:

// This is an example of basic input and output
in C++

#include <iostream.h>
int main ()

{

int i;

P FAST TRACK |41

m Ci+

cout << “The value that is to be insert-
ed is: “;

cin >> 1;

cout << “You have inserted this value “
<< i;

cout << “ and the double wvalue is “ <<
i*2 << “A\n”;

return O;

The output of this program is as follows:

The value that is to be inserted is: 702
You have inserted this value 702 and the double
value is 1404.

In the above program an integer variable ‘i’ is created. Next, a
message is displayed on the screen. Next the program accepts the
input from the user and the value is assigned to the variable ‘i’.
The fourth line displays a string as well as the value of ‘i’. The last
line prints a string and the value of ‘i’ after adding ‘2’ with it.

42 ‘ PR FAST TRACK

W
Control Structures

n previous chapters, we have seen that a program is a set of

statements separated by a semi colon. Also, these statements

are executed sequentially (one after another) from top to bot-
tom. However, at times, the program needs to be executed either a
statement of a block at a time, depending on certain conditions.
This is known as control structure. There are two concepts
involved here - Branching and Looping.

4.1 Branching

The conditional execution of a statement or a group of statements
is known as Branching. For these purpose C++ provides the follow-
ing two methods.

4.1.1 The if Statement
The ‘if’ keyword is used to execute a statement or a group of state-
ments with a specified condition.

The syntax for ‘if’ is as follows

if (condition)
statement;

The statement will be executed when the condition is true, For
example,

if (n>10)
cout<<”Value of n ="<<n;

In the above code, if the value of the variable ‘n’ is greater than
10, then the value of ‘n’ will be displayed on the screen.

PR FAST TRACK |43

m Ci+

Enclose the statements within{ } if you need to execute them
as a group rather than individually. You can also use{ } for each
statement. The syntax for multiple statements is as follows:

if (condition)
{
statement 1;
statement 2;

statement n;

Here ‘n’ represents the number of statements. You can also rep-
resent this in the following way:

1if (n>10)
{

cout<<”Value of n=";
cout<<n;

Sometimes there are two set of statement(s). One set is execut-
ed when the given condition is true and the other when the con-
dition is false. Here, the ‘else’ keyword is used with the following
syntax:

if (condition)
statement;

else
statement;

The statement after ‘if’ is executed when the condition is
true. Similarly, the statement after ‘else’ is executed when the

condition is false. For example,

if (a>b)
cout<<”a 1is greater than b”;

44 ‘ I FAST TRACK

Ct+ m

else
cout<<”b is greater than a”;

Here, when the value of ‘a’ is greater than ‘b’ (the condition is
true), it displays “a is greater than b”.If not, it displays “b
is greater than a”.In this case also,{ } isrequired for mul-
tiple statements for both the ‘if’ and ‘else’ blocks.

The syntax is as follows:

if (condition)
{
statement 1;
statement 2;
statement n;
}
else
{
statement 1;
statement 2;

statement n;

Here, '‘n’ represents the no. of statements. For
example,

if (a>b)

{
cout<<”the value of a is greater than b”;
cout<<”the value is="<<a;

}

else

{
cout<<”the value of b is greater than a”;
cout<<”the value is="<<b;

P FAST TRACK |45

m Ci+

In the above example, when ‘a’ is greater than ‘©’, then it exe-
cutes the statements within{ } after the keyword ‘if’. Otherwise,
it executes the statements within { } after the ‘else’ keyword.

One can also use the ‘if’ statement within another ‘if’ state-
ment or within an ‘else’ statement. This is known as ‘nested if’
concept. For example, if we want to find out the greatest out of
three numbers stored in three variables, the code will be as follows:

if (a>b)
{
if (a>c)
{
cout<<”the greatest number is=";
cout<<a;
}
else
{
cout<<”the greatest number is=";
cout<<c;
}
}
else
{
if (b>c)
{
cout<<”the greatest number is=";
cout<<b;
}
else
{
cout<<”the greatest number is=";
cout<<c;

46 ‘ PR FAST TRACK

C++

Here, we have three integer variables - a, b and c, where the
three numbers are stored. Initially, the code checks whether ‘a’ is
greater than ‘b’ or not. If ‘a’ is greater, then it checks whether ‘a’
is greater ‘c’ or not. If this condition is true, then the greatest
number will be the value of ‘a’. Otherwise, the greatest number
will be the value of ‘c’. If the first ‘i £’ condition returns false, then
it checks whether ‘b’ is greater than ‘c’ or not, with the help of
another ‘if’ statement.

If this condition is true, then the greatest number will be the
value of ‘©’. Otherwise, the greatest number will be the value of
‘c’. You can combine multiple conditions in a single ‘if’ state-
ment with the help of logical operators such as ‘¢&” and ‘| |’. Using
this concept the previous code can be written as follows:

if (a>b && a>b)

cout<<”The greatest number ="<<a;
if (b>a && b>c)

cout<<”The greatest number ="<<b;
if (c>a && c>b)

cout<<”The greatest number ="<<c;

Program 1:

The following program will accept any year i.e. an integer value
from the user, and checks whether the year is a leap year or not.
Go through the program and its explanation carefully.

#include<iostream.h>
int main ()
{
int year;
cout<<”Please enter any year of you choice=>";
cin>>year;
if (year%$100==0)
{
if (year%400==0)
cout<<”You have entered “<<year<<” and this is

PR FAST TRACK |47

48

m Ci+

a leap year”;
else
cout<<”You have entered “<<year<<” and this is
not a leap year”;
}
else
{
if (year%4==0)
cout<<”You have entered “<<year<<” and this is
a leap year”;
else
cout<<”You have entered “<<year<<” and this is
not a leap year”;

}

The output of this program is as follows:

Please enter any year of your choice => 1998
You have entered 1998 and this is not a leap year

Before we proceed with the explanation of the program, we
need to know the criterion that decides a leap year. If a year is
divisible by 400, then it is a leap year.

In the above program, the year i.e. the integer value is accept-
ed and stored in an integer variable. The ‘i £’ statement checks
whether the value is divisible by 100. If the condition returns
true, then the second ‘if’ statement checks whether the value is
divisible by 400. If this condition is also true, then the given
value i.e. the year will be a leap year and a message is displayed
with the value entered by the user. If the second ‘if’ statement
returns false, then the year will not be a leap year and a corre-
sponding message is displayed along with the value of the year
to show the result. Now if the first ‘i f’ statement returns false,
i.e. if the value is not divisible by 100, then the control moves to
the ‘else’ part that checks whether the value is divisible by 400
or not by the second ‘i f’ statement. If this holds true, then the

FCH FAST TRACK

C++

switch (expression)

{
case 1:
statement
statement

statement
break;

case 2:
statement
statement

statement
break;

case n:
statement
statement

statement
break;

default:
statement
statement

4.1.2 The Switch Statement

This is another concept in branching. In a situation with multiple
statement(s), one of them is executed depending on the value of
the expression, this concept can be used. The syntax of the switch
statement is demonstrated below:

year is a leap year and displays a corresponding message with the
value of the year on the screen. If this is false, then the year is
not a leap year. Accordingly, a corresponding message with the
value of the year is displayed as before.

P FAST TRACK |49

m Ci+

statement n;
}

Here, ‘n’ is a positive integer. Any case from ‘1’ to ‘n’ is execut-
ed depending on the expression’s value. If there is no such value
of expression that satisfies any case, then default statement(s) are
executed. There is a slight difference in constructing blocks in an
‘if’ and ‘switch’ statement. In a ‘switch’ statement, a label
break is used to terminate a particular case instead of { } in the
case of an ‘if’ statement. Let us go through the following program
carefully.

include<iostream.h>
int main ()
{
int a;
cout<<”Enter your Choice=>";
cin>>a;
switch (a)
{
case 1:
cout<<”You are in block 17;
cout<<”\nyour choice is “<<a;

case 2:
cout<<” You are in block 2”;
cout<<”\nyour choice is “<<a;

break;

case 3:
cout<<” You are in block 3”;
cout<<”\nyour choice is “<<a;
break;

default:
cout<<”You are in block default”;
cout<<”\nyour choice is “<<a;

50 ‘ PR FAST TRACK

Ct+ m

The output of the above program is:

You are in block 1
Your choice is 1
You are in block 2
Your choice is 1

In the above program, a break is missing in the first case and
the condition satisfies the first case. Therefore, the first case state-
ment is executed. Next, the second case statement is also execut-
ed. It then reaches a break and stops execution.

If the user enters 2 or 3, then the output will be either:

You are in block 2
Your choice is 2

or,

You are in block 3
Your choice is 3

For any other number the output will be

You are in block default
Your choice is x;

Here x is the number entered by the user.

We are bound to use constants with case labels (case 1, case 2,
etc.). We cannot use variables or ranges with case labels i.e. case n
(where n is a variable) or case 1 to 3 or this kinds of case labels are
not allowed.

