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Preface

The title of this volume “Advanced Mathematical Methods for Finance,” AMaMeF
for short, originates from the European network of the European Science Foundation
with the same name that started its activity in 2005. The goals of its program have
been the development and the use of advanced mathematical tools for finance, from
theory to practice.

This book was born in the same spirit of the program. It presents innovations in
the mathematical methods in various research areas representing the broad spectrum
of AMaMeF itself. It covers the mathematical foundations of financial analysis,
numerical methods, and the modeling of risk. The topics selected include measures
of risk, credit contagion, insider trading, information in finance, stochastic control
and its applications to portfolio choices and liquidation, models of liquidity, pricing,
and hedging. The models presented are based on the use of Brownian motion, Lévy
processes and jump diffusions. Moreover, fractional Brownian motion and ambit
processes are also introduced at various levels. The chosen blending of topics gives
a large view of the up-to-date frontiers of the mathematics for finance. This volume
represents the joint work of European experts in the various fields and linked to the
program AMaMeF.

After five years of activity, AMaMeF has reached many of its goals, among which
the creation and enhancement of the relationships among European research teams
in the sixteen participating countries: Austria, Belgium, Denmark, Finland, France,
Germany, Italy, The Netherlands, Norway, Poland, Romania, Slovenia, Sweden,
Switzerland, Turkey, and United Kingdom.

We are grateful to all the researchers and practitioners in the financial industry
for their valuable input to the program and for having participated to the proposed
activities, either conferences, or workshops, or exchange research visits these may
have been. We are also grateful to Carole Mabrouk for her administrative assistance.

It was an honor to be chairing this program during these years and to have
worked together with an engaged team as the AMaMeF Steering Committee, whose
members, in addition to ourselves, have been (in alphabetic order): Ole Barndorff-
Nielsen, Tomas Björk, Vasili Brinzanescu, Mark Davis, Arnoldo Frigessi, Lane
Hughston, Hayri Körezlioglu, Claudia Klüppelberg, Damien Lamberton, Marco
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vi Preface

Papi, Benedetto Piccoli, Uwe Schmock, Christoph Schwab, Mete Soner, Peter
Spreij, Lukasz Stettner, Johan Tysk, Esko Valkeila, and Michèle Vanmaele. We
thank them all for the important work done together and the cooperative and friendly
atmosphere.

Giulia Di Nunno
Bernt Øksendal

Oslo
30th August 2010
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Chapter 1
Dynamic Risk Measures

Beatrice Acciaio and Irina Penner

Abstract This paper gives an overview of the theory of dynamic convex risk mea-
sures for random variables in discrete-time setting. We summarize robust repre-
sentation results of conditional convex risk measures, and we characterize various
time consistency properties of dynamic risk measures in terms of acceptance sets,
penalty functions, and by supermartingale properties of risk processes and penalty
functions.

Keywords Dynamic convex risk measure · Robust representation · Penalty
function · Time consistency · Entropic risk measure

Mathematics Subject Classification (2010) 91B30 · 91B16

1.1 Introduction

Risk measures are quantitative tools developed to determine minimum capital re-
serves that are required to be maintained by financial institutions in order to ensure
their financial stability. An axiomatic analysis of risk assessment in terms of capital
requirements was initiated by Artzner, Delbaen, Eber, and Heath [2, 3], who intro-
duced coherent risk measures. Föllmer and Schied [23] and Frittelli and Rosazza

Financial support from the European Science Foundation (ESF) “Advanced Mathematical
Methods for Finance” (AMaMeF) under the exchange grant 2281 and hospitality of Vienna
University of Technology are gratefully acknowledged by B. Acciaio.
I. Penner was supported by the DFG Research Center MATHEON “Mathematics for key
technologies.” Financial support from the European Science Foundation (ESF) “Advanced
Mathematical Methods for Finance” (AMaMeF) under the short visit grant 2854 is gratefully
acknowledged.
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2 B. Acciaio and I. Penner

Gianin [25] replaced subadditivity and positive homogeneity by convexity in the
set of axioms and established the more general concept of a convex risk measure.
Since then, convex and coherent risk measures and their applications have attracted
a growing interest both in mathematical finance research and among practitioners.

One of the most appealing properties of a convex risk measure is its robustness
against model uncertainty. Under some regularity condition, it can be represented
as a suitably modified worst expected loss over a whole class of probabilistic mod-
els. This was initially observed in [3, 23, 25] in the static setting, where financial
positions are described by random variables on some probability space, and a risk
measure is a real-valued functional. For a comprehensive presentation of the theory
of static coherent and convex risk measures, we refer to Delbaen [15] and Föllmer
and Schied [24, Chap. 4].

A natural extension of a static risk measure is given by a conditional risk measure,
which takes into account the information available at the time of risk assessment.
As its static counterpart, a conditional convex risk measure can be represented as
the worst conditional expected loss over a class of suitably penalized probability
measures; see [6, 12, 18, 26, 29, 34, 37]. In the dynamical setting described by some
filtered probability space, risk assessment is updated over the time in accordance
with the new information. This leads to the notion of dynamic risk measure, which
is a sequence of conditional risk measures adapted to the underlying filtration.

A crucial question in the dynamical framework is how risk evaluations at differ-
ent times are interrelated. Several notions of time consistency were introduced and
studied in the literature. One of today’s most used notions is strong time consistency,
which corresponds to the dynamic programming principle; see [4, 7, 12, 13, 16–18,
22, 26, 29] and references therein. As shown in [7, 16, 22], strong time consistency
can be characterized by additivity of the acceptance sets and penalty functions, and
also by a supermartingale property of the risk process and the penalty function pro-
cess. Similar characterizations of the weaker notions of time consistency, so-called
rejection and acceptance consistency, were given in [19, 33]. Rejection consistency,
also called prudence in [33], seems to be a particularly suitable property from the
point of view of a regulator, since it ensures that one always stays on the safe side
when updating risk assessment. The weakest notions of time consistency considered
in the literature are weak acceptance and weak rejection consistency, which require
that if some position is accepted (or rejected) for any scenario tomorrow, it should
be already accepted (or rejected) today; see [4, 9, 35, 41, 43].

As pointed out in [21, 28], risk assessment in the multiperiod setting should also
account for uncertainty about the time value of money. This requires to consider en-
tire cash flow processes rather than total amounts at terminal dates as risky objects,
and it leads to a further extension of the notion of risk measure. Risk measures for
processes were studied in [1, 4, 10–13, 27, 28, 34]. The new feature in this frame-
work is that not only the amounts but also the timing of payments matters; cf. [1, 12,
13, 28]. However, as shown in [4] in the static and in [1] in the dynamical setting,
risk measures for processes can be identified with risk measures for random vari-
ables on an appropriate product space. This allows a natural translation of results
obtained in the framework of risk measures for random variables to the framework
of processes; see [1].
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1 Dynamic Risk Measures 3

The aim of this paper it to give an overview of the current theory of dynamic
convex risk measures for random variables in discrete-time setting; the correspond-
ing results for risk measures for processes are given in [1]. The paper is organized
as follows. Section 1.2 recalls the definition of a conditional convex risk measure
and its interpretation as the minimal capital requirement from [18]. Section 1.3 sum-
marizes robust representation results from [8, 18, 22]. In Sect. 1.4 we first give an
overview of different time consistency properties based on [40]. Then we focus on
the strong notion of time consistency in Sect. 1.4.1, and we characterize it by su-
permartingale properties of risk processes and penalty functions. The results of this
subsection are mainly based on [22], with the difference that here we give charac-
terizations of time consistency also in terms of absolutely continuous probability
measures, similar to [8]. In addition, we relate the martingale property of a risk
process with the worst-case measure, and we provide explicit forms of the Doob
and Riesz decompositions of the penalty function process. Section 1.4.2 generalizes
[33, Sects. 2.4 and 2.5] and characterizes rejection and acceptance consistency in
terms of acceptance sets, penalty functions, and, in case of rejection consistency, by
a supermartingale property of risk processes and one-step penalty functions. Sec-
tion 1.4.3 recalls characterizations of weak time consistency from [9, 41, 43], and
Sect. 1.4.4 characterizes the recursive construction of time consistent risk measures
suggested in [12, 13]. Finally, the dynamic entropic risk measure with a nonconstant
risk aversion parameter is studied in Sect. 1.5.

1.2 Setup and Notation

Let T ∈ N ∪ {∞} be the time horizon, T := {0, . . . , T } for T < ∞, and T := N0
for T = ∞. We consider a discrete-time setting given by a filtered probability space
(Ω, F , (Ft )t∈T,P ) with F0 = {∅,Ω}, F = FT for T < ∞, and F = σ(

⋃
t≥0 Ft )

for T = ∞. For t ∈ T, L∞
t := L∞(Ω, Ft , P ) is the space of all essentially bounded

Ft -measurable random variables, and L∞ := L∞(Ω, FT ,P ). All equalities and in-
equalities between random variables and between sets are understood to hold P -
almost surely, unless stated otherwise. We denote by M1(P ) (resp. by Me(P )) the
set of all probability measures on (Ω, F ) that are absolutely continuous with respect
to P (resp. equivalent to P ).

In this work we consider risk measures defined on the set L∞, which is un-
derstood as the set of discounted terminal values of financial positions. In the dy-
namical setting, a conditional risk measure ρt assigns to each terminal payoff X

an Ft -measurable random variable ρt (X) that quantifies the risk of the position X

given the information Ft . A rigorous definition of a conditional convex risk measure
was given in [18, Definition 2].

Definition 1.1 A map ρt : L∞ → L∞
t is called a conditional convex risk measure

if it satisfies the following properties for all X,Y ∈ L∞:

(i) Conditional cash invariance: For all mt ∈ L∞
t ,

ρt(X + mt) = ρt (X) − mt ;
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4 B. Acciaio and I. Penner

(ii) Monotonicity: X ≤ Y ⇒ ρt (X) ≥ ρt (Y );
(iii) Conditional convexity: for all λ ∈ L∞

t , 0 ≤ λ ≤ 1,

ρt

(
λX + (1 − λ)Y

) ≤ λρt(X) + (1 − λ)ρt (Y );
(iv) Normalization: ρt(0) = 0.

A conditional convex risk measure is called a conditional coherent risk measure if
it has in addition the following property:

(v) Conditional positive homogeneity: for all λ ∈ L∞
t , λ ≥ 0,

ρt(λX) = λρt (X).

In the dynamical framework one can also analyze risk assessment for cumulated
cash flow processes rather than just for terminal payoffs, i.e., one can consider a
risk measure that accounts not only for the amounts but also for the timing of pay-
ments. Such risk measures were studied in [1, 10–13, 27, 28]. As shown in [4] in
the static and in [1] in the dynamical setting, convex risk measures for processes
can be identified with convex risk measures for random variables on an appropriate
product space. This allows one to extend results obtained in our present setting to
the framework of processes; cf. [1].

If ρt is a conditional convex risk measure, the function φt := −ρt defines a con-
ditional monetary utility function in the sense of [12, 13]. The term “monetary”
refers to conditional cash invariance of the utility function, the only property in
Definition 1.1 that does not come from the classical utility theory. Conditional cash
invariance is a natural request in view of the interpretation of ρt as a conditional
capital requirement. In order to formalize this aspect, we first recall the notion of
the acceptance set of a conditional convex risk measure ρt :

At := {
X ∈ L∞ ∣

∣ ρt (X) ≤ 0
}
.

The following properties of the acceptance set were given in [18, Proposition 3].

Proposition 1.2 The acceptance set At of a conditional convex risk measure ρt is

1. conditionally convex, i.e., αX + (1 − α)Y ∈ At for all X,Y ∈ At and
Ft -measurable α such that 0 ≤ α ≤ 1;

2. solid, i.e., Y ∈ At whenever Y ≥ X for some X ∈ At ;
3. such that 0 ∈ At and ess inf{X ∈ L∞

t | X ∈ At} = 0.

Moreover, ρt is uniquely determined through its acceptance set, since

ρt (X) = ess inf
{
Y ∈ L∞

t

∣
∣ X + Y ∈ At

}
. (1.1)

Conversely, if some set At ⊆ L∞ satisfies conditions (1)–(3), then the functional
ρt : L∞ → L∞

t defined via (1.1) is a conditional convex risk measure.

Proof Properties (1)–(3) of the acceptance set follow easily from properties (i)–(iv)
in Definition 1.1. To prove (1.1), note that by cash invariance ρt (X) + X ∈ At for
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1 Dynamic Risk Measures 5

all X, and this implies “≥” in (1.1). On the other hand, for all Z ∈ {Y ∈ L∞
t |

X + Y ∈ At }, we have

0 ≥ ρt (Z + X) = ρt (X) − Z,

and thus ρt (X) ≤ ess inf{Y ∈ L∞
t | X + Y ∈ At }.

For the proof of the last part of the assertion, we refer to [18, Proposition 3]. �

Due to (1.1), the value ρt (X) can be viewed as the minimal conditional capital
requirement needed to be added to the position X in order to make it acceptable at
time t . Moreover, (1.1) can be used to define risk measures; cf. Example 1.8.

1.3 Robust Representation

As observed in [3, 24, 25] in the static setting, the axiomatic properties of a convex
risk measure yield, under some regularity condition, a representation of the min-
imal capital requirement as a suitably modified worst expected loss over a whole
class of probabilistic models. In the dynamical setting, such robust representations
of conditional coherent risk measures were obtained in [6, 8, 18, 22, 29, 37] for
random variables and in [12, 34] for stochastic processes. In this section we mainly
summarize the results from [8, 18, 22].

The alternative probability measures in a robust representation of a risk measure
ρt contribute to the risk evaluation to a different degree. To formalize this aspect, we
use the notion of the minimal penalty function αmin

t , defined for each Q ∈ M1(P )

as

αmin
t (Q) = Q-ess sup

X∈At

EQ[−X|Ft ]. (1.2)

The following property of the minimal penalty function is a standard result that
will be used in the proof of Theorem 1.4.

Lemma 1.3 For Q ∈ M1(P ) and 0 ≤ s ≤ t ,

EQ

[
αmin

t (Q)
∣
∣Fs

] = Q-ess sup
Y∈At

EQ[−Y |Fs] Q-a.s.

and in particular

EQ

[
αmin

t (Q)
] = sup

Y∈At

EQ[−Y ].

Proof First we claim that the set

{
EQ[−X|Ft ]

∣
∣ X ∈ At

}
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6 B. Acciaio and I. Penner

is directed upward for any Q ∈ M1(P ). Indeed, for X,Y ∈ At , we can define Z :=
XIA +YIAc , where A := {EQ[−X|Ft ] ≥ EQ[−Y |Ft ]} ∈ Ft . Conditional convexity
of ρt implies that Z ∈ At , and by definition of Z,

EQ[−Z|Ft ] = max
(
EQ[−X|Ft ],EQ[−Y |Ft ]

)
Q-a.s.

Hence, there exists a sequence (X
Q
n )n∈N in At such that

αmin
t (Q) = lim

n
EQ

[−XQ
n

∣
∣Ft

]
Q-a.s., (1.3)

and by monotone convergence we get

EQ

[
αmin

t (Q)
∣
∣Fs

] = lim
n

EQ

[
EQ

[−XQ
n

∣
∣Ft

]∣
∣Fs

]

≤ Q-ess sup
Y∈At

EQ[−Y |Fs] Q-a.s.

The converse inequality follows directly from the definition of αmin
t (Q). �

The following theorem relates robust representations to some continuity prop-
erties of conditional convex risk measures. It combines [18, Theorem 1] with
[22, Corollary 2.4]; similar results can be found in [6, 12, 29].

Theorem 1.4 For a conditional convex risk measure ρt , the following are equiva-
lent:

1. ρt has a robust representation

ρt(X) = ess sup
Q∈Qt

(
EQ[−X|Ft ] − αt (Q)

)
, X ∈ L∞, (1.4)

where

Qt := {
Q ∈ M1(P )

∣
∣ Q = P |Ft

}
,

and αt is a map from Qt to the set of Ft -measurable random variables with
values in R ∪ {+∞} such that ess supQ∈Qt

(−αt (Q)) = 0.
2. ρt has the robust representation in terms of the minimal penalty function, i.e.,

ρt(X) = ess sup
Q∈Qt

(
EQ[−X|Ft ] − αmin

t (Q)
)
, X ∈ L∞, (1.5)

where αmin
t is given in (1.2).

3. ρt has the robust representation

ρt (X) = ess sup
Q∈Qf

t

(
EQ[−X|Ft ] − αmin

t (Q)
)

P -a.s., X ∈ L∞, (1.6)

where

Qf
t := {

Q ∈ M1(P )
∣
∣ Q = P |Ft

, EQ

[
αmin

t (Q)
]
< ∞}

.

www.TechnicalBooksPDF.com



1 Dynamic Risk Measures 7

4. ρt has the “Fatou-property”: for any bounded sequence (Xn)n∈N which con-
verges P -a.s. to some X,

ρt(X) ≤ lim inf
n→∞ ρt(Xn) P -a.s.

5. ρt is continuous from above, i.e.,

Xn ↘ X P -a.s =⇒ ρt(Xn) ↗ ρt(X) P -a.s

for any sequence (Xn)n ⊆ L∞ and X ∈ L∞.

Proof (3) ⇒ (1) and (2) ⇒ (1) are obvious. (1) ⇒ (4): Dominated convergence
implies that EQ[Xn|Ft ] → EQ[X|Ft ] for each Q ∈ Qt , and lim infn→∞ ρt(Xn) ≥
ρt (X) follows by using the robust representation of ρt as in the unconditional set-
ting, see, e.g., [24, Lemma 4.20].

(4) ⇒ (5): Monotonicity implies lim supn→∞ ρt (Xn) ≤ ρt (X), and
lim infn→∞ ρt (Xn) ≥ ρt (X) follows by (4).

(5) ⇒ (2): The inequality

ρt (X) ≥ ess sup
Q∈Qt

(
EQ[−X|Ft ] − αmin

t (Q)
)

(1.7)

follows from the definition of αmin
t . In order to prove the equality, we will show that

EP

[
ρt (X)

] ≤ EP

[
ess sup
Q∈Qt

(
EQ[−X|Ft ] − αmin

t (Q)
)]

.

To this end, consider the map ρP : L∞ → R defined by ρP (X) := EP [ρt (X)]. It
is easy to check that ρP is a convex risk measure which is continuous from above.
Hence [24, Theorem 4.31] implies that ρP has the robust representation

ρP (X) = sup
Q∈M1(P )

(
EQ[−X] − α(Q)

)
, X ∈ L∞,

where the penalty function α(Q) is given by

α(Q) = sup
X∈L∞:ρP (X)≤0

EQ[−X].

Next we will prove that Q ∈ Qt if α(Q) < ∞. Indeed, let A ∈ Ft and λ > 0. Then

−λP [A] = EP

[
ρt (λIA)

] = ρP (λIA) ≥ EQ[−λIA] − α(Q),

so

P [A] ≤ Q[A] + 1

λ
α(Q) for all λ > 0,

www.TechnicalBooksPDF.com



8 B. Acciaio and I. Penner

and hence P [A] ≤ Q[A] if α(Q) < ∞. The same reasoning with λ < 0 implies
P [A] ≥ Q[A], and thus P = Q on Ft if α(Q) < ∞. By Lemma 1.3, we have for
every Q ∈ Qt ,

EP

[
αmin

t (Q)
] = sup

Y∈At

EP [−Y ].

Since ρP (Y ) ≤ 0 for all Y ∈ At , this implies

EP

[
αmin

t (Q)
] ≤ α(Q)

for all Q ∈ Qt , by definition of the penalty function α(Q).
Finally we obtain

EP

[
ρt (X)

] = ρP (X) = sup
Q∈M1(P ),α(Q)<∞

(
EQ[−X] − α(Q)

)

≤ sup
Q∈Qt ,EP [αmin

t (Q)]<∞

(
EQ[−X] − α(Q)

)

≤ sup
Q∈Qt ,EP [αmin

t (Q)]<∞
EP

[
EQ[−X|Ft ] − αmin

t (Q)
]

≤ EP

[
ess sup

Q∈Qt ,EP [αmin
t (Q)]<∞

(
EQ[−X|Ft ] − αmin

t (Q)
)]

≤ EP

[
ess sup
Q∈Qt

(
EQ[−X|Ft ] − αmin

t (Q)
)]

, (1.8)

proving (1.5).
(5) ⇒ (3) The inequality

ρt (X) ≥ ess sup
Q∈Qf

t

(
EQ[−X|Ft ] − αmin

t (Q)
)

follows from (1.7) since Qf
t ⊆ Qt , and (1.8) proves the equality. �

Remark 1.5 The penalty function αmin
t (Q) is minimal in the sense that any other

function αt in a robust representation (1.4) of ρt satisfies

αmin
t (Q) ≤ αt (Q) P -a.s.

for all Q ∈ Qt . An alternative formula for the minimal penalty function is given by

αmin
t (Q) = ess sup

X∈L∞

(
EQ[−X|Ft ] − ρt (X)

)
for all Q ∈ Qt .

This follows as in the unconditional case; see, e.g., [24, Theorem 4.15, Re-
mark 4.16].
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1 Dynamic Risk Measures 9

In the coherent case the penalty function αmin
t (Q) can only take values 0 or ∞

due to positive homogeneity of ρt . Thus representation (1.12) takes the following
form.

Corollary 1.6 A conditional coherent risk measure ρt is continuous from above if
and only if it is representable in the form

ρt (X) = ess sup
Q∈Q0

t

EQ[−X|Ft ], X ∈ L∞, (1.9)

where

Q0
t := {

Q ∈ Qt

∣
∣ αmin

t (Q) = 0 Q-a.s.
}
.

Remark 1.7 Another characterization of a conditional convex risk measure ρt that
is equivalent to properties (1)–(5) of Theorem 1.4 is the following: The accep-
tance set At is weak∗-closed, i.e., it is closed in L∞ with respect to the topology
σ(L∞,L1(Ω, F ,P )). This equivalence was shown in [12] in the context of risk
measures for processes and in [29] for risk measures for random variables. Though
in [29] a slightly different definition of a conditional risk measure is used, the rea-
soning given there works just the same in our case; cf. [29, Theorem 3.16].

Example 1.8 A class of examples of conditional convex risk measures can be ob-
tained by considering a conditional robust version of a shortfall risk introduced in
[24, Sect. 4.9]. To this end, let lt : R → R be a convex and strictly increasing loss
function, and let Rt be some convex subset of Qt . Then the set

At := {
X ∈ L∞ ∣

∣ EQ

[
lt (−X)

∣
∣Ft

] ≤ lt (0) ∀Q ∈ Rt

}
(1.10)

satisfies properties (1)–(3) of Proposition 1.2 and thus induces a conditional convex
risk measure. Such risk measures were introduced and studied in [41, Sect. 5], where
they are called conditional robust shortfall risk measures.

A conditional robust shortfall risk measure is continuous from above by Re-
mark 1.7. Indeed, if (Xn)n∈N is a bounded sequence in At converging to some X,
then X ∈ At due to Lebesgue convergence theorem, and thus the set At is weak∗-
closed by Krein–Šmulian theorem; cf., e.g., [24, Theorem A.63, Lemma A.64].
Moreover, if P ∈ Rt (or if there exists Q∗ ≈ P such that Q∗ ∈ Rt ), then the set
of equivalent probability measures is dense in Rt , and representation (1.10) can be
written as

At = {
X ∈ L∞ ∣

∣ EQ

[
lt (−X)

∣
∣Ft

] ≤ lt (0) ∀Q ∈ Re
t

}
, (1.11)

where Re
t denotes the set of all Q ∈ Me(P ) such that the corresponding Ft -

normalized measure Q̃ defined by dQ̃
dP

:= ZT

Zt
belongs to Rt . Here Zs denotes the

density of Q with respect to P on Fs , s ∈ T.
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10 B. Acciaio and I. Penner

Example 1.9 If one takes Rt = {P } and the exponential loss function lt (x) =
exp(γtx) − 1 with γt > 0 in the previous example, one obtains the well-known con-
ditional entropic risk measure

ρt (X) = 1

γt

logE
[
exp(−γtX)

∣
∣Ft

]
, X ∈ L∞.

The entropic risk measure was introduced in [24] in the static setting; in the dy-
namical setting it appeared in [5, 12, 13, 18, 22, 31]. We characterize the dynamic
entropic risk measure in Sect. 1.5 in a slightly more general setting, where the risk
aversion parameter γt might be random.

Example 1.10 Example 1.8 with a linear loss function lt (x) = x and

Rt :=
{

Q ∈ Qt

∣
∣
∣
∣
dQ

dP
≤ λ−1

t

}

for some λt ∈ L∞
t , 0 < λt ≤ 1, yields an important example of a conditional coher-

ent risk measure, the conditional Average Value-at-Risk

AV @Rt,λt (X) := ess sup
{
EQ[−X|Ft ]

∣
∣ Q ∈ Rt

}
.

Static Average Value-at-Risk was introduced in [3] as a valid alternative to the
widely used yet criticized Value-at-Risk. The conditional version of Average Value-
at-Risk appeared in [4] and was also studied in [19, 42].

For the characterization of time consistency in Sect. 1.4, we will need a ro-
bust representation of a conditional convex risk measure ρt under any measure
Q ∈ M1(P ), where possibly Q /∈ Qt . Such representation can be obtained as in
Theorem 1.4 by considering ρt as a risk measure under Q, as shown in the next
corollary. This result is a version of [8, Proposition 1].

Corollary 1.11 A conditional convex risk measure ρt is continuous from above if
and only if it has the robust representations

ρt (X) = Q-ess sup
R∈Qt (Q)

(
ER[−X|Ft ] − αmin

t (R)
)

(1.12)

= Q-ess sup
R∈Qf

t (Q)

(
ER[−X|Ft ] − αmin

t (R)
)

Q-a.s., X ∈ L∞, (1.13)

for all Q ∈ M1(P ), where

Qt (Q) = {
R ∈ M1(P )

∣
∣ R = Q|Ft

}

and

Qf
t (Q) = {

R ∈ M1(P )
∣
∣ R = Q|Ft

,ER

[
αmin

t (R)
]
< ∞}

.
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1 Dynamic Risk Measures 11

Proof To show that continuity from above implies representation (1.12), we can
replace P by a probability measure Q ∈ M1(P ) and repeat all the reasoning of the
proof of (5) ⇒ (2) in Theorem 1.4. In this case we consider the static convex risk
measure

ρQ(X) = EQ

[
ρt (X)

] = sup
R∈M1(P )

(
ER[−X] − α(R)

)
, X ∈ L∞,

instead of ρP . The proof of (1.13) follows in the same way from [22, Corollary 2.4].
Conversely, continuity from above follows from Theorem 1.4 since representation
(1.12) holds under P . �

Remark 1.12 One can easily see that the set Qt in representations (1.4) and (1.5)
can be replaced by Pt := {Q ∈ M1(P ) | Q ≈ P on Ft}. Moreover, representation
(1.4) is also equivalent to

ρt(X) = ess sup
Q∈M1(P )

(
EQ[−X|Ft ] − α̂t (Q)

)
, X ∈ L∞,

where the conditional expectation under Q ∈ M1(P ) is defined under P as

EQ[X|Ft ] := EP [ZT X|Ft ]
Zt

I{Zt>0}

with Zs := dQ
dP

|Fs
, s ∈ T, and the extended penalty function α̂t is given by

α̂t (Q) =
{

αt (Q) on {Zt > 0},
+∞ otherwise.

As observed, e.g., in [12, Remark 3.13], the minimal penalty function has the
local property. In our context it means that for any Q1,Q2 ∈ Qt (Q) with the cor-
responding density processes Z1 and Z2 with respect to P and for any A ∈ Ft , the
probability measure R defined via dR

dP
:= IAZ1

T + IAcZ2
T has the penalty function

value

αmin
t (R) = IAαmin

t

(
Q1) + IAcαmin

t

(
Q2) Q-a.s.

In particular, R ∈ Qf
t (Q) if Q1,Q2 ∈ Qf

t (Q). Standard arguments (cf., e.g.,
[18, Lemma 1]) imply then that the set

{
ER[−X|Ft ] − αmin

t (R)
∣
∣ R ∈ Qf

t (Q)
}

is directed upward, and thus

EQ

[
ρt (X)

∣
∣Fs

] = Q-ess sup
R∈Qf

t (Q)

(
ER[−X|Fs] − ER

[
αmin

t (R)
∣
∣Fs

])
(1.14)

for all Q ∈ M1(P ),X ∈ L∞(Ω, F ,P ) and 0 ≤ s ≤ t .
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12 B. Acciaio and I. Penner

1.4 Time Consistency Properties

In the dynamical setting, risk assessment of a financial position is updated when
new information is released. This leads to the notion of a dynamic risk measure.

Definition 1.13 A sequence (ρt )t∈T is called a dynamic convex risk measure if ρt

is a conditional convex risk measure for each t ∈ T.

A key question in the dynamical setting is how the conditional risk assessments
at different times are interrelated. This question has led to several notions of time
consistency discussed in the literature. A unifying view was suggested in [40].

Definition 1.14 Assume that (ρt )t∈T is a dynamic convex risk measure and let Yt

be a subset of L∞ such that 0 ∈ Yt and Yt + R = Yt for each t ∈ T. Then (ρt )t∈T is
called acceptance (resp. rejection) consistent with respect to (Yt )t∈T if for all t ∈ T

such that t < T and for any X ∈ L∞ and Y ∈ Yt+1, the following condition holds:

ρt+1(X) ≤ ρt+1(Y ) (resp. ≥) =⇒ ρt(X) ≤ ρt (Y ) (resp. ≥). (1.15)

The idea is that the degree of time consistency is determined by a sequence of
benchmark sets (Yt )t∈T: if a financial position at some future time is always prefer-
able to some element of the benchmark set, then it should also be preferable today.
The bigger the benchmark set, the stronger is the resulting notion of time consis-
tency. In the following we focus on three cases.

Definition 1.15 We call a dynamic convex risk measure (ρt )t∈T

1. strongly time consistent if it is either acceptance consistent or rejection consistent
with respect to Yt = L∞ for all t in the sense of Definition 1.14;

2. middle acceptance (resp. middle rejection) consistent if for all t , we have
Yt = L∞

t in Definition 1.14;
3. weakly acceptance (resp. weakly rejection) consistent if for all t , we have Yt = R

in Definition 1.14.

Note that there is no difference between rejection consistency and acceptance
consistency with respect to L∞, since the role of X and Y is symmetric in that
case. Obviously strong time consistency implies both middle rejection and middle
acceptance consistency, and middle rejection (resp. middle acceptance) consistency
implies weak rejection (resp. weak acceptance) consistency. In the rest of the paper
we drop the terms “middle” and “strong” in order to simplify the terminology.

1.4.1 Time Consistency

Time consistency has been studied extensively in the recent work on dynamic risk
measures, see [4, 8, 9, 12, 13, 16–18, 22, 29, 33, 34] and the references therein. In
the next proposition we recall some equivalent characterizations of time consistency.
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1 Dynamic Risk Measures 13

Proposition 1.16 A dynamic convex risk measure (ρt )t∈T is time consistent if and
only if any of the following conditions holds:

1. for all t ∈ T such that t < T and for all X,Y ∈ L∞,

ρt+1(X) ≤ ρt+1(Y ) P -a.s =⇒ ρt (X) ≤ ρt (Y ) P -a.s.; (1.16)

2. for all t ∈ T such that t < T and for all X,Y ∈ L∞,

ρt+1(X) = ρt+1(Y ) P -a.s =⇒ ρt (X) = ρt (Y ) P -a.s.; (1.17)

3. (ρt )t∈T is recursive, i.e.,

ρt = ρt (−ρt+s) P -a.s.

for all t, s ≥ 0 such that t, t + s ∈ T.

Proof It is obvious that time consistency implies condition (1.16) and that (1.16)
implies (1.17). By cash invariance we have ρt+1(−ρt+1(X)) = ρt+1(X), and hence
one-step recursiveness follows from (1.17). We prove that one-step recursiveness
implies recursiveness by induction on s. For s = 1, the claim is true for all t . Assume
that the induction hypothesis holds for each t and all k ≤ s for some s ≥ 1. Then we
obtain

ρt

(−ρt+s+1(X)
) = ρt

(−ρt+s

(−ρt+s+1(X)
))

= ρt

(−ρt+s(X)
)

= ρt (X),

where we have applied the induction hypothesis to the random variable −ρt+s+1(X).
Hence the claim follows. Finally, due to monotonicity, recursiveness implies time
consistency. �

Remark 1.17 The recursivity property (3) of Proposition 1.16 corresponds to the
dynamic programming principle, and it is crucial for many applications. In contin-
uous time and in Brownian setting, it allows one to relate time consistent dynamic
risk measures to the solutions of a certain type of backward stochastic differential
equations, so-called g-expectations; cf. [20, 26, 32, 38]. Indeed, as shown in [38,
Proposition 19], a conditional g-expectation defines a time consistent dynamic con-
vex risk measure on L2(P ) if the BSDE generator g is convex (and satisfies the
usual assumptions ensuring existence of a solution). Conversely, as shown in [38,
Proposition 20], if (ρt )t∈[0,T ] is a strictly monotone time consistent dynamic convex
risk measure in Brownian setting and if ρ0 satisfies a certain boundedness condition,
then (ρt ) can be identified as a conditional g-expectation. This relation allows one
in particular to characterize penalty functions of time consistent dynamic convex
risk measures in Brownian setting; cf. [17].
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14 B. Acciaio and I. Penner

If we restrict a conditional convex risk measure ρt to the space L∞
t+s for some

s ≥ 0, the corresponding acceptance set is given by

At,t+s := {
X ∈ L∞

t+s

∣
∣ ρt (X) ≤ 0 P -a.s.

}
,

and the minimal penalty function by

αmin
t,t+s(Q) := Q-ess sup

X∈At,t+s

EQ[−X|Ft ], Q ∈ M1(P ). (1.18)

The following lemma recalls equivalent characterizations of recursive inequali-
ties in terms of acceptance sets from [22, Lemma 4.6]; property (1.19) was shown
in [16].

Lemma 1.18 Let (ρt )t∈T be a dynamic convex risk measure. Then the following
equivalences hold for all s, t such that t, t + s ∈ T and all X ∈ L∞:

X ∈ At,t+s + At+s ⇐⇒ − ρt+s(X) ∈ At,t+s , (1.19)

At ⊆ At,t+s + At+s ⇐⇒ ρt(−ρt+s) ≤ ρt P -a.s., (1.20)

At ⊇ At,t+s + At+s ⇐⇒ ρt(−ρt+s) ≥ ρt P -a.s. (1.21)

Proof To prove “⇒” in (1.19), let X = Xt,t+s + Xt+s with Xt,t+s ∈ At,t+s and
Xt+s ∈ At+s . Then

ρt+s(X) = ρt+s(Xt+s) − Xt,t+s ≤ −Xt,t+s

by cash invariance, and monotonicity implies

ρt

(−ρt+s(X)
) ≤ ρt(Xt,t+s) ≤ 0.

The converse direction follows immediately from X = X +ρt+s(X)−ρt+s(X) and
X + ρt+s(X) ∈ At+s for all X ∈ L∞.

In order to show “⇒” in (1.20), fix X ∈ L∞. Since X + ρt (X) ∈ At ⊆ At,t+s +
At+s , we obtain

ρt+s(X) − ρt(X) = ρt+s

(
X + ρt(X)

) ∈ −At,t+s ,

by (1.19) and cash invariance. Hence,

ρt

(−ρt+s(X)
) − ρt (X) = ρt

(−(
ρt+s(X) − ρt (X)

)) ≤ 0 P -a.s.

To prove “⇐”, let X ∈ At . Then −ρt+s(X) ∈ At,t+s by the right-hand side of
(1.20), and hence X ∈ At,t+s + At+s by (1.19).

Now let X ∈ L∞ and assume At ⊇ At,t+s + At+s . Then

ρt

(−ρt+s(X)
) + X = ρt

(−ρt+s(X)
) − ρt+s(X) + ρt+s(X) + X

∈ At,t+s + At+s ⊆ At .
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Hence,

ρt (X) − ρt

(−ρt+s(X)
) = ρt

(
X + ρt

(−ρt+s(X)
)) ≤ 0

by cash invariance, and this proves “⇒” in (1.21). For the converse direction, let
X ∈ At,t+s + At+s . Since −ρt+s(X) ∈ At,t+s by (1.19), we obtain

ρt (X) ≤ ρt

(−ρt+s(X)
) ≤ 0,

and hence, X ∈ At . �

We also have the following relation between acceptance sets and penalty func-
tions; cf. [33, Lemma 2.2.5].

Lemma 1.19 Let (ρt )t∈T be a dynamic convex risk measures. Then the following
implications hold for all t, s such that t, t + s ∈ T and for all Q ∈ M1(P ):

At ⊆ At,t+s + At+s =⇒ αmin
t (Q) ≤ αmin

t,t+s(Q) + EQ

[
αmin

t+s (Q)
∣
∣Ft

]
Q-a.s.,

At ⊇ At,t+s + At+s =⇒ αmin
t (Q) ≥ αmin

t,t+s(Q) + EQ

[
αmin

t+s (Q)
∣
∣Ft

]
Q-a.s.

Proof Straightforward from the definition of the minimal penalty function and
Lemma 1.3. �

The following theorem gives equivalent characterizations of time consistency in
terms of acceptance sets, penalty functions, and a supermartingale property of the
risk process.

Theorem 1.20 Let (ρt )t∈T be a dynamic convex risk measure such that each ρt is
continuous from above. Then the following conditions are equivalent:

1. (ρt )t∈T is time consistent.
2. At = At,t+s + At+s for all t, s such that t, t + s ∈ T.
3. αmin

t (Q) = αmin
t,t+s(Q)+EQ[αmin

t+s (Q)|Ft ] Q-a.s. for all t, s such that t, t + s ∈ T

and all Q ∈ M1(P ).
4. For all X ∈ L∞(Ω, F ,P ) and all t, s such that t, t + s ∈ T and all Q ∈ M1(P ),

we have

EQ

[
ρt+s(X) + αmin

t+s (Q)
∣
∣Ft

] ≤ ρt (X) + αmin
t (Q) Q-a.s.

The equivalence of properties (1) and (2) of Theorem 1.20 was proved in [16].
Characterizations of time consistency in terms of penalty functions as in (3) of The-
orem 1.20 appeared in [7, 8, 13, 22]; similar results for risk measures for processes
were given in [12, 13]. In [7, 8] property (3) is called cocycle property. The super-
martingale property as in (4) of Theorem 1.20 was obtained in [22]; cf. also [8] for
continuous-time setting.
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16 B. Acciaio and I. Penner

Proof The proof of (1) ⇒ (2) ⇒ (3) follows from Lemmas 1.18 and 1.19. To prove
(3) ⇒ (4), fix Q ∈ M1(P ). By (1.14) we have

EQ

[
ρt+s(X)

∣
∣Ft

] = Q-ess sup
R∈Qf

t+s (Q)

(
ER[−X|Ft ] − ER

[
αmin

t+s (R)
∣
∣Ft

])
.

On the set {αmin
t (Q) = ∞} property (4) holds trivially. On the set {αmin

t (Q) <

∞} property (3) implies EQ[αmin
t+s (Q)|Ft ] < ∞ and αmin

t,t+s(Q) < ∞; then for

R ∈ Qf
t+s(Q),

αmin
t (R) = αmin

t,t+s(Q) + ER

[
αmin

t+s (R)
∣
∣Ft

]
< ∞ Q-a.s.

Thus,

EQ

[
ρt+s(X) + αmin

t+s (Q)
∣
∣Ft

] = Q-ess sup
R∈Qf

t+s (Q)

(
ER[−X|Ft ] − αmin

t (R)
) + αmin

t (Q)

on {αmin
t (Q) < ∞}. Moreover, since Qf

t+s(Q) ⊆ Qt (Q), (1.12) implies

EQ

[
ρt+s(X) + αmin

t+s(Q)
∣
∣Ft

] ≤ Q-ess sup
R∈Qt (Q)

(
ER[−X|Ft ] − αmin

t (R)
) + αmin

t (Q)

= ρt (X) + αmin
t (Q) Q-a.s.

It remains to prove (4) ⇒ (1). To this end, fix Q ∈ Qf
t and X,Y ∈ L∞ such

that ρt+1(X) ≤ ρt+1(Y ). Note that EQ[αt+s(Q)] < ∞ due to (4), and hence

Q ∈ Qf
t+s(Q). Using (4) and representation (1.13) for ρt+s under Q, we obtain

ρt (Y ) + αmin
t (Q) ≥ EQ

[
ρt+1(Y ) + αmin

t+1(Q)
∣
∣Ft

]

≥ EQ

[
ρt+1(X) + αmin

t+1(Q)
∣
∣Ft

]

≥ EQ

[
EQ[−X|Ft+1] − αmin

t+1(Q) + αmin
t+1(Q)

∣
∣Ft

]

= EQ[−X|Ft ].
Hence representation (1.6) yields ρt (Y ) ≥ ρt(X), and time consistency follows from
Proposition 1.16. �

Properties (3) and (4) of Theorem 1.20 imply in particular supermartingale prop-
erties of penalty function processes and risk processes. This allows one to apply
martingale theory for characterization of the dynamics of these processes, as we do
in Propositions 1.21 and 1.24; cf. also [8, 16, 17, 22, 33].

Proposition 1.21 Let (ρt )t∈T be a time consistent dynamic convex risk measure
such that each ρt is continuous from above. Then the process

V
Q
t (X) := ρt(X) + αmin

t (Q), t ∈ T,
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is a Q-supermartingale for all X ∈ L∞ and all Q ∈ Q0, where

Q0 := {
Q ∈ M1(P )

∣
∣ αmin

0 (Q) < ∞}
.

Moreover, (V
Q
t (X))t∈T is a Q-martingale if Q ∈ Q0 is a “worst-case” measure for

X at time 0, i.e., if the supremum in the robust representation of ρ0(X) is attained
at Q:

ρ0(X) = EQ[−X] − αmin
0 (Q).

In this case Q is a “worst-case” measure for X at any time t , i.e.,

ρt(X) = EQ[−X|Ft ] − αmin
t (Q) Q-a.s. for all t ∈ T.

The converse holds if T < ∞ or limt→∞ ρt (X) = −X P -a.s. (what is called asymp-
totic precision in [22]): If (V

Q
t (X))t∈T is a Q-martingale, then Q ∈ Q0 is a “worst-

case” measure for X at any time t ∈ T.

Proof The supermartingale property of (V
Q
t (X))t∈T under each Q ∈ Q0 follows

directly from properties (3) and (4) of Theorem 1.20. To prove the remaining part
of the claim, fix Q ∈ Q0 and X ∈ L∞. If Q is a “worst-case” measure for X at time
0, the process

Ut(X) := V
Q
t (X) − EQ[−X|Ft ], t ∈ T,

is a nonnegative Q-supermartingale beginning at 0. Indeed, the supermartingale
property follows from that of (V

Q
t (X))t∈T, and nonnegativity follows from rep-

resentation (1.13), since Q ∈ Qf
t (Q). Thus, Ut = 0 Q-a.s. for all t , and this proves

the “if” part of the claim. To prove the converse direction, note that if (V
Q
t (X))t∈T

is a Q-martingale and ρT (X) = −X (resp. limt→∞ ρt(X) = −X P -a.s.), the pro-
cess U(X) is a Q-martingale ending at 0 (resp. converging to 0 in L1(Q)), and thus
Ut(X) = 0 Q-a.s. for all t ∈ T. �

Remark 1.22 The fact that a worst-case measure for X at time 0, if it exists, remains
a worst-case measure for X at any time t ∈ T was also shown in [13, Theorem 3.9]
for a time consistent dynamic risk measure in finite time horizon without using the
supermartingale property from Proposition 1.21.

Remark 1.23 In difference to [22, Theorem 4.5], without the additional assumption
that the set

Q∗ := {
Q ∈ Me(P )

∣
∣ αmin

0 (Q) < ∞}
(1.22)

is nonempty, the supermartingale property of (V
Q
t (X))t∈T for all X ∈ L∞ and all

Q ∈ Q∗ is not sufficient to prove time consistency. In this case we also do not have
the robust representation of ρt in terms of the set Q∗.
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The process (αmin
t (Q))t∈T is a Q-supermartingale for all Q ∈ Q0 due to Prop-

erty (3) of Theorem 1.20. The next proposition provides explicit forms of its Doob
and Riesz decompositions; cf. also [33, Proposition 2.3.2].

Proposition 1.24 Let (ρt )t∈T be a time consistent dynamic convex risk measure
such that each ρt is continuous from above. Then for each Q ∈ Q0, the process
(αmin

t (Q))t∈T is a nonnegative Q-supermartingale with the Riesz decomposition

αmin
t (Q) = Z

Q
t + M

Q
t Q-a.s., t ∈ T,

where

Z
Q
t := EQ

[
T −1∑

k=t

αmin
k,k+1(Q)

∣
∣
∣
∣
∣

Ft

]

Q-a.s., t ∈ T,

is a Q-potential, and

M
Q
t :=

{
0 if T < ∞,

lims→∞ EQ[αs(Q)|Ft ] if T = ∞,
Q-a.s., t ∈ T,

is a nonnegative Q-martingale.
Moreover, the Doob decomposition of (αmin

t (Q))t∈T is given by

αmin
t (Q) = EQ

[
T −1∑

k=0

αmin
k,k+1(Q)

∣
∣
∣
∣
∣

Ft

]

+ M
Q
t −

t−1∑

k=0

αmin
k,k+1(Q), t ∈ T,

with the Q-martingale

EQ

[
T −1∑

k=0

αmin
k,k+1(Q)

∣
∣
∣
∣
∣

Ft

]

+ M
Q
t , t ∈ T,

and the nondecreasing predictable process (
∑t−1

k=0 αmin
k,k+1(Q))t∈T.

Proof We fix Q ∈ M1(P ) and applying property (3) of Theorem 1.20 step by step,
we obtain

αmin
t (Q) = EQ

[
t+s−1∑

k=t

αmin
k,k+1(Q)

∣
∣
∣
∣
∣

Ft

]

+ EQ

[
αmin

t+s(Q)
∣
∣Ft

]
Q-a.s. (1.23)

for all t, s such that t, t + s ∈ T. If T < ∞, the Doob and Riesz decompositions fol-
low immediately from (1.23), since αT (Q) = 0 Q-a.s. If T = ∞, by monotonicity
there exists the limit

Z
Q
t = lim

s→∞EQ

[
s∑

k=t

αmin
k,k+1(Q)

∣
∣
∣
∣
∣

Ft

]

= EQ

[ ∞∑

k=t

αmin
k,k+1(Q)

∣
∣
∣
∣
∣

Ft

]

Q-a.s.
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for all t ∈ T, where we have used the monotone convergence theorem for the second
equality. Equality (1.23) implies then that there exists

M
Q
t = lim

s→∞EQ

[
αmin

t+s (Q)
∣
∣Ft

]
Q-a.s., t ∈ T,

and

αmin
t (Q) = Z

Q
t + M

Q
t Q-a.s.

for all t ∈ T.
The process (Z

Q
t )t∈T is a nonnegative Q-supermartingale. Indeed,

EQ

[
Z

Q
t

] ≤ EQ

[ ∞∑

k=0

αmin
k,k+1(Q)

]

≤ αmin
0 (Q) < ∞ (1.24)

and EQ[ZQ
t+1|Ft ] ≤ Z

Q
t Q-a.s. for all t ∈ T by definition. Moreover, monotone

convergence implies

lim
t→∞ EQ

[
Z

Q
t

] = EQ

[

lim
t→∞

∞∑

k=t

αmin
k,k+1(Q)

]

= 0 Q-a.s.,

since
∑∞

k=0 αmin
k,k+1(Q) < ∞ Q-a.s. by (1.24). Hence the process (Z

Q
t )t∈T is a Q-

potential.
The process (M

Q
t )t∈T is a nonnegative Q-martingale, since

EQ

[
M

Q
t

] ≤ EQ

[
αmin

t (Q)
] ≤ αmin

0 (Q) < ∞
and

EQ

[
M

Q
t+1 − M

Q
t

∣
∣Ft

] = EQ

[
αmin

t+1(Q)
∣
∣Ft

] − αmin
t (Q) − EQ

[
Z

Q
t+1 − Z

Q
t

∣
∣Ft

]

= αmin
t,t+1(Q) − αmin

t,t+1(Q) = 0 Q-a.s.

for all t ∈ T by property (3) of Theorem 1.20 and the definition of (Z
Q
t )t∈T.

The Doob decomposition follows straightforward from the Riesz decomposi-
tion. �

Remark 1.25 It was shown in [22, Theorem 5.4] that the martingale MQ in the Riesz
decomposition of (αmin

t (Q))t∈T vanishes if and only if limt→∞ ρt (X) ≥ −XP -a.s.,
i.e., the dynamic risk measure (ρt )t∈T is asymptotically safe. This is not always the
case; see [22, Example 5.5].

For a coherent risk measure, we have

Qf
t (Q) = Q0

t (Q) := {
R ∈ M1(P )

∣
∣ R = Q|Ft

, αmin
t (R) = 0 Q-a.s.

}
.
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In order to give an equivalent characterization of property (3) of Theorem 1.20 in
the coherent case, we introduce the sets

Q0
t,t+s(Q) = {

R � P |Ft+s

∣
∣ R = Q|Ft

, αmin
t,t+s(R) = 0 Q-a.s.

}

for all t, s ≥ 0 such that t, t + s ∈ T. For Q1 ∈ Q0
t,t+s(Q) and Q2 ∈ Q0

t+s(Q), we
denote by Q1 ⊕t+s Q2 the pasting of Q1 and Q2 in t + s via Ω , i.e., the measure
Q̃ defined via

Q̃(A) = EQ1

[
EQ2[IA|Ft+s]

]
, A ∈ F . (1.25)

The relation between stability under pasting and time consistency of coherent risk
measures that can be represented in terms of equivalent probability measures was
studied in [4, 16, 22, 29]. In our present setting, Theorem 1.20 applied to a coherent
risk measure takes the following form.

Corollary 1.26 Let (ρt )t∈T be a dynamic coherent risk measure such that each ρt

is continuous from above. Then the following conditions are equivalent:

1. (ρt )t∈T is time consistent.
2. For all Q ∈ M1(P ) and all t, s such that t, t + s ∈ T,

Q0
t (Q) = {

Q1 ⊕t+s Q2
∣
∣ Q1 ∈ Q0

t,t+s(Q), Q2 ∈ Q0
t+s

(
Q1)}.

3. For all Q ∈ M1(P ) such that αmin
t (Q) = 0 Q-a.s.,

EQ

[
ρt+s(X)

∣
∣Ft

] ≤ ρt (X) and αmin
t+s (Q) = 0 Q-a.s.

for all X ∈ L∞(Ω, F ,P ) and for all t, s such that t, t + s ∈ T.

Proof (1) ⇒ (2): Time consistency implies property (3) of Theorem 1.20, and we
will show that this implies property (2) of Corollary 1.26. Fix Q ∈ M1(P ). To prove
“⊇”, let Q1 ∈ Q0

t (Q), Q2 ∈ Q0
t+s(Q

1), and consider Q̃ defined as in (1.25). Note
that Q̃ = Q1 on Ft+s and

EQ̃[X|Ft+s] = EQ2 [X|Ft+s] Q1-a.s. for all X ∈ L∞(Ω, F ,P ).

Hence, using (3) of Theorem 1.20, we obtain

αmin
t (Q̃) = αmin

t,t+s(Q̃) + EQ̃

[
αmin

t+s(Q̃)
∣
∣Ft

]

= αmin
t,t+s

(
Q1) + EQ1

[
αmin

t+s

(
Q2)∣∣Ft

] = 0 Q-a.s.,

and thus Q̃ ∈ Q0
t (Q). Conversely, for every Q̃ ∈ Q0

t (Q), we have αmin
t+s (Q̃) =

αmin
t,t+s(Q̃) = 0 Q̃-a.s. by (3) of Theorem 1.20, and Q̃ = Q̃ ⊕ Q̃. This proves “⊆”.

(2) ⇒ (3): Let R ∈ M1(P ) with αmin
t (R) = 0 R-a.s.. Then R ∈ Q0

t (R), and
thus R = Q1 ⊕t+s Q2 for some Q1 ∈ Q0

t,t+s(R) and Q2 ∈ Q0
t+s(Q

1). This implies
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R = Q1 on Ft+s and

ER[X|Ft+s] = EQ2[X|Ft+s] R-a.s.

Hence αmin
t,t+s(R) = αmin

t,t+s(Q
1) = 0, R-a.s., and αmin

t+s (R) = αmin
t+s (Q

2) = 0 R-a.s. To
prove inequality (3), note that due to (1.14),

ER

[
ρt+s(X)

∣
∣Ft

] = R-ess sup
Q∈Q0

t+s (R)

EQ[−X|Ft ]

≤ R-ess sup
Q∈Q0

t (R)

EQ[−X|Ft ] = ρt(X) R-a.s.,

where we have used that the pasting of R|Ft+s
and Q belongs to Q0

t (R).
(3) ⇒ (1): Obviously, property (3) of Corollary 1.26 implies property (4) of

Theorem 1.20 and thus time consistency. �

1.4.2 Rejection and Acceptance Consistency

Rejection and acceptance consistency were introduced and studied in [19, 33, 40,
41]. These properties can be characterized via recursive inequalities as stated in the
next proposition; see [40, Theorem 3.1.5] and [19, Proposition 3.5].

Proposition 1.27 A dynamic convex risk measure (ρt )t∈T is rejection (resp. accep-
tance) consistent if and only if for all t ∈ T such that t < T ,

ρt (−ρt+1) ≤ ρt (resp. ≥) P -a.s. (1.26)

Proof We argue for the case of rejection consistency; the case of acceptance consis-
tency follows in the same manner. Assume first that (ρt )t∈T satisfies (1.26) and let
X ∈ L∞ and Y ∈ L∞(Ft+1) such that ρt+1(X) ≥ ρt+1(Y ). Using cash invariance,
(1.26), and monotonicity, we obtain

ρt(X) ≥ ρt

(−ρt+1(X)
) ≥ ρt

(−ρt+1(Y )
) = ρt (Y ).

The converse implication follows due to cash invariance by applying (1.15) to Y =
−ρt+1(X). �

Remark 1.28 As shown in [19, Proposition 3.9], for a dynamic coherent risk mea-
sure, weak acceptance consistency and acceptance consistency are equivalent. In-
deed, let (ρt )t∈T be a coherent dynamic risk measure that is weakly acceptance
consistent. Then

ρt(X) ≤ ρt

(
X + ρt+1(X)

) + ρt

(−ρt+1(X)
) ∀X ∈ L∞

due to subadditivity. Since ρt+1(X + ρt+1(X)) = 0, weak acceptance consistency
implies ρt (X + ρt+1(X)) ≤ 0, and thus ρt(X) ≤ ρt(−ρt+1(X)) for all t and all
X ∈ L∞.
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Example 1.29 One obtains acceptance-consistent dynamic risk measures by taking
suprema over families of time consistent dynamic risk measures. Indeed, if R is a
collection of time consistent dynamic convex risk measures, then

ρ̂t (X) := ess sup
ρ∈R

ρt(X), t ∈ T, X ∈ L∞,

defines a dynamic convex risk measure. Moreover, monotonicity of (ρ̂t ) and time
consistency of (ρt ) imply ρ̂t (X) ≤ ρ̂t (−ρ̂t+1(X)) for all t , i.e., (ρ̂t )t∈T is acceptance
consistent. This was noted in [36, Lemma 7.1].

Rejection consistency can be characterized as follows.

Proposition 1.30 A dynamic convex risk measure (ρt )t∈T is rejection consistent if
and only if any of the following conditions holds:

1. For all t ∈ T such that t < T and all X ∈ L∞,

ρt (X) − ρt+1(X) ∈ At,t+1; (1.27)

2. For all t ∈ T such that t < T and all X ∈ At , we have −ρt+1(X) ∈ At .

Proof Since

ρt

(−ρt+1(X)
) = ρt

(
ρt(X) − ρt+1(X)

) + ρt (X)

by cash invariance, (1.27) implies rejection consistency, and obviously rejection
consistency implies condition (2). If (2) holds, then for any X ∈ L∞,

ρt

(
ρt(X) − ρt+1(X)

) = ρt

(−ρt+1
(
X + ρt (X)

)) ≤ 0,

due to cash invariance and the fact that X + ρt (X) ∈ At . �

Property (1.27) was introduced in [33] under the name prudence. It means that
the adjustment ρt+1(X) − ρt(X) of the minimal capital requirement for X at time
t +1 is acceptable at time t . In other words, one stays on the safe side at each period
of time by making capital reserves according to a rejection consistent dynamic risk
measure.

Similar to time consistency, rejection and acceptance consistency can be charac-
terized in terms of acceptance sets and penalty functions.

Theorem 1.31 Let (ρt )t∈T be a dynamic convex risk measure such that each ρt is
continuous from above. Then the following properties are equivalent:

1. (ρt )t∈T is rejection consistent (resp. acceptance consistent).
2. The inclusion

At ⊆ At,t+1 + At+1 resp. At ⊇ At,t+1 + At+1

holds for all t ∈ T such that t < T .
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3. The inequality

αmin
t (Q) ≤ (resp. ≥) αmin

t,t+1(Q) + EQ

[
αmin

t+1(Q)
∣
∣Ft

]
Q-a.s.

holds for all t ∈ T such that t < T and all Q ∈ M1(P ).

Proof Equivalence of (1) and (2) was proved in Proposition 1.27 and Lemma 1.18,
and the proof of (2) ⇒ (3) is given in Lemma 1.19.

Let us show that property (3) implies property (1). We argue for the case of re-
jection consistency; the case of acceptance consistency follows in the same manner.
We fix t ∈ T such that t < T and consider the risk measure

ρ̃t (X) := ρt

(−ρt+1(X)
)
, X ∈ L∞.

It is easily seen that ρ̃t is a conditional convex risk measure that is continuous from
above. Moreover, the dynamic risk measure (ρ̃t , ρt+1) is time consistent by defini-
tion, and thus it fulfills properties (2) and (3) of Theorem 1.20. We denote by Ãt and

Ãt,t+1 the acceptance sets of the risk measure ρ̃t , and by α̃min
t its penalty function.

Since

ρ̃t (X) = ρt

(−ρt+1(X)
) = ρt (X)

for all X ∈ L∞
t+1, we have Ãt,t+1 = At,t+1, and thus

Ãt = At,t+1 + At+1

by (2) of Theorem 1.20. Lemma 1.19 and property (3) then imply

α̃min
t (Q) = αmin

t,t+1(Q) + EQ

[
αmin

t+1(Q)
∣
∣Ft

] ≥ αmin
t (Q)

for all Q ∈ Qt . Thus,

ρt (X) ≥ ρ̃t (X) = ρt

(−ρt+1(X)
)

for all X ∈ L∞, due to representation (1.6). �

Remark 1.32 Similarly to Corollary 1.26, condition (3) of Theorem 1.31 can be
restated for a dynamic coherent risk measure (ρt )t∈T as follows:

Q0
t (Q) ⊇ {

Q1 ⊕t+1 Q2
∣
∣ Q1 ∈ Q0

t,t+1(Q), Q2 ∈ Q0
t+1

(
Q1)} (resp. ⊆)

for all t ∈ T such that t < T and all Q ∈ M1(P ).

The following proposition provides an additional equivalent characterization of
rejection consistency that can be viewed as an analogon of the supermartingale prop-
erty (4) of Theorem 1.20.
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Proposition 1.33 Let (ρt )t∈T be a dynamic convex risk measure such that each
ρt is continuous from above. Then (ρt )t∈T is rejection consistent if and only if the
inequality

EQ

[
ρt+1(X)

∣
∣Ft

] ≤ ρt(X) + αmin
t,t+1(Q) Q-a.s. (1.28)

holds for all Q ∈ M1(P ) and all t ∈ T such that t < T . In this case the process

U
Q
t (X) := ρt (X) −

t−1∑

k=0

αmin
k,k+1(Q), t ∈ T,

is a Q-supermartingale for all X ∈ L∞ and all Q ∈ Qf , where

Qf :=
{

Q ∈ M1(P )

∣
∣
∣
∣
∣
EQ

[
t∑

k=0

αmin
k,k+1(Q)

]

< ∞ ∀t ∈ T

}

.

The proof of Proposition 1.33 is a special case of Theorem 1.35, which involves
the notion of sustainability; cf. [33].

Definition 1.34 Let (ρt )t∈T be a dynamic convex risk measure. We call a bounded
adapted process X = (Xt )t∈T sustainable with respect to the risk measure (ρt )t∈T if

ρt (Xt − Xt+1) ≤ 0 for all t ∈ T such that t < T .

Consider X to be a cumulative investment process. If it is sustainable, then for
all t ∈ T, the adjustment Xt+1 − Xt is acceptable with respect to ρt .

The next theorem characterizes sustainable processes in terms of a supermartin-
gale inequality; it is a generalization of [33, Corollary 2.4.10].

Theorem 1.35 Let (ρt )t∈T be a dynamic convex risk measure such that each ρt is
continuous from above, and let (Xt )t∈T be a bounded adapted process. Then the
following properties are equivalent:

1. The process (Xt )t∈T is sustainable with respect to the risk measure (ρt )t∈T.
2. For all Q ∈ M1(P ) and all t ∈ T, t ≥ 1, we have

EQ[Xt |Ft−1] ≤ Xt−1 + αmin
t−1,t (Q) Q-a.s.. (1.29)

Proof The proof of (1) ⇒ (2) follows directly from the definition of sustainability
and the definition of the minimal penalty function.

To prove (2) ⇒ (1), let (Xt )t∈T be a bounded adapted process such that (1.29)
holds. In order to prove

Xt − Xt−1 =: At ∈ −At−1,t for all t ∈ T, t ≥ 1,

suppose by way of contradiction that At /∈ −At−1,t . Since the set At−1,t is convex
and weak∗-closed due to Remark 1.7, the Hahn–Banach separation theorem (see,
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e.g., [24, Theorem A.56]) ensures the existence of Z ∈ L1(Ω, Ft , P ) such that

a := sup
X∈At−1,t

E
[
Z(−X)

]
< E[ZAt ] =: b < ∞. (1.30)

Since λI{Z<0} ∈ At−1,t for every λ ≥ 0, (1.30) implies Z ≥ 0 P -a.s., and in particu-
lar E[Z] > 0. Define the probability measure Q ∈ M1(P ) via dQ

dP
:= Z

E[Z] and note
that, due to Lemma 1.3 and (1.30), we have

EQ

[
αmin

t−1,t (Q)
] = sup

X∈At−1,t

EQ

[
(−X)

] = sup
X∈At−1,t

E
[
Z(−X)

] 1

E[Z] = a

E[Z] < ∞.

(1.31)
Moreover, (1.30) and (1.31) imply

EQ

[(
Xt − Xt−1 − αmin

t−1,t (Q)
)] = E[Z](E[ZAt ] − EQ

[
αmin

t−1,t (Q)
])

= E[Z](b − a) > 0,

which cannot be true if (1.29) holds under Q. �

Remark 1.36 In particular, property (2) of Theorem 1.35 implies that the process

Xt −
t−1∑

k=0

αmin
k,k+1(Q), t ∈ T,

is a Q-supermartingale for all Q ∈ Qf if X is sustainable with respect to (ρt ).
As shown in [33, Theorem 2.4.6, Corollary 2.4.8], this supermartingale property is
equivalent to the sustainability of X under some additional assumptions.

1.4.3 Weak Time Consistency

In this section we characterize the weak notions of time consistency from Defini-
tion 1.15. Due to cash invariance, they can be restated as follows: A dynamic convex
risk measure (ρt )t∈T is weakly acceptance (resp. weakly rejection) consistent if and
only if

ρt+1(X) ≤ 0 (resp. ≥) =⇒ ρt (X) ≤ 0 (resp. ≥)

for any X ∈ L∞ and for all t ∈ T such that t < T . This means that if some position
is accepted (or rejected) for any scenario tomorrow, it should be already accepted
(or rejected) today. In this form, weak acceptance consistency was introduced in [4].
Both weak acceptance and weak rejection consistency appeared in [35, 40, 41, 43].

Weak acceptance consistency was characterized in terms of acceptance sets in
[41, Corollary 3.6] and in terms of a supermartingale property of penalty functions
in [9, Lemma 3.17]. We summarize these characterizations in our present setting in
the next proposition.
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Proposition 1.37 Let (ρt )t∈T be a dynamic convex risk measure such that each ρt

is continuous from above. Then the following properties are equivalent:

1. (ρt )t∈T is weakly acceptance consistent.
2. At+1 ⊆ At for all t ∈ T such that t < T .
3. The inequality

EQ

[
αmin

t+1(Q)
∣
∣Ft

] ≤ αmin
t (Q) Q-a.s. (1.32)

holds for all Q ∈ M1(P ) and all t ∈ T such that t < T . In particular,
(αmin

t (Q))t∈T is a Q-supermartingale for all Q ∈ Q0.

Proof The equivalence of (1) and (2) follows directly from the definition of weak
acceptance consistency. Property (2) implies (3), since by Lemma 1.3

EQ

[
αmin

t+1(Q)
∣
∣Ft

] = Q-ess sup
Xt+1∈At+1

EQ[−Xt+1|Ft ]

≤ Q-ess sup
X∈At

EQ[−X|Ft ] = αmin
t (Q) Q-a.s.

for all Q ∈ M1(P ).
To prove that (3) implies (2), we fix X ∈ At+1 and note that

EQ[−X|Ft+1] ≤ αmin
t+1(Q) Q-a.s. for all Q ∈ M1(P )

by the definition of the minimal penalty function. Using (1.32), we obtain

EQ[−X|Ft ] ≤ EQ

[
αmin

t+1(Q)
∣
∣Ft

] ≤ αmin
t (Q) Q-a.s.

for all Q ∈ M1(P ) and in particular for Q ∈ Qf
t (P ). Thus, ρt (X) ≤ 0 by (1.6). �

Example 1.38 Consider a dynamic risk measure (ρt )t∈T, where each ρt is a condi-
tional robust shortfall risk measure as defined in Example 1.8.

1. If Rt = {P } and lt = l0 for all t , then it is easy to see that (ρt )t∈T is both weakly
acceptance and weakly rejection consistent; see, e.g., [43], [39, Example 3.6],
[41, Remark 5.3]. However, (ρt )t∈T is in general not time consistent, as illus-
trated in [39, Example 3.7].

2. Assume that lt = l0 and that we have representation (1.11) in terms of equivalent
probability measures for all t . Then (ρt )t∈T is weakly acceptance consistent if

Re
t ⊆ Re

t+1 for all t . This was noted in [41, Corollary 5.4] and follows directly
from Proposition 1.37, since At+1 ⊆ At for all t in this case.

This applies in particular to dynamic Average Value-at-Risk (AV @Rt,λt )t∈T

from Example 1.10. Indeed, in this case, P ∈ Rt for all t , and thus representa-
tion (1.11) holds. Condition Re

t ⊆ Re
t+1 is satisfied if

λt+1 ≤ λt ess inf
Q∈Rt

E

[
dQ

dP

∣
∣
∣
∣ Ft+1

]

∀t ∈ T.
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Thus, (AV @Rt,λt )t∈T is weakly acceptance consistent in this case, and it is even
acceptance consistent due to Remark 1.28. A dynamic Average Value-at-Risk
with constant parameter λ is in general neither weakly acceptance nor weakly
rejection consistent, see, e.g., [4, 35].

3. Consider the case where we have representation (1.11) and Re
t = Re

0 for all t .
Assume further that all loss functions lt are twice continuously differentiable,

and let γt := l′′t
l′t

denote the corresponding Arrow–Pratt coefficient of risk aver-

sion. Then (ρt )t∈T is weakly acceptance consistent if γt ≤ γt+1 for all t ∈ T.
This was shown in [41, Corollary 5.5].

1.4.4 A Recursive Construction

In this section we assume that the time horizon T is finite. Then one can define a
time consistent dynamic convex risk measure (ρ̃t )t=0,...,T in a recursive way, starting
with an arbitrary dynamic convex risk measure (ρt )t=0,...,T , via

ρ̃T (X) := ρT (X) = −X,

ρ̃t (X) := ρt

(−ρ̃t+1(X)
)
, t = 0, . . . , T − 1, X ∈ L∞.

(1.33)

The recursive construction (1.33) was introduced in [12, Sect. 4.2], and also studied
in [13, 19]. It is easy to see that (ρ̃t )t=0,...,T is indeed a time consistent dynamic
convex risk measure, and each ρ̃t is continuous from above if each ρt has this prop-
erty.

Remark 1.39 If the original dynamic convex risk measure (ρt )t=0,...,T is rejection
(resp. acceptance) consistent, then the time consistent dynamic convex risk measure
(ρ̃t )t=0,...,T defined via (1.33) lies below (resp. above) (ρt )t=0,...,T , i.e.,

ρ̃t (X) ≤ (resp. ≥) ρt (X) for all t = 0, . . . , T and all X ∈ L∞.

This can be easily proved by backward induction using Proposition 1.27, mono-
tonicity, and (1.33). Moreover, as shown in [19, Theorem 3.10] in the case of re-
jection consistency, (ρ̃t )t=0,...,T is the biggest time consistent dynamic convex risk
measure that lies below (ρt )t=0,...,T .

For all X ∈ L∞, the process (ρ̃t (X))t=0,...,T has the following properties:
ρ̃T (X) ≥ −X, and

ρt

(
ρ̃t (X)− ρ̃t+1(X)

) = −ρ̃t (X)+ρt

(−ρ̃t+1(X)
) = 0 ∀t = 0, . . . , T −1, (1.34)

by definition and cash invariance. In other words, the process (ρ̃t (X))t=0,...,T cov-
ers the final loss −X and is sustainable with respect to the original risk measure
(ρt )t=0,...,T . The next proposition shows that (ρ̃t (X))t=0,...,T is in fact the smallest
process with both these properties. This result is a generalization of [33, Proposi-
tion 2.5.2] and, in the coherent case, related to [16, Theorem 6.4].
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Proposition 1.40 Let (ρt )t=0,...,T be a dynamic convex risk measure such that each ρt

is continuous from above. Then, for each X ∈ L∞, the risk process (ρ̃t (X))t=0,...,T

defined via (1.33) is the smallest bounded adapted process (Ut )t=0,...,T such that
(Ut )t=0,...,T is sustainable with respect to (ρt )t=0,...,T and UT ≥ −X.

Proof We have already seen that ρ̃T (X) ≥ −X and (ρ̃t (X))t=0,...,T is sustainable
with respect to (ρt )t=0,...,T due to (1.34). Now let (Ut )t=0,...,T be another bounded
adapted process with both these properties. We will show by backward induction
that

Ut ≥ ρ̃t (X) P -a.s. ∀t = 0, . . . , T . (1.35)

Indeed, we have

UT ≥ −X = ρ̃T (X) P -a.s.

If (1.35) holds for t + 1, Theorem 1.35 yields for all Q ∈ Qf
t :

Ut ≥ EQ

[
Ut+1 − αmin

t,t+1(Q)
∣
∣Ft

]

≥ EQ

[
ρ̃t+1(X) − αmin

t,t+1(Q)
∣
∣Ft

]
P -a.s.

Thus,

Ut ≥ ess sup
Q∈Qf

t

(
EQ

[
ρ̃t+1(X)

∣
∣Ft

] − αmin
t,t+1(Q)

)

= ρt

(−ρ̃t+1(X)
) = ρ̃t (X) P -a.s.,

where we have used representation (1.6). This proves (1.35). �

The recursive construction (1.33) can be used to construct a time consistent dy-
namic Average Value-at-Risk, as shown in the next example.

Example 1.41 It is well known that dynamic Average Value-at-Risk
(AV @Rt,λt )t=0,...,T (cf. Example 1.10) is not time consistent; see, e.g., [4, 14, 35].
Moreover, since αmin

0 (P ) = 0 in this case, the set Q∗ in (1.22) is not empty,
and [22, Corollary 4.12] implies that there exists no time consistent dynamic
convex risk measure (ρt )t∈T such that each ρt is continuous from above and
ρ0 = AV @R0,λ0 . However, for T < ∞, the recursive construction (1.33) can be
applied to (AV @Rt,λt

)t=0,...,T in order to modify it to a time consistent dynamic
coherent risk measure (ρ̃t )t=0,...,T . This modified risk measure takes the form

ρ̃t (X) = ess sup

{

EQ[−X|Ft ]
∣
∣
∣
∣Q ∈ Qt ,

Z
Q
s+1

Z
Q
s

≤ λ−1
s , s = t, . . . , T − 1

}

www.TechnicalBooksPDF.com



1 Dynamic Risk Measures 29

= ess sup

{

E

[

−X

T∏

s=t+1

Ls

∣
∣
∣
∣
∣

Ft

]∣
∣
∣
∣
∣
Ls ∈ L∞

s ,0 ≤ Ls ≤ λ−1
s ,

E[Ls |Fs−1] = 1, s = t + 1, . . . , T

}

for all t = 0, . . . , T − 1, where Z
Q
t = dQ

dP
|Ft

. This was shown, e.g., in [13, Exam-
ple 3.3.1].

1.5 The Dynamic Entropic Risk Measure

In this section we study time consistency properties of the dynamic entropic risk
measure

ρt (X) = 1

γt

logE
[
exp(−γtX)

∣
∣Ft

]
, t ∈ T, X ∈ L∞, (1.36)

where the risk aversion parameter γt is random and satisfies γt > 0 P -a.s. and
γt ,

1
γt

∈ L∞
t for all t ∈ T; cf. also Example 1.9.

It is well known (see, e.g., [18, 22]) that the conditional entropic risk measure ρt

has the robust representation (1.5) with the minimal penalty function αt given by

αt (Q) = 1

γt

Ht (Q|P), Q ∈ Qt ,

where Ht(Q|P) denotes the conditional relative entropy of Q with respect to P at
time t :

Ht(Q|P) = EQ

[

log
dQ

dP

∣
∣
∣
∣Ft

]

, Q ∈ Qt .

The dynamic entropic risk measure with constant risk aversion parameter γt =
γ0 ∈ R for all t was studied in [12, 13, 18, 22]. It plays a particular role, as explained
in the following remark.

Remark 1.42 Kupper and Schachermayer [30] showed that the entropic risk mea-
sure with constant risk aversion parameter γ0 ∈ [0,∞] is the only time consistent
dynamic convex risk measure (ρt )t∈N0 such that ρ0 is law invariant.

In this section we consider an adapted risk aversion process (γt )t∈T that depends
both on time and on the available information. As shown in the next proposition,
the process (γt )t∈T determines time consistency properties of the corresponding
dynamic entropic risk measure. This result corresponds to [33, Proposition 4.1.4]
and generalizes [19, Proposition 3.13].
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Proposition 1.43 Let (ρt )t∈T be the dynamic entropic risk measure with risk aver-
sion given by an adapted process (γt )t∈T such that γt > 0 P -a.s. and γt ,1/γt ∈ L∞

t .
Then the following assertions hold:

1. (ρt )t∈T is rejection consistent if γt ≥ γt+1 P -a.s. for all t ∈ T, t < T ;
2. (ρt )t∈T is acceptance consistent if γt ≤ γt+1 P -a.s. for all t ∈ T, t < T ;
3. (ρt )t∈T is time consistent if γt = γ0 ∈ R P -a.s. for all t ∈ T.

Moreover, assertions (1), (2), and (3) hold with “if and only if” if γt ∈ R for all t , or
if the filtration (Ft )t∈T is rich enough in the sense that for all t and for all B ∈ Ft

such that P [B] > 0, there exists A ⊂ B such that A /∈ Ft and P [A] > 0.

Proof Fix t ∈ T and X ∈ L∞. Then

ρt

(−ρt+1(X)
) = 1

γt

log

(

E

[

exp

(
γt

γt+1
log

(
E

[
exp(−γt+1X)

∣
∣Ft+1

])
)∣

∣
∣
∣Ft

])

= 1

γt

log
(
E

[
E

[
exp(−γt+1X)

∣
∣Ft+1

] γt
γt+1

∣
∣Ft

])
.

Thus, ρt (−ρt+1) = ρt if γt = γt+1, and this proves time consistency. Rejection
(resp. acceptance) consistency follows by the generalized Jensen inequality that will
be proved in Lemma 1.44. We apply this inequality at time t +1 to the bounded ran-
dom variable Y := exp(−γt+1X) and the B((0,∞)) ⊗ Ft+1-measurable function

u : (0,∞) × Ω → R, u(x,ω) := x
γt (ω)

γt+1(ω) .

Note that u(·,ω) is convex if γt (ω) ≥ γt+1(ω) and concave if γt (ω) ≤ γt+1(ω).
Moreover, u(X, ·) ∈ L∞ for all X ∈ L∞, and u(·,ω) is differentiable on (0,∞)

with
∣
∣u′(x, ·)∣∣ = γt

γt+1
x

γt
γt+1

−1 ≤ axb P -a.s.

for some a, b ∈ R if γt ≥ γt+1, due to our assumption γt

γt+1
∈ L∞. On the other hand,

for γt ≤ γt+1, we obtain

∣
∣u′(x, ·)∣∣ = γt

γt+1
x

γt
γt+1

−1 ≤ a
1

xc
P -a.s.

for some a, c ∈ R. Thus the assumptions of Lemma 1.44 are satisfied, and we obtain

ρt (−ρt+1) ≤ ρt if γt ≥ γt+1 P -a.s. for all t ∈ T such that t < T

and

ρt (−ρt+1) ≥ ρt if γt ≤ γt+1 P -a.s. for all t ∈ T such that t < T .

The “only if” direction for constant γt follows by the classical Jensen inequality.
Now we assume that the sequence (ρt )t∈T is rejection consistent and our as-

sumption on the filtration (Ft )t∈T holds. We will show that the sequence (γt )t∈T is
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decreasing in this case. Indeed, for t ∈ T such that t < T , consider B := {γt < γt+1}
and suppose that P [B] > 0. Our assumption on the filtration allows us to choose
A ⊂ B with P [B] > P [A] > 0 and A /∈ Ft+1. We define the random variable
X := −xIA for some x > 0. Then

ρt

(−ρt+1(X)
) = 1

γt

log

(

E

[

exp

(
γt

γt+1
log

(
E

[
exp(γt+1xIA)

∣
∣Ft+1

])
)∣

∣
∣
∣Ft

])

= 1

γt

log

(

E

[

exp

(
γt

γt+1
IB log

(
E

[
exp(γt+1xIA)

∣
∣Ft+1

])
)∣

∣
∣
∣Ft

])

,

where we have used that A ⊂ B . Setting

Y := E
[
exp(γt+1xIA)

∣
∣Ft+1

] = exp(γt+1x)P [A|Ft+1] + P
[
Ac

∣
∣Ft+1

]

and bringing γt

γt+1
inside of the logarithm, we obtain

ρt

(−ρt+1(X)
) = 1

γt

log
(
E

[
exp

(
IB log

(
Y

γt
γt+1

IB ))∣
∣Ft

])
. (1.37)

The function x �→ xγt (ω)/γt+1(ω) is strictly concave for almost each ω ∈ B , and thus,

Y
γt

γt+1 = (
exp(γt+1x)P [A|Ft+1] + (

1 − P [A|Ft+1]
)) γt

γt+1

≥ exp(γtx)P [A|Ft+1] + (
1 − P [A|Ft+1]

)
P -a.s. on B, (1.38)

with strict inequality on the set

C := {
P [A|Ft+1] > 0

} ∩ {
P [A|Ft+1] < 1

} ∩ B.

Our assumptions P [A] > 0, A ⊂ B , and A /∈ Ft+1 imply P [C] > 0, and using

exp(γtx)P [A|Ft+1] + (
1 − P [A|Ft+1]

) = E
[
exp(γtxIA)

∣
∣Ft+1

]
, (1.39)

from (1.37), (1.38), and (1.39) we obtain

ρt

(−ρt+1(X)
) ≥ 1

γt

log
(
E

[
exp

(
IB log

(
E[exp(γtxIA)|Ft+1]

))∣
∣Ft

])
, (1.40)

with the strict inequality on some set of positive probability due to strict monotonic-
ity of the exponential and logarithmic functions. For the right-hand side of (1.40),
we have

1

γt

log
(
E

[
exp

(
IB log

(
E

[
exp(γtxIA)

∣
∣Ft+1

]))∣
∣Ft

])

= 1

γt

log
(
E

[
IBE

[
exp(γtxIA)

∣
∣Ft+1

] + IBc

∣
∣Ft

])
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= 1

γt

log
(
E

[
exp(γtxIA)

∣
∣Ft

])

= ρt (X),

where we have used A ⊂ B and B ∈ Ft+1. This is a contradiction to rejection con-
sistency of (ρt )t∈T, and we conclude that γt+1 ≤ γt for all t . The proof in the case of
acceptance consistency follows in the same manner. And since a time consistent dy-
namic risk measure is both acceptance and rejection consistent, we obtain γt+1 = γt

for all t . �

The following lemma concludes the proof of Proposition 1.43.

Lemma 1.44 Let (Ω, F ,P ) be a probability space, and Ft ⊆ F a σ -field. Let
I ⊆ R be an open interval, and

u : I × Ω → R

be a B(I ) ⊗ Ft -measurable function such that u(·,ω) is convex (resp. concave) and
finite on I for P -a.e. ω. Assume further that

∣
∣u′+(x, ·)∣∣ ≤ c(x) P -a.s. with some c(x) ∈ R for all x ∈ I,

where u′+(·,ω) denotes the right-hand derivative of u(·,ω). Let X : Ω → [a, b],
with [a, b] ⊆ I , be an F -measurable bounded random variable such that E[|u(X,·)|]
< ∞. Then

E
[
u(X, ·)∣∣Ft

] ≥ u
(
E[X|Ft ], ·

)
(resp ≤) P -a.s.

Proof We will prove the assertion for the convex case; the concave one follows
in the same manner. Fix ω ∈ Ω such that u(·,ω) is convex. Due to convexity, we
obtain, for all x0 ∈ I ,

u(x,ω) ≥ u(x0,ω) + u′+(x0,ω)(x − x0) for all x ∈ I.

Take x0 = E[X|Ft ](ω) and x = X(ω). Then

u
(
X(ω),ω

) ≥ u
(
E[X|Ft ](ω),ω

) + u′+
(
E[X|Ft ](ω),ω

)(
X(ω) − E[X|Ft ](ω)

)

(1.41)
for P -almost all ω ∈ Ω . Note further that the B(I ) ⊗ Ft -measurability of u implies
the B(I ) ⊗ Ft -measurability of u+. Thus,

ω → u
(
E[X|Ft ](ω),ω

)
and ω → u′+

(
E[X|Ft ](ω),ω

)

are Ft -measurable random variables, and ω → u(X(ω),ω) is F -measurable. More-
over, due to our assumption on X, there are constants a, b ∈ I such that a ≤
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E[X|Ft ] ≤ b P -a.s.. Since u′+(·,ω) is increasing by convexity, by using our as-
sumption on the boundedness of u′+ we obtain

−c(a) ≤ u′+(a,ω) ≤ u′+
(
E[X|Ft ],ω

) ≤ u′+(b,ω) ≤ c(b),

i.e., u′+(E[X|Ft ], ·) is bounded. Since E[|u(X, ·)|] < ∞, we can build the condi-
tional expectation on the both sides of (1.41), and we obtain

E
[
u(X, ·)∣∣Ft

] ≥ E
[
u
(
E[X|Ft ], ·

) + u′+
(
E[X|Ft ], ·

)(
X − E[X|Ft ]

)∣
∣Ft

]

= E
[
u
(
E[X|Ft ], ·

)∣
∣Ft

]
P -a.s.,

where we have used the Ft -measurability of u(E[X|Ft ], ·) and of u′+(E[X|Ft ], ·)
and the boundedness of u′+(E[X|Ft ], ·). This proves our claim. �
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Chapter 2
Ambit Processes and Stochastic Partial
Differential Equations

Ole E. Barndorff-Nielsen, Fred Espen Benth, and Almut E.D. Veraart

Abstract Ambit processes are general stochastic processes based on stochastic in-
tegrals with respect to Lévy bases. Due to their flexible structure, they have great
potential for providing realistic models for various applications such as in turbu-
lence and finance. This papers studies the connection between ambit processes and
solutions to stochastic partial differential equations. We investigate this relationship
from two angles: from the Walsh theory of martingale measures and from the view-
point of the Lévy noise analysis.

Keywords Ambit processes · Levy bases · Stochastic partial differential
equations · White noise analysis · Martingale measures

Mathematics Subject Classification (2010) 60H05 · 60H15 · 60H40 · 60G57 ·
60G60

2.1 Introduction

In physics, partial differential equations (PDEs) give a dynamic way to describe
how phenomena in nature evolve over time and space. For instance, the classical
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heat equation of Einstein gives a dynamic model for how heat diffuses in a medium.
Stochastic partial differential equations (SPDEs) add randomness to such evolution
equations, where the noise source may come from uncertainties in measurements,
unexplainable effects, and turbulent phenomena. The noise is usually modelled as
a random field in time and space, also called white noise or, more generally, Lévy
noise. We shall be mostly concerned with parabolic PDEs in this paper.

Ambit processes have been proposed and introduced by Barndorff–Nielsen and
Schmiegel and have thereafter been applied in various areas such as turbulence
modelling (see e.g. [6, 13]), in medical context in the form of describing tumor
growth [12], and more recently for modelling energy markets [4, 5].

The solution of a parabolic differential equation is often represented as an inte-
gral over a Green’s function (the fundamental solution of the PDE) convoluted with
some initial condition. Such representations look very similar to the definition of sta-
tionary ambit processes of [13]. The Green’s function representation is an explicit
solution as long as the Green’s function is known, where the deterministic space–
time dynamics of the phenomena in question is encapsulated in the form of this
function. It is closely linked to density functions of stochastic diffusion processes.

Introducing noise leads to complications of interpreting in what sense we have
a solution. This requires a theory for stochastic integration in time and space, such
as proposed in Walsh [46]. It turns out that solutions of parabolic equations with
an additive source of noise can be represented as the stochastic convolution of the
Green’s function and the initial value, where the integration is with respect to the
random field. We present the theory of Walsh [46] and link it to ambit processes.

When having a stochastic source term, one may have solutions being singular.
This is the starting point for applying white noise analysis (WNA) or, more gener-
ally, Lévy noise analysis (LNA) to analyse SPDEs. We discuss the theory of LNA
and link it to ambit processes. Here we will also include discussions of SPDEs and
how they are related to ambit processes.

Note that ambit processes may provide a statistical approach to model physical
processes in nature far simpler than SPDEs, since they provide a way to specify di-
rectly the model based on a probabilistic understanding of the phenomena in ques-
tion. They also give a framework for extending the solutions of SPDEs. In order
to have a solution in the sense of Walsh, often strong integrability conditions are
imposed. The ambit processes are well defined under very weak conditions of inte-
grability, and thereby we may extend the solutions of certain equations to include
far more general initial conditions, say, or more general types of noise.

The main issue of this paper is to relate the use of the building stone in ambit
processes, Lévy bases, to the language of Walsh and the theory of LNA. The latter
talks about processes being the derivatives of Levy processes, while Walsh talks
about random measures and their derivatives.

The outline for the remaining part of the paper is as follows. In Sect. 2.2 the
concepts of ambit fields and processes are outlined, and the important special case
of spatial dimension 0 is treated in some detail; in that case the ambit processes
are referred to as Lévy semistationary (L S S ) processes or, in the Gaussian case, as
Brownian semistationary (B S S ) processes. In particular, an indication of the theory
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2 Ambit Processes and Stochastic Partial Differential Equations 37

and use of multipower variations for inference on the volatility process is given.
Section 2.2 concludes by a brief discussion of some applications to turbulence and
energy markets. Section 2.3 connects the idea of Lévy bases to the theory of random
fields due to Walsh. We show how, subject to an L2 restriction and based on the
theory of Hilbert space random fields, it is possible to define Lévy noise for Lévy
bases, and the associated integration theory is discussed. Finally, some applications
to SPDEs and their relation to ambit processes are considered. Section 2.4 links the
theory of Lévy noise analysis for Lévy processes, as developed in Holden, Øksendal,
Ubøe, and Zhang [31], to that of Lévy bases and ambit processes and discusses
SPDEs in that context. The concluding Sect. 2.5 briefly brings the various strands
together.

2.2 Ambit Processes

2.2.1 Background

The general background setting for the concept of ambit processes consists of a
stochastic field Y = {Yt(x)} in space–time X × R, a curve τ(θ) = (x(θ), t (θ)) in

X ×R, and the values Xθ = Yt(θ)(x(θ)) of the field along the curve, the focus being
on the dynamic properties of the stochastic process X = {Xθ }. Here the space X
is often, but not necessarily, taken as R

d for d = 1,2, or 3. The stochastic field
is supposed to be generated by innovations in space–time, and the values Yt (x)

are assumed to depend only on innovations that occur prior to or at time t . More
precisely, at each point (x, t) only the innovations in some subset At(x) of X × Rt

(where Rt = (−∞, t]) are influencing the value of Yt (x), and we refer to At(x) as
the ambit set associated to (x, t), and to Y and X as an ambit field and an ambit
process, respectively; see Fig. 2.1 for an illustration.

Obviously, without further structure nothing interesting can be said about the
field Y and the process X, and we shall specify such a structure in mathematical

Fig. 2.1 Example of an
ambit process Xθ along the
curve (x(θ), t (θ)), where the
ambit set is given by
At(θ)(x(θ))
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detail in a moment. But in verbal terms, Yt (x) will be defined in the form of a
stochastic integral plus a smooth term, and the integrand in the stochastic integral
will consist of a deterministic kernel times a positive random variate which is taken
to embody the volatility or intermittency of the field Y . We shall mostly consider
specifications under which Yt (x) is stationary in time for each fixed x.