Program 2:
Now we are going to find out the grade of a student on the fol-

lowing conditions:

Marks Grade

PR FAST TRACK |51

m Cr+

=100
>=80
>=60
>=40
>=20
>20

Hm YO W >

Read the following program carefully.

include<iostream.h>
int main ()
{
int a,b;
cout<<”Enter your marks=>";
cin>>a;
b=a/20;
switch (b)
{
case 5:
cout<<”You have obtained “<a<<” marks”;
cout<<”\nYour grade is A”;
break;
case 4:
cout<<”You have obtained “<a<<” marks”;
cout<<”\nYour grade is B”;
break;

case 3:
cout<<”You have obtained “<a<<” marks”;
cout<<”\nYour grade is C”;
break;

case 2:
cout<<”You have obtained “<a<<” marks”;
cout<<”\nYour grade is D”;
break;

52 ‘ PR FAST TRACK

ot m

case 1:
cout<<”You have obtained “<a<<” marks”;
cout<<”\nYour grade is E”;
break;

default:
cout<<”You have obtained “<a<<” marks”;
cout<<”\nyour grade is F”;

In the above program, you need to enter marks obtained by a
student, where the total marks is 100. Hence, the entered number
should be less than or equal to 100. The marks are accepted and
stored in the integer variable ‘a’. Assuming the user enters ‘67’.
The output will be as follows:

You have obtained 67 marks
Your grade is C

Since the entered number is 67, the value of b is ‘3’. Therefore,
the statements for case 3 will be executed to provide the above out-
put. Depending on the value entered by the user, the default state-
ment(s) are executed and provides us the desired result.

4.2 Looping

There are instances where we need to execute a block of state-
ments in a loop as long as a condition holds true. There are two
types of loops — exit control loop and entry control loop. In an exit
control, the loop condition is checked after execution of the state-
ment(s) while in the looping block. When the condition returns
true, the control enters the loop once again. The do-while state-
ment falls under this category. Similarly, in an entry control loop,

PR FAST TRACK |53

m Ci+

the condition is checked when the control of execution tries to
enter the loop. There are two types of entry control loops — one is
the ‘while’ statement, and the other is the ‘for’ statement.

4.2.1 do-while Statement
The syntax of do-while statement is as follows:
do

{

statement 1;
statement 2;
statement n;

} while(condition);

Here, n is a positive integer. A single statement can also be used
within a loop, and the braces are not mandatory. Now let us see
how the loop works. In an exit control loop, the body of the loop
executes at least once irrespective of the condition. After execu-
tion, the condition is checked. If it holds true, then the body of the
loop is executed again. This process continues till the condition
returns false. For example,

#include<iostream.h>

int main()

{

int roll;

char name[30] ;

float marks;

char ch;
do

{
cout<<”Enter your roll no.=>";
cin>>roll;

cout<<”Enter your name=>";

cin>>name;
cout<<”Enter your marks=>";
cin>>marks;
cout<<”\nYour name is “<<name;
cout<<”\nYour roll no. is “<roll;
cout<<”\nYour marks 1is “<marks;

54 ‘ PR FAST TRACK

Ct+ m

cout<<”\nWant to enter another record=>";
cin>>ch;
}while(ch=="y");

}

In this program, there are 3 variables - ‘roll’, ‘name’ and
‘marks’ are created to accept the values of roll no, name and
marks of a student, respectively. Also, another variable ‘ch’ is cre-
ated to accept the user’s choice whether he wants to enter anoth-
er record or not. Initially, the variable ‘ch’ is not given any value.
The do-while loop enters into the body of the loop without check-
ing for any condition. The reason — it is an exit control loop. Next,
it accepts the roll no, name and address from the user and also dis-
plays the entered information as follows:

Your name is=><the name entered by user>
Your roll no. is=><the roll no entered by user>
Your marks is=><the marks entered by user>

Another line is displayed on the screen to ask the user for
another record. Next, the response from the user is checked by the
‘while’ statement. If the condition holds true, then the body of
the loop is executed, or else the execution stops. The message dis-
played is:

Want to enter another record=>

If the user enters ‘y’, then the condition holds true, and the
body of the loop is executed once more. That is, it again accepts and
displays the values of roll no., name and marks. This process con-
tinues until the user enters any character other than ‘y’ (say ‘n’).

4.2.2 While Statement
This is an entry control loop. The syntax of while is as follows

while (condition)

{

statement 1;

PR FAST TRACK |55

56

m Ci+

statement 2;
statement n;

}

In this kind of loop, first the condition is checked. If the con-
dition holds true, then the body of the loop is executed. After exe-
cution, the condition is checked and executes depending on the
return value of the condition. This process continues till the con-
dition returns false.

Program 4
Now if we want to display the first 10 integers on screen, the pro-
gram will be as follows

#include<iostream.h>
int main()
{

int x=1;

while (x<=10)

{

cout<<”\ t”<<x;

X++;

}

The output of the above program will be
1 2 3 4 5 6 7 8 9 10

Initially, an integer variable ‘x’ is created and initialized by ‘1.
Next, the condition checks whether the value of ‘x’ is less than or
equal to ‘10’. The condition obviously holds true and the body of
the loop is executed. ‘1’ is displayed on the screen and also the
value of ‘x’ is incremented by 1. Again the condition is checked
and the body of the loop is executed. This process continues till
the value of ‘x’ is greater than 10, i.e. 11. When the value of ‘x’ is
11, then the condition will return false, and the body of the loop
is not executed further.

FCH FAST TRACK

Ct+ m

The continue statement

There may be situations where we want to skip the execution of
the body of the loop for a particular condition. Yet, we do not want
to completely stop the execution of the loop. Therefore, we need to
use the ‘continue’ statement. Normally, the statement(s) within
the body of the loop are executed sequentially till the last state-
ment is reached. However, during the execution when the ‘con-
tinue’ statement is found, the remaining statement(s) of the loop
are skipped by the compiler. This means that these statement(s)
are not executed and control reach the end of the loop and again
check the condition of the loop. The syntax given below will
demonstrate this concept.

while (condition)
{
statement 1;
statement 2;
if (condition)
{
statement 3;
continue;

}

statement 4;

At first the condition of loop is checked. If this condition holds
true, then the body of the loop is executed. Next, a condition is
applied through the ‘if’ statement. When this condition holds
true, the statement(s) within the ‘i f’ block are executed. After exe-
cuting some statements, the ‘continue’ statement is reached and
the remaining statements within the loop are skipped. Finally, the
condition of the loop is checked as usual.

PR FAST TRACK |57

58

m Cr+

Program 5

finclude<iostream.h>
int main ()
{
int x=1;
while (x<=10)
{
if (x==7)
{
cout<<”\n\tWe skipped a number\n”;
x=x+1;
continue;
}
cout<<”\ t”<<x;
x=x+1;

Output of the above program is

12 3 4 5 6
We skipped a number
89 10

Initially, the execution will be the same as the earlier program.
Numbers from 1 to 6 will be displayed. After that, the value of ‘x’
will be 7. This is less than 10. Therefore, the control enters into a
loop. However, the ‘if’ statement holds true and enters the ‘if’
block. Here, the message “We skipped a number” is displayed.
Next, the value of ‘x’ is increased by ‘1’ and reaches the ‘continue’
statement. Therefore, the remaining statements in the loop are
not executed, and the condition for the ‘while’ statement is
checked. Since the value of ‘x’ is now 8, the body of the loop is exe-
cuted, thereby displaying the numbers from 8 to 10. The number
7 is not displayed because of the ‘continue’ statement.

FCH FAST TRACK

Ct+ m

The Break Statement

Sometimes we want to stop the execution of a loop before its end.
This is where we use the ‘break’ statement. When this statement
is reached, control leaves the loop and continues to execute the
statements after the loop.

Program 6

finclude<iostream.h>
int main ()
{

int x=1;

while (x<=10)

{
if (x==6)

{
cout<<”\nExecution of loop ends here”;
break;

}
cout<<x<<”\t”;
x=x+1;

Output of the above program will be

12 3 4 5
Execution of loop ends here

In this program, an integer variable is created and initialized
with ‘0’. The ‘while’ loop starts, and the body of the loop is exe-
cuted if the value of ‘x’ is less than, or equal to 0. However, when
the value of ‘x’ becomes ‘6, the ‘if’ statement written within the
loop holds true and its block is executed and displays the message
“Execution of loop ends here”. Finally, the ‘break’ state-
ment is reached, and the control leaves the loop without checking
the condition.

FIH FAST TRACK |59

m Ci+

Program 7
The following program accepts a number from the user. If the user
enters an even number, it stops execution.

finclude<iostream.h>
int main ()
{
int x;
char check= vy ;
while (check== vy)
{
cout<<”Execution will stop if you enter even
number”;
cout<<”\nEnter a number=>";
cin>>x;
if (x%2==0)
{
cout<<”\nyou have entered an even number”;
check="n’ ;

Here, the program first creates an integer variable ‘x’ and a
character variable ‘check’. The character variable is then initial-
ized by ‘y’. If the condition of ‘while’ holds true, the control
enters the loop. Here, it prompts the user to enter a number. If the
user enters an odd number, then the ‘if’ condition holds false.
The value of ‘check’ will remain ‘y’. Therefore, the condition of
the loop holds true and the body of the loop is executed again.
This process continues till the user enters an even number. If the
user enters an even number, the ‘if’ condition holds true and its
body is executed which prints a message. The value of check
becomes ‘n’. Finally, the condition of the loop is checked, and the
execution of the program ends once the condition is false.

60 ‘ PR FAST TRACK

Ct+ m

4.2.3 For Statement

In this case, the condition of the loop is first checked. If it holds
true, only then is the body of the loop executed. The syntax of this
loop is as follows:

for (initialization;condition;increment or decre-
ment)

{

statement 1;

statement 2;

statement n;

Here, ‘n’ is a positive integer. Initialization refers to the initial-
ization of the variable. This counts the number of times the body
of the loop is executed. Condition refers to whether the body of
the loop is executed or not. If this condition holds true, the body
of the loop is executed. Increment or decrement is the part that
increases or decreases the value of the variable discussed above.
The variable should be declared earlier as other variables will be
initialized by some value and then the condition will be checked.
If the condition returns true, the body of the loop will be execut-
ed. Finally, before rechecking the condition, the value of the vari-
able is increased or decreased as per requirement. The initializa-
tion takes place only once. After that, this portion will not be exe-
cuted regardless the number of times the body of the loop execute.

The following program will display only the first 10 integers.

We have done this before using ‘while’ loop, but this will help us
to understand how a ‘for’ loop works.

PR FAST TRACK |61

62

m Ci+

Program 8
#include<iostream.h>
int main()

{
int x;
for (x=1;x<=10; x++)
cout<<x<<”\t”;

The output of the above program will be:
12 3 4 5 6 7 8 9 10

Initially, an integer variable ‘x’ is created. Then, it enters the
‘for’ loop for the first time. The variable is then initialized by 1.
Then the condition is checked. As it holds true, the body of the
loop is executed and the value of ‘x’, i.e. 1 is printed. Next, the
value of ‘x’ is increased by 1. Further, the condition of the loop is
checked. If this holds true, the previous process continues. Here,
the condition will holds true till the value of ‘x’ becomes greater
than 10, i.e. it becomes 11.

Program 9
This program finds the factorial of a number.

finclude<iostream.h>
int main ()
{
int x,y,fact;
cout<<”Enter a number=>";
cin>>x;
fact=1;
for (y=1; y<=x;y++)
{
fact=fact*y;
}
cout<<”\nFactorial of “W<x<<” 1is “<fact;

}
FICH FAST TRACK

Ct+ m

[I

In the above program, there are three integer variables ‘x’, ‘y
and ‘fact’. The number entered by the user is accepted and stored
in the variable ‘x’. The program calculates the factorial of the
value of ‘x’. Assuming the user entered the value ‘3’. The variable
‘fact’ is then initialized by ‘1’. Next, the ‘for’ loop starts. Here,
the variable ‘y’ is initialized by ‘1’. As the value of ‘y’ is now less
than the value of ‘x’, the loop block is executed. Now the value of
‘fact’ is 1. The value of ‘y’ is now increased by ‘1’. The condition
is then checked to verify whether it holds true. After execution of
the body of the loop, the value of ‘fact’ will be 2, and ‘y’ is again
increased by ‘1’. The loop is executed as mentioned above. The
value of ‘fact’ will now be ‘6°, and the value of ‘y’ will be ‘4’. This
time, the condition holds false, and the statement after the loop is
executed. The output on the screen is:

Factorial of 3 is 6.

This program is executed in the same way, irrespective of the
value entered by the user. However, the user must enter a positive
integer to obtain the correct answer.

Note:

The above program will provide incorrect results if the value of
‘x’ or ‘fact’ goes beyond the range of integers variable.

The ‘continue’ and ‘break’ statements can be used in case of

all the loops. Since these statements were described in case of
‘while’ statement, we did not mention them for other loops.

PR FAST TRACK |63

v
Functions

5.1 Main Function

Functions are vital in programming development. For the sake of
convenience and simplicity, a program is divided into smaller
units called functions. This is one of the major principles of
sequential structural programming. However, the advantage of
using functions in a program is to reduce the size of the program.
The functions are called at different phases of the program to sim-
plify its execution.

Themain () function generally returns a value of type int. The
language defines the main () method and matches one of the fol-
lowing prototypes. These are as follows:

int main();

int main(int argc, char * argvi]);

It is to be noted that functions returning a value should always
use the return statement. Hence, whenever we declare and define
a function, it should be declared as follows:

int main ()

...... statements ...
e s Statements.........

return 0;

By default, the return functions is of type int and is consid-
ered optional in the main () header of a program. For any function
that has a return value, there should be a return statement with-

FIEH FAST TRACK |65

66

n Ci+

in the definition of the function. Normally this is supposed to be
the last statement of the function, else the C++ compiler will gen-
erate errors or a warning shall be issued in the absence of a return
statement.

5.2 Function Prototyping

This is one of the most important features in C++. The prototype
mainly ensures that whenever a function is called, it is used prop-
erly with its right parameters. It also describes the function inter-
face to the complier by giving details about the type of arguments
and return values. This helps to conveniently call the function
rather the entire definition. It is usually defined as a declaration
statement in the calling program. The main form of declaring a
function prototype is as follows:

Return type name (argument typel, argument type2,

)i

Return type refers to the data type returned by the function.
name is related to the name of the function, while
argument typel, argument type2, etc. refer to parameters
passed to the function when it is called.

Consider the following example:
float volume (int m, float n, float o);

Here, volume is the name of the function that returns a float
value. Parameters that are passed within this float function
include m (int), n (float) and o (float). The prototype described
above is identical to a function definition, except that this is not
related to the function body. The parameters that are passed and
enumerated don't need to include identifiers, but only the type
specifiers are included. In the prototype declaration, it is optional
to include a name for each parameter. For instance let us declare
a function called Example which accepts two parameters of type
integer. This is shown below:

FCH FAST TRACK

Ct+ n

int Example (int p, int q);
int Example (int, int);

Functions help us in structuring various programs in a much
more modular way. In simple terms, it can be best described as a
group of executable statements that can be executed when called
at some point in the program.

The following format best explains this:

type name (parameterl, parameter2, ...) { state-
ments }

Here, type is the data type specifier that specifies the type of
data returned by the function. name is the identifier that mainly
calls the function. The third and the most important factor is the
parameter. Each parameter passed, consists of a data type specifi-
er followed by an identifier. The parameter also allows arguments
to pass to that particular function when it is called at a certain
phase in the program. Parameters passed must always be separat-
ed by commas.

Consider two programs where this concept is implemented.

Program1
// function example

#include <iostream.h >
int add(int x, int y) // a function add is
declared with two variables x and y as parameters
{
int z;
z=x+y;
return (z);
}
int main ()

{

FIEH FAST TRACK |67

68

n Cr+

int m;
m = add(10,9); // the function add is called in
the main method
cout << "The result is " <<m;
return 0;
}
Output: The result is 19

Here, in the main function of the above program, first a vari-
able called m is declared of the type int. The next line of the
program calls a function named add which is defined above.
The result of this function is stored in the variable m. Two values
10 and 9 are passed as values within the function that corre-
spond to the int x and int y parameters declared for func-
tion addition. The value of both the arguments that are passed
in the function are subsequently copied to the local variables x
and y. Now note in the function declaration, a function called
add is declared with two parameters x and of the type int.
Another variable called z is then declared of the type int which
stores the result of the addition.

return (z); is one of the main statements of the program.
This statement returns the control to that part of the program
that called the function and also returns the value passed by it. In
this case, since the function add is called by the variable m in the
main function, it will return the control to the statement m =
add (10, 9) ; and value of z will be assigned to m. The value of m is
then displayed.

Program2
#include <iostream.h>
int sub(int m, int n)
{

int k;

k=m-n;

return (k);

FCH FAST TRACK

s n

int main ()
{
int x=5, y=3, v;
v = sub(7,2);
cout << "The first result is " << v << "\n';
cout << "The second result is " << sub(7,2) <<
"\n';
cout << "The third result is " << sub(x,y) <<
"\n';
v= 4 + sub(x,V);
cout << "The fourth result is " <<v << "\n';
return 0;

The output of this program is:

The first result is 5
The second result is 5
The third result is 2
The fourth result is 6

Here, within the main () function, a variable v of the type int
is declared. Another two variables x and y are declared and ini-
tialised with values 5 and 3, respectively. In the next line, the func-
tion sub is called by the variable v. Two values, 7 and 2, are passed
to this function. Then the function sub is executed. The values 7
and 2 is assigned to the local variables m and n, respectively, and
the result of subtraction is stored in another local variable k.
Hence, the value of k will be 5. The function sub returns the value
of k. This return value is stored in the variable v used to call the
function sub. Next, cout displays the value of v. Next, the func-
tion sub is again called by the same values. However, this time the
return value will be displayed directly by cout without assigning
it to any variable. After that the function sub is again called, but
this time two variables mentioned above are passed to it. So the
function sub will be executed with the values of the variables x

PR FAST TRACK |69

70

n C++

and y and the value returned by the function sub will be 2 in this
case is displayed. In the next line the function sub is again called
by the variables x and y. This time the return value is stored in the
variable v after adding 4 to it. So the value of v will be 6 and is dis-
played by the next line.