The volatility field, denoted by σ , is given also as an ambit field, and a central
issue is what can be learned about σ from observation of Y or X.

Note that, in general, ambit processes are not semimartingales. Many of the stan-
dard tools from semimartingale theory are therefore not applicable, and alternative
methods are required.

The more precise mathematical specification of what is meant generally by ambit
fields and processes is given in Sect. 2.2.2. In Sects. 2.2.3, 2.2.4, and 2.2.5 we focus
on the null-spatial case, i.e. where X consists of a single point. There the concept of
ambit processes specialises to that of Lévy and Brownian semistationary processes
(L S S and B S S processes). Already in that setting there are many interesting ques-
tions of a nonstandard character. These have important analogues in the genuinely
tempo-spatial case.

As for semimartingales, the questions of existence and properties of quadratic
variations, and more generally multipower variations, are of central importance in
the study of ambit fields and processes, in particular as these objects relate to the
volatility/intermittency. We will review the main results in that context in Sect. 2.2.6
and refer to [8, 17], and [9] for more details.

Section 2.2.7 contains some applications of ambit processes to turbulence
(Tempo-Spatial Settings in Turbulence) and energy finance (Modelling Energy Mar-
kets by Ambit Fields), respectively.

2.2.2 Ambit Fields and Processes

Generally we think of ambit fields as being of the form

Yt (x) = μ +
∫

At (x)

g(ξ, s;x, t)σs(ξ)L(dξ, ds)

+
∫

Dt (x)

q(ξ, s;x, t)as(ξ) dξ ds, (2.1)

where At(x) and Dt(x) are ambit sets, g and q are deterministic functions, σ ≥ 0 is
a stochastic field referred to as the intermittency or volatility, and L is a Lévy basis
defined as follows (see [20, 36]): Let B(Rk) be the Borel sets of R

k and denote by
Bb(S) the bounded Borel sets of S ∈ B(Rk).

Definition 2.1 A family {Λ(A) : A ∈ Bb(S)} of random vectors in R
d is called an

R
d -valued Lévy basis on S if the following three properties are satisfied:

1. The law of Λ(A) is infinitely divisible for all A ∈ Bb(S).
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2. If A1, . . . ,An are disjoint subsets in Bb(S), then Λ(A1), . . . ,Λ(An) are indepen-
dent.

3. If A1,A2, . . . are disjoint subsets in Bb(S) with
⋃∞

i=1 Ai ∈ Bb(S), then

Λ

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

Λ(Ai) a.s.,

where the convergence on the right hand side is a.s.

Conditions (2) and (3) define an independently scattered random measure. Note
that we use Λ when we refer to a general Lévy basis, and when we have separated
out time as one dimension, we talk of Lévy bases defined on S = X × R, and we
indicate integration with respect to such bases by L(dξ, ds).

Inference on the volatility/intermittency field σ is a focal point for the study of
ambit processes and fields. Often the volatility field (or the logarithmic volatility
field) will itself be defined as an ambit field through

σ 2
t (x) =

∫

Ct (x)

h(ξ, s;x, t)L(dξ, ds), (2.2)

with h a positive function, Ct(x) some ambit set, and where L is a nonnegative
non-Gaussian Lévy basis.

At the present level of generality we take the integrals in (2.1) to be defined in the
sense of independently scattered random measures, cf. [38], assuming that g, σ , q ,
and a are sufficiently regular for the integrals to exist. However, in more concrete
cases it is often of interest to establish whether the definition of the integrals can
be sharpened to a more dynamical version, for instance in the sense of Itô-type
integrals. We return to this question later, see in particular Sects. 2.3.4 and 2.4.

Of particular interest are ambit processes that are stationary in time and nonan-
ticipative. More specifically, they may be derived from ambit fields Y of the form

Yt (x) = μ +
∫

At (x)

g(ξ, t − s;x)σs(ξ)L(dξ, ds)

+
∫

Dt (x)

q(ξ, t − s;x)as(ξ) dξ ds. (2.3)

Here the ambit sets At(x) and Dt(x) are taken to be homogeneous and nonantici-
pative, i.e. At(x) is of the form At(x) = A + (x, t), where A only involves negative
time coordinates, and similarly for Dt(x). Further, we assume that g(ξ, τ ;x) = 0
and q(ξ, τ ;x) = 0 for all τ < 0.

Remark Recall from [12, 36] that every Lévy basis L exhibits a Lévy–Itô decom-
position. Let N denote the Poisson basis associated with the Levy basis L through
such a decomposition, and let ν denote the intensity measure of N . Clearly, we have
E(N(dx;dξ, ds)) = ν(dx;dξ, ds). In the following, we are interested in homoge-
neous Lévy bases, i.e. Lévy bases which satisfy ν(dx;dξ, ds) = ν̃(dx;dξ) ds for a
measure ν̃.
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Remark Many prominent tempo-spatial models are constructed from an ordinary,
partial, or fractional differential equation by adding a noise term, for instance in the
form of white noise, to the equation. The solution to the equation then being often
representable as an integral with respect to the noise of the Green’s function of the
original deterministic differential equation (see [3, 24]). Thus the solution is taking
the form of an ambit process. For some examples with discussion, see Sects. 2.3.5
and 2.4.2.

Note that, in general, ambit processes involve time varying ambit sets and allow
for a stochastic volatility factor. Such stochastic volatility is important in many areas
in science, not only in the contexts of turbulence and finance which are in focus in
this paper.

For understanding the nature of ambit processes Xθ = Yt(θ)(x(θ)), and as a step
towards handling questions of inference on σ , it is useful to discuss the cores of Y

and X. With the ambit field given by (2.1), the cores Y◦ and X◦ of Y and X are
defined, respectively, by

Y◦t (x) =
∫

At (x)

g(ξ, s;x, t)L(dξ, ds)

and

X◦θ =
∫

A(θ)

g
(
ξ, s; τ(θ)

)
L(dξ, ds),

where, as above, τ(θ) = (x(θ), t (θ)), and where we have used A(θ) as a shorthand
for At(θ)(x(θ)). In case the Lévy basis L is the Wiener basis W , we speak of a
Gaussian core.

Remark A class of processes having some properties common with one-dimensional
ambit processes is studied in [44] under the name mixed moving averages. More
precisely, the authors study processes X = (Xt )t∈R of the form

Xt =
∫

X ×R

f (x, t − s)Λ(dx, ds), (2.4)

where X is a nonempty set, and Λ is a symmetric α-stable (SαS) random mea-
sure on X × R with Lévy measure ν × leb, where leb is the Lebesgue measure,
and ν is a σ -finite measure on X . Note that such processes are always stationary.
In the SαS non-Gaussian case, they show that this is the smallest class containing
all superpositions and weak limits of ordinary SαS moving averages. Furthermore,
Rosinski [39] has obtained a Wold–Karhunen-type decomposition of stationary SαS
non-Gaussian processes in which mixed moving averages play a role similar to or-
dinary moving averages in the Gaussian case. In [40] this type of result is extended
to a broad range of non-Gaussian infinitely divisible processes.
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2.2.3 Null-Spatial Case: Lévy Semistationary Processes (LSS)

When the space X consists of a single point (or we just consider Yt (x) of (2.1) in its
dependence on t keeping x fixed) the concept of ambit processes specialises to that
of Lévy Semistationary Processes (L S S ), introduced in [5], which are processes
Y = {Yt }t∈R of the form

Yt = μ +
∫ t

−∞
g(t − s)σs− dLs +

∫ t

−∞
q(t − s)as ds, (2.5)

where μ is a constant, L is a Lévy process, g and q are nonnegative deterministic
functions on R with g(t) = q(t) = 0 for t ≤ 0, and σ and a are càdlàg processes.
When σ and a are stationary, as we will require henceforth, then so is Y . Hence the
name Lévy semistationary processes. It is convenient to indicate the formula for Y

as

Y = μ + g ∗ σ • L + q ∗ a • leb, (2.6)

where leb denotes Lebesgue measure.
Generally we have taken the stochastic integrals as defined in the sense of [38].

However, in the present case of L S S processes, one may define the integrals in
the Itô sense, relative to the filtration F L generated by the increments Lt − Ls ,
−∞ < s ≤ t < ∞. Here we adopt the latter definition, noting that the two versions
agree with respect to all finite-dimensional distributions.

When L = B in formula (2.5) for a standard Brownian motion B , then Y spe-
cialises to a Brownian Semistationary Process (B S S ), introduced in [17]. The Gaus-
sian core of a B S S process is

Y◦t =
∫ t

−∞
g(t − s) dBs. (2.7)

We consider the B S S processes to be the natural analogue, for stationarity-
related processes, of the class B S M of Brownian semimartingales

Yt =
∫ t

0
σs dBs +

∫ t

0
as ds.

Already in this null-spatial case the question of drawing inference on σ 2 is highly
nontrivial. The main tool is multipower variation, see [8] and [9].

2.2.4 Key Example for a BSS Process

An example of particular interest in the context of B S S processes is where

g(t) = tν−1e−λt for t ∈ (0,∞), (2.8)
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for some λ > 0 and with ν > 1
2 . The latter condition is needed to ensure the existence

of the stochastic integral in (2.7).

Remark 2.2 For the key example (2.8), the derivative g′ of g is not square inte-
grable if 1

2 < ν < 1 or 1 < ν ≤ 3
2 ; hence, in these cases, Y is not a semimartin-

gale. For 1
2 < ν < 1, we have g(0+) = ∞, while g(0+) = 0 when 1 < ν ≤ 3

2 .
These two cases are radically different in nature. Of course, for ν = 1, the process
Y = ∫ ·

−∞ g(· − s)σsB(ds) is simply a modulated version of the Gaussian Ornstein–

Uhlenbeck process, and in particular, a semimartingale. Note also that when ν > 3
2 ,

Y is of finite variation and hence, trivially, a semimartingale. To summarise, the
nonsemimartingale cases are ν ∈ ( 1

2 ,1) ∪ (1, 3
2 ].

2.2.5 Generality of BSS

As a modelling framework for continuous-time stationary processes, the specifica-
tion (2.6) is quite general. In fact, the continuous-time Wold–Karhunen decompo-
sition says that any second-order stationary stochastic process, possibly complex
valued, of mean 0 and continuous in quadratic mean can be represented as

Zt =
∫ t

−∞
φ(t − s) dΞs + Vt , (2.9)

where the deterministic function φ is in general a complex, deterministic square-
integrable function, the process Ξ has orthogonal increments with E{|dΞt |2} =
� dt for some constant � > 0, and the process V is nonregular (i.e. its future values
can be predicted, in the L2 sense, by linear operations on past values without error).

Under the further condition that
⋂

t∈R
sp{Zs : s ≤ t} = {0}, the function φ is

real and uniquely determined up to a real constant of proportionality; the same is
therefore true of Ξ (up to an additive constant).

In particular, if dΞs = σs dBs with σ and B as in (2.6), then Ξ is of the above
type with � = E{σ 2

0 }.

2.2.6 Multipower Variations

One of the interesting aspects in the context of B S S models is the question on how
to estimate the stochastic volatility σ and how to make inference on it. A key tool
for tackling this question is a statistic called realised variance and, more generally,
realised multipower variation.

A realised multipower variation of a stochastic process X is an object of the type

[nt]−k+1∑

i=1

k∏

j=1

∣
∣Δn

i+j−1X
∣
∣pj , (2.10)

where Δn
i X = X i

n
− Xi−1

n
and p1, . . . , pk ≥ 0. That is, it is assumed that the pro-

cess X = (Xt )t≥0 is observed at times iδ, where δ = 1
n

and i = 0,1, . . . , [nt].
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These concepts have been developed in the context of financial times series, see e.g.
[10, 11, 18, 19, 21] for results in a framework based on Brownian semimartingales.
In the presence of jumps, these quantities have been studied by [32, 33] and [45].
A detailed survey on this aspect is also given by [2]. However, in the nonsemi-
martingale setup the underlying theory is much more involved. We just sketch the
main results here briefly and refer to [8, 17] and [9] for more details.

Consider a filtered probability space (Ω, F , (Ft )t≥0,P ), assuming the existence
thereon of a B S S process Y defined as in (2.5), where L = B is a standard Brownian
motion. Let G denote the Gaussian core of Y as defined in (2.7), i.e.

Gt = Y◦t =
∫ t

−∞
g(t − s) dBs,

and let G be the σ -algebra generated by G. The correlation function of the incre-
ments of G is given by

rn(j) = cov

(
Δn

1G

τn

,
Δn

1+jG

τn

)

= R̄(
j+1
n

) − 2R̄(
j
n
) + R̄(

j−1
n

)

2τ 2
n

.

Next, we introduce a class of measures that is crucial for establishing an asymp-
totic theory for realised multipower variations. We define

πδ(A) =
∫
A
(g(x − δ) − g(x))2 dx

∫ ∞
0 (g(x − δ) − g(x))2 dx

, y ≥ 0,

and we further set πδ(x) = πδ({y : y > x}). Note that πδ is a probability measure
on R+.

We are interested in the asymptotic behaviour of the normalised multipower vari-
ations

V̄ (Y,p1, . . . , pk)
n
t = 1

nτ
p+
n

[nt]−k+1∑

i=1

k∏

j=1

∣
∣Δn

i+j−1Y
∣
∣pj ,

where p+ = ∑k
j=1 pj and τ 2

n = R̄(1/n) with R̄(t) = E[|Gs+t − Gs |2], t ≥ 0.
In order to establish a weak law of large numbers, one needs the following as-

sumption.
(LLN): There exists a sequence r(j) with

r2
n(j) ≤ r(j),

1

n

n−1∑

j=1

r(j) → 0.

Moreover, it holds that

lim
n→∞πδ(ε) = 0

for any ε > 0.
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Then the law of large numbers is given by the following proposition.

Proposition 2.3 Assume that condition (LLN) holds for Y = g ∗σ •W +q ∗a • leb.
Define

ρ(n)
p1,...,pk

= E

[∣
∣
∣
∣
Δn

1G

τn

∣
∣
∣
∣

p1

· · ·
∣
∣
∣
∣
Δn

kG

τn

∣
∣
∣
∣

pk
]

.

Then we have

V̄ (Y,p1, . . . , pk)
n
t − ρ(n)

p1,...,pk

∫ t

0
|σs |p+ ds

ucp−→ 0,

where the convergence is uniform on compacts in probability (ucp).

Furthermore, for a central limit theorem, one needs the following assumption.
(CLT): Assumption (LLN) holds, and

rn(j) → ρ(j), j ≥ 0,

where ρ(j) is the correlation function of some stationary centered discrete time
Gaussian process (Qi)i≥1 with E[Q2

i ] = 1 (as before). Moreover, for any j,n ≥ 1,
there exists a sequence r(j) with

r2
n(j) ≤ r(j),

∞∑

j=1

r(j) < ∞.

Finally, the tail mass function πn is assumed to satisfy an additional mild condition.
Now, we can formulate a joint central limit theorem for a family (V̄ (Y,p

j

1 ,

. . . , p
j
k )nt )1≤j≤d of multipower variations as follows.

Proposition 2.4 Assume that the process σ is G -measurable and condition (CLT)
holds. Then we obtain the stable convergence

√
n

(

V̄
(
Y,p

j

1 , . . . , p
j
k

)n

t
− ρ

(n)

p
j
1 ,...,p

j
k

∫ t

0
|σs |p

j
+ ds

)

1≤j≤d

G−st−→
∫ t

0
Z

1/2
s dBs,

where B is a d-dimensional Brownian motion that is defined on an extension of the
filtered probability space (Ω, F , (Ft )t≥0,P ) and is independent of F , and Z is a
d × d-dimensional process given by

Z
ij
s = βij |σs |pi++p

j
+ , 1 ≤ i, j ≤ d,

where the d × d matrix β is defined as in [8].
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Note that in order to obtain an asymptotic limit theory for a wide range of mul-
tipower variations, one is forced to consider also multipower variations of second-
order differences. (For Brownian semimartingales passing to second-order differ-
ences would make no essential change in the limit theory.) Multipower variations
based on second-order differences are quantities having the same form as (2.10) but
using

♦n
jX = Xjδ − 2X(j−1)δ + X(j−2)δ,

instead of Δn
jX. However, we shall not dwell on this aspect here but refer to [7, 9]

for discussions, detailed results, and applications.

2.2.7 Applications to Turbulence and Finance

After having introduced the concept of ambit fields and ambit processes, we turn
our attention to applications of such processes in turbulence and in finance.

Tempo-Spatial Settings in Turbulence

The idea of ambit processes arose out of a project aimed at establishing realistic
stochastic models of the velocity fields in stationary turbulent regimes (cf. [6, 12]
and also [13–17]). In turbulence the basic notion of intermittency refers to the fact
that the energy in a turbulent field is unevenly distributed in space and time, and the
paper [12] introduced stochastic models for turbulent intermittency (also referred
to as energy dissipation) fields, in the form of ambit fields. The later paper [13]
proposed a class of ambit processes for the description of the velocity field in the
form

Yt (x) = μ +
∫

At (x)

g(ξ − x, t − s)σs(ξ)W(dξ, ds)

+
∫

Dt (x)

q(ξ − x, t − s)σ 2
s (ξ) dξ ds, (2.11)

for a Gaussian Lévy basis W with associated intermittency (or energy–dissipation)
field

σ 2
t (x) =

∫

Ct (x)

h(ξ − x, t − s)L(dξ, ds), (2.12)

where L is a nonnegative Lévy basis. An alternative way of modelling σ is by
defining logσ 2 as

logσ 2
t (x) =

∫

Ct (x)

h(ξ − x, t − s)L(dξ, ds). (2.13)
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Fig. 2.2 Example of the
choice of an ambit set At (x)

for turbulence modelling,
see [12]

This latter specification has the advantage of allowing coupling to cascade theories
in turbulence, see [43].

Clearly, the choice of the ambit sets At(x),Dt (x),Ct (x) influences the behaviour
of an ambit process. Therefore, it is important to investigate what shape of the ambit
set reflects the empirical facts best.

In order to illustrate how such ambit sets may look, we provide a plot (see
Fig. 2.2) of a particular type of ambit set, the shape of which is rooted in turbu-
lence (see [12]).

Note that the mathematics of turbulence is inherently linked to stochastic partial
differential equations (see [24]), as will be discussed in Sects. 2.3 and 2.4.

Modelling Energy Markets by Ambit Fields

Following the success in describing turbulence, it transpires that ambit fields have
also great potential in financial applications. In particular, recent research, see [4, 5],
has focused on using ambit fields for modelling energy markets. Due to the general
structure of ambit fields, these new models are able to capture many stylised facts
of energy markets in general and electricity prices in particular. Special features of
those markets are e.g. strong seasonal patterns, very pronounced volatility clusters,
high spikes/jumps, the existence of the so-called Samuelson effect, i.e. the fact that
the volatilities of the forward price are generally smaller than the ones of the under-
lying spot price and converge, as time to maturity tends to zero, to the volatilities
of the spot at a fast rate. Furthermore, there are strong correlations between forward
contracts which are close in maturity. In the following we will describe how the
structure of ambit processes can be exploited to account for these stylised facts.
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Spot Price

We start with the question of how to model the electricity spot price. A natural
choice of processes taken from the ambit world is the class of L S S processes as
previously described. In [5], we propose to model the electricity spot price S =
(St )t∈R by

St = Λ(t) exp(Yt ), (2.14)

where Λ : R → R+ denotes a deterministic seasonal function, and

Yt =
∫ t

−∞
g(t − s)ωs− dLs (2.15)

for a deterministic damping function g : R → R+ with g(t) = 0 for t < 0 and a
càdlàg, positive, stationary process ω = (ωt )t∈R which is independent of the two-
sided Lévy process L = (Lt )t∈R.

There are several key features which make a model for the electricity spot price
which is based on an L S S process both theoretically interesting and practically
relevant compared to the traditional models. First and foremost, the deseasonalised,
logarithmic spot price Y is modelled directly rather than its stochastic dynamics. By
doing so, one can introduce a general damping function g, which adds much more
flexibility in modelling the mean-reversion of the price process and in accounting
for the well-known Samuelson effect [41].

Furthermore, we account for stochastic volatility ω since this is clearly an issue
in energy markets (see e.g. Hikspoors and Jaimungal [30] and Benth [23]). A very
general model for the volatility process would be that we model it itself as a Lévy–
Volterra process, i.e. ω2

t = Zt and Zt = ∫ t

−∞ h(t, s) dL̃s , where L̃ = (L̃)t∈R is an-
other Lévy process. The function h is assumed to satisfy the same conditions as g.

For further details on L S S -based models for electricity spot prices, we refer to
[5] and turn our attention now to models for electricity forward contracts based on
ambit fields. In the context of forward modelling, we do not stick to the zero spatial
case of ambit fields, but rather allow for both a temporal and a spatial component to
reflect the fact that the forward price does not only depend on the current time, but
also on the time to maturity.

Forward Price

In [4], for modelling the forward price of electricity, we propose to use an ambit
field given by

ft (x) =
∫

At (x)

k(ξ, t − s;x)σs(ξ)L(dξ, ds). (2.16)

Here, t ≥ 0 denotes the current time, T > 0 denotes the time of maturity of the
forward contract, and x = T − t the corresponding time to maturity.
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Fig. 2.3 Two relevant choices of the ambit set At (x) in the context of modelling electricity forward
prices

Clearly, in order to specify the model completely, we have to specify the ambit set
At(x), the damping or weight function k, and the stochastic volatility field σs(ξ). It
is important to note that in modelling terms we can vary the choice of the ambit set,
the weight function h, and the volatility field σ and can still achieve the particular
dependence structure we are aiming for. As such there is generally not a unique
choice of the ambit set or the weight function or the volatility field to achieve a
particular type of dependence structure, and the choice will be based on market
intuition and considerations of mathematical/statistical tractability.

We assume that the volatility σs(ξ) > 0 is a stochastic field on R+ × R, which
is stationary in the time domain, i.e. with respect to s, and which expresses the
volatility on the forwards market as a whole, L is a Lévy basis (integration in the
sense of [38]), and k is a damping function. For analytical tractability, we assume
that σ is independent of L, and in order to ensure that ft(x) is stationary in time
t , we take the ambit sets to be of the form At(x) = A0(x) + (0, t). Regarding the
choice of ambit sets, we just illustrate, in Fig. 2.3, two possibilities of interest.

Furthermore, we suggest to model the volatility field by

σ 2
t (x) =

∫

Ct (x)

q(ξ, t − s;x)L̃(dξ, ds)

for a nonnegative Lévy basis L̃, a deterministic damping function q (with
q(ξ, τ ;x) = 0 for τ < 0), and an ambit set Ct(x) = C0(x) + (0, t). In order to
have that forward contracts close in maturity dates are strongly correlated with each
other (as indicated by empirical studies), we could choose the Lévy kernel q such
that

Cor
(
σ 2

t (x), σ 2
t (x̄)

)

is high for values of x and x̄ which are close to 0 (i.e. closeness to maturity).
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2.3 Lévy Bases and the Theory of Walsh

In this section we connect the notion of a Lévy basis to the theory of white noise
random fields of Walsh [46]. Further, we show how to define the noise of suffi-
ciently regular Lévy bases based on the theory of Hilbert-space random fields. We
summarise the stochastic integration theory of Walsh [46] and present some appli-
cations to stochastic partial differential equations in view of ambit processes.

2.3.1 Brief Account on the Stochastic Integration Theory of Walsh

In this subsection we briefly present the approach of Walsh [46] to define stochastic
integration with respect to random fields. We keep the discussion on a heuristic
level, focusing on the ideas only, since we in any case will introduce the concepts
of Walsh in detail below.

The purpose of Walsh [46] is to study stochastic partial differential equations
rigorously. The equations are of parabolic type, meaning that the solutions are func-
tions of time and space where their derivative in time is equal to some elliptic op-
erator in space. The partial differential equations are perturbed by random fields,
that is, stochastic processes in both time and space (or rather, derivatives of such,
called the noise), and in order to make sense out of such equations, one must have
available a theory for stochastic integration with respect to such processes.

The key question is how to make sense out of stochastic integrals of the form

∫ t

0

∫

B

X(s, x)M(dx, ds),

where B is some measurable subset of R
d , and X is some random field in space and

time. The M integrator comes from the “noise” driving the stochastic partial differ-
ential equation, and heuristically we may think of this as the space–time derivative
of a random field, that is, M(dx,ds) = Ṁ(x, s) dx ds. However, as is the case for
classical Itô integration with respect to a Brownian motion, the time-derivative may
not be well defined.

In the setting of Walsh [46], the approach is to separate the roles of time and
space, and introduce a class of so-called martingale measures Mt(A) for A being
a suitable class of measurable subsets of R

d . The martingale measures are such
that for each time t ≥ 0, Mt is a measure-valued square-integrable random variable,
and for each set A, the process t �→ Mt(A) is a martingale (with respect to a given
filtration). In addition, the covariance functional

Qt(A,B) = 〈
M(A),M(B)

〉
t

plays a crucial role in the construction. Under some technical assumptions on Q,
Walsh [46] constructs the stochastic integral following the scheme of Itô. He shows
that for elementary integrands, the stochastic integral is a martingale measure, and
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by limiting procedures the definition can be extended to predictable integrands X

satisfying some quadratic integrability condition (yielding an extension of the Itô
isometry). In fact, the stochastic integral will become a martingale measure.

As it turns out, when studying the relation between Lévy bases and the Walsh
theory, so-called orthogonal martingale measures are the crucial objects. A martin-
gale measure is called orthogonal if, for two disjoint sets A and B , the processes
Mt(A) and Mt(B) are orthogonal. Orthogonal martingale measures satisfy the ad-
ditional assumptions on the covariance functional, and it is moreover sufficient to
study the covariance measure

Q
([0, t] × A

) = 〈
M(A)

〉
t

instead when defining the stochastic integral. In fact, the integrands will be pre-
dictable and square integrable with respect to Q. Noteworthy is that the measure Q

is closely linked to the control measure of a Lévy basis.
We now go on with a rigorous study of Lévy bases, white noise, and stochas-

tic integration in the sense of Walsh, where many of the above concepts will be
introduced and discussed in mathematical detail.

2.3.2 Lévy Bases and White Noise

In order to relate Lévy bases Λ to the white noise random fields introduced by
Walsh [46], it is convenient to slightly reformulate the definition of a Lévy basis
given in Definition 2.1.

We first show that a Lévy basis Λ is countably additive since its law is infinitely
divisible:

Lemma 2.5 A Lévy basis Λ is countably additive, that is, for a sequence of sets
{An} ⊂ Bb(S) where An ↓ ∅, it holds that

lim
n→∞P

(∣
∣Λ(An)

∣
∣ ≥ ε

) = 0 (2.17)

for every ε > 0.

Proof From the general theory of infinitely divisible laws, there exists a charac-
teristic triplet such that the law of Λ(A) has the triplet (ΣA,γA, νA). One can
show (see Pedersen [36, p. 3]) that A �→ γ i

A,Σ
ij
A are signed measures for i �= j and

A �→ νA(B),Σii
A are measures for all i and B ∈ B(Rd). Hence, if An ↓ ∅ is a se-

quence of bounded Borel sets, then by standard properties of measures it holds that
(ΣAn, γAn, νAn) → (0,0,0), and thus the law of Λ(An) converges to δ0. Hence, in
probability and a.s. it holds that Λ(An) converges to zero. The countable additivity
in (2.17) follows. �

The following lemma follows from the countable additivity of Λ:
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Lemma 2.6 Condition (3) in Definition 2.1 is equivalent to the condition: For each
pair of disjoint sets A and B , it holds a.s. that

Λ(A ∪ B) = Λ(A) + Λ(B).

Proof Consider CN = ⋃N
i=1 Ai and DN = ⋃∞

i=N+1 Ai , and use that CN and DN

are disjoint to find that

Λ

( ∞⋃

i=1

Ai

)

=
N∑

i=1

Λ(Ai) + Λ(DN).

Since DN ↓ ∅, by the countable additivity of Λ, we can use Chebyshev’s inequality
to find

P

(∣
∣
∣
∣
∣
Λ

( ∞⋃

i=1

Ai

)

−
N∑

i=1

Λ(Ai)

∣
∣
∣
∣
∣
≥ ε

)

= P
(∣
∣Λ(DN)

∣
∣ ≥ ε

) ≤ 1

ε2 E
[
Λ(DN)2],

and the right-hand side tends to zero by countable additivity. This gives us the con-
vergence in probability of the series

∑N
i=1 Λ(Ai) as N → ∞. But since the Λ(Ai)’s

are independent random variables, we get the convergence P -a.s. by the Itô–Nisio
theorem. �

Recall Condition (2) of independence for Lévy bases Λ in Definition 2.1. We
note that it is equivalent to assume this condition for n = 2 only. To see this, let
A1,A2, . . . ,An be n disjoint subsets in Bb(S). Then, Λ(Ai) and Λ(Aj) are inde-
pendent for any combination i �= j , i, j = 1, . . . , n. But then Λ(A1), . . . ,Λ(An) are
independent.

We may give an equivalent definition of a Lévy basis Λ as follows:

Definition 2.7 A family {Λ(A) : A ∈ Bb(S)} of random vectors in R
d is called an

R
d -valued Lévy basis on S if the following three properties are satisfied:

1. The law of Λ(A) is infinitely divisible for all A ∈ Bb(S).
2. If A and B are disjoint subsets in Bb(S), then Λ(A) and Λ(B) are independent.
3. If A and B are disjoint subsets in Bb(S), then

Λ(A ∪ B) = Λ(A) + Λ(B) a.s.

The above definition of a Lévy basis provides a natural generalisation of the
object defined as white noise in Walsh [46]. A white noise is a random set function
W on a σ -finite space (E, E , ν) defined as follows:

Definition 2.8 A white noise W is a random set function on Eb, the sets A ∈ E
where ν(A) < ∞, such that

1. W(A) is normally distributed with zero mean and variance ν(A);
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2. W(A) and W(B) are independent as long as A and B are disjoint;
3. W(A ∪ B) = W(A) + W(B) as long as A and B are disjoint.

We observe that in the case E = R
d , this white noise concept is a very particular

example of a homogeneous Lévy basis (and the definition of Lévy bases, as given
in the Appendix, could easily be extended to more general spaces E). Hence, ho-
mogeneous Lévy bases provide a generalisation of white noise to Lévy noise.

As a note in passing, Walsh [46] concentrates on random measures which have
finite variance, in the sense that for each A ∈ Bb(S), Λ(A) ∈ L2(P ). Further, the fol-
lowing stronger countable additivity condition is introduced: Λ is said to be count-
ably additive if for a sequence of sets {An} ⊂ Bb(S) where An ↓ ∅, it holds that

lim
n→∞ E

[
Λ(An)

2] = 0. (2.18)

This is stronger than condition (2.17), which only holds in probability and does not
require any finite variance of the random measure. However, the strong condition
of Walsh [46] is suitable when defining a theory of stochastic integration which we
will consider in Sect. 2.3.4.

Walsh [46] also introduces a concept of σ -finiteness of the random measures Λ.
To this end, suppose that there exists an increasing sequence of sets {Sn}n ⊂ B(S)

such that
⋃∞

n=1 Sn = S, and for all n, it holds that B(S)|Sn ⊂ Bb(S) and

sup
A∈B(S)|Sn

E
[
Λ(A)2] < ∞ .

If this is true, we say that Λ is σ -finite. If Λ is σ -finite, then Λ is countably additive
on B(S)|Sn if and only if for any sequence of sets An ↓ ∅ with An ∈ B(S)|Sn, we
have limn→∞ E[Λ(An)

2] = 0. Walsh [46] makes this extension since, for such Λ,
one may extend their domain of definition to include some new sets A ∈ B(S): If
A ∈ B(S), we define

Λ(A) := lim
n→∞Λ(A ∩ Sn)

if the limit exists in L2(P ) and consider Λ(A) undefined otherwise. This leaves Λ

unchanged on each B(S)|Sn but may change its value for sets A ∈ B(S) that are not
in any B(S)|Sn. In Walsh [46], Λ extended in this way is called a σ -finite L2-valued
random measure. Note that we can make this extension for all Lévy bases Λ trivially
whenever S is bounded. For S unbounded, the σ -finiteness follows whenever Λ has
mean zero. To see this, we make the following computation:

E
[
Λ2(Sn)

] = E
[
Λ2(Sn \ A)

] + 2E
[
Λ(A)

]
E

[
Λ(Sn \ A)

] + E
[
Λ2(A)

]

≥ E
[
Λ2(A)

]
.

Thus, the variance of Λ(A) is bounded by the variance of Λ(Sn), which is finite,
and the σ -finiteness follows.

www.TechnicalBooksPDF.com



2 Ambit Processes and Stochastic Partial Differential Equations 53

2.3.3 Lévy Bases and Random Variables in a Hilbert Space

For certain types of Lévy bases Λ, we introduce the mapping x �→ Λ̇(x) for x ∈ S,
being the noise of Λ. For this purpose, it will be convenient to interpret the Lévy
bases in terms of Hilbert-space-valued random variables.

To this end, let S be a bounded Borel set in R
k and introduce the measure space

(S, S, leb), with leb being the Lebesgue measure, and S the Borel sets on S. Assume
that S is such that L2(S, S, leb) is separable and denote by {ek}k∈N a complete
orthonormal system in the Hilbert space H = L2(S, S, leb). We suppose in addition
that for all A ∈ S with leb(A) = 0, we have Λ(A) = 0 a.s. Finally, we assume that
Λ has nuclear covariance,1 that is,

∞∑

k=1

E

[(∫

S

ek(x)Λ(dx)

)2]

< ∞ , (2.19)

where the integration of ek with respect to Λ(dx) is understood in the sense of
Rajput and Rosinski as reviewed in Sect. A.3. We note that in Walsh [46], it is
supposed that the integrals with respect to Λ(dx) is in the sense of Bochner ([25]
and also Chap. III in [27]), which is a stronger concept defined by convergence in
variance.

The nuclear covariance condition (2.19) implies that Λ(A) has finite variance, as
the following lemma shows.

Lemma 2.9 For every A ∈ S , Λ(A) ∈ L2(P ).

Proof Let A ∈ S . Since obviously 1A(x) ∈ L2(S, leb), we have that

1A(x) =
∞∑

k=1

∫

A

ek(y) dy ek(x),

and therefore

Λ(A) =
∫

A

Λ(dx) =
∞∑

k=1

∫

A

ek(y) dy

∫

S

ek(x)Λ(dx).

But by the Cauchy–Schwarz inequality for sums, we find

E
[
Λ(A)2] ≤

∞∑

k=1

(∫

A

ek(y) dy

)2

×
∞∑

k=1

E

[(∫

S

ek(x)Λ(dx)

)2]

= |1A|22
∞∑

k=1

E

[(∫

S

ek(x)Λ(dx)

)2]

< ∞ .
�

1This is in accordance with the definition of Walsh [46, p. 288].
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For every φ ∈ L2(S, S, leb), let us introduce the following functional on
L2(S, S, leb):

φ �→ Λ(φ) :=
∫

S

φ(x)Λ(dx) . (2.20)

Lemma 2.10 The mapping φ �→ Λ(φ) defined in (2.20) is a linear functional on
L2(S, S, leb).

Proof We show that the operator is bounded. We have that φ = ∑∞
k=1 φkek and thus

∫

S

φ(x)Λ(dx) =
∞∑

k=1

φk

∫

S

ek(x)Λ(dx) .

The Cauchy–Schwarz inequality for sums now yields

E

[∣
∣
∣
∣

∫

S

φ(x)Λ(dx)

∣
∣
∣
∣

2]

≤
∞∑

k=1

φ2
k ×

∞∑

k=1

E

[∫

S

ek(x)Λ(dx)2
]

< ∞,

and hence, the integral is finite a.s. Obviously, φ �→ Λ(φ) is linear, and it therefore
defines a linear functional on L2(S, S, leb). �

We are now ready to show that Λ has a Radon–Nikodym derivative with respect
to the Lebesgue measure.

Proposition 2.11 There exists a function Λ̇ ∈ L2(S, S, leb) such that

Λ(φ) =
∫

S

Λ̇(x)φ(x) dx. (2.21)

Thus Λ̇ is the Radon–Nikodym derivative of Λ with respect to the Lebesgue measure
on (S, S).

Proof Since any linear functional on a Hilbert space may be represented via the
inner product with some element of the Hilbert space, we are ensured the existence
of a function Λ̇ ∈ L2(S, S, leb) such that (2.21) holds. Note that since 1A(x) is a
function in L2(S, S, leb) for all A ∈ S , we have

Λ(A) =
∫

A

Λ̇(x) dx. (2.22)

�

Moreover,

Λ(A)Λ(B) =
∫

A×B

Λ̇(x)Λ̇(y) dx dy. (2.23)
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Note that

Λ̇(x) =
∞∑

k=1

∫

S

ek(y)Λ(dy) ek(x).

Introduce

Q(A × B) = E
[
Λ(A)Λ(B)

]
. (2.24)

Then we have that

Q(A × B) =
∫

A×B

E
[
Λ̇(x)Λ̇(y)

]
dx dy.

We call the signed measure Q the covariance measure of the Lévy basis.
Define now the linear operator Q̃ as

Q̃f (x) =
∫

S

q(x, y)f (y) dy (2.25)

with q(x, y) = E[Λ̇(x)Λ̇(y)]. We prove that Q̃ is a nonnegative, nuclear operator
from L2(S, S, leb) into itself.

Proposition 2.12 The linear operator Q̃ defined in (2.25) maps L2(S, S, leb) into
itself. The operator is nonnegative and nuclear.

Proof By the Minkowski and Cauchy–Schwarz inequalities, we have
∣
∣
∣
∣

∫

S

q(·, y)f (y) dy

∣
∣
∣
∣
2
≤

∫

S

∣
∣q(·, y)f (y)

∣
∣
2 dy

=
∫

S

(∫

S

q2(x, y) dx

)1/2∣
∣f (y)

∣
∣dy

≤
(∫

S

∫

S

q2(x, y) dx dy

)1/2

|f |2

=
(∫

S

∫

S

E
[
Λ̇(x)Λ̇(y)

]2
dx dy

)1/2

|f |2

≤
(∫

S

∫

S

E
[
Λ̇2(x)

]
E

[
Λ̇2(y)

]
dx dy

)1/2

|f |2

= E
[|Λ̇|22

]|f |2 .

However, by Parseval’s identity and the nuclear covariance condition (2.19), we
have that

E
[|Λ̇|22

] =
∞∑

k=1

E

[(∫

S

ek(x)Λ(dx)

)2]

< ∞,
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and hence Q̃f is in L2(S, S, leb). Furthermore, we have that the operator is non-
negative in the sense that (Q̃f,f )2 ≥ 0 for all f ∈ L2(S, leb). This follows since

(Q̃f,f )2 = E
[
(f, Λ̇)2

2

] ≥ 0.

We check whether the operator is nuclear. By using the series representation of Λ̇(y)

we find

Q̃f (x) =
∫

S

q(x, y)f (y) dy

=
∞∑

k=1

∫

S

E

[

Λ̇(x)

∫

S

ek(z)Λ(dz)

]

ek(y)f (y) dy

=
∞∑

k=1

(ek, f )2E

[

Λ̇(x)

∫

S

ek(y)Λ(dy)

]

.

This is the representation in Definition A.1 in Peszat and Zabczyk [37] of nuclear
operators, where we identify ak(x) = ek(x) and bk(x) = E[Λ̇(x)

∫
S
ek(y)Λ(dy)].

Now, Q̃ is nuclear if
∑∞

k=1 |ak|2|bk|2 < ∞. But this is equivalent to

∞∑

k=1

∫

S

(

E

[

Λ̇(x)

∫

S

ek(y)Λ(dy)

])2

dx < ∞,

since ek is an orthonormal basis. But, by the Cauchy–Schwarz inequality, we find

∞∑

k=1

∫

S

(

E

[

Λ̇(x)

∫

S

ek(y)Λ(dy)

])2

dx

≤
∞∑

k=1

∫

S

E
[
Λ̇2(x)

]
dx E

[(∫

S

ek(y)Λ(dy)

)2]

= E
[|Λ̇|22

] ∞∑

k=1

E

[(∫

S

ek(y)Λ(dy)

)2]

,

and this is finite by the nuclear covariance condition (2.19). �

We conclude that Q̃ is a covariance operator in the sense of Peszat and
Zabczyk [37, p. 30], where it is defined for Gaussian random variables with val-
ues in a Hilbert space. This links the Lévy bases to the theory of square-integrable
Hilbert-space-valued random variables. We note that the nuclear covariance condi-
tion (2.19) makes the Lévy basis sufficiently regular to create random fields with
values in a Hilbert space, where we can define covariance operators as the crucial
object to understand the covariance structure. Tracing back, we see that the covari-
ance measure of the Lévy basis Λ can be represented by the covariance operator of
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Λ̇ as

Q(A × B) = (Q̃1A,1B)2 . (2.26)

Thus, the covariance measure is representable via an integral kernel.

2.3.4 Extension of the Stochastic Integration Theory of Walsh

Let us consider a Lévy basis Λ on [0, T ]×S ∈ B(Rk+1), that is, a Lévy basis where
we have separated out the first variable to denote time.

We introduce the following measure-valued process

Mt(A) := Λ
(
(0, t] × A

)
(2.27)

for any A ∈ Bb(S). The following properties are inherited from the Lévy basis for a
fixed set A ∈ Bb(S):

Proposition 2.13 The measure-valued process Mt(A) for A ∈ Bb(S) defined in
(2.27) is an additive process,2 i.e. it satisfies the following properties:

1. The law of Mt(A) is infinitely divisible for each t .
2. The increments of Mt(A) are independent.
3. The process Mt(A) is stochastically continuous.
4. The process Mt(A) is right-continuous with M0(A) = 0 a.s.

Proof The first property follows from the fact that the Lévy basis Λ is infinitely
divisible. To see the second property, we observe from the additivity of Λ that

Λ
(
(0, t] × A

) = Λ
({

(0, s] × A
} ∪ {

(s, t] × A
}) = Λ

(
(0, s] × A

) + Λ
(
(s, t] × A

)
.

From the independence property of Λ, it holds that Λ((s, t] × A) is independent
of Λ((0, τ ] × A) for all sets (0, τ ] × A where τ ≤ s. Hence, Mt(A) − Ms(A) is
independent of Ms(A). We continue with proving property (3). Observe that

P
(∣
∣Mt(A) − Ms(A)

∣
∣ > ε

) = P
(∣
∣Λ

(
(s, t] × A

)∣
∣ > ε

)
,

and as t ↓ s, we have that (s, t] × A ↓ ∅. Hence, from the countable additivity in
probability, which holds for Lévy bases, it follows that

lim
t↓s

P
(∣
∣Mt(A) − Ms(A)

∣
∣ > ε

) = 0.

This proves property (3). In particular, we find

lim
t↓0

P
(∣
∣Mt(A)

∣
∣ > ε

) = 0,

2More precisely, we have that Mt(A) is an additive process in law, see Definition 1.6 in Sato [42].
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and therefore Mt(A) converges in probability to zero, which implies the con-
vergence in law to δ0. This gives that limt↓0 Mt(A) = 0 a.s., and we have that
M0(A) = limt↓0 Mt(A) = 0 a.s. Moreover, following the same argument as above,
we see that for s > t (using independence of Λ),

Λ
(
(0, s] × A

) = Λ
(
(0, t] × A

) + Λ
(
(t, s] × A

)
.

The countable additivity of Λ yields that

Λ
(
(t, s] × A

) → 0

in probability as s ↓ t since (t, s] × A ↓ ∅, and therefore Λ((t, s] × A) converges in
law to δ0. Hence,

Λ
(
(0, s] × A

) → Λ
(
(0, t] × A

)
,

and it follows that Mt(A) is right-continuous. Hence, we have shown the last prop-
erty. �

Remark To obtain a Lévy process, we would need to have stationarity of incre-
ments, i.e. the law of the increment Ms+t (A)−Ms(A), s, t > 0, should be indepen-
dent of s. But

Ms+t (A) − Ms(A) = Λ
(
(s, s + t] × A

)
,

and the characteristic triplet for the law is thus (Σ(s,s+t]×A,γ(s,s+t]×A, ν(s,s+t]×A).
If there exist measures Σ̃A and ν̃A, and a signed measure γ̃A such that Στ×A =
leb(τ )Σ̃A, γτ×A = leb(τ )γ̃A and ντ×A = leb(τ )̃νA, for a bounded Borel subset τ of
the positive real line, we would have the stationarity. Such a separation property of
the characteristic triplet would imply that Mt(A) is a Lévy process.

We want to use Mt(A) as integrators like in Walsh [46], where the Itô integration
approach is used. We conveniently suppose that for each A, Mt(A) ∈ L2(Ω, F ,P ).
Furthermore, we define the filtration Ft by Ft = ⋂∞

n=1 F 0
t+1/n, where

F 0
t = σ

{
Ms(A) : A ∈ Bb(S),0 < s ≤ t

} ∨ N ,

and where N denotes the P -null sets of F . Then, Ft is right-continuous by con-
struction. Finally, we suppose that the expected value of the Lévy basis Λ is equal
to zero, that is, E[Mt(A)] = 0. If this is not the case, we can always redefine the
Lévy basis by subtracting its mean value in order to obtain a mean-zero process.

It turns out that Mt(A) is a square-integrable martingale satisfying an orthogo-
nality property:

Proposition 2.14 Under the assumption of square-integrability and mean zero of
Mt(A), the following two properties hold:

1. For each A, t �→ Mt(A) is a (square-integrable) martingale with respect to the
filtration Ft .
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2. If A and B are two disjoint sets in Bb(S), then Mt(A) and Mt(B) are indepen-
dent.

Proof The second property holds trivially by the independence property of the Lévy
basis. To see the first property, let s ≤ t . We have by the independence property of
the Lévy basis that

Λ
(
(0, t] × A

) = Λ
(
(0, s] × A ∪ (s, t] × A

) = Λ
(
(0, s] × A

) + Λ
(
(s, t] × A

)
,

and therefore

Mt(A) = Ms(A) + Λ
(
(s, t] × A

)
.

Furthermore, we have that Λ((s, t]×A) is independent of Fs since any sets [0, si]×
B will be disjoint with (s, t] × A as long as si ≤ s. Therefore,

E
[
Mt(A)

∣
∣Fs

] = E
[
Ms(A)

∣
∣Fs

] + E
[
Λ

(
(s, t] × A

)] = Ms(A).

The last equality is obtained by the zero-mean assumption on the Lévy basis and the
measurability of Ms(A) to Fs . �

These two properties, together with the fact that M0(A) = 0 a.s., are essentially
defining what is called an orthogonal martingale measure in Walsh [46]. Walsh [46]
adds a further regularity condition on A �→ Mt(A), which he calls the σ -finiteness
to make up the definition of an orthogonal martingale measure. As we have seen
earlier, the σ -finiteness follows for Lévy bases with mean zero, which is what is
supposed here.

As is shown in Walsh [46] (see also [34] for a survey), for orthogonal martingale
measures, we may introduce the covariance measure Q as

Q
([0, t] × A

) = 〈
M(A)

〉
t

(2.28)

for A ∈ Bb(S). The covariance measure Q is positive and is used as the control
measure in the Walsh sense when defining stochastic integration with respect to M .
We now describe the integration procedure followed by Walsh [46], which is essen-
tially the Itô approach to stochastic integration. To make matters slightly simpler,
we suppose that S is a bounded Borel set, and we recall the notation S for the Borel
subsets of S. Furthermore, we treat only integration up to a finite time T . Note that
extensions to unbounded S and infinite time interval follow by standard arguments
(see [46, p. 289]).

First, we say that a random field f (s, x) is elementary if it has the form

f (s, x,ω) = X(ω)1(a,b](s)1A(x), (2.29)

where 0 ≤ a < t , X is bounded and Fa-measurable, and A ∈ S . For elementary
functions, we can define stochastic integration as

∫ t

0

∫

B

f (s, x)M(dx, ds) := X
(
Mt∧a(A ∩ B) − Mt∧b(A ∩ B)

)
(2.30)
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for every B ∈ S . In fact, the stochastic integral becomes a martingale measure as dis-
cussed earlier. The extension of stochastic integration to finite linear combinations
of elementary random fields is obvious. A finite linear combinations of elementary
random fields is called a simple random field, and the set of simple random fields
is denoted T . The predictable σ -algebra P is the σ -algebra generated by T , and a
random field is called predictable as long as it is P -measurable. The norm ‖ · ‖M is
defined on the predictable random fields f by

‖f ‖2
M := E

[∫

[0,T ]×S

f 2(s, x)Q(dx, ds)

]

, (2.31)

which determines the Hilbert space PM := L2(Ω ×[0, T ]×S, P ,Q). In Walsh [46]
it is proved that T is dense in PM . To define the stochastic integral of f ∈ PM , we
choose an approximating sequence {fn}n ⊂ T such that ‖f −fn‖M → 0 as n → ∞.
It is easy to see that for each A ∈ S ,

∫
[0,t]×A

fn(s, x)M(dxds) is a Cauchy sequence

in L2(Ω, F ,P ), and thus there exists a limit which we define as the stochastic
integral of f . It turns out that this stochastic integral is again a martingale measure,
and that the “Itô isometry” holds:

E

[(∫

[0,t]×A

f (s, x)M(dx, ds)

)2]

= ‖f ‖2
M . (2.32)

See Walsh [46], Theorem 2.5 for the complete result and proof.3

The weak integration of Rajput and Rosinski [38] extends this definition of
stochastic integration in the following sense. For any sequence {fn}n ⊂ T of de-
terministic functions converging to f in PM , there exists a subsequence {fn′ }n′ ⊂ T
converging to f Q-a.e., and for this sequence, the stochastic integrals converge
in probability since they converge in variance by definition. Hence, for f ∈ PM ,
the definition of weak integration according to Rajput and Rosinski presented in
Sect. A.3 in the Appendix extends that of Walsh as long as the control measure λ of
the Lévy basis Λ is absolutely continuous with respect to Q. (See Sect. A.2 in the
Appendix.) However, as the following computation shows, Q and λ are equivalent:
Since we have assumed that the Lévy basis Λ has zero mean, it follows from the
characteristic exponent in formula (2.49) of the Appendix that

Q
([0, t] × A

) =
∫

[0,t]×A

(

σ 2(x, s) +
∫

R

z2 ρ(x, s, dz)

)

λ(dx, ds).

Therefore we conclude that the weak integration concept of Rajput and Rosinski
is a true generalisation of that due to Walsh as long as deterministic integrands are
considered. We remark in passing that the integration theory of Rajput and Rosinski

3Note that in Walsh [46], the argument is made for so-called worthy martingale measures. As ar-
gued in Walsh [46], an orthogonal martingale measure is worthy, and moreover the control measure
used to define stochastic integrals sits in this case on the diagonal of S × S. We have chosen to
present that particular case.
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is not restricted to square-integrable Lévy bases, as is the Walsh integration concept
we have presented here.

Remark Note that we do not know if we have disintegration with the theory of
Walsh. However, we know that the integral is a martingale process in time, which
adds important dynamics which gives us a big advantage compared to the weaker
form of integration available from Rajput and Rosinski [38].

Note also that in the definition of weak integration in the Appendix only de-
terministic integrands are used. The general definition of ambit processes involves
stochastic integrands. This can be accommodated by further extension of the Walsh
theory. Such extension is currently under development in collaboration with An-
dreas Basse-O’Connor, Svend Erik Graversen, and Jan Pedersen, see e.g. [22].

2.3.5 Stochastic Partial Differential Equations and Ambit
Processes

In this subsection we consider a class of parabolic stochastic partial differential
equations (SPDE) analysed in detail by Walsh [46]. The motivation with our pre-
sentation here is to relate the solutions of such SPDEs to ambit processes and discuss
possible extensions based on these.

Letting Ẇ be a white noise in the sense of Walsh, we introduce the following
nonlinear parabolic SPDE:

⎧
⎪⎨

⎪⎩

∂v
∂t

= ∂2v

∂x2 − v + f (t, v)Ẇ , t > 0, 0 < x < K,

∂v
∂x

(t,0) = ∂v
∂x

(t,K) = 0, t > 0,

v(0, x) = v0(x), 0 < x < K,

(2.33)

where K > 0 is some constant, and f is a Lipschitz continuous function in x of
at most linear growth. Furthermore, it is supposed that v0 is F0-measurable and
E[v2

0(x)] is bounded. Since white noise is too rough to expect smooth solutions of
the parabolic SPDE, Walsh [46] introduces a weak solution concept. We say that v

is a weak solution of (2.33) if for every φ ∈ C∞([0,K]) with φ′(0) = φ′(K) = 0, it
holds that

∫ K

0

(
v(t, x) − v0(x)

)
φ(x)dx =

∫ t

0

∫ K

0
v(s, x)

(
φ′′(x) − φ(x)

)
dx ds

+
∫ t

0

∫ K

0
f

(
s, v(s, x)

)
φ(x)W(dx, ds). (2.34)

In Walsh [46], Theorem 3.2, it is proved that there exists a weak solution v to (2.33)
which is bounded in variance on [0,K] × [0, T ] for each T > 0. The proof goes by
application of the Green’s function and Picard iterations.
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To see the connection to (2.33), note that formal differentiation of (2.34) with
respect to t gives

∫ K

0
vt (t, x)φ(x) dx =

∫ K

0
v(t, x)

(
φ′′(x) − φ(x)

)
dx

+
∫ K

0
f

(
t, v(t, x)

)
φ(x)W(dx, dt).

An integration-by-parts applied formally to the first integral on the right-hand side
and application of the initial conditions essentially leads to (2.33).

The homogeneous form of (2.33) is known as the cable equation, and Walsh [46]
presents the Green’s function of this as

Gt(x, y) = e−t

√
4πt

∞∑

n=−∞
exp

(

− (y − x − 2nK)2

4t

)

+ exp

(

− (y + x − 2nK)2

4t

)

.

A solution to the case f = 1 can be represented as

v(t, x) =
∫ K

0
Gt(x, y)v0(y) dy +

∫ t

0

∫ K

0
Gt−s(x, y)W(dy, ds). (2.35)

Note that if the last integral was computed over (−∞, t] rather than over [0, t], the
Wold–Karhunen representation with respect to a Brownian motion could be used in
principle.

The solution in (2.35) represents the solution to an SPDE which can be related
to physical processes. Walsh [46] interprets the problem (2.33) to description of the
nervous system, and another interpretation is diffusion of heat. These physical sys-
tems may be described directly through an ambit process rather than via an SPDE.
As such, we could model the phenomena using a general Lévy basis Λ instead of
the particular white noise W . Thus, a generalisation of v in (2.35) is to consider

v(t, x) =
∫ K

0
Gt(x, y)v0(y) dy +

∫ t

0

∫ K

0
Gt−s(x, y)L(dy, ds). (2.36)

One may also take this further and consider “stochastic intermittency” described by
a random field σ(t, x). Thus,

v(t, x) =
∫ K

0
Gt(x, y)v0(y) dy +

∫ t

0

∫ K

0
Gt−s(x, y)σ (s, y)L(dy, ds). (2.37)

The intermittency field σ may be defined as an ambit field, and as such, we have that
v(t, x) is an ambit field over the ambit set At (x) = [0, t]× [0,K] under appropriate
regularity conditions ensuring the existence of the integrals in (2.37). In fact, we
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have that v(t, x) in (2.37) is by definition a mild solution of the parabolic problem
⎧
⎪⎨

⎪⎩

∂v
∂t

= ∂2v
∂x2 − v + σ(t, x)Λ̇, t > 0, 0 < x < K,

∂v
∂x

(t,0) = ∂v
∂x

(t,K) = 0, t > 0,

v(x,0) = v0(x), 0 < x < K.

(2.38)

Here, Λ̇ is a suggestive notation for the noise of the Lévy basis L (see Sect. 2.4 for
a mathematical formulation of this). The definition of a mild solution of a parabolic
stochastic partial differential equation is introduced in Da Prato and Zabczyk [26,
p. 152] and is in general weaker than a weak solution. By Theorem 6.5 in Da Prato
and Zabczyk [26], we have that the mild solution v(t, x) in (2.37) is a weak solution
under natural integrability conditions on σ and v0.

It is important to notice that we can generalise the solution v(t, x) in (2.37) to
hold for very general specifications of σ ; in fact, by going to the general integration
concept of Rajput and Rosinski [38], we can make sense of v(t, x) as an ambit
field. By weakening the integration, we can still interpret v as a mild solution to the
parabolic problem. A further generalisation is of course to allow for more general
ambit sets At (x), leaving the specification At (x) = [0, t] × [0,K]. This will allow
for a great deal of flexibility in modelling the physical phenomena in question, in
particular how the dependency structure in time and space evolves.

2.4 Lévy Noise Analysis

The white noise analysis introduced by Hida in the 1980s has become a popular
tool for analysing SPDEs that are singular in the sense of not admitting regular so-
lutions. Hida proposed an analysis based on white noise, that is, the time-derivative
of Brownian motion, with applications from quantum mechanics and Feynman path
integrals in mind. In Hida, Kuo, Potthoff, and Streit [29] one can find a detailed
account of the so-called white noise analysis and its applications to physics. In this
paper we are concerned with SPDEs and will base our further discussion on the
Lévy noise analysis for Lévy processes introduced in Holden, Øksendal, Ubøe, and
Zhang [31]. In particular, we link Lévy bases and ambit processes with the Lévy
noise analysis framework and finally discuss SPDEs in this context.

2.4.1 Lévy Bases and Lévy Noise

Let S(Rd) be the Schwartz space of rapidly decreasing functions on R
d , and define

Ω = S ′(Rd) to be its dual. Denote by F the Borel σ -algebra on Ω , and let � be a
Lévy measure on R \ {0} satisfying the condition of square-integrability

C :=
∫

R\{0}
z2�(dz) < ∞ . (2.39)
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By the Bochner–Minlos theorem (see Definition 5.4.1 in [31]) there exists a prob-
ability measure P on (Ω, F ) such that

∫

Ω

ei〈ω,φ〉 dP (ω)

= exp

(

−1

2
σ 2|φ|22 +

∫

Rd

∫

R\{0}
{
eiφ(y)z − 1 − iφ(y)z

}
�(dz) dy

)

, (2.40)

where 〈ω,φ〉 := ω(φ), that is, the action of ω ∈ S ′(Rd) on φ ∈ S(Rd), and | · |2
is the norm in L2(Rd). The probability space (Ω, F ,P ) is called the d-parameter
Lévy noise probability space by Holden et al. [31].4 This probability space will
support a d-parameter Lévy process and is the basis for defining its derivative, the
Lévy noise.5

Introduce the cylindrical random variables Nφ by

Nφ(ω) = 〈ω,φ〉 (2.41)

for φ ∈ S(Rd). Observe, that since (2.40) gives an explicit form of the characteristic
function of Nφ in terms of the Lévy measure, we easily find that

E[Nφ] = 0

and

Var[Nφ] = (
σ 2 + C

)
∫

Rd

φ2(y) dy.

We can extend these random variables to φ ∈ L2(Rd) by a standard limit argument
choosing a sequence {φn} ⊂ S(Rd) converging in L2(Rd) to φ. The limit of Nφn

exists in L2(P ) and will be denoted Nφ . The limit is independent of the choice of
approximating sequence. In particular, we can define NA := N1A

for bounded Borel
sets A ⊂ R

d . We make the following definition.

Definition 2.15 For every bounded Borel subset A of R
d , define the random mea-

sure

Λ(A) = NA.

We show that Λ defines a Lévy basis (see Proposition 2.16) and that it is homo-
geneous (see Proposition 2.17).

4We note that in Holden et al. [31] one constructs this probability space for Brownian motion
and a pure-jump Lévy process separately. We merge this into a more general Lévy process with
both jumps and continuous martingale part. Further note that the representation result (2.40) was
originally introduced in [28]. See also [1] for related work.
5Note that Holden et al. [31] call such noise Lévy coloured noise.
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Proposition 2.16 The random measure Λ is a Lévy basis with mean zero and vari-
ance (σ 2 + C) · leb(A), where leb(A) is the Lebesgue measure of A, and the asso-
ciated control measure of Λ is

λ(A) = σ 2 leb(A) +
∫

R

min
(
1, z2)�(dz) leb(A).

Proof The random measure Λ(A) has mean zero and variance equal to M leb(A),
where leb(A) is the Lebesgue measure of the set A. We show that Λ has the addi-
tivity and independence properties.

Let A and B be two disjoint bounded Borel sets, and let φn → 1A and ψn → 1B

in L2(Rd). Since obviously 1A∪B = 1A + 1B and φn + ξn converges to 1A + 1B in
L2(Rd), φn + ξn converges to 1A∪B in L2(Rd). Hence, by the independence of the
approximating sequence, we find that Nφ+ξn converges in L2(P ) to Λ(A ∪ B), and
since

Nφ+ξn
(ω) = 〈ω,φn + ψn〉 = 〈ω,φn〉 + 〈ω,ψn〉 = Nφn

(ω) + Nψn
(ω),

it holds that

Λ(A ∪ B) = Λ(A) + Λ(B).

This proves the additivity. To prove the independence, we have to show that for two
disjoint bounded sets A and B , Λ(A) is independent of Λ(B), or equivalently, NA

is independent of NB . To this end, choose two approximating sequences φn and ξn

in S(Rd) converging to 1A and 1B , respectively, in L2(Rd). Use the characteristic
function of Nφn

and Nξx
to find

ln E
[
eiθNφn eiηNξn

]

= ln E
[
ei〈·,θφn+ηξn〉]

= −1

2
σ 2|θφn + ηξn|22

+
∫

Rd

∫

R\{0}
{
ei(θφn(y)+ηξn(y))z − 1 − i

(
θφn(y) + ηξn(y)

)
z
}
�(dz) dy.

We can write the L2(Rd)-norm as follows:

|θφn + ηξn|22
= θ2

∫

suppφn\supp ξn

φ2
n(y) dy

+
∫

suppφn∩ supp ξn

(
θφn(y) + ηξn(y)

)2
dy + η2

∫

supp ξn\supp φn

ξ2
n (y) dy.

The set suppφn ∩ supp ξn must go to a set of Lebesgue measure zero since A ∩
B = ∅; otherwise the two sequences will not converge to their respective indicator
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functions in L2(Rd). Hence, passing to the limit, we find that

lim
n→∞|θφn + ηξn|22 = θ2 leb(A) + η2 leb(B).

A similar argument shows that

lim
n→∞

∫

Rd

∫

R\{0}
{
ei(θφn(y)+ηξn(y))z − 1 − i

(
θφn(y) + ηξn(y)

)
z
}
�(dz) dy

= leb(A)

∫

R\{0}
{
eiθz − 1 − iθz

}
�(dz) + leb(B)

∫

R\{0}
{
eiθz − 1 − iθz

}
�(dz).

Thus, after taking limits, we find

E
[
eiθΛ(A)eiηΛ(B)

] = E
[
eiθΛ(A)

] × E
[
eiηΛ(B)

]
.

This proves the independence.
In fact, the above limit argument shows that the (log-)characteristic function of

Λ(A) is

ln E
[
eiθΛ(A)

] =
(

−1

2
θ2σ 2 +

∫

R\{0}
{
eiθz − 1 − iθz

}
�(dz)

)

leb(A),

This is the Lévy–Kintchine formula, where we can read off the control measure for
the Lévy basis as being

λ(A) = σ 2 leb(A) +
∫

R

min
(
1, z2)�(dz) leb(A)

(see Appendix for the definition of the control measure for a Lévy basis). �

By letting �(dz) = 0 and σ = 1, we recover the case of white noise and the
setting for the white noise analysis. Note that here we consider only Lévy bases
with no drift and being square integrable.

The Lévy basis has a stationarity property, as shown in the next Proposition.

Proposition 2.17 For each x ∈ R
d , Λ(·) and Λ(· + x) has the same distribution,

i.e. Λ is homogeneous.

Proof Given φ ∈ S(Rd), we prove that Nφ and Nφx have the same distribution,
where φx(y) = φ(y − x). It follows from the translation invariance of the Lebesgue
measure that

∫

Rd

∫

R\{0}
{
eiφ(y−x)z − 1 − iφ(y − x)z

}
�(dz) dy

=
∫

Rd

∫

R\{0}
{
eiφ(y)z − 1 − iφ(y)z

}
�(dz) dy.
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Similarly we have that |φ|2 = |φx |2. Hence, the characteristic function of Nφ and of
Nφx

is the same. By a limit argument, it follows that NA and NA+x has the same
characteristic function as well, implying that their distributions are coinciding. The
proposition is proved. �

In Lévy noise analysis, one is interested in the noise process of the smoothed
random variables Nφ . Introduce the object Ṅx for x ∈ R

d by

Ṅx(ω) = 〈ω, δx〉, (2.42)

where δx is the Dirac δ-function. Obviously, δx is not an element of L2(Rd) (and
definitely not a Schwartz function); however, it is a tempered distribution. The no-
tation 〈ω, δx〉 is just suggestive, since it only makes sense in an operator context as
we now discuss. By conveniently introducing spaces of smooth random variables as
certain subspaces of L2(P ) one can look at their duals and in fact manage to embed
Ṅx into one of these. Thus, if X is a smooth random variable, then Ṅx makes sense
as a linear functional on this (we refer to [31] for details). As a simple example, we
have that Nφ is a smooth random variable, and in this case

〈〈Ṅx,Nφ〉〉 = 〈δx,φ〉 = φ(x).

From this we can do the following: Interpreting the integral in the sense of Pettis or
Bochner, we can define, for φ ∈ S(Rd),

∫

Rd

φ(x)Ṅx dx (2.43)

as an integral with values in a suitable space of linear functionals on smooth random
variables. However, as it turns out, this integral will coincide with a smoothed white
noise,

∫

Rd

φ(x)Ṅx dx = Nφ.

But then we can interpret Ṅx as the noise of Λ, since we can write, by limit argu-
ments,

Λ(A) =
∫

A

Ṅx dx.

So, Ṅ is an extension of the previously introduced object Λ̇. Note that there is no
nuclear condition given here in order to introduce Ṅx . Indeed, we have that

∫

Rd

φ(x)Λ(dx) =
∫

Rd

φ(x)Ṅx dx = Nφ

for a function φ ∈ L2(R), and thus,

∞∑

k=1

E

[(∫

Rd

ek(x)Λ(dx)

)2]

=
∞∑

k=1

E
[
N2

ek

] =
∞∑

k=1

|ek |22 =
∞∑

k=1

1 = ∞.
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Here, {ek} is a complete orthonormal system in L2(Rd). Hence, we have that the
nuclear covariance condition does not hold. This means that we have a Lévy basis
which has finite variance but is not sufficiently smooth to admit a Hilbert-space-
valued Radon–Nikodym derivative Ṅx . This links Lévy bases to the Lévy noise
analysis.

2.4.2 Stochastic Partial Differential Equations and Lévy Noise
Analysis

Consider the stochastic Poisson equation

Δu(x) = −Ṅx, x ∈ D,

u(x) = 0, x ∈ ∂D,

where D ⊂ R
d is a bounded domain with regular boundary, and Δ is the Laplace op-

erator in R
d . In order to make sense out of this equation, Holden et al. [31] introduce

the space of Hida distributions (S)∗, which plays much the same role for stochastic
processes as the space of tempered Schwartz distributions plays for functions. The
space of Hida distributions is the dual of the space of Hida test functions (S), which
is the space of smooth random variables. This space consists of square-integrable
random variables for which the terms in the chaos expansion decays rapidly in vari-
ance. A precise definition of (S) and (S)∗ is found in Holden et al. [31], but it is
important to notice that (S)∗ consists of linear operators on the space (S), and as
such cannot be understood as random variables (i.e., if X ∈ (S)∗, X(ω) does not
make sense in general for ω ∈ Ω). A prominent example is Ṅx ∈ (S)∗. As is well
known, the noise of a Lévy process cannot be regarded as a classical random vari-
able.

The Poisson equation is interpreted as an SPDE in (S)∗. More precisely, we
say that u is a generalised solution of the stochastic Poisson equation if u : D �→
(S)∗ is twice differentiable, satisfies the boundary conditions, and the SPDE. By
the differentiability of an (S)∗-valued mapping from D we mean that the limit
(u(x + h) − u(x))/h exists in (S)∗.

Letting G(x,y) be the Green’s function of Δ on D with zero boundary condi-
tions, Løkka, Øksendal, and Proske [35] show that the unique solution is

u(x) =
∫

D

G(x,y)Ṅy dy. (2.44)

Note that the integral is interpreted as a Pettis integral, that is, defining an opera-
tor on the space of smooth random variables (S). If d ≤ 3, it is shown in Løkka
et al. [35] that u ∈ L2(P ), but in general dimensions we have to interpret the solu-
tion in a weak sense.
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Since for d ≤ 3, the solution u is square-integrable, we may write the solution as

u(x) =
∫

D

G(x,y)Λ(dy). (2.45)

Therefore, u is in fact an ambit process with the ambit set being the domain D. The
reason for u losing its square-integrability when going beyond dimension 3 lies in
the fact that G(x,y) has a singularity at x = y of order |x − y|2−d for d ≥ 3. By
using ambit processes, we may define more general expressions

ũ(x) =
∫

Dx

G(x, y)σ (y)Λ(dy) (2.46)

for general random fields σ(x) sufficiently regular to make the stochastic integral
well defined. The set Dx denotes some ambit set which can be defined to incorporate
complex spatial dependency structures. In fact, such a specification ũ(x) may go
beyond what can be linked to a stochastic partial differential equation and still make
sense as a random field (in particular, a real-valued random field).

Note that the theory of white noise permits the study of SPDEs driven by noise in
both time and space, and provides a theory for defining the noise of Lévy processes
(or, in our context, Lévy bases). Hence, one can interpret the SPDEs in a strong
sense, with the price that the solutions must be understood as operators rather than
random fields. This is in contrast to the theory of Walsh presented above, where the
solution is formulated in terms of an integral equation moving all derivatives to test
functions. Ambit processes appear as a natural object in the theory of Lévy noise as
well.

2.5 Conclusions

We have considered ambit processes and their building blocks, Lévy bases, in view
of two classical theories for studying stochastic partial differential equations: the
Walsh theory of martingale measures and the Lévy noise analysis. Lévy bases can be
naturally connected to both theories by introducing concepts of noise of Lévy bases
and processes. We show that the solutions of some stochastic partial differential
equations can be represented by integrals of random fields with respect to Lévy
bases, naturally relating to ambit processes. In this respect, ambit processes provide
a class of random fields which generalise the solutions of these physical dynamical
systems and provide new and interesting models that include the additional elements
of volatility fields and time-dependent ambit sets. A further key point is that the
extended integration theory allows the handling of objects such as the main term in
(2.3) by means of integration w.r.t. martingale measures.
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Appendix: Lévy Bases and Integration

This section reviews the integration theory of [38] (for a survey, see also [40]), since
this concept of integration is used for defining stochastic integrals in the context of
ambit fields.

A.1 Introduction

Throughout the text, let S denote a nonempty set, and let A denote a σ -finite δ-ring
on S, i.e. A is a family of subsets of S such that for every pair of sets in A, the
union, the intersection, and the set difference is in A (hence A is a ring), and if
(An)n≥1 ⊆ A, then

⋂
An ∈ A; also, there exists a sequence (A∗

n)n≥1 ⊆ A such that⋃
A∗

n = S.
Note that we call a real stochastic process Λ = {Λ(A) : A ∈ A} on some prob-

ability space (Ω, F ,P) an independently scattered random measure if for every
sequence of disjoint sets (An)n≥1, the random variables Λ(An), n = 1,2, . . . , are
independent, and if

⋃
n An ∈ S , then Λ(

⋃
n An) = ∑

n Λ(An) almost surely.

A.2 Representation of the Characteristic Function of a Lévy Basis

If Λ(A) is infinitely divisible for every A ∈ A, we call it a Lévy basis. Its character-
istic function for A ∈ A is then given by

E
(
exp

(
itΛ(A)

))
(2.47)

= exp

(

itν0(A) − 1

2
t2ν1(A) +

∫

R

(
eitx − 1 − itτ (x)

)
FA(dx)

)

, (2.48)

where ν0 : S → R is a signed measure, ν1 : A → [0,∞) is a measure, and FA is
a Lévy measure on R for every A ∈ A, while A �→ FA(B) ∈ [0,∞) is a measure
for every B ∈ B(R) whenever 0 /∈ B . Also, the centering function τ is defined by
τ(x) = x if ‖x‖ ≤ 1 and by τ(x) = x/‖x‖ if ‖x‖ > 1.

Further, let

λ(A) = |ν0|(A) + ν1(A) +
∫

R

min
(
1, x2)FA(dx), A ∈ A.

It can be shown that λ : A → [0,∞) is a measure on A such that if, for every
(An)n≥1 ⊂ A, λ(An) → 0, then Λ(An) → 0 in probability. Also, if, for every se-
quence (A′

n)n≥1 ⊂ A with A′
n ⊂ An ∈ A, we have Λ(A′

n) → 0 in probability, then
λ(An) → 0.

Note that the measure λ satisfies λ(A∗
n) < ∞ for n = 1,2, . . . . Hence, it can be

extended to a σ -finite measure on (S,σ (A)). This measure is then called the control
measure of Λ.
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It turns out that the characteristic function of an infinitely divisible random mea-
sure has also an alternative representation than the one given above.

In order to state it, we first need a preliminary result (see [38, Lemma 2.3]). Let
F· be as above. Then there exists a unique σ -finite measure F on σ(A) × B(R)

such that F(A × B) = FA(B) for all A ∈ A, B ∈ B(R). Furthermore, there exists a
function ρ : S × B(R) → [0,∞] such that

1. ρ(s, ·) is a Lévy measure on B(R) for every s ∈ S,
2. ρ(·,B) is a Borel measurable function for every B ∈ B(R),
3.

∫
S×R

h(s, x)F (ds, dx) = ∫
S
(
∫

R
h(s, x)ρ(s, dx))λ(ds) for every σ(A) × B(R)-

measurable function h : S × R → [0,∞]. Under some restrictions regarding the
behaviour at ±∞, this equality can be extended to real and complex-valued func-
tions h.

Using the above notation, we can now rewrite the characteristic function of Λ(A)

(see [38, Proposition 2.4]):

E
(
exp

(
itΛ(A)

)) = exp

(∫

A

K(t, s)λ(ds)

)

, t ∈ R,A ∈ A, (2.49)

where

K(t, s) = ita(s) − 1

2
t2σ 2(s) +

∫

R

(
eitx − 1 − itτ (x)

)
ρ(s, dx),

where a(s) = dν0
dλ

(s), σ 2(s) = dν1
dλ

(s), and ρ is defined as above. Furthermore,

∣
∣a(s)

∣
∣ + σ 2(s) +

∫

R

min
(
1, x2)ρ(s, dx) = 1, λ-a.e.

A.3 Integration with Respect to a Lévy Basis

Next, we review the definition of a stochastic integral with respect to an infinitely
divisible random measure Λ as defined in [38].

First, we define integration of a real simple function on S, which is given by
f = ∑n

j=1 xj 1Aj
for disjoint Aj ∈ A. Then, for every A ∈ σ(A), the stochastic

integral with respect to Λ is defined by

∫

A

f dΛ =
n∑

j=1

xjΛ(A ∩ Aj).

The generalisation to general functions works as follows. We call a measurable func-
tion f : (S,σ (A)) → (R, B(R)) Λ-integrable if there exists a sequence of simple
functions (fn)n≥1 such that fn → f λ-a.e. and for every A ∈ σ(A), the sequence
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(
∫
A

fn dΛ)n≥1 converges in probability as n → ∞. In that case, we define

∫

A

f dΛ = P- lim
n→∞

∫

A

fn dΛ.

The above integral is well defined in the sense that it does not depend on the ap-
proximating sequence (fn)n≥1.

A.4 Criteria for Integrability

Now we provide a characterisation of Λ-integrable functions. Necessary and suf-
ficient conditions will depend on the characteristics given in the Lévy form of the
characteristic function of Λ.

According to [38, Theorem 2.7], the integrability conditions are as follows.
Let f : S → R be a σ(A)-measurable function. Then f is integrable w.r.t. Λ if

and only if the following three conditions are satisfied:

1.
∫
S
|U(f (s), s)|λ(ds) < ∞,

2.
∫
S
|f (s)|2σ 2(s)λ(ds) < ∞, and

3.
∫
S
V0(f (s), s)λ(ds) < ∞, where

U(u, s) = ua(s) +
∫

R

(
τ(xu) − uτ(x)

)
ρ(s, dx),

V0(u, s) =
∫

R

min
(
1, |xu|2)ρ(s, dx).

Further, if f is integrable w.r.t. Λ, then the characteristic function of
∫
S
f dΛ can be

expressed as

E

(

exp

(

it

∫

S

f dΛ

))

= exp

(

itaf − 1

2
t2σ 2

f +
∫

R

(
eitx − 1 − itτ (x)

)
Ff (dx)

)

,

where

af =
∫

S

U
(
f (s), s

)
λ(ds), σf =

∫

S

∣
∣f (s)

∣
∣2

σ 2(s)λ(ds),

and

Ff (B) = F
({

(s, x) ∈ S × R : f (s)x ∈ B \ {0}}), B ∈ B(R).
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Chapter 3
Fractional Processes as Models in Stochastic
Finance

Christian Bender, Tommi Sottinen, and Esko Valkeila

Abstract We survey some new progress on the pricing models driven by fractional
Brownian motion or mixed fractional Brownian motion. In particular, we give re-
sults on arbitrage opportunities, hedging, and option pricing in these models. We
summarize some recent results on fractional Black & Scholes pricing model with
transaction costs. We end the paper by giving some approximation results and indi-
cating some open problems related to the paper.

Keywords Fractional Brownian motion · Arbitrage · Hedging in fractional
models · Approximation of geometric fractional Brownian motion
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3.1 Introduction

The classical Black–Scholes pricing model is based on standard geometric Brow-
nian motion. The log-returns of this model are independent and Gaussian. Various
empirical studies on the statistical properties of log-returns show that the log-returns
are not necessarily independent and also not Gaussian. One way to a more realis-
tic modeling is to change the geometric Brownian motion to a geometric fractional
Brownian motion: the dependence of the log-return increments can now be modeled
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with the Hurst parameter of the fractional Brownian motion. But then the pricing
model admits arbitrage possibilities with continuous trading and also with certain
discrete type trading strategies.

The arbitrage possibilities with continuous trading depend on the notion of
stochastic integration theory used in the definition of trading strategy. If these
stochastic integrals are interpreted as Skorokhod integrals, then the arbitrage pos-
sibilities with continuous trading disappear. We will not consider this approach
in what follows. For a summary of the results obtained in this area, we refer
to two recent monographs on fractional Brownian motion [10] and [31]. If one
uses Skorokhod integration theory, then one has several problems with the finan-
cial interpretation of these continuous trading strategies. We refer to the above
two monographs for more details on these issues; see also [11] and [41] for the
critical remarks concerning the Skorokhod approach from the finance point of
view.

In this work we discuss the arbitrage possibilities in the fractional Black–Scholes
pricing model and in the related mixed Brownian–fractional Brownian pricing
model. Then we consider hedging of options in these models. The fractional Black–
Scholes model admits strong arbitrage, and this implies that the initial wealth for the
exact hedging strategy cannot be interpreted as a price of the option. But these repli-
cation results are interesting from the mathematical point of view. With proportional
transaction costs the arbitrage possibilities disappear in the fractional Black–Scholes
pricing model. Hence it is of some interest to know the hedging strategy without
transaction costs. For the mixed Brownian–fractional Brownian pricing models, the
arbitrage possibilities are not that obvious, and the hedging price can be sometimes
interpreted as the price of the option. We shall review some recent results related to
these questions.

One possibility to study the properties of the fractional Black–Scholes pricing
model is to approximate it with simpler pricing models. We will present some results
on the approximation at the end of this work.

3.2 Models and Notions of Arbitrage

Definition 3.1 The fractional Brownian motion (fBm) with Hurst index H ∈ (0,1)

is the centered Gaussian process B = (Bt )t∈[0,T ] with B0 = 0 and

Cov[Bt ,Bs] = 1

2

(
t2H + s2H − |t − s|2H

)
.

Remark 3.2 Some well-known properties of the fBm are:

1. The fBm has stationary increments.
2. For H = 1/2, the fBm is the standard Brownian motion (Bm) W .
3. If H �= 1/2, the fBm is not a semimartingale (see [14, Theorem 3.2] or Exam-

ple 3.16 later).
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4. If H > 1/2, the fBm has zero quadratic variation (QV) (see Definition 3.31
later). If H < 1/2, the QV is +∞. For the Bm case H = 1/2, the QV is identity.

5. For H > 1/2, the fBm has long-range dependence (LRD) in the sense that

ρ(n) = Cov[Bk − Bk−1,Bk+n − Bk+n−1]
satisfies

∞∑

n=1

∣
∣ρ(n)

∣
∣ = +∞.

6. The paths of the fBm are a.s. Hölder continuous with index H − ε, where H is
the Hurst index, and ε is any positive constant, but not Hölder continuous with
index H . The first claim follows from the Kolmogorov–Chentsov criterion, and
the second claim follows from the law of iterated logarithm of [2]:

lim sup
t↓0

Bt

tH
√

2 ln ln 1/t
= 1 a.s.

7. The fBm is self-similar with index H , i.e., for all a > 0,

Law
((

aH Bat

)
t∈[0,T /a]

) = Law
(
(Bt )t∈[0,T ]

)
.

Actually, the fBm is the (up to a multiplicative constant) unique centered Gaus-
sian self-similar process with stationary increments.

In this survey we shall consider the following three discounted stock-price mod-
els in parallel:

Definition 3.3 Let S = (St )t∈[0,T ] be the discounted stock price.

1. In the Black–Scholes model (BS model),

St = s0e
μt+σWt− 1

2 σ 2t ,

where W is a Bm, and s0, σ > 0, μ ∈ R.
2. In the fractional Black–Scholes model (fBS model),

St = s0e
μt+νBt ,

where B is an fBm with H �= 1/2, and s0, ν > 0, μ ∈ R.
3. In the mixed fractional Black–Scholes model (mfBS model),

St = s0e
μt+σWt− 1

2 σ 2t+νBt ,

where W is a Bm, B is an fBm with H �= 1/2, W and B are independent, and
s0, σ, ν > 0, μ ∈ R.

Remark 3.4 We shall often, for the sake of simplicity and without loss of any real
generality, assume that μ = 0 and σ = ν = s0 = 1.
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Remark 3.5

1. The mfBS model is similar to the fBS model in the sense that they have essen-
tially the same covariance structure. So, in particular, if H > 1/2, they both have
LRD characterized by the Hurst index H .

2. The fBS model and the mfBS are different in the sense that the mfBS model has
the same QV as the BS model (see Proposition 3.32) when H > 1/2. But the fBS
model has zero QV for H > 1/2. So, while the fBS model and the mfBS model
have the same statistical LRD property, the pricing in these models is different;
in the fBS model, it might even be impossible.

We shall work, except in Sect. 3.7, in the canonical stochastic basis (Ω, F ,

(Ft )t∈[0,T ],P). So, Ω = C+
s0

([0, T ]) is the space of positive continuous functions
over [0, T ] starting from s0, and the stock price is the coordinate process St (ω) = ωt .
The filtration (Ft )t∈[0,T ] is generated by the stock price S and augmented to satisfy
the usual conditions of completeness and right-continuity, F = FT , and the measure
P is defined by the models in Definition 3.3.

Definition 3.6 A portfolio, or trading strategy, is an adapted process � =
(�t )t∈[0,T ] = (Φ0

t ,Φt )t∈[0,T ], where Φ0
t denotes the number of bonds, and Φt de-

notes the number of shares owned by the investor at time t . The value of the portfolio
� at time t is

Vt (�) = Φ0
t + ΦtSt ,

since everything is discounted by the bond. The class of portfolios is denoted by A.

There are some slightly different versions of the notion of free lunch, or arbitrage,
that in discrete time would make little or no difference. However, in continuous time
the issue of arbitrage is quite subtle as can be seen from the fundamental theorem
of asset pricing by Delbaen and Schachermayer [18, Theorem 1.1]. We use the fol-
lowing definitions:

Definition 3.7

1. A portfolio � is arbitrage if V0(�) = 0, VT (�) ≥ 0 a.s., and P[VT (�) > 0] > 0.
2. A portfolio � is strong arbitrage if V0(�) = 0, and there exists a constant c > 0

such that VT (�) ≥ c a.s.
3. A sequence of portfolios (�n)n∈N is approximate arbitrage if V0(�

n) = 0
for all n and V ∞

T = limn→∞ VT (�n) exists in probability, V ∞
T ≥ 0 a.s., and

P[V ∞
T > 0] > 0.

4. A sequence of portfolios is strong approximate arbitrage if it is approximate
arbitrage and there exists a constant c > 0 such that V ∞

T ≥ c a.s.
5. A sequence of portfolios (�n)n∈N is free lunch with vanishing risk if it is ap-

proximate arbitrage and

lim
n→∞ ess sup

ω∈Ω

∣
∣VT

(
�n

)
(ω)1{VT (�n)<0}

∣
∣ = 0.
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3.3 Trading with (Almost) Simple Strategies

In this section we consider noncontinuous trading in continuous time. The basic
classes of portfolios are:

Definition 3.8

1. A portfolio is simple if there exists a finite number of stopping times 0 ≤ τ0 ≤
· · · ≤ τn ≤ T such that the portfolio is constant on (τk, τk+1], i.e.,

Φt =
n−1∑

k=0

φτk
1(τk,τk+1](t),

where φτk
∈ Fτk

, and an analogous expression holds for Φ0. The class of simple
portfolios is denoted by Asi.

2. A portfolio is almost simple if there exists a sequence (τk)k∈N of nondecreasing
[0, T ]-valued stopping times such that P[∃k∈Nτk = T ] = 1 and the portfolio is
constant on (τk, τk+1], i.e.,

Φt =
N−1∑

k=0

φτk
1(τk ,τk+1](t),

where φτk
∈ Fτk

, and N is an a.s. N-valued random variable, and an analogous
expression holds for Φ0. The class of almost simple portfolios is denoted by Aas.

Remark 3.9 Obviously Asi ⊂ Aas, and the inclusion is proper. Also, note that for
every ω, the position Φ is changed only finitely many times. The difference between
Asi and Aas is that in Asi the number of readjustments is bounded in Ω , while in

Aas the number of readjustments is generally unbounded.

The notion of self-financing is obvious with (almost) simple strategies:

Definition 3.10 A portfolio � ∈ Aas is self-financing if, for all k, its value satisfies

Vτk+1(�) − Vτk
(�) = Φτk+1(Sτk+1 − Sτk

),

or, equivalently, the budget constraint

Φ0
τk+1

+ Φτk+1Sτk
= Φ0

τk
+ Φτk

Sτk

holds for every readjustment time τk of the portfolio.

Henceforth, we shall always assume that the portfolios are self-financing.

Theorem 3.11 In the BS model there is

1. no arbitrage in the class Asi,
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2. strong approximate arbitrage in the class Asi,
3. strong arbitrage in the class Aas.

Proof The claim (i) follows from the fact that the geometric Bm remains a martin-
gale in the subfiltration (Fτk

)k≤n, and thus the claim reduces to discrete-time con-
siderations. Claims (ii) and (iii) follow from the doubling strategy of Example 3.12
below. �

Example 3.12 Consider, without loss of generality, the risk-neutral normalized BS
model

St = s0e
Wt− 1

2 t .

Let tk = T (1 − 2−k), ck = e
√

T 2−k− 1
2 T 2−k − 1, and

τ = inf

{

tk; Stk − Stk−1

Stk−1

≥ ck

}

= inf

{

tk; Wtk − Wtk−1√
tk − tk−1

≥ 1

}

.

Define a self-financing almost simple strategy by setting V0(�) = 0 and

Φt =
∞∑

k=0

φtk 1(tk∧τ,tk+1∧τ ](t),

where, for k = 0,1, . . . ,

φtk = 1 − Vtk (�)

Stk ck+1
.

Now, the ck’s were chosen in such a way that P[τ < T ] = 1. So, τ = tN a.s. for
some random N ∈ N, and

Vτ (�) = VtN−1(�) + φtN−1(StN − StN−1)

≥ VtN−1(�) + 1 − VtN−1(�)

StN−1cN

StN−1cN

= 1

a.s. So, we have strong arbitrage in the class Aas. Also, by setting

Φn
t =

n∑

k=0

φtk 1(tk∧τ,tk+1∧τ ](t),

we see that we have strong approximate arbitrage in the class Asi.

In order to exclude doubling-type arbitrage strategies like Example 3.12, one
traditionally assumes that the value of the portfolio is bounded from below:
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Definition 3.13 A portfolio is nds-admissible (no doubling strategies) if there exists
a constant a ≥ 0 such that

inf
t∈[0,T ]Vt (Φ) ≥ −a a.s.

The class of nds-admissible portfolios is denoted by Ands.

Remark 3.14 The sell-short-and-hold strategy Φ = −1[0,T ] ∈ Asi \ Ands.

By Delbaen and Schachermayer [18, Theorem 1.1] the BS model has no free
lunch with vanishing risk, and hence no arbitrage, in the class Ands. The situation
for fBS model is different:

Theorem 3.15 For H �= 1
2 , in the fBS model there is

1. free lunch with vanishing risk in the class Asi ∩ Ands,
2. strong arbitrage in the class Aas ∩ Ands.

Proof The claims follow from Cheridito [14, Theorems 3.1 and 3.2]. �

Cheridito [14] constructed his arbitrage opportunities by using the trivial QV of
the fBS model (0 for H > 1/2 and +∞ for H < 1/2). So, his constructions do not
work in the mfBS model. Also, Cheridito’s arbitrage strategies are rather implicit in
the sense that the stopping times they use are not constructed explicitly.