5.3. Call By Reference

Before understanding Call by reference let us discuss what hap-
pens when arguments are passed by value. Generally, any argu-
ment passed to the function, is passed by value. Therefore, when-
ever a function is called, along with its parameters a copy of the
values of the variables is passed, but not the actual variables.
Consider the following example.

int m=5, y=3, k;
k= adding (m,y);

Here, the function adding is called and the values of the
respective variables m and y, 5 and 3 but the original variables are
never passed. However, in some situations, the need arises to
manipulate the value of a certain variable from within a function.
This can be explained with the help of the following program.

// passing parameters by reference

finclude <iostream.h>
void duplet (int& m, inté& n, inté& o)
{
m*=2;
n*=2;
ox=2;
}
int main ()

{
int x=2, y=7, z=9;

FCH FAST TRACK

Ct+ n

duplet (x, vy, z);
cout << "x=" << x KK ", y=" K y <", z="
<< z;

return 0;

The output of this program is:
x=4, y=14, z=18

Here, the main part is the declaration of the function
duplet. The type of parameters passed are followed by &. This
specifies that the arguments that are passed should be passed
by reference and not by value, that is, we associate the vari-
ables m, n and o with the arguments passed to the function.
This method of passing arguments by reference is different
from that of passing arguments by address in C. While passing
an argument by address, the process involves passing the
address of the variable rather the variable itself. If the above
program is written using the concept of passing arguments by
address in C, then the program will be as follows:

#include <iostream.h>
void duplet (int* m, int* n, int* o)
{
m=2;
n=2;
*0*22;
}
int main ()
{
int x=2, y=7, z=9;
duplet (&x, &y, &z);
cout << "x=" << x KK ", y=" K y <", z="
<< z;

return 0;

PR FAST TRACK | 71

n Ci+

Here, the addresses of the variables %, y and z are passed as
argument and not variables. Then in the function definition those
addresses are assigned to the integer pointers m, n and o, respec-
tively. Here in function definition the variables are accessed with
a* operator with the pointers mentioned above.

5.4. Return By Reference

Besides the call by reference method, a function can also return a
reference. Consider the following example.

int & minimum (int& x, inté& vy)

{

if (x<y)
return x;
else
return y;

}

Here a function minimum is declared which is of the return
type int&. Due to this, a reference to the variables x and y is
returned. Hence, if another function called min is declared, then it
will refer to the variables declared inside the minimum function.

5.5 Inline Functions

With a concept known as 'inline function', the time required for
calling small functions is drastically reduced. This reduces exe-
cution time. In general terms an inline function is a function
that is expanded in line when it is invoked. It is expanded at
compile time. The main syntax for declaring an inline function
is as follows:

inline type name (arguments ...) { instructions

}

72 | FE FAST TRACK

Ct+ n

Here, type is the data type of the inline function, while name
refers to the name of that particular inline function.
For example consider the following:

inline float area(float a, float Db)

{

return (a*b) ;

}

5.6 Function Overloading

The process by which functions having the same name can be used
for performing different tasks is known as 'function overloading'.
With the help of this concept, different functions can be created
which will have a common name but different parameter lists. We
shall demonstrate this concept with the help of two examples.

Example 1

finclude <iostream.h>
int calculate (int a, int b)
{
return (a*b);
}
float calculate (float a, float b)
{
return (a/b);
}
int main ()
{
int k=5,1=2;
float 0=5.0,p=2.0;
cout << calculate (k,1);
cout << "\n";
cout << calculate (o,p);
cout << "\n";

PR FAST TRACK |73

74

n Cr+

return 0;

The output of the program is as follows:
10
2.5

Here, we declared and defined two functions having the
same name - calculate. However, the major difference between
the declarations is that one of the functions accepts parameters
of type integer, while the other function accepts parameters of
the type float. In the first function call, the two parameters
passed are of the type int and the result is the product of the
two integers that are passed. Similarly, while calling the second
function, the result is division of two numbers. It is apparent
from the above that although the names of the functions are
the same, the tasks they are performing are different. This
means the function is overloaded.

Example 2

#include <iostream.h>

int vol (int); // first function,
with int as parameter type

double vol (double, int); // second function
with int and double as parameter type

long vol(long, int, int) // third function
with long,int and int as parameter

int main ()

{

cout << vol(20) <<"\n";

cout << vol(3.5,6) <<"\n";
cout << vol(1501,50,45) <<"\n";
return 0;

}

FCH FAST TRACK

C++

// defining the functions declared above
int vol (int x)

{

return (x* x*x) ;

}

double vol(double r, int vy)
{
return (3.15r*r*y);

}

long vol(long m,int n, int o)
{
return (m* n* o) ;

}

The output of this program is:

8000
231.525
337500

This is an example of an overloaded function. Here the func-
tion vol is declared and defined thrice with three different types
of parameters. Three different types of operations or tasks are per-
formed, although the name of the function remains the same. The
first function deals with the volume of a cube with side x. The sec-
ond is related to the volume of a cylinder with height as y and
radius r. The last one deals with volume of a body having length
m, breadth n and height o.

PR FAST TRACK | 75

|
Classes And Objects

class is used for binding data and the functions that work

on them. In other words, a class may also be considered as

n expanded form of a data structure. It has the unique fea-

ture of holding data and functions together. While creating a

class, we use the keyword class. Classes can also be instantiated

and the object is an instantiation of the class. While declaring

objects, assume class as the user-defined data type, and object as
the variable.

A class is declared as follows:
class class _name ({
access specifier 1:
member 1;

access specifier 2:
member 2;

} object names;

Here, class name is the name of the particular class or a
valid identifier of it. Access specifiers determine the visibility of
the members. An access specifier can be either private, protected
or public. A member when declared as private can be accessible
only by the other members of the same class, while a member
declared as protected can be accessed by members of the same
class, as well as members from their derived classes. Similarly, if
we declare a member as public, it can be accessed from any part
of the program where it is visible.

However, by default all data members of a class that are
declared are private in nature. member 1, member 2, etc.rep-
resent data members or methods of the class declared.
Object names represents the name of the object. If we want
to create multiple objects, then their names should be separat-
ed by commas and a semicolon, else the declaration is termi-

PR FAST TRACK | 77

78

n Ci+

nated with a semicolon after the closing curly brace (}). Objects
can also be created within the main () function. The syntax is
as follows:

Class_name object_name;

Here, class refers to the class whose object is to be created.
object name represents the name of the object.

6.1. Specifying A Class

A declared class has two types of specifications:
1.Class declaration
2.Definition of class function

Consider the following class example:

class QRect

{

int m,n;

public:

void setter (int, int);
int area(void); } rect;

Here, a class QRect is declared with two private variables m
and n. Next, two methods are declared - setter and area. The
variables declared are data members, while methods are known as
member functions. rect is the object of class QRect.

Consider the following programs.
Program 1
#include <iostream.h>

class Calculation {
int x, vy;

FCH FAST TRACK

ot n

public:
void set values (int,int);
int area () {return (x*y) }

b

void Calculation::set values (int a, int b) {

X = aj;
y = b;
}
int main () {

Calculation rl, r2;

rl.set values (6,7);

r2.set values (8,8);

cout << “rl area: ™ << rl.area() << endl;
cout << “r2.area: “ << r2.area() << endl;
return 0;

The output of this program is:

rl area: 42
r2.area: 64

Here, a class called calculation is declared. It has two private
members, x and y. Next, two public member functions are
declared - set_values and area. In the main method, two instances
or objects of the class Calculation are declared. They are r1 and r2,
respectively. Both r1 and r2 access the set_value and area methods
with the help of the . operator.

Program 2
// classes example

#include <iostream.h>

class CI1{

int x, y;

PR FAST TRACK | 79

n Ci+

public:
void sl (int, int);
int area () {return (x*y);}
b
void Cl::sl(int a, int b) {
X = a;
y = b;

int main () {
Cl r5;
r5.s1(6,5);
cout << “area: ™ << r5.area();
return 0;

The output of this program is:
area: 30

Here, a class called C1 is declared. Next, within the class
declaration, two private variables x and y are declared. Another
two public member functions are declared - s1 and area. Also,
note the scope (::) resolution operator that is used to define a
class member from outside the class definition. The function s1
that is declared within the class definition, has only its proto-
type declared within the class itself. Similarly, the function area
is properly defined. Next, the scope resolution operator is used
to define that the function s1 that is a member of the class C1.
Within the main method, an object r5 is created that is an
instance of the class C1. This object r5 calls the member func-
tion s1 using dot operator and proper arguments.

80 | A FAST TRACK

C++

6.2 Defining Member Functions

As we can see, member functions can be defined in two places -
outside, and within the class definition. Consider the case where
the member function is defined outside the class definition. A
member function should always be defined separately outside a
class, if its prototype is declared inside a class. There is an impor-
tant difference between a member function and a normal func-
tion. A member function has an identity label in its header that
tells the compiler which class the function belongs to.
Normally, a member function is defined as follows:
return-type class-name :: function-name (argu-
ment declaration)
{
function body
}

Consider the following section of code.

void OurClass :: get data(int k, int n)
{
number = k;
cost = n;
}
void OurClass :: put data(void)

cout <<” Number : “ << number <<”\n”;
cout << “cost : “<cost <<”\n”;

}

Here, get dataand put_data are two member functions of
the class OurClass. Neither return any value, and hence their
return type is void. : : is known as the scope resolution operator
as discussed above. A member function can also be defined by
replacing the function declaration with the actual function defi-
nition within the class.