Let us also note that probably the first one to construct arbitrage in the fractional
(Bachelier) model was Rogers [36]. His arbitrage was a doubling-type strategy simi-
lar to that of Example 3.12 with the twist that he avoided investing on “bad intervals”
(tk, tk+1] where the stock price was likely to fall. This was possible due to the mem-
ory of the fractional Brownian motion when H �= 1/2. With this avoidance he was
able to keep the value of his doubling strategy from falling below any predefined
negative level, thus constructing an arbitrage opportunity in the class Aas ∩ Ands.
Let us note that Rogers [36] used a representation of the fBm starting from −∞.
So, he used memory from time −∞, while Cheridito [14] and we use memory only
from time 0.

The following very explicit Example 3.16, a variant of [9, Example 7], constructs
approximate arbitrage in the fBS model for H �= 1/2 and in the mfBS model for
H ∈ (1/2,3/4), where the approximating strategies are from the class Asi. The
construction follows an easy intuition: Due to the memory of the fBm, the stock
price tends to increase (decrease) in the future if it already increased (decreased)
in the past if H > 1/2, and the other way around if H < 1/2. Example 3.16 also
shows that forward integrals with respect to fBm with H �= 1/2 and mixed fBm
with H ∈ (1/2,3/4) are not continuous in terms of the integrands. Thus, due to
the Dellacherie–Meyer–Mokobodzky–Bichteler theorem, this proves that the fBm
is not a semimartingale and that the mixed fBm is not a semimartingale when H ∈
(1/2,3/4).
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Example 3.16

1. Consider the fBS model

St = eBt ,

where H �= 1/2. Let tnk = T k/n, αH = 1 if H > 1/2, αH = −1 if H < 1/2, and

Φn
t = αH n2H−1

n−1∑

k=1

logStnk
− logStnk−1

Stnk

1(tnk ,tnk+1](t).

Then, assuming that V0(�
n) = 0 and applying Taylor’s theorem, we have

VT

(
�n

) = αH n2H−1
n−1∑

k=1

(Btnk
− Btnk−1

)

(
Stn

k+1

Stnk

− 1

)

= αH n2H−1
n−1∑

k=1

(Btnk
− Btnk−1

)(Btnk+1
− Btnk

)

+ αHn2H−1
n−1∑

k=1

(Btnk
− Btnk−1

)eξn
k (Btnk+1

− Btnk
)2,

where |ξn
k | ∈ [0, |Btnk+1

− Btnk
|]. Now the first term tends to T 2H |22H−1 − 1| in

probability by [29, Theorem 9.5.2], and the second one vanishes as n goes to
infinity using the Hölder continuity of fBm B .

2. Consider the mfBS model

St = eWt− 1
2 t+Bt ,

where H ∈ (1/2,3/4). The strategy of part (i) will still be strong approximate
arbitrage. Indeed, after a Taylor expansion as above, we basically have to deal
with the sum of the four terms

∫ T

0
Kn

t dWt,

∫ T

0
Ln

t dWt ,

∫ T

0
Kn

t dBt ,

∫ T

0
Ln

t dBt , (3.1)

where

Kn
t = n2H−1

n−1∑

k=1

1(tn
k
,tn

k+1](t)(Wtk − Wtk−1),

Ln
t = n2H−1

n−1∑

k=1

1(tnk ,tnk+1](t)(Btk − Btk−1),

and the integrals are just shorthand notation for the forward Riemann sums. Note
that Kn and Ln converge to zero uniformly in probability by the Hölder continu-
ity of (fractional) Brownian motion for H < 3/4. Therefore, the first two terms
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in (3.1) will tend to zero in probability by the Dellacherie–Meyer–Mokobodzky–
Bichteler theorem [35, Theorem II.11]. The third term will tend to zero in prob-
ability because of the independence of W and B . The fourth term will go to
T 2H (22H−1 −1) in probability by part (i) of this example. We also note that ΦnS

inherits the unform convergence in probability to zero from Kn + Ln. Hence the
amount of money invested in the stock converges to zero as n tends to infinity.

For the mfBS model, the situation is the following:

Theorem 3.17 For the mfBS model, there is

1. strong approximate arbitrage in the class Asi if H ∈ (1/2,3/4),
2. no free lunch with vanishing risk in the class Ands if H ∈ (3/4,1).

Proof Claim (i) follows from Example 3.16(ii). Claim (ii) follows from Cherid-
ito [13]. Indeed, in [13] it is shown that in this case the mixed fBm is actually
equivalent in law to a Bm. �

Although the situation is bad arbitrage-wise for the fBS and the mfBS models
in the class Asi ∩ Ands, Cheridito [14] showed that there is no arbitrage in the fBS
model if there must be a fixed positive time between the readjustments of the port-
folio (later arbitrage in this class was studied by Jarrow et al. [27]):

Definition 3.18 Let T be a class of finite sequences of nondecreasing stopping
times τ = (0 ≤ τ0 ≤ · · · ≤ τn ≤ T ) satisfying some additional conditions, which
can be specified as in Proposition 3.19 or Definition 3.20 below. A simple portfolio
Φ is T -simple if it is of the form

Φt =
n−1∑

k=0

φτk
1(τk,τk+1](t),

where φτk
∈ Fτk

, τ = (τk)
n
k=0 ∈ T . The class of T -simple strategies is denoted

by A T −si .

Proposition 3.19 Let Th = ⋃
h>0{τ ; τk+1 − τk ≥ h}.

Then there is no arbitrage in the fBS model in the class A Th−si.

Proof The claim is Cheridito’s [14, Theorem 4.3]. �

3.4 Trading with Delay-Simple Strategies

While Proposition 3.19 seems promising, the class A Th−si is more restrictive than
it may appear at a first sight. Indeed, e.g., the archetypical stopping time τ =
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inf{t ≥ 0;St − S0 ≥ 1} does not belong to Th if S is the geometric Bm. To rem-
edy this problem, we propose the following more general class of stopping times
and simple strategies:

Definition 3.20

1. For any stopping time τ , let C+
Sτ

([τ, T ]) be the random space of continuous
positive paths ω = (ωt )t∈[τ(ω),T ] with ωτ(ω) = Sτ(ω)(ω) fixed. A sequence of
nondecreasing stopping times τ = (τk)

n
k=0 satisfies the delay property if for

all τk , there are an Fτk
-measurable open delay set Uk ⊂ C+

Sτk
([τk, T ]) and an

Fτk
-measurable a.s. positive random variable εk such that τk+1 − τk ≥ εk in the

set Uk ∩ {τk+1 > τk}. The set of nondecreasing sequences of stopping times sat-
isfying the delay property is denoted by Tde.

2. The class of delay-simple strategies is ATde−si.

Theorem 3.21 All the models BS, fBS, and mfBS are free of arbitrage in the class
A Tde−si.

Before we prove Theorem 3.21, we discuss the class of delay-simple strategies.

Remark 3.22 The difference between the classes Th and Tde is that in Th there is a
fixed delay h > 0 between the stopping times, while in Tde the delay between the
stopping times depend on the path one is observing: If there is a delay on the path
you are observing, then there is also a delay on all the paths that are close enough
of the path that one is observing.

Obviously Th ⊂ Tde, and the inclusion is proper.

Example 3.23 The following sequences of stopping times are in Tde:

1.

τk+1 = inf
{
t > τk;St − Sτk

≥ bk
t

}
,

where bk’s are continuous function with bk
τk

> 0. Indeed, take

Uk = {
ω;St (ω) < ω0

t for all t ∈ [τk, T ]},

where ω0 is some path for which τk+1(ω
0) > τk(ω

0).
2.

τk+1 = inf
{
t > τk;St − Sτk

≤ ak
t

}
,

where ak’s are continuous function with ak
τk

< 0. Indeed, take

Uk = {
ω;St (ω) > ω0

t for all t ∈ [τk, T ]},

where ω0 is some path for which τk+1(ω
0) > τk(ω

0).
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3. One can show that

τk+1 = inf
{
t > τk;St − Sτk

≤ ak
t or St − Sτk

≥ bk
t

}
,

where ak’s and bk’s are continuous with ak
τk

< 0 < bk
τk

, is in Tde (see [9, Exam-
ple 6(i)]).

Example 3.24 We construct a stopping time τ in the fractional Wiener space such
that (τ0, τ1) := (0, τ ) is not in Tde: τ = inf{t > 0; eBt+ta = 1}. By the law of iterated
logarithm, τ > 0 a.s. if a < H . However, any open set U ⊂ C+

S0
([0, T ]) contains

sequences (ωn) for which τ(ωn) → 0.

Definition 3.25 A process S satisfies the T -conditional up’n’down property
(T -CUD) if, for all τ ∈ T and all k, either

P[Sτk+1 > Sτk
|Fτk

] > 0 and P[Sτk+1 < Sτk
|Fτk

] > 0

or

P[Sτk+1 = Sτk
|Fτk

] = 1.

If there are no additional restrictions for T (except that it contains nondecreasing
finite sequences of stopping times), we say simply that S satisfies CUD.

The following lemma can be proved analogously to [27, Lemma 1].

Lemma 3.26 There is no arbitrage in the class AT −si if and only if the model
satisfies T -CUD.

CUD is related to the support of the stock-price model S. Another support-related
condition we need is:

Definition 3.27 A continuous positive process S has conditional full support (CFS)
if, for all stopping times τ ,

supp P[S ∈ · |Fτ ] = C+
Sτ

([τ, T ]) a.s.

Remark 3.28

1. CFS is equivalent to the conditional small-ball property: For every stopping time
τ , all the open balls contained in C+

Sτ
([τ, T ]) have a.s. positive regular condi-

tional probability, i.e.,

P
[

sup
t∈[τ,T ]

∣
∣St − S0

t

∣
∣ ≤ ε

∣
∣
∣Fτ

]
> 0

a.s. for all S0 ∈ C+
Sτ

([τ, T ]) and Fτ -measurable a.s. positive random variables ε.
For a proof of this, see Pakkanen [34, Lemma 2.3].

www.TechnicalBooksPDF.com



86 C. Bender et al.

2. By Pakkanen [34, Lemma 2.10] a process X has CFS with respect to its own
filtration F X

t = σ(Xs, 0 ≤ s ≤ t) if and only if it has the CFS with respect to the
augmentation of F X

t .
3. By Guasoni et al. [25, Lemma 2.9] one can replace the stopping times with de-

terministic times in Definition 3.27.
4. CFS is neither necessary nor sufficient for no-arbitrage in Asi. On the one hand,

any bounded martingale satisfies no-arbitrage in Asi but violates CFS. On the
other hand, Wt + ta , a < 1/2, has arbitrage in Asi by the law of the iterated
logarithm but satisfies CFS. However, CFS is sufficient for absence of arbitrage
with the class A Tde−si. This will be shown in the next lemma.

Lemma 3.29 Suppose that S has CFS. Then there is no arbitrage in the model S in
the class ATde−si.

Proof By Lemma 3.26 we need to show that the Tde-CUD is satisfied. If τk+1 = τk ,
this is certainly the case. So, we can assume that τk+1 > τk .

We show that P[Sτk+1 > Sτk
|Fτk

] > 0 a.s.; the proof for P[Sτk+1 < Sτk
|Fτk

] > 0
a.s. follows analogously.

By the CFS it is enough to show that {Sτk+1 > Sτk
} ⊂ C+

Sτk
([τk, T ]) contains an

open set. Let Uk be an εk-delay set for τk , i.e., U ⊂ C+
Sτk

([τk, T ]) is open, and

τk+1 − τk ≥ εk on Uk . We first assume that Uk contains a strictly increasing path
ω0 on [τk, T ]. Denote by Bω0(ηk) the open ηk-ball around ω0 in C+

Sτk
([τk, T ]).

Choosing ηk sufficiently small, we have Bω0(ηk) ⊂ Uk (because Uk is open) and
ω0

τk+εk
> ω0

τk
+ηk (because ω0 is strictly increasing). Hence, for every ω ∈ Bω0(ηk),

ωτk+1(ω) − Sτk
> ω0

τk+1(ω) − ηk − Sτk

≥ ω0
τk+εk

− Sτk
− ηk

= ω0
τk+εk

− ω0
τk

− ηk

> 0.

So, Bω0(ηk) ⊂ {Sτk+1 > Sτk
}, and the claim follows if Uk contains a strictly in-

creasing path. If Uk does not contain a strictly increasing path, we proceed as fol-
lows. Being an open set in C+

Sτk
([τk, T ]), Uk contains paths that are strictly in-

creasing on a small enough interval [τk, τk + 2ηk]. Hence, there is a strictly in-
creasing path ω0 and an open ball Bk around ω0 in C+

Sτk
([τk, T ]) such that any

ω ∈ Bk coincides with some path ω̄ ∈ Uk on the segment [τk, τk + ηk]. Hence,
τk+1(ω) − τk ≥ (τk+1(ω̄) − τk) ∧ ηk ≥ εk ∧ ηk =: ε0

k for every ω ∈ Bk . Therefore,
Bk is an ε0

k -delay set which contains a strictly increasing path, and so the first case
applies. �

Proof of Theorem 3.21 By [22, Theorem 2.1] the Bm, the fBm, and the mixed fBm
all have CFS in the space C0([0, T ]) (with respect to the filtration generated by the
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respective process), since their spectral measures have heavy enough tails. For a nice
proof that fBm has CFS, see also [15]. So, the BS, the fBS, and the mfBS models
all have CFS in C+

s0
([0, T ]), because with any homeomorphism η on C0([0, T ]), the

mapping ω �→ s0e
ω+η is a homeomorphism between C0([0, T ]) and C+

s0
([0, T ]).

So, the claim follows from Lemma 3.29. �

3.5 Continuous Trading

While the previous sections were concerned with trading strategies which can be
readjusted finitely many times only, we will now admit continuous readjustment
of the portfolio. A natural generalization of the self-financing property in Defini-
tion 3.10 can be given in terms of forward integrals. Here we stick to the simplest
possible definition of forward integrals due to [20] but refer to [37] for the general
theory.

Definition 3.30 Let t ≤ T , and let X = (Xs)s∈[0,T ] be a continuous process. The
forward integral of a process Y = (Ys)s∈[0,T ] with respect to X (along dyadic parti-
tions) is

∫ t

0
Ys dXs := lim

n→∞
∑

i=0,...,2n−1,
T i/2n≤t

YT i/2n(XT (i+1)/2n − XT i/2n)

if the limit exists P-almost surely.

If necessary, we interpret the forward integral in an improper sense at t = T . Itô’s
formula for the forward integral depends on the quadratic variation of the integrator.

Definition 3.31 The pathwise quadratic variation (QV) of a stochastic process
(along dyadic partitions) is

〈X〉t := lim
n→∞

∑

i=0,...,2n−1,
T i/2n≤t

(XT (i+1)/2n − XT i/2n)2,

if, for all t ≤ T , the limit exists P-almost surely.

Proposition 3.32

1. For the fBS model and the mfBS model with H < 1/2, the limit in Definition 3.31
diverges to infinity.

2. For the fBS model with H > 1/2, the QV is constant 0.
3. The QV in the BS model and in the mfBS model with H > 1/2 is given by

d〈S〉t = σ 2S2
t dt.
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Proof It is well known that Bm has the identity map as QV. Moreover, fBm has zero
quadratic variation for H > 1/2 and infinite quadratic variation for H < 1/2, see,
e.g., [10], Chap. 1.8. By independence, the QV of the mixed fBm is the sum of the
QV of Bm and fBm. Finally, the stock models under consideration are C 1-functions
of these processes (up to a finite variation drift), and so a result by [20], p. 148,
applies. �

The following Itô formula for the forward integrals with continuous integrator
can be derived by a Taylor expansion as usual, see [20].

Lemma 3.33 Let X be a continuous process with continuous QV. Suppose that
f ∈ C1,2([0, T ] × R). Then, for 0 ≤ t ≤ T ,

f (t,Xt ) = f (0,X0) +
∫ t

0

∂

∂t
f (u,Xu)du +

∫ t

0

∂

∂x
f (u,Xu)dXu

+ 1

2

∫ t

0

∂2

∂x2
f (u,Xu)d〈X〉u.

In particular, this formula implies that the forward integral on the right-hand side
exists and has a continuous modification.

After this short digression on forward integrals, we can introduce several classes
of portfolios.

Definition 3.34

1. A portfolio is self-financing if, for all 0 ≤ t ≤ T ,

Vt (�) = V0(�) +
∫ t

0
Φt dSt .

The class of self-financing portfolios (without any extra constraints) is denoted
by A.

2. A self-financing portfolio is called a spot strategy if Φt = ϕ(t, St ) for some deter-
ministic function ϕ, i.e., the number of shares held in the stock depends on time
and the spot only. We apply the notation Aspot for the class of spot strategies.

The following theorem discusses arbitrage with spot strategies in the BS model.
It again illustrates some subtleties of arbitrage theory in continuous time, even for
models which admit an equivalent martingale measure. As in the case of almost
simple strategies, arbitrage is possible, if arbitrarily large losses are allowed prior to
maturity.

Theorem 3.35

1. In the BS model there is strong arbitrage in the class Aspot.
2. In the BS model there is no free lunch with vanishing risk in the class A ∩ Ands.
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Proof (i) We give a direct construction making use of Itô’s formula (Lemma 3.33)
and the QV of the Black–Scholes model. Without loss of generality, we assume that
σ = 1 and μ = 0. Let

Φt = −
∂
∂x

v(t,Wt )

St

,

where v(t, x) is the heat kernel

v(t, x) = 1√
2π(T − t)

e− 1
2

x2
T −t .

By Lemma 3.33, applied to the Bm W ,

VT (Φ) =
∫ T

0
Φt dSt = −

∫ T

0

∂

∂x
v(t,Wt ) dWt = v(0,0) − v(T ,WT ) = 1√

2πT

almost surely. So, we have constructed a strong arbitrage, and it belongs to the class
Aspot, because the Bm W is a deterministic function of time and the Black–Scholes
stock S.

(ii) The BS model has an equivalent martingale measure. Hence the fundamental
theorem of asset pricing [17] ensures that there is no free lunch with vanishing risk
with nds-admissible, self-financing strategies. �

The construction of the “doubling” arbitrage in the previous theorem only relied
on the quadratic variation structure of the model. In the pure fractional BS model
with H > 1/2, the QV is constant zero. This fact, combined with Itô’s formula, can
be exploited to construct an nds-admissible arbitrage in class Aspot. The following
simple example is due to Dasgupta and Kallianpur [16] and Shiryaev [39].

Example 3.36 Choosing Φt = St − S0, we obtain by Itô’s formula (Lemma 3.33)
and the zero QV property of the fBS model with H > 1/2,

(St − S0)
2 = 2

∫ t

0
Φu dSu.

Hence, � is nds-admissible (it is bounded from below by 0) and an arbitrage.
Again, this construction of an arbitrage applies to all models with zero QV and
P(ST �= S0) > 0.

We now consider hedging in the fBS model with Hurst parameter larger than a
half. Although there exists strong arbitrage in the class Ands ∩ Aas by Theorem 3.15,
one can still consider the hedging problem in the fBS model. Indeed, in spite of arbi-
trage, one may still be interested in hedging per se. But it must be noted that hedging
cannot be used as a pricing paradigm in the presence of strong arbitrage, since for
any hedge, one can find a super-hedge with smaller initial capital by combining the
hedge with a strong arbitrage.
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By a straightforward generalization of the previous example, we observe that a
smooth European style option, i.e., with pay-off f (St ) for some f ∈ C 1, can be
hedged with initial endowment f (S0) and the strategy Φt = f ′(St ). In reality many
options, like vanilla options, have convex payoff functions that do not belong to
class C 1. A generalization to this situation is possible with some extra effort as
outlined next.

Definition 3.37 Let f : R+ → R+ be a convex function and H > 1/2. If we can
find a self-financing strategy � and a constant cf such that

f (ST ) = cf +
∫ T

0
Φs dSs, (3.2)

then � is a hedging strategy, and cf is a hedging cost of the option f (ST ).

Remark 3.38

1. Because of the strong arbitrage possibilities in the fBS model, one cannot inter-
pret the hedging cost cf as a minimal super-replication price.

2. The strong arbitrage possibility of the fBS model does not imply that one can
take cf = 0 in (3.2): One can super-hedge with zero capital, but the hedge may
not be exact. While from the purely monetary point of view this does not matter,
there may be situations where one is penalized for not hedging exactly.

If f is a convex function, then f +
x (f −

x ) is the right (left) derivative of f .
The following theorem can be regarded as a generalization of the Itô formula in
Lemma 3.33 for nonsmooth convex functions in the pure fractional Brownian mo-
tion setting.

Theorem 3.39 Suppose that S is the fBS model with H > 1/2 and f is a convex
function. Then

f (ST ) = f (S0) +
∫ T

0
f +

x (Su) dSu. (3.3)

In particular, the European option f (ST ) can be perfectly hedged with cost f (S0)

and the hedging strategy given by Φt = f +
x (St ).

Proof One proves Theorem 3.39 by showing that the integral exists as a generalized
Lebesgue–Stieltjes integral. This is done with the help of some fractional Besov
space techniques. Finally, one proves that the integral exists as a forward integral
and actually even as a Riemann–Stieltjes integral. For the rigorous proof, see [4].
Note that one can replace the right derivative f +

x by the left derivative f −
x , as both

derivatives differ on a countable set only. �

Example 3.40 If the convex function f corresponds to the call option, i.e., f (x) =
(x − K)+, then we observe that the stop-loss-start-gain portfolio replicates the call
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option:

(ST − K)+ = (S0 − K)+ +
∫ T

0
1{St≥K} dSt .

Note that this again gives an arbitrage strategy, if the option is at-the-money or out-
of-the-money.

If H < 1/2, stochastic integrals for typical spot strategies with respect to the fBS
model fail to exist. So it makes little sense to consider continuous trading in this
situation. This unfortunate property is related to the infinite QV of the fBS model
for small Hurst parameter and thus applies for the mixed model with H < 1/2 as
well.

For the remainder of the section, we shall therefore discuss the mfBS model
with H > 1/2. In the case H > 3/4, the mfBS model is equivalent in law to the
BS model, see [13]. Therefore, all constructions of arbitrages with doubling strate-
gies and all results on no-arbitrage with nds-strategies directly transfer from the BS
model to the mfBS model with H > 3/4. Moreover, the latter model inherits the
completeness of the BS model. We now discuss to what extent the mixed model
with 1/2 < H ≤ 3/4 differs from the BS model. The argumentation below only
makes use of the fact that the mixed model has the same QV as the BS model and
has conditional full support.

Theorem 3.41 Suppose that S is the mfBS with H > 1/2. Then,

1. There is strong arbitrage in the class Aspot.
2. There is no nds-admissible arbitrage � of the form

Φt = ϕ

(

t, max
0≤u≤t

Su, min
0≤u≤t

Su,

∫ t

0
Su du,St

)

with ϕ ∈ C 1([0, T ]×R
4+). A strategy of this form will be called smooth from now

on.

Proof (i) Here the same constructive example as in Theorem 3.35 applies, because
the mfBS model has the same QV as the BS model.

(ii) We fix some smooth strategy �. By a slightly more general Itô formula than
the one in Lemma 3.33, one can conclude that there is a continuous functional v :
[0, T ] × C+

s0
([0, T ]) → R such that Vt (�) = v(t, S). By the full support property,

the paths of the mfBS model can be approximated by paths of the BS model and
vice versa. In this way, absence of arbitrage can be transferred from the BS model
to the mfBS model. The details are spelled out in [9], Theorem 4.4.

We point out that in the special case � = (Φ0,Φ) ∈ A with Φt = ϕ(t, St ) and
Φ0

t = ϕ0(t, St ) for some sufficiently smooth functions (ϕ,ϕ0), the value process
Vt(�) can be linked to a PDE. This was exploited in [1] in order to prove absence
of arbitrage in this special case. �
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Remark 3.42

1. In Theorem 3.41, (ii), the differentiability of ϕ at t = T can be relaxed to some
extent, and absence of arbitrage still holds. The resulting class of strategies con-
tains hedges for many relevant European, Asian, and lookback options. These
hedges (as functionals on the paths) and the corresponding option prices (de-
duced by hedging and no-arbitrage relative to this class of portfolios) are the
same as in the BS model. For the details, we refer to [9]. We note that this ro-
bustness of hedging strategies was already shown by Schoenmakers and Kloeden
[38] in the case of European options.

2. The no-arbitrage result in Theorem 3.41, (ii), can be extended in several direc-
tions. Additionally to the running maximum, minimum, and average, the strategy
can depend on other factors, which are supposed to be of finite variation and sat-
isfy some continuity condition as functionals on the paths. The investor also is
allowed to switch between different smooth strategies at a large class of stopping
times, and still absence of arbitrage holds true for these stopping-smooth strate-
gies. For the exact conditions on the stopping times, we refer to Sect. 6 in [9],
but we note that many typical ones such as the first level crossing of the stock are
included.

3.6 Trading under Transaction Costs

Recently Guasoni [23] and Guasoni et al. [25] have shown that allowing transaction
costs in the fBS model, the arbitrage possibilities disappear. First they introduce,
following Jouini and Kallal [28], the notion of ε-consistent price system.

Definition 3.43 Let S be a continuous process with paths in C+
S0

([0, T ]).
An ε-consistent price system is a pair (S̃,Q) of a probability Q equivalent to P
and a Q-martingale S̃ = (S̃t )0≤t≤T such that S0 = S̃0 and, for 0 ≤ t ≤ T and ε > 0,

1 − ε ≤ S̃t

St

≤ 1 + ε a.s.

With proportional transaction costs, one cannot use continuous trading. Denote
by V (Φ) the total variation of the process Φ . In this section a trading strategy Φ is
predictable finite-variation R-valued process such that Φ0 = ΦT = 0. The value of
Φ with ε-costs V ε(Φ) is

V ε(Φ) =
∫ T

0
Φs dSs − ε

∫ T

0
Ss dV(Φ)s.

Define V ε
t (Φ) by

V ε
t (Φ) = V ε(Φ1(0,t)),

and so V ε(Φ) = V ε
T (Φ).
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Next, we define the set of admissible strategies in this context, following [25]:
given M > 0, the strategy Φ is M-admissible if for all t ∈ [0, T ], we have that

V ε
t (Φ) ≥ −M(1 + St) a.s.

The set of M-admissible strategies is denoted by Aadm
M (ε). Define also

Aadm(ε) =
⋃

M>0

Aadm
M (ε).

Finally, we say that S admits arbitrage with ε-transaction costs if there is Φ ∈
Aadm(ε) such that V ε(Φ) ≥ 0 and P(V ε(Φ) > 0) > 0.

We can now state the fundamental theorem of asset pricing with ε-transaction
costs given in [25, Theorem 1.11]:

Theorem 3.44 Let S ∈ C+
s0

([0, T ]). Then the following two conditions are equiva-
lent:

1. For each ε > 0, there exists an ε-consistent price system.
2. For each ε > 0, there is no arbitrage for ε-transaction costs.

It is shown by Guasoni et al. [24] that conditional full support implies the ex-
istence of an ε-consistent price system for every ε > 0. Therefore, the fBS models
and the mfBS models do not admit arbitrage under transaction cost with the classes
of strategies Aadm(ε) for ε > 0.

We will study a concrete hedging problem with proportional transaction costs.
In Theorem 3.39 it was shown that the European option f (ST ) can be perfectly

hedged with cost f (S0) and hedging strategy Φt = f −
x (St ). Take T = 1, put tni = i

n
,

i = 0, . . . , n, and consider the discretized hedging strategy Φn,

Φn
t =

n∑

i=1

f −
x (Stni−1

)1(tni−1,tni ](t). (3.4)

Consider now discrete hedging with proportional transaction costs kn = k0n
−α

with α > 0, k0 > 0. The value of the strategy Φn at time T = 1 is

V1
(
Φn; kn

) = f (S0) +
∫ 1

0
Φn

t dSt − kn

n∑

i=1

Stni−1

∣
∣f −

x (Stni
) − f −

x (Stni−1
)
∣
∣. (3.5)

Note that there is no transaction costs at time t = 0.
In the next theorem, μf is the second derivative fxx of the convex func-

tion f . The derivative exists in a distributional sense, and μf is a Radon mea-
sure. The occupation measure ΓBH of fractional Brownian motion BH is defined
by ΓBH ([0, t] × A) = λ{s ∈ [0, t] : BH

s ∈ A}; here λ is the Lebesgue measure, and
A is a Borel set. Denote by lH (x, t) the local time of fractional Brownian motion
BH ; recall that local time lH is the density of the occupation measure with respect
the Lebesgue measure.

The following theorem is proved in [3]:
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Theorem 3.45 Let V1(Φ; kn) be the value of the discrete hedging strategy Φn with
proportional transaction costs kn = k0n

−α .

1. If α > 1 − H , then, as n → ∞,

V1
(
Φn; kn

) → f (S1) in probability.

2. If α = 1 − H , then, as n → ∞,

V1
(
Φn; kn

) → f (S1) −
√

2

π
k0

∫

R

∫ 1

0
St dlH

(
ln(a), t

)
μf (da). (3.6)

Remark 3.46 Note that one can write the limit result in (3.6) as

f (S1) = f (S0) +
∫ 1

0
f −

x (Su) dSu +
√

2

π
k0

∫

R

∫ 1

0
St dlH

(
ln(a), t

)
μf (da);

if lW is the local time for Brownian motion, then the Itô–Tanaka formula gives

f (W1) = f (0) +
∫ 1

0
f −

x (Wu)dWu + 1

2

∫ 1

0

∫

R

dlW (a,u)μf (da).

Hence asymptotical transaction costs with α = 1 − H have a similar effect as the
existence of a nontrivial quadratic variation.

3.7 Approximations

3.7.1 Binary Tree Approximations

The famous Donsker’s invariance principle links random walks to the Bm. By using
this principle one can approximate the BS model with Cox–Ross–Rubinstein (CRR)
binomial trees. To be more precise, let for all n ∈ N, (ξn

k )k∈N be i.i.d. random vari-
ables with P[ξn

k = 1] = 1/2 = P[ξn
k = −1]. Set

Wn
t = 1√

n

�nt�∑

k=1

ξn
k .

Then the Donsker’s invariance principle states that the processes Wn, n ∈ N, con-
verge in the Skorokhod space D([0, T ]) to the Bm. Let Sn to be the binomial model
defined by

Sn
t =

∏

s≤t

(
1 + ΔWn

s

)
.

Then the processes Sn, n ∈ N, converge weakly in D([0, T ]) to the geometric Bm
St = eWt−t/2, i.e., the binomial models Sn, n ∈ N, approximate the BS model.
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In [40] a fractional CRR model was constructed that approximates the fBS model
when H > 1/2, and later this approximation was extended in different directions by
Nieminen [33] and Mishura and Rode [32]. We give here a brief overview of the
construction in [40]:

Let (ξn
k )k∈N be as before, and let k(t, s) be the kernel that transforms the Bm into

an fBm:

k(t, s) = cH s
1
2 −H

∫ t

s

uH− 1
2 (u − s)H− 3

2 du,

where

cH =
(

H − 1

2

)
√
√
√
√ (2H + 1

2 )Γ ( 1
2 − H)

Γ (H + 1
2 )Γ (2 − 2H)

,

and Γ (z) = ∫ ∞
0 tz−1e−t dt is the Gamma function. Then

Bt =
∫ t

0
k(t, s) dWs.

To get a piecewise constant process in D([0, T ]), one must regularize the kernel:

kn(t, s) = n

∫ s

s−1/n

k

(�nt�
n

,u

)

du.

Set

Bn
t =

∫ t

0
kn(t, s) dWn

s

and

Sn
t =

∏

s≤t

(
1 + ΔBn

s

)
.

Theorem 3.47 Let H > 1/2.

1. The random walks Bn, n ∈ N, converge weakly in D([0, T ]) to the fBm B .
2. The binary models Sn, n ∈ N, converge weakly in D([0, T ]) to the fBS model

S = eB .
3. The fractional CRR binary models Sn, n ∈ N, are complete but exhibit arbitrage

opportunities if n is sufficiently large.

Proof (i) is the “fractional invariance principle” [40, Theorem 1], (ii) follows basi-
cally from (i), the continuous mapping theorem, and a Taylor expansion of log(Sn),
see the proof of [40, Theorem 3] for details. The completeness claim of (iii) is ob-
vious, since the market models are binary. The arbitrage claim of (iii) follows from
the fact that if we have only gone up in the binary tree for long enough, the stock
price will increase in the next step, no matter which branch the process takes in the
tree. We refer to the proof of [40, Theorem 5] for details. �
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A main motivation for considering the approximation Sn is that the continuous-
time process St = eBt solves the SDE

dSt = St dBt , S0 = 1,

in the sense of forward integration. Alternatively, one can build an integral on Wick–
Riemann sums [6, 10, 19, 31] and examine the SDE

dXt = Xt d
�Bt , X0 = 1.

Here, Xt = exp{Bt − t2H/2}. Thus, the processes S and X only differ by a deter-
ministic factor. Without going into any details here, we note that the Wick product
can be defined by

eΦ−E[Φ2]/2 � eΨ −E[Ψ 2]/2 = e(Φ+Ψ )−E[(Φ+Ψ )2]/2

for centered Gaussian random variables Φ and Ψ and can be extended to larger
classes of random variables by bilinearity and denseness arguments, see, e.g.,
[6, 19]. Somewhat surprisingly, there is a very simple analogue of the Wick prod-
uct for the binary random variables ξn

k , k = 1, . . . , n, see [26], which gives rise to a
natural binary discretization of Xt suggested by Bender and Elliott [7].

The discrete Wick product can be defined as (A,B ⊂ {1, . . . , n})
∏

i∈A

ξn
i �n

∏

i∈B

ξn
i :=

{∏
i∈A∪B ξn

i if A ∩ B = ∅,

0 otherwise,

and extends by bilinearity to L2(Fn), where Fn denotes the σ -field generated by
(ξn

1 , . . . , ξn
n ). A discrete version of the Wick-fractional Black–Scholes model is then

defined by

Xn
t = �s≤t

(
1 + ΔBn

s

)
.

Bender and Elliott [7] argue in favor of this discretization that the discrete Wick
product separates influences of the drift and volatility.

Theorem 3.48 Let H > 1/2.

1. The binary models Xn, n ∈ N, converge weakly in D([0, T ]) to the Wick-
fractional Black–Scholes model X.

2. The Wick-fractional CRR binary models Xn, n ∈ N, are complete but exhibit
arbitrage opportunities if n is sufficiently large.

The proof of (ii) is similar to the one of Theorem 3.47, (iii), and can be found
in [7]. As is pointed out there, the use of the discrete Wick products kills a part
of the memory as compared to the discrete-time model Sn. It turns out, however,
that the remaining part of the memory is still sufficient to construct an arbitrage.
Completeness again follows from the fact that the model is binary. For the proof
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of (i), one cannot argue by the continuous mapping theorem, because the discrete
Wick product is not a pointwise operation. Instead the relation of the Wick powers to
Hermite polynomials and explicit computations of the Walsh decomposition (which
can be considered a discrete analogue of the chaos decomposition to some extent)
can be exploited, see [8].

3.7.2 Arbitrage-Free Approximation

The results in this section are motivated by [30], where the authors give an arbitrage-
free approximation to fBS model. The prelimit models in this approximation are not
complete, however.

Recall the following classical result: Let N = (Nt )t∈R+ be a Poisson process with
intensity 1, and set

Wn
t = 1√

n
(Nnt − nt).

Then Wn converges to a Bm W in the Skorokhod space D([0, T ]), the process
dSn

t = Sn
t− dWn

t , Sn
0 = S0, converges weakly to the BS model, and the approxima-

tion is complete and arbitrage-free.
We approximate the fractional Black–Scholes model (S, (Ft )t∈[0,T ],P) with a

sequence (Sn, (F n)t∈[0,T ]) of models driven by scaled renewal counting processes.
The prelimit models are complete and arbitrage-free. The approximation is based on
the limit theorem of Gaigalas and Kaj [21]. It goes as follows: let G be a continuous
distribution function with heavy tails, i.e.,

1 − G(t) ∼ t−(1+β) (3.7)

as t → ∞ with β ∈ (0,1).
Take ηi to be the sojourn times of a renewal counting process N . Assume that

ηi ∼ G for i ≥ 2; for the first sojourn time η1, assume that it has the distribution
G0(t) = 1

μ

∫ t

0 (1−G(s)) ds (here μ is the normalizing constant), so that the renewal
counting process

Nt =
∞∑

k=1

1{τk≤t}

is stationary, where τ1 = η1 and τk := η1 + · · · + ηk .
Take now independent copies N(i) of N , numbers am ≥ 0, am → ∞, such that

m

a
β
m

→ ∞; (3.8)

using the terminology of Gaigalas and Kaj, we can speak of fast connection rate.
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Define the workload process W(m, t) by

W(m, t) =
m∑

i=1

N
(i)
t ;

note that the process Nm is a counting process, since the sojourn distribution is
continuous. We have that EW(m, t) = mt

μ
, since W(m, t) is a stationary process.

Proposition 3.49 (Gaigalas and Kaj [21]) Assume (3.7) and (3.8). Let

Ym(t) := μ
3
2

√
β(1 − β)(2 − β)

2

W(m,amt) − mμ−1amt

m
1
2 a

1− β
2

m

.

Then Ym converges weakly [in the Skorokhod space D] to a fractional Brownian
motion BH , where H = 1 − β

2 .

Since the process Ym is a semimartingale, it has a semimartingale decomposition

Ym = Mm + Hm; (3.9)

here Hm = Bm − Am, and Bm is the compensator of the normalized aggregated
counting process W . Note that the process Hm is a continuous process with bounded
variation.

Up to a constant, we have that the square bracket of the martingale part Mm of
the semimartingale Ym is

[
Mm,Mm

]
t
= C

W(m,amt)

ma
2−β
m

.

But our assumptions imply that [Mm,Mm]t L1(P )→ 0 as m → ∞. With the Doob

inequality we obtain that sups≤t |Mm
s | P→ 0, and fBm is the limit of a sequence of

continuous processes with bounded variation.
It is not difficult to check that the solution to the linear equation

dSm
t = Sm

t− dYm
s

converges weakly in the Skorokhod space to a geometric fractional Brownian mo-
tion.

The driving process Ym is a scaled counting process minus the expectation. It
is well known that such models are complete and arbitrage-free. Hence we have a
complete and arbitrage-free approximation to fractional Black–Scholes model. See
[42] for more details.

Remark 3.50 If one computes the hedging price and the hedging strategy for the
European call (Sm

T − K)+ in the prelimit sequence and lets m → ∞, one gets in the
limit the stop-loss-start-gain hedging given in Example 3.40.
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3.7.3 Microeconomic Approximation

So far there has been few economic justifications to use fractional models in option-
pricing. For example, the LRD of the stock price, measured by the Hurst index H ,
is usually given as an econometric fact (and even that is questionable). One attempt
to build a microeconomic foundation for fractional models was that of Bayraktar
et al. [5]. They showed how the fBS model can arise as a large time-scale many-
agent limit when there are inert agents, i.e., investors who change their portfolios
infrequently, and the log-price is given by the market imbalance. We will briefly
explain their framework and their main result here.

Consider n agents. Each agent k has a trading mood xk = (xk
t )t∈[0,∞) that takes

values in a finite state space E ⊂ R containing zero: xk
t > 0 means buying, xk

t < 0
means selling, and xk

t = 0 means inactivity at time t . The agents are homogeneous
and independent. The trading mood xk is a semi-Markov process defined as

xk
t =

∞∑

m=0

ξk
m1[τk

m,τk
m+1)(t),

where the E-valued random variables ξk
m and the stopping times τk

m satisfy

P
[
ξk
m+1 = j, τ k

m+1 − τ k
m ≤ t

∣
∣ ξk

1 , . . . , ξ k
m, τ k

1 , . . . , τ k
m

]

= P
[
ξ k
m+1 = j, τ k

m+1 − τk
m ≤ t

∣
∣ ξk

m

]

= Q
(
ξk
m, j, t

)
.

So, (ξ k
m)m∈N is a homogeneous Markov chain on E with transition probabilities

pij = limt→∞ Q(i, j, t). It is assumed that pij > 0 for all i �= j , so that (pij ) admits
a unique stationary measure P∗. On the sojourn times τ k

m+1 − τ k
m given ξk

m it is
assumed that:

1. The average sojourn times are finite.
2. The sojourn time at the inactive state is heavy-tailed, i.e., there exist a constant

α ∈ (1,2) and a locally bounded slowly varying at infinity function L such that

P
[
τk
m+1 − τ k

m ≥ t
∣
∣ ξk

m = 0
] ∼ t−αL(t).

(L is slowly varying at infinity if, for all x > 0, L(xt)/L(t) → 1 as t → ∞.)
3. The sojourn times at the active states i �= 0 are lighter-tailed than the sojourn

time at the inactive state:

lim
t→∞

P[τ k
m+1 − τ k

m ≥ t | ξk
m = i]

t−(α+1)L(t)
= 0.

4. The distribution of the sojourn times have continuous and bounded densities with
respect to the Lebesgue measure.
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An agent-independent process Ψ = (Ψt )t∈[0,∞) describes the sizes of typical
trades: Agent k accumulates the asset S at the rate Ψtx

k
t at time t . The process

Ψ is assumed to be a continuous semimartingale with Doob–Meyer decomposition
Ψ = M + A such that E[〈M〉T ] < ∞ and E[V (A)] < ∞, and Ψ and the xk’s are
independent. As before, V (A) denotes the total variation of A on [0, T ].

The log-price Xn for the asset with n agents is assumed to be given by the market
imbalance:

Xn
t = X0 +

n∑

k=1

∫ t

0
Ψsx

k
s ds.

The aggregate order rate is

Y
ε,n
t =

n∑

k=1

Ψtx
k
t/ε.

Let μ �= 0 be the expected trading mood under the stationary measure P∗, and define
the centered aggregate order process

X
ε,n
t =

∫ t

0
Y ε,n

s ds − μn

∫ t

0
Ψs ds.

Then, the main result [5, Theorem 2.1] states that in the limit the centered log-prices
are given by a stochastic integral with respect to an fBm:

Theorem 3.51 There exists a constant c > 0 such that

lim
ε↓0

lim
n→∞

1

ε1−H
√

nL(1/ε)
Xε,n = c

∫ ·

0
Ψt dBt ,

where B is an fBm with Hurst index H = (3 − α)/2 > 1/2. The limits are weak
limits in the Skorokhod space D([0, T ]).

Remark 3.52 Assume that Ψ ≡ 1, i.e., the trades, and consequently the log-prices,
are completely determined by the agents’ intrinsic trading moods. Then

Xε,n = εXn
t/ε − μnt.

1. The limit in Theorem 3.51 is the fBS model.
2. Bayraktar et al. [5] also considered a model where there are both active and inert

investors (active investors have light-tailed sojourn times at the inactive state 0).
Then they get, in the limit, the mfBS model.
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3.8 Conclusions

We have given some recent results on the arbitrage and hedging in some fractional
pricing models. If one wants to understand the pricing of options in the fBS model,
then it is not clear to what extent the hedging capital given in (3.3) can be inter-
preted as the price of the option. On the other hand, these exact hedging results may
have some value if one studies the hedging problem in the presence of transaction
costs. The mixed Brownian–fractional Brownian pricing model has less arbitrage
possibilities, but it is possible to model the dependency of the log-returns in this
model family. One can also modify this model to include more “stylized” properties
of log-returns, but the hedging prices will be the same as without these “stylized”
features.

The mixed model seems to be a good candidate to include several of the observed
“stylized” facts of log-returns in the modeling of stock prices. Hence it is reasonable
to study how the properties of the standard gBS model change in the mixed model.
We have shown in [9] that the hedging is the same in all models having the same
structural quadratic variation as a functional of the stock price path. For example,
recently Bratyk and Mishura have considered quantile hedging problems in mixed
models; see [12] for more details.

3.8.1 Open Problems

We finish by giving some open problems related to the present survey.
Are fractional and mixed models free of simple arbitrage?
What kind of random variables have a Riemann–Stieltjes integral representations

in the fBS model?
Can one verify statistically that option prices depend only on the quadratic vari-

ation of the underlying stock prices?
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Chapter 4
Credit Contagion in a Long Range Dependent
Macroeconomic Factor Model

Francesca Biagini, Serena Fuschini, and Claudia Klüppelberg

Abstract We propose a new default contagion model, where default may originate
from the performance of a specific firm itself but can also be directly influenced
by defaults of other firms. The default intensities of our model depend on smoothly
varying macroeconomic variables, driven by a long-range dependent process. In par-
ticular, we focus on the pricing of defaultable derivatives whose defaults depend on
the macroeconomic process and may be affected by the contagion effect. In our ap-
proach we are able to provide explicit formulas for prices of defaultable derivatives
at any time t ∈ [0, T ]. Finally we calculate some examples explicitly, where the
macroeconomic factor process is given by a functional of the fractional Brownian
motion with Hurst index H > 1

2 .

Keywords Credit risk · Contagion modeling · Credit intensity · Latent process ·
Macroeconomic variables process · Long-range dependence · Fractional Brownian
motion · Pricing defaultable derivatives

Mathematics Subject Classification (2010) Primary 60G15 · 91B70 · Secondary
91Gxx · 60G22

4.1 Introduction

The financial crisis started in 2008 has been triggered by the dramatic rise in mort-
gage delinquencies and foreclosures in the United States. This crisis has not only
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manifested the weaknesses in financial industry regulation, but also of the financial
models used for pricing instruments of mortgage pools like MBSs and CDOs. In
particular, the systemic risk has been disastrously underestimated. It has been in-
dustry standard to model contagion within a pool of credits by an intensity model
where the intensities of surviving credits may increase at default of some credit.
This approach increases the probability for default of dependent credits and so has
no direct effect. In a static model, Davis and Lo [8] suggested a direct contagion
model which is able to capture the immediate effect of one credit default to other
credits in a pool.

We investigate a dynamic version of the direct contagion model of Davis and
Lo [8], which is based on interacting intensities. Each default indicator process may
be influenced by the default of other firms, which is modeled by an indicator variable
representing the contagion possibility. In addition, we allow the default intensities
to depend on smoothly varying macroeconomic variables (for example, supply and
demand, interest rates, the gross national product, or other measures of economics
activities) that are often modeled by a Markov state vector leading to affine models;
see, e.g., Duffie [9] and Duffie, Filipovic, and Schachermayer [10].

It is, however, well known that many macroeconomic processes show a long-
range dependence effect; see, e.g., Henry and Zaffaroni [16]. Consequently, in this
paper we model the latent macroeconomic process governing the default intensities
by a long-range dependent process, here exemplified by a one-dimensional process
which stands, for instance, for a weighted mean of a vector of macroeconomic vari-
ables.

In this paper we focus on the pricing of defaultable derivatives depending on the
macroeconomic process and affected by the contagion effect. We remark that we
are not assuming that the primary assets on the market are driven by a long-range
dependent process. Hence no arbitrage problem arises in the use of our model. For
a discussion on this topic, we refer to Björk and Hult [2] or Øksendal [17]. In our
model the long-range dependent macroeconomic process enters as a progressively
measurable process into the default intensity. By usual no-arbitrage arguments the
price of a contingent claim at time t is given by the conditional expectation under
the pricing measure, which we suppose to be given by the market.

In this, not at all standard model we are able to provide explicit formulas for the
derivative price at any time t ∈ [0, T ]. We discuss suitable long-range dependent
models for the macroeconomic process and calculate some examples, where the
macroeconomic factor is given by a functional of the fractional Brownian motion
with Hurst index H > 1

2 .
Our paper is organized as follows. In Sect. 4.2 we present our model and the con-

tagion mechanism for instantaneous contagion, modeling the intensity as a function
of the macroeconomic process. We explain the model in detail in Sect. 4.2—it is
an intensity-based model—and we present all assumptions here. We present a spe-
cific example in Sect. 4.3 and calculate its infinitesimal generators of the default
indicator process and the default number process. Afterwards, we calculate a de-
faultable derivatives price in Sect. 4.4, at first conditionally on the latent process.
We conclude the section with a specific example, calculating the prices of a default-
able bond under contagion. Finally, in Sect. 4.5, we introduce a general long-range
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dependent fractional macroeconomic process as intensity process. We obtain an ex-
plicit formula, which can be evaluated numerically. In Sect. 4.5 we discuss some
specific macroeconomic models and give an explicit financial example.

4.2 The Credit Model

4.2.1 The Default Model

We consider a portfolio of m firms indexed by i ∈ {1, . . . ,m}. Its default state is
described by a default indicator process

Zt = (
Zt(1), . . . ,Zt (m)

)
, t ≥ 0,

with values in the set {0,1}m. For every i ∈ {1, . . . ,m}, the random variable Zt(i)

indicates if the firm i has defaulted or not by time t , i.e., Zt(i) = 1 if the firm i has
defaulted by time t and Zt(i) = 0 otherwise.

Aiming at an extension of the idea of Davis and Lo [7] as indicated in [8], Sect. 3,
to a dynamic setting, we distinguish between default caused by itself and default
caused by contagion, based on the default of some other firms. To this purpose, we
introduce the self-default indicator process

Yt = (
Yt (1), . . . , Yt (m)

)
, t ≥ 0,

with values in {0,1}m, where again Yt (i) = 1 if the firm i has defaulted by time t by
itself and Yt (i) = 0 otherwise. We denote by τi the default time of the ith firm for
i ∈ {1, . . . ,m} and by I the indicator function; then

Yt (i) = I{τi≤t}, i = 1, . . . ,m.

Next we model contagion by using a contagion matrix indicator process: if firm
i defaults by itself at some time t , then Ct(i, j) determines whether infection of
default from firm i to firm j takes place or not at time t .

We assume that, if default of firm i causes default of firm j , then this happens
instantaneously resulting in Ct(i, j) = 1. More precisely, for any time t ≥ 0,

Ct(i, j) =
{

1 if the default of firm i causes default of firm j at time t,

0 otherwise.
(4.1)

This results in a representation of the default indicator process of firm j ,

Zt(j) = Yt (j) + (
1 − Yt (j)

)
(

1 −
∏

i �=j

(
1 − Ct∧τi

(i, j)Yt (i)
)
)

= Yt (j) + (
1 − Yt (j)

)
(

1 −
∏

i �=j

(
1 − Cτi

(i, j)Yt (i)
)
)

, t ≥ 0. (4.2)
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Since firm j is influenced by itself, we define Ct(j, j) ≡ 1 for all j ∈ {1, . . . ,m}
and t ≥ 0. Then (4.2) can also be written as

Zt(j) = 1 −
m∏

i=1

(
1 − Cτi

(i, j)Yt (i)
)
, t ≥ 0. (4.3)

The defaults of the portfolio, either by itself or by infection, are caused by fluc-
tuations in the macroeconomic environment, which we model by a state variable
process Ψ = (Ψt )t≥0 with values in R

d for d ∈ N, representing the evolution of
macroeconomic variables such as supply and demand, interest rates, the gross na-
tional product, or other measures of economics activities. In the literature Ψ is
usually taken to be Markovian, so that the overall model of the system, given by
(Ψt , Yt ,Ct )t≥0, is Markovian.

It is, however, well known that many macroeconomic variables show a long-
range dependence effect; see, e.g., Henry and Zaffaroni [16]. Consequently, we
model the macroeconomic environment by a long-range dependent process (Ψt )t≥0
to be specified later (see Sect. 4.5).

4.2.2 The Probability Space

The overall state of our system is described by the process (Ψt , Yt ,Ct)t≥0 on the
probability space (Ω, F ,P) endowed with the filtration

Ft := F Ψ
t ∨ F Y

t ∨ F C
t , t ≥ 0,

where (F Ψ
t )t≥0, (F Y

t )t≥0, and (F C
t )t≥0 are the natural filtrations associated to the

processes Ψ,Y , and C, respectively. Here we assume that the agent on the market
knows if a firm has defaulted by itself or not and the contagion structure among the
firms. Moreover, we define the filtration

Gt := F Ψ∞ ∨ F Y
t ∨ F C

t , t ≥ 0.

We assume that investors have access to (Ft )t≥0, whereas the larger filtration
(Gt )t≥0, which contains information about the whole path (Ψt )t≥0 serves mainly
theoretical purposes. Finally, we assume that all filtrations satisfy the usual hypothe-
ses of completeness and right-continuity.

From now on we work under the following assumptions.

Assumption 4.1

(1) We remain in the framework of most reduced-form credit risk models in the
literature and assume that the dynamic of Ψ is not affected by the evolution of
the default indicator process Z. This has the advantage that we first model the
dynamic of Ψ and, in a second step, the conditional distribution of the default

www.TechnicalBooksPDF.com



4 Credit Contagion in a Long Range Dependent Macroeconomic Factor Model 109

indicator process Z for a given realization of the macroeconomic factor pro-
cess Ψ . In particular, we require that Ψ is not affected by the evolution of the
default indicator process Y and the contagion matrix C. In mathematical terms
this means that for every bounded F Ψ∞-measurable random variable η,

E[η|Ft ] = E
[
η
∣
∣F Ψ

t

]
, t ≥ 0.

(2) The processes (Yt (i))t≥0 for i ∈ {1, . . . ,m}, (Ct (i, j))t≥0 for i, j ∈ {1, . . . ,m},
i �= j , are conditionally independent with respect to the filtration (Gt )t≥0.
This means that for every {i1, . . . , ik} ⊆ {1, . . . ,m} and for every choice
(α1, β1), . . . , (αl, βl) in {(i, j) ∈ {1, . . . ,m}2 | i �= j}, we have, for all tj ≥ t ,
j = 1, . . . , k, and sn ≥ t , n = 1, . . . , l,

E

[
k∏

j=1

l∏

n=1

f
(
Ytj (ij )

)
g
(
Csn(αn,βn)

)
∣
∣
∣
∣
∣

Gt

]

=
k∏

j=1

E
[
f
(
Ytj (ij )

)∣
∣Gt

] l∏

n=1

E
[
g
(
Csn(αn,βn)

)∣
∣Gt

]

=
k∏

j=1

E
[
f
(
Ytj (ij )

)∣
∣F Ψ∞ ∨ F Y(ij )

t

] l∏

n=1

E
[
g
(
Csn(αn,βn)

)∣
∣F Ψ∞ ∨ F C(αn,βn)

t

]

for f,g : {0,1} → R, with F Y(i)
t := σ(Yu(i) : u ≤ t) and F C(i,j)

t := σ(Cu(i, j) :
u ≤ t), for every i, j ∈ {1, . . . ,m} , i �= j .

(3) For every i ∈ {1, . . . ,m}, the self-default indicator process (Yt (i))t≥0 is a doubly
stochastic indicator process with respect to the filtration (F Ψ∞ ∨ F Y

t )t≥0 with
stochastic intensity depending only on the path of (Ψt )t≥0. In particular, we
assume that the stochastic intensity of firm i is of the form λi(t,Ψt ) with a
continuous function λi : R

2 → R+. This means that

E
[
1 − Ys(i)

∣
∣Gt

] = (
1 − Yt (i)

)
e−∫ s

t λi (u,Ψu)du, s ≥ t, (4.4)

where the last equality holds by Corollary 5.1.5 of Bielecki and Rutkowski [5].
(4) The contagion processes (Ct (i, j))t≥0 for i �= j are F Ψ∞-conditionally time-

inhomogeneous Markov chains; i.e., for every function f : {0,1} → R,

E
[
f
(
Cs(i, j)

)∣
∣F Ψ∞ ∨ F C(i,j)

t

]= E
[
f
(
Cs(i, j)

)∣
∣F Ψ∞ ∨ σ

(
Ct(i, j)

)]
, s ≥ t.

For all i, j ∈ {1, . . . ,m}, i �= j , and k,h ∈ {0,1}, we denote the conditional
transition probabilities by

p
ij
ts (k, h) = P

[
Cs(i, j) = h

∣
∣F Ψ∞ ∨ σ

(
Ct(i, j) = k

)]
,

and assume that (p
ij
ts (k, h))s∈R+ is a continuous process for all t ∈ R

+,
i, j ∈ {1, . . . ,m}, and k,h ∈ {0,1}.
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In the sequel we will use the fact that, on {Ct(i, j) = k},

p
ij
ts (k, h) = P[Cs(i, j) = h,Ct (i, j) = k|F Ψ∞]

P[Ct(i, j) = k|F Ψ∞] .

Note that, unlike the default indicator processes, the processes (Ct (i, j))t≥0 are
allowed to change between 0 and 1 back and forth in time. They model the
presence of a business relationship between firm i and firm j , which can be
present at time 0, absent at some later time, and come in force again even later.

4.3 A Portfolio with Disjoint Contagion Classes

We want to discuss our model assumptions for the simple case of a credit port-
folio with group structure. For simplicity, we assume that the matrix C is time-
independent and deterministic. This means that we can divide the credit portfolio of
m firms into groups, which we can identify by the following assumptions.

Assumption 4.2

(1) Reflexivity: By definition C(i, i) = 1 for all i ∈ {1, . . . ,m}.
(2) Symmetry: C(i, j) = C(j, i) for all i, j ∈ {1, . . . ,m}.

The influence of default is symmetric.
(3) Transitivity: C(i,h)C(h, j) ≤ C(i, j) for all i, j, h ∈ {1, . . . ,m}.

If the default of firm i causes firm h to default, and firm h causes firm j to
default, then also firm i causes the default of firm j .

Assumptions 4.2 define an equivalence relation on the credit portfolio, i.e., i ∼ j

if and only if C(i, j) = 1. The equivalence relation subdivides the portfolio into
disjoint equivalence classes, which we call contagion classes and denote by

[i] := {
j ∈ {1, . . . ,m} ∣∣ C(i, j) = 1

}
.

We assume that the portfolio consists of k contagion classes [i1], . . . , [ik], represent-
ing, for instance, business sections or local markets.

By definition (4.2) of the default indicator process we have:

Zt(i) =
{

1 if (Yt (i) = 1) ∨ (∃j �= i C(i, j) = 1 s.t. Yt (j) = 1),

0 if (Yt (i) = 0) ∧ (Yt (j) = 0 ∀j �= i s.t. C(i, j) = 1).
(4.5)

Given some i ∈ {1, . . . ,m}, from the definition of the default indicator process in
(4.2) and Assumption 4.2 we have

Zt(i) = 0 ⇐⇒ Zt(j) = 0 ∀j ∈ [i].
This means that either all firms of the same contagion class default at the same

time or all of them are alive. Here we see that our modeling is different from (and
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more drastic than) the usual credit risk contagion modeling, where the default of
some firm within a group only increases the hazard of all other group members; for
examples and further references, see Schönbucher [19], Chap. 10.5.

Conditionally on the macroeconomic state variable process Ψ , the default indica-
tor process (Zt)t≥0 is Markovian. Since in this case C is supposed to be determinis-
tic, it is to be expected that the intensities of (Zt)t≥0 are inherited in a deterministic
way by the default intensities of the self-indicator process (Yt )t≥0 as given by (4.4)
of Assumption 4.1(3).

This allows us to calculate the conditional generator of the default indicator pro-
cess and of the default number process.

4.3.1 Conditional Infinitesimal Generator of the Default Indicator
Process

We calculate the conditional infinitesimal generator of the default indicator process
(Zt )t≥0, where we use Definition 2.2 of Yin and Zhang [22].

Theorem 4.3 The infinitesimal generator At of the F Ψ∞-conditional time-inhomo-
geneous Markov process (Zt )t≥0 is for any test function f : {0,1}m → R given by

AZ
t f (z) =

m∏

j=1

∏

u∈[j ]

(
1 − |zj − zu|

) m∑

i=1

[
f
(
z(i)

)− f (z)
]
(1 − zi)λ

i(t,Ψt ),

z ∈ {0,1}m, (4.6)

where

z(i) = (
z1 + (1 − z1)C(i,1), . . . , zm + (1 − zm)C(i,m)

)
. (4.7)

Proof By Proposition 11.3.1 of [5] we obtain that the infinitesimal conditional gen-
erator of Zt is given by

AZ
t f (z) =

∑

w �=z

[
f (w) − f (z)

]
λZ

t (z,w)

for any f : {0,1}m → R, where λZ
t (z,w) denotes the F Ψ∞-conditional stochastic

intensity of the process Z from state z to state w, given by

λZ
t (z,w) := lim

h→0

pZ
tt+h(z,w) − pZ

tt (z,w)

h
(4.8)

with conditional transition probabilities

pZ
tt+s(z,w) := P(Zt+s = w,Zt = z|F Ψ∞)

P(Zt = z|F Ψ∞)
=: P

Ψ (Zt+s = w|Zt = z), t, s ≥ 0,
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and

pZ
tt (z,w) = δz,w :=

{
1 if z = w,

0 otherwise.

Since the different contagion classes are independent, we factorize the transition
probabilities as follows:

pZ
tt+s(z,w) :=

k∏

h=1

P
Ψ

( ⋂

i∈[ih]
Zt+s(i) = wi

∣
∣
∣
∣

⋂

i∈[ih]
Zt(i) = zi

)

. (4.9)

Recall that in each factor in (4.9) the states wi, zi ∈ {0,1} and that 1 is the absorb-
ing state. Because of the deterministic contagion mechanism, at any time either the
whole contagion class of firms has defaulted or has not, i.e.,

∃i ∈ [ih] s.t.
{
Zt(i) = 0

} ⇐⇒
⋂

i∈[ih]

{
Zt(i) = 0

}
. (4.10)

Moreover, by definition (4.5) we have that

⋂

i∈[ih]

{
Zt(i) = 0

} ⇐⇒
⋂

i∈[ih]

{
Yt (i) = 0

}
. (4.11)

Setting Zt(ih) :=∏
i∈[ih] Zt(i), which also is a 0–1 random variable, we have

⋂

i∈[ih]

{
Zt(i) = 0

} ⇐⇒ {
Zt(ih) = 0

}
,

and by (4.4), (4.10), and (4.11) we get

E
[
1 − Zt+s(ih)

∣
∣Gt

]= (
1 − Zt(ih)

)
e
− ∫ t+s

t

∑
i∈[ih] λi(u,Ψu)du

. (4.12)

Given z = (z1, . . . , zm) ∈ {0,1}m, we define, for h ∈ {1, . . . , k},

z[ih] := (
z1 + (1 − z1)C(ih,1), . . . , zm + (1 − zm)C(ih,m)

)
,

representing the fact that only group [ih] can default, and, if it does, then all other
components of z remain the same. Then by (4.9) and (4.12), taking the limit in (4.8),
we obtain, for z[ih] �= z,

λZ
t

(
z, z[ih])=

∏

j∈[ih]
(1 − zj )

∑

i∈[ih]
λi(t,Ψt )

and λZ
t (z,w) = 0 for w �= z[ih] or w = z.
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Then, for elements z such that zi = zj if firms i, j are in the same contagion
class, the infinitesimal generator is given by

AZ
t f (z) =

k∑

h=1

[
f
(
z[ih])− f (z)

] ∏

j∈[ih]
(1 − zj )

∑

i∈[ih]
λi(t,Ψt ),

which can equivalently be represented as

AZ
t f (z) =

m∑

i=1

[
f
(
z(i)

)− f (z)
]
(1 − zi)λ

i(t,Ψt ),

where z(i) is defined as in (4.7). To guarantee that at the same time only de-
faults in one contagion class take place, we multiply the right-hand side by∏m

j=1
∏

u∈[j ](1 − |zj − zu|), which means that the vector z cannot have two dif-
ferent components which correspond to equivalent firms. This gives the form of the
generator as in (4.6). �

4.3.2 Conditional Infinitesimal Generator of the Default Number
Process

We invoke the previous result to calculate the generator of the default number pro-
cess for the portfolio. To this end, we split the group of all firms in l homogeneous
groups G1, . . . ,Gl , where each group contains all the firms with the same default in-
tensity. We recall that firms belonging to the same equivalent class [i] have a default
intensity given by

λ
[i]
t =

∑

j∈[i]
λj (t,Ψt ).

It follows that each homogeneous group Gh is given by the union of a certain num-
ber sh of contagion classes, i.e.,

Gh = [
jh

1

]∪ · · · ∪ [
jh
sh

]
.

For every h ∈ {1, . . . , l}, we denote by nh
i the cardinality of the class [jh

i ] for i =
1, . . . , sh and by λGh(t,Ψt ) the intensity of every firm belonging to the group Gh.
Let

Mt(h) := 1

sh

[ ∑

i∈[jh
1 ]

Zt(i)

nh
1

+ · · · +
∑

i∈[jh
sh

]

Zt(i)

nh
sh

]

(4.13)

be the weighted average number of defaults in the group Gh. We now consider the
process Mt := (Mt (1), . . . ,Mt (l)). Because of the conditional independence of con-
tagion classes, the components of this process are also conditionally independent.
We calculate the conditional infinitesimal generator of (Mt )t≥0.
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Recall first from our calculations in the proof of Theorem 4.3 that we cannot
have simultaneous defaults for two different contagion classes and that inside a con-
tagion class all firms default at the same time. Hence the counting process (Mt )t≥0
can jump from a state u = (u1, . . . , ul) = (

v1
s1

, . . . ,
vl

sl
), where vk ∈ {0, . . . , sk} (for

k = 1, . . . , l), only to a state of the form u + 1
sk

ek , where ek is the kth element of

the canonical basis of R
l . With an analogous proof as in Lemma 3.4 of Frey and

Backhaus [11], we obtain that the transition intensity of M from u into the state
u + 1

sk
ek is given by

λM
t

(

u,u + 1

sk
ek

)

= sk(1 − uk)λ
Gk (s,Ψs).

Then the infinitesimal conditional generator of (Mt)t≥0 has the following form.

Theorem 4.4 Let Mt = (Mt (1), . . . ,Mt (l)), t ≥ 0, be the default number process
with components defined in (4.13). Under Assumptions 4.1 and 4.2, the infinites-
imal generator of this F Ψ∞-conditional Markov process is for any test function
f : {0, 1

s1
, . . . ,1} × · · · × {0, 1

sl
, . . . ,1} → R given by

Atf (u) =
l∑

k=1

[

f

(

u + 1

sk
ek

)

− f (u)

]

sk(1 − uk)λ
Gk (t,Ψt ).

4.4 The Price of Credit Derivatives as a Function of Ψ

We consider the problem of pricing derivatives whose values are influenced by the
contagion mechanism represented by the matrix C and the underlying macroeco-
nomics factors Ψ as described in Sect. 4.2.1.

Assumption 4.5 (Market structure; cf. Frey and Backhaus [12], Assumption 3.1)

(1) The investor information at time t is given by the default history Ft ; i.e., the
investor knows the latent process Ψ , the self-default indicator process Y , and
the contagion matrix C up to time t .

(2) The default-free interest rate is deterministic, so that we can w.l.o.g. set it equal
to 0. This does not prevent us to include, for instance, the LIBOR rate as one of
the macroeconomic variables processes.

(3) A pricing (martingale) measure P exists and is known. For conditions such that
this assumption holds, see, for example, Lemma 13.2 of [13]. The price in t of
any FT -measurable claim L ∈ L1(Ω,P) with maturity T > 0 is given by

Lt = E[L|Ft ] for 0 ≤ t ≤ T . (4.14)

Here we do not assume that the pricing measure P is necessarily unique. In an
incomplete market setting in absence of arbitrage, the price process of a claim is
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given by formula (4.14) for some choice of a martingale measure P. See, for exam-
ple, Theorem 5.30 of [15].

We do not investigate further the issue of market completeness in this model,
since it goes beyond the interests of this paper. Given a contingent claim, we then
focus on the pricing issue in this setting and compute (4.14) for a given pricing
measure P.

Without further specifying the macroeconomic process Ψ , we can formulate the
following result.

Theorem 4.6 Let f : R × R
m → R be a bounded measurable function. Let α =

(α1, . . . , αm), β = (β1, . . . , βm), and z = (z1, . . . , zm) be in {0,1}m, and h(i), k(i) ∈
{0,1}m−1 for i = 1, . . . ,m. Set hii = kii := 1 for i = 1, . . . ,m, hij := [h(i)]j and
kij := [k(i)]j for j �= i. Then, for t ∈ [0, T ],

E
[
f (ΨT ,ZT )

∣
∣Ft

]

=
∑

z,α,β∈{0,1}m
(−1)

∑m
j=1 αj zj

m∏

j=1

z
1−αj

j

m∏

i=1

(
Yt (i)at (i)

)1−βi
(
1 − Yt (i)

)βi

× E

[

f (ΨT , z)

m∏

i=1

bt,T (i)βi

∣
∣
∣
∣
∣

F Ψ
t

]

(4.15)

with

at (i) =
∑

h(i)∈{0,1}m−1

I{h̃i (α,h)=0}I{C(i)
τi

=h(i)},

bt,T (i) =
∑

h(i),k(i)∈{0,1}m−1

I{C(i)
t =k(i)}

(∫ ∞

T

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

+ I{h̃i (α,h)=0}
∫ T

t

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

)

,

where

h̃i (α,h) :=
{

0 if
∑m

j=1 αjhij = 0,

1 otherwise,
(4.16)

and pt,τi
(k(i), h(i)) :=∏m

j=1 p
ij
tτi

([k(i)]j , [h(i)]j ) denotes the joint transition proba-

bilities of the random vector C
(i)
τi

from time t to time τi .

Our proof is based on the following lemma.

Lemma 4.7 Assume the same notation as in Theorem 4.6. Then, for all z ∈ {0,1}m
and t ∈ [0, T ],
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E[I{ZT =z}|Gt ]

=
∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj

m∏

j=1

z
1−αj

j

m∏

i=1

[

Yt (i)
∑

h(i)∈{0,1}m−1

I{h̃i (α,h)=0}I{C(i)
τi

=h(i)}

+ (
1 − Yt (i)

) ∑

h(i),k(i)∈{0,1}m−1

I{C(i)
t =k(i)}

×
(∫ +∞

T

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

+ I{h̃i (α,h)=0}
∫ T

t

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

)]

. (4.17)

Proof By (4.3) we have, for zj ∈ {0,1},

I{ZT (j)=zj } = zj + (−1)zj

m∏

i=1

(
1 − Cτi

(i, j)YT (i)
)
.

Then, for z ∈ {0,1}m,

I{ZT =z} =
m∏

j=1

[

zj + (−1)zj

m∏

i=1

(
1 − Cτi

(i, j)YT (i)
)
]

. (4.18)

We apply the following identity, which can be proved easily, for instance, by induc-
tion on m:

m∏

j=1

(Aj + Bj ) =
∑

α∈{0,1}m

m∏

j=1

A
1−αj

j B
αj

j , (4.19)

where αj ∈ {0,1}, j = 1, . . . ,m. Setting 00 := 1, the formula holds also if there
exists j ∈ {1, . . . ,m} such that Aj = 0 or Bj = 0. We apply this formula to

Aj := zj and Bj := (−1)zj

m∏

i=1

(
1 − Cτi

(i, j)YT (i)
)
.

Then we obtain the following expression for the indicator function in (4.18):

I{ZT =z} =
∑

α∈{0,1}m

m∏

j=1

(

z
1−αj

j

[

(−1)zj

m∏

i=1

(
1 − Cτi

(i, j)YT (i)
)
]αj

)

=
∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj
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×
(

m∏

j=1

z
1−αj

j

)
m∏

j=1

m∏

i=1

(
1 − Cτi

(i, j)YT (i)
)αj . (4.20)

Then by Assumption 4.1(2) we have that

E[I{ZT =z}|Gt ] =
∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj

(
m∏

j=1

z
1−αj

j

)

×
m∏

i=1

E

[
m∏

j=1

(
1 − Cτi

(i, j)YT (i)
)αj

∣
∣
∣
∣
∣

Gt

]

. (4.21)

We focus now on the calculation of the conditional expectation in (4.21). The total
probability theorem, by considering all the possible contagion structures for ith row
C

(i)
τi

of the random matrix Cτi
(written in its vector representation and avoiding the

element Cτi
(i, i)), yields

E

[
m∏

j=1

(
1 − Cτi

(i, j)YT (i)
)αj

∣
∣
∣
∣
∣

Gt

]

=
∑

h(i)∈{0,1}m−1

E

[
m∏

j=1

(
1 − hijYT (i)

)αj I{C(i)
τi

=h(i)}

∣
∣
∣
∣
∣

Gt

]

=
∑

h(i)∈{0,1}m−1

E
[(

1 − YT (i)
)h̃i (α,h)I{C(i)

τi
=h(i)}

∣
∣Gt

]
, (4.22)

where hii := 1 and hij := [h(i)]j for j �= i, and h̃i (α,h) is as in (4.16). We now
calculate

E
[(

1 − YT (i)
)h̃i (α,h)I{C(i)

τi
=h(i)}

∣
∣Gt

]

= E
[
(I{T <τi })h̃i (α,h)I{C(i)

τi
=h(i)}

∣
∣Gt

]

= E
[
E
[
(I{T <τi })h̃i (α,h)I{C(i)

τi
=h(i)}

∣
∣F Y(i)

T ∨ Gt

]∣
∣Gt

]

= I{τi≤t}I{h̃i (α,h)=0}I{C(i)
τi

=h(i)}

+ I{h̃i (α,h)=0}E
[

I{t<τi }
∑

k(i)∈{0,1}m−1

pt,τi

(
k(i), h(i)

)
I{C(i)

t =k(i)}

∣
∣
∣
∣Gt

]

+ I{h̃i (α,h) �=0}E
[

I{T <τi }
∑

k(i)∈{0,1}m−1

pt,τi

(
k(i), h(i)

)
I{C(i)

t =k(i)}

∣
∣
∣
∣Gt

]
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= Yt (i)I{h̃i (α,h)=0}I{C(i)
τi

=h(i)} +
∑

k(i)∈{0,1}m−1

I{C(i)
t =k(i)}

× (
I{h̃i (α,h)=0}E

[
I{t<τi }pt,τi

(
k(i), h(i)

)∣
∣Gt

]

+ I{h̃i (α,h) �=0}E
[

I{T <τi }pt,τi

(
k(i), h(i)

)∣
∣Gt

])
, (4.23)

where by using Assumption 4.1(2) and (4) we have set pt,τi
(k(i), h(i))

:=∏m
j=1 p

ij
tτi

([k(i)]j , [h(i)]j ) to denote the joint transition probabilities of the ran-

dom vector C
(i)
τi

from time t to time τi under the convention that [h(i)]i = [k(i)]i =
pii

tτi
([k(i)]i , [h(i)]i ) := 1. Note that in the second term of (4.23) we have τi > t .

Since by Assumption 4.1(4) pt,·(k(i), h(i)) is a bounded continuous stochastic
process, we can now apply Proposition 5.1.1(ii) and Corollary 5.1.1(ii) of Bielecki
and Rutkowski [5] and obtain

I{h̃i (α,h)=0}E
[

I{t<τi }pt,τi

(
k(i), h(i)

)∣
∣Gt

]+ I{h̃i (α,h) �=0}E
[

I{T <τi }pt,τi

(
k(i), h(i)

)∣
∣Gt

]

= I{τi>t}
(

I{h̃i (α,h)=0}E
[∫ +∞

t

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

∣
∣
∣
∣F Ψ∞

]

+ I{h̃i (α,h) �=0}E
[∫ +∞

T

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

∣
∣
∣
∣F Ψ∞

])

= (
1 − Yt(i)

)
(∫ +∞

T

λi(u,Ψu)e
−∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

+ I{h̃i (α,h)=0}
∫ T

t

λi(u,Ψu)e
−∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

)

, (4.24)

where in the last equality we have used the fact that all terms in the conditional
expectation are F Ψ∞-measurable (Assumption 4.1(4)).

By plugging now (4.23) and (4.24) into (4.22) and then into (4.21) we conclude
the proof. �

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6 Iterating the conditional expectation, we get

E
[
f (ΨT ,ZT )

∣
∣Ft

] = E
[
E
[
f (ΨT ,ZT )

∣
∣Gt

]∣
∣Ft

]
.

In order to calculate the inner conditional expectation, we use formula (4.17) of
Lemma 4.7. For the sake of simplicity, we set

at (i) =
∑

h(i)∈{0,1}m−1

I{h̃i (α,h)=0}I{C(i)
τi

=h(i)}
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and

bt,T (i) =
∑

h(i),k(i)∈{0,1}m−1

I{C(i)
t =k(i)}

×
(∫ +∞

T

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

+ I{h̃i (α,h)=0}
∫ T

t

λi(u,Ψu)e
− ∫ u

t λi (s,Ψs) dspt,u

(
k(i), h(i)

)
du

)

.

Then by the total probability theorem it follows that

E
[
f (ΨT ,ZT )

∣
∣Ft

]

= E

[ ∑

z∈{0,1}m
f (ΨT , z)E[I{ZT =z}|Gt ]

∣
∣
∣
∣Ft

]

=
∑

α,z∈{0,1}m
(−1)

∑m
j=1 αj zj

m∏

j=1

z
1−αj

j

× E

[

f (ΨT , z)

m∏

i=1

(
Yt (i)at (i) + (

1 − Yt (i)
)
bt,T (i)

)
∣
∣
∣
∣
∣

Ft

]

. (4.25)

We now calculate the conditional expectation appearing in (4.25). By (4.19) we have
that

m∏

i=1

(
Yt (i)at (i) + (

1 − Yt (i)
)
bt,T (i)

)

=
∑

β∈{0,1}m

m∏

i=1

(
Yt (i)at (i)

)1−βi
((

1 − Yt (i)
)
bt,T (i)

)βi .

Hence,

E

[

f (ΨT , z)

m∏

i=1

(
Yt (i)at (i) + (

1 − Yt (i)
)
bt,T (i)

)
∣
∣
∣
∣
∣

Ft

]

= E

[

f (ΨT , z)
∑

β∈{0,1}m

m∏

i=1

(
Yt (i)at (i)

)1−βi
((

1 − Yt (i)
)
bt,T (i)

)βi

∣
∣
∣
∣
∣

Ft

]

=
∑

β∈{0,1}m

m∏

i=1

(
Yt(i)at (i)

)1−βi
(
1 − Yt (i)

)βi
E

[

f (ΨT , z)

m∏

i=1

bt,T (i)βi

∣
∣
∣
∣
∣

F Ψ
t

]

.

(4.26)

Plugging (4.26) into (4.25) concludes the proof. �
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Equation (4.26) shows that the final pricing formula depends on the specification
of the macroeconomic process Ψ and the dynamics of the contagion matrix C.

We first comment on the contagion matrix. Recall that it simply describes for
two firms if there is a business relation at time t or not. From our formulas it is
clear that we only need to know C at the time of default. There is still room for
more precise modeling of the contagion matrix. For the moment, we assume that a
time-independent, but possibly random, contagion matrix is given by

Ct(i, j) = C(i, j)Yt (i), t ≥ 0, (4.27)

where C has entries [C]ij = Cij (ω) given by i.i.d. random variables independent of
the processes Y and Ψ . In what follows, we have then Ft = F Ψ

t ∨ F Y
t ∨ σ(C) for

t > 0 and F0 := {∅,Ω}.
We study now this situation. Note that we still do not specify the macroeconomic

process Ψ ; this will only come in Sect. 4.5, where we price derivatives under the
assumption of long-range dependence for Ψ .

Theorem 4.8 If the contagion matrix is of the form (4.27), the pricing formula
(4.15) is given for 0 < t ≤ T by

E
[
f (ΨT ,ZT )

∣
∣Ft

]

=
∑

α,z∈{0,1}m

∑

h∈{0,1}m(m−1)

(−1)
∑m

i=1 αizi

m∏

i=1

z
1−αi

i

(
1 − Yt (i)

)h̃i (α,h)I{C=h}

× E

[
f (ΨT , z)e−∫ T

t

∑m
i=1 h̃i (α,h)λi (u,Ψu)du

∣
∣
∣F Ψ

t

]
(4.28)

and for t = 0 by

E
[
f (ΨT ,ZT )

]=
∑

α,z∈{0,1}m

∑

h∈{0,1}m(m−1)

(−1)
∑m

i=1 αizi

m∏

i=1

z
1−αi

i P(C = h)

× E

[
f (ΨT , z)e− ∫ T

0
∑m

i=1 h̃i (α,h)λi (u,Ψu)du
]
, (4.29)

where h̃i (α,h) is as in (4.16) with hii := 1 for i = 1, . . . ,m and hij := [h]ij for
i �= j .

Proof First we note that in this case, Cτi
(i, j)Yt (i) = C(i, j)Yt (i). The total proba-

bility theorem, by considering all possible contagion structures for the random ma-
trix C (again written in its vector representation and avoiding the diagonal), yields
with (4.20)

E[I{ZT =z}|Gt ]
=

∑

h∈{0,1}m(m−1)

E[I{ZT =z}I{C=h}|Gt ]
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=
∑

h∈{0,1}m(m−1)

∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj

(
m∏

j=1

z
1−αj

j

)

× E

[
m∏

i=1

m∏

j=1

(
1 − hij YT (i)

)αj I{C=h}

∣
∣
∣
∣
∣

Gt

]

.

We now distinguish between t = 0 and t > 0. Since I{C=h} is Ft -measurable for
every t > 0, by Assumption 4.1(2) and by (4.22) we obtain that, for t > 0,

E[I{ZT =z}|Gt ]

=
∑

h∈{0,1}m(m−1)

∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj

(
m∏

j=1

z
1−αj

j

)

× I{C=h}
m∏

i=1

E

[
m∏

j=1

(
1 − hij YT (i)

)αj

∣
∣
∣
∣
∣

Gt

]

=
∑

h∈{0,1}m(m−1)

∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj

(
m∏

j=1

z
1−αj

j

)

× I{C=h}
m∏

i=1

E
[(

1 − YT (i)
)h̃i (α,h)∣∣Gt

]
, (4.30)

where h̃i (α,h) is as in (4.16) with hii := 1, i = 1, . . . ,m and hij := [h]ij , i �= j .
Since by (4.4)

E
[(

1 − YT (i)
)h̃i (α,h)∣∣Gt

]= (
1 − Yt (i)

)h̃i (α,h)
e−∫ T

t h̃i (α,h)λi (u,Ψu)du,

we obtain that, for t > 0,

E[I{ZT =z}|Gt ]

=
∑

h∈{0,1}m(m−1)

∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj

(
m∏

j=1

z
1−αj

j

)

I{C=h}

×
m∏

i=1

(
1 − Yt (i)

)h̃i (α,h)
e− ∫ T

t h̃i (α,h)λi (u,Ψu)du. (4.31)

To obtain the final pricing formula, we proceed analogously as in the proof of The-
orem 4.6. By (4.31) and (4.25) we have that, for t > 0,
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E
[
f (ΨT ,ZT )

∣
∣Ft

]

= E

[ ∑

z∈{0,1}m
f (ΨT , z)E[I{ZT =z}|Gt ]

∣
∣
∣
∣Ft

]

=
∑

α,z∈{0,1}m

∑

h∈{0,1}m(m−1)

(−1)
∑m

j=1 αj zj

(
m∏

j=1

z
1−αj

j

)

I{C=h}

×
m∏

i=1

(
1 − Yt (i)

)h̃i (α,h)
E

[
f (ΨT , z)e− ∫ T

t

∑m
i=1 h̃i (α,h)λi (u,Ψu)du

∣
∣
∣F Ψ

t

]
. (4.32)

This proves (4.28). For t = 0, we obtain

E[I{ZT =z}|G0]

=
∑

h∈{0,1}m(m−1)

∑

α∈{0,1}m
(−1)

∑m
j=1 αj zj

(
m∏

j=1

z
1−αj

j

)

× P(C = h)e− ∫ T
0
∑m

i=1 h̃i (α,h)λi (u,Ψu)du. (4.33)

Substituting (4.33) into (4.32) for t = 0, we obtain formula (4.29). �

If the contagion matrix is deterministic, i.e., for all i, j ∈ {1, . . . ,m} and t ≥ 0,

Ct(i, j)(ω) = Ct(i, j) ∈ {0,1} ∀ω ∈ Ω,

then we have F C
t = {∅,Ω} for every t ∈ [0, T ].

Corollary 4.9 Assuming that the contagion matrix is deterministic, the pricing for-
mula (4.15) simplifies to

E
[
f (ΨT ,ZT )

∣
∣Ft

]=
∑

α,z∈{0,1}m
(−1)

∑m
i=1 αizi

m∏

i=1

(
z

1−αi

i

(
1 − Yt (i)

)h̃i (α))

× E

[
f (ΨT , z)e− ∫ T

t

∑m
i=1 h̃i (α)λi (u,Ψu)du

∣
∣
∣F Ψ

t

]
, (4.34)

where

h̃i (α) :=
{

0 if
∑m

j=1 αjCT (i, j) = 0,

1 otherwise.
(4.35)

In the following simple example we investigate the effect of the contagion mech-
anism.

Example 4.10 We assume the group model of Sect. 4.3 in its simplest form of a
portfolio consisting of two classes, taking 5 firms in one group and 10 firms in the
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second group. We work with a deterministic contagion matrix and consider different
contagion scenarios for C,

C =
(

C5×5 C5×10
C10×5 C10×10

)

.

We consider the following six scenarios, where Id denotes the identity matrix in R
d ,

0d×k the matrix with only entries 0, and 1d×k the matrix with only entries 1:

C1 = I15, C2 =
(

15×5 05×10
010×5 I10

)

, C3 =
(

I5 05×10
010×5 110×10

)

,

C4 =
(

15×5 15×10
010×5 110×10

)

, C5 =
(

15×5 05×10
110×5 I10

)

, C6 = 115×15.

Obviously, C1 corresponds to no contagion and will serve as reference scenario.
C2 models contagion within the first group, no contagion in the second, and no
contagion between firms of the two groups. C3 models the complementary situation.
Contagion matrix C4 models contagion in the first group, but also the spill-over of
default of group 1 firms into the second group. C5 models contagion within both
groups and contagion from firms in the second group to the first group. Finally,
C6 models contagion between all 15 firms.

These scenarios determine the vectors (h̃i(α), i = 1, . . . ,15) for all α ∈ {0,1}m.
We also assume that all firms in the same group have the same intensity of default,
i.e., λi = λ[1] for all i ∈ {1, . . . ,5} and λi = λ[2] for all i ∈ {6, . . . ,15}. Furthermore,
we assume that λ[2] = 2λ[1] and that both groups are exposed to the same realization
of the macroeconomic process λ[1].

Now to understand precisely what the effect of the contagion is, we take as sim-
plest example one bond of one firm of the two groups at one time. For a defaultable
bond of a firm in group i ∈ {1,2}, with pricing formula (4.34) we have to calculate

V
[i]
0 = E

[
(
1 − Z

[i]
T

)
exp

{

−
∫ T

0

m∑

i=1

h̃i(α)λ[i](u,ψu)du

}]

.

Note that the zeros in h̃i (α) correspond to no default of all firms in group 1 and the
second part of the vector to arbitrary values in the second group.

It remains to specify λ[1], and we take the CIR model with a.s. positive intensities,
i.e., λ[1](t,Bt ) = λ

[1]
t is the solution to

dλ
[1]
t = a

(
b − λ

[1]
t

)+ σ

√

λ
[1]
t dBt , t ≥ 0,

where (Bt )t≥0 is standard Brownian motion, and we take the parameters a = 2.0,
b = 0.05, σ = 0.4 and initial value λ[1](0) = 0.03. Obviously, prices should de-
crease for higher contagion scenarios and for bonds with higher maturity.

The results of the computations for the bond prices V
[i]
0 , i = 1,2, for T = 1 and

T = 2 and the different scenarios are summarized in Table 4.1.
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Table 4.1 Bond prices V
[i]
0

for maturities T = 1 and
T = 2 and the different
scenarios

Bond of firm in group 1 Bond of firm in group 2

T = 1 T = 2 T = 1 T = 2

C1 0.966936 0.923076 0.935458 0.853588

C2 0.849446 0.681479 0.935458 0.853588

C3 0.966936 0.923076 0.550128 0.258520

C4 0.482438 0.195017 0.935458 0.853588

C5 0.849446 0.681479 0.482438 0.195017

C6 0.482438 0.195017 0.482438 0.195017

4.5 Pricing Contingent Claim Depending on the Macroeconomic
Process with Credit Risk Contagion

4.5.1 Modeling the Macroeconomic Process

Now we turn to the macroeconomic process Ψ . There are many examples which
consider the intensity as a function of a state vector of Markov processes; see, e.g.,
Schönbucher [19], Chap. 7. Gaussian processes and processes driven by Brownian
motion are the most prominent ones. Here we focus on the case where Ψ = Ψ H is
given by a long-range dependent process with Hurst index H > 1

2 . This choice is
motivated by the fact that macroeconomic variables like demand and supply, interest
rates, or other economic activity measures often exhibit long-range dependence. In
the context of fractional processes, examples include fractional geometric Brownian
motion or other processes driven by fractional Brownian motion with nonnegativity
guaranteed.

We recall here the definition of fractional Brownian motion.

Definition 4.11 A fractional Brownian motion (fBm) BH = (BH
t )t≥0 with Hurst

index H ∈ (0,1) is a continuous centered Gaussian process with covariance function

cov
(
BH

t ,BH
s

) := RH (t, s) := 1

2

(
t2H + s2H − |t − s|2H

)
, t, s ∈ R

+.

In this section we focus on the case where the macroeconomic process is given
by a suitable function ψ of a stochastic integral of a deterministic function with
respect to fBm with Hurst index H > 1

2 . For examples, see Buchmann and Klüp-
pelberg [6], and for more details concerning fractional Brownian motion and the
relevant stochastic calculus, we refer to Biagini et al. [4]. Then we will compute
the pricing formula (4.15) of Theorem 4.6 under the macroeconomic variables
model

Ψ H
t := ψ

(
IH
t

)
, IH

t :=
∫ t

0
g(s) dBH

s , t ∈ [0, T ], (4.36)
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where ψ is an invertible continuous function, and g is a deterministic function in
L2

H ([0, T ]). We recall that L2
H ([0, T ]) is the completion of the Schwartz space

S([0, T ]) equipped with the inner product

〈f,g〉H := H(2H −1)

∫ T

0

∫ T

0
f (s)g(t)|s− t |2H−2 ds dt < ∞, f, g ∈ S

([0, T ]).