PR FAST TRACK |81

n Ci+

6.3 A C++ Program With Class

In this section, let us consider a program where the above con-
cepts are implemented.

#include<iostream.h>
class il

{

int number;

float cost;

public:
void get value(int x, float y);
void put value (void)

{

cout<< “number :” <<number<<”\n”;

cout <<”cost:” << cost <<"\n”;

}

b

void il :: get value (int x, float vy)
{

number = XxX;

cost = y; }

int main ()
{
il i2;

cout <<”\n object i2 “<<”\n”;

i2.get value(378,78.6);
i2.put value();

il 1i3;
cout <<”\n object i3 “<<”\n”;

i3.get value(37,8.6);

82 | FER FAST TRACK

Ct+ n

i3.put value();

return O;

}
The output of this program is as follows:

object 12
number: 378
cost :78.6

object 13
number: 37
cost:8.6

Now let us come to the explanation part of the program.
First a class 11 is defined. It contains two private variables, and
two public functions. The private variable is a number and
cost, while the two public member functions are get value
and the put value. Within the class declaration, only the pro-
totype of the function get value is declared. This function is
then defined outside the class and provides value to both the
variables. Therefore, member functions can have direct access
to private data members. Similarly, the put value method is
defined inside the class. This means that the function
put value behaves as an inline function. This function dis-
plays the values of the two private variables - number and cost.
Within the main () function two objects i2 and i3 are created
and the methods described above are called by these objects
with proper argument.

P FAST TRACK |83

n Ci+

6.4 Nesting Of Member Functions

A member function of a class is an object of that class by using the
dot operator. It can also be called using its name inside another
function. This feature is known as nesting of member func-
tions. The following program illustrates this feature:

/| A program showing nesting of member function.
#include<iostream.h>

class sl

{

int m,o;

public:

void il (void) ;

void dl (void) ;

int 11 (void);

i

int sl :: 11 (void)
{

if (m>= o)
return (m) ;

else

return (o) ;

}

void sl :: il (void)
{

cout<<”input values of m and o”<<”\n”;
cin>>m>>0;

}

void sl :: dl(void)

{

cout << “largest value= “ <<11()<<”"\n”; // the
member function 11() is called

}

84 | KRl FAST TRACK

Ct+ n

int main()
{

sl s2;
s2.11();
s2.d1();
return 0;

}

The output of this program is:
Input values of m and o
6778

[These values are entered by the user from keyboard during
execution of the program)|

largest value=78

A class sl is first declared with two private variables m and
other public member functions are declared within the class and
these are i1, d1 and 11, respectively. The next part of the pro-
gram defines these functions one after the other. The function 11
deals with an if statement that checks which is greater among
the two variables. The function i1 helps to take input values for
these variables. It is to be noted that when the function dl is
defined, it calls the member function 11, a case of nesting of
member functions.

PR FAST TRACK | 85

86

n Ci+

6.5 Static Member Functions

This type of variable is declared using the keyword static followed
by the data type and name of the variable. This is shown in the pro-
gram given below. The static member variable has some special
features. They are initialized with 0 when the first object is creat-
ed. Only one copy of the variable is created, irrespective of the
number of objects declared. The same copy is shared by all the
objects. A member function is called static if it has the following
properties:

® While calling a static member function, the class name should
be used instead of its objects:
class-name :: function-name

® A function declared static can have access to only other static
members - functions and variables declared within the same
class.

This is highlighted in the following program.

#include <iostream.h>
class tl

{

int x;
static int y; // This is a static member vari-
able
public:
void set (void)

X= ++y;
void show (void)

{

cout<< “object number: “ <<x <<”\n”;

}

FCH FAST TRACK

ot n

static void sl (void) // static member function
{

cout<<”count: “<y<<”\n”;

}

b

int tl :: y;

int main()

{
tl ml,m2;
ml.set();
m2.set () ;

tl :: sl1();
tl m3;
m3.set () ;

ml.show () ;
m2.show () ;
m3.show () ;
return 0;

The output of the program is as follows:

count: 2

object number: 1
object number: 2
object number: 3

Here, a class t1 is declared. Two member variables x and y are
declared. Here, y is the static member variable. The next three
public methods to be declared are set, show and s1. s1 is the stat-
ic member function that displays the number of objects created
till that moment. Similarly, the static member variable y main-

P FAST TRACK |87

88

n Ci+

tains the count of the number of objects that is created. The show()
function displays the code number for each object. Consider the
statement x = ++y;

This statement is executed whenever the set() function is called
and the current value of the variable y is assigned to the code.

6.6 Friendly Functions

Consider a case where two classes, engineer and chemist are
defined and we want a function behavior () to operate on the
objects of these classes. C++ allows the common function to be
friendly to both the classes. This allows the particular function to
have access to the private data of these classes.

For making a function friendly to a class, we must declare the
function as a friend of the class as follows;

class MN
{

public:

friend void pgr (void)

b

Here, the function pqgr is declared as a friend function. It
should be noted that the function declaration should be preceded
by the keyword friend. The friend function has some important
features as follows:

1. It can be invoked like a normal function without taking the

help of any object
2. It normally has the objects as arguments.

FCH FAST TRACK

Ct+ n

3. It cannot access the member names directly, and uses an object
name and dot operator with each member name

An illustration is shown below.

include <iostream.h>
class sl
{
int a;
int b;
public:
void set () { a=50; b=40;}
friend float ml(sl s);
b
float ml(sl s)
{
return float(s.a + s.b)/2.0;
}

int main()
{
sl k;
k.set();
cout<<” Mean value = “ <<ml (k) <<”\n”;
return 0;

}

The output of this program is:
Mean value = 45

Here, ml () is declared as a friend function. The function
accesses both the variables a and b with the help of the dot oper-
ator and the object passed to it. The function calls m1 (k) within
the main function passes the object k by value to the friend func-
tion. The friend function m1 () that is declared inside the class s1
is defined outside the class. This function finds the mean of the
two values assigned to the variables a and b.

PR FAST TRACK |89

n Cr+

Besides this, a friend function can also act as a bridge between
two classes. This is demonstrated in the following program.

include<iostream.h>

class MN1;
class MN2
{

int x;

public:
void set (int 1) {x=i;}
friend void ml (MN2,MN1) ;

b

class MN1

{

int a;

public:
void set(int 1) {a=i;}
friend void ml (MN2,MN1) ;

}i

void ml (MN2 m, MN1 n) // The friend function ml
is defined

{

if(m.x >= n.a)

cout << m.x;

else

cout <<n.a;

int main()
{

MN1 mnl;
mnl.set (15);
MN2 mn2;

O(Q | A FAST TRACK

s n

mn2.set (25) ;
ml (mn2,mnl) ;
return 0;

}
The output of this program is:
25

Here, the function m1 () has arguments from both the classes
MN2 and MN1. When the function ml is declared as a friend func-
tion in the class MN2 for the first time, the compiler does not
acknowledge the presence of the class MN1, unless we declare its
name at the beginning of the program as class MN1; This is
known as the ‘forward declaration’.

P FAST TRACK |91

Ct+ m

Constructors And
Destructors

7.1 Introduction
Member variables can be initialised while creating the objects by
using constructors. We can also destroy the objects when they are
not required using destructors.

Classes have a very complicated structure. We can use con-
structors and destructors to initialise member variables of a class
or destroy class objects. Besides, initialisations for objects con-
struction also indicate memory allocation for the objects.
Similarly, besides cleaning up objects, destructors de-allocation of
memory used by the objects.

Constructors and destructors are usually declared within the
declaration of a class. Here, you can define them either inline or
external to the class declaration. Default arguments can be includ-
ed in the constructors. Constructors and destructors also have
some limitations.

Features of return values and return types are not found in
constructors and destructors. Destructors don't take any argu-
ment. Programmers cannot use references and pointers in con-
structors. The keyword virtual cannot be used while declaring a
constructor. Class objects that include constructors and destruc-
tors cannot be inserted in the unions. Constructors and destruc-
tors always maintain the access rules of member functions. The
compiler where the whole program is run can automatically call
constructors while defining class objects. Similarly, the compiler
can automatically call destructors where the class objects turn to
be insignificant.

PR FAST TRACK |93

m Ci+

7.2 Constructors

The task of a constructor is to set up the object in order to make it
usable. These are special members of functions in a class. It can
only build an object that belongs to its class. Constructors main-
tain the same name as that of a class. You can insert any number
of overloaded constructors in a class. However, there should be a
different set of parameters.

Constructors do not return any values. These are not created
between base and the derived classes. If we do not provide a
Constructor then the compiler creates a default constructor that
does not include any parameter. This is so as there must be a con-
structor and it can be empty or a default constructor. No default
constructor will be created if a constructor with parameter is sup-
plied by the programmer. Constructors cannot be virtual. You can
define the multiple constructors for the same class.

Here is an example of a constructor.

Syntax:
class dealer
{
private:
int person identity ;
float daily sales ;
public:
dealer () //default constructor
{
person identity = 0 ;
daily sales = 0.00 ;

b
Now let us look at the following example:

//here we can get class with a constructor
class integer

94 ‘ PR FAST TRACK

ot m

Int x, vy;
Public:
Integer (void) ; //here
the constructor is declared

o
integer :: integer(void) //here
the constructor is defined

{

Here, we can see that a class includes a constructor, and is ini-
tialised automatically when an object is created. Look at the dec-
laration below:

Integer int2; // here an object int2 is cre-
ated

This declaration creates the object int12 as the type integer.
At the same time, it initialises the data members x and y to 0.

Exception before the completion of a constructor causes diffi-
culties. In such a case, a destructor for cleaning the object will not
appear. Here, the most common problem is the allocation of
resources in constructors. The destructor will not get scope for the
de-allocation of resources if any exception appears in the con-
structor. This problem often happens in case of 'naked' pointers.
Let us go through the following example:

Example:
//: problems if exception is thrown in the con-

structor before completion

// Naked pointers

FIH FAST TRACK |95

m Cr+

#include <fstream.h>
ofstream out ("nudep.out");
class Rat {

public:
Rat () { cout << "Rat ()" << endl; }
~Rat () { cout << "~Rat ()" << endl; }

i

class Frog {

public:

void* operator new(size t sz) {

cout << "allocating a Frog" << endl;
throw int (47);

}

void operator delete (void* p) {

cout << "deallocating a Frog" << endl;
::delete p;

}

i

class UseResources {

Rat* bp;

Frog* op;

public:

UseResources (int count = 1) {
cout << "UseResources ()" << endl;

bp = new Rat[count] ;
op
}

~UseResources () {

new Frog;

cout << "~UseResources ()" << endl;
delete [1bp; // Array delete
delete op;

}

b

int main() {

try {

UseResources ur(3);

96 ‘ PR FAST TRACK

Ct+ m

} catch (int) {

cout << "inside handler" << endl;
}

y /)~

The output of this program is:
UseResources ()

Rat ()

Rat ()

Rat ()

allocating a Frog

inside handler

Here we have entered the UseResources constructor. The Rat
constructor is also completed successfully for the array objects. We
can see that an exception Frog: : operator is also used. The prob-
lem here is that it ends inside the handler without calling the
UseResources destructor. The UseResources could not be fin-
ished. It indicates that the Cat object was created successfully and
was not destroyed.

7.3 Types of Constructors

There are various types of constructors - default constructors, copy
constructors and dynamic constructors.

A Default Constructor is a special category of constructor that
does not accept any parameter. For example, we can say that if
marketing is a class, then marketing::marketing() is a
default constructor because it doesn't need any parameter. The
compiler will provide the default constructor. Constructors are
not particularly defined in a class. It must not have any argument.
The default constructor that is provided by the compiler does not
have any special activities. What it can do is initialise data mem-
bers that include a dummy value.

PR FAST TRACK |97

m Ci+

Consider the following example:

#include <iostream.h>
class Square
{

private:

float span ;
float breath ;

public:
S q u a r e ()
//this is the Default Constructor, without any argu-
ment
{ }
Square (float I, float b)
//this is the Constructor with two argument
{
span =I;
breath = b ;
}
void Insert Ib(void)
{

cout << "\n\t Insert the span of the

"

Square: ;
cin >> span ;
cout << "\t Insert

"

the breath of the Square: ;
cin >> breath ;
}

void View area (void)

{
cout << "\n\t The area of the Square = "

<< span*breath ;
}

b
//this is the end of the class definitions

void main (void)

{

98 ‘ PR FAST TRACK

Ct+ m

Square gl ;
//here the first Constructor without any argument

is invoked

cout << "\n First Square---------- "\n"
gl.Insert Ib() ;
gl.View area() ;
cout << "\n\n Second Square---------
|\n|’ ;
Square g2 (5.6, 3.5) ;
//here the second Constructor with two
arguments is invoked
g2.View area() ;
The output of this program is:

First Square--------- v

Insert the span of the Square: 4
Insert the breadth of the Square:5

The area of the Square = 20

Second Square---—---- '
The area of the Square = 19.6

Another type of constructor is a copy constructor. Let us
look at the form of the copy constructor:

class name (class name &) .
While initialising an instance, the copy constructor is used

by the compiler. Here, the values of the other instance of the
same type are used.

PR FAST TRACK |99

Now let us look at the example below:

#include <iostream.h>
class Model
{
private:
int x,y;
public:
Model (int m, int n)
the constructor with two argument
{
xX=m;

y=n;

C++

//this is

cout<<"\nHere the Parameterized con-

structor is working\n";

}

Model (Model &p) //copy Constructor

{
y=p.vys
X=p.X;

cout<<"\nHere the Copy constructor is

working\n";
}
void publish()
{
cout <<x<<"\n"<<y;
}
class definition
}i
void main ()
{
Model ml (53,63) ;
the constructor
Model m2 (ml) ;
//Invokes the copy constructor
m2.publish () ;

100 ‘ PR FAST TRACK

//End of the

//Invokes

Ct+ m

The output of this program is:
Here the Parameterized constructor is working

Here the Copy constructor is working
53
63

Dynamic Constructors are nothing but the process of allocat-
ing memory to objects while constructing them. These construc-
tors are used to allocate memory when the objects are created.
This is extremely helpful for the allocation of adequate memory
size for the objects of varying size. The new operator helps memo-
ry allocation.

Now let us look at the following example:

finclude <iostream.h>
#include <string.h>

class S1
{
char *z1;
int 11;
public:
S1() //this 1is the con-
structor-1
{
11 = 0;
z1l = new char[11 +1];

S1 (char *x) //constructor-2
11 = strlen(x);

z1l = new char 11 +1]; //one addi-
tional

P FAST TRACK | 101

m Ca+

//character
for \0
strcpy(zl, x);
}
void display(void)
{ cout <<zl << "\n";}
void include(S1 &m, S1 &n);
b
void S1 :: include(S1 &m, S1 &n)
{
11 = m.11 +n.11;
delete zl1;
z1l = new char 11+1]; //dynamic
allocation

strcpy(zl, m.zl);
strcat(zl, n.zl);

b

int main()
{
char *initial = "Jack ";
S1 namingl (initial), naming2 ("Ram
") ,naming3 ("Raj"),tl,t2;

tl.include (namingl, naming2) ;
t2.include (tl, naming3);
namingl.display () ;
naming2.display () ;
naming3.display () ;
tl.display();

t2.display() ;

return 0;

The output of this program is:

102 | FiE FAST TRACK

Ci+ m

Jack

Ram

Raj

Jack Ram
Jack Ram Raj

7.4 Constructing Two Dimensional Arrays

We can name multidimensional arrays as "Arrays of Arrays". Two
dimensional arrays can be regarded as a two dimensional table
which is made of various elements. These elements always main-
tain a uniform data type.

Consider the following example, of a matrix variable that is
constructed using the objects of class types.

Example:
#include <iostream.h>
class matrix
{
int **qg; //this is the
pointer to matrix
int zl,z2; //these are the dimensions
public:
matrix (int v, int u);
void getting element (int a, int b, int

cost)
{d all b] =cost;}
int & insert element (int a, int Db)
{ return q all b] s}
i
matrix :: matrix(int v, int u)

{
int a;
z1l=v;

P FAST TRACK |103

m Cr+

z2=u;
g= new int *[z1]; //Here the
an array pointer is created
for (a = 0;a<zl;a++)
q a] = new int[z2]; //Here space
for each row is created

}

int main ()

{
int 1, p;

cout<<"Here you can insert the size of
matrix: ";

cin>>1>>p;

matrix A(l,p); //matrix
object A constructed

cout<<"Here you can enter the matrix ele-
ments row by row \n";
int a,b,cost;

for (a=0;a<l;a++)
{
for (b=0;b<p;b++)
{
cin>>cost;
A.getting element (a,b,cost);
}
}
cout<<"\n";
cout<<A.insert element(2,3);
return O0;

The output of this program is:

104 ‘ PR FAST TRACK

Ct+ m

Here you can insert size of matrix: 3 4
Here you can enter the matrix elements row by row
as shown below

11 22 33 44
55 66 77 88
99 111 222 333

After that the element corresponding to third row
and fourth column will be displayed as below.

333

7.5 Destructors

Destructors are not as complicated, and are called automatically.
There is only one destructor per object. A destructor has a single
name, its class and is headed by a tilde (™) operator.

Let us look at the example below:
performer: :~performer () {
potency = 0;
nimbleness = 0;

fitness = 0;

Consider the following example of both constructor and
destructor:

Example:

//example including both constructor and
destructor

#include <iostream.h>
class Plant {

FIH FAST TRACK | 105

m Ci+

int tallness;
public:

Plant (int initialTallness); // a Constructor is
inserted here

~Plant(); // a Destructor appears with a tilde
sign

void growth (int years);

void copysize();

i

Plant::Plant (int initialTallness) {

tallness = initialTallness;

}

Plant::~Plant () {

cout << "inside Plant destructor" << endl;

copysize () ;

}

void Plant::growth (int years) {

tallness += years;

}

void Plant::copysize() {

cout << "Plant tallness is " << tallness << endl;

}

int main() {

cout << "before opening brace" << endl;

{

Plant t(12);

cout << "after Plant creation" << endl;

t.copysize();

t.growth (4);

cout << "before closing brace" << endl;

}

cout << "after closing brace" << endl;

Yo e~
The output of this program is:

before opening brace

106 ‘ PR FAST TRACK

Ct+ m

after Plant creation
Plant tallness is 12
before closing brace
inside Plant destructor
Plant tallness is 16
after closing brace

Here we can see that the destructor is automatically called at
the ending brace of the scope where it is enclosed. While creat-
ing an object by a constructor, a few resources such as memory
space are usually allocated for use and can be allocated to the
data members.