In particular, in (4.36) we focus on deterministic integrands g ∈ Hμ([0, T ])
(which is a subset of L2

H ([0, T ])), the space of the Hölder continuous func-
tions on [0, T ] of order μ > 1 − H , and such that 1/g(s) is defined for all
s ∈ [0, T ].
Remark 4.12 Under the above condition on ψ and g, we get the following.

(i) The stochastic integral in formula (4.36) can be understood pathwise in the
Riemann–Stieltjes sense (see Sect. 5.1 in [4]).

(ii) By Theorem 4.4.2 of [23] we have also that BH (t) = ∫ t

0
1

g(s)
dIH

s , where this
integral can again be interpreted in the Riemann–Stieltjes sense. This implies
that the processes IH and BH generate the same filtration and that F Ψ H

t = F BH

t

(because ψ is invertible and measurable).

Although a long-range dependent macroeconomic process may be more realis-
tic than a Markovian one, it is clear that the calculations and the resulting pricing
formulas become much more complicated. In this paper we shall restrict ourselves
to the case where for all i ∈ {1, . . . ,m}, the default intensities of the self-default
processes (Yt (i))t≥0 are stochastic and of the form

λi
(
u,Ψ H

u

)= βi(u)IH
u + γ i(u), u ≥ 0, (4.37)

where βi and γ i are continuous functions.
Recall that the intensities are supposed to be positive. Now, because the integral

IH has fBm as integrator, obviously it can happen with positive probability that
the intensity becomes negative. By the affine transformation, however, we can at
least control that this probability remains small. Of course, the same problem arises
when working with affine models driven by Brownian motion as, for instance, for
the Ornstein–Uhlenbeck model (see Schönbucher [19], Sect. 7.1).

In this paper we work with Gaussian macroeconomic variables but allow for
different covariances in time governed by the function g. For a further discussion
on possible choices of g and IH , we also refer to [3]. Other fBm-driven models for
macroeconomic factors are discussed in [6]; analogous fractional models beyond
Gaussian are suggested in [14].

4.5.2 Pricing Contingent Claims with a Long-Range Dependent Ψ

In the setting outlined in Sect. 4.5.1 we focus on the pricing of contingent claims
written on the long-range dependent macroeconomic index Ψ H and affected by
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credit risk contagion. For the sake of simplicity, we consider the case where the
contagion matrix Ct is deterministic for all 0 ≤ t ≤ T . Referring to Corollary 4.9,
the problem is now to calculate a term of the form

E

[
f
(
Ψ H

T , z
)
e−∫ T

t

∑m
i=1 h̃i (α)λi (u,Ψ H

u )du
∣
∣
∣Ft

]

= E

[
f ψ

(
IH
T , z

)
e−∫ T

t

∑m
i=1 h̃i (α)(βi (u)IH

u +γ i (u)) du
∣
∣
∣Ft

]

= e−∫ T
t

∑m
i=1 h̃i (α)γ i (u) due

∫ t
0
∑m

i=1 h̃i (α)βi (u)IH
u du

× E

[
f ψ

(
IH
T , z

)
e− ∫ T

0
∑m

i=1 h̃i (α)βi (u)IH
u du

∣
∣
∣F Ψ H

t

]
(4.38)

for fixed z ∈ {0,1}m, where we have set f ψ := f ◦ ψ . Note that in (4.38) the last
equality holds by Assumption 4.1(1).

For simplicity, we omit in the sequel the index z and write simply f (Ψ H
T ) and

f ψ(IH
T ) instead of f (Ψ H

T , z) and f ψ(IH
T , z), respectively.

We now proceed as follows. For a ∈ R, define the function f
ψ
a (x) := e−axf ψ(x)

for x ∈ R and its Fourier transform by
̂
f

ψ
a (ξ) := ∫

R
e−iξxf

ψ
a (x) dx for ξ ∈ R. We

assume that f and ψ are such that

A := {
a ∈ R

∣
∣ f ψ

a (·) ∈ L1(R) and f̂ Ψ
a (·) ∈ L1(R)

} �= ∅.

Then by Theorem 9.1 of Rudin [18] the following inversion formula holds:

f ψ
a (x) = 1

2π

∫

R

eiξx ̂f
ψ
a (ξ) dξ, x ∈ R. (4.39)

We collect some useful results in the following lemma.

Lemma 4.13 With the same notation and assumptions as above, we have

E

[
f
(
Ψ H

T

)
e− ∫ T

0
∑m

i=1 h̃i (α)βi (u)IH
u du

∣
∣
∣F Ψ H

t

]

= 1

2π

∫

R

E
[
e
∫ T

0 η(s,ξ) dBH
s
∣
∣F Ψ H

t

]̂
f

ψ
a (ξ) dξ, (4.40)

where

η(s, ξ) := g(s)

(

a + iξ −
∫ T

s

m∑

i=1

h̃i (α)βi(u) du

)

, s ∈ [0, T ], (4.41)

where h̃i (α) for i ∈ {1, . . . ,m} are defined in (4.35).
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Furthermore,

E
[
e
∫ T

0 η(s,ξ) dBH
s
∣
∣F Ψ H

t

]

= exp

{
1

2

∥
∥η(·, ξ)I(t,T )(·)

∥
∥2

H
− 1

2

∥
∥ψH

η (·, ξ, t, T )I(0,t)(·)
∥
∥2

H

}

× exp

{∫ t

0

(
η(s, ξ) + ψH

η (s, ξ, t, T )
)
dBH

s

}

, (4.42)

where ‖f ‖2
H := 〈f,f 〉H for f ∈ L2

H ([0, T ]),

ψH
η (s, ξ, t, T ) = s−H+ 1

2 I
−(H− 1

2 )

t−
(
I

H− 1
2

T − (·)H− 1
2 η(·, ξ)I[t,T ](·)

)
(s), (4.43)

and for α = H − 1
2 ∈ (0,1/2), we define

(
Iα
t−η

)
(s) := 1

Γ (α)

(∫ t

s

η(r)(r − s)α−1 dr

)

, 0 ≤ s ≤ t, (4.44)

and

(
I−α
T − η

)
(s) := − 1

Γ (1 − α)

d

ds

(∫ T

s

η(r)(r − s)−α dr

)

, 0 < s < T . (4.45)

Proof We first prove (4.40). We introduce the notation ET := exp[− ∫ T

0

∑m
i=1 h̃i (α)

βi(u)IH
u du]. By Theorem 6.4 of Sottinen [20] it follows that we can exchange the

order of integration and obtain

ET = e−∫ T
0 g(s)(

∫ T
s

∑m
i=1 h̃i (α)βi (u) du)dBH

s .

Then by using the definition of f
ψ
a and the Fourier inversion formula (4.39) we get

E
[
f
(
Ψ H

T

)
ET

∣
∣F Ψ H

t

]

= E

[
1

2π

∫

R

e
∫ T

0 [a+iξ−∫ T
s

∑m
i=1 h̃i (α)βi (u) du]g(s) dBH

s
̂
f

ψ
a (ξ) dξ

∣
∣
∣
∣F Ψ H

t

]

= 1

2π
E

[∫

R

e
∫ T

0 η(s,ξ) dBH
s

∣
∣
∣
∣F Ψ H

t

]
̂
f

ψ
a (ξ) dξ, (4.46)

where

η(s, ξ) := g(s)

(

a + iξ −
∫ T

s

m∑

i=1

h̃i(α)βi(u) du

)

.

Since E[e
∫ T

0 η(s,ξ) dBH
s ] < ∞, we can exchange the order of integration in (4.46) and

obtain (4.40).
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Next, we prove (4.42). By Remark 4.12(ii) we have

E
[
e
∫ T

0 η(s,ξ) dBH
s
∣
∣F Ψ H

t

]

= E
[
e
∫ T

0 η(s,ξ) dBH
s
∣
∣F BH

t

]

= exp

{∫ t

0
η(s, ξ) dBH

s

}

E

[

exp

{∫ T

t

η(s, ξ) dBH
s

}∣
∣
∣
∣F BH

t

]

,

which is equal to (4.42) by Proposition 3.6 of Biagini, Fink, and Klüppelberg [3]. �

Example 4.14 For the special case where g ≡ 1 (that gives IH
t = BH

t ) and
βi ≡ 0 for all i ∈ {1, . . . ,m}, formula (4.42) can be calculated by Theorem 3.2 of
Valkeila [21] as follows:

E
[
e(a+iξ)BH

T

∣
∣F BH

t

]

= exp

{
1

2
(a + iξ)2(T 2H − 〈

MH
〉
t

)+ (α + iξ)

(

BH
t +

∫ t

0
ΦT (t, s) dBH

s

)}

,

where

〈
MH

〉
t
=
∫ t

0
zH (T , s)2 ds

with

zH (T , s) :=
(

H − 1

2

)

cH s
1
2 −H

∫ T

s

uH− 3
2 (u − s)H− 1

2 du,

cH :=
(

2HΓ (3
2 − H)

Γ (H + 1
2 )Γ (2 − 2H)

) 1
2

,

and

ΦT (t, s) := 1

π
sin

(

π

(

H − 1

2

))

s
1
2 −H(t − 1)

1
2 −H

∫ T

t

uH− 1
2 (u − t)H− 1

2

u − s
du.

We are now able to provide a pricing formula for a long-range dependent macroe-
conomic state variable process.

Theorem 4.15 Assume that the contagion matrix C is deterministic and that for all
i ∈ {1, . . . ,m}, the intensities of the self-default processes Yi = (Yt (i))t≥0 are of the
form

λi
(
t,Ψ H

t

) := βi(t)IH
t + γ i(t), t ≥ 0,

where βi and γ i are continuous functions. Consider

IH
t :=

∫ t

0
g(s) dBH (s), t ≥ 0,
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for g ∈ Hμ([0, T ]) with μ > 1 − H and such that 1
g

is well defined. Let f (·, z) and
ψ(·) be deterministic continuous functions and denote, for all z ∈ {0,1}m,

f ψ(x, z) := f
(
ψ(x), z

)
, x ∈ R,

and

f ψ
α (x, z) := e−αxf ψ(x, z), α, x ∈ R.

Assume that there exists some a ∈ R such that f Ψ
a (·, z) and its Fourier transform

f̂ Ψ
a (·, z) belong to L1(R) for all z ∈ {0,1}m.

Finally, let ψ be invertible and set

Ψ H
t := ψ

(∫ t

0
g(s) dBH (s)

)

, t ≥ 0.

Then the price (4.34) at time t ∈ [0, T ] is given by the following formula:

E
[
f (ΨT ,ZT )

∣
∣Ft

]

=
∑

α,z∈{0,1}m
(−1)

∑m
i=1 αizi

m∏

i=1

(
z

1−αi

i

(
1 − Yt (i)

)h̃i (α))
e−∫ T

t

∑m
i=1 h̃i (α)γ i (u) du

× e
∫ t

0
∑m

i=1 h̃i (α)βi (u)IH
u du 1

2π

∫

R

exp

{
1

2

∥
∥η(·, ξ)I(t,T )(·)

∥
∥2

H

− 1

2

∥
∥ψH

η (·, ξ, t, T )I(0,t)(·)
∥
∥2

H

}

× exp

{∫ t

0

(
η(s, ξ) + ψH

η (s, ξ, t, T )
)
dBH

s

}
̂
f

ψ
a (ξ, z) dξ, (4.47)

where h̃i (α) is given in (4.35), η in (4.41), and ψH
η (·, ξ, t, T ) in (4.43).

A basic structural analysis for pricing formulas with long-range dependent haz-
ard function models will be presented in Biagini, Fink, and Klüppelberg [3] together
with an extended numerical analysis study.

Example 4.16 (Inflation-linked caps and floors) To illustrate how to compute f̂ Ψ
a ,

we introduce some examples of inflation-linked derivatives, such as inflation-linked
caps and floors, that we allow to be also exposed to contagion risk. By using the
notation of Theorem 4.15, we consider a payoff of the form

f (ΨT ,ZT ) := (ΨT − k)+b(ZT ),

where ΨT represents here the inflation index, and b(·) is a positive measurable func-
tion, that describes the contagion effects. By Theorem 4.15 we have to find some
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a ∈ R such that

(fcall)
ψ
a ∈ L1(R) and ̂

(fcall)
ψ
a ∈ L1(R). (4.48)

We show (4.48) for g ≡ 1 and the two special cases ψ(x) = x and ψ(x) = ex ,
corresponding to fractional Brownian motion and geometric fractional Brownian
motion, respectively.

(A) Let ψ(x) = x.
It follows immediately that (4.48) holds for (fcall)

ψ
a , for all a > 0. We compute

now the Fourier transform of (fcall)
ψ
a for a > 0:

̂
(fcall)

ψ
a (u) =

∫ ∞

K

e−x(a+iu)(x − K)dx = e−K(a+iu)

(a + iu)2
.

Since
∣
∣
∣
∣
e−K(a+iu)

(a + iu)2

∣
∣
∣
∣=

e−Ka

u2 = O

(
1

u2

)

, u → ∞,

we have that (4.48) holds also for the Fourier transform of (fcall)
ψ
a for all a > 0.

(B) Let ψ(x) = ex .
It follows from the calculations in (A) that (4.48) holds for (fcall)

ψ
a for all a > 1.

We compute now the Fourier transform of (fcall)
ψ
a for a > 1:

̂
(fcall)

ψ
a (u) =

∫ ∞

lnK

e−x(a+iu)
(
ex − K

)
dx = e−(a−1+iu) lnK

(a + iu)(a − 1 + iu)
.

Since
∣
∣
∣
∣

e−(a−1+iu) lnK

(a + iu)(a − 1 + iu)

∣
∣
∣
∣=

e−(a−1) lnK

|a(a − 1) − u2 + iu(2a − 1)|

= O

(
1

u2

)

, u → ∞,

condition (4.48) holds also for the Fourier transform of (fcall)
ψ
a for all a > 1.

4.5.3 Comparison with Markovian Ψ

Theorem 4.17 Assume that (4.36) holds for standard Brownian motion as integra-
tor and assume also (4.37). Then

E
[
f (ΨT ,ZT )

∣
∣Ft

]

=
∑

α,z∈{0,1}m
(−1)

∑m
i=1 αizi

m∏

i=1

(
z

1−αi

i

(
1 − Yt (i)

)h̃i (α))
e−∫ T

t

∑m
i=1 h̃i (α)γ i (u) du
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× e
∫ t

0
∑m

i=1 h̃i (α)βi (u)Iu du 1

2π

∫

R

exp

{
1

2

∫ T

t

η2(s, ξ) ds

+
∫ t

0
η(s, ξ) dBs

}

f̂ ψ
a (ξ, z) dξ,

where h̃i (α) is given in (4.35), and η in (4.41).

Proof By Theorem 4.8, (4.38), and Lemma 4.13 we obtain that calculating the price
E[f (ΨT ,ZT )|Ft ] boils down to compute the term

E
[
e
∫ T

0 η(s,ξ) dBs
∣
∣F Ψ

t

]

with η(s, ξ) = g(s)(a + iξ − ∫ T

s

∑m
i=1 h̃i (α)βi(u) du).

Since exp{ 1
2

∫ T

0 η2(s, ξ) ds} < ∞ for every fixed ξ ∈ R, i.e., the Novikov condi-
tion is satisfied, we have that

E
[
e
∫ T

0 η(s,ξ) dBs
∣
∣F Ψ

t

]= exp

{
1

2

∫ T

t

η2(s, ξ) ds +
∫ t

0
η(s, ξ) dBs

}

. �

Since the integrand g in (4.36) is in L2([0, T ]) ⊂ L2
H([0, T ]) (see [1] for the

proof), we now compare the prices in t = 0 for the standard and long-range depen-
dent cases.

(i) For the standard Brownian motion case, the price V0 in t = 0 is equal to

V0 =
∑

α,z∈{0,1}m
(−1)

∑m
i=1 αizi

m∏

i=1

z
1−αi

i e−∫ T
0
∑m

i=1 h̃i (α)γ i (u) du

× 1

2π

∫

R

exp

{
1

2

∫ T

0
η2(s, ξ) ds

}
̂
f

ψ
a (ξ, z) dξ ;

(ii) For the fractional Brownian motion case, the price V H
0 in t = 0 is equal to

V H
0 =

∑

α,z∈{0,1}m
(−1)

∑m
i=1 αizi

m∏

i=1

z
1−αi

i e−∫ T
0
∑m

i=1 h̃i (α)γ i (u) du

× 1

2π

∫

R

exp

{
1

2

∥
∥η(·, ξ)I(0,T )

∥
∥2

H

}
̂
f

ψ
a (ξ, z) dξ.

The difference is indeed due to the fact that for Brownian motion, we use the Itô in-
tegral and obtain consequently an Itô term, whereas for fBm, integration is pathwise.
Anyway, we see that V0 > V H

0 for every H > 1
2 . Of course, the long-range depen-

dence effect takes effect for prices Vt for t > 0, but then numerical calculations are
called for.
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Chapter 5
Modelling Information Flows in Financial
Markets

Dorje C. Brody, Lane P. Hughston, and Andrea Macrina

Abstract This paper presents an overview of information-based asset pricing. In
the information-based approach, an asset is defined by its cash-flow structure. The
market is assumed to have access to “partial” information about future cash flows.
Each cash flow is determined by a collection of independent market factors called
X-factors. The market filtration is generated by a set of information processes, each
of which carries information about one of the X-factors, and eventually reveals the
X-factor in a way that ensures that the associated cash flows have the correct mea-
surability properties. In the models considered each information process has two
terms, one of which contains a “signal” about the associated X-factor, and the other
of which represents “market noise”. The existence of an established pricing ker-
nel, adapted to the market filtration, is assumed. The price of an asset is given by
the expectation of the discounted cash flows in the associated risk-neutral measure,
conditional on the information provided by the market. When the market noise is
modelled by a Brownian bridge, one is able to construct explicit formulae for asset
prices, as well as semi-analytic expressions for the prices and greeks of options and
derivatives. In particular, option price data can be used to determine the informa-
tion flow-rate parameters implicit in the definitions of the information processes.
One consequence of the modelling framework is a specific scheme of stochastic
volatility and correlation processes. Instead of imposing a volatility and correlation
model upon the dynamics of a set of assets, one is able to deduce the dynamics
of the volatilities and correlations of the asset price movements from more primi-
tive assumptions involving the associated cash flows. The paper concludes with an
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examination of situations involving asymmetric information. We present a simple
model for informed traders and show how this can be used as a basis for so-called
statistical arbitrage. Finally, we consider the problem of price formation in a hetero-
geneous market with multiple agents.

Keywords Information-based asset pricing · Information filter · Price formation ·
Statistical arbitrage

Mathematics Subject Classification (2010) 91G40 · 93E11 · 60G40 · 94Axx

5.1 Cash Flow Structures and Market Factors

In financial markets, the revelation of information is the most important factor in
the determination of the price movements of financial assets. When a new piece of
information (whether true, partly true, misleading, or bogus) circulates in a finan-
cial market, the prices of related assets move in response, and they move again when
the information is updated. But how do we build specific models that incorporate the
impact of information on asset prices? In this article we present an overview of some
of the key issues involved in modelling the flow of information in financial markets
and develop in some detail some elementary models for “information” in various
situations. We show how information flow processes, when appropriately modelled,
can be used to determine the associated price processes of financial assets. Applica-
tions to the pricing of various types of contingent claims will also be indicated. One
of the contributions of the present work is to introduce a model for dynamic corre-
lation in the situation where we consider a portfolio of assets. Rather than imposing
an artificial correlation structure on the assets under consideration, we are able to
infer the correlation structure from more basic assumptions. In the final section of
the paper, we make some remarks about statistical arbitrage strategies and about
price formation in markets characterised by inhomogeneous information flows.

When models are constructed for the pricing and risk management of compli-
cated financial products, the price dynamics of the simpler financial assets, upon
which the more complicated products are based, are often simply “assumed” (mod-
ulo some parametric or functional freedom). One can understand from a practical
angle why it can be expeditious to proceed on that basis. Nevertheless, from a funda-
mental view we have to consider that even the basic financial assets (shares, bonds,
etc.) are characterised by a number of potentially “complex” features, and so to
make sense of the behaviour of such assets we need to consider what goes into the
determination of their prices. To build up models for the dynamics of asset prices,
it seems logical to proceed step by step along the following lines: (1) model the cash-
flows arising from the asset as random variables; (2) model the market filtration (the
flow of information to the market); (3) model the pricing kernel (which takes into
account discounting, risk aversion, and the absence of arbitrage); and (4) work out
the resulting dynamics for the price process.

We model the unfolding of chance in a financial market with the specification
of a probability space (Ω, F ,P) on which we are going to construct a filtration
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5 Modelling Information Flows in Financial Markets 135

{Ft } representing the flow of information to market participants. Here P denotes
the “physical” probability measure. The markets we consider will, in general, be
incomplete. That is to say, although derivatives can be priced, we do not assume
that they can be hedged. Since we are going to model the filtration, we say that we
are working in an information-based asset pricing framework. The general approach
that we describe here is that of Brody, Hughston, and Macrina [1–3].

Consider a financial instrument that delivers to its owner a set of random cash
flows {DTk

}k=1,...,n on the dates {Tk}k=1,...,n. For simplicity, we assume that these
dates are fixed and finite in number. The extension to random dates and to an infinite
number of dates is straightforward. Let the pricing kernel be denoted {πt }. At time t

the value St of a contract that generates the cash flows {DTk
}k=1,...,n is given by the

following valuation formula:

St = 1

πt

n∑

k=1

1{t<Tk}EP[πTk
DTk

|Ft ]. (5.1)

Thus, at time t , for each cash flow that has not yet occurred, we take its discounted
risk-adjusted conditional expectation, and then we form the sum of such expressions
to give the total value of the asset.

Sometimes it is maintained that to regard share prices as being entirely deter-
mined by expected dividends is incorrect—that other factors come into play as well,
such as the value implicit in corporate control, the value of the status of being a
shareholder, and so on. In our view such “implicit” dividends, to the extent that they
are relevant and can be assigned a value, have to be modelled and thus enter the valu-
ation formula alongside the tangible cash flows. Sometimes it is argued that market
sentiment is also important: indeed, it clearly is; but our view is that sentiment is
implicit in the imperfect information the market is receiving concerning future cash
flows; that sentiment about a future share price is, in essence, information concern-
ing cash flows (both tangible and intangible) extending beyond the date or dates to
which the sentiment refers.

In order to apply the valuation formula, we need to model the market filtration
{Ft } and the pricing kernel {πt }. In particular, it is logical to model the filtration
first since the pricing kernel has to be adapted to the filtration. To model the filtra-
tion, we proceed as follows. Let us introduce a set of independent random variables
{XTk

}k=1,...,n, which we call market factors or simply “X-factors”. For each k, the
cash flow DTk

is assumed to depend on the market factors XT1 ,XT2, . . . ,XTk
. Thus,

in association with each date Tk , we introduce a so-called “cash-flow function” ΔTk

such that

DTk
= ΔTk

(XT1 ,XT2, . . . ,XTk
). (5.2)

For each asset, we need to model the X-factors, the a priori probabilities, and the
cash-flow functions. In general, the X-factor associated with a given date will be
a vectorial quantity. The cash-flow diagram associated with a typical asset is illus-
trated schematically in Fig. 5.1.
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Fig. 5.1 The value St at time t of a security that delivers the random cash flows DT1 ,DT2 , . . . at
times T1, T2, . . . is determined by the valuation formula (5.1). The cash flow DT1 is determined by
a set of one or more independent X-factors {XT1 }. Then DT2 is determined by {XT1 ,XT2 }, where
XT2 represents a further set of independent X-factors, and so on

5.2 X-factor Analysis

Let us look at some elementary examples of cash-flow models based on X-factors.
The first example we consider is a simple credit-risky bond, with two remaining
coupons to be paid and no recovery on default. Then we have the following cash-
flow structure:

DT1 = cXT1 , (5.3)

DT2 = (c + n)XT1XT2 . (5.4)

Here c and n denote the coupon and principal, respectively, and XT1 and XT2 are
independent digital random variables taking the values 0 or 1 with designated a
priori probabilities. Evidently, if the first coupon is not paid then neither will the
second. On the other hand, even if XT1 takes the value unity, and the first coupon is
paid, the second coupon and the principal will not be paid unless XT2 also takes the
value unity.

The second example is a simple model for a credit-risky coupon bond with re-
covery. In this case the cash-flow functions are given as follows:

DT1 = cXT1 + R1(c + n)(1 − XT1), (5.5)

DT2 = (c + n)XT1XT2 + R2(c + n)XT1(1 − XT2). (5.6)

Here R1 and R2 denote recovery rates. Thus if default occurs at the first coupon, then
both the coupon and principal become immediately due, and a fixed fraction R1 of
c + n is paid. But if default occurs at the second coupon date, then the recovery
rate is R2. We observe that the X-factor method allows for a rather transparent
representation of the cash-flow structure of such a security and isolates the variables
that underlie the various cash flows.
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5.3 Information Processes

We assume that with reference to each market factor market participants will have
access to information, which in general is imperfect. We model the imperfect infor-
mation available to market participants concerning a typical market factor XT with
the introduction of a so-called “information process” {ξtT }0≤t≤T . An information
process is required to have the property

ξT T = f (XT ) (5.7)

for some invertible function f (x). This condition ensures that the information pro-
cess “reveals” the value of the associated market factor XT at time T . At earlier
times, the value of ξtT contains “partial information” about the value of the X-factor.
We shall come to some explicit examples of information processes shortly.

We are now in a position to say how we model the market filtration. In particular,
we shall assume that {Ft } is generated collectively by the various market informa-
tion processes {ξtTk

}k=1,...,n. In other words, the information at time t is given by
the following sigma-algebra:

Ft = σ
[{ξsTk

}0≤s≤t, k=1,...,n

]
. (5.8)

We thus have the following sequence of ideas: market participants are concerned
with cash flows; cash flows are dependent on a set of independent market factors;
market participants have partial access to the market factors; and this imperfect in-
formation generates the market filtration.

We are left with the problem of taking the conditional expectation of the risk-
adjusted discounted cash flows to generate price processes; for this purpose, we
have to model the pricing kernel. We assume that the pricing kernel is adapted to the
market filtration. Thus from knowledge of the history of the information processes
from time 0 up to time t one can work out the value of the pricing kernel at t (see,
e.g., [6–9]). In a typical model the pricing kernel is given by the discounted marginal
utility of consumption of a representative agent. It is reasonable to suppose that the
consumption plan of the agent is adapted to the information filtration. The idea is
that the filtration represents the flow of information available at each time t about the
relevant market factors and that the consumption of the agent is determined by this
information. In other words, the agent behaves “rationally”, always acting optimally
on the available information, in accordance with appropriate criteria. There may be
an idiosyncratic element to any given agent’s consumption plan that is not adapted
to the market filtration and is essentially private. But the representative agent has no
idiosyncratic consumption.

5.4 Brownian-Bridge Information

For the construction of explicit models, it is useful to transform to the risk-neutral
measure Q. This can be achieved by use of the pricing kernel, which we regard
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as specified. Thus for the present we confine the discussion to “microeconomic”
issues: we take no notice of the informational notions implicit in the formulation of
the pricing kernel and make the additional simplifying assumption in what follows
that the default-free interest-rate system is deterministic. Then the valuation formula
takes the following form:

St =
n∑

k=1

1{t<Tk}PtTk
E

Q[DTk
|Ft ]. (5.9)

Absence of arbitrage implies that the discount bond system {PtT }0≤t≤T <∞ is of the
form PtT = P0T /P0t , where {P0t }0≤t<∞ is the initial term structure.

With these assumptions in place, we are in a position to specify a model for the
information flow. For each X-factor XT , we take the associated information process
to be of the form

ξtT = σ tXT + βtT . (5.10)

Here {βtT } is a Q-Brownian bridge over the interval [0, T ], satisfying β0T = 0,
βT T = 0, E[βtT ] = 0, and E[βsT βtT ] = s(T − t)/T . The X-factor and the Brown-
ian bridge are assumed to be Q-independent. Thus the Brownian bridge represents
“market noise”, and only the “market signal” term involving the X-factor contains
true market information. The parameter σ can be interpreted as the “information
flow rate” for the factor XT .

In the situation where we have a multiplicity of factors XTk
(k = 1, . . . , n), the

information processes are taken to be of the form

ξtTk
= σktXTk

+ βtTk
, (5.11)

where we assume that the X-factors and Brownian bridges are independent.
The motivation for the use of a bridge to represent noise is intuitively as follows.

We assume that initially all available market information is taken into account in
the determination of prices, or, equivalently, the a priori probability laws for the
market factors. After the passage of time, new stories circulate, and we model this
by taking into account that the variance of the Brownian bridge increases for the first
half of its trajectory. Eventually, the variance falls to zero at T , when the “moment
of truth” arrives. The parameter σ represents the rate at which the true value of XT

is “revealed” as time progresses. Thus, if σ is low, then XT is effectively hidden
until near the time T ; on the other hand, if σ is high, then we can think of XT as
being revealed quickly. If the X-factor is “dimensionless”, then σ has the units

σ ∼ [time]−1/2, (5.12)

and a rough measure for the timescale τ over which information is revealed is

τ = 1

σ 2 Var[XT ] . (5.13)
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In particular, if τ � T , then the value of XT will be revealed rather early, e.g., after
the passage of a few multiples of τ . On the other hand, if τ � T , then XT will only
be revealed at the last minute, as a “surprise”.

We remark that the information process (5.10) has the Markov property. This
feature implies simplifications in the resulting models. In particular, on account of
relation (5.7) we find that the conditioning with respect to Ft in (5.9) can be replaced
by conditioning with respect to the random variables ξtTk

(k = 1, . . .). For a proof
of the Markov property, see [1, 9].

5.5 Assets Paying a Single Dividend

Consider an asset that pays single dividend DT ≥ 0 at time T , and assume that
there is only one market factor XT , so DT = f (XT ). For the moment, let us assume
further that f (x) = x. Thus, we have DT = XT , where the market factor XT is a
continuous nonnegative random variable with a priori Q-density p(x) for x > 0. It
follows by use of the Markov property of {ξtT } that the price of such an asset can be
written in the form

St = PtT E[DT |ξtT ]
= PtT

∫ ∞

0
xpt (x) dx, (5.14)

where pt (x) is the conditional density of XT . Making use of the Bayes formula, one
can show that pt(x) is given more explicitly by

pt (x) = p(x) exp[ T
T −t

(σxξtT − 1
2σ 2x2t)]

∫ ∞
0 p(x) exp[ T

T −t
(σxξtT − 1

2σ 2x2t)]dx
. (5.15)

Thus, at each time t < T the price of the asset is determined by the random value of
the information ξtT available at that time and is given by

St = PtT

∫ ∞
0 xp(x) exp[ T

T −t
(σxξtT − 1

2σ 2x2t)]dx
∫ ∞

0 p(x) exp[ T
T −t

(σxξtT − 1
2σ 2x2t)]dx

. (5.16)

The dynamics of the price process can then be obtained by an application of Ito’s
lemma, with the following result:

dSt = rtSt dt + PtT

σT

T − t
Vart [XT ]dWt . (5.17)

Here

Vart [XT ] =
∫ ∞

0
x2pt (x) dx −

(∫ ∞

0
xpt (x) dx

)2

(5.18)
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denotes the conditional variance of XT , which by (5.15) is evidently given as a
function of t and ξtT . The {Ft}-adapted process {Wt} driving the dynamics of the
asset in (5.17) above is not given exogenously, but rather is defined in terms of the
information process itself for t < T by the following formula:

Wt = ξtT −
∫ t

0

1

T − s

(
σT Es[XT ] − ξsT

)
ds. (5.19)

Indeed, one can verify, by use of the Lévy criterion, that the process {Wt }, as thus
defined, is an {Ft }-Brownian motion. Hence we see that in an information-based
approach we can derive the Brownian motions that drive the markets: they are not
“inputs” to the model, but rather can be seen as arising as a “consequence” of the
model.

5.6 Geometric Brownian Motion Model

A simple application of the X-factor technique arises in the case of geometric Brow-
nian motion models. We consider a limited-liability company that makes a single
cash distribution ST at time T . Alternatively, think of a portfolio containing a single
stock which will be sold off at time T for ST , with the proceeds of the sale going to
the investor. We assume that ST has a log-normal distribution under Q and can be
written in the form

ST = S0 exp

(

rT + ν
√

T XT − 1

2
ν2T

)

, (5.20)

where the market factor XT is normally distributed with mean zero and variance
one, and where r > 0 and ν > 0 are constants. The information process {ξt } is taken
to be of the form (5.10), where in the present example the information flow rate is
given by

σ = 1√
T

. (5.21)

By use of the Bayes formula we find that the conditional probability density is Gaus-
sian,

pt (x) =
√

T

2π(T − t)
exp

(

− 1

2(T − t)

(√
T x − ξtT

)2
)

, (5.22)

and has the following dynamics:

dpt(x) = 1

T − t

(√
T x − ξtT

)
pt (x) dξtT . (5.23)
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A short calculation then shows that the value of the asset in this example is given at
time t < T by

St = e−r(T −t)
Et [ST ]

= e−r(T −t)

∫ ∞

−∞
S0e

rT +ν
√

T x− 1
2 ν2T pt (x) dx

= S0 exp

(

rt + νξtT − 1

2
ν2t

)

. (5.24)

The surprising fact is that {ξtT } itself turns out to be an {Ft}-Brownian motion.
Hence, writing Wt = ξtT for 0 ≤ t ≤ T , we obtain the standard geometric Brownian
motion model,

St = S0 exp

(

rt + νWt − 1

2
ν2t

)

. (5.25)

We see that starting with an information-based argument we are able to recover the
familiar asset price dynamics given by (5.25). An important point to note is that
the Brownian bridge process {βtT } arises naturally in this context. In fact, if we
start with (5.25) then we can make use of the following well-known orthogonal
decomposition:

Wt = t

T
WT +

(

Wt − t

T
WT

)

. (5.26)

The second term on the right, which is independent of the first term on the right, is
a standard representation for a Brownian bridge process:

βtT = Wt − t

T
WT . (5.27)

Then by setting XT = WT /
√

T and σ = 1/
√

T we find that the right side of
(5.26) is indeed the market information. In other words, when it is formulated in an
information-based framework, the standard Black–Scholes–Merton theory can be
expressed in terms of a normally distributed X-factor and an independent Brownian-
bridge noise process.

5.7 Pricing Contingent Claims

The information-based price (5.16) of a single-dividend paying asset at first glance
appears to be given by a rather complicated expression, suggesting perhaps that it
would be impractical for use as a model for the pricing and hedging of contingent
claims. However, there is a remarkable simplification involving a change of measure
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that allows one both to price and to hedge vanilla options. This can be seen as fol-
lows. Let us consider a European-style call option on the asset, with option maturity
t and strike K . The value of the option at time 0 is given by

C0 = P0tE
Q
[
(St − K)+

]
. (5.28)

Let us define a process {Φt } by the expression appearing in the denominator of
(5.16), so

Φt =
∫ ∞

0
p(x) exp

[
T

T − t

(

σxξtT − 1

2
σ 2x2t

)]

dx. (5.29)

Then it can be shown that {Φ−1
t } is a positive Q-martingale, which can be used to

change the probability measure from Q to a new measure B. Under the measure B,
which we call the “bridge measure”, the information process itself is a Brownian
bridge. More precisely, under B the process {ξsT }0≤s≤t has the law of a Brownian
bridge spanning the interval [0, T ], restricted to [0, t]. That is to say, {ξsT }0≤s≤t is
B-Gaussian with mean zero and covariance cov[ξaT , ξbT ] = a(T − b)/T for 0 ≤
a ≤ b ≤ t . The initial value of the option is thus given by

C0 = P0tE
B

[(

PtT

∫ ∞

0
xp(x)e

T
T −t

(σxξtT − 1
2 σ 2x2t) dx

− K

∫ ∞

0
p(x)e

T
T −t

(σxξtT − 1
2 σ 2x2t) dx

)+]

. (5.30)

It can be shown that the asset price is a monotonically increasing function of the
value of ξtT . It follows that there is a unique critical level ξ∗ for the information
such that the expression inside the max-function in (5.30) is positive. It follows that
the option price can be written in terms of a single integration involving the normal
distribution function:

C0 = P0t

∫ ∞

0
p(x)(PtT x − K)N

(
ξ∗ − σxt√
t (T − t)/T

)

dx. (5.31)

As another example, we consider the following. Suppose that the single cash flow
DT is a binary random variable taking the values {d0, d1} with a priori probabilities
{p0,p1}. The asset in this case can be thought of as a simple credit-risky discount
bond that pays d1 if there is no default and d0 if there is a default. A short calculation
allows one to verify that

C0 = P0t

[
p1(PtT d1 − K)N

(
u+) − p0(K − PtT d0)N

(
u−)]

, (5.32)

where u+ and u− are defined by

u± = ln[p1(PtT d1−K)
p0(K−PtT d0)

] ± 1
2σ 2(d1 − d0)

2τ

σ
√

τ(d1 − d0)
(5.33)
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with τ = tT /(T − 1). It can be shown that the option delta at time 0, defined as
usual by

δ0 = ∂C0

∂S0
, (5.34)

can be calculated explicitly, with the following result:

δ0 = (PtT d1 − K)N(u+) + (K − PtT d0)N(u−)

PtT (d1 − d0)
. (5.35)

We see, therefore, that the apparent complexity of (5.16) does not lead to any in-
tractability when it comes to derivatives pricing and hedging.

5.8 Volatility and Correlation

In the case of an asset that pays multiple dividends, the price is determined by the
conditional expectation given in (5.9). In terms of the cash-flow functions defined
by (5.2), we thus obtain the following for the dynamics of the asset price:

dSt = rtSt dt +
n∑

k=1

ΔTk
d1{t<Tk}

+
n∑

k=1

1{t<Tk}PtTk

k∑

j=1

σjTj

Tj − t
Covt [ΔTk

,XTj
]dW

j
t . (5.36)

The leading term in the drift is the short rate, as one might expect, and there is also
a term representing the downward jump in the asset that occurs when a dividend
is paid. The independent {Ft}-adapted Brownian motions {Wj

t } driving the price
dynamics are given in terms of the corresponding information processes by

W
j
t = ξtTj

−
∫ t

0

1

Tj − s

(
σjTjEs[XTj

] − ξsTj

)
ds. (5.37)

We see that if an asset delivers one or more cash flows depending on two or more
market factors, then it will exhibit “unhedgeable” stochastic volatility [2, 7]. That is
to say, one would not expect to be able to hedge a position in an option by use of a
position in the underlying. In general, if the asset cash flows depend on n X-factors
in total, then to hedge a generic derivative based on the given asset one will need
the underlying together with n − 1 options as hedging instruments, i.e., n hedging
instruments in total. One can read from (5.36) the generic form of the stochastic
volatility implied for a given configuration of X-factors and cash-flow functions.

It follows likewise from (5.36) that two or more assets will exhibit dynamic cor-
relation when they share one or more X-factors in common. As a specific example
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of dynamic correlation, let us consider a pair of credit-risky discount bonds. The
first bond is defined by a cash flow DT1 at T1. The second is defined by a cash flow
DT2 at T2 > T1. The cash flow structure is taken to be

DT1 = n1XT1 + R1n1(1 − XT1) (5.38)

and

DT2 = n2XT1XT2 + Ra
2 n2(1 − XT1)XT2

+ Rb
2n2XT1(1 − XT2) + Rc

2n2(1 − XT1)(1 − XT2). (5.39)

Here, n1 and n2 denote the bond principals, and XT1 and XT2 are independent digital
random variables. The possible recovery rates in the case of default are denoted by
R1, Ra

2 , Rb
2 , and Rc

2. One can have in mind the following story. Consider a factory
with debt S1

t . Across the street there is a little restaurant with debt S2
t . If the factory

goes bust (XT1 = 0), then so will the restaurant, because this is where the workers
have their lunch. On the other hand, even if the factory is successful (XT1 = 1),
the restaurant may still go bust on account of bad management (XT2 = 0). The re-
covery rates on the restaurant bond depend on the details of what goes wrong: Ra

2
(restaurant fails because factory fails); Rb

2 (restaurant fails on account of bad man-
agement); Rc

2 (factory fails, and bad restaurant management). One might expect
Rb

2 > Ra
2 , since as long as the factory continues, the restaurant facilities could be

sold at a good price. The worst scenario is that of Rc
2. For the dynamics of the first

bond (the “factory”), for which the price is

S1
t = PtT1Et [DT1 ] (t < T1), (5.40)

we have:

dS1
t = rtS

1
t dt + PtT1

σ1T1

T1 − t
α Vart [XT1 ]dW 1

t , (5.41)

where α = n1(1 − R1). For the dynamics of the second bond (the “restaurant”), for
which the price is

S2
t = PtT2Et [DT2 ] (t < T2), (5.42)

we have:

dS2
t = rtS

2
t dt + PtT2

σ1T1

T1 − t

(
β + δEt [XT2 ]

)
Vart [XT1 ]dW 1

t

+ PtT2

σ2T2

T2 − t

(
γ + δEt [XT1 ]

)
Vart [XT2]dW 2

t , (5.43)

where the constants β , γ , and δ are given by β = n2(R
b
2 − Rc

2), γ = n2(R
a
2 − Rc

2),
and δ = n2(1 − Ra

2 − Rb
2 + Rc

2). The filtration {Fs} is generated by the informa-
tion processes {ξsT1} and {ξsT2} associated with XT1 and XT2 . The dynamics of the
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bond prices depend on a common Brownian driver {W 1
t }. The fact that the asset

payoffs share a common X-factor thus gives rise to a dynamic correlation between
the movements of the price processes {S1

t } and {S2
t }. The instantaneous correlation

between the price movements of the factory bond and the restaurant bond is given
by the following expression:

ρt = dS1
t dS2

t√
( dS1

t )2( dS2
t )2

. (5.44)

Hence, using the formulae for the dynamics of the two assets, we obtain

ρt = 1√
ψt

σ1T1

T1 − t

(
β + δEt [XT1 ]

)
Vart [XT1 ], (5.45)

where

ψt =
(

σ1T1

T1 − t

)2(
β + δEt [XT2 ]

)2(Vart [XT1 ]
)2

+
(

σ2T2

T2 − t

)2(
γ + δEt [XT1 ]

)2(Vart [XT2 ]
)2

. (5.46)

We see from (5.45) that we are able to calculate explicitly the dynamics of the
correlation between the movements of the two asset prices.

5.9 Amount of Information about the Future Cash Flow
Contained in the Price Process

Since we are modelling the flow of information in an explicit manner, we are able to
quantify how much information regarding the value of the cash flow DT is contained
in the value ξt at time t of the associated information process. For simplicity, in the
discussion that follows we shall assume that the cash flow DT takes the discrete
values {di}i=1,...,n with a priori probabilities {pi}i=1,...,n. A reasonable measure for
quantifying the information content is given by the mutual information J (ξt ,DT )

between the two random variables, which in the present context is given by the
expression

J (ξt ,DT ) =
n∑

i=1

∫ ∞

−∞
ρ(ξ, i) ln

(
ρ(ξ, i)

ρ(ξ)ρ(i)

)

dξ, (5.47)

where

ρ(ξ, i) = d

dξ
Q

[
(ξt < ξ) ∩ (DT = di)

]
(5.48)
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is the joint density of the random variables ξt and DT , and ρ(ξ) and ρ(i) are the
respective marginal probabilities. By use of the relation

Q
[
(ξt < ξ) ∩ (DT = di)

] = Q(ξt < ξ |DT = di)Q(DT = di) (5.49)

we deduce that

ρ(ξ, i) = pi

1√
2πt(T − t)/T

exp

(

−1

2

(x − σdit)
2

t (T − t)/T

)

, (5.50)

since conditional on DT = di the random variable ξt is normally distributed with
mean σ tdi and variance t (T − t)/T . From (5.50) the marginal densities

ρ(ξ) =
n∑

i=1

ρ(ξ, i) and ρ(i) =
∫ ∞

−∞
ρ(ξ, i) dξ (5.51)

can be deduced. In particular, ρ(i) = pi . By substituting (5.50) into (5.47), the in-
formation about the cash flow DT contained in ξt can be determined.

From an information-theoretic point of view, two processes related through an
invertible function, thus sharing the same filtration, in general possess different in-
formation content. On the other hand, since what is observed in the market is the
price St , which is an invertible function of ξt , it is more relevant to determine the
mutual information J (St ,DT ), that is, the amount of information about the future
cash flow contained in the market price. It can be shown that in the present context
we have J (St ,DT ) = J (ξt ,DT ).

5.10 Information Disparity and Statistical Arbitrage

So far we have assumed that market participants have equal access to information,
but one can ask what happens if some traders are more “informed” than others. Sup-
pose that we consider a financial product that pays a single cash flow DT at time T .
We can think of this product as a kind of bond. The general market trader has ac-
cess to an information process concerning DT , but there are also “informed” traders
who have access to one or more additional information processes concerning DT .
The informed trader is thus in some sense able to make a “better estimate” of the
value of the asset.

To be more specific, let us suppose that while the general market trader has ac-
cess to the information ξt = σ tDT +βtT , an informed trader has access in addition,
say, to the information ξ ′

t = σ ′tDT + β ′
tT , where {β ′

tT } may or may not be corre-
lated with the market noise {βtT }. Thus, the information source for the informed
trader is given by {Gt } = σ({ξs, ξ

′
s}0≤s≤t ). The use of such extra information can,

but need not, represent “insider trading” in the usual sense. That is, it may be that the
informed trader merely has better access to (and better computer power for the pur-
pose of digesting) the vast domain of publicly available information. Since we have
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Fig. 5.2 Mutual information
difference. The additional
information held by an
informed trader over that of
the market is nonnegative.
The parameters are set to be
d1 = 0, d2 = 1, p1 = 0.2,
p2 = 0.8, T = 5, σ = 0.25,
σ ′ = 0.45, and ρ = 0.15 (the
correlation between βtT

and β ′
tT )

introduced an information measure regarding impending cash flows, we can quan-
tify the excess information held by the informed trader above that held by general
market traders. This is measured by the difference of the mutual information ΔJ .
In Fig. 5.2 we plot an example of ΔJ , indicating the way in which the excess infor-
mation held by the informed trader changes in time.

Given that the informed trader is on average “more knowledgeable” than the
general market trader, it is natural to ask how the informed trader can take advantage
of the situation to seek so-called “statistical arbitrage” opportunities. We assume that
the informed trader operates on a relatively small scale and that the actions of this
trader do not significantly influence the market. Suppose that we consider a trading
strategy such that at some designated time t ∈ (0, T ) a market trader purchases a
bond if, and only if, at that time the bond price St is greater than the quantity KPtT

for some specified constant K . Once a bond is purchased, it is held to maturity. The
informed trader follows the same rule, but makes a better estimate of the value of
the bond, and hence purchases the bond iff S̃t > KPtT , where

S̃t = PtT E[DT |Gt ]. (5.52)

The significance of S̃t is that it represents the price that the informed trader knows
that the market as a whole would make if the market as a whole had the same
knowledge as the informed trader.

That such a strategy leads to a statistical arbitrage opportunity for the informed
trader can be seen as follows [4]. We assume that the initial position of a trader is
zero, i.e., purchase of a bond at t requires borrowing the amount St at that time
and repaying the amount P−1

tT St at T . Thus the value of a general market trader’s
portfolio at T is

VT = 1{St > KPtT }(DT − P −1
tT St

)
, (5.53)

whereas the value of the informed trader’s portfolio at T is

ṼT = 1{S̃t > KPtT }(DT − P −1
tT StT

)
. (5.54)
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Consider the present value P0T E[ΔVT ] of a security that delivers a cash flow equal
to the excess profit or loss

ΔVT = ṼT − VT (5.55)

generated by the strategy of the informed trader. By the tower property we have

E[ΔVT ] = E
[
E[ΔVT |Gt ]

]
. (5.56)

However,

E[ΔVT |Gt ] = P −1
tT

(
1{S̃t > KPtT } − 1{St > KPtT })(S̃t − St ), (5.57)

since the random variables St and S̃t are Gt -measurable. If S̃t > St , then

1{S̃t > KPtT } − 1{St > KPtT } ≥ 0; (5.58)

whereas if S̃t < St , then

1{S̃t > KPtT } − 1{St > KPtT } ≤ 0. (5.59)

It follows that E[ΔVT |Gt ] > 0 with probability greater than zero, and therefore
E[ΔVT ] > 0. We know that according to the usual no-arbitrage arguments, the
present value of the payoff of the strategy of the general market trader must be zero.
It follows that the informed trader can execute a transaction at zero cost that has
positive value: this is what we mean by “statistical arbitrage”. A simulation study of
the profit arising from this trading strategy is shown in Fig. 5.3, indicating a close

Fig. 5.3 The P&L difference for digital bonds. At each time traders purchase the bond if and
only if the valuation of the bond is greater than a specified threshold. The general market trader
buys if St > KPtT , whereas the informed trader uses the criterion S̃t > KPtT . The difference in
profit and loss between the informed trader and the general market trader is plotted, based on 2000
realisations, when the a priori probability of default is p1 = 0.2. Other parameters are set to be
d1 = 0, d2 = 1, T = 5, σ = 0.25, σ ′ = 0.45, ρ = 0.15, and K = 0.7
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correspondence with the excess information held by the informed trader shown in
Fig. 5.2.

5.11 Price Formation in Inhomogeneous Markets

The idea of “informed trading” can be extended to a market that has a number of
traders operating in it, all more or less on an equal footing, but where different
traders have access to different information. In other words, there is an inhomoge-
neous information flow in the market. This line of thinking leads naturally to the
consideration of price formation in such a market, as illustrated in Fig. 5.4.

Let us consider, as an example, a market with two traders, labelled “Trader 1”
and “Trader 2”. As before, there is a single asset, with a single dividend DT paid
at time T . The traders have access to separate sources of information about DT ,
given respectively by ξ1

t = σ1tDT +β1
tT and ξ2

t = σ2tDT +β2
tT . Here the Brownian

bridges {β1
tT } and {β2

tT } are assumed, for simplicity, to be independent. Trader 1
works out the price

S1
t = PtT E

[
DT

∣
∣ξ1

t

]
(5.60)

that he knows the market would have made had the market possessed the informa-
tion generated by {ξ1

t }. Likewise, Trader 2 works out the price

S2
t = PtT E

[
DT

∣
∣ξ2

t

]
(5.61)

that she knows the market would have made had the market possessed the informa-
tion generated by {ξ2

t }.
Traders 1 and 2 are unaware of each other’s prices but can gain information by

trading. The trading process works as follows. Each trader makes a spread about
their price. Letting 0 < φ− < 1 < φ+, we set

S1±
t = φ±S1

t (5.62)

for the buy price S1−
t and sell price S1+

t made by Trader 1 at time t . Thus Trader
1 is willing to buy at a price slightly below his information-based valuation S1

t and
is willing to sell at a price that is slightly above that valuation. Likewise Trader 2
is willing to buy at a price slightly below her information-based valuation S2

t and is
willing to sell at a price that is slightly above that valuation:

S2±
t = φ±S2

t . (5.63)

We assume that there is an exchange that continuously monitors the prices made by
the traders. The exchange effects a trade of some fixed size when the buy price of
one of the traders reaches the level of the sell price of the other trader. That is to say,
a trade takes place when

S1−
t = S2+

t or S1+
t = S2−

t . (5.64)
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Fig. 5.4 Schematic illustration of information-based trading. An exchange executes a trade when
the sell price of Trader i matches the buy price of Trader j (dashed lines meet at filled dots). At
the execution time tn , both traders have access to each other’s valuations Si

tn
(empty circles) and

thus to each other’s information. As a consequence, the traders are able to update their valuations
and obtain the common price S

j,k
tn

. After the trade has been executed and the respective asset
valuations have been updated, the traders “separate” and return to their individual valuations. The
respective valuations may drift in different directions. The traders will get in contact again as soon
as the exchange notifies them that the respective sell and buy prices have matched again. Such
an information-based trading mechanism can be extended to multiple traders, as suggested in the
illustration

When a trade occurs, at that moment each trader learns the price of the other and,
as a consequence, can back out the value of the corresponding information process.
Therefore, when a trade occurs, the traders each briefly have access to both pieces
of information and are thus in a position to make a better price, namely that given by

S
1,2
t = PtT E

[
DT

∣
∣ξ1

t , ξ 2
t

]
. (5.65)

We conclude that immediately after a trade the information-based prices made by
each of the traders will jump to the same level and the a priori probability distribu-
tion for DT will be updated correspondingly.
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Once the trade is concluded, the link between the two traders is lost, and each
trader again has access only to their own information source. Starting from the same
price, the prices made by the two traders diverge as they receive different informa-
tion going forward. A further trade will then occur when the buy price of one of the
traders next hits the sell price of the other trader.

At the time the trade is executed, the joint information can be embodied in the
value of an effective information process {ξ̂t }0≤t≤T given by

ξ̂t =
√

(σ1)2 + (σ2)2tDT + σ1β
1
tT + σ2β

2
tT√

(σ1)2 + (σ2)2
. (5.66)

We note that {ξ̂t} is indeed an information process, since it can be written in the
form

ξ̂t = σ̂ tDT + β̂tT , (5.67)

where

σ̂ =
√

(σ1)2 + (σ2)2, and β̂tT = σ1β
1
tT + σ2β

2
tT√

(σ1)2 + (σ2)2
. (5.68)

One can show that {β̂tT } is a Brownian bridge and is independent of DT . Thus,
immediately after the trade is executed, the price S

1,2
t made by both traders is of the

form

S
1,2
t = PtT

∫ ∞
0 xp(x) exp[ T

T −t
(σ̂ xξ̂t − 1

2 σ̂ 2x2t)]dx
∫ ∞

0 p(x) exp[ T
T −t

(σ̂ xξ̂t − 1
2 σ̂ 2x2t)]dx

. (5.69)

As an example, let us consider the case of a digital payout taking the values
0 and 1 with a priori probabilities p0 and p1. We consider the case in which the
information flow rates are the same, so we set σ1 = σ2 = σ . Then for the valuations,
we have

S1
t = p1 exp[ T

T −t
(σ ξ1

t − 1
2σ 2t)]

p0 + p1 exp[ T
T −t

(σ ξ1
t − 1

2σ 2t)] (5.70)

and

S2
t = p1 exp[ T

T −t
(σ ξ2

t − 1
2σ 2t)]

p0 + p1 exp[ T
T −t

(σ ξ2
t − 1

2σ 2t)] . (5.71)

For the spreads, we assume that φ+ = 1 + δ and φ− = 1 − δ, where δ is small. If
Trader 1 is the buyer, then the condition for a trade is

(1 − δ)S1
t = (1 + δ)S2

t . (5.72)
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Given his knowledge ξ1
t , Trader 1 can use the condition to work out the value of ξ2

t .
In particular, suppose that

ξ2
t = ξ1

t + εt , (5.73)

where εt is small. Then a calculation shows that εt is given, to first order, by

εt = − 2δ(T − t)

σT (1 − E[XT |ξ1
t ]) . (5.74)

The general situation, where there are a number of traders present in the market,
and where the asset cash flows depend on a number of market factors, is very rich.
It is evident that in the broad picture there is no universal filtration, nor a universal
pricing measure. Nevertheless, by exchanging information through trading activity,
market participants can maintain a “law of reasonable price range” if not a “law of
one price”.

Certainly, the notion that there is a universal market filtration is unrealistic. What
counts is not merely “access in principle” to information, but rather “access in prac-
tice”. Perhaps some broader version of market efficiency will survive, taking into
account the cost of such access (cf. [5]). A subscription to the Wall Street Journal
is not free, nor is a Bloomberg terminal. Access to vast information providers such
as Google and Yahoo may seem free or nearly so, but from a broader perspective
this is not so—someone pays, in cash or kind. What is the market price of informa-
tion? And how does this depend on the “information about the information”? For
the answers to these questions, we must await the development of new models.
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Chapter 6
An Overview of Comonotonicity and Its
Applications in Finance and Insurance

Griselda Deelstra, Jan Dhaene, and Michèle Vanmaele

Abstract Over the last decade, it has been shown that the concept of comono-
tonicity is a helpful tool for solving several research and practical problems in the
domain of finance and insurance. In this chapter, we give an extensive bibliographic
overview—without claiming to be complete—of the developments of the theory of
comonotonicity and its applications, with an emphasis on the achievements in the
period 2004–2010. These applications range from pricing and hedging of derivatives
over risk management to life insurance.

Keywords Comonotonicity · Convex order · Risk measurement · Derivatives
pricing and hedging · Life insurance

Mathematics Subject Classification (2010) 60E15 · 60J65 · 91B70 · 91B30

6.1 Comonotonicity

Over the last two decades, researchers in economics, financial mathematics, and ac-
tuarial sciences have introduced results related to the concept of comonotonicity in
their respective fields of interest. In this chapter, we give an overview of the rele-
vant literature in these research fields, with the main emphasis on the development
of the theory and its applications in finance and insurance over the last five years.
Although it is our intention to give an extensive bibliographic overview, due to the
high number of papers on applications of comonotonicity, it is impossible to present
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here an exhaustive overview of the recent literature. Further, we restrict this chapter
to a description of how and where comonotonicity comes in and refer to the relevant
papers for a detailed mathematical description. In order to make this chapter self-
contained, we also provide a short overview of the basic definitions and initial main
results of comonotonicity theory, hereby referring to part of the older literature on
this topic.

The concept of comonotonicity is closely related to the following well-known
result, which is usually attributed to both [62] and [53]: For any n-dimensional
random vector X ≡ (X1,X2, . . . ,Xn) with multivariate cumulative distribution
function (cdf) FX and marginal univariate cdf’s FX1 ,FX2 , . . . ,FXn and for any
x ≡ (x1, x2, . . . , xn) ∈ R

n, it holds that

FX(x) ≤ min
(
FX1(x1),FX2(x2), . . . ,FXn(xn)

)
. (6.1)

In the sequel, the notation Rn(FX1 ,FX2 , . . . ,FXn
) will be used to denote the

class of all random vectors Y ≡ (Y1, Y2, . . . , Yn) with marginals FYi
equal to the

respective marginals FXi
. The set Rn(FX1 ,FX2 , . . . ,FXn) is called the Fréchet class

related to the random vector X.
The upper bound in (6.1) is reachable in the Fréchet class Rn(FX1 ,FX2 , . . . ,FXn)

in the sense that it is the cdf of an n-dimensional random vector with marginals
given by FXi

, i = 1,2, . . . , n. In order to prove the reachability property, consider a
random variable U , uniformly distributed on the unit interval (0,1). Then one has
that

(
F−1

X1
(U),F−1

X2
(U), . . . ,F−1

Xn
(U)

) ∈ Rn(FX1 ,FX2 , . . . ,FXn
),

where the generalized inverses F−1
Xi

are defined in the usual way:

F−1
Xi

(p) = inf
{
x ∈ R

∣
∣ FXi

(x) ≥ p
}
, p ∈ [0,1],

with inf∅ = +∞, by convention. Furthermore,

Pr
[
F−1

X1
(U) ≤ x1,F

−1
X2

(U) ≤ x2, . . . ,F
−1
Xn

(U) ≤ xn

]

= min
(
FX1(x1),FX2(x2), . . . ,FXn(xn)

)
,

which holds for any x ∈ R
n. Throughout this chapter, the notation U will uniquely

be used to denote a random variable which is uniformly distributed on the unit in-
terval (0,1).

The random vector (F−1
X1

(U),F−1
X2

(U), . . . ,F−1
Xn

(U)) is said to have the comono-
tonic dependence structure. More generally, a random vector X ≡ (X1, . . . ,Xn) is
said to be comonotonic if

FX(x) = min
(
FX1(x1),FX2(x2), . . . ,FXn(xn)

)
for all x ∈ R

n.

Other characterizations of comonotonicity can be found, e.g., in [27].
Furthermore, we will use the notation Xc ≡ (Xc

1,X
c
2, . . . ,X

c
n) to indicate a

comonotonic random vector belonging to the Fréchet class Rn(FX1 ,FX2 , . . . ,FXn).
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The random vector Xc is often called a comonotonic counterpart or a comonotonic
modification of X. Obviously, one has that

Xc d= (
F−1

X1
(U),F−1

X2
(U), . . . ,F−1

Xn
(U)

)
,

where the notation
d= is used to indicate “equality in distribution”. The random

vector Xc is said to have the comonotonic dependence structure or copula, see,
e.g., [82].

The components of the comonotonic random vector (F−1
X1

(U),F−1
X2

(U), . . . ,

F−1
Xn

(U)) are maximally dependent in the sense that all of them are nondecreasing
functions of the same random variable. Hence, comonotonic random variables are
indeed “common monotonic”. From an economic point of view this means that hold-
ing a long position (or a short position) in comonotonic random variables can never
lead to a hedge, as the variability of one is never tempered by counter-variability of
others.

Comonotonicity corresponds with the riskiest dependence structure observed
in a given Fréchet space Rn(FX1 ,FX2 , . . . ,FXn

). A natural question which arises
is whether there exists also a least risky dependence structure in Rn(FX1,FX2 ,

. . . ,FXn). From [62] and [53] it is known that the following bound holds in
Rn(FX1 ,FX2 , . . . ,FXn):

FX(x) ≥ max

(
n∑

i=1

FXi
(xi) − n + 1,0

)

for all x ∈ R
n. (6.2)

It is straightforward to prove that (F−1
X1

(U),F−1
X2

(1 − U)) ∈ R2(FX1 ,FX2) and
that its cdf is given by max(FX1(x1) + FX2(x2) − 1,0). Hence, when n = 2,
the lower bound in (6.2) is reachable in R2(FX1 ,FX2), and the random couple
(F−1

X1
(U),F−1

X2
(1 −U)) is said to have the countermonotonic dependence structure.

More generally, a bivariate random vector X ≡ (X1,X2) is said to be counter-
monotonic if

FX(x) = max
(
FX1(x1) + FX2(x2) − 1,0

)
for all x ∈ R

n. (6.3)

When n ≥ 3, the lower bound in (6.2) is not always a cdf anymore, and the
concept of countermonotonicity cannot be generalized to higher dimensions
without imposing additional conditions. Necessary and sufficient conditions for
max(

∑n
i=1 FXi

(xi) − n + 1,0) to be a cdf can be found, e.g., in [67].
Dhaene and Denuit [36] consider Fréchet spaces containing nonnegative mutu-

ally exclusive risks, that is, risks that cannot be strictly positive together. They show
that, under some reasonable assumptions, the Fréchet lower bound is reachable in
such Fréchet classes and corresponds with the mutually exclusive risks of that space.

Embrechts et al. [51] investigate the relation between comonotonicity and ex-
tremal correlations. They point out that a positive perfectly correlated random cou-
ple is comonotonic, whereas the inverse does not necessarily holds. Denuit and
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Dhaene [31] investigate the relation between comonotonicity, respectively coun-
termonotonicity, and several classical measures of association such as Pearson’s
correlation coefficient, Kendall’s τ , Spearman’s ρ, and Gini’s γ .

Thanks to the works of [88, 91], and [116], comonotonicity has become an im-
portant concept in economic theories of decision under risk and uncertainty. Yaari
developed a theory of risk dual to the classical expected utility theory of [111] by
modifying the independence axiom in the latter theory. In Yaari’s theory, the con-
cept of “distorted expectations” arises as the equivalent of “expected utilities” in
von Neumann and Morgenstern’s theory. These distorted expectations are additive
for comonotonic random variables.

6.2 Convex Bounds for Sums of Random Variables

In risk theory and finance, one is often interested in the distribution of the sum
S = X1 + X2 + · · · + Xn of individual risks of a portfolio X ≡ (X1,X2, . . . ,Xn).
Departing from the results of [62] and [53], stochastic order bounds have been de-
rived for sums S of which the cdf’s of the Xi are known, but the joint distribution
of the random vector (X1,X2, . . . ,Xn) is either unspecified or too cumbersome to
work with. Assuming that only the marginal distributions of the random variables
are given (or used), the largest sum in convex order will occur when the random
variables are comonotonic.

In this section, we give a short overview of these stochastic ordering results.
Early references to part of the ideas and results presented below are [80, 97], and
[90]. For proofs and more details on the presented results, we refer to the overview
paper of [41]. An overview of applications of these results in insurance and finance
up to 2002 can be found in [40]. The current chapter is thus a complement to these
2002 overview papers [40] and [41].

6.2.1 Sums of Comonotonic Random Variables

Consider a random vector (X1, . . . ,Xn) and its comonotonic counterpart (Xc
1,

. . . ,Xc
n). The sum of the components of (Xc

1, . . . ,X
c
n) is denoted by Sc,

Sc = Xc
1 + · · · + Xc

n. (6.4)

The distribution of the comonotonic sum Sc can be determined from

FSc (x) = sup

{

p ∈ [0,1]
∣
∣
∣
∣
∣

n∑

i=1

F−1
Xi

(p) ≤ x

}

, x ∈ R.
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The distribution of Sc can also be specified via its quantile function F−1
Sc (p),

which exhibits the following additivity property:

F−1
Sc (p) =

n∑

i=1

F−1
Xi

(p), p ∈ [0,1].

Hereafter, we will always assume that all random variables Xi have finite
means. The distribution of Sc can then be specified via its stop-loss transform
E[(Sc − x)+]. Dhaene et al. [39] show that any stop-loss premium E[(Sc − x)+]
can be decomposed into a linear combination of stop-loss premiums E[(Xi − xi)+],
i = 1,2, . . . , n, for appropriate choices of the xi .

In order to state this decomposition formula more formally, we first introduce
other types of generalized inverses of cdf’s. The càdlàg inverse F−1+

Xi
is defined by

F −1+
Xi

(p) = sup
{
x ∈ R

∣
∣ FXi

(x) ≤ p
}
, p ∈ [0,1],

with sup∅ = −∞, by convention. Following [70], for any α ∈ [0,1], the inverse
F

−1(α)
Xi

is defined by

F
−1(α)
Xi

(p) = αF−1
Xi

(p) + (1 − α)F−1+
Xi

(p), p ∈ (0,1).

The decomposition formula of [39] can then be expressed as follows:

E
[
(Sc − x)+

] =
n∑

i=1

E
[(

Xi − F
−1(α)
Xi

(
FSc (x)

))
+
]
, x ∈ (

F−1+
Sc (0),F−1

Sc (1)
)
.

(6.5)
Here, α is any element of [0,1] satisfying

n∑

i=1

F
−1(α)
Xi

(
FSc(x)

) = x.

A special case of the decomposition formula (6.5) can be found in [66], who
proves that in the Vasicek [110] model, a European option on a portfolio of pure
discount bonds (in particular, an option on a coupon-bearing bond) decomposes into
a portfolio of European options on the individual discount bonds in the portfolio.
This holds true because in the Vasicek model, the prices of all pure discount bonds
at some future time T are decreasing functions of a single random variable, namely
the spot rate at that time. This implies that the price at time T of the portfolio of
pure discount bonds is a comonotonic sum. Taking into account that the current
price of a European option can be expressed as the discounted expected pay-off of
this option, where the expectation is taken with respect to an appropriate measure,
we find that for the current price of the option on the portfolio of zero-coupon bonds,
a decomposition as in (6.5) holds.
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6.2.2 Convex Bounds for Sums of Random Variables

Consider a random vector X ≡ (X1,X2, . . . ,Xn), not necessarily comonotonic, and
the sum of its components

S = X1 + · · · + Xn.

Intuitively, one might expect that the comonotonic sum Sc = Xc
1 + · · · + Xc

n of
the comonotonic counterpart Xc is more variable than the original sum S. In order
to state this intuitive result more formally, we need the notion of convex order.

A random variable X is said to precede a random variable Y in the convex order
sense, notation X ≤cx Y , if the following conditions hold:

E
[
(x − X)+

] ≤ E
[
(x − Y)+

]
for all x

and

E
[
(X − x)+

] ≤ E
[
(Y − x)+

]
for all x.

Other characterizations of convex order can be found, e.g., in [93] in a gen-
eral context or in [34] in an actuarial context. Intuitively, the convex order relation
X ≤cx Y states that compared to the random variable X, the random variable Y has
more probability mass in its lower and upper tails. Wang and Young [114] compare
the concept of ordering random variables in expected utility theory versus Yaari’s
dual theory of choice under risk.

One can prove that the following relation holds between the sum S and its
comonotonic modification Sc:

X1 + · · · + Xn ≤cx Xc
1 + · · · + Xc

n = Sc. (6.6)

This result states that when one assumes that only the marginal distributions of the
random variables are given (or used), the largest sum in convex order occurs when
the random variables are comonotonic. To the best of our knowledge, this result
was first mentioned in the actuarial literature in [58], who attributes it to [80]. Other
early references are [97] and [90]. Tchen [97] has proven that in the class of all
random vectors with given marginals the comonotonic random vectors are greater
in supermodular order than any other element of this class. A simple proof for the
inequality (6.6), which is based on a geometric interpretation of the support of the
comonotonic distribution, is given in [71].

Since the mid-1990s, the convex order relation (6.6) has attracted a lot of atten-
tion in the actuarial literature. Authors of [6, 33, 37, 38, 56, 81] and [113] generalize
(6.6) by investigating how changing the dependence structure of an insurance port-
folio influences its stop-loss premiums. In any of the different situations considered
in these papers, the convex order relation (6.6) corresponds with the extreme case
where the comonotonic dependence structure is involved.
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From the convex order relation (6.6) it follows immediately that the expecta-
tion E[(Sc − x)+] can be interpreted as the solution to the following maximiza-
tion problem, where we use Rn as a shorthand notation for the Fréchet space
Rn(FX1 ,FX2 , . . . ,FXn

):

max
Y∈Rn

E
[
(Y1 + Y2 + · · · + Yn − x)+

] = E
[(

Xc
1 + · · · + Xc

n − x
)
+
]
, x ∈ R.

This means that E[(Sc − x)+] can be interpreted as an extreme-case expectation for
E[(S − x)+]. Indeed, let us assume that the only information that is available about
the distribution of the random vector X is the marginal cdf’s FXi

i = 1, . . . , n. In
this case, the largest possible value for E[(S − x)+] is given by E[(Sc − x)+].

One can also prove that E[(Sc − x)+] is the solution to the following minimiza-
tion problem:

min∑n
i=1 xi=x

n∑

i=1

E
[
(Xi − xi)+

] = E
[(

Xc
1 + · · · + Xc

n − x
)
+
]
, (6.7)

where the minimum is taken over all (x1, x2, . . . , xn) with
∑n

i=1 xi = x, see [90].
To the best of our knowledge, Simon et al. [95] were the first who combined

the convex order relation (6.6) and the decomposition formula (6.5) to find an up-
per bound for the price of an arithmetic European-type Asian option in terms of the
price of an appropriate portfolio of plain vanilla European call options. Furthermore,
from the optimization result (6.7) they conclude that the exercise prices of the plain
vanilla options contained in their upper bound are optimal in the sense that no im-
provement can be obtained by considering other linear combinations of plain vanilla
European options. Important to notice is that this result is model-independent. Later,
Albrecher et al. [3] interpret the comonotonic upper bound of [95] as the price of a
static superhedging strategy for an Asian option, where the hedging portfolio con-
sists of plain vanilla options. Using static superhedging strategies has the advantage
that it is much less sensitive to the assumption of zero transaction costs and to the
hedging performance in the presence of large market movements, compared to dy-
namic strategies.

In order to be able to determine the upper bound in (6.6), the only information
that is required about the distribution of X is its marginals. Intuitively, it is clear
that it must be possible to find better convex order upper bounds for S when more
information is available concerning the multivariate cdf of X. Therefore, let us as-
sume that apart from the knowledge of the marginals, there exists a random variable
Λ with a given distribution function such that the conditional distributions of the
random variables Xi , given Λ = λ, are known for all outcomes λ of Λ. Kaas et al.
[70] derive the following improved convex order upper bound, denoted Sic , for this
particular case:

X1 + · · · + Xn ≤cx F−1
X1|Λ(U) + F−1

X2|Λ(U) + · · · + F−1
Xn|Λ(U) = Sic, (6.8)
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where F−1
Xi |Λ(U) is the notation for the random variable fi(U,Λ) with fi defined

by fi(u,λ) = F−1
Xi |Λ=λ(u). Notice that the random vector (F−1

X1|Λ(U),F−1
X2|Λ(U),

. . . ,F−1
Xn|Λ(U)) is said to be “conditionally comonotonic”.

Based on an idea that stems from mathematical physics, Kaas et al. [70] propose
the following convex order lower bound for S, denoted S�, when the information
available about the cdf of X is the same as the one that leads to the upper bound in
(6.8):

S� = E[X1|Λ] + E[X2|Λ] + · · · + E[Xn|Λ] ≤cx X1 + X2 + · · · + Xn. (6.9)

They remark that this lower bound has the nice property that it is a comonotonic
sum, provided that all terms E[Xi |Λ] are increasing (or all are decreasing) functions
of Λ. In this case, the quantiles and stop-loss premiums of S� = ∑n

i=1 E[Xi |Λ] fol-
low immediately from the additivity properties of comonotonic sums in Sect. 6.2.1.
This property is particularly of interest in a multivariate lognormal setting. In such a
setting, the lower bound turns out to be very accurate, provided that the appropriate
choice is made for the conditioning random variable Λ, see, e.g., [105].

The lower bound (6.9) is applied in [40] to derive accurate approximations for
European-type Asian options in a Black and Scholes setting, in case of discrete
averaging of the stock price. In a lognormal setting, Rogers and Shi [89] apply a
similar lower bound to derive approximations for the price of Asian options in case
of continuous averaging.

6.3 Further Developments of the Theory

In this section we summarize several extensions of the theory of comonotonicity
since 2004, not claiming to be exhaustive but trying to be as complete as possible,
taking into account that this theory is still in development.

Inequality (6.6) implies that if a random vector with given marginal distributions
is comonotonic, it has the largest sum with respect to convex order. Cheung [18]
proves that the converse also holds, provided that each marginal distribution is con-
tinuous.

Defining the improved comonotonic upper bound, see relation (6.8), Kaas et al.
[70] introduced implicitly the notion of conditional comonotonicity. This notion is
later more formally considered by Jouini and Napp [68] as a generalization of the
classical concept of comonotonicity. In [15], this concept is further investigated. The
main result is that a random vector is comonotonic conditional to a certain sigma-
field if and only if it is almost surely comonotonic locally on each atom of the con-
ditioning sigma-field. In [17], the relationship between conditional comonotonicity
and convex ordering is explored. By this notion of conditional comonotonicity it is
possible to unify the classical upper bound result (inequality (6.6)) and the improved
upper bound result (inequality (6.8)) in a more general framework.
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The choice of the conditioning random variable Λ in (6.9) is crucial for the ac-
curacy of the lower bound approximation S�. When S is a sum of nonindepen-
dent lognormal random variables, different alternatives for Λ have been proposed
in the literature, see, e.g., [70] and [105]. These choices are “global” in the sense
that Λ is chosen such that the entire distribution of the approximation E[S|Λ] is
“close” to the corresponding distribution of the original sum S. In an actuarial or
a financial context one is often only interested in a particular tail of the distribu-
tion of S. Therefore, Vanduffel et al. [106] propose locally optimal approxima-
tions, in the sense that the relevant tail of the distribution of E[S|Λ] is an accu-
rate approximation for the corresponding tail of the distribution of S. Deelstra et al.
[24] study sums S of the form

∑n
i=1 wiαie

βi+γiYi , where the positive weights wi

sum up to one, the coefficients αi(>0), βi , γi are deterministic, and the Yi ’s are
nonindependent normally distributed random variables. In this case, Deelstra et al.
[24] show that all these choices for the conditioning random variable Λ can be
considered as a linear transformation of a first-order approximation of S, namely
Λ = ∑N

i=1 wiαiγiYiδi with δi taking different forms according to the different
choices.

The applicability of the convex bounds (6.6), (6.8), and (6.9) to derive closed-
form approximations for risk measures of a sum of nonindependent lognormal ran-
dom variables with unknown dependence structure is illustrated in [40]. Valdez et al.
[102] investigate to which extent the general results on convex bounds of Sect. 6.2
can be applied to sums of nonindependent log-elliptical random variables which
incorporate sums of lognormals as a special case. First, they show that unlike the
lognormal case, for general sums of logellipticals, the convex lower bound (6.9)
does no longer result in closed-form approximations for the different risk measures.
Second, they demonstrate how instead the weaker stop-loss order can be used to
derive such closed-form approximations. In numerical illustrations they show that
these newly proposed approximations are useful to measure satisfactorily the risk
of discounted or compounded sums in case the stochastic log-returns are elliptically
distributed.

More general, Kukush and Pupashenko [73] study comonotonic upper and lower
bounds for sums under a mixture of arbitrary distributions. They also consider the
case where the logarithm of the components in the sum can be represented as a mix-
ture of normal random variables. These results may be useful to perform approxi-
mate evaluations of actuarial provisions when a regime switching model is used for
the investment returns.

Yang et al. [117] investigate bivariate copula structures for modeling dependence
among random variables in a distribution free way. The existence and uniqueness
of a bivariate copula decomposition into a comonotonic, an independent, a coun-
termonotonic, and an indecomposable part are proved, while the coefficients are
determined from partial derivatives of the corresponding copula. Moreover, for the
indecomposable part, an optimal convex approximation is provided and analyzed.
The variance decomposition that they derive can be applied to find mean–variance
optimal investment portfolios in finance. They also consider other applications of
this decomposition in finance and insurance.
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Hoedemakers et al. [61] and Ahcan et al. [2] extend the theory of convex bounds
to the case of scalar products of mutually independent random vectors. This method-
ology allows one to obtain reliable approximations of the underlying distribution
functions and very accurate estimates of quantiles and stop-loss premiums. Hua and
Cheung [63] also study stochastic orders of scalar products of random vectors and
derive more general conditions under which linear combinations of random vari-
ables can be ordered in the increasing convex order.

Cheung [19] introduces upper comonotonicity as a generalization of the classi-
cal notion of comonotonicity. A random vector X = (X1,X2, . . . ,Xn) is said to be
upper-comonotonic if its components Xi are moving in the same direction simulta-
neously when their values are greater than some thresholds.

This new notion can be characterized in terms of both the joint distribution
function and the underlying copula. The copula characterization allows the study
of the coefficient of upper tail dependence and the distributional representation
of an upper-comonotonic random vector. The additivity property of several com-
monly used risk measures, such as the Value-at-Risk, the Tail Value-at-Risk and
the expected shortfall for sums of comonotonic risks is extended to sums of upper-
comonotonic risks, provided that the level of probability is greater than a certain
threshold.

For premium calculation principles or risk measures, usually only the additivity
for a finite number of comonotonic risks is considered. However, a limiting sta-
tus of finite additivity is the additivity for countable risks. In [115], the countable
additivity is investigated, and new and elegant characterizations for Choquet pric-
ing and distortion premium principles are presented. The countable exchangeability
is also studied following the investigation of countable additivity for comonotonic
risks.

Several multivariate extensions of comonotonicity are studied in [86]. Naive ex-
tensions do not enjoy some of the main properties of the univariate concept. In the
univariate case, the definition of comonotonicity only relies on the total order struc-
ture. Hence this definition could be extended for any random vector with values in a
product of totally ordered measurable spaces. Most of its properties would be valid
even in this multivariate context. However, the aim of Puccetti and Scarsini [86] is to
study comonotonic vectors that take values in a product of partially ordered spaces.
Different definitions of multivariate comonotonicity are introduced, trying to extend
different features of the classical definition. It is shown that no definition satisfies all
the properties of the original one. Some definitions do not guarantee the existence
of a comonotonic random vector for any pair of multivariate marginals. Some other
definitions do not guarantee uniqueness in distribution of the comonotonic random
vector with fixed marginals.

In finance, Galichon and Henry [54] and Ekeland et al. [50] propose a multivari-
ate extension of coherent risk measures that involves a multivariate extension of the
notion of comonotonicity, in the spirit of [86].
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6.4 Applications of the Theory of Comonotonicity

6.4.1 Derivatives Pricing and Hedging

Several European options have a pay-off written on one or multiple underlyings
combined in a weighted sum of nonindependent random variables expressing as-
set prices at the time of maturity or at different time points before and at maturity.
Examples of this type of options with positive weights are Asian options, basket
options, and Asian basket options. When the weights can be both positive and neg-
ative, one refers to these options as spread options, Asian spread options, basket
spread options, and Asian basket spread options. Pricing and hedging of these prod-
ucts by means of comonotonicity bounds has been studied in a model-dependent
and in a model-independent framework. As mentioned before, early references to
this topic are [89, 95] and [40]. Hereafter, we will discuss articles published since
2004 dealing with this topic.

First we consider the model-dependent setting. A survey of current methods up
to 2006 for pricing Asian options and computing their sensitivities to the key input
parameters is provided in [7]. The methods discussed there include also the comono-
tonic bounds. We will focus in the present chapter only on those papers dealing with
comonotonic bounds. In comparison with [7], we will also discuss more recent pa-
pers and other applications.

Schrager and Pelsser [92] use a change of numeraire technique to derive a gen-
eral pricing formula for the Rate of Return Guarantees in a Regular Premium Unit
Linked (UL) Insurance contract. They show that the guarantee is equivalent to a
European put option on some stochastically weighted average of the stock price at
maturity. They extend earlier results from [95] and [40] on pricing bounds of Asian
options to UL Guarantees and stochastic interest rates in the case that the underlying
sum is composed of lognormal random variables.

In [109], the pricing of European-style discrete arithmetic Asian options with
fixed and floating strike is studied by deriving analytical lower and upper bounds, as
explained in Sect. 6.2, and additionally combined with the ideas of [95] and of [83].
Through these bounds, a unifying framework is created for European-style discrete
arithmetic Asian options that generalizes several approaches in the literature and
improves existing results. Analytical and easily computable bounds are obtained
under the Black and Scholes model for the asset prices. An advice of the appropri-
ate choice of the bounds given the parameters is formulated, the effect of different
conditioning variables is investigated, and their efficiency is numerically compared.
Based on these approximating bounds, analytical hedging formulas are developed.

Making use of geometric arguments, Brückner [8] quantifies the maximal error
in terms of truncated first moments, when a sum S is approximated by the upper
bound Sc or a lower bound S� as defined in (6.6) and (6.9), respectively.

Vyncke et al. [112] construct a convex combination of the comonotonic upper
bound and the lower bound for the price of a European-style arithmetic Asian option
and find an approximation for this price which is such that the underlying approxi-
mate cdf has exact first and second moments.
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Inspired by the ideas of [89], Chalasani and Varikooty [11] derived accurate
lower and upper bounds for the price of a European-style Asian option with con-
tinuous averaging over the full lifetime of the option, using a discrete-time binary
tree model. Reynaerts et al. [87] consider arithmetic Asian options with discrete
sampling and generalize the method of [11] to the case of forward starting Asian
options. In this case with daily time steps, that method is still very accurate, but the
computation can take a very long time on a PC when the number of steps in the
binomial tree is high. Reynaerts et al. [87] derive analytical lower and upper bounds
based on the results presented in Sect. 6.2 and by conditioning on the value of the
underlying asset at the exercise date. The comonotonic upper bound corresponds
to an optimal superhedging strategy. By putting in less information than [11] the
bounds lose some accuracy but are still very good, and they are easily computable,
and moreover the computation on a PC is fast.

Also the price of a continuously sampled European-style Asian option with fixed
exercise price can be approximated by means of the tools of Sect. 6.2. Within the
Black and Scholes framework, Vanduffel et al. [107] derive analytic expressions for
lower and upper bounds for such a price.

As for Asian options, determining the price of a European basket option is not
a trivial task, even in the Black and Scholes model, because there is no explicit
analytical expression available for the distribution of the weighted sum of prices
of the assets in the basket. The upper bounds proposed in Sect. 6.2 will not al-
ways lead to good approximations since a basket of underlyings can be far from a
comonotonic sum, depending on the correlations between the assets. However, by
using a conditioning variable, the price of a European basket option can be decom-
posed in two parts, one of which can be computed exactly. For the remaining part,
Deelstra et al. [22] derive a lower and some upper bounds based on the theory of
comonotonicity. The lower bound obtained in this way corresponds to (6.5) with the
(general) comonotonic sum (denoted by Sc in (6.5)) being replaced by the particular
comonotonic sum S� introduced in (6.9). The first upper bound is based on an im-
proved comonotonic upper bound upon the part in the pricing formula that cannot
be calculated in an explicit way. The other upper bound is obtained by using the
ideas of [89] and [83] upon that same part. By concentrating only upon this inexact
part, much more precise approximating bounds can be obtained.

The lower bounds and some of the upper bounds discussed above are based on
comonotonicity results combined with conditioning upon one variable. In a Black
and Scholes setting, Vanmaele et al. [108] derive analytical expressions for comono-
tonic bounds of stop-loss premiums of sums of nonindependent random variables by
conditioning upon two variables. They also use the idea of several conditioning vari-
ables to develop an approximation for cases for which it is cumbersome to obtain
a comonotonic lower bound. The numerical application to European basket options
shows that conditioning on two variables leads to very sharp results.

Combining the features of Asian and basket options, we end up with European-
style discrete arithmetic Asian basket options. Deelstra et al. [23] propose pricing
bounds for these options in a Black and Scholes framework. They use the general
approach for deriving upper and lower bounds as in Sect. 6.2 and generalize in this
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way the methods of [22] and [109]. They further show how to derive an analytical
closed-form expression for a lower bound in the noncomonotonic case. Finally, in
numerical tests the quality of these bounds are compared to upper bounds for Asian
basket options based on techniques as in [98] and [78].

When allowing also for negative weights, one can price European-style discrete
arithmetic Asian basket spread options. Deelstra et al. [25] derive comonotonic
lower and upper bounds for such spread options and discuss the behavior of these
approximating bounds. They also develop a new hybrid moment matching method,
namely a moment matching of both the positively weighted basket and the nega-
tively weighted basket separately, combined with an improved comonotonic upper
bound (6.5) with Sic from (6.8) being the comonotonic sum Sc. Deelstra et al. [25]
find that the improved comonotonic upper bound offers a good approximation of
the price of spread options. The hybrid moment matching method based upon the
improved comonotonic upper bound approach leads to a well-performing bound
for Asian basket spread options. The Greeks for these two methods are explicitly
derived. Moreover, the results can be extended to options denominated in foreign
currency.

Deelstra et al. [26] elaborate a method for determining the optimal strike price
for a put option, used to hedge a position in a financial product such as a basket
of shares or a coupon-bearing bond. This strike price is optimal in the sense that it
minimizes, for a given budget, a class of risk measures satisfying certain properties.
Hereto they study the loss function in the worst-case scenario such that its risk is
on the safe side. Formulas are derived both for one single underlying and for a
weighted sum of underlyings. For the latter, two cases are considered depending
on the dependence structure of the components in this weighted sum, namely the
case that the components form a comonotonic vector and the case that they are
not comonotonic. In the latter case comonotonic approximations based on Sc (6.4),
respectively on S� (6.9), are proposed.

Now we turn to the model-independent bounds as the ones presented in [95] and
[3] for Asian options.

In [59, 60] static-arbitrage super-replicating respectively subreplicating strategies
for European-style basket options are derived. In the former article, the authors con-
sider the set of all models which are consistent with the observed prices of vanilla
options and, within this class, find the model for which the price of the basket op-
tion is largest. This price is an upper bound on the prices of the basket option which
are consistent with no-arbitrage. In the absence of additional assumptions it is the
lowest upper bound on the price of the basket option and is related to a comono-
tonic upper bound. Both the infinite market case (where prices of the plain vanilla
options are available for all strikes) and the finite market case (where only a finite
number of plain vanilla option prices are observed) are considered. From a pure
mathematical point of view, the infinite market case results are closely related to the
optimization result (6.7) presented in Sect. 6.2. In [60], subreplicating strategies are
developed for European-style basket options consisting of two assets. The so-called
sheeptrack portfolio has a price that can only be realized by a countermonotonic
pair as defined in (6.3).
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Whereas Hobson et al. [60] only concentrate on basket options, Chen et al. [12]
investigate static super-replicating strategies for European-type call options writ-
ten on a weighted sum of asset prices. This class of exotic options includes Asian
options and basket options among others. It is assumed that there exists a market
where the plain vanilla options on the different assets are traded and hence their
prices can be observed in the market. Both the infinite and finite market cases are
considered. It is proven that the finite market case converges to the infinite market
case as the number of observed plain vanilla option prices tends to infinity. The
paper shows how to construct a portfolio consisting of the plain vanilla options on
the different assets whose pay-off super-replicates the pay-off of the exotic option.
As a consequence, the price of the super-replicating portfolio is an upper bound for
the price of the exotic option. The superhedging strategy is model-free in the sense
that it is expressed in terms of the observed option prices on the individual assets,
which can be, e.g., dividend paying stocks with no explicit dividend process known.
As opposed to [60] who use Lagrange optimization techniques, the proofs in [12]
are based on the theory of integral stochastic orders, comonotonicity, and convex
bounds, see Sects. 6.1 and 6.2.

Chen et al. [13] further investigate super-replicating strategies for European-type
call options written on a positively weighted sum of asset prices following the ini-
tial approach in [12]. To be more precise, three issues are proposed and investigated
concerning the optimal super-replicating strategies. The first issue is the nonunique-
ness of the optimal solution. The second issue is to generalize the results from a
deterministic interest rate setting in the previous paper to a stochastic interest rate
setting. By performing this generalization, optimal super-replicating strategies are
obtained in a more general market. The third issue is about the coexistence of the
comonotonicity property and the martingale property. When there is only one un-
derlying asset, it is shown that they possibly coexist for some cases, while for some
other cases there can also be a contradiction between them. As a consequence, for
Asian options, the upper bound may not be reachable in an arbitrage-free market.