Here we make free the memory space before the destruction of
the object. We have already discussed that a destructor cannot
take any argument and it cannot return any value. The compiler
that we use will automatically call the destructor.

Consider the following example:

#include <iostream.h>
class S1
{
private:
int m,n;
public:
S1(int x, int vy) //this 1is the con-
structor with two arguments
{
m=x;
n=y;
cout<<"\nConstructor in work\n";
}
void print ()
{
cout<<"\nThe object wvalue of Sl
class\n";

P FAST TRACK | 107

m C+

cout <<m <<"\n"<<n<<"\n";
}
~S1()
{
cout<<™\nCalling Destructor";
}
b //This is the ending of the class
definition
void main ()
{
S1 k(8,9):;
//Here the constructor is invoked
k.print () ;

The output of this program is:
Constructor in work

The object value of Sl class
8

9

Calling Destructor

108 ‘ PR FAST TRACK

Ct+ m

Compound Data
Types

rrays are defined as a series of elements of the same type,
Aflaced in contiguous memory locations. They are refer-
nced individually, by adding an index to a unique iden-
tifier. An array can also be defined as a data structure, allowing
a collective name to be given to a group of elements having the
same type. The individual element of an array is identified by its
own unique index. This is also referred as the subscript of the
element.

If we want to store six values of the type integer, but don't want
to declare a variable with a different identifier for each of them,

we can do it by using arrays.

This is shown as follows:

Jim 1 2 3 4 5 6

Integer

Here, the array Jim is of type integer that contains six inte-
ger values and is represented as shown above. Each blank panel
shown above represents an individual element of the array Jim.
The elements of the array are numbered from 0 to 5. These num-
bers are called index of the array element. Note that in arrays, the
first index is always 0. An array is like a regular variable and
should be declared before it can be used. A normal array declara-
tion is as follows:

P FAST TRACK |109

110

m Ci+

type name [elements] ;

Here, type refers to the data type such as int and float.
name refers to a valid identifier, while the elements field indi-
cates the numbers of elements in the array. You can declare the
above case as:

int Jim[6] ;

While declaring a regular array, if you don't specify the initial
values of the elements, the elements will not be initialised to any
value by default The elements of global and static arrays are ini-
tialised automatically with their default values, i.e. 0. When an
array is declared, you can assign initial values to each element by
enclosing the values within braces{ }. For example,

int Jim[6] = {12,34,56,78,12,32};

The number of values inside the braces should never be larger
than the number of elements declared for the array in square []
brackets. C++ also allows the square brackets to remain empty of
initialisation values for certain situations. For this situation, the
compiler assumes the size of an array that matches the number of
values included within the braces. This is shown below:

int Jim[] = {212,234,456,781,10,312} ;

At any point in a program, where an array is visible, the
value of any individual elements can be accessed, as if it's a nor-
mal variable. The syntax for this is:

name [index]

For example, consider the case in which an array named Jim
has six elements and each of those elements is of type int. If we
want to store the value 60 in the third element of the array Jim,
we can write the following statement:

FCH FAST TRACK

Ct+ m

Jim[2] = 60;

If we want to pass the value of the third element of the array
to a variable x, we can write:

x = Jim 2] ;

The third element of the array Jim is specified as Jinl 2] as
the first element is denoted as Jim 0] , second as Jin{ 1] and so
on.

There are two different uses of the [] brackets related to arrays.
One of the tasks of this bracket is to specify the size of an array
when they are declared and the other is to specify indices for array
elements. Some valid operations with arrays are as follows:

Jim[0] = x;
Jim[a] = 7;
b = Jim [a+2] ;

where x and b are two integer variables.
Consider a program where the above concepts are implemented.

// arrays example
#include <iostream.h>

int Jim[] = {16, 223, 77, 401, 12}; /[an array Jim is declared and
values are assigned to its elements.

int x, res=0;
int main ()
{
for (x=0 ; %<5 ; x++)

{

res += Jim x] ; // implies res= res+Jim x]

PR FAST TRACK |111

112

m Ci+

}
cout << res;
return 0;

The output of this program is:
729

Here, an array Jim is declared and its elements are initialised
with some values. Then, by using the for loop, the values of the
elements are added and the result is stored in an integer variable
res. The value of res is then displayed.

0 1 2 3

Jim¢g 1

Multidimensional arrays
A multidimensional array is an "array of arrays". This can be rep-
resented as follows:

In the above example, Jim represents a bi-dimensional array of
3 x 4 elements of type integer. This is declared as:
int Jim 3][4] ;

In C++, in order to accept arrays as parameters while declaring
a function, it is required to specify the element type of the array
in its parameters - an identifier and a pair of void brackets [].
Consider the following statement:

void pl(int al[])
Here, p1 is the function that accepts an array as parameter of

type int called al. You can understand this from the following
program.

FCH FAST TRACK

C++

// arrays as parameters
finclude <iostream.h>

void pl(int al[], int 11) {

for (int x=0; x<11; =x++)
cout << al[x] << " ";

cout << "\n";

}

int main ()

{
int first[] = {15, 22, 32};

int sec[] = {21, 41, o1, 81,
pl(first,3);

pl (sec,5);

return 0;

The output of this program is:

15 22 32
21 41 61 81 100

100} ;

Here, a function p1 is declared and two parameters are passed.

The first parameter int al[] accepts an array with elements of
type int while the second parameter is a variable of type int.
This parameter is included to determine the length of each array
passed to the function. The for loop helps print out the array.
Within the main function, two arrays are declared - first[] and
sec[] and values are assigned to their elements.

PR FAST TRACK |113

114

m Ci+

8.2 Character Sequences

Since strings are mainly sequences of characters they can be rep-
resented as plain arrays of char elements. For example, the state-
ment,

char x1[32] ;

implies that x1 is an array that can store up to 32 elements of

type char.

Initialising Null-terminated Character Sequences

Since character arrays are regarded as ordinary arrays, they follow
a simple rule. If we want to initialise an array of characters with
some character sequences, we can initialise it as any other normal
array, as shown below:

char ml[] :{lIl’lnl,ldl,lil,lal,l\Ol},.

This shows an array named ml declared of type char with six
elements that form the word "India", and an additional null '\0'
character at the end. Besides this method, there is another
method to initialise the values of the char elements of an array -
using the string literals. Double quoted strings are considered as
literal constants whose data type is in a null-terminated array of
characters. In general, string literals enclosed in double quotes
have a null character (\\ 0') which is always added to its end. Thus,
whenever we want to in initialise the elements of an array of type
char, you can use two methods.

1. Normal Method
(char f1[]1="'I','n','d"',"i','a"','"\0"} ;)
2. By using string literals
(char f1[]= "India";)

In both cases, the array f1[] is declared with six elements of
type char. Out of the six characters, five are for the word "India",

FCH FAST TRACK

Ct+ m

while the last null character is for specifying the end of the
sequence. In the second case, by using string literals, the null
character ('\ 0') is automatically inserted at the end.

Applying Null-terminated Sequence Of Characters

Null terminated sequence of characters is an effective way of
treating strings. They can also be used in procedures. For exam-
ple, the extraction and insertion operators cin and cout sup-
port these sequences and can be used directly to extract strings
of characters or to insert them. The following program illus-
trates this.

// null-terminated sequences of characters
finclude <iostream.h>

int main ()

{

char gl[] = "Please, enter your first name:

char gl[] = "Hello, ";
char yl1[80] ;

cout << qgl;

cin >> yl;

cout << gl << yl << "I,
return O;

The output of this program is:
Please, enter your first name: Harry
Hello, Harry

In the above program, three arrays of type char are
declared. They are q1, g1 and y1, respectively. The first two
arrays q1 and g1 are initialised with string literals constant,
while the third one y1 is left uninitialised. For the first two
arrays q1 and g1, the size was implicitly defined, while for the
last one, the size is explicitly defined - 80 characters. When we
run the program, it prompts you to enter your name. The name

PR FAST TRACK |115

116

m Ci+

entered is assigned to the array y1. Now if the number of charac-
ters entered is less than the number of elements specified during
declaration of y1, then \ 0 will append just after the last entered
character. If some one enters Harry as shown above, y1 will be as
follows

yl H a r r y /0

The name displayed with the value of array g1 is Hello.

8.3 Pointers

Identifiers also help us to refer to our variables. When a variable is
declared, it is assigned a specific memory address.