Distribution-free bounds in closed-form and optimal hedging strategies for
spread options are derived in [76, 77]. The former article focuses on upper bounds
when the spread option’s joint distribution is calibrated to the information about the
marginals embedded in the prices of traded options with all available strikes of a
given maturity.

In the latter article, sharp distribution-free lower bounds for spread options and
the corresponding optimal subreplicating portfolios are obtained. This lower bound
is attained for the comonotonic distributions. Laurence and Wang [76, 77] also intro-
duce the notion of monotonicity gap which can be further divided into two comple-
mentary gaps, the countermonotonicity and the comonotonicity gap. The idea is that
the normalized distance of the true (quoted) market price of a spread option from the
distribution free comonotonic upper bound (respectively, countermonotonic lower
bound) represents a useful and new “market implied” index. This index measures
how far the assets are from being countermonotonic (respectively, comonotonic) and
can be used as a distribution-free complement to the so-called implied correlation
that is widely used in the industry.
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Finally, we draw the attention to some recent articles where comonotonicity is
applied to price or hedge some other types of financial products.

Based on the positive dependence characteristic of the mortality in catastrophe
areas, Shang et al. [94] develop a pricing model for catastrophe mortality bonds with
comonotonicity and a jump-diffusion process. Since there is no unique risk-neutral
probability in this incomplete market settings, they use the Wang transform method
to price the bond.

In [10] possible bounds on CDO tranche premiums are studied. In case of a
comonotonic vector of default times, a model-free lower bound on equity tranche
premiums is provided, where model-free has to be understood with respect to the
dependence structure between default dates. The CDO tranche premiums computa-
tions turn out to be straightforward in this comonotonic case.

Glau et al. [55] study interest rate derivatives. In particular, they consider the
Lévy term structure model that extends the Heath–Jarrow–Merton model in that
the instantaneous forward rate is given by a time-inhomogeneous Lévy process.
Within this framework, pricing formulas based on Fourier transforms are known for
the most liquid interest rate derivatives, namely caps, floors, and swaptions. Glau
et al. [55] study delta-hedging and risk-minimizing hedging strategies for swaptions
on the basis of zero-coupon bonds. They derive closed-form expressions for the
hedging strategy in terms of the Fourier transforms by the comonotonicity property.

6.4.2 Risk Management: Risk Sharing, Optimal Investment,
Capital Allocation

Risk Measures and Risk Sharing

In [40] it is shown how the convex bounds (6.6), (6.8), and (6.9) can be used to
derive closed-form approximations for risk measures of a sum of nonindependent
lognormal random variables. Dhaene et al. [45] further examine and summarize
properties of several well-known risk measures that can be used in the framework
of setting capital requirements for a risky business. Special attention is given to the
class of concave distortion risk measures, also called spectral risk measures, see
[1]. Note that the class of concave distortion risk measures is a subset of the more
general class of coherent risk measure as introduced in [4] and [5], see also [65].

Dhaene et al. [45] investigate the relationship between distortion risk measures
and theories of choice under risk. They further consider the problem of how to
evaluate these risk measures for sums of nonindependent random variables and ap-
proximations for such sums, based on the concept of comonotonicity, are proposed.
Another generalization of the class of concave distortion risk measures in a distri-
bution free setting is considered in [44].

Goovaerts et al. [57] present a new axiomatic characterization of risk measures
that are additive for independent random variables. The axiom of additivity for in-
dependent random variables is related to an axiom of additivity for comonotonic
random variables. The risk measures characterized can be regarded as mixed expo-
nential premiums.
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The appropriateness of the subadditivity of risk measures is considered in [47].
Dhaene et al. [48] investigate the influence of the dependence between random
losses on the shortfall and on the diversification benefit that arises from merging
these losses. They prove that increasing the dependence between losses, expressed
in terms of correlation order, has an increasing effect on the shortfall, expressed in
terms of an appropriate integral stochastic order. Furthermore, increasing the de-
pendence between losses decreases the diversification benefit. In particular, they
consider merging comonotonic losses and show that even in this extreme case a
nonnegative diversification benefit may arise.

Embrechts et al. [52] prove that comonotonicity gives rise to the on-average-
most-adverse Value-at-Risk (VaR) scenario for a function of dependent risks when
the marginal distributions are known but the dependence structure between the risks
is unknown. Laeven [74] extends this result to the case where, rather than no in-
formation, partial information is available on the dependence structure between the
risks. Moreover, Laeven [74] points out that the improved comonotonic or condi-
tionally comonotonic dependence structure as introduced in (6.8) is very interesting
as a worst-case scenario. Indeed, it is the most adverse dependence structure in stop-
loss and supermodular order and hence in Tail-VaR-based risk management, and the
on-average-most-adverse dependence structure in VaR-based risk management.

Tsanakas and Christofides [101] model an exchange economy where agents (in-
surers/banks) trade risks. Decision making takes place under distorted probabilities,
which are used to represent either rank-dependence of preferences or ambiguity with
respect to real-world probabilities. Via the construction of aggregate preferences
from heterogeneous agents’ utility and distortion functions, they obtain pricing for-
mulas and risk allocations, generalizing results of [9]. In particular, in a lemma
which can be viewed as a generalized version of Borch’s characterization of Pareto
optima, it is stated that at equilibrium the agents’ risk allocations are comonotonic
random variables.

Jouini et al. [69] consider the problem of optimal risk sharing of some given
total risk between two economic agents characterized by law-invariant monetary
utility functions or equivalently, law-invariant risk measures. In the case that both
agents’ utility functions are comonotone, an explicit characterization of an optimal
risk sharing allocation is provided. This optimal allocation is in addition increasing
in terms of the total risk.

Also in [79] the risk sharing problem is dealt with. They extend the result that a
Pareto optimal risk allocation is necessarily comonotone to the case of unbounded
random variables and this for certain classes of consistent risk measures. This is sig-
nificant from a practical point of view where risks are often modeled as unbounded
random variables.

Optimal Investment Strategies

Dhaene et al. [43] investigate multiperiod portfolio selection problems in a Black
and Scholes-type market where a basket of one risk-free and m risky securities are
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traded continuously. They look for the optimal allocation of wealth within the class
of constant-mix portfolios. First, they consider the portfolio selection problem of a
decision maker who invests money at predetermined points in time in order to obtain
a target capital at the end of the time period under consideration. A second problem
concerns a decision maker who invests some amount of money (the initial wealth
or provision) in order to be able to fulfil a series of future consumptions or payment
obligations. Several optimality criteria and their interpretation within Yaari’s dual
theory of choice under risk are presented. For both selection problems, accurate
approximations are proposed based on the concept of comonotonicity as exposed in
Sect. 6.2. Similar problems are considered in the related papers [103, 104].

Cheung and Yang [14, 20] study a single-period optimal portfolio problem. It
is assumed that the actual dependence structure of the asset returns is unknown or
is a mixture of some common underlying source of risks. The least favorable de-
pendence structure is first identified, then the optimal portfolio problem is analyzed
as if this were the actual dependence structure. A sufficient condition to order the
optimal allocations is obtained using concepts of stochastic ordering.

Capital Allocation

The Enterprise Risk Management process of a financial institution usually contains
a procedure to allocate, or subdivide, the total risk capital of the company into its
different business units.

In [42], an optimization argument is used to find an optimal rule for allocating the
aggregate capital of a financial firm to its business units. The optimal allocation can
be found using general results from the theory on comonotonicity as summarized in
Sect. 6.2. Dhaene et al. [49] generalize the approach of [42] and develop a unifying
framework for allocating the aggregate capital by considering more general devia-
tion measures. Capital allocation based on the principle of comonotonicity turns out
to be a special case of this general framework, as well as many other allocation rules
that are described in the literature.

Taking the viewpoint of a higher authority within the financial conglomerate
(typically the board of directors) by which the economic capital allocation is per-
formed, Laeven and Goovaerts [75] propose an optimization approach to allocate
economic capital, distinguishing between an allocation or raising principle, and a
measure for the risk residual. The approach provides an integrated solution since
it can be applied both at the aggregate (conglomerate) level and at the individual
(subsidiary) level. Different degrees of information on the dependence structure be-
tween the subsidiaries are considered. When using expectations as risk measure
and assuming a complete lack of information on the dependence structure between
the subsidiaries, the capital allocation problem reduces to the problem considered
in [42].

Dhaene et al. [46] study the CTE-based allocation rule, where the Conditional
Tail Expectation (CTE) acts as risk measure to deal with the allocation problem.
Comonotonicity is used to derive accurate and easy to compute closed-form ap-
proximations for the CTE-based allocation rule. Hence, the field where analytical
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solutions for this rule are available is extended to the case that the risks of the dif-
ferent units have a (log)normal distribution.

Cheung [16] studies orderings of optimal allocations of policy limits and de-
ductibles when losses are cumulative, while Hua and Cheung [63] introduce new
models to separate the effects of severities and frequencies of losses. In both of
these papers the study is carried out from the viewpoint of a risk-averse policyholder
and under the assumption that the dependence structure of the losses is unknown.
In order to deal with this, they focus on the worst-allocation problem, the worst-
dependence structure being identified as the comonotonic one. In [64] the worst
allocations of policy limits and deductibles is studied from the viewpoint of an in-
surer. The main results of these articles are complemented and extended in [119] by
applying bivariate characterizations of stochastic ordering relations.

Tsanakas et al. [99] constructs a distortion-type risk measure, which evaluates the
risk of any uncertain position in the context of a portfolio that contains that position
and a fixed background risk, which means that besides the specific portfolio, the
holder is also exposed to a risk that he cannot (or will not) trade, control, or mitigate.
The risk measure can also be used to assess the performance of individual risks
within a portfolio, allowing for the portfolio’s rebalancing, an area where standard
capital allocation methods fail. It is shown that the properties of the risk measure
depart from those of coherent distortion measures. In particular, it is shown that
the presence of background risk makes risk measurement sensitive to the scale and
aggregation of risk. However, the risk of an instrument X relative to a background
risk Y , which is comonotone to X, is equal to the risk of X with no background
risk. Further, the case of risks following elliptical distributions is examined in more
detail and precise characterizations of the risk measure’s aggregation properties are
obtained.

Tsanakas [100] discusses the use of convex risk measures in capital alloca-
tion. He studies a flexible class of convex risk measures, namely the distortion-
exponential risk measure depending on a positive real number and a concave, dif-
ferentiable distortion function. For extreme cases of dependence between the risks,
such as comonotonicity or countermonotonicity, see Sect. 6.1, the aggregation prop-
erties of this convex risk measure are characterized, and explicit capital allocation
formulas are obtained.

6.4.3 Life Insurance and Pensions

In the classical approach to the theory of life contingencies, discounting factors and
mortality tables are assumed to be deterministic. In view of the long durations of
life annuity contracts, it is more realistic to take the stochastic nature of investment
returns and mortality into account when investigating the risks related to annuity
portfolios. Over the last two decades, a large number of papers have been pub-
lished covering this stochastic approach of returns and/or mortality. In this overview,
we will restrict to the subset of these papers where comonotonicity comes in.
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In [72], stochastic discounting factors are introduced by considering truncated
stochastic returns. Analytical results for comonotonic bounds of the present value
function of a sum of discounted deterministic cash-flows are derived.

Darkiewicz et al. [21] first investigate lower and upper bounds for right tails
(stop-loss premiums) of deterministic and stochastic sums of nonindependent ran-
dom variables, using the concepts of Sects. 6.1 and 6.2. Then, the performance of
the presented approximations is investigated numerically for individual life annuity
contracts and for life annuity portfolios. The investment returns are modeled by a
Brownian motion process, while the mortality is modeled by Makeham’s law.

Hoedemakers et al. [61] and Ahcan et al. [2] study the distribution of a life annu-
ity (and a portfolio of life annuities) under stochastic interest rates. They apply (6.4)
and (6.9) for scalar products of mutually independent random vectors and obtain
reliable approximations of the underlying distribution functions, in particular they
propose very accurate estimates of quantiles and stop-loss premiums.

Zhang et al. [118] consider a homogeneous portfolio composed of n whole-life
insurance policies. Since an average insurer usually has a large number of homo-
geneous policies, they explore the limiting properties of the convex upper bounds
of the present value function of such a portfolio. These upper bounds are derived
by the technique of comonotonicity under certain assumptions on the dependence
structure of the residual life of the insured (i.e. independence, positive associa-
tion, or negative association). The upper bounds are very informative and useful
to the insurer in making conservative estimates about the risks and calculating pre-
miums.

Denuit and Dhaene [32] and Denuit [28–30] adopt the standard Lee–Carter
model for mortality projection when studying portfolios of life annuities. In these
papers the discount factors are assumed to be deterministic. In the Lee–Carter
model, survival probabilities depend on the future trajectory of the time index,
which implies that they become random variables. In the first paper, the concept
of comonotonicity is applied to obtain accurate approximations for the stochastic
survival probabilities. In [29] comonotonicity-based approximations are derived for
the quantiles of the conditional expected present value of the annuity payments,
given the future path of the Lee–Carter time index.

Denuit, Devolder, and Goderniaux suggest in [35] securitization of longevity risk
in order to offer opportunities for hedging. In particular, they propose the design of
survivor bonds which could be issued directly by insurers. In order to guarantee
some transparency in the product, the survivor bond is based on a public mortality
index. Also here the classical Lee–Carter model for mortality forecasting is used to
price a risky coupon survivor bond based on this index. The proposed pricing mech-
anism consists of determining the Wang risk measure of the mortality index which
equals the exponential of a linear combination of correlated lognormal random vari-
ables. Taking into account comonotonic upper and lower bounds, approximate re-
sults are derived.

Spreeuw [96] applies the theory of comonotonic risks to disability annuities in
a Markov model with three states (death, healthy, and disabled), where recovery
from disabled to health is possible. Benefits are payable during disability, whilst
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premiums are only due whenever the insured is healthy. Starting from the convex
upper bound (6.4) and the improved upper bound (6.8), he derives two accurate
approximations for the sum of the deterministically discounted value of cash-flows
involved in such a contract.

6.5 Conclusion

In this chapter, we gave an extensive—but not exhaustive—overview of the litera-
ture on the theory of comonotonicity and its applications in finance and risk theory,
with an emphasis on the literature since 2004.

Taking into account the huge recent literature on this topic, we may conclude that
the concept of comonotonicity indeed plays the role of a helpful tool for solving
several research and practical problems in the domain of finance and insurance. It
seems very reasonable to assume that the theory of comonotonicity is still in devel-
opment. This observation makes us believe that in the near future more applications
will follow.

In this chapter we restricted the applications to financial, actuarial, and risk man-
agement problems. Without any doubt, the concept of comonotonicity may also be
a helpful tool in other domains. An example is the design of wind energy distributed
power systems. The problem of defining the dependence structures in the system is
tackled by modeling the statistically extreme interdependencies in the system inputs
using comonotonicity theory, see, e.g., [84] and [85].
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7.1 Introduction

In the classical Black–Scholes model and in most problems of stochastic analysis
applied to finance, one of the fundamental hypotheses is the homogeneity of in-
formation that market participants have. This homogeneity does not reflect reality.
In fact, there exist many types of agents in the market that have different levels of
information. In this paper, we are focusing on agents who have additional informa-
tion (insiders) and show that it is important to understand how an optimal control is
affected by particular pieces of such information.

In the following, let {B(t)}0≤t≤T be a Brownian motion, and Ñ(dz, ds) =
N(dz, ds) − dsν(dz) be a compensated Poisson random measure associated with
a Lévy process with Lévy measure ν on the (complete) filtered probability space
(Ω, F ,F = {Ft }0≤t≤T ,P ) with fixed time horizon T > 0. In the sequel, we assume
that the Lévy measure ν fulfills

∫

R0

z2ν(dz) < ∞,

where R0 := R\{0}.
Here we suppose that we are given a filtration G = {Gt }0≤t≤T with

Ft ⊆ Gt , t ∈ [0, T ], (7.1)

representing the information available to the agent at time t . This information is
used at decision making level yielding a G-predictable strategy or control.

Suppose that the state process X(t) = X(u)(t,ω); 0 ≤ t ≤ T ,ω ∈ Ω , characteriz-
ing the agent’s wealth, is a controlled jump diffusion in R of the form

⎧
⎪⎨

⎪⎩

d−X(t) = b(t,X(t), u(t)) dt + σ(t,X(t), u(t)) d−B(t)

+ ∫
R0

θ(t,X(t), u(t), z)Ñ(dz, d−t);
X(0) = x ∈ R.

(7.2)

Since B(·) and Ñ(A, ·),A ⊆ R0 Borel, need not be semimartingales with respect to
{Gt }0≤t≤T , the two last integrals in (7.2) are anticipating stochastic integrals that we
interpret as forward integrals. The choice of forward integration, as an anticipative
extension of the Itô integration, is motivated by the possible applications to optimal
portfolio problems for insiders as in Sect. 7.6 (see, e.g., [3, 6, 7]). However, the
applications are not restricted to this area and include all situations of optimization
problems in anticipating environments (see, e.g., [15, 20]).

The control process

u : [0, T ] × Ω → U

is called an admissible control if (7.2) has a unique (strong) solution X = X(u) such
that u(·) is predictable with respect to the filtration {Gt }0≤t≤T . We let AG denote a
given family of admissible controls assumed to be G-predictable and such that (7.2)
has a strong solution.

More specifically, the problem we are dealing with is the following. Suppose that
we are given a performance functional of the form
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J (u) := E

[∫ T

0
f

(
t,X(t), u(t)

)
dt + g

(
X(T )

)
]

, u ∈ AG, (7.3)

with

f : [0, T ] × R × U × Ω → R,

g : R × Ω → R,

where f is an F-adapted process for each x ∈ R, u ∈ U , and g is an FT -measurable
random variable for each x ∈ R satisfying

E

[∫ T

0

∣
∣f

(
t,X(t), u(t)

)∣
∣dt + ∣

∣g
(
X(T )

)∣
∣
]

< ∞ for all u ∈ AG.

The goal is to find the optimal control u∗ ∈ AG such that

ΦG := sup
u∈AG

J (u) = J
(
u∗). (7.4)

Special cases of this problem have been studied by many authors. See, e.g., [1, 3, 4,
7, 11, 12, 14, 15, 21] and the references therein.

The purpose of this paper is twofold.
First, we want to establish a general maximum principle for the optimal anticipa-

tive control problem (7.2)–(7.4), without any a priori semimartingale assumptions
for the inside information filtration {Gt }0≤t≤T (see Theorems 7.13 and 7.14).

Second, we want to use these general results to investigate the following problem
in insider trading: How much information does an insider need in order to generate
an infinite value of ΦG?

The following example by Pikovski and Karatzas in [14] illustrates the situation.
Suppose that the financial market has two investments opportunities:

1. a risk-free asset with unit price

S0(t) = 1, t ∈ [0, T ],
2. a risky asset with unit price

dS1(t) = S1(t)
[
μdt + σ dB(t)

]
, S(0) > 0, t ∈ [0, T ]

(μ,σ > 0 constants). If the trader chooses a portfolio π(t) representing the fraction
of wealth to be invested in the risky asset at time t , the corresponding wealth process
X(t), t ∈ [0, T ], will have the dynamics

d−Xπ(t) = Xπ(t)π(t)
[
μdt + σ d−B(t)

]
, Xπ(0) > 0.

If the information flow accessible to the insider trader is given by a filtration G =
{Gt }0≤t≤T such that Gt ⊇ Ft , this means that π is required to be G-adapted (thus
the Itô integration cannot be applied, and the forward integration is chosen to be
used instead). Suppose that the insider wants to maximize the expected logarithmic
utility of the terminal wealth, i.e., to find ΦG and π∗ (if it exists) such that

ΦG := max
π∈AG

E
[
ln

(
Xπ(T )

)] = E
[
ln

(
Xπ∗(T )

)]
.
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In [14] it is proved that if

Gt = Ft ∨ σ
(
B(T )

)
, t ∈ [0, T ],

then ΦG = ∞, and π∗ does not exist.
In this paper we generalize this situation in several directions:

(a) We include jumps in the risky asset model;
(b) We study more general utility functions;
(c) We study more general insider filtrations.

These points were already partially discussed in [7] from the point of view of the
existence of an optimal portfolio for a given insider. The present paper, we repeat,
focuses on the study of conditions on the amount of information G = {Gt }0≤t≤T

needed to obtain ΦG = ∞ and the nonexistence of an optimal insider portfolio.
The main result, which represents an anticipative stochastic maximum principle,

is presented in full generality (see Theorem 7.13). However it is difficult to ap-
ply because of the appearance of some terms, which all depend on the control. We
then consider the special case (see Theorem 7.14) where the coefficients of the con-
trolled process X do not depend on X; we call such processes controlled Itô–Lévy
processes. In this case, we give a condition for the existence of an optimal control.
More specific results are obtained in the cases where the insider filtration is either

(i) a D-commutable filtration (Sect. 7.5.1 and Theorem 7.16) or
(ii) a smoothly anticipative filtration (Sect. 7.5.2).

Besides the application of these results to optimal portfolio problems, we also con-
sider applications to optimal insider consumption. In this case we show that there
exists an optimal insider consumption, and in some special cases the optimal con-
sumption can be expressed explicitly.

The paper is structured as follows: In Sect. 7.2, we briefly recall some basic
concepts of Malliavin calculus and its connection to the theory of forward integra-
tion. In Sect. 7.3, we use Malliavin calculus to obtain a maximum principle for this
general non-Markovian insider information stochastic control problem. Section 7.4
considers the special case of Itô–Lévy processes. In Sect. 7.5, some specific classes
of insider information are considered. Finally, in Sects. 7.6 and 7.7, we apply the
results from the previous sections to study optimal insider portfolio and optimal
insider consumption problems, respectively.

7.2 Framework

In this section, we briefly recall some basic concepts of Malliavin calculus and its
connection to the theory of forward integration. We refer to [17] or [8] for more
information about Malliavin calculus. As for the theory of forward integration, the
reader may consult [18, 23, 24] and [6].
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7.2.1 Malliavin Calculus for Lévy Processes

In the sequel, consider a Brownian motion {B(t)}0≤t≤T on the filtered probability
space

(
Ω(B), F (B),

{
F (B)

t

}
0≤t≤T

,P (B)
)
,

where {F (B)
t }0≤t≤T is the P (B)-augmented filtration generated by {B(t)}0≤t≤T with

F (B) = F (B)
T . Further we assume that a Poisson random measure N(dt, dz) associ-

ated with a Lévy process is defined on the stochastic basis

(
Ω(Ñ), F (Ñ),

{
F (Ñ)

t

}
0≤t≤T

,P (Ñ)
)
.

We denote by Ñ(dt, dz) = N(dt, dz) − ν(dz) dt the compensated Poisson random
measure, where ν is the Lévy measure of the Lévy process. See [2, 25] for more
information about Lévy processes.

The starting point of Malliavin calculus is the following observation which goes
back to Itô [13]: Square-integrable functionals of B(t) and Ñ(dt, dz) enjoy the
chaos representation property, that is,

(i) If F ∈ L2(F (B),P (B)), then

F =
∑

n≥0

I (B)
n (fn) (7.5)

for a unique sequence of symmetric fn ∈ L2(λn), where λ is the Lebesgue mea-
sure, and

I (B)
n (fn) := n!

∫ T

0

∫ tn

0
. . .

∫ t2

0
fn(t1, . . . , tn) dB(t1) dB(t2) . . . dB(tn), n ∈ N,

is the n-fold iterated stochastic integral with respect to B(t). Here I
(B)
n (f0) :=

f0 for constants f0.

(ii) Similarly, if G ∈ L2(F (Ñ),P (Ñ)), then

G =
∑

n≥0

I (Ñ)
n (gn) (7.6)

for a unique sequence of kernels gn in L2((λ × ν)n), which are symmetric with

respect to (t1, z1), . . . , (tn, zn). Here I
(Ñ)
n (gn) is defined as

I (Ñ)
n (gn) := n!

∫ T

0

∫

R0

∫ tn

0

∫

R0

. . .

(∫ t2

0

∫

R0

gn(t1, z1, . . . , tn, zn)

)

× Ñ(dt1, dz1) . . . Ñ(dtn, dzn), n ∈ N.
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If F ∈ L2(F (B),P (B)) has chaos expansion (7.5), the Malliavin derivative Dt of F

in the direction of the Brownian motion is defined as

DtF =
∑

n≥1

nI
(B)
n−1

(
f̃n−1

)
, (7.7)

where f̃n−1(t1, . . . , tn−1) := fn(t1, . . . , tn−1, t), provided that
∑

n≥0

nn!‖fn‖2
L2(λn)

< ∞. (7.8)

Similarly, for all G ∈ L2(F (Ñ),P (Ñ)) with chaos representation (7.6) such that
∑

n≥0

nn!‖gn‖2
L2((λ×ν)n)

< ∞, (7.9)

the Malliavin derivative Dt,z of G in the direction of Ñ(dt, dz) is introduced as

Dt,zG :=
∑

n≥1

nI
(Ñ)
n−1(g̃n−1), (7.10)

where g̃n−1(t1, z1, . . . , tn−1, zn−1) := gn(t1, z1, . . . , tn−1, zn−1, t, z).
In the following, we denote by D

B
1,2 the stochastic Sobolev space of square-

integrable Brownian functionals such that (7.8) is fulfilled. The symbol D
Ñ
1,2 stands

for the corresponding space with respect to Ñ(dt, dz).
We recall that the Skorokhod integral with respect to B respectively Ñ(δt, dz)

is defined as the adjoint operator of D· : D
B
1,2 → L2(λ×P (B)) resp. D·,· : D

Ñ
1,2 →

L2(λ × ν×P (Ñ)). Thus, if we denote by

∫ T

0
(·)δBt and

∫ T

0

∫

R0

(·)Ñ(δt, dz)

the corresponding adjoint operators, the following duality relations are satisfied:

(i)

EP(B)

[

F

∫ T

0
ϕ(t)δBt

]

= EP (B)

[∫ T

0
ϕ(t)DtF dt

]

(7.11)

for all F ∈ D
B
1,2 and all Skorokhod-integrable ϕ ∈ L2(λ×P (B)) (i.e., ϕ in the

domain of the adjoint operator).
(ii)

E
P(Ñ)

[

G

∫ T

0

∫

R0

ψ(t, z)Ñ(δt, dz)

]

= E
P(Ñ)

[∫ T

0

∫

R0

ψ(t, z)Dt,zGν(dz) dt

]

(7.12)
for all G ∈ D

Ñ
1,2 and all Skorokhod-integrable ψ ∈ L2(λ × ν×P (Ñ)).
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In what follows, our reference stochastic basis will be

(
Ω, F , {Ft}0≤t≤T ,P

)
,

where Ω = Ω(B)× Ω(Ñ), F = F (B) × F (Ñ), Ft = F (B)
t × F (Ñ)

t , P = P (B) ×P (Ñ).
Later on in the paper, we will employ the duality relations (7.11) and (7.12) in

connection with P . We will need the following result from [9].

Theorem 7.1 (Decomposition uniqueness for Skorokhod semimartingales) Let
α(t) ∈ L2(P ) for all t and let β1[0,t] and γ 1[0,t] be Skorokhod integrable for all t

with respect to B and Ñ , respectively. Let {X(t)}0≤t≤T be a Skorokhod semimartin-
gale of the form

Xt = ζ +
∫ t

0
α(s) ds +

∫ t

0
β(s)δBs +

∫ t

0

∫

R0

γ (s, z)Ñ(dz, δs).

Then if

Xt = 0 for all 0 ≤ t ≤ T ,

we have

ζ = 0, α = 0, β = 0, γ = 0 a.e.

7.2.2 Malliavin Calculus and Forward Integral

In this section, we briefly recall some basic concepts of Malliavin calculus and for-
ward integrations related to this paper. We refer to [18, 23, 24] and [6] for more
information about these integrals.

Forward Integral and Malliavin Calculus for B(·)

This section constitutes a brief review of the forward integral with respect to the
Brownian motion. Let {B(t)}0≤t≤T be a Brownian motion on a filtered probability
space (Ω, F , {Ft }0≤t≤T ,P ), and T > 0 a fixed horizon.

Definition 7.2 Let φ : [0, T ] × Ω → R be a measurable process. The forward inte-
gral of φ with respect to {B(t)}0≤t≤T is defined by

∫ T

0
φ(t,ω)d−B(t) = lim

ε→0

∫ T

0
φ(t,ω)

B(t + ε) − B(t)

ε
dt (7.13)

if the limit exists in probability, in which case φ is called forward integrable.
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Note that if φ is càdlàg and forward integrable, then

∫ T

0
φ(t,ω)d−B(t) = lim

Δt→0

∑

j

φ(tj )ΔB(tj ), (7.14)

where ΔB(tj ) = B(tj+1) − B(tj ), and the sum is taken over the points of a finite
partition of [0, T ].

Definition 7.3 Let MB denote the set of stochastic processes φ : [0, T ] × Ω → R

such that:

1. φ ∈ L2(λ × P), φ(t) ∈ D
B
1,2 for almost all t and satisfies

E

(∫ T

0

∣
∣φ(t)

∣
∣2

dt +
∫ T

0

∫ T

0

∣
∣Duφ(t)

∣
∣2

dudt

)

< ∞.

We will denote by L
1,2[0, T ] the class of such processes.

2. Dt+φ(t) := lims→t+ Dsφ(t) exists in L1(λ × P) uniformly in t ∈ [0, T ].

We let M
B
1,2 be the closure of the linear span of MB with respect to the norm

given by

‖φ‖
M

B
1,2

:= ‖φ‖
L1,2[0,T ] + ∥

∥Dt+φ(t)
∥
∥

L1(λ×P)
.

Then we have the relation between the forward integral and the Skorokhod integral
(see [8, 15]):

Lemma 7.4 If φ ∈ M
B
1,2, then it is forward integrable, and

∫ T

0
φ(t) d−B(t) =

∫ T

0
φ(t)δB(t) +

∫ T

0
Dt+φ(t) dt. (7.15)

Moreover,

E

[∫ T

0
φ(t) d−B(t)

]

= E

[∫ T

0
Dt+φ(t) dt

]

. (7.16)

Using (7.15) and the duality formula for the Skorokhod integral (see, e.g., [8]),
we deduce the following result.

Corollary 7.5 Suppose that φ ∈ M
B
1,2 and F ∈ D

(B)
1,2 . Then

E

[

F

∫ T

0
φ(t) d−B(t)

]

= E

[

F

∫ T

0
φ(t)δB(t) + F

∫ T

0
Dt+φ(t) dt

]

= E

[∫ T

0
φ(t)DtF dt +

∫ T

0
FDt+φ(t) dt

]

. (7.17)
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Proposition 7.6 Let H be a given fixed σ -algebra, and ϕ : [0, T ] × Ω → R be an
H-measurable process. Set X(t) = E[B(t)|H]. Then

E

[∫ T

0
ϕ(t) d−B(t)

∣
∣
∣
∣H

]

= E

[∫ T

0
ϕ(t) d−X(t)

]

. (7.18)

Proof Using uniform convergence on compacts in L1(P ) and the definition of for-
ward integration in the sense of Russo–Vallois (see [23]), we observe that

E

[∫ T

0
ϕ(t) d−B(t)

∣
∣
∣
∣H

]

= E

[

lim
ε→0+

∫ T

0
ϕ(t)

B(t + ε) − B(t)

ε
dt

∣
∣
∣
∣H

]

= L1(P ) − lim
ε→0+E

[∫ T

0
ϕ(t)

B(t + ε) − B(t)

ε
dt

∣
∣
∣
∣H

]

= lim
ε→0+

∫ T

0
ϕ(t)E

[
B(t + ε) − B(t)

ε

∣
∣
∣
∣H

]

dt

= lim
ε→0+

∫ T

0
ϕ(t)

X(t + ε) − X(t)

ε
dt

=
∫ T

0
ϕ(t) d−X(t), in the ucp sense,

and the result follows. �

Definition 7.7 Let H = {Ht }0≤t≤T be a given filtration, and ϕ : [0, T ]×Ω → R be
an H-adapted process. The conditional forward integral of ϕ with respect to B(·) is
defined by

∫ T

0
ϕ(t)E

[
d−B(t)

∣
∣Ht−

] = lim
ε→0

∫ T

0
ϕ(t)

E[B(t + ε) − B(t)|Ht−]
ε

dt (7.19)

if the convergence holds uniformly on compacts in probability (i.e., ucp sense),
where Ht− = ∨

s<t Hs .

Remark 7.8 Note that Definition 7.7 is different from Proposition 7.6 except if Ht =
H for all t .

Forward Integral and Malliavin Calculus for ˜N(·, ·)
In this section, we review the forward integral with respect to the Poisson random
measure Ñ .

Definition 7.9 The forward integral

J (φ) :=
∫ T

0

∫

R0

φ(t, z)Ñ
(
dz, d−t

)
,
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with respect to the Poisson random measure Ñ , of a càdlàg stochastic function
φ(t, z), t ∈ [0, T ], z ∈ R, with φ(t, z) = φ(ω, t, z),ω ∈ Ω , is defined as

J (φ) = lim
m→∞

∫ T

0

∫

R0

φ(t, z)1Um(z)Ñ(dz, dt)

if the limit exists in L2(P ). Here Um,m = 1,2, . . . , is an increasing sequence of
compact sets Um ⊆ R\{0} with ν(Um) < ∞ such that limm→∞ Um = R\{0}. The
integral on the right is for each m defined ω-wise in the usual way, as limits of
integrals of simple integrands.

Definition 7.10 Let MÑ denote the set of stochastic functions φ : [0, T ] × R ×
Ω → R in D

Ñ
1,2 such that:

1. φ(t, z,ω) = φ1(t,ω)φ2(t, z,ω), where φ1(ω, t) ∈ D
Ñ
1,2 is càglàd, and φ2(ω, t, z)

is adapted such that

E

[∫ T

0

∫

R0

φ2
2(t, z)ν(dz) dt

]

< ∞,

2. Dt+,zφ := lims→t+ Ds,zφ exists in L2(λ × ν × P),
3. φ(t, z) + Dt+,zφ(t, z) is Skorokhod integrable.

We let M
Ñ
1,2 be the closure of the linear span of MÑ with respect to the norm

given by

‖φ‖
M

Ñ
1,2

:= ‖φ‖L2(λ×ν×P) + ∥
∥Dt+,zφ(t, z)

∥
∥

L2(λ×ν×P)
.

Then we have the relation between the forward integral and the Skorokhod integral
(see [6, 8]):

Lemma 7.11 If φ ∈ M
Ñ
1,2, then it is forward integrable, and

∫ T

0

∫

R0

φ(t, z)Ñ
(
dz, d−t

)

=
∫ T

0

∫

R0

Dt+,zφ(t, z)ν(dz) dt +
∫ T

0

∫

R0

(
φ(t, z) + Dt+,zφ(t, z)

)
Ñ(dz, δt).

(7.20)
Moreover,

E

[∫ T

0

∫

R0

φ(t, z)Ñ
(
dz, d−t

)
]

= E

[∫ T

0

∫

R0

Dt+,zφ(t, z)ν(dz) dt

]

. (7.21)

Then by (7.20) and duality formula for the Skorokhod integral for Poisson pro-
cess (see [8]), we have
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Corollary 7.12 Suppose that φ ∈ M
Ñ
1,2 and F ∈ D

Ñ
1,2. Then

E

[

F

∫ T

0

∫

R0

φ(t, z)Ñ
(
dz, d−t

)
]

= E

[

F

∫ T

0

∫

R0

Dt+,zφ(t, z)ν(dz) dt

]

+ E

[

F

∫ T

0

∫

R0

(
φ(t, z) + Dt+,zφ(t, z)

)
Ñ(dz, δt)

]

= E

[∫ T

0

∫

R0

φ(t, z)Dt,zFν(dz) dt

]

+ E

[∫ T

0

∫

R0

(F + Dt,zF )Dt+,zφ(t, z)ν(dz) dt

]

. (7.22)

7.3 A Stochastic Maximum Principle for Insider

We now formulate a general anticipative maximum principle for optimal control.
For a presentation in the classical adapted case, see e.g. [10, 16, 21].

In view of the optimization problem (7.4), we require the following conditions
1–5 on the coefficients and on the family of admissible controls AG:

1. The functions b : [0, T ] × R × U × Ω → R, σ : [0, T ] × R × U × Ω → R, θ :
[0, T ]×R×U ×R0 ×Ω → R, f : [0, T ]×R×U ×Ω → R, and g : R×Ω →
R are contained in C1 with respect to the arguments x ∈ R and u ∈ U for each
t ∈ R and a.a. ω ∈ Ω .

2. For all r, t ∈ (0, T ), t ≤ r , and all bounded Gt -measurable random variables α =
α(ω),ω ∈ Ω , the control

βα(s) := α(ω)χ[t,r](s), 0 ≤ s ≤ T , (7.23)

is an admissible control, i.e., belongs to AG (here χ[t,r] denotes the indicator
function on [t, r]).

3. For all u,β ∈ AG with β bounded, there exists δ > 0 such that

u + yβ ∈ AG for all y ∈ (−δ, δ) (7.24)

and such that the family
{

∂

∂x
f

(
t,Xu+yβ(t), u(t) + yβ(t)

) d

dy
Xu+yβ(t)

+ ∂

∂u
f

(
t,Xu+yβ(t), u(t) + yβ(t)

)
β(t)

}

y∈(−δ,δ)

www.TechnicalBooksPDF.com



192 G. Di Nunno et al.

is λ × P -uniformly integrable and
{

g′(Xu+yβ(T )
) d

dy
Xu+yβ(T )

}

y∈(−δ,δ)

is P -uniformly integrable.
4. For all u,β ∈ AG with bounded β , the process

Y(t) = Yβ(t) = Yu
β (t) = d

dy
X(u+yβ)(t)

∣
∣
∣
∣
y=0

exists and follows the stochastic differential equation

dYu
β (t) = Yβ

(
t−

)
[

∂

∂x
b
(
t,Xu(t), u(t)

)
dt + ∂

∂x
σ
(
t,Xu(t), u(t)

)
d−B(t)

+
∫

R0

∂

∂x
θ
(
t,Xu(t), u(t), z

)
Ñ

(
dz, d−t

)
]

+ β(t)

[
∂

∂u
b
(
t,Xu(t), u(t)

)
dt + ∂

∂u
σ
(
t,Xu(t), u(t)

)
d−B(t)

+
∫

R0

∂

∂u
θ
(
t,Xu(t), u(t), z

)
Ñ

(
dz, d−t

)
]

, (7.25)

Y(0) = 0.

5. Suppose that for all u ∈ AG, the processes

K(t) := g′(X(T )
) +

∫ T

t

∂

∂x
f

(
s,X(s), u(s)

)
ds, (7.26)

DtK(t) := Dtg
′(X(T )

) +
∫ T

t

Dt

∂

∂x
f

(
s,X(s), u(s)

)
ds,

Dt,zK(t) := Dt,zg
′(X(T )

) +
∫ T

t

Dt,z
∂

∂x
f

(
s,X(s), u(s)

)
ds,

H0(s, x,u) := K(s)

(

b(s, x,u) + Ds+σ(s, x,u) +
∫

R0

Ds+,zθ(s, x,u, z)ν(dz)

)

+ DsK(s)σ (s, x,u)

+
∫

R0

Ds,zK(s)
{
θ(s, x,u, z) + Ds+,zθ(s, x,u, z)

}
ν(dz), (7.27)

G(t, s) := exp

(∫ s

t

{
∂b

∂x

(
r,X(r), u(r)

) − 1

2

(
∂σ

∂x

)2(
r,X(r), u(r)

)
}

dr

+
∫ s

t

∂σ

∂x

(
r,X(r), u(r)

)
dB−(r)
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+
∫ s

t

∫

R0

{

ln

(

1 + ∂θ

∂x

(
r,X(r), u(r), z

)
)

− ∂θ

∂x

(
r,X(r), u(r), z

)
}

ν(dz) dr

+
∫ s

t

∫

R0

{

ln

(

1 + ∂θ

∂x

(
r,X

(
r−)

, u
(
r−)

, z
)
)}

× Ñ
(
dz, d−r

)
)

, (7.28)

p(t) := K(t) +
∫ T

t

∂

∂x
H0

(
s,X(s), u(s)

)
G(t, s) ds, (7.29)

q(t) := Dtp(t), (7.30)

r(t, z) := Dt,zp(t); t ∈ [0, T ], z ∈ R0, (7.31)

are well defined.

Now let us introduce the general Hamiltonian of an insider

H : [0, T ] × R × U × Ω → R

by

H(t, x,u,ω) := p(t)

(

b(t, x,u,ω) + Dt+σ(t, x,u,ω)

+
∫

R0

Dt+,zθ(t, x,u,ω)ν(dz)

)

+ f (t, x,u,ω) + q(t)σ (t, x,u,ω)

+
∫

R0

r(t, z)
{
θ(t, x,u, z,ω) + Dt+,zθ(t, x,u, z,ω)

}
ν(dz).

(7.32)

We can now state a general stochastic maximum principle for our control prob-
lem (7.4):

Theorem 7.13 Retain conditions 1–5. Assume that û ∈ AG is a critical point of the
performance functional J (u) in (7.4), that is,

d

dy
J (̂u + yβ)

∣
∣
∣
∣
y=0

= 0 (7.33)

for all bounded β ∈ AG. Then

E

[
∂

∂u
Ĥ

(
t, X̂(t), û(t)

)
∣
∣
∣
∣Gt

]

+ E[A] = 0 a.e. in (t,ω), (7.34)
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where A is given by (7.88),

X̂(t) = X(̂u)(t),

Ĥ
(
t, X̂(t), u

) = p(t)

(

b(t, X̂, u) + Dt+σ(t, X̂, u)

+
∫

R0

Dt+,zθ(t, X̂, u)ν(dz)

)

+ f (t, X̂, u) + q(t)σ (t, X̂, u)

+
∫

R0

r(t, z)
{
θ(t, X̂, u, z) + Dt+,zθ(t, X̂, u, z)

}
ν(dz)

(7.35)

with

p̂(t) = K̂(t) +
∫ T

t

∂

∂x
Ĥ0

(
s, X̂(s), û(s)

)
Ĝ(t, s) ds,

K̂(t) := g′(X̂(T )
) +

∫ T

t

∂

∂x
f

(
s, X̂(s), û(s)

)
ds,

(7.36)

and

Ĝ(t, s) := exp

(∫ s

t

{
∂b

∂x

(
r, X̂(r), u(r)

) − 1

2

(
∂σ

∂x

)2(
r, X̂(r), u(r)

)
}

dr

+
∫ s

t

∂σ

∂x

(
r, X̂(r), u(r)

)
dB−(r)

+
∫ s

t

∫

R0

{

ln

(

1 + ∂θ

∂x

(
r, X̂(r), u(r), z

)
)

− ∂θ

∂x

(
r, X̂(r), u(r), z

)
}

ν(dz) dt

+
∫ s

t

∫

R0

{

ln

(

1 + ∂θ

∂x

(
r, X̂

(
r−)

, u
(
r−)

, z
)
)}

Ñ
(
dz, d−r

)
)

,

Ĥ (t, x, u) = K̂(t)

(

b(t, x,u) + Dt+σ(t, x,u) +
∫

R0

Dt+,zθ(t, x,u)ν(dz)

)

+ DtK̂(t)σ (t, x,u) + f (t, x,u)

+
∫

R0

Dt,zK̂(t)
{
θ(t, x,u, z) + Dt+,zθ(t, x,u, z)

}
ν(dz).

Conversely, suppose that there exists û ∈ AG such that (7.34) holds. Then û satis-
fies (7.33).

Proof See Appendix. �
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7.4 Controlled Itô–Lévy Processes

The main result of the previous section (Theorem 7.13) is difficult to apply because
of the appearance of the terms Y(t),Dt+Y(t), and Dt+,zY (t), which all depend
on the control u. However, consider the special case where the coefficients do not
depend on X, i.e., where

b(t, x,u,ω) = b(t, u,ω), σ (t, x,u,ω) = σ(t, u,ω), and

θ(t, x,u, z,ω) = θ(t, u, z,ω).
(7.37)

Then (7.2) gets the form

⎧
⎪⎨

⎪⎩

d−(X)(t) = b(t, u(t),ω)dt + σ(t, u(t),ω)d−Bt

+ ∫
R0

θ(t, u(t), z,ω)Ñ(dz, d−t);
X(0) = x ∈ R.

(7.38)

We call such processes controlled Itô–Lévy processes.
In this case, Theorem 7.13 simplifies to the following:

Theorem 7.14 Let X(t) be a controlled Itô–Lévy process as given in (7.38). Retain
conditions 1–5 as in Theorem 7.13.

Then the following are equivalent:

1. û ∈ AG is a critical point of J (u),
2.

E

[

L(t)α + M(t)Dt+α +
∫

R0

R(t, z)Dt+,zαν(dz)

]

= 0

for all Gt -measurable α ∈ D1,2 and all t ∈ [0, T ], where

L(t) = K(t)

(
∂b(t)

∂u
+ Dt+

∂σ (t)

∂u
+

∫

R0

Dt+,z

∂θ(t)

∂u
ν(dz)

)

+ ∂f (t)

∂u

+
∫

R0

Dt,zK(t)

(
∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

)

ν(dz) + DtK(t)
∂σ (t)

∂u
,

(7.39)

M(t) = K(t)
∂σ (t)

∂u
, and (7.40)

R(t, z) = {
K(t) + Dt,zK(t)

}
(

∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

)

. (7.41)

Proof 1. It is easy to see that in this case, p(t) = K(t), q(t) = DtK(t), r(t, z) =
Dt,zK(t), and the general Hamiltonian H given by (7.32) is reduced to H1 given as
follows:
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H1(s, x,u,ω)

:= K(s)

(

b(s, u,ω) + Ds+σ(s,u,ω) +
∫

R0

Ds+,zθ(s, u,ω)ν(dz)

)

+ DsK(s)σ (s, u,ω) + f (s, x,u,ω)

+
∫

R0

Ds,zK(s)
{
θ(s, u, z,ω) + Ds+,zθ(s, u, z,ω)

}
ν(dz).

Then, performing the same calculus leads to

A1 = A3 = A5 = 0,

A2 = E

[∫ t+h

t

{

K(t)

(
∂b(s)

∂u
+ Ds+

∂σ (s)

∂u
+

∫

R0

Ds+,z

∂γ (s)

∂u
ν(dz)

)

+ ∂f (s)

∂u

+
∫

R0

Ds,zK(s)

(
∂θ(s)

∂u
+ Ds+,z

∂γ (s)

∂u

)

ν(dz) + DsK(s)
∂σ (s)

∂u

}

α ds

]

,

A4 = E

[∫ t+h

t

K(s)
∂σ (s)

∂u
Ds+α ds

]

,

A6 = E

[∫ t+h

t

∫

R0

{
K(s) + Ds,zK(s)

}
(

∂θ(s)

∂u
+ Ds+,z

∂γ (s)

∂u

)

× ν(dz)Ds+,zα ds

]

.

It follows that

d

dh
A2

∣
∣
∣
∣
h=0

= E

[{

K(t)

(
∂b(t)

∂u
+ Dt+

∂σ (s)

∂u
+

∫

R0

Dt+,z

∂θ(t)

∂u
ν(dz)

)

+ ∂f (t)

∂u

+
∫

R0

Dt,zK(t)

(
∂θ(t)

∂u
+ Dt+,z

∂γ (t)

∂u

)

ν(dz) + DtK(t)
∂σ (t)

∂u

}

α

]

,

d

dh
A4

∣
∣
∣
∣
h=0

= E

[

K(t)
∂σ (t)

∂u
Dt+α

]

,

d

dh
A6

∣
∣
∣
∣
h=0

= E

[∫

R0

{
K(t) + Dt,zK(t)

}
(

∂θ(t)

∂u
+ Dt+,z

∂γ (t)

∂u

)

ν(dz)Dt+,zα

]

.

This means that

0 = E

[{

K(t)

(
∂b(t)

∂u
+ Dt+

∂σ (s)

∂u
+

∫

R0

Dt+,z

∂θ(t)

∂u
ν(dz)

)

+ ∂f (t)

∂u

+
∫

R0

Dt,zK(t)

(
∂θ(t)

∂u
+ Dt+,z

∂γ (t)

∂u

)

ν(dz) + DtK(t)
∂σ (t)

∂u

}

α
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+ K(t)
∂σ (t)

∂u
Dt+α +

{∫

R0

{
K(t) + Dt,zK(t)

}

×
(

∂θ(t)

∂u
+ Dt+,z

∂γ (t)

∂u

)

ν(dz)

}

Dt+,zα

]

,

and the first part of the result follows.
2. The converse part follows from the arguments used in the proof of Theo-

rem 7.13.
By this the proof is complete. �

7.5 Applications to Some Special Cases of Filtrations

We consider the case of an insider who has an additional information compared to
the standard normally informed investor.

• It can be the case of an insider who always has advanced information compared to
the honest trader. This means that if G = {Gt }0≤t≤T and F = {Ft }0≤t≤T represent
respectively the flows of informations of the insider and the honest investor, then
we can write that Gt ⊃ Ft+δ(t) where δ(t) > 0;

• It can also be the case of a trader who has at the initial date particular infor-
mation about the future (initial enlargement of filtration). This means that if
G = {Gt }0≤t≤T and F = {Ft}0≤t≤T represent respectively the flows of informa-
tions of the insider and the honest investor, then we can write that Gt = Ft ∨σ(L),
where L is a random variable.

7.5.1 D-commutable Filtrations

In the following, we need the notion of D-commutativity of a σ -algebra.

Definition 7.15 A σ -algebra A ⊆ F is called D-commutable if for all F ∈ D1,2 =
D

B
1,2 ∩ D

Ñ
1,2, the conditional expectation E[F |A] belongs to D1,2 and

DtE[F |A] = E[DtF |A], (7.42)

Dt,zE[F |A] = E[Dt,zF |A]. (7.43)

Theorem 7.16 Suppose that û ∈ AG is a critical point for J (u). Assume that
Gt is D-commutable for all t . Further, require that for all t , the set of smooth

Gt -measurable random variables is dense in L2(Gt ) and that E[M(t)|Gt ] and
E[R(t, z)|Gt ] are Skorokhod integrable. Then for any t0 ∈ [0, T ),
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0 =
∫ T

0
E

[
L(t)

∣
∣Gt0

]
h(t) dt +

∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBt

+
∫ T

0

∫

R0

E
[
R(t, z)

∣
∣Gt0

]
h(t)Ñ(δt, dz) (7.44)

for all h ∈ L2([0, T ]) with supph ⊆ [t0, T ].

Proof Without loss of generality, we give the proof for the Brownian motion case
only. The pure jump case and mixed case follow similarly. Define 〈X,Y 〉 = E[XY ].

Let us fix a t0 ∈ [0, T ). Then, by assumption, it follows that for all Gt0 -measurable
smooth α and h ∈ L2([0, T ]) with

supph ⊆ [t0, T ], t0 ≤ t ≤ T ,

0 =
〈∫ T

0
E

[
L(t)

∣
∣Gt0

]
h(t) dt, α

〉

+
〈

E

[∫ T

0
M(t)h(t)δBt |Gt0

]

, α

〉

.

On the other hand, the duality relation (7.11) implies

〈

E

[∫ T

0
M(t)h(t)δBt

∣
∣
∣
∣Gt0

]

, α

〉

= E

[∫ T

0
M(t)h(t)δBtE[α|Gt0 ]

]

= E

[∫ T

0
M(t)h(t)

(
DtE[α|Gt0 ]

)
dt

]

= E

[∫ T

0
M(t)h(t)E[Dtα|Gt0 ]dt

]

= E

[∫ T

0
E

[
M(t)h(t)

∣
∣Gt0

]
Dtα dt

]

=
〈∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBt , α

〉

for all Gt0 -measurable smooth α. So

E

[∫ T

0
M(t)h(t)δBt

∣
∣
∣
∣Gt0

]

=
∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBt .

Hence, by our density assumption, we obtain that

0 =
∫ T

0
E

[
L(t)

∣
∣Gt0

]
h(t) dt +

∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBt .

By this the proof is complete. �

To provide some concrete examples, let us confine ourselves to the following
type of filtrations {Gt }0≤t≤T . Given an increasing family of {Gt }t∈[0,T ] of Borel sets
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Gt ⊃ [0, t], define

{Gt }0≤t≤T where

Gt = FGt = σ

{∫ T

0
χU(s) dB(s);U ⊂ Gt,U Borel

}

∨ N , (7.45)

where N is the collection of P -null sets. Then conditions (7.42) and (7.43) hold
(see Proposition 3.12 in [8]). Examples of filtrations of type (7.45) are

G 1
t = Ft+δ(t),

G 2
t = F[0,t]∪O,

where O is an open set contained in [0, T ].
It is easily seen that filtrations of type (7.45) satisfy conditions of Theorem 7.16

as well. Hence, we have the following:

Theorem 7.17 Suppose that {Gt }0≤t≤T is given by (7.45). Then u = û is a critical
point for J (u) if and only if (7.44) holds.

From this, we get the following:

Theorem 7.18 Suppose that {Gt}0≤t≤T is of type (7.45). Then there exists a critical
point u = û for the performance functional J (u) in (7.3) if and only if the following
three conditions hold:

(i) E
[
L(t)

∣
∣Gt

] = 0,

(ii) E
[
M(t)

∣
∣Gt

] = 0,

(iii) E
[
R(t, z)

∣
∣Gt

] = 0,

where L, M , and R are given by (7.39), (7.40), and (7.41).

Proof This follows from the uniqueness of decomposition of Skorokhod-semi-
martingale processes of type (7.44) (see Theorem 3.3 in [9]). �

Remark 7.19 Not all filtrations satisfy conditions (7.42) and (7.43). An important
example is the following: Choose the σ -field H to be σ(B(T )), where {B(t)}0≤t≤T

is the Wiener process (Brownian motion) starting at 0, and T > 0 is fixed. Then, H
is not D-commutable. In fact, let F = B(t0) for some t0 < T and choose s such that
t0 < s < T . Then

DsE
[
B(t0)

∣
∣H

] = Ds

(
t0

T
B(T )

)

= t0

T
,
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while

E
[
DsB(t0)

∣
∣H

] = E[0|H] = 0.

A similar argument works to prove that (7.42) and (7.43) are not satisfied for
Gt = Ft ∨ σ(BT ) either. It follows that the technique used in the preceding section
cannot be applied to the σ -algebras of the type Ft ∨ σ(BT ), and hence we need a
different approach to discuss such cases.

7.5.2 Smoothly Anticipative Filtrations

In this section, we consider σ -algebras which do not necessarily satisfy conditions
(7.42) and (7.43). The starting point is again statement 2 of Theorem 7.14.

Definition 7.20 We say that the filtration {Gt}0≤t≤T is smoothly anticipative if
for all t0 ∈ [0, T ], there exist a set A = At0 ⊆ D1,2 ∩ L2(Gt0) and a measurable
set M ⊂ [t0, T ] such that E[L(t)|Gt0 ] · χ[0,T ]∩M,E[M(t)|Gt0 ] · χ[0,T ]∩M, and
E[R(t, z)|Gt0 ] · χ[0,T ]∩M, t ∈ [0, T ], z ∈ R0, are Skorokhod integrable and

(i) Dtα and Dt,zα are Gt0 -measurable for all α ∈ A, t ∈ M.
(ii) Dt+α = Dtα and Dt+,zα = Dt,zα for all α ∈ A and a.a. t, z, t ∈ M.

(iii) Span A is dense in L2(Gt0).

Theorem 7.21 Suppose that {Gt }0≤t≤T is smoothly anticipative. Suppose that
û ∈ AG is a critical point of J (u). Then for all h(t) = χ[t0,s)(t)χM(t), t ∈ [0, T ]
(and some s ∈ [0, T ]),

0 = E

[∫ T

0
E

[
L(t)

∣
∣Gt0

]
h(t) dt +

∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBt

+
∫ T

0

∫

R0

E
[
R(t, z)

∣
∣Gt0

]
h(t)Ñ(δt, dz)

∣
∣
∣
∣Gt0

]

. (7.46)

Proof By Theorem 7.14 we know that, for every t ,

E

[

L(t)α + M(t)Dt+α +
∫

R0

R(t, z)Dt+,zαν(dz)

]

= 0.

Let α = E[F |Gt0] for all F ∈ A. Further, choose h ∈ L2([0, T ]) with h(t) =
χ[t0,s)(t)χM(t). By assumption, we see that

0 =
〈∫ T

0
E

[
L(t)

∣
∣Gt0

]
h(t) dt, α

〉

+
〈

E

[∫ T

0
M(t)h(t)δBt

∣
∣
∣
∣Gt0

]

, α

〉

+
〈

E

[∫ T

0

∫

R0

R(t, z)h(t)Ñ(δt, dz)

∣
∣
∣
∣Gt0

]

, α

〉

.
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On the other hand, the duality relation (7.11) and (ii) imply that

〈

E

[∫ T

0
M(t)h(t)δBt

∣
∣
∣
∣Gt0

]

, α

〉

= E

[∫ T

0
M(t)h(t)δBtE[F |Gt0 ]

]

= E

[∫ T

0
M(t)h(t)

(
DtE[F |Gt0 ]

)
dt

]

= E

[∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)

(
DtE[F |Gt0 ]

)
dt

]

= E

[∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBtE[F |Gt0 ]

]

=
〈∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBt , α

〉

.

In the same way, we show that

〈

E

[∫ T

0

∫

R0

R(t, z)h(t)Ñ(δt, dz)

∣
∣
∣
∣Gt0

]

, α

〉

=
〈∫ T

0

∫

R0

E
[
R(t, z)

∣
∣Gt0

]
h(t)Ñ(δt, dz),α

〉

.

Then it follows from (iv) that

0 = E

[∫ T

0
E

[
L(t)

∣
∣Gt0

]
h(t) dt +

∫ T

0
E

[
M(t)

∣
∣Gt0

]
h(t)δBt

+
∫ T

0

∫

R0

E
[
R(t, z)

∣
∣Gt0

]
h(t)Ñ(δt, dz)

∣
∣
∣
∣Gt0

]

for all h ∈ L2([0, T ]) with supph ⊆ (t0, T ]. �

Theorem 7.22 (Brownian motion case) Assume that the conditions in Theorem 7.21
are in force and θ = 0. In addition, we require that E[M(t)|Gt−] ∈ M

B
1,2 and is

forward integrable with respect to E[d−B(t)|Gt−]. Then

0 =
∫ T

0
E

[
L(t)

∣
∣Gt−

]
h0(t) dt +

∫ T

0
E

[
M(t)

∣
∣Gt−

]
h0(t)E

[
d−B

∣
∣Gt−

]

−
∫ T

0
Dt+E

[
M(t)

∣
∣Gt−

]
h0(t) dt (7.47)

for all bounded deterministic functions h0(t), t ∈ [0, T ].
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Proof We apply the preceding result to h(t) = h0(t)χ[ti ,ti+1](t), where 0 = t0 < t1 <

· · · < ti < ti+1 = T is a partition of [0, T ]. From (7.46) we have

0 =
∫ ti+1

ti

E
[
L(t)

∣
∣Gti

]
h(t) dt + E

[∫ ti+1

ti

E
[
M(t)

∣
∣Gti

]
h(t)δBt

∣
∣
∣
∣Gti

]

+ E

[∫ ti+1

ti

∫

R0

E
[
R(t, z)

∣
∣Gti

]
h(t)Ñ(δt, dz)

∣
∣
∣
∣Gti

]

. (7.48)

By Lemma 7.4 and by assumption, we know that
∫ ti+1

ti

E
[
M(t)

∣
∣Gti

]
h0(t)δBt =

∫ ti+1

ti

E
[
M(t)

∣
∣Gti

]
h0(t) d−B(t)

−
∫ ti+1

ti

Dt+E
[
M(t)

∣
∣Gti

]
h0(t) dt. (7.49)

Substituting (7.49) into (7.48), summing over all i, and taking the limit as Δti → 0,
we get

0 = lim
Δti→0
n→∞

{
n∑

i=1

∫ ti+1

ti

E
[
L(t)

∣
∣Gti

]
h0(t) dt

+
n∑

i=1

∫ ti+1

ti

E
[
M(t)

∣
∣Gti

]
h0(t)

E[B(ti+1) − B(ti)|Gti ]
Δti

Δti

−
n∑

i=1

∫ ti+1

ti

Dt+E
[
M(t)

∣
∣Gti

]
h0(t) dt

}

in the topology of uniform convergence in probability. Hence, by Definition 7.7, we
get the result. �

Important examples of filtrations satisfying the conditions of Theorem 7.21 are
based on σ -algebras that are first chaos generated (see [19]). Namely, we consider
σ -algebras of the form

σ
(
I1(hi), i ∈ N, hi ∈ L2([0, T ])) ∨ N , (7.50)

where N is the collection of P -null sets. A concrete example of these σ -algebras is

G 3
t =Ft ∨ σ

(
B(T )

)
. (7.51)

We study the case (7.51).

Lemma 7.23 Suppose that Gt = G 3
t = Ft ∨ σ(B(T )). Then

E
[
B(t)

∣
∣Gt0

] = T − t

T − t0
B(t0) + t − t0

T − t0
B(T ) for all t > t0.
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In particular,

E
[
B(t + ε)

∣
∣Gt

] = B(t) + ε

T − t

(
B(T ) − B(t)

)
.

Proof We have that

E
[
B(t)

∣
∣Gt0

] =
∫ t0

0
ϕ(t, s) dB(s) + C(t)B(T ).

On one hand, we have

t = E
[
E

[
B(t)

∣
∣Gt0

]
B(T )

] = E

[(∫ t0

0
ϕ(t, s) dB(s)

)

B(T )

]

+ C(t)T

=
∫ t0

0
ϕ(t, s) ds + C(t)T . (7.52)

On the other hand,

u = E
[
E

[
B(t)

∣
∣Gt0

]
B(u)

] = E

[(∫ t0

0
ϕ(t, s) dB(s)

)

B(u)

]

+ C(t)u

=
∫ u

0
ϕ(t, s) ds + C(t)u for all u < t. (7.53)

Differentiating (7.53) with respect to u, it follows that

ϕ(t, u) + C(t) = 1.

Substituting ϕ by its value into (7.52), we obtain C(t) = t−t0
T −t0

and then ϕ(t, s) =
T −t0
T −t0

. Therefore, the result follows. �

Corollary 7.24 Suppose that Gt = G 3
t = Ft ∨ σ(B(T )). Then

E
[
d−B

∣
∣Gt−

] = B(T ) − B(t)

T − t
dt.

Combining this with Theorem 7.22, we get the following:

Theorem 7.25 Suppose that Gt = G 3
t = Ft ∨ σ(B(T )) and θ = 0. Suppose that the

conditions of Theorem 7.22 hold. Then u = û is a critical point for J (u) in (7.3) if
and only if

E
[
L(t)

∣
∣Gt−

] + E
[
M(t)

∣
∣Gt−

]B(T ) − B(t)

T − t
− Dt+E

[
M(t)

∣
∣Gt−

] = 0

for a.a. t ∈ [0, T ]. (7.54)
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7.6 Application to Optimal Insider Portfolio

Consider a financial market with two investments possibilities:

1. A risk-free asset, where the unit price S0(t) at time t is given by

dS0(t) = r(t)S0(t) dt, S0(0) = 1. (7.55)

2. A risky asset, where the unit price S1(t) at time t is given by the stochastic
differential equation

dS1(t) = S1
(
t−

)
[

μ(t) dt + σ0(t) dB−(t) +
∫

R0

γ (t, z)Ñ
(
d−t, dz

)
]

,

S1(0) > 0.

(7.56)

Here r(t) ≥ 0,μ(t), σ0(t), and γ (t, z) ≥ −1+ ε (for some constant ε > 0) are given
G-predictable, forward-integrable processes, where G = {Gt }0≤t≤T is a given filtra-
tion such that

Ft ⊂ Gt for all t ∈ [0, T ]. (7.57)

Suppose that a trader in this market is an insider, in the sense that she has access
to the information represented by Gt at time t . This means that if she chooses a
portfolio u(t), representing the amount she invests in the risky asset at time t , then
this portfolio is a G-predictable stochastic process.

The corresponding wealth process X(t) = X(u)(t) will then satisfy the (forward)
SDE

d−X(t) = X(t) − u(t)

S0(t)
dS0(t) + u(t)

S1(t)
d−S1(t)

= X(t)r(t) dt + u(t)

[
(
μ(t) − r(t)

)
dt + σ0(t) dB−(t)

+
∫

R0

γ (t, z)Ñ
(
d−t, dz

)
]

, t ∈ [0, T ], (7.58)

X(0) = x > 0. (7.59)

By choosing S0(·) as a numeraire, we can, without loss of generality, assume that

r(t) = 0 (7.60)

from now on. Then (7.58) and (7.59) simplify to

{
d−X(t) = u(t)[μ(t) dt + σ0(t) dB−(t) + ∫

R0
γ (t, z)Ñ(d−t, dz)],

X(0) = x > 0.
(7.61)
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This is a controlled Itô–Lévy process of the type discussed in Sect. 7.4, and we
can apply the results of that section to the problem of the insider to maximize the
expected utility of the terminal wealth, i.e., to find ΦG(x) and u∗ ∈ AG such that

ΦG(x) = sup
u∈AG

E
[
U

(
X(u)(T )

)] = E
[
U

(
X(u∗)(T )

)]
, (7.62)

where U : R+ → R is a given utility function, assumed to be concave, strictly in-
creasing, and C1. In this case, the processes K(t),L(t),M(t), and R(t, z), given
respectively by (7.26), (7.39), (7.40), and (7.41), take the form

K(t) = U ′(X(T )
)
, (7.63)

L(t) = U ′(X(T )
)
[

μ(t) + Dt+σ0(t) +
∫

R0

Dt+,zγ (t, z)ν(dz)

]

+
∫

R0

Dt,zU
′(X(T )

)[
γ (t, z) + Dt+,zγ (t, z)

]
ν(dz)

+ DtU
′(X(T )

)
σ0(t), (7.64)

M(t) = U ′(X(T )
)
σ0(t), (7.65)

R(t, z) = {
U ′(X(T )

) + Dt,zU
′(X(T )

)}{
γ (t, z) + Dt+,zγ (t, z)

}
. (7.66)

7.6.1 Case Gt = FGt ,Gt ⊃ [0, t]. See (7.45)

In this case, Gt satisfies conditions (7.42) and (7.43). Therefore, Theorem 7.18 of
Sect. 7.4 gives the following:

Theorem 7.26 Suppose that P {λ{t ∈ [0, T ];σ0(t) �= 0} > 0} > 0, where λ denotes
the Lebesgue measure on R and that Gt is given by (7.45). Then, there does not exist
an optimal portfolio u∗ ∈ AG for the insider’s portfolio problem (7.62).

Proof Suppose that an optimal portfolio exists. Then we have seen that in either
case, the conclusion is that

E
[
L(t)

∣
∣Gt

] = E
[
M(t)

∣
∣Gt

] = E
[
R(t, z)

∣
∣Gt

] = 0

for a.a. t ∈ [0, T ], z ∈ R0. In particular,

E
[
M(t)

∣
∣Gt

] = E
[
U ′(X(T )

)∣
∣Gt

]
σ0(t) = 0 for a.a. t ∈ [0, T ].

Since U ′ > 0, this contradicts our assumption about U . Hence, an optimal portfolio
cannot exist. �
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Remark 7.27 In the case that Gt = Gi
t , i = 1 or i = 3, it is known that B(·) is not

a semimartingale with respect to G = {Gt }0≤t≤T , and hence an optimal portfolio
cannot exist, by Theorem 3.8 in [3] and Theorem 15 in [7]. It follows that S1(·) is
not a G-semimartingale either, and hence we can even deduce that the market has
an arbitrage for the insider in this case, by Theorem 7.2 in [5].

7.6.2 Case Gt = Ft ∨ σ(B(T )). See (7.51)

In this case, Gt is not D-commutable (see Remark 7.19). Therefore we apply results
from Sect. 7.5.2. We have seen that

E
[
d−B

∣
∣Gt−

] = B(T ) − B(t)

T − t
dt

(Corollary 7.24). From this we have the following:

Theorem 7.28 Assume that μ(t) = μ0, σ0(t) = σ0, and γ (t, z) = 0 and that condi-
tions in Theorem 7.21 hold. In addition, suppose that

1. E[M(t)|Gt−] ∈ M
B
1,2,

2. limt↑T E[|Dt+E[M(t)|Gt−]|] < ∞,
3. limt↑T E[|L(t)|] < ∞.

Then, there does not exist a critical point of the performance functional J (u)

in (7.3).

Proof Assume that there is a critical point of the performance functional J (u)

in (7.3). It follows from Theorems 7.14, 7.21, and 7.22 that (7.47) holds. Replacing
K(t),L(t), and M(t) by their given expressions in (7.63), (7.64), and (7.65), (7.47)
becomes

0 = E
[
μ0U

′(X(T )
) + σ0DtU

′(X(T )
)∣
∣Gt−

] + E
[
U ′(X(T )

)
σ0

∣
∣Gt−

]B(T ) − B(t)

T − t

− Dt+E
[
σ0U

′(X(T )
)∣
∣Gt−

]
for a.a. t. (7.67)

Taking the limit as t ↑ T , the second term in (7.67) goes to ∞. Therefore, there is
no critical point for the performance functional J (u) in (7.3). �

Remark 7.29 This result is a generalization of a result in [14], where the same con-
clusion was obtained in the special case where

U(x) = ln(x).

www.TechnicalBooksPDF.com



7 A General Maximum Principle for Anticipative Stochastic Control 207

7.7 Application to Optimal Insider Consumption

Suppose that we have a cash flow X(t) = X(u)(t) given by
{

dX(t) = (μ(t) − u(t)) dt + σ(t) d−B(t) + ∫
R0

θ(t, z)Ñ(d−t, dz),

X(0) = x ∈ R.
(7.68)

Here μ(t), σ (t), and θ(t, z) are given G-predictable processes, and u(t) ≥ 0 is our
consumption rate, assumed to be adapted to a given insider filtration G = {Gt }0≤t≤T ,
where Ft ⊂ Gt for all t . Let f (t, u,ω); t ∈ [0, T ], u ∈ R,ω ∈ Ω , be a given FT -
measurable utility process. Assume that u → f (t, u,ω) is strictly increasing, con-
cave, and C1 for a.a. (t,ω).

Let g(x,ω);x ∈ R,ω ∈ Ω , be a given FT -measurable random variable for
each x. Assume that x → g(x,ω) is concave for a.a. ω. Define the performance
functional J by

J (u) = E

[∫ T

0
f

(
t, u(t),ω

)
dt + g

(
X(u)(T ),ω

)
]

; u ∈ AG, u ≥ 0. (7.69)

Note that u → J (u) is concave, so u = û maximizes J (u) if and only if û is a critical
point of J (u).

Theorem 7.30 (Optimal insider consumption I) û is an optimal insider consump-
tion rate for the performance functional J in (7.69) if and only if

E

[
∂

∂u
f

(
t, û(t),ω

)
∣
∣
∣
∣Gt

]

= E
[
g′(X(̂u)(T ),ω

)∣
∣Gt

]
. (7.70)

Proof In this case, we have

K(t) = g′(X(u)(T )
)
,

L(t) = −g′(X(u)(T )
) + ∂

∂u
f

(
t, û(t)

)
,

M(t) = R(t, z) = 0.

Therefore, Theorem 7.14 gives û is a critical point for J (u) if and only if

0 = E
[
L(t)

∣
∣Gt

] = E

[
∂

∂u
f

(
t, û(t)

)
∣
∣
∣
∣Gt

]

+ E
[−g′(X(̂u)(T )

)∣
∣Gt

]
. �

Since X(̂u)(T ) depends on û, (7.70) does not give the value of û(t) directly.
However, in some special cases, û can be found explicitly:

Corollary 7.31 (Optimal insider consumption II) Assume that

g(x,ω) = λ(ω)x (7.71)
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for some GT -measurable random variable λ > 0.
Then the optimal consumption rate û(t) is given by

E

[
∂

∂u
f (t, u,ω)

∣
∣
∣
∣Gt

]

u=û(t)

= E[λ|Gt ]. (7.72)

Thus, we see that an optimal consumption rate exists for any given insider infor-
mation filtration {Gt }0≤t≤T . It is not necessary to be in a semimartingale setting.

Another example in the same direction is the following:

Theorem 7.32 (Complete future information) Suppose that we have complete fu-
ture information, i.e.,

Gt = FT for all t ∈ [0, T ]. (7.73)

Suppose that we have the exponential utilities, i.e.,

f (t, u,ω) = −K1(t,ω)e−αu, g(x,ω) = −K2(ω)e−αx (7.74)

for some measurable process K1(t,ω) > 0, some FT -measurable random variable
K2(ω) > 0, and some constant α > 0.

Then the optimal consumptions rate û(t), if it exists, satisfies the equation

û(t) = 1

α
ln

(
K1(t)

K2

)

+ X(0)(T ) −
∫ T

0
û(s) ds, (7.75)

where

X(0)(T ) = x +
∫ T

0
μ(s) ds +

∫ T

0
σ(s) dB(s) +

∫ T

0

∫

R0

θ(s, z)Ñ(ds, dz)

is the terminal wealth when there is no consumption.
In particular, if K1(t) = K1 does not depend on t , then û(t) = û does not depend

on t , and we get

û(t) = û = 1

1 + T

(
1

α
ln

(
K1

K2

)

+ X(0)(T )

)

; t ∈ [0, T ]. (7.76)

Proof By (7.70) we get

−αK1(t)e
−αû(t) = −αK2e

−αX(T )

or

û(t) = 1

α
ln

(
K1(t)

K2

)

+ X(T ) = û(t) = 1

α
ln

(
K1(t)

K2

)

+ X(0)(T ) −
∫ T

0
û(s) ds,

which proves (7.75.) If K1(t) = K1 does not depend on t , then by (7.75), û(t) = u(t)

does not depend on t either, and (7.76) follows. �
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For related results (based on a different method) on optimal insider consumption,
see [22].

Acknowledgement We thank José Manuel Corcuera for his valuable comments.

Appendix: Proof of Theorem 7.13

Proof 1. Since û ∈ AG is a critical point for J (u), there exists a δ > 0 as in (7.24)
for all bounded β ∈ AG. Thus,

0 = d

dy
J (̂u + yβ)

∣
∣
∣
∣
y=0

= E

[∫ T

0

{
∂

∂x
f

(
t,X(t), u(t)

)
Ŷ (t) + ∂

∂u
f

(
t,X(t), u(t)

)
β(t)

}

dt

+ g′(X(T )
)
Ŷ (T )

]

, (7.77)

where Ŷ = Y û
β is as defined in (7.25).

We study the two summands separately. By Corollaries 7.5 and 7.12 and the
product rule, we get

E
[
g′(X(T )

)
Y(T )

]

= E

[

g′(X(T )
)
(∫ T

0

{
∂b(t)

∂x
Y (t) + ∂b(t)

∂u
β(t)

}

dt

+
∫ T

0

{
∂σ (t)

∂x
Y (t) + ∂σ (t)

∂u
β(t)

}

d−B(t)

+
∫ T

0

∫

R0

{
∂θ(t)

∂x
Y (t) + ∂θ(t)

∂u
β(t)

}

Ñ
(
dz, d−t

)
)]

= E

[∫ T

0
g′(X(T )

)
{

∂b(t)

∂x
Y (t) + ∂b(t)

∂u
β(t)

}

dt

]

+ E

[∫ T

0
Dtg

′(X(T )
)
{

∂σ (t)

∂x
Y (t) + ∂σ (t)

∂u
β(t)

}

dt

]

+ E

[∫ T

0
g′(X(T )

)
Dt+

(
∂σ (t)

∂x
Y (t) + ∂σ (t)

∂u
β(t)

)

dt

]

+ E

[∫ T

0

∫

R0

Dt,zg
′(X(T )

)
{

∂θ(t)

∂x
Y (t) + ∂θ(t)

∂u
β(t)

}

ν(dz) dt

]
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+ E

[∫ T

0

∫

R0

{
g′(X(T )

) + Dt,zg
′(X(T )

)}

× Dt+,z

(
∂θ(t)

∂x
Y (t) + ∂θ(t)

∂u
β(t)

)

ν(dz) dt

]

= E

[∫ T

0

{

g′(X(T )
)∂b(t)

∂x
+ Dtg

′(X(T )
)∂σ (t)

∂x

+
∫

R0

Dt,zg
′(X(T )

)∂θ(t)

∂x
ν(dz)

}

Y(t) dt

]

+ E

[∫ T

0

{

g′(X(T )
)∂b(t)

∂u
+ Dtg

′(X(T )
)∂σ (t)

∂u

+
∫

R0

Dt,zg
′(X(T )

)∂θ(t)

∂u
ν(dz)

}

β(t) dt

]

+ E

[∫ T

0
g′(X(T )

)
Dt+

∂σ (t)

∂x
Y (t) dt

]

+ E

[∫ T

0
g′(X(T )

)∂σ (t)

∂x
Dt+Y(t) dt

]

+ E

[∫ T

0
g′(X(T )

)
Dt+

∂σ (t)

∂u
β(t) dt

]

+ E

[∫ T

0
g′(X(T )

)∂σ (t)

∂u
Dt+β(t) dt

]

+ E

[∫ T

0

∫

R0

{
g′(X(T )

) + Dt,zg
′(X(T )

)}
Dt+,z

∂θ(t)

∂x
Y (t)ν(dz) dt

]

+ E

[∫ T

0

∫

R0

{
g′(X(T )

) + Dt,zg
′(X(T )

)}
{

∂θ(t)

∂x
+ Dt+,z

∂θ(t)

∂x

}

× Dt+,zY (t)ν(dz) dt

]

+ E

[∫ T

0

∫

R0

{
g′(X(T )

) + Dt,zg
′(X(T )

)}
Dt+,z

∂θ(t)

∂u
β(t)ν(dz) dt

]

+ E

[∫ T

0

∫

R0

{
g′(X(T )

) + Dt,zg
′(X(T )

)}
{

∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

}

× Dt+,zβ(t)ν(dz) dt

]

= E

[∫ T

0

{

g′(X(T )
)
(

∂b(t)

∂x
+ Dt+

∂σ (t)

∂x
+

∫

R0

Dt+,z

∂θ(t)

∂x
ν(dz)

)
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+ Dtg
′(X(T )

)∂σ (t)

∂x

+
∫

R0

Dt,zg
′(X(T )

)
(

∂θ(t)

∂x
+ Dt+,z

∂θ(t)

∂x

)

ν(dz)

}

Y(t) dt

]

+ E

[∫ T

0

{

g′(X(T )
)
(

∂b(t)

∂u
+ Dt+

∂σ (t)

∂u
+

∫

R0

Dt+,z

∂θ(t)

∂u
ν(dz)

)

+ Dtg
′(X(T )

)∂σ (t)

∂u

+
∫

R0

Dt,zg
′(X(T )

)
(

∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

)

ν(dz)

}

β(t) dt

]

+ E

[∫ T

0
g′(X(T )

)∂σ (t)

∂x
Dt+Y(t) dt

]

+ E

[∫ T

0
g′(X(T )

)∂σ (t)

∂u
Dt+β(t) dt

]

+ E

[∫ T

0

∫

R0

{
g′(X(T )

) + Dt,zg
′(X(T )

)}
{

∂θ(t)

∂x
+ Dt+,z

∂θ(t)

∂x

}

× Dt+,zY (t)ν(dz) dt

]

+ E

[∫ T

0

∫

R0

{
g′(X(T )

) + Dt,zg
′(X(T )

)}
{

∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

}

× Dt+,zβ(t)ν(dz) dt

]

.

Similarly, we have using both Fubini and duality theorems,

E

[∫ T

0

∂

∂x
f (t)Y (t) dt

]

= E

[∫ T

0

∂

∂x
f (t)

(∫ t

0

{
∂b(s)

∂x
Y (s) + ∂b(s)

∂u
β(s)

}

ds

+
∫ t

0

{
∂σ (s)

∂x
Y (s) + ∂σ (s)

∂u
β(s)

}

d−B(s)

+
∫ t

0

∫

R0

{
∂θ(s)

∂x
Y (s) + ∂θ(s)

∂u
β(s)

}

Ñ
(
dz, d−s

)
)

dt

]

= E

[∫ T

0

(∫ t

0

∂f (t)

∂x

{
∂b(s)

∂x
Y (s) + ∂b(s)

∂u
β(s)

}

ds

)

dt

]
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+ E

[∫ T

0

(∫ t

0
Ds

∂f (t)

∂x

{
∂σ (s)

∂x
Y (s) + ∂σ (s)

∂u
β(s)

}

ds

)

dt

]

+ E

[∫ T

0

(∫ t

0

∂f (t)

∂x
Ds+

{
∂σ (s)

∂x
Y (s) + ∂σ (s)

∂u
β(s)

}

ds

)

dt

]

+ E

[∫ T

0

(∫ t

0

∫

R0

Ds,z
∂f (t)

∂x

{
∂θ(s)

∂x
Y (s) + ∂θ(s)

∂u
β(s)

}

ν(dz) ds

)

dt

]

+ E

[∫ T

0

(∫ t

0

∫

R0

{
∂f (t)

∂x
+ Ds,z

∂f (t)

∂x

}

× Ds+,z

(
∂θ(s)

∂x
Y (s) + ∂θ(s)

∂u
β(s)

)

ν(dz) ds

)

dt

]

= E

[∫ T

0

(∫ T

s

∂f (t)

∂x
dt

){
∂b(s)

∂x
Y (s) + ∂b(s)

∂u
β(s)

}

ds

]

+ E

[∫ T

0

(∫ T

s

Ds
∂f (t)

∂x
dt

){
∂σ (s)

∂x
Y (s) + ∂σ (s)

∂u
β(s)

}]

+ E

[∫ T

0

(∫ T

s

∂f (t)

∂x
dt

)

Ds+
{

∂σ (s)

∂x
Y (s) + ∂σ (s)

∂u
β(s)

}

ds

]

+ E

[∫ T

0

∫

R0

(∫ T

s

Ds,z
∂f (t)

∂x
dt

){
∂θ(s)

∂x
Y (s) + ∂θ(s)

∂u
β(s)

}

ν(dz) ds

]

+ E

[∫ T

0

∫

R0

(∫ T

s

{
∂f (t)

∂x
+ Ds,z

∂f (t)

∂x

}

dt

)

× Ds+,z

{
∂θ(s)

∂x
Y (s) + ∂θ(s)

∂u
β(s)

}

ν(dz) ds

]

.

Changing the notation s → t , this becomes

= E

[∫ T

0

(∫ T

t

∂f (s)

∂x
ds

){
∂b(t)

∂x
Y (t) + ∂b(t)

∂u
β(t)

}

dt

]

+ E

[∫ T

0

(∫ T

t

Dt
∂f (s)

∂x
ds

){
∂σ (t)

∂x
Y (t) + ∂σ (t)

∂u
β(t)

}]

+ E

[∫ T

0

∫

R0

(∫ T

t

Dt,z

∂f (s)

∂x
ds

){
∂θ(t)

∂x
Y (t) + ∂θ(t)

∂u
β(t)

}

ν(dz) dt

]

+ E

[∫ T

0

(∫ T

t

∂f (s)

∂x
ds

)

Dt+
{

∂σ (t)

∂x
Y (t) + ∂σ (t)

∂u
β(t)

}

dt

]

+ E

[∫ T

0

∫

R0

(∫ T

t

{
∂f (s)

∂x
+ Dt,z

∂f (s)

∂x

}

ds

)
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×
(

Dt+,z

{
∂θ(t)

∂x
Y (t) + ∂θ(t)

∂u
β(t)

})

ν(dz) dt

]

= E

[∫ T

0

{(∫ T

t

∂f (s)

∂x
ds

)(
∂b(t)

∂x
+ Dt+

∂σ (t)

∂x
+

∫

R0

Dt+,z

∂θ(t)

∂x
ν(dz)

)

+
(∫ T

t

Dt

∂f (s)

∂x
ds

)
∂σ (t)

∂x

+
∫

R0

(∫ T

t

Dt,z

∂f (s)

∂x
ds

)(
∂θ(t)

∂x
+ Dt+,z

∂θ(t)

∂x

)

ν(dz)

}

Y(t) dt

]

+ E

[∫ T

0

{(∫ T

t

∂f (s)

∂x
ds

)(
∂b(t)

∂u
+ Dt+

∂σ (t)

∂u
+

∫

R0

Dt+,z
∂θ(t)

∂u
ν(dz)

)

+
(∫ T

t

Dt
∂f (s)

∂x
ds

)
∂σ (t)

∂u

+
∫

R0

(∫ T

t

Dt,z

∂f (s)

∂x
ds

)(
∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

)

ν(dz)

}

β(t) dt

]

+ E

[∫ T

0

(∫ T

t

∂f (s)

∂x
ds

)
∂σ (t)

∂x
Dt+Y(t) dt

]

+ E

[∫ T

0

(∫ T

t

∂f (s)

∂x
ds

)
∂σ (t)

∂u
Dt+β(t) dt

]

+ E

[∫ T

0

∫

R0

{(∫ T

t

∂f (s)

∂x
+ Dt,z

∂f (s)

∂x
ds

)}{
∂θ(t)

∂x
+ Dt+,z

∂θ(t)

∂x

}

× Dt+,zY (t)ν(dz) dt

]

+ E

[∫ T

0

∫

R0

{(∫ T

t

∂f (s)

∂x
+ Dt,z

∂f (s)

∂x
ds

)}{
∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

}

× Dt+,zβ(t)ν(dz) dt

]

. (7.78)

Recall that

K(t) := g′(X(T )
) +

∫ T

t

∂

∂x
f

(
s,X(s), u(s)

)
ds,

and combining (7.33)–(7.78), it follows that

0 = E

[∫ T

0

{

K(t)

(
∂b(t)

∂x
+ Dt+

∂σ (t)

∂x
+

∫

R0

Dt+,z

∂θ(t)

∂x
ν(dz)

)
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+ DtK(t)
∂σ (t)

∂x

+
∫

R0

Dt,zK(t)

(
∂θ(t)

∂x
+ Dt+,z

∂θ(t)

∂x

)

ν(dz)

}

Y(t) dt

]

+ E

[∫ T

0

{

K(t)

(
∂b(t)

∂u
+ Dt+

∂σ (t)

∂u
+

∫

R0

Dt+,z

∂θ(t)

∂u
ν(dz)

)

+ DtK(t)
∂σ (t)

∂u

+
∫

R0

Dt,zK(t)

(
∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

)

ν(dz) + ∂f (t)

∂u

}

β(t) dt

]

+ E

[∫ T

0
K(t)

∂σ (t)

∂x
Dt+Y(t) dt

]

+ E

[∫ T

0
K(t)

∂σ (t)

∂u
Dt+β(t) dt

]

+ E

[∫ T

0

∫

R0

{
K(t) + Dt,zK(t)

}
{

∂θ(t)

∂x
+ Dt+,z

∂θ(t)

∂x

}

× Dt+,zY (t)ν(dz) dt

]

+ E

[∫ T

0

∫

R0

{
K(t) + Dt,zK(t)

}
{

∂θ(t)

∂u
+ Dt+,z

∂θ(t)

∂u

}

× Dt+,zβ(t)ν(dz) dt

]

. (7.79)

We observe that AG contains all βα given as βα(s) := αχ[t,t+h](s) for some t, h ∈
(0, T ), t +h ≤ T , where α = α(ω) is bounded and Gt -measurable. Then Y (βα)(s) =
0 for 0 ≤ s ≤ t , and hence (7.79) becomes

A1 + A2 + A3 + A4 + A5 + A6 = 0, (7.80)

where

A1 = E

[∫ T

t

{

K(t)

(
∂b(s)

∂x
+ Ds+

∂σ (s)

∂x
+

∫

R0

Ds+,z
∂θ(s)

∂x
ν(dz)

)

+
∫

R0

Ds,zK(s)

(
∂θ(s)

∂x
+ Ds+,z

∂θ(s)

∂x

)

ν(dz) + DsK(s)
∂σ (s)

∂x

}

× Y (βα)(s) ds

]

,

www.TechnicalBooksPDF.com



7 A General Maximum Principle for Anticipative Stochastic Control 215

A2 = E

[∫ t+h

t

{

K(t)

(
∂b(s)

∂u
+ Ds+

∂σ (s)

∂u
+

∫

R0

Ds+,z
∂θ(s)

∂u
ν(dz)

)

+ ∂f (s)

∂u

+
∫

R0

Ds,zK(s)

(
∂θ(s)

∂u
+ Ds+,z

∂θ(s)

∂u

)

ν(dz) + DsK(s)
∂σ (s)

∂u

}

α ds

]

,

A3 = E

[∫ T

t

K(s)
∂σ (s)

∂x
Ds+Y (βα)(s) ds

]

,

A4 = E

[∫ t+h

t

K(s)
∂σ (s)

∂u
Ds+α ds

]

,

A5 = E

[∫ T

t

∫

R0

{
K(s) + Ds,zK(s)

}
(

∂θ(s)

∂x
+ Ds+,z

∂θ(s)

∂x

)

× ν(dz)Ds+,zY
(βα)(s) ds

]

,

A6 = E

[∫ t+h

t

∫

R0

{
K(s) + Ds,zK(s)

}
(

∂θ(s)

∂u
+ Ds+,z

∂θ(s)

∂u

)

× ν(dz)Ds+,zα ds

]

.

Note that by the definition of Y with Y(s) = Y (βα)(s) and s ≥ t + h, the process
Y(s) follows the dynamics

dY (s) = Y
(
s−)

[
∂b

∂x
(s) ds + ∂σ

∂x
(s) d−B(s)

+
∫

R0

∂θ

∂x
(s, z)Ñ

(
dz, d−s

)
]

(7.81)

for s ≥ t + h with initial condition Y(t + h) at time t + h. By Itô’s formula for
forward integral, this equation can be solved explicitly, and we get

Y(s) = Y(t + h)G(t + h, s), s ≥ t + h, (7.82)

where, in general, for s ≥ t ,

G(t, s) := exp

(∫ s

t

{
∂b

∂x

(
r,X(r), u(r),ω

) − 1

2

(
∂σ

∂x

)2(
r,X(r), u(r),ω

)
}

dr

+
∫ s

t

∂σ

∂x

(
r,X(r), u(r),ω

)
dB−(r)

+
∫ s

t

∫

R0

{

ln

(

1 + ∂θ

∂x

(
r,X(r), u(r),ω

)
)
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− ∂θ

∂x

(
r,X(r), u(r),ω

)
}

ν(dz) dt

+
∫ s

t

∫

R0

{

ln

(

1 + ∂θ

∂x

(
r,X

(
r−)

, u
(
r−)

,ω
)
)}

Ñ
(
dz, d−r

)
)

.

Note that G(t, s) does not depend on h, but Y(s) does. Defining H0 as in (7.27), it
follows that

A1 = E

[∫ T

t

∂H0

∂x
(s)Y (s) ds

]

.

Differentiating with respect to h at h = 0, we get

d

dh
A1

∣
∣
∣
∣
h=0

= d

dh
E

[∫ t+h

t

∂H0

∂x
(s)Y (s) ds

]

h=0

+ d

dh
E

[∫ T

t+h

∂H0

∂x
(s)Y (s) ds

]

h=0
.

Since Y(t) = 0, we see that

d

dh
E

[∫ t+h

t

∂H0

∂x
(s)Y (s) ds

]

h=0
= 0.

Therefore, by (7.82),

d

dh
A1

∣
∣
∣
∣
h=0

= d

dh
E

[∫ T

t+h

∂H0

∂x
(s)Y (t + h)G(t + h, s) ds

]

h=0

=
∫ T

t

d

dh
E

[
∂H0

∂x
(s)Y (t + h)G(t + h, s)

]

h=0
ds

=
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)Y (t + h)

]

h=0
ds,

where Y(t + h) is given by

Y(t + h) =
∫ t+h

t

Y
(
r−)

[
∂b

∂x
(r) dr + ∂σ

∂x
(r) d−B(r)

+
∫

R0

∂θ

∂x
(r, z)Ñ

(
dz, d−r

)
]

+ α

∫ t+h

t

[
∂b

∂u
(r) dr + ∂σ

∂u
(r) d−B(r) +

∫

R0

∂θ

∂u
(r, z)Ñ

(
dz, d−r

)
]

.

Therefore, by the two preceding equalities,

d

dh
A1

∣
∣
∣
∣
h=0

= A1,1 + A1,2,
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where

A1,1 =
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)α

∫ t+h

t

{
∂b

∂u
(r) dr + ∂σ

∂u
(r) d−B(r)

+
∫

R0

∂θ

∂u
(r, z)Ñ

(
dz, d−r

)
}]

h=0
ds,

and

A1,2 =
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)

∫ t+h

t

Y
(
r−)

{
∂b

∂x
(r) dr + ∂σ

∂x
(r) d−B(r)

+
∫

R0

∂θ

∂x
(r, z)Ñ

(
dz, d−r

)
}]

h=0
ds.

Applying again the duality formula, we have

A1,1 =
∫ T

t

d

dh
E

[

α

∫ t+h

t

{
∂b

∂u
(r)F (t, s) + ∂σ

∂u
(r)DrF (t, s)

+ F(t, s)Dr+
∂σ

∂u
(r)

+
∫

R0

{(
∂θ

∂u
(r, z) + Dr+,z

∂θ

∂u
(r, z)

)

Dr,zF (t, s)

+ Dr+,z

∂θ

∂u
(r, z)F (t, s)

}

ν(dz)

}

dr

]

h=0
ds

=
∫ T

t

E

[

α

{(
∂b

∂u
(t) + Dt+

∂σ

∂u
(t) +

∫

R0

Dt+,z

∂θ

∂u
(t, z)ν(dz)

)

F(t, s)

+ ∂σ

∂u
(t)DtF (t, s) +

∫

R0

(
∂θ

∂u
(t, z) + Dt+,z

∂θ

∂u
(t, z)

)

× Dt,zF (t, s)ν(dz)

}]

ds,

where we have put

F(t, s) = ∂H0

∂x
(s)G(t, s).

Since Y(t) = 0, we see that

A1,2 = 0.

We conclude that

d

dh
A1

∣
∣
∣
∣
h=0

= A1,1. (7.83)
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Moreover, we see that

d

dh
A2

∣
∣
∣
∣
h=0

= E

[{

K(t)

(
∂b(t)

∂u
+ Dt+

∂σ (t)

∂u
+

∫

R0

Dt+,z

∂θ(t, z)

∂u
ν(dz)

)

+ ∂f (t)

∂u
+ DtK(t)

∂σ (t, z)

∂u

+
∫

R0

Dt,zK(t)

(
∂θ(t, z)

∂u
+ Dt+,z

∂θ(t, z)

∂u

)

ν(dz)

}

α

]

, (7.84)

d

dh
A4

∣
∣
∣
∣
h=0

= E

[

K(t)
∂σ (t)

∂u
Dt+α

]

, (7.85)

d

dh
A6

∣
∣
∣
∣
h=0

= E

[∫

R0

{
K(t) + Dt,zK(t)

}
(

∂θ(t, z)

∂u
+ Dt+,z

∂θ(t, z)

∂u

)

× ν(dz)Dt+,zα

]

. (7.86)

On the other hand, by differentiating A3 with respect to h at h = 0, we get

d

dh
A3

∣
∣
∣
∣
h=0

= d

dh
E

[∫ t+h

t

K(s)
∂σ (s)

∂x
Ds+Y(s) ds

]

h=0

+ d

dh
E

[∫ T

t+h

K(s)
∂σ (s)

∂x
Ds+Y(s) ds

]

h=0
.

Since Y(t) = 0, we see that

d

dh
A3

∣
∣
∣
∣
h=0

= d

dh
E

[∫ T

t+h

K(s)
∂σ (s)

∂x
Ds+

(
Y(t + h)G(t + h, s)

)
ds

]

h=0

=
∫ T

t

d

dh
E

[

K(s)
∂σ (s)

∂x
Ds+

(
Y(t + h)G(t + h, s)

)
]

h=0
ds

=
∫ T

t

d

dh
E

[

K(s)
∂σ (s)

∂x

(
Ds+G(t + h, s) · Y(t + h)

+ Ds+Y(t + h) · G(t + h, s)
)
]

h=0
ds

=
∫ T

t

d

dh
E

[

K(s)
∂σ (s)

∂x

(
Y(t + h)Ds+G(t, s)

+ Ds+Y(t + h)G(t, s)
)
]

h=0
ds.
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Using the definition of p̂ and Ĥ given respectively by (7.36) and (7.35) in the theo-
rem, it follows by (7.80) that

E

[
∂

∂u
Ĥ

(
t, X̂(t), û(t)

)
∣
∣
∣
∣Gt

]

+ E[A] = 0 a.e. in (t,ω), (7.87)

where

A = d

dh
A3

∣
∣
∣
∣
h=0

+ d

dh
A4

∣
∣
∣
∣
h=0

+ d

dh
A5

∣
∣
∣
∣
h=0

+ d

dh
A6

∣
∣
∣
∣
h=0

. (7.88)

2. Conversely, suppose that there exists û ∈ AG such that (7.34) holds. Then
by reversing the previous arguments, we obtain that (7.80) holds for all βα(s) :=
αχ[t,t+h](s) ∈ AG, where

A1 = E

[∫ T

t

{

K(t)

(
∂b(s)

∂x
+ Ds+

∂σ (s)

∂x
+

∫

R0

Ds+,z

∂θ(s)

∂x
ν(dz)

)

+
∫

R0

Ds,zK(s)

(
∂θ(s)

∂x
+ Ds+,z

∂θ(s)

∂x

)

ν(dz)

+ DsK(s)
∂σ (s)

∂x

}

Y (βα)(s) ds

]

,

A2 = E

[∫ t+h

t

{

K(t)

(
∂b(s)

∂u
+ Ds+

∂σ (s)

∂u
+

∫

R0

Ds+,z

∂θ(s)

∂u
ν(dz)

)

+ ∂f (s)

∂u

+
∫

R0

Ds,zK(s)

(
∂θ(s)

∂u
+ Ds+,z

∂θ(s)

∂u

)

ν(dz) + DsK(s)
∂σ (s)

∂u

}

α ds

]

,

A3 = E

[∫ T

t

K(s)
∂σ (s)

∂x
Ds+Y (βα)(s) ds

]

,

A4 = E

[∫ t+h

t

K(s)
∂σ (s)

∂u
Ds+α ds

]

,

A5 = E

[∫ T

t

∫

R0

{
K(s) + Ds,zK(s)

}
(

∂θ(s)

∂x
+ Ds+,z

∂θ(s)

∂x

)

× ν(dz)Ds+,zY
(βα)(s) ds

]

,

A6 = E

[∫ t+h

t

∫

R0

{
K(s) + Ds,zK(s)

}
(

∂θ(s)

∂u
+ Ds+,z

∂θ(s)

∂u

)

× ν(dz)Ds+,zα ds

]

for some t, h ∈ (0, T ), t + h ≤ T , where α = α(ω) is bounded and Gt -measurable.
Hence, these equalities hold for all linear combinations of βα . Since all bounded
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β ∈ AG can be approximated pointwise boundedly in (t,ω) by such linear combi-
nations, it follows that (7.80) holds for all bounded β ∈ AG. Hence, by reversing the
remaining part of the previous proof, we conclude that

d

dy
J1(̂u + yβ)

∣
∣
∣
∣
y=0

= 0 for all β,

and then û satisfies (7.33). �
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Chapter 8
Analyticity of the Wiener–Hopf Factors
and Valuation of Exotic Options in Lévy Models

Ernst Eberlein, Kathrin Glau, and Antonis Papapantoleon

Abstract This paper considers the valuation of exotic path-dependent options in
Lévy models, in particular options on the supremum and the infimum of the asset
price process. Using the Wiener–Hopf factorization, we derive expressions for the
analytically extended characteristic function of the supremum and the infimum of a
Lévy process. Combined with general results on Fourier methods for option pricing,
we provide formulas for the valuation of one-touch options, lookback options, and
equity default swaps in Lévy models.

Keywords Lévy processes · Wiener–Hopf factorization · Exotic options
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The ever-increasing sophistication of derivative products offered by financial in-
stitutions, together with the failure of traditional Gaussian models to describe the
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dynamics in the markets, has led to a quest for more realistic and flexible models. In
fact, one of the lessons from the current financial crisis is the following: the Gaussian
copula model is inappropriate to describe the interdependence between the tails of
asset returns because, among other pitfalls, the tail dependence coefficient is always
zero. Hence, this model cannot capture systemic risk.

In the search for appropriate alternatives, Lévy processes are playing a leading
role, either as models for financial assets themselves or as building blocks for mod-
els, e.g., in Lévy-driven stochastic volatility models or in affine models. The field of
Lévy processes has become popular in modern mathematical finance, and the inter-
est from academics and practitioners has led to inspiring and challenging questions.

Lévy processes are attractive for applications in mathematical finance because
they can describe some of the observed phenomena in the markets in a rather ad-
equate way. This is due to the fact that their sample paths may have jumps and
the generated distributions can be heavy-tailed and skewed. Another important im-
provement concerns the famous smile effect. See [17] and [19] for an extensive em-
pirical justification of the non-Gaussianity of asset returns and the appropriateness
of (generalized hyperbolic) Lévy processes. For an overview of the application of
Lévy processes in finance, the interested reader is referred to the textbooks of Cont
and Tankov [14], Schoutens [46], and the collection edited by Kyprianou et al. [38].
There are, of course, several textbooks dealing with the theory of Lévy processes;
we mention [3, 9, 44], and [33], while the collection [8] contains an overview of the
application of Lévy processes in different areas of research, such as quantum field
theory and turbulence.

The application of Lévy processes in financial modeling, in particular for the
pricing and hedging of derivatives, has led to new challenges of both analytical
and numerical nature. In Lévy models simple closed-form valuation formulas are
typically not available even for plain vanilla European options, let alone for exotic
path-dependent options. The numerical methods which have been developed in the
classical Gaussian framework lead to completely new challenges in the context of
Lévy-driven models. These numerical methods can be classified roughly in three
areas: probabilistic numerical methods (Monte Carlo methods), deterministic nu-
merical methods (PIDE methods), and Fourier transform methods; for an excellent
survey of these methods, their applicability and limitations, we refer to [25].

This paper focuses on the application of Fourier transform methods for the valua-
tion of exotic path-dependent options, in particular options depending on the supre-
mum and the infimum of Lévy processes. The bulk of the literature on this latter
topic focuses on the numerical aspects. Our focus is on the analytical aspects. More
specifically, we show first that the Wiener–Hopf factorization of a Lévy process pos-
sesses an analytic extension, and then we prove that the Wiener–Hopf factorization
(viewed as a Laplace transform in time) can be inverted. These results allow us to
derive expressions for the extended characteristic function of the supremum and the
infimum of a Lévy process. This latter result, combined with general results on op-
tion pricing by Fourier methods (cf. [21]), allows us to derive pricing formulas for
lookback options, one-touch options, and equity default swaps in Lévy models.

Let us briefly comment on some papers where the Wiener–Hopf factorization is
used to price exotic options in Lévy models. Boyarchenko and Levendorskiı̌ [11] de-
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rive valuation formulas for barrier and one-touch options for driving Lévy processes
that belong to the class of so-called “regular Lévy processes of exponential type”
(RLPE); see also the book [12]. The results of these authors are based on the the-
ory of pseudodifferential operators. The numerics of this approach is pushed further
in [29, 30]. Avram et al. [4, 6], Kyprianou and Pistorius [35], Alili and Kyprianou
[2], and Levendorskiı̌ et al. [40] consider the valuation of American and Russian
options, either on a finite or an infinite time horizon. Jeannin and Pistorius [28] de-
velop methods for the computation of prices and Greeks for various Lévy models.
Central in their argumentation is the approximation of different Lévy models by the
class of “generalized hyper-exponential Lévy models” that have a tractable Wiener–
Hopf factorization. The same approach is also applied in [5] for the pricing of equity
default swaps in Lévy models.

The major open challenge in this field is the development of analytical expres-
sions for the Wiener–Hopf factors for general Lévy processes. In a remarkable
recent development, Hubalek and Kyprianou [26] generate a family of spectrally
negative Lévy processes with tractable Wiener–Hopf factors, using results from po-
tential theory for subordinators. These results were later extended in [36] and ap-
plied to problems in actuarial mathematics in [39]. Moreover, in two very recent pa-
pers, Kuznetsov [31, 32] introduces special families of Lévy processes such that the
Wiener–Hopf factors can be computed as infinite products over the roots of certain
transcendental equations. These families include processes with behavior similar to
the CGMY process, while the author shows that the numerical computation of the
infinite products can be performed quite efficiently.

This paper is structured as follows: In Sect. 8.2, we briefly review Lévy processes
and prove the analyticity of the characteristic function of the supremum. In Sect. 8.3,
we review the Wiener–Hopf factorization, prove its analytic extension and invert
it in time. In Sect. 8.4, we present some examples of popular Lévy models and
comment on the continuity of their laws. Finally, in Sect. 8.5, we derive valuation
formulas for lookback and one-touch options and for equity default swaps.

Important Remark This paper is intimately tied to, and intended to be read to-
gether with, the companion paper [21], which will be abbreviated EGP in the sequel.
In particular, we will make heavy use of the notation and results from that paper.

8.2 Lévy Processes

We start by fixing the notation that will be used throughout the paper and providing
some estimates on the exponential moments of a Lévy process. Then, we prove the
analytic extension of the characteristic function of the supremum and the infimum
of a Lévy process, sampled either at a fixed time or at an independent, exponentially
distributed time.
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8.2.1 Notation

Let B = (Ω, F ,F,P ) be a complete stochastic basis in the sense of [27, I.1.3],
where F = FT , 0 < T ≤ ∞, and F = (Ft )0≤t≤T . Let L = (Lt )0≤t≤T be a Lévy
process on this stochastic basis, i.e., L is a semimartingale with independent and
stationary increments (PIIS), and L0 = 0 a.s. We denote the triplet of predictable
characteristics of L by (B,C, ν) and the triplet of local characteristics by (b, c,λ);
using [27, II.4.20], the two triplets are related via

Bt(ω) = bt, Ct (ω) = ct, ν(ω;dt, dx) = λ(dx)dt.

We assume that the following condition is in force.

Assumption (EM) There exists a constant M > 1 such that
∫

{|x|>1}
euxλ(dx) < ∞ ∀u ∈ [−M,M].

The triplet of predictable characteristics of a PIIS determines the law of the
random variables; more specifically, for a Lévy process, we know from the Lévy–
Khintchine formula that

E
[
eiuLt

] = exp
(
t · κ(iu)

)
(8.1)

for all t ∈ [0, T ] and all u ∈ R, where the cumulant generating function is

κ(u) = ub + u2

2
c +

∫

R

(
eux − 1 − ux

)
λ(dx). (8.2)

Assumption (EM) entails that the Lévy process L is a special and exponentially
special semimartingale; hence the use of a truncation function can be and has been
omitted. Applying Theorem 25.3 in [44], we get that

E
[
euLt

]
< ∞ ∀u ∈ [−M,M], ∀t ∈ [0, T ].

Recall that for any stochastic process X, we denote by X the supremum and by
X the infimum process of X, respectively.

In the sequel, we will provide the proofs of the results for the supremum process.
The proofs for the infimum process can be derived analogously or using the duality
between the supremum and the infimum process; see the following remark.

Remark 8.1 Let L be a Lévy process with local characteristics (b, c, λ). The dual
of the Lévy process L, defined by L′ := −L, has the triplet of local characteristics
(b′, c′, λ′), where b′ = −b, c′ = c, and 1A(x) ∗ λ′ = 1A(−x) ∗ λ, A ∈ B(R \ {0}).
Moreover, we have that

Lt = inf
0≤s≤t

Ls = − sup
0≤s≤t

(−Ls) = −L′
t .
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8.2.2 Analytic Extension, Fixed-Time Case

In this section, we establish the existence of an analytic extension of the characteris-
tic function of the supremum and the infimum of a Lévy process, and derive explicit
bounds for the exponential moments of the supremum and infimum process.

The next lemma endows us with a link between the existence of exponential
moments of a measure � and the analytic extension of the characteristic function �̂.

Lemma 8.2 Let � be a measure on the space (R, B(R)). If
∫

eux�(dx) < ∞ for
all u ∈ [−a, b] with a, b ≥ 0, then the characteristic function �̂ has an extension
that is continuous on (−∞,∞)× i[−b, a] and is analytic in the interior of the strip
(−∞,∞) × i(−b, a). Moreover, �̂(u) = ∫

eiux�(dx) for all u ∈ C with 	(u) ∈
[−b, a].

Proof The function u 
→ eiux clearly extends to an entire function, and the extension

�̂(u) :=
∫

eiux�(dx)
(
u ∈ C with 	(u) ∈ [−b, a])

is well defined since
∣
∣eiux

∣
∣ = e−	(u)x ≤ e−ax1{x≤0} + ebx1{x>0} =: h(x)

for u ∈ C with 	(u) ∈ [−b, a], and we have that h ∈ L1(�) by assumption. More-
over, Lebesgue’s dominated convergence theorem yields that this extension is con-
tinuous.

We will prove the analyticity of �̂ in (−∞,∞) × i(−b, a) using the theorem of
Morera (see, for example, Theorem 10.17 in [43]). Let γ be a triangle in the open
set (−∞,∞) × i(−b, a); the theorems of Fubini and Cauchy immediately yield

∫

∂γ

�̂(u) du =
∫

∂γ

∫

eiux�(dx)du =
∫ ∫

∂γ

eiux du�(dx) = 0,

as u 
→ eiux is analytic for every fixed x ∈ R. Then, the analyticity of �̂ follows
from Morera’s theorem. For a justification of the application of Fubini’s theorem, it
is enough to note that

∫ ∫

∂γ

∣
∣eiux

∣
∣du�(dx) ≤

∫ ∫

∂γ

h(x) du�(dx) = 
(γ )

∫

h(x)�(dx) < ∞,

where 
(γ ) denotes the length of the curve ∂γ . �

Lemma 8.3 Let Y be a Lévy process and a special semimartingale with E[Yt ] = 0
for some and hence, for every t > 0. Then

E
[
eY ∗

t
] ≤ 8E

[
e|Yt |],

where Y ∗
t = sup0≤s≤t |Ys |.
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Proof Using that (Y ∗
t )n

n! is positive for every n ≥ 0 and the monotone convergence
theorem, we get

E
[
eY ∗

t
] = E

∞∑

n=0

(Y ∗
t )n

n! =
∞∑

n=0

E
(Y ∗

t )n

n! .

Now, Remark 25.19 in [44] yields

E
(
Y ∗

t

)n ≤ 8E|Yt |n for every n ≥ 1,

while for n = 0, the inequality holds trivially. Hence, we get

∞∑

n=0

E
(Y ∗

t )n

n! ≤ 8
∞∑

n=0

E
|Yt |n
n! = 8E

∞∑

n=0

|Yt |n
n! = 8E

[
e|Yt |].

�

Next, notice that under assumption (EM), we have that
∫

R

∣
∣eMx − 1 − Mx

∣
∣λ(dx) < ∞ and

∫

R

∣
∣e−Mx − 1 + Mx

∣
∣λ(dx) < ∞.

Let us introduce the following notation:

α(M) := M|b| + 1

2
cM2 +

∫

R

∣
∣eMx − 1 − Mx

∣
∣λ(dx) (8.3)

and

α(M) := M|b| + 1

2
cM2 +

∫

R

∣
∣e−Mx − 1 + Mx

∣
∣λ(dx). (8.4)

Lemma 8.4 Let L = (Lt )0≤t≤T be a Lévy process that satisfies assumption (EM).
Then we have the following estimates:

E
[
euLt

] ≤ E
[
eMLt

] ≤ 8C(t,M) < ∞ (u ≤ M)

and

E
[
e−uLt

] ≤ E
[
e−MLt

] ≤ 8C(t,M) < ∞ (u ≤ M),

where C(t,M) := etα(M) + etα(M).

Proof For u ≤ M , we have

euLt ≤ eMLt ,

since Lt = sup0≤s≤t Ls is nonnegative. Further, notice that

Lt = sup
0≤s≤t

[
bs + √

cWs + Ld
s

] ≤ sup
0≤s≤t

[√
cWs + Ld

s

] + sup
0≤s≤t

[bs],
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where Lt = bt +√
cWt +Ld

t denotes the canonical decomposition of L, with Brow-
nian motion W and a purely discontinuous martingale Ld = x ∗ (μ − ν). Let us
further denote

Ys := √
cWs + Ld

s .

The process Y is not only a martingale but also a Lévy process and a special semi-
martingale with local characteristics (0, c, λ). We have

Lt ≤ sup
0≤s≤t

Ys + |b|t ≤ Y ∗
t + |b|t,

and hence we get that

E
[
eMLt

] ≤ E
[
eM(Y ∗

t +|b|t)] = eM|b|tE
[
eMY ∗

t
] ≤ 8eM|b|tE

[
eM|Yt |], (8.5)

using Lemma 8.3 for the special semimartingale Z := MY , which is a Lévy process
satisfying E[Zt ] = 0 for every 0 ≤ t ≤ T .

Now it is sufficient to notice that

E
[
eM|Yt |] ≤ E

[
eMYt

] + E
[
e−MYt

]
, (8.6)

where Theorem 25.17 in [44] yields

E
[
eMYt

] = exp

(

t
cM2

2
+ t

∫

R

(
eMx − 1 − Mx

)
λ(dx)

)

≤ e(α(M)−M|b|)t ; (8.7)

similarly,

E
[
e−MYt

] ≤ e(α(M)−M|b|)t . (8.8)

Summarizing, we can conclude from (8.5)–(8.8) that

E
[
eMLt

] ≤ 8eM|b|t(e(α(M)−M|b|)t + e(α(M)−M|b|)t)

= 8
(
eα(M)t + eα(M)t

)

and

E
[
e−MLt

] ≤ 8
(
eα(M)t + eα(M)t

)
. �

A corollary of these results is the existence of an analytic continuation for the
characteristic function ϕLt

of the supremum, resp. ϕLt
of the infimum, of a Lévy

process.
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Corollary 8.5 Let L be a Lévy process that satisfies assumption (EM). Then, the
characteristic function ϕLt

of Lt , resp. ϕLt
of Lt , possesses a continuous extension

ϕLt
(z) =

∫

R

eizxPLt
(dx), resp. ϕLt

(z) =
∫

R

eizxPLt
(dx),

to the half-plane z ∈ {z ∈ C : −M ≤ 	z}, resp. z ∈ {z ∈ C : 	z ≤ M}, that is analytic
in the interior of the half-plane {z ∈ C : −M < 	z}, resp. {z ∈ C : 	z < M}.

Proof This is a direct consequence of Lemmas 8.2 and 8.4. �

Remark 8.6 One could derive the statement of Corollary 8.5 using the submulti-
plicativity of the exponential function and Theorem 25.18 in [44], see Lemma 5
in [37]. However, we will need the estimates of Lemma 8.4 in the following sec-
tions.

8.2.3 Analytic Extension, Exponential Time Case

The next step is to establish a relationship between the (analytic extension of the)
characteristic function of the supremum, resp. infimum, at a fixed time and at an in-
dependent and exponentially distributed time. Independent exponential times play
a fundamental role in the fluctuation theory of Lévy processes, since they enjoy a
property similar to infinity: the time left after an exponential time is again exponen-
tially distributed.

Let θ denote an exponentially distributed random variable with parameter q > 0,
independent of the Lévy process L. We denote by Lθ , resp. Lθ , the supremum, resp.
infimum, process of L sampled at θ , that is,

Lθ = sup
0≤u≤θ

Lu and Lθ = inf
0≤u≤θ

Lu.

Lemma 8.7 Let L = (Lt )0≤t≤T be a Lévy process that satisfies assumption (EM),
and let θ ∼ Exp(q) be independent of the process L.

If q > α(M) ∨ α(M), then the characteristic function ϕLθ
of Lθ possesses a

continuous extension

ϕLθ
(z) =

∫

R

eizxPLθ
(dx) = q

∫ ∞

0
e−qtE

[
eizLt

]
dt (8.9)

to the half-plane z ∈ {z ∈ C : −M ≤ 	z} that is analytic in the interior of the half-
plane {z ∈ C : −M < 	z}.

If q > α(M) ∨ α(M), then the characteristic function ϕLθ
of Lθ possesses a

continuous extension

ϕLθ
(z) =

∫

R

eizxPLθ
(dx) = q

∫ ∞

0
e−qtE

[
eizLt

]
dt (8.10)
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to the half-plane z ∈ {z ∈ C : 	z ≤ M} that is analytic in the interior of the half-
plane {z ∈ C : 	z < M}.

Proof We have that

E
[
euLθ

] =
∫ ∞

0

∫ ∞

0
euxqe−qtPLt

(dx) dt =
∫ ∞

0
E

[
euLt

]
qe−qt dt,

and, for q > α(M) ∨ α(M), by Lemma 8.4 we get

∫ ∞

0
E

[
eMLt

]
qe−qt dt ≤ 8

(

q

∫ ∞

0
e−t[q−α(M)] dt + q

∫ ∞

0
e−t[q−α(M)] dt

)

< ∞;

hence, for u ≤ M , we have

E
[
euLθ

] ≤ E
[
eMLθ

]
< ∞ (

q > α(M) ∨ α(M)
)
. (8.11)

Inequality (8.11), together with Lemma 8.2, implies that the characteristic function
ϕLθ

has a continuous extension to the half-plane {z ∈ C : −M ≤ 	z} that is analytic
in {z ∈ C : −M < 	z} and is given by

ϕLθ
(z) = E

[
eizLθ

]

for every z ∈ C with 	z ≥ −M . Furthermore, Fubini’s theorem yields

E
[
eizLθ

] =
∫ ∞

0

∫ ∞

0
eizxqe−qtPLt

(dx) dt = q

∫ ∞

0
e−qtE

[
eizLt

]
dt.

The application of Fubini’s theorem is justified since, for 	z ≥ −M and q > α(M)∨
α(M), we have

E
[∣
∣eizLθ

∣
∣
] = E

[
e−	(z)Lθ

] ≤ E
[
eMLθ

]
< ∞

by inequality (8.11). Similarly, we prove the assertion for the infimum. �

8.3 The Wiener–Hopf Factorization

We first provide a statement and brief description of the Wiener–Hopf factoriza-
tion of a Lévy process and then show that the Wiener–Hopf factorization holds for
the analytically extended characteristic functions. Next, we invert the Wiener–Hopf
factorization and derive an expression for the (analytically extended) characteristic
function of the supremum, resp. infimum, of a Lévy process in terms of the Wiener–
Hopf factors.
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8.3.1 Analyticity

Fluctuation identities for Lévy processes originate from analogous results for ran-
dom walks, first derived using combinatorial methods, see, e.g., [48] or [22]. Bing-
ham [10] used this discrete-time skeleton to prove results for Lévy processes; the
same approach is followed in the book of Sato [44]. Greenwood and Pitman [23, 24]
proved these results for random walks and Lévy processes using excursion theory;
see also the books of Bertoin [9] and Kyprianou [33].

The Wiener–Hopf factorization1 serves as a common reference to a multitude of
statements in the fluctuation theory for Lévy processes, regarding the distributional
decomposition of the excursions of a Lévy process sampled at an independent and
exponentially distributed time. The following statement relates the characteristic
function of the supremum, the infimum, and the Lévy process itself. Let L be a Lévy
process and θ an independent, exponentially distributed time with parameter q; then
we have that

E
[
eizLθ

] = E
[
eizLθ

]
E

[
eizLθ

]

or equivalently,

q

q − κ(iz)
= ϕ+

q (z)ϕ−
q (z), z ∈ R;

here κ denotes the cumulant generating function of L1, cf. (8.2), and ϕ+
q , ϕ−

q denote
the so-called Wiener–Hopf factors.

In the sequel, we will make use of the Wiener–Hopf factorization as stated in the
beautiful book of Kyprianou [33] and prove the analytic extension of the Wiener–
Hopf factors to the open half-plane {z ∈ C : 	z > −M}.

Recall the definitions of (8.3) and (8.4), and let us denote

α∗(M) := max
{
α(M),α(M)

}
.

Theorem 8.8 (Wiener–Hopf factorization) Let L be a Lévy process that satisfies
assumption (EM) (and is not a compound Poisson process). The Laplace transform
of Lθ , resp. Lθ , at an independent and exponentially distributed time θ , θ ∼ Exp(q),
with q > α∗(M), can be identified from the Wiener–Hopf factorization of L via

E
[
e−βLθ

] =
∫ ∞

0
qE

[
e−βLt

]
e−qt dt = κ(q,0)

κ(q,β)
(8.12)

and

E
[
eβLθ

] =
∫ ∞

0
qE

[
eβLt

]
e−qt dt = κ(q,0)

κ(q,β)
(8.13)

1The historical reasons leading to the adoption of the terminology “Wiener–Hopf” are outlined in
Sect. 6.6 in [33].
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for β ∈ {β ∈ C : �(β) > −M}. The Laplace exponent of the ascending, resp. de-
scending, ladder process κ(α,β), resp. κ(α,β), for α ≥ α∗(M) and k, k > 0, has
an analytic extension to β ∈ {β ∈ C : �(β) > −M} and is given by

κ(α,β) = k exp

(∫ ∞

0

∫

(0,∞)

(
e−t − e−αt−βx

)1

t
PLt (dx) dt

)

(8.14)

and

κ(α,β) = k exp

(∫ ∞

0

∫

(−∞,0)

(
e−t − e−αt+βx

)1

t
PLt (dx) dt

)

. (8.15)

Remark 8.9 Note that the Wiener–Hopf factors ϕ+
q and ϕ−

q are related to the Laplace
exponents of the ascending and descending ladder process κ and κ via

ϕ+
q (iβ) = κ(q,0)

κ(q,β)
and ϕ−

q (−iβ) = κ(q,0)

κ(q,β)
. (8.16)

We will prepare the proof of this theorem with an intermediate lemma. Let us
denote the positive part by a+ := max{a,0}.

Lemma 8.10 Let L be a Lévy process that satisfies assumption (EM). For q >

κ(M)+, the maps

z 
→
∫ ∞

0

∫

(0,∞)

(
1 − eizx

)
PLt (dx)

e−qt

t
dt (8.17)

and

z 
→
∫ ∞

0

∫

(0,∞)

(
e−t − e−qt+izx

)
PLt (dx)

1

t
dt (8.18)

are well defined and analytic in the open half plane {z ∈ C : 	(z) > −M}.

Proof We will show that for every compact subset K ⊂ {z ∈ C : 	(z) > −M}, there
is a constant C = C(K) > 0 such that

∫ ∞

0

∫

(0,∞)

∣
∣eizx − 1

∣
∣PLt (dx)

e−qt

t
dt < C(K) (8.19)

for every z ∈ K . Then, applying Lebesgue’s dominated convergence theorem yields
the continuity of the function

z 
→
∫ ∞

0

∫

(0,∞)

(
eizx − 1

)
PLt (dx)

e−qt

t
dt
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inside the half-plane {z ∈ C : 	(z) > −M}. Moreover, let γ be an arbitrary triangle
inside {z ∈ C : 	(z) > −M}; the theorems of Fubini and Cauchy yield

∫

∂γ

∫ ∞

0

∫

(0,∞)

(
eizx − 1

)
PLt

(dx)
e−qt

t
dt dz

=
∫ ∞

0

∫

(0,∞)

∫

∂γ

(
eizx − 1

)
dzPLt

(dx)
e−qt

t
dt = 0. (8.20)

Hence, applying Morera’s theorem yields the analyticity of (8.17) in the open half-
plane {z ∈ C : 	(z) > −M}.

The assertion for the second map immediately follows from the identity
(
e−t − e−qt+izx

)
t−1 = (

1 − eizx
)
e−qt t−1 + (

e−t − e−qt
)
t−1

and the integrability of the second part, since
∫ ∞

ε

∣
∣e−t − e−qt

∣
∣t−1 dt < ∞

and
∫ ε

0

∣
∣e−t − e−qt

∣
∣t−1 dt =

∫ ε

0

∣
∣et(q−1) − 1

∣
∣e−qt t−1 dt ≤ C|q − 1|

∫ ε

0
e−qt dt < ∞,

with C > 1, for ε > 0 small enough.
To show estimate (8.19), we choose a constant k = k(K) > 0, depending only on

the compact set K , such that |z| < k for every z ∈ K , and we write
∫

(0,∞)

∣
∣eizx − 1

∣
∣PLt (dx)

=
∫

(0,1/k]
∣
∣eizx − 1

∣
∣PLt (dx) +

∫

(1/k,∞)

∣
∣eizx − 1

∣
∣PLt (dx)

≤
∫

(0,1/k]
|zx|PLt

(dx) +
∫

(1/k,∞)

∣
∣eizx

∣
∣PLt

(dx) +
∫

(1/k,∞)

PLt
(dx). (8.21)

Using inequality (30.13) of Lemma 30.3 in [44], we can deduce
∫

(0,1/k]
|zx|PLt (dx) ≤ k

∫

(0,1/k]
|x|PLt (dx)

≤ kE
[|Lt |1{|Lt |≤1/k}

] ≤ C1(K)t1/2

with a constant C1(K) that depends only on the compact set K . Similarly, using
inequality (30.10) in [44], we can estimate the last term of (8.21)

∫

(1/k,∞)

PLt (dx) = P
({Lt > 1/k}) ≤ P

({|Lt | > 1/k
}) ≤ C2(K)t

www.TechnicalBooksPDF.com



8 Analyticity of the Wiener–Hopf Factors and Valuation of Exotic Options 235

with a constant C2(K) that depends only on the compact set K . In order to estimate
the second term of inequality (8.21), let us note that we may choose ε > 0 small
enough such that for every z ∈ K , we have −	(z) < M ′ < M with M ′ := M(1− ε),
and we get

∫

(1/k,∞)

∣
∣eizx

∣
∣PLt (dx) ≤ E

[
eM ′Lt 1{|Lt |>1/k}

]
.

Applying Hölder’s inequality with p := 1
1−ε

and q := 1
ε

, together with Lemma 30.3
in [44], yields

E
[
eM ′Lt 1{|Lt |>1/k}

] ≤ (
E

[
epM ′Lt

])1/p(
P

({|Lt | > 1/k
}))1/q

≤ C3(K)tεe(1−ε)κ(M)t .

Altogether, we have
∫

(0,∞)

∣
∣eizx − 1

∣
∣PLt (dx) ≤ C1(K)t1/2 + C2(K)t + C3(K)tεe(1−ε)κ(M)t

with positive constants C1(K),C2(K), and C3(K) that only depend on the com-
pact set K . As q > (1 − ε)(κ(M))+, we can conclude (8.19), which completes the
proof. �

Proof of Theorem 8.8 For β ∈ C with �β ≥ 0, the assertion follows directly from
Theorem 6.16(ii) and (iii) in [33].

From Lemma 8.7 we know that for q > α∗(M), the function

β 
→ ϕLθ
(iβ) = E

[
e−βLθ

]

has an analytic extension to the half-plane
{
β ∈ C : �(β) > −M

}
,

whereas Lemma 8.10 yields that if q > α∗(M), the mapping

β 
→ κ(q,0)

κ(q,β)

has an analytic extension to the half-plane
{
β ∈ C : �(β) > −M

}
,

while identity (8.14) still holds for this extension. The identity theorem for holo-
morphic functions yields that (8.12) holds for every {β ∈ C : �(β) > −M} if
q > α∗(M). The proof for (8.13) and (8.15) follows along the same lines. �

Remark 8.11 Note that, by analogous arguments, we can prove that the Laplace
exponent of the ascending, resp. descending, ladder process κ(α,β), resp. κ(α,β),
has an analytic extension to α ∈ {α ∈ C : �(α) > α∗(M)}, which is given by (8.14),
resp. (8.15).
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8.3.2 Inversion

The next step is to invert the Laplace transform in the Wiener–Hopf factorization
in order to recover the characteristic function of Lt , at a fixed time t . Although the
Wiener–Hopf factorization and the characteristic function of Lθ are discussed in
several textbooks, let us mention that the extended characteristic function of Lt at a
fixed time has not been studied in the literature before.

The main result is Theorem 8.13, which will make use of the following auxiliary
lemma.

Lemma 8.12 The maps t 
→ E[e−βLt ] and t 
→ E[eβLt ] are continuous for all
β ∈ C with �β ∈ [−M,∞).

Proof Since the Lévy process L is right continuous and stochastically continuous,
and L is an increasing process, we get that Ls ↗ Lt a.s. as s → t .

As Ls ≥ 0, we have

∣
∣e−βLs

∣
∣ = e−�(β)Ls ≤ eMLs ≤ eMLt ,

and we may apply the dominated convergence theorem to get

E
[
e−βLs

] → E
[
e−βLt

]
as s → t

for every β ∈ C with �(β) ≥ −M . Analogously, taking into account that |eβLs | ≤
e−MLs for �β ≥ −M , the dominated convergence theorem yields the continuity of
the second map. �

Theorem 8.13 Let L be a Lévy process that satisfies assumption (EM) (and is not
a compound Poisson process). The Laplace transforms of Lt and Lt at a fixed time
t ∈ [0, T ] are given by

E
[
e−βLt

] = lim
A→∞

1

2π

∫ A

−A

et(Y+iv)

Y + iv

κ(Y + iv,0)

κ(Y + iv,β)
dv (8.22)

and

E
[
eβLt

] = lim
A→∞

1

2π

∫ A

−A

et(Ỹ+iv)

Ỹ + iv

κ(Ỹ + iv,0)

κ(Ỹ + iv,−β)
dv (8.23)

for β ∈ C with �β ∈ (−M,∞) and Y, Ỹ > α∗(M).

Proof Theorem 8.8, together with (8.12), immediately yields
∫ ∞

0
e−qtE

[
e−βLt

]
dt = 1

q

κ(q,0)

κ(q,β)
(8.24)

for β ∈ C with �(β) > −M and q > α∗(M).
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In order to deduce that we can invert this Laplace transform, we want to verify the
assumptions of Satz 4.4.3 in [15] for the real and imaginary parts of t 
→ E[e−βLt ].
From the proof of Lemma 8.7 we get that

∫ ∞

0
e−qt

∣
∣E

[
e−βLt

]∣
∣dt ≤

∫ ∞

0
e−qtE

[
e−�(β)Lt

]
dt < ∞;

this yields the required integrability, i.e., the absolute convergence of
∫ ∞

0
e−qt

∣
∣	(

E
[
eβLt

])∣
∣dt and

∫ ∞

0
e−qt

∣
∣�(

E
[
eβLt

])∣
∣dt

for q > α∗(M). Further, the real and imaginary parts of t 
→ E[e−βLt ] are of
bounded variation for β ∈ C with �β ∈ (−M,∞).

Let us verify this assertion for the imaginary part, for −M < �(β) ≤ 0 and
	(β) ≤ 0. We have that

	(
E

[
e−βLt

]) = iE
[
sin

(−	(β)Lt

)
e−�(β)Lt

]
.

We can decompose sin(x) = f (x) − g(x), where f and g are increasing functions
with f (0) = g(0) = 0, and |f (x)| ≤ x and |g(x)| ≤ x. It follows that

sin
(−	(β)Lt

)
e−�(β)Lt = f

(−	(β)Lt

)
e−�(β)Lt − g

(−	(β)Lt

)
e−�(β)Lt ,

where both terms are increasing in time and are integrable, since

E
[∣
∣h

(−	(β)Lt

)
e−�(β)Lt

∣
∣
] ≤ ∣

∣	(β)
∣
∣E

[∣
∣Lt

∣
∣e−�(β)Lt

]

≤ const · E[
eMLt

]
< ∞

for h = g and h = f . The assertion for the other parts follows similarly.
Now, using the continuity of the map t 
→ E[e−βLt ] (Lemma 8.12), we may

apply Satz 4.4.3 in [15], to invert this Laplace transform, that is, to conclude that

E
[
e−βLt

] = (p.v.)
1

2πi

∫ Y+i∞

Y−i∞
etz

z

κ(z,0)

κ(z,β)
dz

= lim
A→∞

1

2π

∫ A

−A

et(Y+iv)

Y + iv

κ(Y + iv,0)

κ(Y + iv,β)
dv (8.25)

for all β ∈ C with �β ∈ (−M,∞) and for every Y > α∗(M). The proof for the
infimum follows along the same lines. �

8.4 Lévy Processes: Examples and Properties

We first state some conditions for the continuity of the law of a Lévy process and
the continuity of the law of the supremum of a Lévy process. Then, we describe
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the most popular Lévy models for financial applications and comment on their path
and moment properties which are relevant for the application of Fourier transform
valuation formulas.

8.4.1 Continuity Properties

The valuation theorem for discontinuous payoff functions (Theorem 2.7 in EGP)
and the analysis of the properties of discontinuous payoff functions (Examples 5.2,
5.3, and 5.4 in EGP) show that if the measure of the underlying random variable
does not have atoms, then the valuation formula is valid as a pointwise limit. Thus,
we present sufficient conditions for the continuity of the law of a Lévy process and
its supremum, and discuss these conditions for certain popular examples.

Statement 8.14 Let L be a Lévy process with triplet (b, c,λ). Then, Theorem 27.4
in [44] yields that the law PLt , t ∈ [0, T ], is atomless iff L is a process of infinite
variation or infinite activity or, in other words, if one of the following conditions
holds:

(a) c �= 0 or
∫
{|x|≤1} |x|λ(dx) = ∞;

(b) c = 0, λ(R) = ∞, and
∫
{|x|≤1} |x|λ(dx) < ∞.

Statement 8.15 Let L be a Lévy process and assume that

(a) L has infinite variation, or
(b) L has infinite activity and is regular upward. Regular upward means that

P(τ0 = 0) = 1, where τ0 := inf{t > 0 : Lt(ω) > 0}.
Then, Lemma 49.3 in [44] yields that Lt has a continuous distribution for every
t ∈ [0, T ]. The statement for the infimum of a Lévy process is analogous.

8.4.2 Examples

Next, we describe the most popular Lévy processes for applications in mathemati-
cal finance, namely the generalized hyperbolic (GH) process, the CGMY process,
and the Meixner process. We present their characteristic functions—which are es-
sential for the application of Fourier transform methods for option pricing—and the
corresponding domain of definition. We also discuss their path properties which are
relevant for option pricing. For an interesting survey on the path properties of Lévy
processes, we refer to [34].

Example 8.16 (GH model) Let H = (Ht )0≤t≤T be a generalized hyperbolic process
with L(H1) = GH(λ,α,β, δ,μ), see [16, p. 321] or [19]. The characteristic function
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of H1 is

ϕH1(u) = eiuμ

(
α2 − β2

α2 − (β + iu)2

) λ
2 Kλ(δ

√
α2 − (β + iu)2)

Kλ(δ
√

α2 − β2)
, (8.26)

where Kλ denotes the Bessel function of the third kind with index λ (see [1]); the
moment generating function exists for u ∈ (−α − β,α − β). The sample paths
of a generalized hyperbolic Lévy process have infinite variation. Thus, by State-
ments 8.14 and 8.15, we can deduce that the laws of both a GH Lévy process and
its supremum do not have atoms.

The class of generalized hyperbolic distributions is not closed under convolu-
tion, and hence the distribution of Ht is no longer a generalized hyperbolic one.
Nevertheless, the characteristic function of L(Ht ) is given explicitly by

ϕHt
(u) = (

ϕH1(u)
)t

.

A class closed under certain convolutions is the class of normal inverse Gaussian
distributions, where λ = − 1

2 ; see [7]. In that case, L(Ht ) = NIG(α,β, δt,μt), and
the characteristic function resumes the form

ϕHt (u) = eiuμt exp(δt
√

α2 − β2)

exp(δt
√

α2 − (β + iu)2)
. (8.27)

Another interesting subclass is given by the hyperbolic distributions which arise
for λ = 1; the hyperbolic model has been introduced to finance by Eberlein and
Keller [17].

Example 8.17 (CGMY model) Let H = (Ht )0≤t≤T be a CGMY Lévy process,
see [13]; another name for this process is (generalized) tempered stable process
(see, e.g., [14]). The Lévy measure of this process has the form

λCGMY(dx) = C
e−Mx

x1+Y
1{x>0} dx + C

eGx

|x|1+Y
1{x<0} dx,

where the parameter space is C,G,M > 0 and Y ∈ (−∞,2). Moreover, the charac-
teristic function of Ht , t ∈ [0, T ], is

ϕHt
(u) = exp

(
tCΓ (−Y)

[
(M − iu)Y + (G + iu)Y − MY − GY

])
(8.28)

for Y �= 0, and the moment generating function exists for u ∈ [−G,M].
The sample paths of the CGMY process have unbounded variation if Y ∈ [1,2),

bounded variation if Y ∈ (0,1), and are of compound Poisson type if Y < 0. More-
over, the CGMY process is regular upward if Y > 0; see [34]. Hence, by State-
ments 8.14 and 8.15, the laws of a CGMY Lévy process and its supremum do not
have atoms if Y ∈ (0,2).
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The CGMY process contains the Variance Gamma process (see [41]) as a sub-
class for Y = 0. The characteristic function of Ht , t ∈ [0, T ], is

ϕHt (u) = exp

(

tC

[

− log

(

1 − iu

M

)

− log

(

1 + iu

G

)])

, (8.29)

and the moment generating function exists for u ∈ [−G,M]. The paths of the Vari-
ance Gamma process have bounded variation, infinite activity, and are regular up-
ward. Thus, the laws of a VG Lévy process and its supremum do not have atoms.

Example 8.18 (Meixner model) Let H = (Ht )0≤t≤T be a Meixner process with
L(H1) = Meixner(α,β, δ), α > 0, −π < β < π , δ > 0, see [47] and [45]. The char-
acteristic function of Ht , t ∈ [0, T ], is

ϕHt (u) =
(

cos β
2

cosh αu−iβ
2

)2δt

, (8.30)

and the moment generating function exists for u ∈ (
β−π

α
,

β+π
α

). The paths of a
Meixner process have infinite variation. Hence, the laws of a Meixner Lévy pro-
cess and its supremum do not have atoms.

8.5 Applications in Finance

In this section, we derive valuation formulas for lookback options, one-touch op-
tions, and equity default swaps in models driven by Lévy processes. We combine
the results on the Wiener–Hopf factorization and the characteristic function of the
supremum of a Lévy process from this paper, with the results on Fourier transform
valuation formulas derived in EGP. Note that the results presented in the sequel are
valid for all the examples discussed in Sect. 8.4.

We model the price process of a financial asset S = (St )0≤t≤T as an exponential
Lévy process, i.e., a stochastic process with representation

St = S0e
Lt , 0 ≤ t ≤ T (8.31)

(shortly: S = S0e
L). Every Lévy process L, subject to Assumption (EM), has the

canonical decomposition

Lt = bt + √
cWt +

∫ t

0

∫

R

x(μ − ν)(ds, dx), (8.32)

where W = (Wt )0≤t≤T denotes a P -standard Brownian motion, and μ denotes the
random measure associated with the jumps of L; see [27, Chap. II].

Let M(P ) denote the class of martingales on the stochastic basis B. The mar-
tingale condition for an asset S is

S = S0e
L ∈ M(P ) ⇐⇒ b + c

2
+

∫

R

(
ex − 1 − x

)
λ(dx) = 0; (8.33)
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see [20] for the details. That is, throughout the rest of this paper, we will assume
that P is a martingale measure for S.

8.5.1 Lookback Options

The results of Sect. 8.3 on the characteristic function of the supremum of a Lévy
process allow us to price lookback options in models driven by Lévy processes
using Fourier methods. Excluded are only compound Poisson processes. Assuming
that the asset price evolves as an exponential Lévy process, a fixed strike lookback
call option with payoff

(ST − K)+ = (
S0e

LT − K
)+ (8.34)

can be viewed as a call option where the driving process is the supremum of the
underlying Lévy processes L. Therefore, the price of a lookback call option is pro-
vided by the following result.

Theorem 8.19 Let L be a Lévy process that satisfies Assumption (EM). The price
of a fixed strike lookback call option with payoff (8.34) is given by

CT (S;K) = 1

2π

∫

R

SR−iu
0 ϕLT

(−u − iR)
K1+iu−R

(iu − R)(1 + iu − R)
du, (8.35)

where

ϕLT
(−u − iR) = lim

A→∞
1

2π

∫ A

−A

eT (Y+iv)

Y + iv

κ(Y + iv,0)

κ(Y + iv, iu − R)
dv (8.36)

for R ∈ (1,M) and Y > α∗(M).

Proof We aim at applying Theorem 2.2 in EGP; hence we must check if conditions
(C1)–(C3) (of EGP) are satisfied. Assumption (EM), coupled with Corollary 8.5,
yields that MLT

(R) exists for R ∈ (−∞,M), and hence condition (C2) is satisfied.
Now, the Fourier transform of the payoff function f (x) = (ex − K)+ is

f̂ (u + iR) = K1+iu−R

(iu − R)(1 + iu − R)
,

and conditions (C1) and (C3) are satisfied for R ∈ (1,∞); cf. Example 5.1 in EGP.
Further, the extended characteristic function ϕLT

of LT is provided by Theorem 8.13
and equals (8.36) for R ∈ (−∞,M) and Y > α∗(M). Finally, Theorem 2.2 in EGP
delivers the asserted valuation formula (8.35). �

Remark 8.20 Completely analogous formulas can be derived for the fixed strike
lookback put option with payoff (K − ST )+ using the results for the infimum of a
Lévy process. Moreover, floating strike lookback options can be treated by the same
formulas making use of the duality relationships proved in [18] and [20].
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8.5.2 One-Touch Options

Analogously, we can derive valuation formulas for one-touch options in assets
driven by Lévy processes using Fourier transform methods; here, the exceptions
are compound Poisson processes and nonregular upward, finite variation, Lévy pro-
cesses. Assuming that the asset price evolves as an exponential Lévy process, a one-
touch call option with payoff

1{ST >B} = 1{LT >log( B
S0

)} (8.37)

can be valued as a digital call option where the driving process is the supremum of
the underlying Lévy process.

Theorem 8.21 Let L be a Lévy process with infinite variation, or a regular upward
process with infinite activity, that satisfies Assumption (EM). The price of a one-
touch option with payoff (8.37) is given by

DCT (S;B) = lim
A→∞

1

2π

∫ A

−A

SR+iu
0 ϕLT

(u − iR)
B−R−iu

R + iu
du

= P
(
LT > log(B/S0)

)
(8.38)

for R ∈ (0,M) and Y > α∗(M), where ϕLT
is given by (8.36).

Proof We will apply Theorem 2.7 in EGP; hence we must check conditions
(D1)–(D2). As in the proof of Theorem 8.19, Assumption (EM) shows that con-
dition (D2) is satisfied for R ∈ (−∞,M), while Theorem 8.13 provides the charac-
teristic function of LT , given by (8.36). Example 5.2 in EGP yields that the Fourier
transform of the payoff function f (x) = 1{x>logB} equals

f̂ (iR − u) = B−R−iu

R + iu
(8.39)

and condition (D1) is satisfied for R ∈ (0,∞). In addition, if the measure PLT

is atomless, then the valuation function is continuous and has bounded variation.
Now, by Statement 8.15, we know that the measure PLT

is atomless exactly when L

has infinite variation or has infinite activity and is regular upward. Therefore, Theo-
rem 2.7 in EGP applies, and results in the valuation formula (8.38) for the one-touch
call option. �

Remark 8.22 Completely analogous valuation formulas can be derived for the dig-
ital put option with payoff 1{ST <B}.

Remark 8.23 Summarizing the results of this paper and of EGP, when dealing with
continuous payoff functions, the valuation formulas can be applied to all Lévy pro-
cesses. When dealing with discontinuous payoff functions, then the valuation for-
mulas apply to most Lévy processes apart from compound Poisson type processes
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without diffusion component and finite variation Lévy processes which are not reg-
ular upward. This is true for both non-path-dependent and path-dependent exotic
options.

Remark 8.24 Arguing analogously to Theorems 8.19 and 8.21, we can derive the
price of options with a “general” payoff function f (LT ). For example, one could
consider payoffs of the form [(ST − K)+]2 or ST 1{ST >B}; see [42, Table 3.1] and
Example 5.3 in EGP for the corresponding Fourier transforms.

8.5.3 Equity Default Swaps

Equity default swaps were recently introduced in financial markets and offer a link
between equity and credit risk. The structure of an equity default swap imitates that
of a credit default swap: the protection buyer pays a fixed premium in exchange
for an insurance payment in case of “default.” In this case “default,” also called the
“equity event,” is defined as the first time the asset price process drops below a fixed
barrier, typically 30% or 50% of the initial value S0.

Let us denote by τB the first passage time below the barrier level B , i.e.,

τB = inf{t ≥ 0;St ≤ B}.

The protection buyer pays a fixed premium denoted by K at the dates T1, T2,

. . . , TN = T , provided that default has not occurred, i.e., Ti < τB . In case of de-
fault, the protection seller makes the insurance payment C , which is typically 50%
of the initial value. The premium K is fixed such that the value of the equity default
swap at inception is zero; hence we get

K = CE[e−rτB 1{τB≤T }]
∑N

i=1 E[e−rTi 1{τB>Ti }]
, (8.40)

where r denotes the risk-free interest rate.
Now, using that 1{τB≤t} = 1{St≤B}, which immediately translates into

P(τB ≤ t) = E[1{τB≤t}] = E[1{St≤B}], (8.41)

and that

E
[
e−rτB 1{τB≤T }

] =
∫ T

0
e−rtPτB

(dt),

the quantities in (8.40) can be calculated using the valuation formulas for one-touch
options.
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Chapter 9
Optimal Liquidation of a Pairs Trade

Erik Ekström, Carl Lindberg, and Johan Tysk

Abstract Pairs trading is a common strategy used by hedge funds. When the spread
between two highly correlated assets is observed to deviate from historical observa-
tions, a long position is taken in the underpriced asset, and a short position in the
overpriced one. If the spread narrows, both positions are closed, thus generating a
profit. We study when to optimally liquidate a pairs trading strategy when the dif-
ference between the two assets is modeled by an Ornstein–Uhlenbeck process. We
also provide a sensitivity analysis in the model parameters.

Keywords Pairs trading · Optimal stopping theory · Ornstein–Uhlenbeck process

Mathematics Subject Classification (2010) 91G10 · 60G40

9.1 Introduction

Consider a pair of assets having price processes with a difference fluctuating about
a given level. A typical example is stocks of two companies in the same area of
business. If the spread between the two price processes at some point widens, then
one of the assets is underpriced relative to the other one. An investor wanting to
benefit from this relative mispricing may invest in a pairs trade, i.e., the investor
buys the (relatively) underpriced asset and takes a short position in the (relatively)
overpriced one. When the spread narrows again, the position is liquidated, and a
profit is made. Note that the holder of a pairs trade is not exposed to market risk
but instead tries to benefit from relative price movements, thus making pairs trade a
common hedge fund strategy.
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The literature on trading strategies used by hedge funds seems to be somewhat
limited compared to its practical significance. However, there are a number of re-
cent books that treat the applied aspects of pairs trading, see [1, 5], and [6]; for a
historical evaluation of pairs trading, see also [3]. The authors of [2] model pair
spreads as mean-reverting Gaussian Markov chains observed in Gaussian noise.
Our approach is the continuous time analogue of this since we use mean-reverting
Ornstein–Uhlenbeck processes to model the spread. We thus model the difference
X between the two assets as

dXt = −μXt dt + σ dWt ,

where μ and σ are positive constants, and W is a standard Brownian motion.
Note that there is a large model risk associated to the pairs trading strategy.

Indeed, if it turns out that the difference between the assets is no longer mean-
reverting, then the investor faces a considerable risk. What is typically done in prac-
tice is that the investor decides (in advance) on a stop-loss level B < 0, and if the
value of the pair trade falls below B , then one liquidates the position and accepts
the loss. The stop-loss level B can be seen as a (crude) model adjustment: if this
level is reached, then the model is abandoned, and the position is closed. A natural
continuation of our work would be to introduce a continuous recalibration of the
model parameters to decrease the model risk.

In Sect. 9.2, we formulate and solve explicitly the optimal stopping problem of
when to liquidate a pair trade in the presence of a stop-loss barrier. In Sect. 9.3,
we study the dependence of the optimal liquidation level on the different model
parameters, thus providing a better understanding of the consequences of possible
misspecifications of the model. More precisely, we show that increasing the quotient
α = 2μ/σ 2, the optimal liquidation level increases, and that the optimal liquidation
level is between −B/2 and −B for any choice of parameters μ and σ . In Sect. 9.4,
we consider the optimal liquidation of a pairs trade in the presence of a discount
factor. When including such a discount factor, the dependence on the model param-
eters becomes more delicate, and a numerical study is conducted. Finally, we also
consider the optimal liquidation problem in the absence of a stop-loss barrier.

9.2 Solving the Optimal Stopping Problem

If we assume that any fraction of an asset can be traded, then there is no loss of
generality to assume that the difference between the two assets fluctuates about the
level 0. As explained in the introduction, we model the difference X between the
two assets as a mean-reverting Ornstein–Uhlenbeck process, i.e.,

dXt = −μXt dt + σ dWt . (9.1)

Here μ and σ are positive constants, and W is a standard Brownian motion. For a
given liquidation level B < 0, define the value V of the option spread by

V (x) = sup
τ≤τB

ExXτ , (9.2)
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where the supremum is taken over all stopping times that are smaller than

τB = inf{t : Xt ≤ B},
the first hitting time of the liquidation level B . The stop-loss level B is imposed to
have a bound on the possible losses. Of course, if the model (9.1) is known to be
true, then the spread would vanish eventually since X has a mean-reverting drift.
However, in practice a stop-loss level has to be imposed to account for the risk that
the model is incorrect. The stop-loss level B thus makes the risk involved in pairs
trading less sensitive to a possible misspecification of the model.

If the process X is negative, then the drift is positive, and so one should not
liquidate the position. If X is positive, then the negative drift works against the
owner of the pair. For large values of X, this drift is substantial and should outweigh
the possible benefits of the random fluctuations. This indicates that there exists a
boundary x = b above which liquidation is optimal and below which the pair should
be kept.

General optimal stopping theory then suggests that the pair (V , b) solves
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ 2

2 Vxx − μxVx = 0 if x ∈ (B,b),

V (x) = x if x ∈ [b,∞),

V ′(b) = 1,

V (B) = B.

(9.3)

The general solution to the ordinary differential equation σ 2

2 Vxx − μxVx = 0 is

V (x) = CF(x) + D.

Here C and D are constants,

F(x) =
∫ x

0
f (y)dy,

f (y) = eαy2/2,

and α = 2μ/σ 2 is the reciprocal of the variance of the stationary distribution of X.
Inserting the general solution into the free-boundary problem, the equation

F(b) − F(B)

b − B
= f (b) (9.4)

for the exercise boundary b is derived.

Lemma 9.1 Equation (9.4) admits a unique solution b larger than B . Moreover,
b ∈ (0,−B).

Proof Define

g(x) := F(x) − F(B) − (x − B)f (x) (9.5)

and note that b > B is a solution of (9.4) if and only if g(b) = 0. We have g(B) = 0,
g′(x) = −α(x − B)xf (x) ≥ 0 if x ∈ [B,0], and g′(x) < 0 if x > 0. Moreover,

g(−B) = −2F(B) + 2Bf (B) < 0
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since F is convex. Consequently, g has a unique zero x = b larger than B , and
b ∈ (0,−B). �

Now, given the unique solution b of (9.4), let

V̂ (x) =
{

F(x)
f (b)

+ B − F(B)
f (b)

, B ≤ x < b,

x, x ≥ b.
(9.6)

It is easy to check that (V̂ , b) is the unique solution to the free-boundary prob-
lem (9.3). Moreover, it follows from the proof of Lemma 9.1 above that V̂ (x) ≥ x

for all x ≥ B .

Theorem 9.2 The value function V coincides with the function V̂ given in (9.6).
Moreover, τ ∗ = τB ∧ τb is an optimal stopping time in (9.2).

Proof Consider the process Yt = V̂ (Xt∧τB
). By (a generalized version of) Itô’s

lemma,

Yt = V̂ (x) +
∫ t∧τB

0

(
σ 2

2
V̂xx(Xs) − μXsV̂x(Xs)

)

I (Xs 	= b)ds

+
∫ t∧τB

0
σ V̂x(Xs)I (Xs 	= b)dW

= V̂ (x) − μ

∫ t∧τB

0
XsI (Xs > b)ds +

∫ t∧τB

0
σ V̂x(Xs) dW.

The Itô integral is a martingale since the integrand is bounded. Therefore, since b is
positive, the process Y is a supermartingale. If τ is a stopping time, then the optional
sampling theorem, see Problem 3.16 and Theorem 3.22 in [4], gives that

EXτ∧τB
≤ EV̂ (Xτ∧τB

) = EYτ ≤ EY0 = V̂ (x). (9.7)

Since τ is arbitrary, this yields

V (x) ≤ V̂ (x).

To derive the reverse inequality, note that Yt∧τb
is a bounded martingale and that

Yτb
= Xτb∧τB

. It follows that the inequalities in (9.7) reduce to equalities if τ = τ∗,
which finishes the proof. �

9.3 Dependence on Parameters

It is easy to see that the value V and the optimal threshold b are both increasing as
functions of the absolute value |B| of the stop-loss level. Indeed, this follows since
a large |B| increases the set of stopping times smaller than τB . The dependence on
the parameters μ and σ is more delicate and given by the theorem below.
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Theorem 9.3 The optimal stopping boundary b is increasing as a function of α =
2μ/σ 2, and it satisfies limα↓0 b(α) = −B/2 and limα↑∞ b(α) = −B .

Proof Define

g(x,α) :=
∫ x

B

eαy2/2 dy − (x − B)eαx2/2

(compare to (9.5)). Recall that for a fixed α > 0, the function x �→ g(x,α) satisfies
g(0, α) > 0, g(−B,α) < 0, and ∂g

∂x
(x,α) < 0 for x > 0. Moreover, the optimal

stopping boundary b ∈ (0,−B) is the unique positive value such that g(b,α) = 0.
Expanding into Taylor series, we have

∫ b

B

eαy2/2 dy =
∫ b

B

∞∑

k=0

(α/2)k

k! y2k dy

=
∞∑

k=0

(α/2)k

k!(2k + 1)

(
x2k+1 − B2k+1)

=
∞∑

k=0

(α/2)k

k!(2k + 1)
x2k(b − B)ak,

where

ak = 1 + (B/b) + · · · + (B/b)2k.

Using

eαb2/2 =
∞∑

k=0

(α/2)kb2k

k! ,

we find that

g(b,α) = (b − B)

∞∑

k=1

(α/2)kb2k

k!
(

ak

2k + 1
− 1

)

.

Note that the function c(k) := ak − (2k + 1) is convex as a function of k ≥ 0,
c(0) = 0, and c(k) → ∞ as k → ∞. Consequently, there exists k0 ≥ 0 such that
ak ≤ 2k + 1 for k ≤ k0 and ak > 2k + 1 for k > k0. Now, if α′ > α, then

0 = g(b,α) = (b − B)(α/2)k0

∞∑

k=1

(α/2)k−k0b2k

k!
(

ak

2k + 1
− 1

)

< (b − B)(α/2)k0

∞∑

k=1

(α′/2)k−k0b2k

k!
(

ak

2k + 1
− 1

)

≤ g(b,α′).

It follows that g(b,α′) > 0, so the unique zero x = b′ of g(x,α′) satisfies b′ ≥ b,
which proves the claimed monotonicity of the optimal stopping boundary b as a
function of α.
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Finally we consider the limits in the statement of the theorem, starting with α

tending to infinity. Recall from above that b(α) < −B . On the other hand, for a
fixed ε > 0, we have

g(−B − ε,α) > 0

for α large enough since the integral term in the definition of g is bounded below
by ε

2eα(−B−ε/2)2/2, whereas the remaining term is O(eα(−B−ε)2/2). Hence, b(α) >

−B − ε, and the desired conclusion follows. Next we consider the limit as α tends
to zero. The argument here is based on the approximation of ex by 1+x for small x.
Thus, we replace the exponential functions in the definition of g by 1 + αy2/2 and
1 + αx2/2, and define

h(x,α) :=
∫ x

B

(
1 + αy2/2

)
dy − (x − B)

(
1 + αx2/2

)

= α

6

(
3Bx2 − 2x3 − B3).

One finds that h(−B/2, α) = 0 for all α. The derivative ∂h
∂x

(x,α) = α(Bx − x2)

is negative and is bounded above and below by positive multiples of α in a neigh-
borhood of −B/2. Since the error in the approximation of the exponential function
with the linear function is of order α2, the result follows. �

Remark 9.4 In the absence of a stop-loss level (and a discount factor), i.e., if
B = −∞ in the above setup, it follows from Theorem 9.3 that the optimal liquida-
tion level b = ∞. Thus, the problem degenerates, and it is never optimal to liquidate
the pairs trade.

9.4 Including a Discount Factor

It may be of interest to include a discounting factor in the analysis above, thus
instead considering the optimal stopping problem

V (x) = sup
τ≤τB

Exe
−rτXτ , (9.8)

where r > 0 is a constant. This optimal stopping problem can, in principle, be stud-
ied using similar techniques as in the problem with no discounting. However, it
turns out that the solution is slightly less explicit, and the parameter dependencies
are more involved.

Again, it is natural to expect that the optimal stopping time takes the form of the
first hitting time of a level b. The same arguments as in Sect. 9.2 suggest that the
pair (V , b) solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ 2

2 Vxx − μxVx − rV = 0 if x ∈ (B,b),

V (x) = x if x ∈ [b,∞),

V ′(b) = 1,

V (B) = B.

(9.9)
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The general solution to the ordinary differential equation σ 2

2 Vxx − μxVx − rV = 0
is

V (x) = CF(x) + DG(x).

Here C and D are constants,

F(x) =
∫ ∞

0
uβ−1e

√
αxu−u2/2 du,

G(x) = F(−x),

and α = 2μ/σ 2 and β = r/μ. Inserting the general solution into the free-boundary
problem, it is easily seen that

C = BG(b) − bG(B)

G(b)F (B) − G(B)F(b)
(9.10)

and

D = bF(B) − BF(b)

G(b)F (B) − G(B)F(b)
, (9.11)

where b satisfies
(
BG(b) − bG(B)

)
F ′(b) + (

bF(B) − BF(b)
)
G′(b)

= G(b)F (B) − G(B)F(b). (9.12)

Arguing as in the proof of Theorem 9.2, it is straightforward to check that the
value function derived above coincides with the value of the optimal stopping prob-
lem (9.8).

Theorem 9.5 Let b be the unique solution of (9.12) in (0,−B), and define C and
D as in (9.10) and (9.11), respectively. The value function of the optimal stopping
problem (9.8) is given by

V (x) =
{

CF(x) + DG(x), x ∈ (B,b),

x, x ≥ b.

Moreover, τ ∗ = τB ∧ τb is an optimal stopping time in (9.8).
In the absence of a stop-loss level, i.e., if B = −∞, then

V (x) =
{

b
F(b)

F (x), x < b,

x, x ≥ b,

where b is the unique positive solution of F(b) = bF ′(b).

Proof The proof of the optimality follows along the same lines as in the proof of
Theorem 9.2, and we omit the details. To prove the uniqueness of solutions to (9.12),
define

f (x) = (
BG(x) − xG(B)

)
F ′(x) + (

xF(B) − BF(x)
)
G′(x)

+ G(B)F(x) − G(x)F (B).
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Fig. 9.1 The graph shows
the optimal threshold b as a
function of the parameter α

for three different values
of β . The values of β are 0.01
(top), 0.05 (middle), and 0.09
(bottom). In all three
examples we used B = −1

Then f (b) = 0 if and only if b solves (9.12). First note that

f (0) = F(0)
(
2BF ′(0) + F(−B) − F(B)

)
.

Since

F(−B) − F(B) =
∫ ∞

0
uβ−1(e−√

αBu − e
√

αBu
)
e−u2/2 du

> −
∫ ∞

0
uβ2

√
αBe−u2/2 du = −2BF ′(0),

we find that f (0) > 0. Similarly,

f (−B) = (
F(B) + F(−B)

)(
BF ′(B) + BF ′(−B) + F(−B) − F(B)

)
.

It is easy to check that g(x) := −xF ′(−x) − xF ′(x) + F(x) − F(−x) satisfies
g(0) = 0 and g′(x) < 0 for x > 0. Consequently, f (−B) < 0, so there exists a zero
of f in the interval (0,−B). Moreover,

f ′(x) = (
BF(−x) − xF(−B)

)
F ′′(x) + (

xF(B) − BF(x)
)
F ′′(−x).

Since F ′′(x) > F ′′(−x) and xF(B) − BF(x) > BF(−x) − xF(−B) for
x ∈ (0,−B), we have f ′(x) < 0 in that interval. Thus, the function f has a unique
zero in (0,−B), so there exists a unique solution b to (9.12). �

Remark 9.6 As indicated above, the parameter dependencies are more involved in
the presence of a discount factor, compare to Fig. 9.1. If the stop-loss level satisfies
B = −∞, however, then it is straightforward to check that the optimal liquidation
level b is decreasing in the parameter α and in the parameter β .
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Chapter 10
A PDE-Based Approach for Pricing
Mortgage-Backed Securities

Marco Papi and Maya Briani

Abstract In this paper we derive a new equilibrium model for pricing Mortgage-
Backed Securities. We prove that the price can be represented as the solution of a
degenerate parabolic semilinear equation, and we state existence, uniqueness, and
regularity results in the framework of viscosity solutions. These results allow a com-
plete justification of the model. We also obtain a convergence result of a numerical
scheme to the solution of the valuation equation.

Keywords Degenerate parabolic equations · Viscosity solutions · Derivative
pricing · Mortgages · Numerical methods

Mathematics Subject Classification (2010) 35K65 · 65M06 · 91G20 · 91G80

10.1 Introduction

In this paper, we present a new equilibrium model for pricing Mortgage-Backed
Securities. In particular, we shall give a complete derivation of this model, and
we study a numerical approximation. The Mortgage-Backed security (MBS) market
plays a special role in the US economy. Originators of mortgages (S&L, saving and
commercial banks) can spread risk across the economy by packaging these mort-
gages into investment pools through a variety of agencies. Purchasers of MBSs are
given the opportunity to invest in interest-rate contingent claims which offer differ-
ent payoff structures from US Treasury bonds.

Mortgage holders have the option to prepay the existing mortgage and refinance
the property with a new mortgage. Therefore MBS investors are implicitly writing an
American call option on a corresponding fixed-rate bond. Moreover, prepayments
can also take place for reasons not related to the interest rate option. Mortgage in-
vestors are exposed to significant interest rate risk when loans are prepaid and to
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credit risk when loans are terminated to default. Prepayments will halt the stream of
cash flows that investors expect to receive. In many cases this will result in a lower
than expected return on their investment. For example, if interest rates decline, there
will typically be a subsequent increase in prepayments which forces investors to
reinvest the unexpected additional cash-flows at the new lower interest rate level.
On the other hand, if interest rates increase, there will be a decrease in prepayment
activity which forces investors to wait for a longer period before they can reinvest
the cash-flows at the new higher interest rate level. These complications lead to a
nonlinear relation between MBS prices, interest rates, and coupon-specific prepay-
ment variables. In this paper, using a risk-neutral arguments, we shall derive in a
rigorous way a pricing equation based on a general equilibrium model proposed and
successfully tested on data by Gabaix et al. [13].

Using the results of [25] and [26], we also consider a numerical approximation
of the pricing equation, proving a convergence result and showing the qualitative
behavior of the solution in a particular application of the model.

The most simple structure of MBSs are the pass-through securities. Investors in
this kind of securities receive all payments (principal plus interest) made by mort-
gage holders in a particular pool (less some servicing fee). Other classes of deriva-
tive products are the stripped mortgage-backed securities (SMBS) which entail the
ownership of either the principal or interest cash-flows arising from specific mort-
gages or mortgage pass-through securities. Rights to the principal are labeled POs
(principal only), and rights to the interest are labeled IOs (interest only).

Modeling and pricing MBSs involve three layers of complexity: (i) modeling the
dynamic behavior of the term structure of interest rates, (ii) modeling the prepay-
ment behavior of mortgage holders, and (iii) from the point of view of no-arbitrage
valuation, modeling the risk premia embedded in these financial claims. Although
the first two points of the valuation of an MBS are far from our present interest, we
observe that both the rational and empirical approaches to prepayment structures
and MBS valuation depend crucially on the correct parameterization of prepayment
behavior and on the correct forecast of mortgage rates. The second one is a very
important feature of a mortgage model since it explains the borrower’s decision
making. The characteristics of approaches used to model prepayment incentive may
be used to classify existing models in the literature into two groups. The first type is
related to American options. This kind of models measure the mortgagor’s incentive
to prepay as the difference between his liability and the outstanding principal, while
the liability is defined as the present value of cash-flows that the borrower will pay
off to repay his loan. This approach has been followed in [12], assuming an optimal
prepayment behavior, in the sense that the borrowers terminate their mortgages if it
is financially optimal; then transaction costs have been incorporated as a part of the
model in [10], and Johnston and Van Drunen [17] extended the model considering
different refinancing costs for the borrowers. Stanton [28] observed that borrowers
fail to prepay when it is optimal to do so. Moreover, he addressed the problem of the
mortgage pool heterogeneity, considering also the problem of possible unobservable
heterogeneity between mortgage pools characterized by the same coupon rate, issue
date, and other observable characteristics [29].
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In the second class of models [6] the prepayment policy follows a comparison be-
tween the prevailing mortgage and contract rates. This comparison can be measured
using the difference or a ratio of the two rates, and usually the 10 years Treasury
yield is used as a proxy for the mortgage rate, see [21] and [27].

In this research paper our attention is mainly devoted to the third topic. In order
to formulate the model in a continuous-time setting, which is a common feature in
financial applications, we shall assume that all relevant economic factors affecting
prepayments behavior may be represented by a state process Xt = (X1

t , . . . ,X
N
t )

for some N ≥ 1, following a stochastic differential equation. The state vector Xt

may include factors like interest rate level and the value of houses, as in [7] and
possible prepayment specific variables as transaction costs of refinancing. Using
arbitrage-free arguments [20, 22], the MBS price at time t can be written as

Pt = U(Xt , t),

where U is a deterministic function. The challenging task here is to give a com-
plete justification to the particular choice of the market price of risk used to de-
rive the functional form of U . This model specification follows the work of Gabaix
et al. [13]. In Sect. 10.3, we characterize U as the unique solution of a nonlinear
parabolic partial differential equation, in a viscosity sense [4].

In MBS analysis, it seems natural to assume the market price of risk to depend di-
rectly on the value of the liability and its sensitivity to prepayments due to changes
in the explanatory economic factors Xt , see formula (10.38) below. Actually, this
kind of dependence has been also used in the option-based approach for modeling
the prepayment intensity [15]. The distinction between the liability to the mort-
gagor and the asset value to the investor is that, at time of prepayment, a security
holder receives the outstanding principal but the mortgagor pays it plus a transac-
tion cost, proportional to the outstanding principal. Therefore, since a change of
the borrower’s liability produces a change in the value of the prepayment option
and possibly in the prepayment behavior, the proportionality with the asset value,
yields a natural dependence of the market price of risk on the MBS price (U ) and
on its variation (∇xU ), implying a semilinear structure for the pricing equation, see
Theorem 10.13 below. The existence, uniqueness, and regularity properties of the
solution to the pricing equation play an essential role. From one side, the existence
of a solution yields the proof that there exists a risk-neutral market measure for eval-
uating MBSs, and, on the other hand, it is a fundamental result to construct stable
numerical procedures, see Sect. 10.5 below.

In recent years there has been an interest in developing viscosity solution theory
[4, 11] for differential equations, and the relevance of these equations can be moti-
vated by their many applications in mathematical finance. Actually it is well known
that one can reduce the computation of the price of a financial claim to the solution
of a partial differential equation [20]. Unfortunately, closed-form prices for financial
derivatives are available only in few special situations, and, in many cases, the pric-
ing equation is nonlinear and degenerate. In this general setting, singularities and
nonuniqueness phenomena may occur, and they require careful consideration. In
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this context, viscosity solutions represent a natural framework to study these prob-
lems, also from a numerical point of view. In fact, the key result in the proof of
convergence of numerical schemes is the strong comparison result, which is also
the main tool used to establish the existence and uniqueness of viscosity solutions,
see [2].

The paper is organized as follows. In Sect. 10.2, we derive our model in the
classical framework of financial modeling [20]. Sections 10.3 and 10.4 are devoted
to the characterization and the properties of the solution to the pricing equation. In
Sect. 10.5 we shall study a numerical scheme for an application of the model.

10.2 MBSs Modeling

This section describes in a more detailed fashion Mortgage-Backed securities. MBSs
or Mortgage Pass-Throughs are claims on a portfolio of mortgages. Usually a fed-
eral agency, mortgage banker, bank, or investment company buys up mortgages of
a certain type, then sells claims on the cash-flows from the portfolio (i.e., MBSs).
In the primary market, the investors buy MBSs issued by agencies or private-label
investment companies either directly or through dealers. Many of the investors are
institutional investors. Cash-flows from MBSs are the cash-flows from the portfolio
of mortgages (referred to as the Collateral). Cash-flows include: interest on princi-
pal, scheduled principal, prepaid principal.

Every pool of mortgages is characterized by the weighted average maturity
(WAM), the weighted average coupon rate (WAC), which is the rate on portfolio
of mortgages (collateral) applied to determine scheduled principal, and the Pass-
Through Rate (PTR), which denotes the interest on principal; PTR is lower than
WAC—the difference going to MBS issuer.

The price of MBSs are quoted as a percentage of the underlying mortgage bal-
ance. Let at be the mortgage balance at time t , and let Vt the price quote observed
in the market at time t , then the market value MBSt at time t is given by

MBSt = Vtat . (10.1)

The market value is the clean price—it does not take into account accrued inter-
est AI. For MBSs, accrued interest is based on the time period from the settlement
date. To be precise, if τ denotes the WAC, for monthly payments, it holds

AIt = τ

12

t − 30[t/30]
30

at , (10.2)

[·] being the integer part. Therefore the full market value would be

MBSt + AIt . (10.3)

The market price per share is the full market value divided by the number of shares
in which the issued MBS is divided. As in the most part of the MBS literature [28],
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our model addresses the problem of the valuation of the clean price (10.1) in a
continuous-time framework. The clean price (10.1) is the product of two stochastic
components, the market quote Vt and the balance amount at , which is mainly af-
fected by prepayments in the pool. Due to this fact, also the market quote is affected
by the prepayment behavior. To simplify the presentation, we reduce the computa-
tion of the market value of an MBS by considering the problem facing an individual
mortgage holder in a pool. Since different borrowers will in general have different
characteristics (frictions, prepayment behavior, location, employment status, etc.),
one may deal with this heterogeneity assuming that these characteristics are ran-
domly distributed across borrowers in a pool, as in Stanton [28].

10.2.1 MBS Cash-Flows

In this section, through classical arguments of financial modeling [20], we shall
present our MBS model in a continuous-time framework, and we derive the pric-
ing equation for the clean price (10.1). We consider the usual information structure
described by a standard d-dimensional Brownian motion,

B = (
Ω, F , {Ft }t∈[0,T ], {Bt }t∈[0,T ],P

)
, T > 0, (10.4)

where (Ω, F ,P) is a complete probability space, and {Ft }t∈[0,T ] is a given filtra-
tion of sub-σ -algebras of F . More precisely, for every t ∈ [0, T ], the σ -algebra

Ft represents the information available up to time t . The filtration is an intrinsic
feature of the market: this means that all traders have the same information avail-
able at any time. Here the Brownian motion represents the source of randomness
of prepayments due the economic factors affecting MBS prices. The measure P is
not necessarily the physical measure of the market; for instance, one can take P as
a risk-adjusted measure after the risks, related to the economic factors, have been
taken into account.

Working with a continuous-time model, we shall use the notation ct to denote an
Ft -adapted process representing the cumulative cash-flow associated with an MBS.

Definition 10.1 Let us define

• MB(t), the remaining principal at time t if there are not prepayments. We have

MB(t) = MB(0)
eτ ′T − eτ ′t

eτ ′T − 1
, t ∈ [0, T ], (10.5)

where τ ′ is the fixed rate paid by the mortgagor (while the interest rate received
by the investor is τ < τ ′).

• St ≥ 0, the Ft -adapted pure cumulative prepayment process, so that the remaining
principal at time t is

at = MB(t) exp(−St), t ∈ [0, T ]. (10.6)
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• The cash-flows of the securities are:
– For an IO, dct = τat dt , the interest payment on the outstanding balance.
– For a PO, dct = −dat , how much of the principal has been paid down in dt

units of time.
– For the pass-through, dct = τat dt −dat ; the cash-flow is sum of both IO, POs.

Remark 10.2 The scheduled payments in a fixed-rate mortgage imply that each
mortgagor pays a fixed amount C with given frequency till the mortgage extinc-
tion. This amount is the sum of interest and principal payments. In particular, the
interest part decreases in time, and consequently the principal repayment increases.
At the end of each period, the remaining principal is decreased by an amount cor-
responding to the principal repayment. Once the frequency, the fixed interest rate,
the initial pool balance, and the maturity date are fixed, the constant payment C is
calculated in order to follow the previous rule and so that the final remaining bal-
ance is zero. Assuming a continuous frequency for the payments, we easily obtain
the following relation for the remaining balance at time t :

−dMB(t) + τ ′MB(t) dt = C dt, MB(0) = 0, (10.7)

and imposing MB(T ) = 0, we find C = MB(0)τ ′ eτ ′T
eτ ′T −1

. By integration of (10.7) we
obtain (10.5).

Remark 10.3 According to the analysis conducted in Sect. 10.2, we may assume
that τ ′ and τ coincide with the WAC and the PRT, respectively.

The adapted process St includes the pure prepayments occurring in the pool of
mortgages. In current practice, practitioners often simplify their evaluations by con-
sidering a deterministic function of interest rates and time, calibrated at date t to best
fit past prepayments observed. Following this approach, in Sect. 10.2.3, we shall as-
sume that the process St is a deterministic function of an Ft -adapted process Xt of
economic factors affecting prepayments, namely

St = s0(Xt , t), t ∈ [0, T ]. (10.8)

To maintain the generality of the presentation, we do not specify any particular form
for s0 in the sequel; however we note that to be consistent with the model specifi-
cation of Definition 10.1, an unbiased model for s0 should consider a nonnegative
process with nondecreasing paths.

Although general models of default have been studied, the mortgage models in
literature do not implement current results of credit risk theory. However this rep-
resents a fundamental topic in order to explain termination behavior in a pool of
mortgages. From a mathematical point of view, we may include default of borrow-
ers in the prepayment function, but we need to remove the continuity of s0, since
payments due to default occur at discrete times, see, for instance, [28]. Given the
introductory level of this research and our desire to present our MBS model in the
clearest fashion possible, we do not study this topic here, and we shall consider
pools of fixed-rate residential mortgages insured against default.
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10.2.2 The MBS Market

In this section we present the mathematical setting of arbitrage pricing with cash-
flows (or with dividends). We shall use this setting to define the MBS market in our
model. Since MBSs entitle the investors to receive cash-flows during [0, T ], it is
natural to consider the extension of the basic approach of arbitrage pricing focusing
on the concept of gain process (Gt below). For an exhaustive description of this
method, we refer the reader to Chap. 6 in [8] and to [20].

Let δ : [0, T ] → (0,∞) be a deterministic and integrable discount rate; then the
economy is made up of a representative agent (a trader in the MBS market) with a
risk aversion ρ > 0. This agent can invest in the riskless asset V Riskless

t , driven by
the following equation:

dV Riskless
t = δ(t)V Riskless

t dt, V Riskless
0 = A0 > 0, (10.9)

or in a finite set of MBSs. The vector of asset prices is

(
V Riskless

t , V MBS
t

) ≡ (
V Riskless

t , V
MBS,1
t , . . . , V

MBS,k
t

)
(10.10)

for t ∈ [0, T ]. The model for the MBS market is a financial market such that the gain
process, associated with the ith asset, has the following form:

G
MBS,i
t = V

MBS,i
t +

∫ t

0
dci

s = V
MBS,i
t + τi

∫ t

0
ai
s dt − ai

t + MBi (0) (10.11)

for every i = 1, . . . , k, where ci
t is the ith cash-flow process, given by Definition 10.1

and with a fixed coupon rate τi . In the sequel we shall make the following standing
assumptions:

(A1) The price V MBS
t is a nonnegative Itô process w.r.t. B .

(A2) The prepayment process Si
t of the ith MBS is a nonnegative Itô process

w.r.t. B , for every i = 1, . . . , k.

In order to derive our pricing equation, we recall some basic concepts of financial
modeling. Consider k traded assets whose prices are represented by a vector-valued
Itô process Vt w.r.t. B , paying cash-flows (or dividends) at a given rate dCt , that is
Ct is a vector-valued Itô process describing the amount of cash-flows (or dividends)
paid up to time t for each asset. Let Gt be the gain process associated with these
securities, i.e., Gt = Vt + Ct . We recall that an Ft -adapted process γt ∈ R

d satisfies
Novikov’s condition if E[exp( 1

2

∫ T

0 |γt |2 dt)] is finite.
The following theorem, due in its first statement to Harrison and Kreps (1979), is

a characterization of the absence of arbitrage opportunities in this market. We refer
to [22] for a very readable proof in discrete time, to [20] for the continuous-time
version, and in particular to [8] for the case with dividends.
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Theorem 10.4 [8]

(A) If the market described by (V Riskless
t , Vt ,Ct ) is arbitrage-free, then there exists

a measurable process γt , adapted to the filtration {Ft}t , taking values in R
d ,

called the market price of risk, such that for almost every (ω, t) ∈ Ω × [0, T ],
the following holds:

σG
t · γt = μG

t − δ(t)Vt , (10.12)

where μG
t is the drift, and σG

t is the diffusion of the gain process.
(B) Conversely, if there exists a process γt which satisfies (10.12), Novikov’s con-

dition, and such that

ξ
γ

T ≡ e−∫ T
0 γ 	

s dBs− 1
2

∫ T
0 |γs |2 ds (10.13)

has finite variance, then there is no arbitrage in the market.

Remark 10.5 The statement (B) in Theorem 10.4 and the Girsanov’s change-of-
measure theorem [19] imply that the Radon–Nikodym derivative

dQ

dP
= ξ

γ

T (10.14)

defines a probability measure Q ∼ P equivalent to P on (Ω, FT ) such that

B̂t = Bt +
∫ t

0
γs ds, t ∈ [0, T ], (10.15)

is an Ft -adapted Brownian motion under Q, and ξ
γ
t , t ∈ [0, T ], is a P-martingale.

Furthermore, the discounted gain process

GY
t ≡ YtVt +

∫ t

0
Yt dCt , t ∈ [0, T ], (10.16)

where Yt = [V Riskless
t /A0]−1 = exp(− ∫ t

0 δ(s) ds), is a Q-martingale. This is a
straightforward application of (10.12) and Itô’s formula. The measure Q is usually
named an equivalent martingale (or risk-neutral) measure.