Reference variable

Each variable has a specified address in the memory known as
the reference to that variable. With the help of this
address, a certain variable can be located within the memory. A
reference to this variable is obtained by putting the & symbol
before the identifier. For example, Jim=&Jack; assigns the
address of the variable Jack to the variable Jim. Here, & is the ref-
erence operator that precedes the variable Jack. Consider the fol-
lowing code segment:

al = 52;
f1 = al;
tl = &al;

Here, the value 52 is assigned to al. If al has a memory
address of 1778, the next statement that follows, copies the con-
tent of the variable al to a new variable £1. The last statement on
the other hand does not copy the value contained in al, but only
a reference to it — its address 1778 which we have assigned to the

FCH FAST TRACK

Ct+ m

variable t1. This is due to the presence of the address of operator &
that precedes the identifier al. Thus a pointer may be defined as
a variable that stores the reference to another variable.

Pointers are special variables that store the reference of a
variable of its type. That means an integer pointer can store the
address of an integer variable, a float pointer can store the address
of a float variable and so on. In the above examples, all variables
used to store reference of other variables are pointers. Pointers
play a vital role and have uses in various applications. Generally a
pointer is defined as follows:

type * name;

Here, type refers to the data type of the variable that the
pointer points to. Let us take another example that is shown
below.

int * nl;
char * cl;
float * gl;

Here, three pointers have been declared. Each pointer that is
declared points to a different data type, but all of them occupy
the same amount of space in the memory. However, the data to
which the pointers point to, are of different types - the first
pointer points to an int, the second points to a char and last
one points to a float. Now let us look at a program which is
based on pointers.

// Program 1
// Application of pointers
#include <iostream.h>
int main ()
{
int f1, s1;
int * ml;

PR FAST TRACK |117

m Cr+

ml = &fl;
*ml = 56;
ml = &sl;
*ml = 78;
cout << "first value is " << fl << endl;
cout << "second value is " << sl<< endl;

return 0;

The output of this program is:

first value is 56
second value is 78

Here, two variables £1 and s1 and one pointer ml of type int
are declared. It is to be noted that values are not directly set to the
either f£1 or s1, but receive values indirectly with the help of the
pointer m1. Now coming back to the program, first a reference to
the variable f£1 is assigned to the pointer m1. Next, a value 56 is
assigned to the memory location pointed by m1. Next, we again
assign the reference to the variable s1 to the pointer m1 and then
the value 78 is assigned to the memory location pointed by m1.
Here, an operator * is used. This operator refers to the value of the
variable it points. This operator is called “value pointed by”.

The following is a program which deals with the application of
pointers.

// Program 2
// Application of pointers

#include <iostream.h>
int main ()
{
int f1 = 5, sl1 = 15;
int * p3, * p4;

118 | I FAST TRACK

Ct+ m

p3 = &fl; // p3 = address of
f1

pd = &sl; // p4 = address of
sl

*p3 = 60; // value pointed by p3 =
60

*pd = *pl; // value pointed by pé4 =
value pointed by p3

p3 = p4; // p3 = p4 (value of
pointer is copied)

*p3 = 20; // value pointed by p3
= 20

cout << "first value is " << fl << endl;

cout << "second value is " << sl << endl;

return 0;

The output of this program is:

first value is 60
second value is 20

Initially, two variables, £1 and s1 of the type int are declared.
Then, two pointers p3 and p4 are declared. These are also of type
int. Initial values are assigned to the variables f1 and s1. Next, a
reference to the variables £1 and s1 is assigned to the pointers p3
and p4. The next statement *p3=60 assigns the value 60 to the
memory location pointed by the pointer p3.

Pointers and arrays
Arrays are similar to pointers. Consider the two declarations

below:

int nl[15]; // nl is an array of type
int

int * x; // x 1s a pointer of type
int

PR FAST TRACK | 119

m Ci+

Based on the above statements, we can make a valid statement
as follows:
x = nl; //

The above statement implies that x and nl are equivalent and
will have the same properties. The only difference lies in the fact
that the value of the pointer x can be changed, while the pointer
nl will always point to the first of the 15 elements of type int.

Similarly, if we declare a statement n1= x;, the statement
will be considered invalid as n1 is an array and operates as a con-
stant pointer. Since we cannot assign values to constants, the
above statement will not work. Now let us consider another pro-
gram based on pointers.

Program 3: A program to show various expres-
sions related to pointers
#include <iostream.h>

int main ()

{
int nl[5] ; // an array nl declared of type

int
int * q; // a pointer declared of
type int
g = nl;
*CI = 1;
qt+;
*q = 2,
q = &nl[2] ;
*q = 3,
q = nl+ 3;
*CI = 4;
g = nl;
* (g+4) = 5;

for (int x=0; x<5; x++)
cout << nl[x] << ", ";

120 ‘ PR FAST TRACK

Ct+ m

return 0;

The output of this program is:
1,2,3,4,5

Dynamic Memory

Dynamic memory is the memory to be used in a program during
its run time. C++ provides two effective operators — new and
delete, which are used for this purpose.

The new And new{] Operators
The new operator is used for dynamic memory allocation. This
operator should be followed by a data type. If more than one ele-
ment is required, specify it within brackets [] . The general form
of using this operator is as follows:

pl = new type

pl = new type [number of elements]

Here, the first expression pl = new type is used for allocat-
ing memory so that one single element of type type can be con-
tained. Similarly, the second expression is used for assigning an
array of elements of type type. Here, number of elements isan
integer value. Consider the statements:

int * b;
b = new int [6] ;

In the second statement, the new operator dynamically assigns
space for six elements of type integer and returns a pointer to
the first element of the sequence assigned to b. Therefore, the
pointer b points to a valid block of memory with space for six ele-
ments of type integer.

PR FAST TRACK |121

m Ci+

The delete And delete [] Operators
Dynamic memory is used for specified tasks, and is freed once the
task is completed so that the memory is available for other
tasks/requests. This is done by the delete operator. The format of
the delete operator is as follows:
delete m;
delete [] m;

Here, the first statement deletes the memory allocated for a
single element, while the second statement allocates memory for
arrays of elements.

8.4 Other Data Types

Defined Data Types typedef

There is a provision for defining types based on other existing data
types. One way is by using the keyword typedef. The syntax is as
follows:

typedef existing type new type name ;

In the above expression, existing type is a fundamental
data type and new type name is the name related to the new

type.

Consider the following statements:
typedef char x;

typedef unsigned int y;
typedef char * pl;
typedef char f1[50] ;

We have declared x, y,pl and f1 as char, unsigned int,

char* and char[50], respectively, so that these can be used suit-
ably in later declarations. Consider the following statements:

122 | MR FAST TRACK

Ct+ m

X mx, xm, *pt2;
y vl;

pl v2,Y3;

fl fr ft;

typedef does not create different types. Rather, it only creates
synonyms of the existing ones. typedef is also used to define
data types with a long and confusing name.

Unions
The next important data type that is often used is unions. This
data type is used to access the same memory accessed by other
data types. The declaration of a union is similar to that of a struc-
ture, but in functionality both are different. A union is declared as
follows:

union union name {

member typel member namel;
member type2 member name2;
member type3 member name3;

} object names;

Note that in an union declaration, all the elements occupy the
same physical space in memory. For example consider the follow-
ing union.

union ml {
char v;
int y;
float z;
}omy;

Here, three elements are declared — v, vy and z, each having a
different data type. However, all of them refer to the same memo-

P FAST TRACK |123

124

m Ci+

ry location. Hence, if the value of one of the element gets altered,
it affects the value of the other elements.

Anonymous Unions
There is also a provision for declaring a union without any name.
This is known as anonymous union declarations. The members of
this union can be accessed directly by using the names of its mem-
bers. Consider the following two structure declarations:
First declaration:
struct {
char t1[15] ;
char al[15] ;
union {
float dl;
int yl;
} pl; // name of the union
}obl;

Second declaration
struct {
char t1[15] ;
char al[15] ;
union {
float di;
int yl;
}; // union name is missing
} bl;

In the above two declarations, the only difference is that in the
first one, a name has been given to the union (p1). Similarly, in
case of the second declaration, the name is missing. The difference
can be properly explained while accessing the members d1 and
y1. In the case of an object belonging to the first type we can
access it by the statement:

bl.pl.yl
bl.pl.dl

FCH FAST TRACK

Ct+ m

On the other hand, for an object belonging to the second type
we can access it by the statement:

bl.yl
bl.dl

Enumerations enum

An enumeration is a data type that can be given a finite set of
named values, each of which has a meaningful name. It can be
declared as follows:

enum enumeration name {
valuel,
value?2,
value3,

} object names;

For instance, consider the following declaration. Here, a new
type called t1 is created for storing different values.

enum tl {tx, ty, tz, tn, th, tu, ti, td};

Note that no fundamental type has been included in the dec-
laration part. In fact, a completely new data type has been created.
The values that are present within the braces are the new constant
values.

After the enumeration t1 has been declared, we can declare
the following expressions based on it. They are as follows:
tl tg;
tg = t3;

The constants of the enumeration are assigned an integer

numerical value internally. It is to be noted that the first enumer-
ator has a value 0 and each successive enumerator is one greater

PR FAST TRACK | 125

m Ci+

than the previous one. Hence in the previous declaration (where
t1 was created), tx would be 0, ty would be 1, and so on. Also, an
integer value can be specified explicitly for any of the constant val-
ues of an enumerated type.

126 | [FAST TRACK

C++

PR FAST TRACK | 127

m Ci+

128 | FEH FAST TRACK