Therefore we shall consider the following assumption:

(A3) In the MBS market there exists a market price of risk γ MBS
t = (γ

MBS,1
t , . . . ,

γ
MBS,d
t ) satisfying conditions of part (B) in Theorem 10.4.

Under Assumption (A3), the MBS market defined by (10.9)–(10.11) is arbitrage-
free, and there exists a risk-neutral measure associated with γ MBS

t . In the rest of the
paper, we shall denote this measure by Q.

Remark 10.6 Equation (10.12) defines a linear system of k equations with d un-
known variables and in general is not solvable, or it can have multiple solutions. The
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application of (10.12) to the classical Black–Scholes (1973) framework, without
dividends and with the stock price X (the state process) driven by a one-dimensional
Brownian motion, and with a constant discount rate, gives a unique constant market
price of risk. In fact, G1

t = Xt , G2
t = P(Xt , t) is the price of the financial deriva-

tive, C1
t = C2

t = 0, μ
G,1
t = μXt , and σ

G,1
t = σXt , where the constants μ and σ > 0

denote the instantaneous rate of return and the volatility of the stock, respectively.
Equation (10.12) leads to two scalar equations, the first one implying

γt = μ
G,1
t − δXt

σ
G,1
t

= μ − δ

σ
, (10.17)

whereas the second equation yields a PDE whose solution is the price function P .
The reason is that the stock price Xt reflects the m.p.r. In contrast, in term structure
pricing models [5, 9] there are sources of randomness defined by economic factors
(the interest rate, the inflation rate, etc.) that are not the prices of traded assets.
Thus the market is clearly incomplete, and the corresponding m.p.r. and the related
equivalent martingale measure Q (10.14) are not necessarily unique. This represents
the natural setting of any MBS market model.

We now prove a representation theorem for the MBS price process and for the
dynamics of the gain processes. To this end, we recall some notation and definitions
of Malliavin calculus used in this paper. For a complete introduction to Malliavin
calculus, we refer the reader to [24].

Let Lp(Ω × [0, T ]), p ≥ 1, be the space of Ft -adapted measurable processes v

such that |v|p is integrable w.r.t. the product measure P⊗dt on Ω ×[0, T ]. Given an
F -measurable random variable F : Ω → R, DtF denotes the Malliavin derivative
at time t ∈ [0, T ] of F . The space D

1,p , p ≥ 1, is the usual space of Malliavin-
differentiable random variables F in [0, T ] such that |F |p and (

∫ T

0 |DtF |2 dt)p/2

have finite P-expectations. Let L
1,p be the class of processes v ∈ Lp(Ω × [0, T ])

such that vt ∈ D
1,p for almost all t and there exists a measurable version of the two-

parameter process Dsvt such that ‖Dv‖p

L2([0,T ]2)
= (

∫ T

0

∫ T

0 |Dsvt |2 ds dt)p/2 has a

finite P-expectation. In L
1,p we define the norm

|‖v‖|1,p = (‖v‖p

Lp(Ω×[0,T ]) + E
[‖Dv‖p

L2([0,T ]2)

])1/p
. (10.18)

Moreover, we recall the Malliavin derivative of an Itô process w.r.t. the Brownian
motion B . Consider the stochastic process

Ht = x +
∫ t

0
us ds +

∫ t

0
ws dBs, t ∈ [0, T ], (10.19)

where x ∈ R, u ∈ L
1,1, and w ∈ L

1,2. For 0 < r ≤ t ≤ T , we have

DrHt = wr +
∫ t

r

Drus ds +
∫ t

r

Drws dBs, (10.20)

and DrHt = 0 for P-a.e. r > t .
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Theorem 10.7 Assume (A1)–(A3). Let Si , γ MBS,j ∈ L
1,4 for i = 1, . . . , k and

j = 1, . . . , d . Then the following equations hold:

V
MBS,i
t = ai

t + E
Q

[∫ T

t

(
τi − δ(s)

)
e− ∫ s

t δ(u) duai
s ds

∣
∣
∣
∣Ft

]

, (10.21)

dG
MBS,i
t = δ(t)V

MBS,i
t dt + DtG

MBS,i
t dB̂t , (10.22)

for every i = 1, . . . , k, where DtG
MBS,i
t is given by the following formulas:

1. For the pass-through,

−E
Q

[∫ T

t

(
τi − δ(s)

)
e− ∫ s

t δ(u) duai
s

(

DtS
i
s +

∫ s

t

Dtγ
MBS
u dB̂u

)

ds

∣
∣
∣
∣Ft

]

.

(10.23)
2. For an IO,

−E
Q

[∫ T

t

τie
− ∫ s

t δ(u) duai
s

(

DtS
i
s +

∫ s

t

Dtγ
MBS
u dB̂u

)

ds

∣
∣
∣
∣Ft

]

. (10.24)

3. For a PO,

E
Q

[∫ T

t

δ(s)e−∫ s
t δ(u) duai

s

(

DtS
i
s +

∫ s

t

Dtγ
MBS
u dB̂u

)

ds

∣
∣
∣
∣Ft

]

. (10.25)

Remark 10.8 In (10.22), the diffusion coefficient of G
MBS,i
t is expressed by the

Malliavin derivative of the process at time t . This is a general property that can
be obtained by applying (10.20) with t = r . Actually, we see that the diffusion wt

coincides with DtHt .

Remark 10.9 The interpretation of the sign in (10.23) is the following: DtG
MBS,i
t

can be understood as the impact of a shock to the prepayment process on the ith gain
process. For the sake of simplicity, suppose that d = 1 and that S increases with B .
If there has been a positive prepayment shock at time t (dBt > 0), in the premium
environments (τ − δ(t) > 0), this affects negatively the value of the principal, be-
cause the total impact is a higher prepayment: DtSs > 0. Therefore, we expect that
DtG

MBS
t < 0 and also

E
Q

[∫ T

t

(
τi − δ(s)

)
e−∫ s

t δ(u) duai
s DtS

i
s ds

∣
∣
∣
∣Ft

]

> 0. (10.26)

There is also a second effect. After a positive prepayment shock, the amount of
high-coupon securities will decrease leading the m.p.r. γ MBS

s to increase. Therefore
we expect that Dtγ

MBS
s > 0. Hence the second indirect effect is due to current pre-

payments on future value of the price risk γ MBS
s , s ≥ t . This dampens the first effect.

Similar explanations hold for (10.24) and (10.25).
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To prove Theorem 10.7, we recall the generalized Clark–Ocone formula. This is
one of the most useful results from Malliavin calculus, which allows the process in
the martingale representation theorem w.r.t. B̂ to be identified explicitly. See [18]
for a detailed proof of this result.

Theorem 10.10 Let F be FT -measurable, F,γ j ∈ D
1,2 for j = 1, . . . , d , Q and B̂

be defined in (10.14) and (10.15). Assume that

(i) E
Q[|F |] < +∞,

(ii) E
Q[∫ T

0 |DtF |2 dt] < +∞,

(iii) E
Q[|F | ∫ T

0 (
∫ T

0 Dtγs dBs + ∫ T

0 Dtγsγs ds)2 dt] < +∞.

Then F = E
Q[F ] + ∫ T

0 E
Q[(DtF − F

∫ T

t
Dtγs dB̂s)|Ft ]dB̂t .

Proof of Theorem 10.7 We prove the result in the case of pass-through securities.
By Remark 10.5 and Assumptions (A1)–(A3), the process

G
MBS,Y
t = YtV

MBS
t +

∫ t

0
Ys dcs, t ∈ [0, T ], (10.27)

with ct = (c1
t , . . . , c

k
t ) is a martingale under the risk-neutral measure Q. This prop-

erty implies the relation

V
MBS,i
t Yt +

∫ t

0
Ys dci

s = E
Q

[

V
MBS,i
T YT +

∫ T

0
Ys dci

s

∣
∣
∣
∣Ft

]

, t ≤ T , i = 1, . . . , k.

Since V
MBS,i
T = ai

T = 0, integrating by parts, we get

V
MBS,i
t Yt = E

Q

[∫ T

t

Ys dci
s

∣
∣
∣
∣Ft

]

= E
Q

[∫ T

t

Ysτia
i
s ds −

∫ T

t

Ys dai
s

∣
∣
∣
∣Ft

]

= E
Q

[∫ T

t

Ysτia
i
s ds + Yta

i
t −

∫ T

t

δ(s)Ysa
i
s ds

∣
∣
∣
∣Ft

]

= Yta
i
t + E

Q

[∫ T

t

(
τi − δ(s)

)
Ysa

i
s ds

∣
∣
∣
∣Ft

]

. (10.28)

Since Ys/Yt = exp(− ∫ s

t
δ(u) du), dividing by Yt , we obtain (10.21).

Let σ MBS
G,i be diffusion coefficient of the ith gain process, under B . Equation

(10.12) implies that the drift of this process is (δ(t)V
MBS,i
t + σ MBS

G,i (t) · γ MBS
t ).

Hence,

dG
MBS,i
t = (

δ(t)V
MBS,i
t + σ MBS

G,i (t) · γ MBS
t

)
dt + σ MBS

G,i (t) dBt

= δ(t)V
MBS,i
t dt + σMBS

G,i (t) dB̂t . (10.29)

Thus, (10.22) follows by Remark 10.8. We compute DtG
MBS,i
t . Since Si ≥ 0 and

Si ∈ L
1,4, also the remaining principal ai

s in Definition 10.1 belongs to the space
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L
1,4. In fact, ai is bounded from above by MB(0) and Dta

i
s = −ai

sDtS
i
s . Hence, it

is easy to see that |‖ai‖|1,4 ≤ MB(0)(T + |‖Si‖|41,4)
1/4. By (10.20), (10.21) and the

definition of G
MBS,i
t (10.11), we get

DtG
MBS,i
t = −Dta

i
t + DtV

MBS,i
t = DtE

Q

[∫ T

t

(
τi − δ(s)

)
e− ∫ s

t δ(u) duai
s ds

∣
∣
∣
∣Ft

]

=
∫ T

t

(
τi − δ(s)

)
e−∫ s

t δ(u) duDtE
Q
[
ai
s

∣
∣Ft

]
ds. (10.30)

We apply the generalized Clark–Ocone formula to ai
s . We have to verify condi-

tions (i)–(iii) in Theorem 10.10. Condition (i)) follows from the boundedness of ai .
Let ξ

γ

T as in (10.13), with γ = γ MBS, and denote cξ = E[(ξγ

T )2]1/2 < +∞. Since
ai
s ∈ D

1,4 for almost all s, the Cauchy–Schwarz inequality implies

E
Q

[∫ T

0
|Dtas |2 dt

]

≤ cξE

[(∫ T

0
|Dtas |2 dt

)2]1/2

< +∞ (10.31)

for almost all s. The Itô isometry [19] (under the measure Q) gives

E
Q

[

ai
s

∫ T

0

(∫ T

0
Dtγ

MBS
s dBs +

∫ T

0
Dtγ

MBS
s γ MBS

s ds

)2

dt

]

≤ MB(0)

∫ T

0
E

Q

[(∫ T

0
Dtγ

MBS
s dB̂s

)2]

dt

= MB(0)

∫ T

0
E

Q

[∫ T

0

∣
∣Dtγ

MBS
s

∣
∣2

ds

]

dt

≤ MB(0)cξ

d∑

j=1

E

[(∫ T

0

∫ T

0

∣
∣Dtγ

MBS,j
s

∣
∣2 dt ds

)2]1/2

= MB(0)cξ

d∑

j=1

E
[∥
∥Dγ MBS,j

∥
∥4

L2([0,T ]2)

]1/2
< +∞, (10.32)

which proves (iii). By Theorem 10.10, we can write

ai
s = E

Q
[
ai
s

] +
∫ T

0
E

Q

[(

Dva
i
s − ai

s

∫ T

v

Dvγ
MBS
u dB̂u

)∣
∣
∣
∣Fv

]

dB̂v, (10.33)

which yields

E
Q
[
ai
s

∣
∣Ft

] = E
Q
[
ai
s

]

+
∫ t

0
E

Q

[(

Dva
i
s − ai

s

∫ T

v

Dvγ
MBS
u dB̂u

)∣
∣
∣
∣Fv

]

dB̂v. (10.34)
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Using (10.19) (with r = t), we obtain

DtE
Q
[
ai
s

∣
∣Ft

] = E
Q

[(

Dta
i
s − ai

s

∫ T

t

Dtγ
MBS
u dB̂u

)∣
∣
∣
∣Ft

]

= −E
Q

[

ai
s

(

DtS
i
s +

∫ T

t

Dtγ
MBS
u dB̂u

)∣
∣
∣
∣Ft

]

. (10.35)

Introducing (10.35) into (10.30) and exchanging the integral in time with the expec-
tation, we get the expression (10.23) for DtG

MBS,i
t . �

10.2.3 Pricing MBSs: A PDE Approach

In this section we derive a pricing equation for an MBS. In Remark 10.6 we observed
that if the price of a financial instrument depends on nontradable economic factors,
the m.p.r. γt is not uniquely defined. Like in interest rate models, the MBS model
solves for all MBS prices relative to each other. The only way to tie down the prices is
by invoking the exogenous parameter, the m.p.r. Usually the m.p.r. is parameterized
in light of some economic reason or statistical argument, see, for instance, [5].

In our MBS model, the key result is the notion of equilibrium in the MBS market
proposed by Gabaix et al. [13]. The authors assume the existence of an m.p.r. of
equilibrium with a specific expression (see (10.11) below), and they give an empir-
ical support for it.

Unfortunately, the authors are silent though about the existence of this m.p.r. and
the Malliavin differentiability (see the hypotheses of Theorem 10.7). As directly
reported in their work, the reason for this is that the mathematical toolbox required
to rigorously prove their results are still largely to be developed. The main difficulty
here is related to a nonlinear structure of the problem induced by the equilibrium
they propose.

Our approach, based on the use of the theory of viscosity solutions, allows us to
answer to the problem left opened in [13]. Actually, in the case of a single MBS, the
derivation of the pricing equation as well as the existence of the equilibrium and its
Malliavin differentiability will be completely justified with the results presented in
Sects. 10.3 and 10.4.

The case of multiple assets requires more sophisticated tools in order to prove the
existence of an equilibrium. This corresponds to proving the existence of a unique
regular solution for a system of coupled and possibly strongly degenerate parabolic
equations. The study of this more complicated problem is the object of a work in
preparation. We focus our attention on the problem of pricing MBS pass-through
certificates (Col1), however our method easily applies to IO and PO derivatives.

1This notation stands for the name Collateral, which is frequently used for pass-through certifi-
cates.

www.TechnicalBooksPDF.com



270 M. Papi and M. Briani

We shall adopt the notation tr for the trace of a matrix and 〈 , 〉 for the standard
Euclidean product in R

N , ∂t (or ∂
∂t

) and ∂i for the partial derivatives w.r.t. the time t

and direction xi in R
N . Besides, ∇f stands for the gradient of f w.r.t. x, and ∇2f

stands for the Hessian matrix of f .
We consider a market of k MBSs with the same maturity T . We assume that the

market prices are affected by some economic factors whose values, observed at time
t = 0, are denoted by x ∈ R

N . Thus, the price vector at time t ≤ T of these securities
is (V

Col,1
t (x), . . . , V

Col,k
t (x)). In addition, we consider the following assumptions

which allow us to work in a Markovian setting:

(S1) The risk-free rate δ is continuous, and there exists a collection of stochastic
processes {Xx

t : t ∈ [0, T ]}x , x ∈ R
N , which represent all the economic factors

affecting MBS prices and satisfy

dXx
t = μ

(
Xx

t , T − t
)
dt + σ

(
Xx

t , T − t
)
dBt (10.36)

in [0, T ], where Xx
0 = x, and the coefficients μ : R

N × [0, T ] → R
N and

σ : R
N × [0, T ] → R

N×d are continuous in R
N × [0, T ] and x-Lipschitz con-

tinuous, uniformly in time, see [19].
(S2) For every i = 1, . . . , k and any initial state x ∈ R

N , the prepayment function
is Si

t (x) = s0,i (X
x
t , t), where s0,i ∈ C2,1(RN × [0, T ]) and s0,i ≥ 0.

Let h0,i = MBie
−s0,i , where the function MBi is defined in (10.5) for i = 1, . . . , k.

(S3) There exist functions uCol
i ∈ C2,1(RN × [0, T ]), i = 1, . . . , k, such that

uCol
i ≥ −h0,i in R

N × [0, T ] and

V
Col,i
t (x) = uCol

i

(
Xx

t , t
) + h0,i

(
Xx

t , t
)
, x ∈ R

N, t ∈ [0, T ]. (10.37)

We define an equilibrium as in [13].

Definition 10.11 Let x ∈ R
N be the observed state of the economy. An equilibrium

for the MBS market is a d-dimensional process γ (x), adapted to the filtration of B ,
such that, defining Q as the measure (10.14) associated to γ (x) (i.e., that makes
B̂t = Bt + ∫ t

0 γs(x) ds a Brownian motion), for all dates t ∈ [0, T ], relation (10.21)
holds, and

γt (x) = ρ

∑k
i=1 DtG

Col,i
t (x)

∑k
i=1 V

Col,i
t (x) + V Riskless

t

(10.38)

for every t ∈ [0, T ].

Remark 10.12 In the work of Gabaix et al. [13] there is no comprehensive theoret-
ical motivation for defining the m.p.r. as in (10.38). However, we can give the intu-
ition behind this formula. The investor behavior can be explained by a Merton-type
problem [23], where he maximizes an objective function on his wealth (portfolio
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returns). For a large class of utility functions and under d-dimensional source of
randomness, this leads to the following risk premium:

μ
p
t − δ(t) = ρ

〈
σ

p
t , σM

t

〉
(10.39)

for an asset p with expected return μ
p
t (under the measure P) and sensitivity σ

p
t ∈

R
d to market price fluctuations. Here ρ is a risk aversion parameter, and σM

t ∈ R
d is

the total sensitivity of market returns. If p entitles the holder to receive cash-flows,
then σ

p
t pt represents the diffusion coefficient of the related gain process. σM

t is
expressed by a weighted average of the sensitivities of the market as a whole, the
weights being the prices of the assets. If the market is made up of k MBSs and the
riskless asset (10.9), then it has the total sensitivity

σM
t =

∑k
i=1 DtG

Col,i
t (x)

∑k
i=1 V

Col,i
t (x) + V Riskless

t

. (10.40)

Let pt = V
Col,i
t for i = 1, . . . , k. Multiplying (10.39) by pt and comparing this

relation with the ith equation of the linear system (10.12) at time t , we deduce that
(10.38) is an admissible m.p.r.

Theorem 10.13 Assume (S1)–(S3). Suppose that for any initial state of the econ-
omy x ∈ R

N , there exists an equilibrium γ (x) for the MBS market. Then uCol =
(uCol

1 , . . . , uCol
k ) is a solution of the following system of equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ
〈
σ	

0 ∇ui,

∑k
j=1 σ	

0 ∇uj

V Riskless
s +∑k

j=1[h0,j +uj ]
〉

= −δ(s)(h0,i + ui) + τih0,i

+ 〈∇ui,μ0〉 + ∂ui

∂s
+ 1

2 tr(σ0σ
	
0 ∇2ui), (x, s) ∈ R

N × (0, T ),

ui(x, T ) = 0, x ∈ R
N,

for every i = 1, . . . , k, where σ0(x, s) = σ(x,T − s) and μ0(x, s) = μ(x,T − s) for
(x, s) ∈ R

N × [0, T ]. Furthermore, for all i = 1, . . . , k, x ∈ R
N , and t ∈ [0, T ], the

following holds:

uCol
i

(
Xx

t , t
) = E

Q

[∫ T

t

(
τi − δ(s)

)
e−∫ s

t δ(u) duh0,i

(
Xx

s , s
)
ds

∣
∣
∣
∣Ft

]

(10.41)

P-a.s.

Proof Let x ∈ R
N and Xs = Xx

s for any s ∈ [0, T ]. To simplify the presentation, in
the sequel we omit the dependence on x. By Definition 10.11 and using (10.21), we
get

〈
σ MBS

G,i (s), γs(x)
〉 = μMBS

G,i (s) − δ(s)V MBS,i
s (10.42)
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for every s ∈ [0, T ], i = 1, . . . , k. Applying Itô’s lemma to (10.11) and using
(S2)–(S3), we find

dGMBS,i
s = d

(
uCol

i (Xs, s) + h0,i (Xs, s)
) + τih0,i(Xs, s) ds − dh0,i (Xs, s)

=
[
〈∇uCol

i (Xs, s),μ0(Xs, s)
〉 + ∂uCol

i

∂s
(Xs, s) + 1

2
tr
(
σ0σ

	
0 ∇2uCol

i (Xs, s)
)

+ τih0,i (Xs, s)

]

ds + ∇	uCol
i (Xs, s)σ0 dBs. (10.43)

Therefore, σ MBS
G,i (s) = ∇	uCol

i (Xs, s)σ0(Xs, s), and

μMBS
G,i (s) = 〈∇uCol

i ,μ0
〉 + ∂uCol

i

∂s
+ 1

2
tr
(
σ0σ

	
0 ∇2uCol

i

) + τih0,i . (10.44)

By (10.38) and (10.37) we have

γs(x) = ρ

∑k
j=1 σ	

0 (Xs, s)∇uCol
j (Xs, s)

∑k
j=1[uCol

j (Xs, s) + h0,j (Xs, s)] + V Riskless
s

. (10.45)

Introducing the previous relations into (10.42), we obtain

ρ

〈

σ	
0 (Xs, s)∇uCol

i (Xs, s),

∑k
j=1 σ	

0 (Xs, s)∇uCol
j (Xs, s)

∑k
j=1[uCol

j (Xs, s) + h0,j (Xs, s)] + V Riskless
s

〉

= 〈∇uCol
i (Xs, s),μ0(Xs, s)

〉 + 1

2
tr
(
σ0σ

	
0 ∇2uCol

i (Xs, s)
) + τih0,i (Xs, s)

+ ∂uCol
i

∂s
(Xs, s) − δ(s)

(
uCol

i (Xs, s) + h0,i(Xs, s)
)

(10.46)

for any s ∈ [0, T ]. Given the arbitrary choice of the initial state x, the evaluation
of (10.46) at s = 0 proves the first statement of the theorem. Using (10.21) with
ai

s = h0,i (Xs, s) and (S3), the stochastic representation (10.41) follows by applying
Itô’s formula to uCol

i (Xs, s). �

With the same arguments and using part (B) of Theorem 10.4, it is easy to prove
the following converse result of Theorem 10.13.

Theorem 10.14 Assume (S1)–(S2), where σ is bounded. Let u = (u1, . . . , uk) be a
smooth solution to system (10.41) such that ∇ui is bounded and ui + h0,i ≥ 0 for
every i = 1, . . . , k. For any x ∈ R

N , i = 1 . . . , k, t ∈ [0, T ], define

V i
t = ui

(
Xx

t , t
) + h0,i

(
Xx

t , t
)
, Gi

t = V i
t +

∫ t

0
dci

s . (10.47)
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Then (V Riskless
t ,G1

t , . . . ,G
k
t ) defines an arbitrage-free market which admits and

equilibrium in the sense of Definition 10.11.

Based on Theorems 10.13 and 10.14, the results discussed in the next sections
will be devoted to the case k = 1. Let us make the change of variable s = T − t and
define:

ξ(t) = A0e
∫ T −t

0 δ(s) ds, r(t) = δ(T − t),

h(x, t) = h0,1(x, T − t),
(10.48)

U(x, t) = uCol
1 (x, T − t). (10.49)

Then system (10.41) reduces to the following partial differential equation:

∂U

∂t
− 1

2
tr
(
σ(x, t)σ	(x, t)∇2U

) − 〈
μ(x, t),∇U

〉 + ρ
|σ	(x, t)∇U |2

U + h(x, t) + ξ(t)

− τh(x, t) + r(t)
(
U + h(x, t)

) = 0 in R
N × (0, T ) (10.50)

with U(x,0) = 0 everywhere in R
N .

Some properties of the solution U are required in order to be consistent with the
financial problem. More precisely, we require that (1) U + h is nonnegative (that is,
V Col ≥ 0) and (2) U satisfies the stochastic representation formula

U
(
Xx

t , T − t
)

= E
Q

[∫ T

t

(
τ − r(T − s)

)
e− ∫ s

t r(T −κ)dκh
(
Xx

s , T − s
)
ds

∣
∣
∣
∣Ft

]

. (10.51)

Remark 10.15

(a) The previous setting applies also to existing pools of mortgages. In this case,
MB(0) is the pool balance at the observation time.

(b) Since at = h(Xx
t , T − t), by (10.1) we deduce that the MBS market quote is

at + U(Xx
t , T − t)

at

.

(c) As in the theory of interest rate modeling, to calibrate our model, it suffices to
assign the dynamics (10.36) under the risk-adjusted measure for the economic
factors; then using market prices to match the solution of (10.50), one can esti-
mate model parameters μ, σ , and ρ.

In the following sections we provide sufficient conditions for the existence of
a unique solution to (10.50) and for the existence of an equilibrium, as in Defini-
tion 10.11.
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10.3 Viscosity Solutions

Through previous sections, the interplay between MBS pricing and degenerate
parabolic equations have been put in light. This section contains a review on vis-
cosity solutions, which should be of use in the following sections.

Since (10.50) may be degenerate when N > d and has a quadratic growth in
the gradient, it seems natural to study problem (10.50) in the framework of vis-
cosity solutions. Various existence and comparison/uniqueness results for viscosity
solutions to degenerate equations of second order can be found in [14]. We are in-
terested in solving a Cauchy problem in the domain R

N × (0, T ), with initial datum
u0 ∈ C(RN ; (a, b)):

{
∂tu + F(x, t, u,∇u,∇2u) = 0, (x, t) ∈ R

N × (0, T ),

u(x,0) = u0(x), x ∈ R
N,

(10.52)

where F ∈ C(RN × [0, T ] × (a, b) × R
N × S N), S N being the set of symmetric

N × N real matrices. For a complete presentation of our study, we recall the defini-
tion of viscosity solutions. The notion of derivatives in the viscosity sense involves
smooth test functions touching from below (respectively, from above) the graph of u

at the point of interest.

Definition 10.16 Let u : R
N × [0, T ] → (a, b) be locally bounded. The parabolic

super 2-jet of u at the point (x, t) ∈ R
N × [0, T ) is the following subset of

R × R
N × S N :

P 2,+u(x, t) = {(
∂tϕ(x, t),∇ϕ(x, t),∇2ϕ(x, t)

) : ϕ ∈ C2,1(
R

N × [0, T )
)
, u − ϕ

has a global strict maximum at (x, t)
}
.

Similarly, we define the parabolic lower 2-jet as P 2,−u = −P 2,+(−u).

Definition 10.17 A locally bounded function u : R
N ×[0, T ] → (a, b) that is upper

semicontinuous (resp. lower semicontinuous) is a viscosity subsolution (resp. lower
viscosity supersolution) to (10.52) if for any (x, t) ∈ R

N × (0, T ) and for every
(b, q,A) ∈ P 2,+u(x, t) (resp. (b, q,A) ∈ P 2,−u(x, t)), the inequality

b + F
(
x, t, u(x, t), q,A

) ≤ 0 (resp. ≥ 0) (10.53)

holds, and u(x,0) ≤ u0(x) (resp. u(x,0) ≥ u0(x)) for any x ∈ R
N .

Definition 10.18 A locally bounded function u : R
N ×[0, T ) → (a, b) is a viscosity

solution to (10.52) if its upper semicontinuous envelope is a viscosity subsolution
and its lower semicontinuous envelope is a viscosity supersolution.

The existence and uniqueness of a solution to (10.52) is based on a well-known
technique which combines the Perron’s method and a comparison principle between
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sub- and super-solutions of the problem. We refer to [4] for definitions of the upper
and lower semicontinuous envelopes.

Unfortunately, viscosity solutions have very few regularity, being merely contin-
uous, and regularity results have to be proved. We also notice that the possible strong
degeneracy of (10.50) does not allow, in general, any smoothing effect. Therefore
regularity estimates have to be global. The following theorem, whose proof is given
in [25], provides an existence and uniqueness result to (10.50). Consider the follow-
ing assumption:

(P) h ∈ C2,1(RN ×[0, T ]), ∂th(·, t), tr(σσ	(t)∇2h(·, t)), ∇h(·, t) are bounded and
x-Lipschitz continuous, uniformly in time.

Theorem 10.19 (Theorem 4.2 and Proposition 4.6 in [25]) Let σ be independent
of x. Under assumptions (S1) and (P) and assuming that τ ≥ δ in [0, T ], prob-
lem (10.50) admits a unique bounded viscosity solution U such that U + h ≥ 0.

Remark 10.20 We observe that the inequality τ ≥ δ(·) is a matter of course; other-
wise the investment in the MBS market is less profitable than a bank account. Hence,
we shall make this assumption in the rest of the paper.

10.4 Financial Motivations for the Regularity of U

We recall that in the case of one MBS pass-through, as in Definition 10.11, the m.p.r.
can be expressed in the following form:

γt (x) = ρ
σ	(Xx

t , T − t)∇U(Xx
t , T − t)

U(Xx
t , T − t) + h(Xx

t , T − t) + ξ(T − t)
(10.54)

for every t ∈ (0, T ], P-a.s., implying the dependence of the risk-neutral measure Q

on the solution U and its gradient. This generates a convoluted stochastic representa-
tion for U , precisely given by (10.51). The typical technique used in the framework
of viscosity solutions to prove a representation like (10.51) is based on the use of
the dynamic programming principle, see [11]. In that context, the existence of the
value function is guaranteed by the existence of the expected value. Here, we cannot
say that U exists because the expected value in (10.51) depends on U itself.

Actually, (10.50) does not arise from a control problem, so the solution U is not
the value function of an optimization problem. Since viscosity solutions are merely
continuous, the existence of a viscosity solution to (10.50) is not sufficient to prove
that (10.51) holds. One possibility is to use the regularity of the process Xt to show
that the functional given by the right-hand side of (10.51) is a viscosity solution of
(10.50). This approach would require to express the dynamics of the process Xt in
terms of the new measure Q, that is,

dXt = (
μ(Xt, T − t) − σ(Xt , T − t)γt (x)

)
dt + σ(Xt , T − t) dB̂t ,
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where B̂t is given by (10.15). However, the usual regularity assumptions require
that the coefficients of the process are Lipschitz continuous in the spatial variable.
By (10.54), we argue that more regularity on ∇U is needed. Therefore, we have
to prove that U belongs to a class of regularity not covered by the classical theory
of viscosity solutions. Unfortunately, due to the quadratic growth term in (10.50),
we can obtain this property only assuming higher regularity on the coefficients of
the equation. Our approach is based on the use of an extension of Itô’s formula for
less regular functions. Some recent results about this topic involve the quadratic
covariation to replace the second-order term. Due to this fact, they are not relevant
for our purposes, while we follow the approach of Haussmann [16]. This result
preserves the structure of the classical Itô’s formula, and it applies to a weaker class
of regularity. When the process Xt admits a density, this kind of regularity defines
the correct class where the solution should be found in order to obtain a complete
justification of (10.51).

In the sequel, we use the standard notation for Sobolev spaces denoting by
W

k,∞(A) the space of functions which are bounded in A ⊂ R
N , together with their

weak derivatives up to order k. We also use the notation W
2,1,∞(RN × (0, T ))

for the space of bounded functions u with weak derivatives ∂tu, ∂iu, ∂2
ij u, i, j =

1, . . . ,N , bounded in R
N × (0, T ). The following is a regularity result for the MBS

equation.

Theorem 10.21 Let σ be independent of x and assume (S1). Let h(·, t) ∈
W

4,∞(RN), ∂th(·, t), μ(·, t) ∈ W
2,∞(RN), uniformly in time. Then problem (10.50)

admits a unique solution U ∈ W
2,1,∞(RN × (0, T )).

Proof Since the assumptions of Theorem 10.19 are verified, there exists a unique
viscosity solution U such that M0 > U + h + ξ > m0 > 0 in R

N × [0, T ] for some
constants m0 and M0. Let v = U + h + ξ ; then v is a viscosity solution of the
equation

∂tv − 1

2
tr
(
σ(t)σ	(t)∇2h

) − 〈μ,∇v〉 + λ(v)
∣
∣σ	(t)∇v

∣
∣2 + η(v)

〈
σ	∇v,w

〉

+ f (x, t, v) = 0 (10.55)

in R
N × (0, T ), where λ(v) = ρ/v, η(v) = −2ρ/v, w(x, t) = σ	(t)∇h(x, t), and

f (x, t, v) = −∂th + 1

2
tr
(
σ(t)σ	(t)∇2h

) + 〈
μ(x, t),∇h

〉 + ρ

v

∣
∣σ	(t)∇h

∣
∣2

− τh(x, t) + r(t)v − ξ ′(t) − r(t)ξ(t). (10.56)

Since v(·,0) = ξ(0) and f (·, t, ·) ∈ W
2,∞(RN × (m0,M0)) uniformly in time, then

v ∈ W
2,1,∞(RN × (0, T )) by Theorem 3.4, p. 233 in [26]. Hence the same holds for

U = v − h − ξ . �
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10.4.1 Stochastic Representation

Let us back to the MBS model. In this section, we shall prove representation (10.51)
using a fundamental property of W

2,1,∞ functions, see [3].
To rigorously derive (10.51), we need to apply Itô’s formula to U(Xt, T − t).

In [16] it is proved that Itô’s formula holds for functions in W
2,1,∞(RN × (0, T )),

provided that it is interpreted appropriately, using the generalized Hessian. Here,
we shall use the regularity of the solution U and that result to obtain the equality
in (10.51).

Theorem 10.22 Assume (S1)–(S2), where σ is bounded. Let x0 ∈ R
N be the start-

ing point of Xt . If U ∈ W
2,1,∞(RN × (0, T )) is the solution of (10.50) satisfying

U + h ≥ 0 everywhere in R
N × [0, T ], then the following hold:

(i) For all t ∈ [0, T ] and p ≥ 2, γt (x0) ∈ L
1,p .

If for every t ∈ (0, T ], Xt admits a density p(·, t) w.r.t. the Lebesgue measure in R
N

such that p is Borel measurable in both the variables x and t , then

(ii) the representation formula (10.51) holds at x0, P-a.s.
(iii) γt (x0) is an equilibrium, in the sense of Definition 10.11, for the market

(V Riskless
t , GCol

t ), where GCol
t = U(Xt , T − t) + h(Xt , T − t) + ∫ t

0 dcs , in
[0, T ].

Remark 10.23

(a) We observe that under the hypotheses of Theorem 10.21, conclusions of The-
orem 10.22 hold, the m.p.r. (10.54) satisfies Novikov’s condition, and the as-
sumptions of Theorem 10.7 are verified.

(b) Criteria ensuring the existence of a density can be found in [24], where the abso-
lute continuity and the smoothness of the density under Hörmander’s condition
are deeply analyzed.

The assertion of Haussmann in [16] interprets Itô’s rule through some processes
substituting the usual derivatives of the function at (Xt , t). They coincide with the
usual derivatives if the underlying process belongs to some set of full Lebesgue
measure. To state our formula, we have to neglect the term which corresponds to an
integration over the paths of Xt which fall into a set of null Lebesgue measure. The
existence of a density for the process Xt can be explained by this purpose. However,
as is showed in Example 10.26, this assumption allows us to consider the case of
possibly strongly degenerate diffusions (N > d). We need of a technical result. In
the sequel, the notation 1A will be used for the indicator function of a set A.

Lemma 10.24 Let Q be a probability measure equivalent to P, over Ω , such that
dQ

dP
has finite variance. Let W ⊂ R

N × [0, T ] be a set of zero Lebesgue measure.
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Define

Zt,T =
∫ T

t

ms1W (Xs, s) ds + ns1W(Xs, s) dBs, t ∈ [0, T ], (10.57)

where ms and ns are {Fs}0≤s≤T -adapted bounded processes. If Xt satisfies the
assumptions of Theorem 10.22, then

E
Q
[|Zt,T |∣∣Ft

] = 0 P-a.s. (10.58)

Proof of Theorem 10.22 (i) Let p ≥ 2. We observe that γ can be written as γt =
ϕ(Xt , t), where

ϕ(x, t) = ρ
σ	(x, T − t)∇U(x,T − t)

U(x,T − t) + h(x,T − t) + ξ(T − t)
. (10.59)

The properties of U imply the Lipschitz continuity of ϕ(·, t) for every t , with a
Lipschitz constant less than some Kϕ > 0, uniformly in t .

By the chain rule we deduce that γt ∈ D
1,p for any t ∈ [0, T ] and also

sup
0≤s≤T

E

[
sup

s≤t≤T

|Dsγt |p
]

≤ KϕN
√

d sup
0≤r≤T

E

[
sup

r≤t≤T

‖DrXt‖p
]
, (10.60)

the right-hand side being finite, since Xt is the solution of (10.36), see [24]. This
implies that γ ∈ L

1,p for any p ≥ 2.
(ii) Let LN+1 denote the Lebesgue measure in R

N+1. Set Σ(x, t) = σ(x,

T − t), μ◦(x, t) = μ(x,T − t), h◦ = h(x,T − t), ξ◦(t) = ξ(T − t), and
U ◦(x, t) = U(x,T − t). Then U◦ is a viscosity solution of the equation

∂tU
◦ + 1

2
tr
(
ΣΣ	∇2U◦) + 〈

μ◦,∇U ◦〉 − ρ
|Σ	∇U◦|2

U◦ + h◦ + ξ◦

= δ
(
U◦ + h◦) − τh◦ (10.61)

in R
N × (0, T ), with U◦(·, T ) ≡ 0. Since U◦ ∈ W

2,1,∞(RN × (0, T )), applying
the results of [3] for a.e. (x, t) ∈ R

N × (0, T ), we get (∂tU
◦(x, t),∇U◦(x, t),

∇2U◦(x, t)) ∈ P 2,±U◦(x, t), where ∂tU
◦,∇U ◦,∇2U◦, represent the weak deriva-

tives of U◦. Hence (10.61) holds for LN+1-a.e. (x, t) ∈ R
N × (0, T ). We now apply

Theorem 3.1, p. 733 in [16], to the function (x, s) �→ e− ∫ s
t δ(κ) dκU◦(x, s). In partic-

ular, there exist adapted processes �, β , and α such that

0 = e−∫ T
t δ(κ) dκU◦(XT ,T )

= U◦(Xt , t) +
∫ T

t

[

�s + 〈
μ◦(Xs, s), βs

〉

+ 1

2
tr
(
ΣΣ	(Xs, s)αs

)
]

ds +
∫ T

t

β	
s Σ(Xs, s) dBs (10.62)
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for every t ∈ (0, T ), P-a.s. Furthermore, there exists a set A ⊂ R
N × (0, T ) of full

Lebesgue measure such that the usual derivatives of U◦ exist in A and

�s = e−∫ s
t

δ(κ) dκ
[
∂sU

◦(Xs, s) − δ(s)U◦(Xs, s)
]
, (10.63)

βs = e−∫ s
t δ(κ) dκ∇U ◦(Xs, s), αs = e−∫ s

t δ(κ) dκ∇2U◦(Xs, s), (10.64)

whenever (Xs, s) ∈ A. Without loss of generality, we can assume that (10.61) holds
in A. The application of (10.61), (10.62), and (10.63)–(10.64) yields

0 = U◦(Xt , t) +
∫ T

t

[

�s + 〈
μ◦(Xs, s), βs

〉 + 1

2
tr
(
ΣΣ	(Xs, s)αs

− β	
s Σ(Xs, s)γs(x0)

)
]

1A(Xs, s) ds +
∫ T

t

1A(Xs, s)β
	
s Σ(Xs, s) dB̂s + Zt,T

= U◦(Xt , t) +
∫ T

t

e− ∫ s
t δ(κ) dκ

[
δ(s)

(
U ◦(Xs, s) + h◦(Xs, s)

) − τh◦(Xs, s)

− δ(s)U ◦(Xs, s)
]
ds +

∫ T

t

β	
s Σ(Xs, s)1A(Xs, s) dB̂s + Zt,T . (10.65)

By the boundedness of �, β , and α, we recognize that the remaining term Zt,T has
the same structure of (10.57). Since the risk-neutral measure Q is equivalent to P

and dQ

dP
has finite variance, we can apply Lemma 10.24 to obtain that Zt,T has a null

conditional expectation w.r.t. Q. Taking the conditional expected value in both the
left- and right-hand sides of (10.65), we get

U◦(Xt , t) = E
Q

[∫ T

t

e− ∫ s
t δ(κ) dκ

(
τ − δ(s)

)
h◦(Xs, s)1A(Xs, s) ds

∣
∣
∣
∣Ft

]

P-a.s. Since X admits a density in R
N and A has full Lebesgue measure, the asser-

tion is proved.
(iii) This easily follows by using (10.50) and (i), (ii). �

Remark 10.25 For every probability measure Q, equivalent to P on Ω , and for any
FT -measurable and integrable random variable Y , the following holds [19]:

E
Q[Y |Ft ] = E[Y dQ

dP
|Ft ]

E[ dQ

dP
|Ft ]

. (10.66)

Proof of Lemma 10.24 Let ϑ > 0 be such that |ms | + |ns | ≤ ϑ for any s ∈ [0, T ],
P-a.s. Define vt = E[( dQ

dP
)2|Ft ] and yt = ϑ

√
vt (T − t). The Itô isometry and

Jensen’s inequality yield

E

[
dQ

dP

∣
∣
∣
∣

∫ T

t

ns1W (Xs, s) dBs

∣
∣
∣
∣

∣
∣
∣
∣Ft

]2

≤ vtϑ
2
E

[∫ T

t

1W (Xs, s) ds

∣
∣
∣
∣Ft

]

(10.67)
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and

E

[
dQ

dP

∣
∣
∣
∣

∫ T

t

ms1W (Xs, s) ds

∣
∣
∣
∣

∣
∣
∣
∣Ft

]

≤ ytE

[∫ T

t

1W (Xs, s) ds

∣
∣
∣
∣Ft

] 1
2

(10.68)

for every t ∈ [0, T ], P-a.s. By Remark 10.25, it suffices to prove that the random
variable on the right-hand side of (10.67)–(10.68) is zero. Since this variable is
nonnegative, it suffices to prove that its expectation is zero. By Fubini’s theorem,
this expected value can be expressed, using the density of Xs , in the following way:

∫ T

t

∫

W

p(x, s) dx ds. (10.69)

Since W is a set of zero Lebesgue measure, the assertion follows. �

The following is a general model for the factors affecting prepayments, which is
strongly degenerate and satisfies the assumptions of Theorem 10.22.

Example 10.26 Path dependency refers to the dependence of the prepayment func-
tion S on the trajectory followed by one or more of the underlying economic fac-
tors that affect prepayments, that is, s0 = s0(y), where s0(y) = y for y ≥ 0, and
s0 is extended to a smooth function for y < 0; the prepayment rate yt follows
yt = ∫ t

0 η(xs, ys) ds for some nonnegative function η; here xt is a d-dimensional
process which represents the economic factors. Since yt is nonnegative, the val-
ues s0 on (−∞,0) do not affect the model, while they guarantee the smooth-
ness of the function h required in Theorems 10.19 and 10.21. Let xt be driven
by dxt = b(xt ) dt + c(xt ) dBt . The underlying process is Xt = (xt , yt ) ∈ R

N , with
N = d + 1, starting at X0 = (x0,0), and

μ(X) =
(

b(y)

η(x, y)

)

∈ R
N, σ (X) =

(
c(x)

0 · · ·0

)

∈ R
N×d (10.70)

for every X = (x, y). It is clear that the quadratic form σσ	 is strongly degenerate
everywhere in R

N . However sufficient conditions can be given in order to guaran-
tee the existence of a density for Xt . Actually, let b,η, c be smooth functions, as-
sume that c(x0) is invertible, and let 〈∇xη(x0,0), cλ(x0)〉 �= 0 for some λ = 1, . . . , d ,

cλ(x0) being the λth column of c(x0). Let α0 = b − 1
2

∑d
i=1 ∂ycici , and let [·, ·] de-

note the Lie bracket between vector fields [24]. Under the previous conditions, it is
easy to see that

(
c1(x0)

0

)

,

(
c2(x0)

0

)

, . . . ,

(
cd(x0)

0

)

,

( [α0, c
λ](x0)

−〈∇xη(x0,0), cλ(x0)〉
)

is a basis of R
N . We observe that these vectors belong to the Lie algebra given by

the classical Hörmander condition, see, in particular, [24]. Therefore X admits a
smooth density w.r.t. the Lebesgue measure in R

N .
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10.5 The Numerical Solution

In this section, we present sufficient conditions for the numerical approximation of
(10.50), proving a convergence result. We approximate the equation in all space by
reducing the problem to a bounded domain and imposing the Neumann condition at
the boundary. Let BR be an open ball in R

N with a fixed center and radius R > 0.
Then we focus on the problem

F
(
x, t,U, ∂tU,∇U,∇2U

) = 0 in BR × [0, T ), (10.71)

where, for every (x, t,U,b, q,X) ∈ BR × (0, T )×R×R
N × S N with U +h(x, t)+

ξ(t) > 0, we have

F(x, t,U,b, q,X) = b − 1

2
tr
(
σ(t)σ T (t)X

) − 〈
μ(x, t), q

〉 + H(x, t,U,q)

− τh(x, t) + r(t)
(
U + h(x, t)

)
, (10.72)

while F(·) = U at t = 0 and F(·) = 〈q,n(x)〉 if (x, t) ∈ ∂BR × [0, T ). Here n

denotes the outward unit normal on ∂BR , and H(x, t,U,q) = ρ|σT (t)q|2/(ξ(t) +
h(x, t)+U). For any bounded continuous function k in R

N ×[0, T ] and any L > 0,
define the space

W (k,L) = {
v ∈ C

(
BR × [0, T ]) : k ≤ v ≤ L, in BR × [0, T ]}. (10.73)

The assumptions of Theorem 10.19 are sufficient to prove the comparison principle
and the existence of a unique viscosity solution UR to (10.71)–(10.72) in W (−h,L)

for some L ≥ supx,t h. Actually this is just a translation of the general result proved
in [25] with some additional arguments for the boundary condition as in [4]. More-
over we refer to [1] for the study of the rate of convergence of UR to the solution U

of the problem (10.50) as R → +∞.
We define a numerical grid in R

N × [0, T ] using the following notation:
Δx = (Δx1, . . . ,ΔxN) is the spatial grid size, Δt is the time grid size, (xj , tn) =
(jΔx,nΔt), j = 0, . . . ,K , n = 0, . . . ,M , are the grid points, vn

j is the value of
the function v, defined on the grid or defined for continuously varying (x, t), at the
grid point (xj , tn), and ṽ is the vector of v values, (vn

j )j,n. A numerical scheme
approximating (10.71)–(10.72) can be written as

S
(
Δx,Δt, x, t, v(x), v

) = 0, (10.74)

where S : (0,+∞)N+1 × BR × [0, T ] × R × W (k,L) → R. Let us recall that, in
recent years, a great deal has been done for the numerical approximation of viscos-
ity solutions. For second-order problems, let us refer to the fundamental paper by
Barles and Souganidis [2], who first showed convergence results for a large class of
numerical schemes. In this section, we shall extend this convergence result to the
solution UR ∈ W (−h,L). We assume the scheme (10.74) to satisfy the following
properties:
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(C1) Consistency. For any smooth function φ ∈ W (−h,L), for any (x, t) ∈ BR ×
[0, T ), and for some function ε = ε(Δx,Δt) > 0, one has

lim
Δx,Δt→0

(y,s)→(x,t)

S(Δx,Δt, y, s,φ(y),φ)

ε(Δx,Δt)
= F

(
x, t, φ, ∂tφ,∇φ,∇2φ

)
. (10.75)

(C2) Monotonicity. For any Δx,Δt > 0, (x, t) ∈ BR ×[0, T ), and v,w ∈ W (−h,L)

such that v ≥ w and v(x) = w(x), one has

S
(
Δx,Δt, x, t, v(x), v

) ≤ S
(
Δx,Δt, x, t,w(x),w

)
. (10.76)

(C3) Stability For every Δ = (Δx,Δt), Δx,Δt > 0, the scheme has a solution
vΔ ∈ W (−h,L).

Remark 10.27 The stability condition (C3) is equivalent to the standard stability
assumption [2], i.e., if vΔ ∈ W (−h,L), then −L ≤ vΔ ≤ L for any Δ.

Proposition 10.28 Let assumptions (C1)–(C3) hold. Then, as Δ = (Δx,Δt) → 0,
the solution vΔ of the scheme (10.74) converges locally uniformly (l.u.) to the unique
viscosity UR solution of problem (10.71)–(10.72).

Sketch of proof Let vΔ be the solution of (10.74). Condition (C3) implies that
the functions v, v, defined by v(x, t) = lim infΔ→0,(y,s)→(x,t) v

Δ(y, s), v(x, t) =
lim supΔ→0,(y,s)→(x,t) v

Δ(y, s), belong to W (−h,L). The monotonicity and con-
sistency assumptions on S imply that v and v are respectively sub- and supersolu-
tions of the limiting equation (see the proof of Theorem 2.1 in [2]). By the strong
comparison principle (see Theorem 4.2 in [25]), UR = v = v is the unique viscosity
solution of (10.71)–(10.72). �

10.5.1 The Numerical Approximation

In this section, we apply previous results to approximate a two-dimensional model
based on path dependency (see Example 10.26). In this case there is an absence of
diffusion in the additional dimension, which causes a more difficult analysis to solve
the problem, since the diffusion term contributes to the stability of the numerical
scheme used to solve the pricing equation. Let d = 1 and xt ∈ R be the underlying
factor with drift μ1(x, t) and volatility σ(t). Assume the prepayment process to
follow dyt = μ2(xt , yt , t) dt . Let μ2 ≥ 0 and σ2 ≥ σ(t) ≥ σ1 > 0 for any t ∈ [0, T ],
with the usual regularity assumptions. For the sake of simplicity, let the discount rate
δ be constant. We consider the problem on the bounded domain QT = [xmin, xmax]×
[ymin, ymax] × [0, T ]. The Hamiltonian F in (10.72) reduces to
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F
(
x, y, t,U,∇U,∂2

xxU
) = ∂tU − 1

2
σ 2(t)∂2

xxU − 〈(
μ1(x, t),μ2(x, y, t)

)
,∇U

〉

+ H(y, t,U, ∂xU) + δU + (δ − τ)h(y, t), (10.77)

where H(y, t,U,q) = σ 2(t)ρ
|q|2

ξ(t)+h(y,t)+U
and ξ(t) = A0e

δ(T −t).

Applying finite differences, we obtain v0
ij = 0 for any i, j = 0, . . . ,K and

S
(
Δ,n, i, j, vn+1

ij , ṽ
) = vn+1

ij − S̃
(
Δ,n, i, j, ṽn

) = 0,

S̃
(
Δ,n, i, j, ṽn

) = vn
ij + 1

2

(
σ 2)n Δt

Δx2

(
vn
i+1,j − 2vn

ij + vn
i−1,j

)

+ (μ1)
n
ij

vn
i+1,j − vn

i−1,j

2(Δx/Δt)
+ (μ2)

n
ij

vn
i,j+1 − vn

ij

(Δy/Δt)

− Δtδvn
ij − Δt(δ − τ)hn

j

− ΔtH

(

yj , tn, v
n
ij ,

vn
i+1,j − vn

i−1,j

2Δx

)

(10.78)

for any i, j = 1, . . . ,K − 1, n = 0, . . . ,M , where ṽn = (vn
i−1,j , v

n
ij , v

n
i+1,j , v

n
i,j+1).

We have additional conditions on the boundary points:

vn
0,j = vn

1,j , vn
K,j = vn

K−1,j , vn
i,K = vn

i,K−1 for i, j = 1, . . . ,K − 1, (10.79)

that are first-order approximations of Neumann boundary conditions on the square
[xmin, xmax] × [ymin, ymax]. Let us assume:

(T1) h ≥ 0 is a smooth function, nonincreasing in y and nondecreasing in t , such
that h(y, t) = MB(T − t)e−y for y ≥ 0 and max((τ − δ), δ) supy,t h ≤ δL.

(T2) A0 > 2ρL, and the grid steps Δx,Δy,Δt satisfy

Δx sup
QT

|μ1| ≤ σ 2
1

(

1 − 2ρL

A0

)

, σ 2
2

Δt

Δx2
+ sup

QT

μ2
Δt

Δy
+ Δtδ ≤ 1.

(10.80)

Remark 10.29 The upper bound L can be chosen so that U ≡ L is a supersolution
of (10.71)–(10.72); then the comparison principle [25] implies U ≤ L. It is easy to
see that this choice is independent of A0, which can be chosen as in (T2).

Theorem 10.30 Under assumptions (T1)–(T2), the numerical scheme (10.78)–
(10.79) has a solution vΔ ∈ W (−h,L), and, as Δ → 0, vΔ converges l.u. to the
viscosity solution of problem (10.71)–(10.72), F being defined in (10.77).

Proof By Proposition 10.28, the result is proved if the scheme (10.78)–(10.79)
satisfies (C1)–(C3). The consistency (C1) is easily proved by the Taylor expan-
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sion. We then prove the monotonicity (C2). The scheme is monotone if, for all
i, j = 1, . . . ,K − 1, n = 0, . . . ,M ,

1 − σ 2(·) Δt

Δx2
− μ2(·) Δt

Δy
− Δt

∂H

∂U
(·) − Δtδ ≥ 0, μ2(·) Δt

Δy
≥ 0, (10.81)

1

2
σ 2(·) Δt

Δx2
± μ1(·) Δt

2Δx
∓ Δt

2Δx

∂H

∂q
(·) ≥ 0. (10.82)

From the definition of H one has ∂H/∂U ≤ 0; hence, using σ ≤ σ2, the first in-
equality in (10.81) is verified if Δ = (Δt,Δx,Δy) satisfies the second relation in
(10.80). Since μ2 ≥ 0, the second inequality in (10.81) holds. Inequalities (10.81)–
(10.82) are equivalent to

Δx

∣
∣
∣
∣
∂H

∂q

(

yj , tn, v
n
ij ,

vn
i+1,j

− vn
i−1,j

2Δx

)

− (μ1)
n
ij

∣
∣
∣
∣ ≤ σ 2(·) ∀i, j, n. (10.83)

Since ((v)nij )i,j,n are the values at the points (iΔx, jΔy,nΔt) of a function v ∈
W (−h,L), by (T1) we get

∣
∣
∣
∣
∂H

∂q

∣
∣
∣
∣ ≤ 2σ 2(tn)ρ

∣
∣
∣
∣

1

2Δx

vn
i+1,j − vn

i−1,j

vn
ij + hn

j + ξn

∣
∣
∣
∣ ≤ ρ

σ 2(tn)(L + hn
j )

Δx inft ξ(t)

≤ 2ρ
σ 2(tn)L

ΔxA0
. (10.84)

Then, (10.83) reduces to Δx supQT
|μ1| ≤ σ 2(tn)(1 − (2ρL/A0)) that is implied

by σ(tn) ≥ σ1 and the first inequality in (10.80). The stability condition (C3) is a
consequence of the monotonicity. Clearly, the scheme has an explicit solution vΔ;
then we prove that v ≡ vΔ belongs to the space W (−h,L). Since h ≥ 0, −h0

j ≤
v0
ij ≡ 0 ≤ L for all i, j . Fixing n and supposing that −hn

j ≤ vn
ij ≤ L, for any i, j , the

monotonicity implies

S̃
(
Δ,n, i, j, h̃n

) ≤ vn+1
ij = S̃

(
Δ,n, i, j, ṽn

) ≤ S̃(Δ,n, i, j,L1), (10.85)

1 being the vector (1,1,1,1). Since S̃(Δ,n, i, j,L1) = L − δΔtL − Δt(δ − τ)hn
j ,

by (T1) it holds S̃(Δ,n, i, j,L1) ≤ L. On the other hand, since μ2 ≥ 0, by the
monotonicity assumptions on h in (T1) we get

S̃
(
Δ,n, i, j, h̃n

) = −hn
j + μ2

Δt

Δy

(−hn
j+1 + hn

j

) + δΔthn
j − Δt(δ − τ)hn

j

≥ hn
j (τΔt − 1) ≥ −hn+1

j . (10.86)

We have proved by induction that, for all i, j, n, −hn+1
j ≤ vn+1

ij ≤ L; hence, v ∈
W (−h,L), and the scheme is stable. By Proposition 10.28, we conclude that vΔ

converges l.u. to the solution UR as Δ → 0. �
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10.5.2 The Numerical Tests

We consider a numerical experiment for the two-dimensional problem defined by
the Hamiltonian (10.77), using the numerical scheme (10.78)–(10.79). Here xt rep-
resents the prevailing level of mortgage rates and follows a Vasicek (1977) dynam-
ics, i.e., μ1(x) = a(x − x) for some constants a,x and with a constant volatility
parameter σ > 0. The prepayment process yt is determined by μ2 = η(r0 − x),
where r0 > 0, and η(·) ≥ 0 is a nondecreasing function. We observe that yt defines
an incentive to prepay, since it measures the amount by which the interest rate xt is
below some given level r0.

Precisely, r0 represents a critical level which separates high refinancing levels
in the pool of mortgages (xt � r0) from a low prepayment activity, essentially due
to exogenous reasons, including the need to sell one’s home in order to move to
another location. Two simple models for η are the following:

η(x) = λ1 + λ2 max(x,0), η(x) = λ1 + λ2 η2(x), (10.87)

η2(x) =
{

exp(−λ3/x) if x > 0,

0 if x ≥ 0,
(10.88)

for constant parameters λ1 ≥ 0, λ2, λ3 > 0. The second expression for η is a smooth
function, which satisfies η′(x) > 0 for any x > 0. Therefore, if the initial level of
rates x0 is below the critical rate r0, using the arguments of Example 10.26, the
process Xt = (xt , yt ) admits a density. If U is smooth enough, we are in the situation
covered by Theorem 10.22, and there exists an equilibrium as in Definition 10.11.

Both from a financial and theoretical point of view, we are interested in the be-
havior of the solution for positive values of xt and in a neighborhood of the critical
level r0. Hence the numerical domain is chosen according to this purpose. We also
recall that the functional form for the outstanding balance at time T − t is

h(y, t) = MB(0)
eτ ′T − eτ ′(T −t)

eτ ′T − 1
e−y (10.89)

for any y ≥ 0, with τ ′ > τ . Our tests use the first expression of η in (10.87), choos-
ing MB(0) = 10 and the remaining coefficients as in Table 10.1. In Fig. 10.1, the
clean price of an MBS pass-through (i.e., U + h) is plotted. The surface shows the
dependence on the mortgage rate x and the prepayment rate level in the case of
T = 15, the other figures showing the behavior of the price varying some of the
coefficients. In each plot, the fixed parameters are chosen according to Table 10.1.
Figures 10.2, 10.3, and 10.4 show the MBS price as a function of the mortgage rate
on the line y = 0, varying the maturity, the critical level r0, and the volatility pa-
rameter σ . In Fig. 10.5, we give the market price of prepayment risk (10.54), as a

Table 10.1 Model
parameters for numerical tests σ = 0.2 δ = 0.02 τ = 0.05 λ1 = 0 ρ = 0.5

a = 0.29368 x = 0.07935 τ ′ = 0.06 λ2 = 0.05 r0 = 0.04
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Fig. 10.1 The MBS price as a function of the mortgage rate r and the prepayment level S

Fig. 10.2 The MBS price at y = 0, varying T
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Fig. 10.3 The MBS price at y = 0, varying r0

Fig. 10.4 The MBS price at
y = 0, varying σ

function of x, at y = 0. In the large interval [0.1%,20%], γ is positive, and hence
the price V Col increases with the mortgage rate. We recall that V Col is the sum of
the IO and PO derivative prices, written on the same pool. Since ∂xV

IO ≥ 0 and
∂xV

PO ≤ 0, we deduce that, in our numerical example, the interest rate part of cash-
flows compensates the reduction in the principal repayments. We also observe that
the m.p.r. tends to be lower for extreme values of the mortgage rate, while it in-
creases as the rate approaches the critical level r0, which is close to the WAC τ .
The reason is that in these cases, the behavior of mortgage holders is clear to the in-

www.TechnicalBooksPDF.com



288 M. Papi and M. Briani

Fig. 10.5 The market price
of risk γ

Fig. 10.6 The variation of γ

with x

vestor: if x ≈ 0, prepayments increase, and the perception of a loss in interest rates
paid by the mortgagors is counterbalanced by the PO part. The converse happens
when x > 15%. Moreover, the left queue of γ is higher than the right queue. In
fact, for x ≈ 0, the previous reasoning shows that the PO part does not compen-
sate the loss in the IO, as instead the latest makes when x is large. When x moves
in a neighborhood of the critical rate r0, the behavior in the pool is less evident,
and the investor demands a higher risk premium. Figure 10.6 shows the variation
of γ with x. The lack of regularity showed at x = r0 depends on the regularity
of η, which is merely Lipschitz continuous at r0, and on the strong degeneracy
of (10.50).

We also calculate the order γ of the numerical error under the discrete l1-norm
and l∞-norm,

γ1,∞ = log2

(
eΔ

1,∞
e
Δ/2
1,∞

)

. (10.90)
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Table 10.2 Numerical errors and order of accuracy of the scheme (10.78) with parameter chosen
as in Sect. 10.5.2. Nx × Ny stands for the mesh size

Nx × Ny Error l1 Order l1 Error l∞ Order l∞

T = 1

10 × 10 3.941407e-004 3.946165e-004

20 × 20 9.178447e-005 2.1024 9.211188e-005 2.0990

40 × 40 1.940157e-005 2.2421 1.960494e-005 2.2322

80 × 80 3.065327e-006 2.6621 3.251080e-006 2.5922

T = 5

10 × 10 2.133851e-004 2.178253e-004

20 × 20 4.213563e-005 2.3403 4.274546e-005 2.3493

40 × 40 2.429758e-005 0.7942 2.546204e-005 0.7474

80 × 80 6.978259e-006 1.7999 7.527149e-006 1.7582

T = 10

10 × 10 1.847034e-004 1.828404e-004

20 × 20 8.316403e-005 1.1512 8.865463e-005 1.0443

40 × 40 2.751098e-005 1.5960 2.998566e-005 1.5639

80 × 80 1.032300e-005 1.4141 1.386634e-005 1.1127

T = 20

10 × 10 2.396667e-004 2.718541e-004

20 × 20 1.058457e-004 1.1791 1.190492e-004 1.1913

40 × 40 5.062764e-005 1.0640 5.567603e-005 1.0964

80 × 80 2.509679e-005 1.0124 4.019449e-005 0.4701

T = 30

10 × 10 5.648831e-004 6.229993e-004

20 × 20 1.631822e-004 1.7915 1.851851e-004 1.7503

40 × 40 8.954462e-005 0.8658 1.016767e-004 0.8650

80 × 80 4.749093e-005 0.9150 7.493029e-005 0.4404

The relative l1 and l∞ errors are calculated respectively as follows:

eΔ
1 =

∑
ij |vΔ

ij (T ) − v
Δ/2
2i,2j (T )|

∑
ij |vΔ/2

2i,2j (T )|
, eΔ∞ = maxij |vΔ

ij (T ) − v
Δ/2
2i,2j (T )|

maxij |vΔ/2
2i,2j (T )|

. (10.91)

We fix A0 and L and the discretization sizes in order to satisfy condition (T2). In
Table 10.2, we list the l1-norm and l∞-norm errors and orders of accuracy for the
numerical solution, increasing values of the maturity T . It comes out that the scheme
is of second-order accuracy for a short time to maturity and, as we expected, first
order accurate as T grows.
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Chapter 11
Nonparametric Methods for Volatility Density
Estimation

Bert van Es, Peter Spreij, and Harry van Zanten

Abstract Stochastic volatility modeling of financial processes has become increas-
ingly popular. The proposed models usually contain a stationary volatility pro-
cess. We will motivate and review several nonparametric methods for estimation
of the density of the volatility process. Both models based on discretely sampled
continuous-time processes and discrete-time models will be discussed.

The key insight for the analysis is a transformation of the volatility density esti-
mation problem to a deconvolution model for which standard methods exist. Three
types of nonparametric density estimators are reviewed: the Fourier-type deconvo-
lution kernel density estimator, a wavelet deconvolution density estimator, and a
penalized projection estimator. The performance of these estimators will be com-
pared.

Keywords Stochastic volatility models · Deconvolution · Density estimation ·
Kernel estimator · Wavelets · Minimum contrast estimation · Mixing

Mathematics Subject Classification (2010) 62G07 · 62G08 · 62M07 · 62P20 ·
91G70

11.1 Introduction

We discuss a number of nonparametric methods that come into play when one wants
to estimate the density of the volatility process, given observations of the price pro-
cess of some asset. The models that we treat are mainly formulated in continuous
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time, although we pay some separate attention to discrete-time models. The ob-
servations of the continuous-time models will always be in discrete time however
and may occur at low frequency (fixed lag between observation instants) or high
frequency (vanishing time lag). In this review, for simplicity, we focus on the uni-
variate marginal distribution of the volatility process, although similar results can
be obtained for multivariate marginal distributions.

Although the underlying models differ in the sense that they are formulated ei-
ther in continuous or in discrete time, in all cases the observations are given by a
discrete-time process. Moreover, as we shall see, the observation scheme can always
(approximately) be cast as of “signal plus noise” type

Yi = Xi + εi,

where Xi is to be interpreted as the “signal.” If for fixed i, the random variables Xi

and εi are independent, the distribution of the Yi is a convolution of the distributions
of Xi and εi . The density of the “signal” Xi is the object of interest, while the
density of the “noise” εi is supposed to be known to the observer. The statistical
problem is to recover the density of the signal by deconvolution. Classically, for such
models, it was often also assumed that the processes (Xi) and (εi) are i.i.d. Under
these conditions, Fan [12] gave lower bounds for the estimation of the unknown
density f at a fixed point x0 and showed that kernel-type estimators achieve the
optimal rate. An alternative estimation method was proposed in the paper Pensky
and Vidakovic [23], using wavelet methods instead of kernel estimators and where
global L2-errors were considered instead of pointwise errors.

However, for the stochastic volatility models that we consider, the i.i.d. assump-
tion on the Xi is violated. Instead, the Xi may be modeled as stationary random
variables that are allowed to exhibit some form of weak dependence, controlled
by appropriate mixing properties, strongly mixing or β-mixing. These mixing con-
ditions are justified by the fact that they are satisfied for many popular GARCH-
type and stochastic volatility models (see, e.g., Carrasco and Chen [6]), as well as
for continuous-time models where σ 2 solves a stochastic differential equation, see,
e.g., Genon-Catalot et al. [17]. The estimators that we discuss are based on kernel
methods, wavelets, and penalized contrast estimation, also referred to as penalized
projection estimation. We will review the performance of these deconvolution esti-
mators under weaker than i.i.d. assumptions and show that this essentially depends
on the smoothness and mixing conditions of the underlying process and the fre-
quency of the observations. For a survey of other nonparametric statistical problems
for financial data, we refer to Franke et al. [14]

The paper is organized as follows. In Sect. 11.2 we introduce the continuous time
model. In Sect. 11.3 we consider a kernel-type estimator of the invariant volatility
density and apply it to a set of real data. Section 11.4 is devoted to a wavelet density
estimator, and in Sect. 11.5 a minimum contrast estimator is discussed. Some related
results for discrete-time models are reviewed in Sect. 11.6, and Sect. 11.7 contains
some concluding remarks.
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11.2 The Continuous-Time Model

Let S denote the log price process of some stock in a financial market. It is often
assumed that S can be modeled as the solution of a stochastic differential equation
or, more generally, as an Itô diffusion process. So we assume that we can write

dSt = bt dt + σt dWt , S0 = 0, (11.1)

or, in the integral form,

St =
∫ t

0
bs ds +

∫ t

0
σs dWs, (11.2)

where W is a standard Brownian motion, and the processes b and σ are assumed
to satisfy certain regularity conditions (see Karatzas and Shreve [22]) to have the
integrals in (11.2) well defined. In a financial context, the process σ is called the
volatility process. One often takes the process σ independent of the Brownian mo-
tion W .

Adopting this common assumption throughout the paper, unless explicitly stated
otherwise, we also assume that σ is a strictly stationary positive process satisfying
a mixing condition, for example, an ergodic diffusion on (0,∞). The standing as-
sumption in all what follows is that the one-dimensional marginal distribution of σ

admits an invariant density w.r.t. Lebesgue measure on (0,∞). This is typically the
case in virtually all stochastic volatility models that are proposed in the literature,
where the evolution of σ is modeled by a stochastic differential equation, mostly in
terms of σ 2 or logσ 2 (see, e.g., Wiggins [31], Heston [20]). Often σ 2

t is a function
of a process Xt satisfying a stochastic differential equation of the type

dXt = b(Xt) dt + a(Xt ) dBt (11.3)

with Brownian motion Bt . Under regularity conditions, the invariant density of X is
up to a multiplicative constant equal to

x �→ 1

a2(x)
exp

(

2
∫ x

x0

b(y)

a2(y)
dy

)

, (11.4)

where x0 is an arbitrary element of the state space, see, e.g., Gihman and Sko-
rokhod [19] or Skorokhod [25]. From formula (11.4) one sees that the invariant dis-
tribution of the volatility process (take X, for instance, equal to σ 2 or logσ 2) may
take on many different forms, as is the case for the various models that have been
proposed in the literature. In absence of parametric assumptions on the coefficients
a and b, we will investigate nonparametric procedures to estimate the correspond-
ing densities, even refraining from an underlying model like (11.3), partly aimed at
recovering possible “stylized facts” exhibited by the observations.

For instance, one could think of volatility clustering. This may be cast by say-
ing that for different time instants t1, t2 that are close, the corresponding values of
σt1, σt2 are close again. This can partly be explained by the assumed continuity of

www.TechnicalBooksPDF.com



296 B. van Es et al.

the process σ , but it might also result from specific areas around the diagonal where
the multivariate density of (σt1 , σt2) assumes high values if t1 and t2 are relatively
close. It is therefore conceivable that the density of (σt1 , σt2) has high concentra-
tions around points (�, �) and (h,h), with � < h, a kind of bimodality of the joint
distribution, with the interpretation that clustering occurs around a low value � or
around a high value h. This in turn may be reflected by bimodality of the univariate
marginal distribution of σt .

A situation in which this naturally occurs is the following. Consider a regime
switching volatility process. Assume that for i = 0,1, we have two stationary pro-
cesses Xi having stationary densities f i . We assume these two processes to be inde-
pendent and also independent of a two-state stationary homogeneous Markov chain
U with states 0,1. The stationary distribution of U is given by πi := P(Ut = i).
The process ξ is defined by

ξt = UtX
1
t + (1 − Ut)X

0
t .

Then ξ is stationary too, and it has the stationary density f given by

f (x) = π1f
1(x) + π0f

0(x).

Suppose that the volatility process is defined by σ 2
t = exp(ξt ) and that the Xi are

both Ornstein–Uhlenbeck processes given by

dXi
t = −bi

(
Xi

t − μi

)
dt + ai dWi

t

with independent Brownian motions W 1 and W 2, μ1 �= μ2, and b1, b2 > 0. Suppose

that the Xi start in their stationary N(μi,
a2
i

2bi
) distributions. Then the stationary

density f is a bimodal mixture of normal densities with μ1 and μ2 as the locations
of the local maxima. Nonparametric procedures are able to detect such a property
and are consequently by all means sensible tools to get some first insights into the
shape of the invariant density.

A first object of study is the marginal univariate distribution of the stationary
volatility process σ . We will also consider the invariant density of the integrated
squared volatility process over an interval of length Δ. By stationarity of σ this is
the density of

∫ Δ

0 σ 2
t dt . We will consider density estimators and assess their quality

by giving results on their mean squared or mean integrated squared error. For ker-
nel estimators, we rely on Van Es et al. [10], where this problem has been studied
for the marginal univariate density of σ . In Van Es and Spreij [9] one can find re-
sults for multivariate density estimators. Results on wavelet estimators will be taken
from Van Zanten and Zareba [32]. Penalized contrast estimators have been treated
in Comte and Genon-Catalot [7].

The observations of log-asset price S process are assumed to take place at the
time instants 0,Δ,2Δ, . . . , nΔ. In case one deals with low-frequency observations,
Δ is fixed. For high-frequency observations, the time gap satisfies Δ = Δn → 0 as
n → ∞. To obtain consistency for the estimators that we will study in the latter
case, we will make the additional assumption nΔn → ∞.
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To explain the origin of the estimators that we consider in this paper, we often
work with the simplified model, which is obtained from (11.1) by taking bt = 0.
We then suppose to have discrete-time data S0, SΔ,S2Δ, . . . from a continuous-time
stochastic volatility model of the form

dSt = σt dWt .

Under this additional assumption, we will see that we (approximately) deal with
stationary observations Yi that can be represented as Yi = Xi + εi , where for each i,
the random variables Xi and εi are independent.

11.3 Kernel Deconvolution

In this section we consider kernel deconvolution density estimators. We construct
them, give expressions for bias and variance, and give an application to real data.

11.3.1 Construction of the Estimator

To motivate the construction of the estimator, we first consider (11.1) without the
drift term, so we assume to have the simplified model

dSt = σt dWt, S0 = 0. (11.5)

It is assumed that we observe the process S at the discrete time instants 0, Δ,
2Δ, . . . , nΔ, satisfying Δ → 0, nΔ → ∞. For i = 1,2, . . . , we work, as in Genon-
Catalot et al. [15, 16], with the normalized increments

XΔ
i = 1√

Δ
(SiΔ − S(i−1)Δ).

For small Δ, we have the rough approximation

XΔ
i = 1√

Δ

∫ iΔ

(i−1)Δ

σt dWt

≈ σ(i−1)Δ

1√
Δ

(WiΔ − W(i−1)Δ)

= σ(i−1)ΔZΔ
i , (11.6)

where for i = 1,2, . . . , we define

ZΔ
i = 1√

Δ
(WiΔ − W(i−1)Δ).

www.TechnicalBooksPDF.com



298 B. van Es et al.

By the independence and stationarity of Brownian increments, the sequence
ZΔ

1 ,ZΔ
2 , . . . is an i.i.d. sequence of standard normal random variables. Moreover,

the sequence is independent of the process σ by assumption.
Writing Yi = log(XΔ

i )2, ξi = logσ 2
(i−1)Δ, εi = log(ZΔ

i )2, and taking the loga-

rithm of the square of XΔ
i , we get

Yi ≈ ξi + εi,

where the terms in the sum are independent. Assuming that the approximation is
sufficiently accurate, we can use this approximate convolution structure to estimate
the unknown density f of logσ 2

iΔ from the transformed observed Yi = log(XΔ
i )2.

The characteristic functions involved are denoted by φY , φξ , and φk , where k is the
density of the “noise” log(ZΔ

i )2. One obviously has φY = φξφk , and one easily sees
that the density k is given by

k(x) = 1√
2π

e
1
2 xe− 1

2 ex

and its characteristic function by

φk(t) = 1√
π

2itΓ

(
1

2
+ it

)

.

The idea of getting a deconvolution estimator of f is simple. Using a kernel
function w, a bandwidth h, and the Yi , the density g of the Yi is estimated by

gnh(y) = 1

nh

∑

j

w

(
y − Yj

h

)

.

Denoting by φg,nh the characteristic function of gnh, one estimates φY by φg,nh and
φξ by φg,nh/φk . Following a well-known approach in statistical deconvolution the-
ory (see, e.g., Sect. 6.2.4 of Wand and Jones [30]), Fourier inversion then yields the
density estimator of f . By elementary calculations from this procedure one obtains

fnh(x) = 1

nh

n∑

j=1

vh

(
x − log(XΔ

j )2

h

)

, (11.7)

where vh is the kernel function, depending on the bandwidth h,

vh(x) = 1

2π

∫ ∞

−∞
φw(s)

φk(s/h)
e−isx ds. (11.8)

One easily verifies that the estimator fnh is real valued.
To justify the approximation in (11.6), we quantify a stochastic continuity prop-

erty of σ 2. In addition to this, we make the mixing condition explicit. We impose
the following:

www.TechnicalBooksPDF.com



11 Nonparametric Methods for Volatility Density Estimation 299

Condition 11.1 The process σ 2 satisfies the following conditions.

1. It is L1-Hölder continuous of order one half: E|σ 2
t − σ 2

0 | = O(t1/2) for t → 0.
2. It is strongly mixing with coefficient α(t) satisfying, for some 0 < q < 1,

∫ ∞

0
α(t)q dt < ∞. (11.9)

The kernel function w is assumed to satisfy the following conditions (an exam-
ple of such a kernel is given in (11.12) below, see also Wand [29]) that include in
particular the behavior of φw at the boundary of its domain.

Condition 11.2 Let w be a real symmetric function with real-valued symmetric
characteristic function φw with support [−1,1]. Assume further that

1.
∫ ∞
−∞ |w(u)|du < ∞,

∫ ∞
−∞ w(u)du = 1,

∫ ∞
−∞ u2|w(u)|du < ∞,

2. φw(1 − t) = Atρ + o(tρ) as t ↓ 0 for some ρ > 0 and A ∈ R.

The first part of Condition 11.1 is motivated by the situation where X = σ 2

solves an SDE like (11.1). It is easily verified that for such processes, it holds
that E|σ 2

t − σ 2
0 | = O(t1/2), provided that b ∈ L1(μ) and a ∈ L2(μ), where μ is

the invariant probability measure. Indeed, we have E|σ 2
t − σ 2

0 | ≤ E
∫ t

0 |b(σ 2
s )|ds +

(E
∫ t

0 a2(σ 2
s ) ds)1/2 = t‖b‖L1(μ) + √

t‖a‖L2(μ).
The main result we present for this estimator concerns its mean squared error at a

fixed point x. Although the motivation of the estimator was based on the simplified
model (11.5), the result below applies to the original model (11.1). For its proof and
additional technical details, see Van Es et al. [10].

Theorem 11.3 Assume that Eb2
t is bounded. Let the process σ satisfy Condi-

tion 11.1, and let the kernel function w satisfy Condition 11.2. Moreover, let the
density f of logσ 2

t be twice continuously differentiable with a bounded second
derivative. Also assume that the density of σ 2

t is bounded in a neighborhood of
zero. Suppose that Δ = n−δ for given 0 < δ < 1 and choose h = γπ/ logn, where
γ > 4/δ. Then the bias of the estimator (11.7) satisfies

Efnh(x) − f (x) = 1

2
h2f ′′(x)

∫

u2w(u)du + o
(
h2), (11.10)

whereas, the variance of the estimator satisfies the order bounds

Varfnh(x) = O

(
1

n
h2ρeπ/h

)

+ O

(
1

nh1+qΔ

)

. (11.11)

Remark 11.4 The choices Δ = n−δ with 0 < δ < 1 and h = γπ/ logn with γ > 4/δ

render a variance that is of order n−1+1/γ (1/ logn)2ρ for the first term of (11.11)
and n−1+δ(logn)1+q for the second term. Since by assumption γ > 4/δ we have
1/γ < δ/4 < δ, the second term dominates the first term. The order of the variance
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Fig. 11.1 AEX. Left: daily closing values. Right: log of the daily closing values

is thus n−1+δ(logn)1+q . Of course, the order of the bias is logarithmic, and hence
the bias dominates the variance, and the mean squared error of fnh(x) is of order
(logn)−4.

Remark 11.5 It can then be shown that for the characteristic function φk , one has
the behavior

∣
∣φk(s)

∣
∣ = √

2e− 1
2 π |s|

(

1 + O

(
1

|s|
))

, |s| → ∞.

This means that k is supersmooth in the terminology of Fan [12], which explains the
slow logarithmic rate at which the bias vanishes. Sharper results on the variance can
be obtained when σ 2 is strongly mixing, see Van Es et al. [11] for further details.
The orders of the bias and of the MSE remain unchanged though.

11.3.2 An Application to the Amsterdam AEX Index

In this section we present an example using real data of the Amsterdam AEX stock
exchange. We have estimated the volatility density from 2600 daily closing values
of the Amsterdam stock exchange index AEX from 12/03/1990 until 14/03/2000.
These data are represented in Fig. 11.1. We have centered the daily log returns, i.e.,
we have subtracted the mean (which equaled 0.000636), see Fig. 11.2. The decon-
volution estimator is given as the left-hand picture in Fig. 11.3. Observe that the
estimator strongly indicates that the underlying density is unimodal. Based on com-
putations of the mean and variance of the estimate, with h = 0.7, we have also fitted
a normal density by hand and compared it to the kernel deconvolution estimator. The
result is given as the right-hand picture in Fig. 11.3. The resemblance is remarkable.

The kernel used to compute the estimates is a kernel from Wand [29], with ρ = 3
and A = 8,

w(x) = 48x(x2 − 15) cosx − 144(2x2 − 5) sinx

πx7 . (11.12)
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Fig. 11.2 AEX. Left: the values of Xt , i.e., the centered daily log returns. Right: log(X2
t )

Fig. 11.3 AEX. Left: The estimate of the density of log(σ 2
t ) with h = 0.7. Right: The normal fit

to the log(σ 2
t ). The dashed line is the normal density, and the solid line the kernel estimate

It has the characteristic function

φw(t) = (
1 − t2)3

, |t | ≤ 1. (11.13)

The bandwidths are chosen by hand. The estimates have been computed by fast
Fourier transforms using the Mathematica 4.2 package.

This is actually the same example as in our paper Van Es et al. [11] on volatil-
ity density estimation for discrete-time models. The estimator (11.7) presented here
is, as a function of the sampled data, exactly the same as the one for the discrete-
time models. The difference lies in the choice of underlying model. In the present
paper the model is a discretely sampled continuous-time process, while in Van Es
et al. [11] it is a discrete-time process. For the latter type of models, the discretiza-
tion step in the beginning of this section is not necessary since these models satisfy
an exact convolution structure.

11.4 Wavelet Deconvolution

As an alternative to kernel methods, in this section we consider estimators based on
wavelets. Starting point is again the simplified model (11.5). Contrary to the previ-
ous section, we are now interested in estimating the accumulated squared volatility
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over an interval of length Δ. We assume having observations of S at times iΔ to
our disposal, but now with Δ fixed (low-frequency observations). Let, as before,
XΔ

i = Δ−1/2(SiΔ − S(i−1)Δ), and let σ̄ 2
i = Δ−1

∫ iΔ

(i−1)Δ
σ 2

t dt . Denote by Fσ the σ -

algebra generated by the process σ . By the assumed independence of the processes
σ and W , we have, for the characteristic function of XΔ

i given Fσ ,

E
[
exp

(
isXΔ

i

)∣
∣Fσ

] = exp

(

−1

2
σ̄ 2

i s2
)

.

Consider also the model X̃Δ
i = σ̄iZi with σ̄i and Zi independent for each i and Zi

a standard Gaussian random variable. Then

E
[
exp

(
isX̃Δ

i

)∣
∣Fσi

] = exp

(

−1

2
σ̄ 2

i s2
)

.

It follows that XΔ
i and X̃Δ

i are identically distributed. From this observation we
conclude that the transformed increments log(Δ−1(SiΔ − S(i−1)Δ)2) are then dis-
tributed as Yi = ξi + εi , where

ξi = log σ̄ 2
i , εi = logZ2

i ,

and Zi is an i.i.d. sequence of standard Gaussian random variables, independent
of σ . The sequence ξi is stationary, and we assume that its marginal density g exists,
i.e., g is the density of log(Δ−1

∫ Δ

0 σ 2
u du). The density of εi is again denoted by k.

Of course, estimating g is equivalent to estimating the density of the aggregated
squared volatility

∫ Δ

0 σ 2
u du.

In the present section the main focus is on the quality of the estimator in terms of
the mean integrated squared error, as opposed to establishing results for the (point-
wise) mean squared error as in Sect. 11.3. At the end of this section we compare the
results presented here to those of Sect. 11.3.

First we recall the construction of the wavelet estimator proposed in Pensky and
Vidakovic [23]. For the necessary background on wavelet theory, see, for instance,
Blatter [1], Jawerth and Sweldens [21], and the references therein. For the construc-
tion of deconvolution estimators, we need to use band-limited wavelets. As in Pen-
sky and Vidakovic [23], we use a Meyer-type wavelet (see also Walter [27], Walter
and Zayed [28]). We consider an orthogonal scaling function and wavelet ϕ and ψ ,
respectively, associated with an orthogonal multiresolution analysis of L2(R). We
denote in this section the Fourier transform of a function f by f̃ , i.e.,

f̃ (ω) =
∫

R

e−iωxf (x) dx,

and suppose that for a symmetric probability measure μ with support contained in
[−π/3,π/3], it holds that

ϕ̃(ω) = (
μ(ω − π,ω + π ])1/2

, ψ̃(ω) = e−iω/2(μ
(|ω|/2 − π, |ω| − π

])1/2
.
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Observe that the assumptions imply that ϕ and ψ are indeed band-limited. For
the supports of their Fourier transforms, we have supp ϕ̃ ⊂ [−4π/3,4π/3] and
supp ψ̃ ⊂ [−8π/3,−2π/3] ∪ [2π/3,8π/3]. By choosing μ smooth enough we en-
sure that ϕ̃ and ψ̃ are at least twice continuously differentiable.

For any integer m, the unknown density g can now be written as

g(x) =
∑

l∈Z

am,lϕm,l(x) +
∑

l∈Z

∞∑

j=m

bj,lψj,l(x), (11.14)

where ϕm,l(x) = 2m/2ϕ(2mx − l), ψj,l(x) = 2j/2ψ(2j x − l), and the coefficients
are given by

am,l =
∫

R

ϕm,l(x)g(x) dx, bj,l =
∫

R

ψj,l(x)g(x) dx.

The idea behind the linear wavelet estimator is simple. We first approximate g by
the orthogonal projection given by the first term on the right-hand side of (11.14).
For m large enough, the second term will be small and can be controlled by using
the approximation properties of the specific family of wavelets that is being used.
The projection of g is estimated by replacing the coefficients am,l by consistent
estimators and truncating the sum. Using the fact that the density p of an observation
Yi is the convolution of g and k, it is easily verified that

am,l =
∫

R

2m/2Um

(
2mx − l

)
p(x)dx = 2m/2

EUm

(
2mYi − l

)
,

where Um is the function with Fourier transform

Ũm(ω) = ϕ̃(ω)

k̃(−2mω)
. (11.15)

We estimate the coefficient am,l by its empirical counterpart

âm,l,n = 1

n

n∑

i=1

2m/2Um

(
2mYi − l

)
.

Under the mixing assumptions that we will impose on the sequence Y , it will be sta-
tionary and ergodic. Hence, by the ergodic theorem, âm,l,n is a consistent estimator
for am,l . The wavelet estimator is now defined by

ĝn(x) =
∑

|l|≤Ln

âmn,l,nϕmn,l(x), (11.16)

where the detail level mn and the truncation point Ln will be chosen appropriately
later.
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The main results in the present section are upper bounds for the mean integrated
squared error of the wavelet estimator ĝn, which is defined as usual by

MISE(ĝn) = E

∫

R

(
ĝn(x) − g(x)

)2
dx.

We will specify how to choose the detail level mn and the truncation point Ln in
(11.16) optimally in different cases, depending on the smoothness of g and k. The
smoothness properties of g are described in terms of g belonging to certain Sobolev
balls and by imposing a weak condition on its decay rate. The Sobolev space Hα is
defined for α > 0 by

Hα =
{

g : ‖g‖α =
(∫

R

∣
∣g̃(ω)

∣
∣2(

ω2 + 1
)α

dω

)1/2

< ∞
}

. (11.17)

Roughly speaking, g ∈ Hα means that the first α derivatives of g belong to L2(R).
The Sobolev ball of radius A is defined by

Sα(A) = {
g ∈ Hα : ‖g‖α ≤ A

}
.

The additional assumption on the decay rate is reflected by g belonging to

S∗
α(A,A′) = Sα(A) ∩

{
g : sup

x

∣
∣xg(x)

∣
∣ ≤ A′}.

We now have the following result, see Van Zanten and Zareba [32], for the wavelet
density estimator ĝn of g defined by (11.16).

Theorem 11.6 Suppose that the volatility process σ 2 is strongly mixing with mixing
coefficients satisfying

∑

k≥0

α
p
kΔ < ∞ (11.18)

for some p ∈ (0,1). Then with the choices

2mn = logn

1 + (4π2/3)
, Ln = (logn)r, r ≥ 1 + 2α

the mean square error of the wavelet estimator satisfies

sup
g∈S∗

α(A,A′)
MISE(ĝn) = O

(
(logn)−2α

)

for α,A,A′ > 0. If (11.18) is satisfied for all p ∈ (0,1), the same bound is true if
the choice for Ln is replaced by Ln = n.

Let us point out the relation with the results of Sect. 11.3 and with those in Van Es
et al. [11], see also Sect. 11.6.1. In that paper kernel-type deconvolution estimators
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for discrete-time stochastic volatility models were considered. When applied to the
present model, the results say that under the same mixing condition and assuming
that g has two bounded and continuous derivatives, the (pointwise) mean squared
error of the kernel estimator is of order (logn)−4. The analogue of g having two
bounded derivatives in our setting is that g ∈ S∗

2 (A,A′) for some A,A′ > 0. Indeed,
the theorem yields the same bound (logn)−4 for the MISE in this case. The same
bound is valid for the MSE when estimating the marginal density for continuous-
time models, see Theorem 11.3 and its consequences in Remark 11.4. Theorem 11.6
is more general, because the smoothness level is not fixed at α = 2, but allows for
different smoothness levels of order α �= 2 as well. Moreover, the wavelet estimator
is adaptive in the sense that it does not depend on the unknown smoothness level if
the condition on the mixing coefficients holds for all p ∈ (0,1).

11.5 Penalized Projection Estimators

The results of the preceding sections assume that the true (integrated) volatility den-
sity has a finite degree of regularity, either in Hölder or in Sobolev sense. Under
this assumption, the nonparametric estimators have logarithmic convergence rates,
cf. Remark 11.4 and Theorem 11.6. Although admittedly slow, the minimax results
of Fan [12] show that these rates are in fact optimal in this setting. In the paper Pen-
sky and Vidakovic [23] it was shown however that if in a deconvolution setting the
density of the unobserved variables has the same degree of smoothness as the noise
density, the rates can be significantly improved, cf. also the lower bounds obtained
in Butucea [4] and Butucea and Tsybakov [5]. This observation forms the starting
point of the paper Comte and Genon-Catalot [7], in which a nonparametric volatility
density estimator is developed that achieves better rates than logarithmic if the true
density is supersmooth. In the latter paper it is assumed that there are observations
SΔ,S2Δ, . . . , SnΔ of a process S satisfying the simple equation (11.5) with a strictly
positive process V = σ 2, independent of the Brownian motion W . It is assumed that
we deal with high-frequency observations, Δ → 0, and nΔ → ∞. We impose the
following condition on V .

Condition 11.7 The process V is a time-homogenous, continuous Markov process,
strictly stationary and ergodic. It is either β-mixing with coefficient β(t) satisfying

∫ ∞

0
β(t) dt < ∞

or is ρ-mixing. Moreover, it satisfies the Lipschitz condition

E

(

log

(
1

Δ

∫ Δ

0
Vt dt

)

− logV0

)2

≤ CΔ

for some C > 0.
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In addition to this, a technical assumption is necessary on the density f of logV0

we are interested in and on the density gΔ of log( 1
Δ

∫ Δ

0 Vt dt), which is assumed
to exist. Contrary to the notation of the previous section, we write gΔ instead of g,
since now Δ is not fixed.

Condition 11.8 The invariant density f is bounded and has a second moment, and
gΔ ∈ L2(R).

As a first step in the construction of the final estimator, a preliminary estimator f̂L

is constructed for L ∈ N fixed. Note that Condition 11.8 implies that f ∈ L2(R), and
hence we can consider its orthogonal projection fL on the subspace SL of L2(R),
defined as the space of functions whose Fourier transform is supported on the com-
pact interval [−πL,πL]. An orthonormal basis for the latter space is formed by
the Shannon basis functions ψL,j (x) = √

Lψ(Lx − j), j ∈ Z, with the sinc kernel
ψ(x) = sin(πx)/(πx). For integers Kn → ∞ to be specified below, the space SL

is approximated by the finite-dimensional spaces Sn
L = span{ψL,j : |j | ≤ Kn}. The

function fL is estimated by f̂L = argminh∈Sn
L
γn(h), where the contrast function γn

is defined for h ∈ L2(R) ∩ L1(R) by

γn(h) = ‖h‖2
2 − 2

n

n∑

i=1

uh

(
log

(
XΔ

i

)2)
, uh(x) = 1

2π

∫ ∞

−∞
eixs h̃(−s)

φk(s)
ds.

Here, as before, φk is the characteristic function of logε2, with ε standard normal,
and h̃ is the Fourier transform of h. It is easily seen that

f̂L =
∑

|j |≤Kn

âL,jψL,j , âL,j = 1

n

n∑

j=1

uψL,j

(
log

(
XΔ

i

)2)
.

Straightforward computations show that, with 〈·, ·〉 the L2(R) inner product,
Euh(log(XΔ

i )2) = 〈h,gΔ〉, and hence Eγn(h) = ‖h − gΔ‖2
2 − ‖gΔ‖2

2. So in fact,

f̂L is an estimator of the element of Sn
L which is closest to gΔ. Since Sn

L approxi-
mates SL for large n and gΔ is close to f for small Δ, the latter element should be
close to fL.

Under Conditions 11.7 and 11.8, a bound for the mean integrated squared er-
ror, or quadratic risk MISE(f̂L) = E‖f̂L − f ‖2

2, can be derived, depending on the
approximation error ‖f − fL‖2, the bandwidth L, and the truncation point Kn,
see Comte and Genon-Catalot [7], Theorem 1. The result implies that if f be-
longs to the Sobolev space Hα as defined in (11.17), then the choices Kn = n and
L = Ln ∼ logn yield a MISE of order (logn)−2α , provided that Δ = Δn = n−δ for
some δ ∈ (0,1). Not surprisingly, this is completely analogous to the result obtained
in Theorem 11.6 for the wavelet-based estimator in the fixed Δ setting. In particular
the procedure is adaptive, in that the estimator does not depend on the unknown
regularity parameter α.
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To obtain faster than logarithmic rates and adaptation in the case that f is super-
smooth, a data-driven choice of the bandwidth L is proposed. Define

L̂ = argmin
L∈{1,...,logn}

(
γn(f̂L) + penn(L)

)
,

where the penalty term is given by

penn(L) = κ
(1 + L)Φk(L)

n

for a calibration constant κ > 0 and

Φk(L) =
∫ πL

−πL

1

|φk(s)|2 ds.

For the quadratic risk of the estimator f̂
L̂

, the following result holds (Comte and
Genon-Catalot [7]).

Theorem 11.9 Under Conditions 11.8 and 11.7, we have

MISE(f̂
L̂
) ≤ C1 inf

L∈{1,...,logn}

(

‖f − fL‖2
2 + (1 + L)Φk(L)

n

)

+ C2
log2 n

Kn

+ C3
logn

nΔ
+ C4Δ log3 n

for constants C1,C2,C3,C4 > 0.

It can be seen that this bound is worse than the corresponding bound for the
estimator f̂L by a factor of order L. This is at worst a logarithmic factor which, as
usual in this kind of setting, has to be paid for achieving adaptation. The examples
in Sect. 6 of Comte and Genon-Catalot [7] show that indeed, the estimator f̂

L̂
can

achieve algebraic convergence rates in case the true density f is supersmooth.

11.6 Estimation for Discrete-Time Models

Although the main focus of the present paper is on estimation procedures for
continuous-time models, in the present section we also highlight some analogous
results for discrete-time models. These deal with both density and regression func-
tion estimation.

11.6.1 Discrete-Time Models

The discrete time analogue of (11.5) is

Xt = σtZt , t = 1,2, . . . . (11.19)
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Here we denote by X the detrended or demeaned log-return process. Stochastic
volatility models are often described in this form. The sequence Z is typically an
i.i.d. noise (e.g., Gaussian), and at each time t the random variables σt and Zt are
independent. See the survey papers by Ghysels et al. [18] or Shephard [24]. Also in
this section we assume that the process σ is strictly stationary and that the marginal
distribution of σ has a density with respect to the Lebesgue measure on (0,∞).
We present some results for a nonparametric estimator of the density of logσ 2

t and
results for a nonparametric estimator of a nonlinear regression function, in case σ 2 is
given by a nonlinear autoregression. The standing assumption in all what follows is
that for each t , the random variables σt and Zt are independent, the noise sequence
is standard Gaussian, and σ is a strictly stationary, positive process satisfying a
certain mixing condition.

In principle one can distinguish two classes of models. The way in which the
bivariate process (σ,Z), in particular its dependence structure, is further modeled
offers different possibilities. In the first class of models one assumes that the process
σ is predictable with respect to the filtration Ft generated by the process Z and
obtains that σt is independent of Zt for each fixed time t . We furthermore have that
(assuming that the unconditional variances are finite) σ 2

t is equal to the conditional
variance of Xt given Ft−1. This class of models has become quite popular in the
econometrics literature. It is well known that this class also contains the (parametric)
family of GARCH-models, introduced by Bollerslev [2].

In the second class of models one assumes that the whole process σ is inde-
pendent of the noise process Z, and one commonly refers to the resulting model
as a stochastic volatility model. In this case, the natural underlying filtration F =
{Ft }t≥0 is generated by the two processes Z and σ in the following way. For each t ,
the σ -algebra Ft is generated by Zs , s ≤ t , and σs , s ≤ t + 1. This choice of the fil-
tration enforces σ to be predictable. As in the first model, the process X becomes a
martingale difference sequence, and we have again (assuming that the unconditional
variances are finite) that σ 2

t is the conditional variance of Xt given Ft−1. An exam-
ple of such a model is given in De Vries [26], where σ is generated as an AR(1)
process with α-stable noise (α ∈ (0,1)).

As in the previous sections, we refrain from parametric modeling and review
some completely nonparametric approaches. We will mainly focus on results for the
second class, as it is the discrete-time analogue of the stochastic volatility models
of the previous sections. At the heart of all what follows is again the convolution
structure that is obtained from (11.19) by squaring and taking logarithms,

logX2
t = logσ 2

t + logZ2
t .

11.6.2 Density Estimation

The main result of this section gives a bias expansion and a variance bound of a
kernel-type density estimator of the density f of logσ 2

t . The estimator is, analo-
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gously to (11.7),

fnh(x) = 1

nh

n∑

j=1

vh

(
x − log(Xj )

2

h

)

, (11.20)

where vh is the kernel function of (11.8).
The next theorem is derived from Van Es et al. [11], where a multivariate den-

sity estimator is considered. It establishes the expansion of the bias and an order
bound on the variance of our estimator under a strong mixing condition. Under
broad conditions, this mixing condition is satisfied if the process σ Markov, since
then convergence of the mixing coefficients to zero takes place at an exponential
rate, see Theorems 4.2 and 4.3 of Bradley [3] for precise statements. A similar be-
havior occurs for ARMA processes with absolutely continuous distributions of the
noise terms (Bradley [3], Example 6.1).

Theorem 11.10 Assume that the process σ is strongly mixing with coefficient αk

satisfying
∞∑

j=1

α
β
j < ∞

for some β ∈ (0,1). Let the kernel function w satisfy Condition 11.2, and let the
density f of logσ 2

t be bounded and twice continuously differentiable with bounded
second-order partial derivatives. Assume furthermore that σ and Z are independent
processes. Then we have, for the estimator of f defined as in (11.20) and h → 0,

Efnh(x) = f (x) + 1

2
h2f ′′(x)

∫

u2 w(u)du + o
(
h2) (11.21)

and

Varfnh(x) = O

(
1

n
h2ρeπ/h

)

. (11.22)

Remark 11.11 Comparing the above results to the ones in Theorem 11.3, we ob-
serve that in the continuous-time case, the variance has an additional O( 1

nh1+qΔ
)

term.

11.6.3 Regression Function Estimation

In this section we assume the basic model (11.19), but in addition we assume that
the process σ satisfies a nonlinear autoregression, and we consider nonparametric
estimation of the regression function as proposed in Franke et al. [13]. In that paper
a discrete-time model was proposed as a discretization of the continuous-time model
given by (11.1). In fact, Franke et al. include a mean parameter μ, but since they as-
sume it to be known, without loss of generality we can still assume (11.19). Assume
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that the volatility process is strictly positive and consider logσ 2
t . It is assumed that

its evolution is governed by

logσ 2
t+1 = m

(
logσ 2

t

) + ηt , (11.23)

where the ηt are i.i.d. Gaussian random variables with zero mean. The regression
function m is assumed to satisfy the stability condition

lim sup
|x|→∞

∣
∣
∣
∣
m(x)

x

∣
∣
∣
∣ < 1. (11.24)

Under this condition, the process σ is exponentially ergodic and strongly mixing,
see Doukhan [8], and these properties carry over to the process X as well. Moreover,
the process logσ 2

t admits an invariant density f .
Denoting Yt = logX2

t , we have

Yt = logσ 2
t + logZ2

t .

It is common to assume that the processes Z and η are independent, the second class
of models described in Sect. 11.6.1, but dependence between ηt and Zt for fixed t

can be allowed for (first model class) without changing in what follows, see Franke
et al. [13].

The purpose of the present section is to estimate the function m in (11.23). To that
end, we use the estimator fnh as defined in (11.20). Since this estimator resembles
an ordinary kernel density estimator, the important difference being that the kernel
function vh now depends on the bandwidth h, the idea is to mimic the classical
Nadaraya–Watson regression estimator similarly, in order to obtain an estimator of
m(x). Doing so, one obtains the estimator

mnh(x) =
1
nh

∑n
j=1 vh(

x−Yj

h
)Yj+1

fnh(x)
. (11.25)

It follows that

mnh(x) − m(x) = pnh(x)

fnh(x)
,

where

pnh(x) = 1

nh

n∑

j=1

vh

(
x − Yj

h

)
(
Yj+1 − m(x)

)
.

In Franke et al. [13] bias expansions for pnh(x) and fnh are given that fully corre-
spond to those in Theorem 11.10. They are again of order h2, under similar assump-
tions. It is also shown that the variances of pnh and fnh tend to zero. The main result
concerning the asymptotic behavior then follows from combining the asymptotics
for pnh and fnh.
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Theorem 11.12 Assume that m satisfies the stability condition (11.24), that m and
f are twice differentiable, and the first of Condition 11.2 on the kernel w. The
estimator mnh(x) satisfies (logn)2(mnh(x) − m(x)) = Op(1) if h = γ / logn with
γ > π .

Following the proofs in Franke et al. [13], one can conclude that, e.g., the vari-
ance of pnh is of order O(

exp(π/h)

nh4 ), which tends to zero for h = γ / logn with

γ > π . For the variance of fnh, a similar bound holds. Comparing these order
bounds to the ones in Theorem 11.10, we see that the latter ones are sharper. This is
partly due to the fact that Franke et al. [13], do not impose conditions on the bound-
ary behavior of the function φw (the second of Condition 11.2), whereas their other
assumptions are the same as in Theorem 11.10.

11.7 Concluding Remarks

In recent years, many different parametric stochastic volatility models have been
proposed in the literature. To investigate which of these models are best supported
by observed asset price data, nonparametric methods can be useful. In this paper we
reviewed a number of such methods that have recently been proposed. The overview
shows that ideas from deconvolution theory can be instrumental in dealing with this
statistical problem and that both for high- and for low-frequency data, methods are
now available for nonparametric estimation of the (integrated) volatility density at
optimal convergence rates.

On a critical note, the methods available so far all assume that the volatility pro-
cess is independent of the Brownian motion driving the asset price dynamics. This
is a limitation, since in several interesting models nonzero correlations are assumed
between the Brownian motions driving the volatility dynamics and the asset price
dynamics.
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Chapter 12
Fractional Smoothness and Applications
in Finance

Stefan Geiss and Emmanuel Gobet

Abstract This overview article concerns the notion of fractional smoothness of
random variables of the form g(XT ), where X = (Xt )t∈[0,T ] is a certain diffusion
process. We review the connection to the real interpolation theory, give examples
and applications of this concept. The applications in stochastic finance mainly con-
cern the analysis of discrete-time hedging errors. We close the review by indicating
some further developments.
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12.1 Introduction

From the practitioners one learns that hedging an option the payoff of which is
discontinuous is more difficult compared to the case of smooth payoffs: this fea-
ture appears, for instance, for digital options or barrier options (we refer the reader
to [32] among others). On the one hand, for such options, the number of assets (i.e.,
the delta) to incorporate in the hedging portfolio is unbounded, and it may become
larger and larger as one gets close to the singularity (i.e., the maturity and the strike
for digital options, or the trigger level for barrier options). On the other hand, the
numerical estimation of this delta becomes less and less accurate, leading to global
stability issues. These heuristic observations are the starting point for deeper math-
ematical investigations about the concept of irregular payoffs, in order to formalize
it and to quantify the payoff irregularity (with the notion of fractional smoothness).
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In the current contribution, we aim to give an overview of this concept and some
applications in stochastic finance. Actually, the applications go beyond the financial
framework, and more generally, they concern the theory of stochastic differential
equations and their approximations.

The Discrete-Time Hedging Error as an Important Application Since most of
the results presented here are applied to the aforementioned example of hedging
possibly irregular options, we start with a brief presentation of this problem, in or-
der to emphasize the issues to handle and to raise some natural questions. Take, for
instance, an European-style option exercised at maturity T > 0, with a payoff of the
form h(ST ), where St := [S1

t , . . . , Sd
t ] denotes the price of a d-dimensional under-

lying asset at time 0 ≤ t ≤ T . Sometimes, we will use the notation Xi
t = log(Si

t )

for the log-asset, and g(x) = h(ex1 , . . . , exd ) for the payoff in the logarithmic vari-
ables. In what follows, we assume a Markovian dynamics without jumps for the
asset (solution to an SDE defined below), and we suppose that the interest rate is
equal to 0 (to simplify the presentation) and that the market is complete (for details
about this standard framework, see [24]). Thus, under some regularity assumptions,
the payoff h(ST ) can be replicated perfectly by a continuous-time strategy, where
δS
t = ∇xH(t, St ) defines the vector of number of assets to hold at time t . Here, H is

the fair price of the option, that is,

H(t, x) = EQ

(
h(ST )

∣
∣St = x

)
,

where Q is the (unique) risk-neutral measure. In practice, only discrete-time hedging
is possible at some times τ = (ti)

n
i=0 with 0 = t0 < t1 < · · · < tn−1 < tn = T . Thus,

at time t ∈ [0, T ] the option seller is left with the tracking error

Ct

(
h(ST ), τ

) = H(t, St ) − H(0, S0) −
∑

i

∇xH(ti , Sti ) · (Sti+1∧t − Sti∧t )

=
∫ t

0

(∇xH(s, Ss) − ∇xH
(
φ(s), Sφ(s)

)) · dSs (12.1)

with φ(s) = ti when ti < s ≤ ti+1. We expect the tracking error (12.1) to converge to
0 as the number n of rebalancing dates goes to infinity. With the above formulation
(12.1), the tracking error is naturally associated to the problem of approximation
of a stochastic integral using piecewise constant integrated processes. But the delta
process (∇xH(s, Ss))s∈[0,T ) may exhibit very different behaviors from payoff to
payoff: if the payoff is smooth enough, then the delta may be bounded as time goes
to maturity, while an irregular payoff usually yields an exploding delta as s → T .
This gives rise to the first question.

(Q1) Is there an intrinsic way to relate the growth rate (as s → T ) of the derivatives
of H to the irregularity of the payoff h?
The answer will be yes via the notion of fractional smoothness introduced
below, see Theorems 12.3 and 12.4.
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The estimation of stochastic integrals is usually performed with L2-norms, but in
our financial setting, both measures P and Q can be considered. For practitioners,
errors under the historical probability P are presumably more relevant, while the
mathematical treatment under the risk-neutral measure Q is simpler in our context
(because the tracking error process (12.1) is a Q-local martingale).

(Q2) Is the definition of fractional smoothness affected by the choice of a specific
measure? Do the L2-convergence rates depend on the choice of the probability
measures P or Q?
In the context we consider the answer concerning the fractional smoothness is
usually no in the sense of the comments after Theorem 12.4. Concerning the
approximation rates the same is checked for examples so far (see the remarks
after Theorem 12.20).

Beyond the approach to measure tracking errors in L2, we could alternatively iden-
tify the weak limit of the renormalized tracking error.

(Q3) Do the weak convergence rates coincide with those in the L2 sense?
The answer is not necessarily, as there are counterexamples in which the con-
vergence in L2 and in distribution hold at different rates, see Sect. 12.5.

Finally, through an efficient choice of rebalancing dates τ , one can expect to reduce
tracking errors and improve the risk management of options.

(Q4) Which time nets τ = (ti)
n
i=0 lead to optimal convergence rates? And how to

relate them to the fractional smoothness of the payoff?
As answer we get is that according to the index of fractional smoothness of
the payoff, one can define explicitly rebalancing times achieving the optimal
convergence rates, see Sect. 12.5.

These preliminary questions serve as references for the reader when reading the next
sections.

Organization of the Paper First, we define the probabilistic framework and the
assumptions used throughout this work. Then in Sect. 12.2, we define the fractional
smoothness and provide basic properties: we choose a presentation that is quite il-
luminating regarding the previous preliminary questions. In Sect. 12.3, we take an-
other view on fractional smoothness using the interpolation theory. In Sect. 12.4,
we consider examples of terminal conditions and identify their fractional smooth-
ness. Then, in Sect. 12.5, we go back to the analysis of discrete-time hedging errors
and state the main results. We close by further developments and applications of the
fractional smoothness in Sect. 12.6.

Assumptions Let us define the probabilistic setting used in the following. We fix a
d-dimensional Brownian motion W = (Wt )t∈[0,T ] defined on a complete probability
space (Ω, FT ,P), and we let (Ft )t∈[0,T ] be the augmentation of the natural filtration
of W . The log-asset X is the solution of the d-dimensional forward diffusion

Xt = x0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs.
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To state the results, we mainly consider two types of assumptions:

(SDE) d ≥ 1, b,σ ∈ C∞
b ([0, T ] × R

d), and σσ ∗ ≥ δIRd for some δ > 0.
(GBM) d = 1, and Xt = ln(St ) = Wt − (t/2).

The smoothness conditions in (SDE) are too strong and are chosen to simplify the
presentation. Whenever useful to simplify even more, we may consider the very
simple case of the geometric Brownian motion (GBM) (here, the asset is a mar-
tingale, meaning that P = Q). The reader is referred to the corresponding original
papers for the possible weaker conditions.

In the following, | · | stands for the Euclidean norm, and A ∼c B for A/c ≤
B ≤ cA if c ≥ 1 and A,B ≥ 0. Expectations and conditional expectations under P

are simply denoted by E(·) and E(·|Ft ), while under Q, we indicate explicitly the
dependency w.r.t. the probability measure by writing EQ(·) and EQ(·|Ft ).

12.2 Definition of Fractional Smoothness and Basic Properties

Fractional smoothness on the Wiener space can be defined in various ways, see
[19, 35]. Our approach is motivated by the questions discussed in Sect. 12.1. Since
we consider only random variables of the form Z = g(XT ) = h(ST ) (a function
of the process at maturity T ), the time T plays a specific role in our definition. It
would be necessary to modify our definition for more general dependencies like
Z = g(Xt1 , . . . ,Xtn), see [9].

Definition 12.1 Assume that Z ∈ L2(P).

(i) For 0 < θ ≤ 1, we let Z ∈ B̃
θ
2,∞, provided that, for all 0 ≤ t < T ,

∥
∥Z − E(Z|Ft )

∥
∥

L2(P)
≤ c(T − t)

θ
2 .

(ii) For 0 < θ < 1, we let Z ∈ B̃
θ
2,2, provided that

∫ T

0
(T − t)−1−θ

∥
∥Z − E(Z|Ft )

∥
∥2

L2(P)
dt < ∞.

The above spaces B̃
θ
2,q will always be obtained by the conditional expectation

and the L2-norm under the measure P. Therefore we omit the dependency on P in
the notation.

The following properties follow straight from the definition:

Proposition 12.2 For 0 < θ < η < 1 and p,q ∈ {2,∞}, we have that

B̃
1
2,∞ ⊆ B̃

η
2,p ⊆ B̃

θ
2,q and B̃

θ
2,2 ⊆ B̃

θ
2,∞.
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Given a bounded1 measurable g : R
d → R and (t, x) ∈ [0, T ) × R

d , we let

u(t, x) := E
(
g(XT )

∣
∣Xt = x

)
,

D2u(t, x) :=
(

∂2u

∂xi∂xj

(t, x)

)d

i,j=1
.

The following equivalences are useful to exploit properties of B̃
θ
2,2 and B̃

θ
2,∞.

Theorem 12.3 [15, Proposition 1.1] Under condition (SDE), for 0 < θ < 1 and a
bounded g, the following assertions are equivalent:

(i) g(XT ) ∈ B̃
θ
2,2;

(ii)
∫ T

0 (T − t)−θ
E|∇xu(t,Xt )|2 dt < ∞;

(iii)
∫ T

0 (T − t)1−θ
E|D2u(t,Xt )|2 dt < ∞.

Theorem 12.4 [15, Lemma 1.2] Under condition (SDE), for 0 < θ ≤ 1 and a
bounded g, the following assertions are equivalent:

(i) g(XT ) ∈ B̃
θ
2,∞;

(ii) supt∈[0,T )(T − t)1−θ
E|∇xu(t,Xt )|2 < ∞;

(iii) For 0 < θ < 1, we have that supt∈[0,T )(T − t)2−θ
E|D2u(t,Xt )|2 < ∞.

Theorems 12.3 and 12.4 generalize results obtained in [7] and [12]. We see that
the fractional smoothness index θ measures exactly the growth rate of the derivatives
of the associated PDE solved by u (see question (Q1) in the introduction).

The two above theorems are also valid if u is computed using the risk-
neutral measure Q (i.e., uQ(t, x) = EQ(g(XT )|Xt = x)), while the other
L2-norms are computed under P. For instance, for 0 < θ < 1, the equivalence of
(i) and (ii) of Theorem 12.3 becomes g(XT ) ∈ B̃

θ,P
2,2 if and only if

∫ T

0 (T − t)−θ ×
EP|∇xuQ(t,Xt )|2 dt < ∞, where we have indicated explicitly if the L2-norms or
conditional expectations are computed under P or Q. This property can be estab-
lished following [15] and the proof of [14, Lemma 7]. This accommodates well the
fact that the price functions are usually computed under the risk-neutral measure,
while hedging is made under the historical probability (see question (Q2) in the
introduction).

Simplified proof of Theorem 12.4 We sketch the proof in the simple case where
X = W is a linear Brownian motion, d = 1, and θ ∈ (0,1). First, (u(t,Wt ) =
E(g(WT )|Ft ))t≤T is a martingale in L2(P). In addition, for any fixed 0 < δ ≤ T , the
processes (∇xu(t,Wt ))t≤T −δ and (D2u(t,Wt ))t≤T −δ are L2(P)-martingales. This
property is obtained by checking that ∇xu and D2u both solve the parabolic heat

1Here again, the boundedness assumptions on g can be weakened, and we refer to the original
papers.
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equation and that certain integrability assumptions are satisfied. Then by Itô’s for-
mula, one obtains, for 0 ≤ s ≤ t < T , that

g(WT ) − u(t,Wt ) =
∫ T

t

∇xu(s,Ws) dWs, (12.2)

∇xu(t,Wt ) − ∇xu(s,Ws) =
∫ t

s

D2u(r,Wr) dWr. (12.3)

From the Itô isometry one deduces from (12.2) that E|g(WT ) − u(t,Wt )|2 =
∫ T

t
E|∇xu(s,Ws)|2 ds, and it follows that (ii) ⇒ (i). Similarly, from (12.3) one ob-

tains

E
∣
∣∇xu(t,Wt )

∣
∣2 ≤ 2E

∣
∣∇xu(0,W0)

∣
∣2 + 2

∫ t

0
E

∣
∣D2u(r,Wr)

∣
∣2 dr,

which proves (iii) ⇒ (ii). Finally, we show (i) ⇒ (iii). Standard computations give
that

(
D2u

)
(t,Wt ) = D2

z

∫

R

g(x)
e
− (x−z)2

2(T −t)√
2π(T − t)

dx

∣
∣
∣
∣
z=Wt

=
∫

R

g(x)
(x − z)2 − (T − t)

(T − t)2

e
− (x−z)2

2(T −t)

√
2π(T − t)

dx

∣
∣
∣
∣
z=Wt

= E

(

g(WT )
(WT − Wt)

2 − (T − t)

(T − t)2

∣
∣
∣
∣Ft

)

= E

(
[
g(WT ) − E

(
g(WT )

∣
∣Ft

)] (WT − Wt)
2 − (T − t)

(T − t)2

∣
∣
∣
∣Ft

)

,

which implies that

∥
∥D2u(t,Wt )

∥
∥

L2(P)
≤ ‖W 2

1 − 1‖L2(P)

T − t

∥
∥g(WT ) − E

(
g(WT )

∣
∣Ft

)∥
∥

L2(P)
,

so that we are done. �

12.3 Connection to Real Interpolation

Let us connect Definition 12.1 to the classical notion of fractional smoothness,
which also explains the notation we have used. In particular, this connection will
make clear the difference between B̃

θ
2,∞ and B̃

θ
2,2.

Definition 12.5 [3, 4] Assume a couple of Banach spaces (E0,E1) such that E1 is
continuously embedded into E0. Given x ∈ E0 and 0 < λ < ∞, the K-functional is
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given by

K(x,λ;E0,E1) := inf
{‖x0‖E0 + λ‖x1‖E1 : x = x0 + x1

}
.

Moreover, given 0 < θ < 1 and 1 ≤ q ≤ ∞, we define the real interpolation norm

‖x‖θ,q := ∥
∥λ−θK(x,λ;E0,E1)

∥
∥

Lq((0,∞), dλ
λ )

and the space (E0,E1)θ,q := {x ∈ E0 : ‖x‖θ,q < ∞}.

With our setting (E1 is continuously embedded into E0), we obtain the following
lexicographical ordering of the interpolation spaces:

E1 ⊆ (E0,E1)θ,p ⊆ (E0,E1)θ,q ⊆ (E0,E1)η,r ⊆ E0

for all 0 < η < θ < 1, 1 ≤ p ≤ q ≤ ∞, and all 1 ≤ r ≤ ∞.
We apply this concept to the analysis on the Wiener space, which needs to in-

troduce some standard notation (see [29, Sects. 1.1 and 1.2]). Let H be a separable
real Hilbert space with the scalar product denoted by 〈·, ·〉H , and (M,Σ,μ) be a
complete probability space. We assume an isonormal family g = {gh : h ∈ H } of
centered Gaussian random variables, i.e.,

Eμ(gh gk) = 〈h, k〉H for all h, k ∈ H,

and that Σ is the completed σ -field generated by the random variables {gh : h ∈ H }.
For each n ≥ 1, we denote by Hn the closed linear subspace of L2(μ) generated

by the random variables {Hn(gh) : h ∈ H,‖h‖H = 1}, where

Hn(x) = (−1)n√
n! e

x2
2

dn

dxn

(
e− x2

2
)
, (12.4)

i.e., the nth Hermite polynomial. H0 is the set of constants, Hn is the so-called
Wiener chaos of order n, and we define by Jn : L2(μ) → L2(μ) the orthogonal pro-
jection onto Hn. The following orthogonal decomposition is known as the Wiener
chaos decomposition:

L2(μ) =
∞⊕

n=0

Hn.

Now, we are in a position to define the Malliavin Sobolev space and Malliavin Besov
space.

Definition 12.6 The Malliavin Sobolev space D1,2(μ) ⊆ L2(μ) is given by

D1,2(μ) :=
{

Z ∈ L2(μ) : ‖Z‖D1,2(μ) :=
( ∞∑

n=0

(n + 1)‖JnZ‖2
L2(μ)

) 1
2

< ∞
}

.
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Moreover, given 0 < θ < 1 and 1 ≤ q ≤ ∞, we define the Malliavin Besov space

B
θ
2,q (μ) := (

L2(μ),D1,2(μ)
)
θ,q

of fractional smoothness θ with fine parameter q .

We use this construction in the case that H = d
2 and M = R

d , Σ is the com-
pletion of the Borel σ -algebra on R

d , and μ = γd is the d-dimensional standard
Gaussian measure. The family of Gaussian random variables is given by

gh(x) := 〈x,h〉 for x ∈ M = R
d and h ∈ H = d

2 .

To make the connection between the definitions of B̃
θ
2,q and B

θ
2,q (γd) for q ∈ {2,∞},

we let, as before, (Wt )t∈[0,1] be the standard d-dimensional Brownian motion on
(Ω, F ,P, (Ft )t∈[0,1]). Then we have the following:

Theorem 12.7 [12, Corollary 2.3] For 0 < θ < 1, 1 ≤ q ≤ ∞, and g ∈ L2(γd), one
has

‖g‖
B

θ
2,q

(γd ) ∼c ‖g‖L2(γd ) + ∥
∥(1 − t)−

θ
2 ‖M1 − Mt‖L2(P)

∥
∥

Lq([0,1), dt
1−t

)
,

where Mt := E(g(W1)|Ft ), and c ≥ 1 depends on (θ, q) only.

Applying this theorem to q = ∞ gives that

‖g‖
B

θ
2,∞(γd ) ∼c ‖g‖L2(γd ) + sup

0≤t≤1
(1 − t)−

θ
2 ‖M1 − Mt‖L2(P),

whereas q = 2 gives that

‖g‖
B

θ
2,2(γd ) ∼c ‖g‖L2(γd ) +

(∫ 1

0
(1 − t)−1−θ‖M1 − Mt‖2

L2(P) dt

) 1
2

,

which brings us back to Definition 12.1.

Multidimensional Black–Scholes–Samuelson Model This is a lognormal model
the dynamics of which on the price and the log-price can be written as

dSi
t = Si

t

(
d∑

j=1

σij dW
j
t + μi dt

)

, 1 ≤ i ≤ d,

Xi
t = log

(
si

0

) +
d∑

j=1

σijW
j
t +

(

μi − 1

2
σ 2

i

)

t,
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where σi :=
√∑

j σ 2
ij . Assume that (σij )

d
i,j=1 is invertible. To the payoff function

S �→ h(S), we associate

g(x1, . . . , xd) := h
((

si
0e

∑d
j=1 σij xj +μi− σ2

i
2

)d

i=1

)
.

From this we see that

g ∈ B
θ
2,q (γd) if and only if h(S1) ∈ B̃

θ
2,q

for q ∈ {2,∞} and g ∈ L2(γd).

Remark 12.8 In the case θ = 1 we get that

g ∈ D1,2(γd) if and only if h(S1) ∈ B̃
1
2,∞

for all g ∈ L2(γd). This can be checked by using arguments from the proof of [12,
Corollary 2.3].

12.4 Examples

In this section, we provide examples of random variables Z = g(XT ) for which we
determine the fractional smoothness.

Example 12.9 (Lipschitz function) The case where the fractional smoothness is ob-
vious is the Lipschitz case. Assume a Lipschitz function g : R

d → R with constant
L ≥ 0, i.e., |g(x) − g(y)| ≤ L|x − y|, and assume (SDE). Then one has that

E
∣
∣g(XT ) − E

(
g(XT )

∣
∣Ft

)∣
∣2 ≤ E

∣
∣g(XT ) − g(Xt )

∣
∣2

≤ L2
E|XT − Xt |2

≤ L2c2(T − t),

using standard estimates on the increments of X. Hence, g(XT ) ∈ B̃
1
2,∞. This ex-

ample includes call and put payoffs, i.e., g(x) = (x − K)+ or g(x) = (K − x)+.

Exactly the same argument as above yields for θ -Hölder functions g with
θ ∈ (0,1) that g(XT ) ∈ B̃

θ
2,∞. But the situation here is not as clear as one expects as

shown by the following:

Example 12.10 Assume the setting (GBM) and that

hθ (x) := (x − K)θ+
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for some K > 0 and 0 < θ < 1/2. Then it is shown in [17, Lemma 2] (under more
general assumptions) that E|D2u(t,Xt)|2 ≤ c(T − t)−3/2+θ , so that Theorem 12.4
gives that

hθ (ST ) ∈ B̃
θ+ 1

2
2,∞ .

For 1/2 < θ < 1, one gets hθ (ST ) ∈ B̃
1
2,∞.

Example 12.11 (Binary option) Generally, indicator functions yield to a fractional
smoothness of order 1

2 . In the case X = W , d = 1, and g(x) = 1[L,∞)(x) with
L ∈ R, one has

u(t, x) = P(x + WT − Wt ≥ L) = N
(

x − L√
T − t

)

,

∇xu(t, x) = 1√
2π(T − t)

exp

(

− (x − L)2

2(T − t)

)

,

so that

E
∣
∣∇xu(t,Wt )

∣
∣2 ∼c

1√
T − t

and g(WT ) ∈ B̃

1
2
2,∞ because of Theorem 12.4. This can be extended to the (SDE)

case as follows: Our assumption guarantees that X has a transition density Γ such
that

Γ (s, x; t, y) ≤
√

κ

2π(t − s)
e
− 1

2
(x−y)2

κ(t−s) = κγκ(t−s)(x − y)

for some κ > 0 and all 0 ≤ s < t ≤ T , where γt is the Gaussian density with zero
expectation and variance t (see [6]). Then we can compute that

E
∣
∣1[L,∞)(XT ) − E

(
1[L,∞)(XT )

∣
∣Ft

)∣
∣2

≤ E
∣
∣1[L,∞)(XT ) − 1[L,∞)(Xt )

∣
∣

= P(XT < L ≤ Xt) + P(Xt < L ≤ XT )

≤ κ2[
P(WκT < L − x0 ≤ Wκt) + P(Wκt < L − x0 ≤ WκT )

]

≤ c
√

T − t,

where X0 = x0, so that 1[L,∞)(XT ) ∈ B̃

1
2
2,∞. The application in financial mathemat-

ics is done via St = eXt , which gives, for a positive strike K > 0,

1{ST ≥K} = 1{XT ≥logK} ∈ B̃

1
2
2,∞.

In our context the fractional smoothness of jump functions (under different assump-
tions) was considered in [7, 11, 17]. In certain multidimensional settings one can
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deduce for g(x) = 1{x1≥K1,...,xd≥Kd } (or variants of it) the same fractional smooth-
ness from the one-dimensional case. Finally, the indicator function g(x) = 1D(x) of

a C 2-domain D also leads to g(XT ) ∈ B̃

1
2
2,∞ (see [16, Proposition 1.2]).

Example 12.12 (An extreme case) By the choice of the previous examples, we
emphasize that random variables g(XT ) = h(ST ), usually used in financial appli-
cations, belong to a space B̃

θ
2,∞ for some θ ∈ (0,1]. However, it is not true that

⋃
θ∈(0,1] B̃

θ
2,∞ = L2(P). The following result gives a way to construct g(W1) be-

longing to L2(P) (here W is the linear Brownian motion) but g(W1) /∈ B̃
θ
2,∞ for all

θ ∈ (0,1]:

Proposition 12.13 [12] Let 0 < θ < 1 and g = ∑∞
k=0 αkHk ∈ L2(γ1), where

(Hk)k≥0 is the orthogonal basis of Hermite polynomials defined in (12.4). Then

g(W1) ∈ B̃
θ
2,∞ if and only if sup

0≤t<1
(1 − t)1−θ

∞∑

k=1

ktk−1α2
k < ∞.

Approximation properties as described in Sect. 12.5.2 for g with g(W1) ∈
L2(P) \ ⋃

0<θ≤1 B̃
θ
2,∞ were studied in [21] and [31].

12.5 Applications

In this section we discuss some applications in stochastic finance which lead us to
the fractional smoothness as introduced above. As mentioned at the beginning, a
central role is played by the tracking error that arises when discrete-time hedging is
used, instead of a continuous-time strategy. For the sake of convenience, we briefly
recall the notation:

• the option payoff at maturity T is Z = h(ST );
• the fair price function is H(t, x) = EQ(h(ST )|St = x);
• the n rebalancing dates are defined by a deterministic time net τ = (ti)

n
i=0 with

0 = t0 < t1 < · · · < tn−1 < tn = T ;
• the resulting tracking error process C(Z, τ) = (Ct(Z, τ))t∈[0,T ] is given by

Ct(Z, τ) := EQ(Z|Ft ) − EQZ −
n−1∑

i=0

∇xH(ti , Sti ) · (Sti+1∧t − Sti∧t ).

12.5.1 Weak Limits of Error Processes

Weak limits of stochastic processes have been intensively studied in the literature;
see, for instance, [22, 23, 26]. For the particular problem of the weak convergence
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of the tracking error, the reader is referred to [13, 17, 18, 30]. To formulate our
results, we let W̃ = (W̃t )t≥0 be a standard Brownian motion starting at zero defined
on some auxiliary probability space, where we may and do assume that all paths are
continuous. In the following, =⇒C[0,s] stands for the weak convergence in C[0, s]
for some s > 0.

In this paragraph we assume that T = 12 and that S is the standard geometric
Brownian motion, i.e., the setting of (GBM) and P = Q. The following result is the
starting point of this section:

Theorem 12.14 [17] Let τn = (i/n)ni=0 be the equidistant time nets, and let Z :=
1[K,∞)(S1) be the payoff of a digital option with strike price K > 0. Then one has
that

√
nC1(Z, τn) =⇒ W̃ 1

2

∫ 1
0 |S2

t
∂2H

∂x2 (t,St )|2 dt
,

where =⇒ denotes the weak convergence as n goes to infinity.

The remarkable fact is that the weak limit is not square-integrable. In the fol-
lowing we describe a way to increase the integrability of the weak limit. This is
of particular interest for risk management purposes, as a higher integrability gives
better tail estimates. The idea is to use adapted time nets that are more concentrated
close to maturity. They are defined as follows: Given a parameter θ ∈ (0,1], we
define the nets τn,θ by

t
n,θ
k := 1 −

(

1 − k

n

) 1
θ

.

For θ = 1, we have the equidistant time nets, i.e., t
n,1
k = k

n
. Now we have the fol-

lowing:

Theorem 12.15 [13] Let 0 < θ ≤ 1, Z = h(S1) ∈ L2(P), and 0 ≤ s < 1. Then

(√
nCt

(
Z,τn,θ

))
t∈[0,s] =⇒C[0,s]

(
W̃∫ t

0
(1−r)1−θ

2θ
|S2

r
∂2H

∂x2 (r,Sr )|2 dr

)
t∈[0,s].

Moreover, the following assertions are equivalent:

(i) One has h(S1) ∈ B̃
θ
2,2 for 0 < θ < 1 or h(S1) ∈ B̃

1
2,∞ for θ = 1.

(ii) On some stochastic basis there exists a continuous square-integrable martin-
gale M = (Mt )t∈[0,1] such that

√
nC(Z, τn,θ ) =⇒C[0,1] M .

(iii) For

A :=
∫ 1

0

(1 − t)1−θ

2θ

∣
∣
∣
∣S

2
t

∂2H

∂x2 (t, St )

∣
∣
∣
∣

2

dt,

2With T = 1, we are in accordance with the quoted literature that used Hermite polynomials.
Of course, we could do a rescaling to T > 0 afterwards.
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one has that EA < ∞ and
√

nC
(
Z,τn,θ

) =⇒C[0,1]
(
W̃

χ{A<∞}
∫ t

0
(1−r)1−θ

2θ
|S2

r
∂2H

∂x2 (r,Sr )|2 dr

)
t∈[0,1].

The theorem above gives us one way to consider the Lp-setting for 2 ≤ p < ∞.
Given a differentiable function ψ : (0,∞) → R, we let

(Aψ)(x) := xψ ′(x) − ψ(x).

In the following, AH(t, x) means that A acts on the x-variable of the func-
tion H(t, x).

Definition 12.16 For h(S1) ∈ L2(P), 0 < θ < 1, and 0 ≤ t < 1, we let

D
S,θ
t h(S1) := 1 − θ

2

∫ 1

0
(1 − u)−

1+θ
2

[
AH(u ∧ t, Su∧t ) − AH(0, S0)

]
du.

For θ = 1 and t ∈ [0,1), we let D
S,1
t h(S1) := AH(t, St ) − AH(0, S0).

The process DS,θh(S1) = (Dθ
t h(S1))t∈[0,1) is a quadratic integrable martingale

on the half open time interval [0,1). Using the Riemann–Liouville operator of par-
tial integration, the process DS,θh(S1) can be interpreted as a fractional differenti-
ation of order θ in x (see [13]). The point of the construction of DS,θh(S1) is that
we may have Lp-singularities of St

∂H
∂x

(t, St ) as t ↑ 1, whereas DS,θh(S1) remains
Lp-bounded.

Theorem 12.17 [13] For 2 ≤ p < ∞, 0 < θ ≤ 1, and Z = h(S1) ∈ L2(P), the fol-
lowing assertions are equivalent:

(i) On some stochastic basis there exists a continuous Lp(P)-integrable martingale
M such that

√
nC(Z, τn,θ ) =⇒C[0,1] M .

(ii) The martingale DS,θh(S1) is bounded in Lp(P).

12.5.2 L2-estimates of the Tracking Error

In this section we work in the one-dimensional martingale case assuming (SDE)
with σ(t, x) = σ(x) and b(t, x) = − 1

2σ 2(x) (meaning P = Q). The payoff function
h is polynomially bounded, and the option maturity is T > 0. We remind the reader
about the time nets τn,θ given by

t
n,θ
k := T

(

1 −
(

1 − k

n

) 1
θ
)

and that for θ = 1, we obtain the equidistant nets. Let us first check what quadratic
hedging error one can expect at all if the portfolio is rebalanced n-times. The answer
is the rate 1/

√
n as shown by the following:
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Theorem 12.18 [7, Theorem 2.5] Assume that there are no constants c0, c1 ∈ R

such that h(ST ) = c0 + c1ST a.s. Then

inf
n=1,2,...

0=t0<···<tn=T

n
1
2
∥
∥C

(
h(ST ), (tk)

n
k=0

)∥
∥

L2(P)
> 0,

where the infimum is taken over deterministic time nets.

This was extended to the case of random time nets in [8] in the case of the geo-
metric Brownian motion.

Now we continue with the case of equidistant time nets that are often used in
discretizations.

Equidistant Time Nets Here a starting point is the following result of Zhang:

Theorem 12.19 [36, Theorem 2.4.1] Assume that h : R → R is a Lipschitz function.
Then we have that

lim
n

n
1
2
∥
∥C

(
h(ST ), τn,1)∥∥

L2(P)
∈ [0,∞).

This is the result one would expect: Given a Lipschitz payoff, the L2-rate of the
error is 1/2 for equidistant nets. But this is not the case in general as shown in the
following:

Theorem 12.20 [17, Theorem 1] For h(x) = 1[K,∞)(x) with some K > 0, we have
that

lim
n

n
1
4
∥
∥C

(
h(ST ), τn,1)∥∥

L2(P)
∈ (0,∞).

This means that the L2-approximation rate for the binary option is n1/4 if one
uses equidistant nets. The two above results also hold for appropriate Q �= P (i.e.,
S is not a martingale) where the outer L2-norm is computed w.r.t. the historical
probability P (cf. the remarks after Theorem 12.4).

Theorems 12.19 and 12.20 lead naturally to two questions: What is the reason
for the rate 1/4, and, secondly, can one improve the rate 1/4? Both questions can
be answered by the usage of the concept of fractional smoothness.

Theorem 12.21 [7, Theorems 2.3 and 2.8] For 0 < θ ≤ 1 and a polynomially
bounded h : (0,∞) → R, the following assertions are equivalent:

(i) h(ST ) ∈ B̃
θ
2,∞;

(ii) supn n
θ
2 ‖C(h(ST ), τn,1)‖L2(P) < ∞.

In particular, it turns out that h(ST ) ∈ D1,2 if and only if

sup
n

n
1
2
∥
∥C

(
h(ST ), τn,1)∥∥

L2(P)
< ∞,
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see [7, Theorem 2.6], where D1,2 is the Malliavin Sobolev space obtained from the
construction in Sect. 12.3 with H = L2[0, T ] and gh := ∫ T

0 h(t) dWt .

For the binary option, one has in Theorem 12.21 that θ = 1/2 (cf. Example 3 in
Sect. 12.4). This recovers the rate 1/4 obtained in Theorem 12.20.

Nonequidistant Time Nets Next we show how to obtain the optimal rate n1/2

by a suitable choice of the trading dates (see question (Q4) in Sect. 12.1). We can
combine [7, Lemmas 3.2 and 5.3] and [12, Lemma 3.8] to get the following:

Theorem 12.22 For 0 < θ ≤ 1 and a polynomially bounded h : (0,∞) → R, the
following assertions are equivalent:

(i)
∫ T

0 (T − t)1−θ
E|S2

t
∂2H
∂x2 (t, St )|2 dt < ∞;

(ii) supn n
1
2 ‖C(h(ST ), τn,θ )‖L2(P) < ∞.

For 0 < θ < 1 (and at least a bounded h), condition (i) of Theorem 12.22 is
equivalent to

(i′) h(ST ) ∈ B̃
θ
2,2,

which can be checked by using Theorem 12.3. For the binary option, this gives that

sup
n

n
1
2
∥
∥C

(
χ[K,∞)(ST ), τn,η

)∥
∥

L2(P)
< ∞

for any strike K > 0 and 0 < η < 1/2.
For the next two theorems, we assume that T = 1, that St = eWt− t

2 , and that h

may be general, i.e., not polynomially bounded. The formulation of Theorem 12.22
in the language of the interpolation spaces introduced in Sect. 12.3 gives the follow-
ing:

Theorem 12.23 [12, Theorem 3.2] For 0 < θ ≤ 1 and h(S1) ∈ L2(P), the following
assertions are equivalent:

(i) h(e·−(1/2)) ∈ B
θ
2,2(γ1) if 0 < θ < 1 and h(e·−(1/2)) ∈ D1,2(γ1) if θ = 1;

(ii) supn n
1
2 ‖C(h(S1), τ

n,θ )‖L2(P) < ∞.

Theorem 12.21 can be extended in this context to the full scale of real interpola-
tion spaces as follows.

Theorem 12.24 [12, Theorem 3.5] For 1 ≤ q ≤ ∞, 0 < θ < 1, and h(S1) ∈ L2(P),
the following assertions are equivalent:

(i) h(e·−(1/2)) ∈ B
θ
2,q (γ1);

(ii) ‖(n θ
2 − 1

q an)
∞
n=1‖q < ∞ for an := ‖C(h(S1), τ

n,1)‖L2(P).
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Concluding Remarks

(i) The higher-dimensional case for X was considered in the literature as well.
Roughly speaking, one can analogously obtain upper bounds; however precise
lower bounds as in the one-dimensional case are still missing. This is due to
the fact that a characterization of the L2-error proved in [11, Theorem 4.4]
and [7, Lemma 3.2] is missing for higher dimensions. However, after Zhang
[36] started with the regular case, Temam [34] extended results from [17] to
higher dimensions, and Hujo [20] used nonuniform time nets to improve the
approximation rates for certain irregular payoffs to the optimal rate 1/

√
n in

this setting.
(ii) Seppälä [31] found a criterion to characterize, under certain conditions, that

there is a constant c > 0 such that

inf
τ=(ti )

n
i=0

0=t0<···<tn=1

∥
∥C

(
h(S1), τ

)∥
∥

L2(P)
≤ c√

n
,

where deterministic time nets are taken. It should be noted that one has a non-
linear approximation problem as the time nets may change for fixed n from
payoff to payoff h.

(iii) In the above discussion, the time nets τ are deterministic. Alternatively, one can
allow the time nets to be stochastic and adapted. This issue has been handled
by [28] using optimal stopping tools. The estimation of convergence rates is an
open question. However, it was shown in [8] that the random time nets do not
improve the best possible approximation rate 1/

√
n in the case (GBM) when

in the nth approximation a sequence of n stopping times is used.
(iv) Similar studies can be performed when studying the Delta–Gamma hedging

strategies. Instead of hedging the payoff using only the asset, we use other
traded options written on the same asset. For a one-dimensional asset, if the
price of the additional option is (P (t, St ))0≤t≤T , the numbers of options P and
assets to hold at time ti are respectively equal to

δP
ti

:= ∂2
SH(ti , Sti )

∂2
SP (ti , Sti )

and δS
ti

:= ∂SH(ti , Sti ) − ∂2
SH(ti , Sti )

∂2
SP (ti , Sti )

∂SP (ti , Sti ).

In [14, Theorem 6], considering a multidimensional Black–Scholes model, it is
established that for an exponentially bounded payoff such that g(XT ) ∈ B̃

θ
2,∞

for some 0 < θ < 1, the use of equidistant time nets leads to the same conver-
gence rate 1/nθ/2 as for the delta hedging strategy. On the contrary, the use
of nonequidistant time nets τn,η with 0 < η < θ/2 enables us to obtain the
improved convergence rate 1/n.
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12.6 Further Developments

12.6.1 Backward Stochastic Differential Equations

Makhlouf and the second author applied in [15] the concept of fractional smoothness
to backward stochastic differential equations of the type

Yt = g(XT ) +
∫ T

t

f (s,Xs,Ys,Zs) ds −
∫ T

t

Zs dWs,

where X = (Xt )t∈[0,T ] is our forward diffusion, and the generator f is continuous in
its four arguments, continuously differentiable in (x, y, z) with uniformly bounded
derivatives. These equations are particularly useful in stochastic finance, since they
allow one to take into account market frictions and constraints (we refer to [25] for
a more complete account on this subject).

Solving numerically this type of equation is a challenging issue since it concerns
a nonlinear problem (due to the generator f ), generally defined in a multidimen-
sional setting. One possible approach consists in approximating the BSDE using a
discrete-time dynamic programming equation (see [5, 27, 37] among others). One
of the main error contributions is related to the L2-regularity on Z, defined by

E (Z, τ) =
n∑

i=1

∫ ti

ti−1

‖Zt − Zti−1‖2
L2(P) dt.

If f is equal to 0, then the Z-component is given by zt = ∇xu(t,Xt )σ (t,Xt ), where
u(t, x) = E(g(XT )|Xt = x). Studying the L2-regularity of z is thus very similar to
the analysis of the tracking error presented in Sect. 12.5. Additionally, using BSDE
techniques, one can prove explicit upper bounds for the difference Z − z.

Theorem 12.25 [15, Corollary 2.1] Assume (SDE) and g(XT ) ∈ B̃
θ
2,∞ for 0 < θ

≤ 1. Then, for some c > 0, one has that

|Zt − zt | ≤ c

∫ T

t

√
E[|g(XT ) − E(g(XT )|Fs)|2|Ft ]

T − s
ds + c(T − t),

E|Zt − zt |2 ≤ c(T − t)θ .

Taking the advantage of this approximation result close to the time singularity,
we can prove that the estimate of E (z, τ ) (linear case) transfers to E (Z, τ) (nonlinear
case) and get the following:

Theorem 12.26 [15, Theorem 3.2] Assume (SDE), g(XT ) ∈ B̃
θ
2,∞, and that

0 < η < θ < 1 or η = θ = 1. Then one has that

E
(
Z,τn,η

) ≤ c

n
.

In [9], extensions of the above in different directions are discussed.

www.TechnicalBooksPDF.com



330 S. Geiss and E. Gobet

12.6.2 Lévy Processes

An extension of the results of [12] to Lévy processes is done by C. Geiss, S. Geiss
and Laukkarinen in [10]. Moreover, Tankov and Brodén [33] proved results along
the line of [17].

12.6.3 Multigrid Monte Carlo Methods

In the context of Multigrid Monte Carlo Methods, it turned out that the concept
of fractional smoothness is useful as well. The reader is referred to the papers of
Avikainen [1, 2].
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Chapter 13
Liquidity Models in Continuous and Discrete
Time

Selim Gökay, Alexandre F. Roch, and H. Mete Soner

Abstract We survey several models of liquidity and liquidity-related problems
such as optimal execution of a large order, hedging and super-hedging options for a
large trader, utility maximization in illiquid markets, and price impact models with
price manipulation strategies.
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13.1 What Is Illiquidity?

The study of liquidity in financial markets either invokes the ease with which fi-
nancial securities can be bought and sold, or addresses the ability to trade without
triggering important changes in asset prices. More specifically, one can think of
liquidity as an exogenous measure of the added costs per transaction associated to
trading large quantities of the asset. This is the approach advocated by Çetin et al.
[9], in which an exogenously defined supply curve gives the price per share as a
function of transaction size. On the other hand, one can take this idea a step further
and recognize that these added costs are the product of imbalances in the supply
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and demand of the asset due to the trading of large quantities. If the imbalance is
temporary and only affects the current price paid, we are effectively in the previous
setting, and the transaction costs depend mainly on the size of the trade. On the other
hand, these imbalances can have a lasting effect in such a way that future prices will
be affected by previous trades. For instance, Jarrow [21, 22] considers the price per
share as a function of the holdings of the large trader. As we can see, these two no-
tions are closely related, and one approach can be more convenient or realistic than
the other depending on the setting.

There are four main themes present in the current mathematical literature on
liquidity. The first one pertains to the problem of optimal execution of large orders.
Consider the situation in which a trader plans to sell a large number of units of
a risky asset before a predetermined time horizon. Since the size of the order is
large, this trader may find it more optimal to work the order in several smaller slices
to minimize her impact on prices by trading during times of higher liquidity and
taking advantage of the resilience of the supply and demand of the asset. On the
other hand, delaying the orders for too long increases the exposure to other risks.
The goal is to find the right balance between liquidity risk and other market risks.
Many papers have been written on this question, and we survey some of the main
results in Sect. 13.2.

The second theme we discuss in this survey relates to the familiar problem of
option pricing. On one hand, the existence of a supply curve that governs the liq-
uidity cost of a transaction clearly suggests that the hedging of derivatives will be
more costly that in the classical frictionless setting. On the other hand, the hedger’s
capacity to have an impact on prices may influence her into manipulating prices
in her favor. The classical hedging problem gains a new level of complexity as the
hedger’s strategy, which is chosen in terms of the option payoff, has a repercussion
on the future evolution of prices on which the option payoff is calculated. The differ-
ent approaches commonly used in this setting are reviewed in Sects. 13.3 and 13.4.
In Sect. 13.3 we review the results on hedging for a large trader, including the pa-
pers of Cvitanic and Ma [14], Platen and Schweizer [27], Bank and Baum [7], and
Roch [28]. In Sect. 13.4 we introduce the supply curve model introduced in [9], dis-
cuss the superreplication problem in this context, and focus on the works of Çetin,
Soner, and Touzi [11] and Gökay and Soner [18].

The third theme is related to the expected utility maximization problem with
permanent or temporary price impacts. We briefly summarize some of the main
results in this line of research in Sect. 13.5.

The introduction of price impacts on the evolution of the price processes evokes
the possibility of price manipulations, defined as trading strategies with negative
expected execution costs. For instance, by making the price go up after a purchase, a
large trader has the possibility of making higher profits than average by reselling the
shares purchased if the average impact on prices is smaller for sell orders than buy
orders. This is only one example of a price manipulation, and it has led some authors
to investigate these types of irregularities in terms of the price impact functions. It is
the focus of Sect. 13.6.
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13.2 Optimal Execution Problem

The optimal execution problem consists in allocating a large buy or sell order of a
risky asset over a fixed time horizon with the aim of minimizing the expected cost of
the order due to the relative illiquidity of the asset. The main challenge in this kind
of allocation is to choose a trading program which is executed on a period of time
short enough to reduce the risk of the uncertainty of future prices while dividing
the large order in smaller ones distributed over time to reduce the liquidity costs
associated to this trading program.

There are mainly two approaches in the literature which we summarize in this
section. The first approach, proposed in the papers of Bertsimas and Lo [8], Alm-
gren [4], Almgren and Chriss [5, 6], and Schied and Schöneborn [30], measures the
associated cost of a sequence of transactions in terms of a permanent price impact
and/or a temporary price impact which are exogenously determined and depend on
the size of the transaction and the speed of change of the position in the asset. On
the other hand, the second approach presumes the existence of a limit order book
through which the orders of the large trader are executed. In this setting, the cost
of an execution strategy depends on endogenous variables such as the density of
the number of shares being offered at each price and the resilience of the order
book. The main references that we will summarize for this approach are the papers
of Obizhaeva and Wang [26], Alfonsi, Fruth, and Schied [1, 2], and Alfonsi and
Schied [3].

13.2.1 The First Approach

In the optimal execution problem, the investor wants to liquidate a certain num-
ber X0 > 0 of units of an asset before a fixed finite time horizon T . Dividing
the trading period [0, T ] into N equal intervals of length τ = T/N , the investor
chooses quantities ξk ≥ 0 to sell at discrete times tk = kτ for k = 1, . . . ,N such that∑N

k=1 ξk = X0. The number of units still held by the investor at time tk is given by
Xk = X0 − ∑k

j=1 ξj . Note that the case X0 < 0 can be treated in a similar way.
Bertsimas and Lo [8] approach this problem by minimizing expected execution

costs, whereas Almgren [4] and Almgren and Chriss [5, 6] extend this idea by also
incorporating the risk into the execution problem using the variance of the associated
costs.

Bertsimas and Lo [8] propose a general formulation for the price process of the
asset, of which two special cases stand out. One special case proposed in [8] gives
a stock price of the form

S̃k = S̃k−1 − γ ξk + εk, γ > 0, (13.1)

in which {εk}Nk=1 is a sequence of independent and identically distributed random
variables with mean zero and variance σ 2

ε , whereas ξk is the size of the transaction
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at time tk . The profit obtained from a strategy, also commonly called the capture, is
given by

∑n
k=1 ξkS̃k . The total cost of trading associated to a strategy X is defined

as the difference between the book value X0S0 and the capture, and is computed as

C(X) = X0S0 −
N∑

k=1

ξkS̃k.

In this setup, the goal is to minimize the expected execution cost

min
{ξk}Nk=1

E
[
C(X)

]

subject to the constraint

N∑

k=1

ξk = X0.

The price impact due to the trade ξk is said to be permanent in (13.1) since the
price at time tk is defined in terms of the price at time tk−1, which is also affected
by the trade ξk−1 at time tk−1. For this special case, there exists an explicit optimal
strategy. It is called the naive strategy and is obtained by dividing the total order X0
into N equal slices, i.e., ξk = X0

N
.

Bertsimas and Lo [8] also consider a linear temporary price impact model. In
this setup the execution price S̃k at time k, i.e., the price paid for the transaction
at time k, is decomposed into an exogenous unaffected price Sk and a price im-
pact as a function of the trade size. The unaffected price, also called publicly avail-
able price, can be interpreted as the price that would be obtained in absence of
price impacts. The execution price at time tk is a function of ξk and assumed to be
given by

S̃k(ξk) = Sk − (ηξk + γ Yk)Sk, η > 0,

in which Y is an adapted process. In the special case that the unaffected price pro-
cess {Sk}Nk=1 follows

Sk = Sk−1 exp(αk),

and the state vector {Yk}Nk=1 satisfies

Yk = ρYk−1 + ζk, ρ > 0,

in which {ζk}Nk=1 and {αk}Nk=1 are i.i.d. normal random variables with mean 0,
the authors show that the best execution strategy consists in trade sizes which
are linear functions of the remaining number of shares Xk and the state vari-
able Yk .

The implicit assumption in the paper of Bertsimas and Lo [8] is that the investor
is not risk averse as she only aims to minimize the expected cost of the execution.
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In the optimal execution model of Almgren [4] and Almgren and Chriss [5, 6],
the investor’s tolerance for risk influences her trading decisions. To illustrate this
point, consider the two following execution strategies. On one hand, a risk averse
agent may choose to trade everything now. The advantage of this strategy is that the
cost is known and all risks regarding the future prices of the asset are eliminated.
On the other hand, the cost is high, and the investor may be willing to take some
risk by dividing her orders and executing them through time in order to have a
lower expected cost. Almgren and Chriss characterize this trade-off between the
cost and variance of optimal execution strategies by an efficient frontier. They show
that the points on the frontier are determined by the level of risk aversion of the
agent. They argue that the optimal strategies for the execution problem are static,
i.e., these decisions can be fully determined at the beginning of the trading period
and give explicit solutions for some specific cases.

In addition to the above mathematical setup, we denote by vk = ξk

τ
the speed of

trades on the kth interval. In [5], the publicly available price per share Sk is modeled
as follows. Let {ζk}Nk=1 be i.i.d. random variables with zero mean and unit variance.
We assume that

Sk = Sk−1 + σ
√

τζk − τg(vk), k = 1, . . . ,N,

where σ > 0 is a volatility parameter, and g : R → R is a permanent impact func-
tion. The price per share paid by the investor at time k is

S̃k(ξk) = Sk−1 − h

(
ξk

τ

)

, k = 1, . . . ,N,

where h is a given function, called the temporary impact function. The capture is
computed as

C(X) = X0S0 −
N∑

k=1

ξkS̃k(ξk)

=
N∑

k=1

τXkg(vk) +
N∑

k=1

τvkh(vk) − σ
√

τ

N−1∑

k=1

Xkζk, (13.2)

with expected value and variance at time 0 given by

E
(
C(X)

) =
N∑

k=1

τXkg(vk) +
N∑

k=1

τvkh(vk), Var
(
C(X)

) =
N∑

k=1

τσ 2X2
k

when the strategy X is deterministic.
A strategy is called efficient if there is no strategy that has a lower expected value

for a level of variance which is equal or lower. The family of efficient strategies is
given by the solutions X∗(λ) of the optimization problem

min
X

{
E

(
C(X)

) + λVar
(
C(X)

)}
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for different values of λ ≥ 0. The family of solutions (X∗(λ))λ≥0 is called the ef-
ficient frontier. The parameter λ measures the risk aversion of the investor. Every
point on the frontier corresponds to a pair

(
Var

(
C

(
X∗(λ)

))
,E

(
C

(
X∗(λ)

)))

for some λ. The efficient frontier gives rise to a smooth and convex function,
which we denote by E (V ), assigning the optimal expected cost E (V ) to each
possible value of the variance V , i.e., there exists λ ≥ 0 such that (V , E (V )) =
(Var(C(X∗(λ))),E(C(X∗(λ)))).

In [6], the permanent impact function is taken to be linear, i.e., g(v) = γ v (with
γ > 0), and the temporary price impact function consists of the sum of a fixed cost
function and a linear impact function so that

h(v) = θ sign(v) + ηv (v ∈ R) (13.3)

for some positive constants θ, η > 0. In this case, it is easy to see that the expectation
of the cost becomes

E
(
C(X)

) = 1

2
γX2

0 + θ

N∑

k=1

|ξk| + η − 1
2γ τ

τ

N∑

k=1

ξ2
k .

Almgren and Chriss [6] show that the optimal solution for the case of g linear and
h given by (13.3) can be written in terms of λ > 0 as

X∗
j = sinh(κ(T − tj ))

sinh(κT )
X0, j = 0, . . . ,N,

where

κ ∼
√

λσ 2

η
+ O(τ), τ → 0.

If the agent is risk-neutral (λ = 0), she only wants to minimize the expected cost.
Then her optimal strategy is the naive strategy ξk = X0

N
as we have seen earlier. In

this case, the expected cost and variance of this strategy are given by

E0 := 1

2
γX2

0 + θX0 +
(

η − 1

2
γ τ

)
X2

0

T
,

V0 := 1

3
σ 2X2

0T

(

1 − 1

N

)(

1 − 1

2N

)

.

The naive strategy corresponds to the minimal point of the efficient frontier, in the
sense that dE

dV
evaluated at (V0,E0) is equal to zero. Thus for (V ,E) in the vicinity

of (V0,E0),

E − E0 ≈ 1

2
(V − V0)

2 d2 E
dV 2

∣
∣
∣
∣
V =V0

,

where d2 E /dV 2|V =V0 is positive by the convexity of the efficient frontier.
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13.2.2 Continuous-Time Models

Let us now consider nonlinear impact functions and analyze the continuous-time
limit of the previous model as τ → 0. Let (Ω, F , (Ft )t≥0,P) be a given filtered
probability space on which a Brownian motion W is defined. In the continuous
setup, the publicly available price will be assumed to be given by

St = σWt −
∫ t

0
g
(
Ẋ(t)

)
dt. (13.4)

Here, Ẋt is the derivative of Xt with respect to t and corresponds to vk in the pre-
vious discrete setup. The proceeds associated to a trading strategy X and an initial
position of X0 in the risky asset and y in the riskless asset are given by

RT (X) = X0S0 + y −
∫ T

0
Xtg(Ẋt ) dt

−
∫ T

0
Ẋth(Ẋt ) dt + σ

∫ T

0
Xt dWt . (13.5)

The cost of the strategy X is defined as C(X) := X0S0 + y − RT (X). This can be
formally obtained as a limit of (13.2). The expectation and variance of the cost are
given by

E
(
C(X)

) =
∫ T

0
X(t)g(Ẋt ) + Ẋth(Ẋt ) dt, Var

(
C(X)

) =
∫ T

0
σ 2X2

t dt

when X is deterministic. The problem then consists in finding a deterministic abso-
lutely continuous strategy (Xt )t∈[0,T ] that minimizes E(C(X))+λVar(C(X)) for a
given risk-aversion level λ.

To obtain explicit solutions to the above minimization problem, Almgren [4]
considers a linear permanent impact g(v) = γ v and a temporary impact in the form
of a power law h(v) = ηvk with k > 0. For each trading horizon T , there is an
optimal strategy. Almgren finds that the optimal strategy which takes the longest to
execute can be expressed as

Xt

X0
=

{
(1 − k−1

k+1
t
T∗ )

k+1
k−1 if k 	= 1,

exp(− t
T∗ ) if k = 1,

where T∗, called the characteristic time, is given by

T∗ =
(

kηXk−1
0

λσ 2

)1/(k+1)

.

For the linear case, k = 1, the characteristic time is independent of the initial
portfolio size X0 and corresponds to the amount of time needed for the portfolio
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position to decrease by a factor of e−1. If k < 1, volatility risk dominates the ex-
pected cost as the portfolio size increases and the speed of trading decreases with
time. When k > 1, the trading cost dominates volatility risk.

When k ≤ 1, the execution time is infinite, i.e., Xt > 0 for all t < ∞. On the
other hand, when k > 1, the trading stops after a finite time given by

T = k + 1

k − 1
T∗.

Next consider the same wealth equation as (13.5) with T = ∞, h(x) = λx, and
g(x) = γ x. This is the setup considered by Schied and Schöneborn [30]. The ad-
missible portfolios (Xt )t≥0 considered are more general than in the previous setups
as they are assumed to satisfy the following conditions:

• Xt is absolutely continuous, and ξ(t) := −Ẋ(t),
• XT = 0,
• ξ is progressively measurable with respect to the filtration (Ft )t≥0 with∫ t

0 ξ2
s ds < ∞ for all t > 0,

• Xt(ω) is uniformly bounded in t and ω.

The class of admissible strategies starting with X0 units of the risky asset and y

shares in the riskless asset is denoted by X (X0, r) in which r = X0S0 + y − γ
2 X2

0.
The goal is to maximize the expected utility of the capture Rt (X) over the class of
admissible strategies. Assume that the utility function u is smooth with risk aversion
factor

A(r) = −urr(r)

ur(r)
,

satisfying

0 < Amin := inf
r∈R

A(r) ≤ sup
r∈R

A(r) := Amax < ∞.

We consider two different maximization problems. The first problem is given by the
following value function:

v1(x, r) = sup
X∈X (x,r)

E
[
u
(
R∞(X)

)]
,

where

R∞(X) = r + σ

∫ ∞

0
Xs dBs − λ

∫ ∞

0
Ẋ2

s ds.

In the above equation we avoid the technical limiting argument and the associated
admissibility class. The second problem involves the value function

v2(x, r) = sup
X∈X (x,r)

lim
t→∞E

[
u
(

Rt (X)
)]

,
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where

Rt(X) = r + σ

∫ t

0
Xs dBs − λ

∫ t

0
Ẋ2

s ds.

It can be shown that v1 and v2 are equal and solve the Hamilton–Jacobi–Bellman
equation

−1

2
σ 2x2vrr + inf

c

{
λvrc

2 + vxc
} = 0 for x > 0, r ∈ R, (13.6)

together with the boundary condition

v(0, r) = u(r), r ∈ R.

The unique optimal control Ẋ∗
t is Markovian and is given in feedback form by

Ẋ∗
t = c

(
X∗

t , Rt (X
∗)

)
, (13.7)

where c(x, r) = − vx(x,r)
2λvr (x,r)

.
To prove the above statements, the authors show that there exists a sufficiently

smooth solution c̃ : (y, r) ∈ R+
0 × R → c̃(y, r) ∈ R of the partial differential equa-

tion

c̃y = −3

2
λc̃c̃r + σ 2

4c̃
c̃rr

with initial value

c̃(0, r) =
√

σ 2A(r)

2λ
.

Moreover, the solution satisfies

√

σ 2Amin

2λ
≤ c̃(y, r) ≤

√
σ 2Amax

2λ
. (13.8)

Also, there exists a sufficiently smooth solution w̃ : R+
0 × R → R of the transport

equation

w̃y = −λc̃w̃r

with initial value

w̃(0, r) = u(r).

Then the function w(x, r) := w̃(x2, r) solves the HJB equation (13.6), and the
unique minimum is attained at

c(x, r) := c̃
(
x2, r

)
x.
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A verification argument concludes that the solution of the HJB equation (13.6) must
be equal to the value functions v1 and v2, and the unique optimal control satisfies

(13.7) where c(x, r) = − vx(x,r)
2λvr (x,r)

. Then in view of (13.7), the asset position X
ξ̂
t at

time t under the optimal control ξ̂t is given as

X
ξ̂
t = X0 exp

(

−
∫ t

0
c̃
((

Xξ̂
s

)2
,Rξ̂

s

)
ds

)

,

and because of (13.8), it is bounded as follows:

X0 exp

(

−t

√
σ 2Amax

2λ

)

≤ X
ξ̂
t ≤ X0 exp

(

−t

√
σ 2Amin

2λ

)

.

In the case with constant absolute risk aversion A = Amin = Amax, the optimal adap-
tive liquidation strategy is static and is given by

X
ξ̃
t = X0 exp

(

−t

√

σ 2A

2λ

)

.

Since the absolute risk aversion of the utility function determines the initial condi-
tion of the partial differential equation for c̃, it is a key factor for the optimal trading
strategy. In particular, the optimal strategy inherits monotonicity properties of the
absolute risk aversion. Let u0 and u1 be two utility functions with corresponding
absolute risk aversions A0(r) and A1(r). If A1(r) ≥ A0(r) for all r , then an investor
with utility function u1 liquidates the same portfolio X0 faster than an investor with
utility function u0. More precisely, we get

c1 ≥ c0 and ξ̂1
t ≥ ξ̂0

t P-a.s.,

where ci and ξ̂ i
t are obtained from the utility function ui with i ∈ {0,1}. As a corol-

lary, it follows that c(x, r) is increasing (decreasing) in r for all values of x if and
only if the absolute risk aversion parameter A(r) is increasing (decreasing) in r .
Therefore, an investor with increasing absolute risk aversion A(r) would sell faster
when prices rise, since an increase in prices lead to an increase in r . In this case, the
investor is called aggressive in-the-money. On the other hand, an investor having a
decreasing absolute risk aversion A(r) is passive in-the-money, i.e., she would sell
slower when prices increase.

13.2.3 Models of Limit Order Books

We now analyze the limit order book (LOB) models and focus on the papers by
Obizhaeva and Wang [26] and Alfonsi, Fruth, and Schied [1, 2]. As before, we take
the point of view of a large trader who needs to liquidate a certain fixed number of
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units of a risky asset. In limit order books, as opposed to modeling the price process
directly, one models the dynamics of supply and demand for the asset in the market
and its impact on the execution cost. Then the supply and demand levels determine
the magnitude of price impacts.

A limit order is an order to sell or buy a certain number of shares of an asset at
a specified price. The limit order book consists of the collection of all sell and buy
limit orders. A market order is an order to buy or sell a certain number of shares
at the most favorable price available in the limit order book. The lowest specified
price in the LOB for a sell order is called the best ask price, whereas the highest
price of a buy order in the LOB is the best bid price. A market order to buy (resp.
sell) is executed against the limit orders to sell (resp. buy). In LOB models, the
dynamics of the LOB is assumed to only be affected by noise traders when the large
trader is inactive, and their actions determine the unaffected best ask price A0

t and
the unaffected bid price B0

t . The processes A0 = (A0
t )t≥0 and B0 = (B0

t )t≥0 are
adapted, exogenously defined stochastic processes on the filtered probability space
(Ω, F , (Ft )t≥0,P). Clearly, a natural condition to impose on these two processes is
A0

t ≥ B0
t for all t ≥ 0. We denote the density of the LOB at the price A0

t + x (resp.
B0

t + x) by f (x) for x > 0 (resp. x < 0), i.e., the number of shares offered at the
price A0

t + x (resp. B0
t + x) is given by f (x)dx. It is assumed that f : R → (0,∞)

is a bounded continuous function, called the shape function of the LOB. The large
trader makes buy and sell orders, thereby temporarily depleting parts of the LOB.
We denote by F the antiderivative of f , i.e.,

F(y) =
∫ y

0
f (x)dx.

The actual best ask price at time t , denoted by At , takes into account the price
impacts of the previous market orders of the large trader. The positive difference
between the actual and the unaffected best ask prices DA

t = At − A0
t is called the

extra spread. A buy order of size ξ > 0 at time t consumes all shares in the LOB
from the actual best ask price At to

At+ = At + DA
t (ξ) − DA

t ,

where DA
t (ξ) is determined by the relation

∫ DA
t (ξ)

DA
t

f (x) dx = ξ.

The process DA specifies the market impact of orders on the best ask price. For a
general shape function f , the market impact DA

t (ξ) − DA
t is nonlinear. However, if

we assume a block shaped LOB, i.e., an LOB in which the shape function is equal
to a constant q above the actual best ask price, then the market impact DA

t (ξ)−DA
t

is linear and equal to ξ/q .
We now describe the admissible trading strategies for the large trader. Assume

that the trader wants to buy x > 0 shares in N + 1 trades within the time inter-
val [0, T ]. The trading strategies considered by Alfonsi and Schied [3] are simple
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strategies of the form

Xt = ξ0 +
N∑

n=1

ξn1{t≥τn} (0 ≤ t < T ),

where τ0, . . . , τN are stopping times satisfying 0 = τ0 ≤ τ1 ≤ · · · ≤ τN , and every ξn

is bounded below and measurable with respect to Fτn
. The quantity ξn represents the

size of the market order placed at time τn. We denote this set of admissible strategies
by XN . In [1, 2], the admissible strategies considered are special cases of the above
setup, i.e., the trading times are not stopping times, but they are predetermined.
For convenience, we denote by X+

t = ξ0 + ∑N
i=1 ξn1{t≥τn,ξn>0} the cumulative buy

orders and by X−
t = Xt − X+

t the cumulative sell orders.
It is assumed that the market impact decays with time as the result of new sell

orders coming in the order book. This phenomenon is known as the resilience of
the LOB. In [2, 3] there are two different approaches to model resilience. Either the
volume of the order book consumed by the large trader, denoted at time t by EA

t ,
is assumed to recover exponentially, or the extra spread DA

t decays exponentially.
The assumption regarding resilience is stated as follows: there is a deterministic rate
process (ρt )t≥0 such that either

dEA
t = −ρtE

A
t dt + dX+

t

or

dDA
t = −ρtD

A
t dt + DA

t

(
ΔX+

t

)

In the specific case of a block-shaped LOB, it can be shown that

DA
t = 1

q

∑

n

e
− ∫ t

τn
ρs ds

ξn1{τn≤t,ξn>0}. (13.9)

It is easy to see that these two approaches of resilience coincide for block-shaped
LOBs. The dynamics of the bid side of the LOB are modeled identically. As before,
the density of the number of shares offered at the price B0

t + x for x < 0 are given
by the shape function f . The extra spread DB

t is the difference between the actual
best bid price and the best unaffected bid price DB

t = Bt −B0
t , which is nonpositive.

A sell order of size ξ < 0 will move the actual best bid price to

Bt+ = Bt + DB
t (ξ) − DB

t ,

where DB
t (ξ) is defined, as before, by

ξ =
∫ DB

t (ξ)

DB
t

f (x) dx.

As before, the resilience is either modeled in terms of the volume consumed by the
large trader or the extra spread as follows:

dEB
t = −ρtE

B
t dt + dX−

t , or
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dDB
t = −ρtD

B
t dt + DB

t

(
ΔX−

t

)
.

The difference At − Bt between the best ask and the best bid price is called the
bid-ask spread.

A buy order of size ξ > 0 at time t consumes the f (x)dx available shares at price
A0

t + x, where x ranges from DA
t to DA

t (ξ). The cost associated to this transaction
is given by

πt(ξ) =
∫ DA

t (ξ)

DA
t

(
A0

t + x
)
f (x)dx = A0

t ξ +
∫ DA

t (ξ)

DA
t

xf (x) dx.

Similarly for a sell order ξ < 0, we have

πt (ξ) =
∫ DB

t (ξ)

DB
t

(
B0

t + x
)
f (x)dx = B0

t ξ +
∫ DB

t (ξ)

DB
t

xf (x) dx.

The expected cost C(X) of an admissible strategy X can then be obtained by

C(X) = E

[
N∑

n=0

πτn
(ξn)

]

.

The goal is then to minimize C(X) among all admissible strategies X. Note that, in
contrast with the works of Almgren [4] and Almgren and Chriss [5, 6], intermediate
sell orders (resp. buy orders) are allowed for execution orders of x > 0 (resp. x < 0)
shares.

In [3], it is established that minimizing C(X) over the set of admissible strategies
XN is equivalent, under some assumptions on the density function f , to minimizing

C(X) under the constraint that the trading times sequence (τ0, τ1, . . . , τn) is given
by the time spacing T ∗ = (t∗0 , t∗1 , . . . , t∗N) defined by

∫ t∗i

t∗i−1

ρs ds = 1

N

∫ T

0
ρs ds, i = 1, . . . ,N.

The unique optimal strategy for the first model of resilience is given by

ξ∗
1 = · · · = ξ∗

N−1 = ξ∗
0

(
1 − a∗),

where

a∗ = exp

(

− 1

N

∫ T

0
ρs ds

)

,

and ξ∗
0 solves

F−1(x − Nξ∗
0

(
1 − a∗)) = F −1(ξ∗

0 ) − a∗F−1(a∗ξ∗
0 )

1 − a∗ .
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The last order ξ∗
N is determined so that

ξ∗
N = X0 − ξ∗

0 − (N − 1)
(
1 − a∗)ξ∗

0 .

When f is constant,

ξ∗
0 = x

(N − 1)(1 + a∗) + 2
.

In the asymptotic limit, i.e., as N → ∞, of the block-shaped LOB, the optimal
execution strategy is a combination of discrete and continuous trades when the re-
silience factor ρ is constant. The initial and final trades are discrete, whereas the
intermediate ones are continuous. The optimal strategy is given by

ξ ∗
0 = ξ∗

T = X0

ρT + 2
,

d

dt
ξ∗
t = ρX0

ρT + 2
.

Note that in the LOB price impact model described above, the impact of a trade
is not permanent: the extra spread decays with time. Alfonsi et al. [1] and Obizhaeva
and Wang [26] include an additional permanent impact factor in the block-shaped
LOB model. More specifically, they let the density function f = q ∈ R and assume
that the extra spread DA caused by a strategy X satisfies

DA
t = γ

∑

n

ξn1{τn≤t,ξn>0} + κ
∑

n

exp

(

−
∫ t

τn

ρs ds

)

ξn1{τn≤t,ξn>0},

where 0 ≤ γ ≤ 1/q is the permanent effect factor, and κ = 1/q −γ is the proportion
of the market impact that decays with time. Similar dynamics holds for sell orders.
Comparing this to (13.9), we see that a proportion γ

1/q
of the consumed volume

by the large trader does not recover in the long run. It turns out that the minimiza-
tion problem with permanent impact has the same optimal trading strategy as the
minimization problem with γ = 0.

In [1], Alfonsi et al. consider this problem under convex constraints and obtain
closed-form solutions. The set of strategies considered is however smaller than XN

as trading is only permitted on a predetermined time grid t0, t1, . . . , tn. The aim is
to reduce the constrained optimization problem to the minimization of a positive
definite quadratic form on a convex subset of Euclidean space. As a special case,
they obtain closed-form solutions for the unconstrained problem.

13.3 Option Hedging for Large Traders

In this section we survey the large trader models for hedging options. The trades
of the large trader are assumed to have an impact on the prices so that she has to
take this effect into account when considering hedging options. There are various
approaches to incorporate the trading decisions of the large trader into the price
process of the underlying. Jarrow [21, 22] considers the price process expressed
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in terms of reaction functions of the holdings of the large trader. This turns out
to be a generalization of Huberman and Stanzl’s model for price manipulation. In
[14] and [13], the coefficients of the price process depend exogenously on the large
trader’s portfolio. Platen and Schweizer [27], Frey and Stremme [16], and Sircar and
Papanicolau [31] use an equilibrium approach to derive the reaction function for the
price process. Frey [15] assumes that this reaction function describing the price
process as a function of the holdings of the large trader is exogenously given. Bank
and Baum [7] model the price process of the risky asset in terms of a smooth family
of semimartingales (Sz)z∈R, where Sz describes the evolution of the stock price
process for constant z, which represents the size of the large trader’s holdings. Roch
[28] considers a setup similar to the limit order book models described above in
which the parameter of the linear permanent impact function is given by a stochastic
process.

Throughout the remaining sections, we work with a filtered probability space
(Ω, F ,F,P), which supports a standard Brownian motion (Wt )0≤t≤T . We also fix
a finite time horizon T > 0. Unless otherwise specified, there is one risky asset and
one riskless asset in the market. We normally think of the risky asset as a stock and
the riskless asset as a money market account. The money market account is taken
to be a numéraire so that its price is normalized to unity. The discounted price of
the stock process at time t is denoted by St . There are two types of traders in the
economy, one large trader and reference traders. The large trader can be a speculator,
a program trader, or a portfolio insurer. The reference traders are typically noise
traders or arbitrage-based speculators. Let Xt be the number of money market units,
Yt the book value of the stock position, and Zt be the number of stocks the large
trader holds at time t . The processes X, Y , and Z are assumed to be adapted to the
filtration F.

In classical settings based on the Black–Scholes model, the stock price process St

is modeled as a solution of a linear stochastic differential equation (SDE). The drift
and volatility coefficients of the SDE are not influenced by the agents portfolio and
wealth processes. This is based on the assumption that agents are price takers in this
framework. Cvitanic and Ma [14] model the price process of the underlying asset
by an SDE taking into account that large trader’s decisions have a price impact. In
particular, they assume that the drift and volatility coefficients depend on the large
trader’s portfolio and wealth process. The authors consider a market with d risky
assets (stocks) and one riskless asset (money market account). Let S0

t be the price
process of the money market account, and Si

t be the price process of the ith stock.
Then the dynamics of these processes are given as

dS0
t = S0

t r(t, Yt ,Zt) dt, 0 ≤ t ≤ T , S0
0 = 1,

dSi
t = bi(t, St , Yt ,Zt ) dt +

d∑

j=1

σij (t, St , Yt ,Zt ) dW
j
t , 0 ≤ t ≤ T , Si

t = si > 0,

dYt = b̂(t, St , Yt ,Zt ) dt + σ̂ (t, St , Yt ,Zt ) dWt, 0 ≤ t ≤ T , Y0 = y > 0,
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where

b̂(t, s, y, z) =
(

y −
d∑

i=1

sizi

)

r(t, y, z) +
d∑

i=1

zibi(t, s, y, z),

σ̂j (t, s, y, z) =
d∑

i=1

ziσij (t, s, y, z), j = 1, . . . , d.

Under additional assumptions on the coefficients of the above SDEs, the authors
show that the replication of European options with payoff in the form g(ST ) has
a solution. The method is based on forward–backward stochastic differential equa-
tions and the well-known four-step scheme of Ma et al. [25].

Platen and Schweizer [27], Frey and Stremme [16], Frey [15], and Sircar and
Papanicolau [31] do not model the price process explicitly as in [13] and [14]. How-
ever, they follow a microeconomic equilibrium approach to understand the feedback
effects from hedging strategies. As before, there are two types of investors in the
market, a large trader and reference traders. The aggregate demand of the reference
trader at time t is given by D(t,Ft , St ), where F = (Ft )0≤t≤T is the fundamental
state process, and St is the price for stock. The fundamental state process can rep-
resent various things, for instance, noise or misspecifications in the model, demand
for liquidity, or aggregated income of the reference trader. Supposing that at time
t the large trader possesses a fraction αt of the total supply of the stock, then the
market clearing condition states that

D(t,Ft , St ) + αt = 1.

Under some assumptions, it can be shown that there is a unique solution for St in
terms of t , αt , and Ft , i.e., we can express St = ψ(t,Ft , αt ). The function ψ is
called the reaction function.

Frey and Stremme [16] investigate the impact of dynamic hedging on the price
process in a general discrete-time economy with the equilibrium model. They pass
to the diffusion limit and investigate the continuous-time equilibrium price process
and its volatility. The price process is still represented by an Itô process, but the
volatility increases and becomes time- and price-dependent.

Sircar and Papanicolau [31] analyze the increases in market volatility of asset
prices. Many investors use Black–Scholes trading strategies to hedge derivatives.
The use of these hedging strategies is so extensive that they have an impact on the
price of the asset, which in turn influences the price of the derivative. In their frame-
work, there is an interaction between reference traders and large traders who follow
a dynamic Black–Scholes hedging strategy. Following an equilibrium analysis, they
derive a stochastic process for the price of the asset that depends on the hedging
strategy of the large trader. Then they derive a nonlinear partial differential equation
for the derivative price and the hedging strategy. They observe that the increase in
volatility can be attributed to the feedback effect of Black–Scholes hedging strate-
gies.
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Platen and Schweizer [27] aim to study the implied volatility structure in the
above reaction setup. In other words, instead of taking an exogenously given price
process, they develop a diffusion model for stock prices that incorporates the tech-
nical demand induced by the hedgers. The diffusion model is endogenously de-
termined by the trading decisions in the economy. With their modeling, they can
explain volatility smiles and skews as a result of feedback effects from hedging
derivatives. They consider the following specification of the demand function:

D(t,Ft , St ) = Ft + γ
(
log(St ) − log(S0)

)
,

where Ft = vWt + mt is a random error term, and γ > 0 represents how reference
traders react to changes in logarithmic stock prices. The last term can be interpreted
as the demand created by trading decisions of hedging options. The option hedgers
work under the assumption that the stock price S(0) is given by a geometric Brow-
nian motion with constant drift μ0 and volatility σ0 to hedge a given number of
call options with different maturities and strikes. This determines the term αt in
the market clearing equation. Then the market equilibrium condition determines the
resulting price process S

(1)
t by

dS
(1)
t = S

(1)
t

(
σ
(
S

(1)
t

)
dWt + μ

(
S

(1)
t

)
dt

)
,

where

σ(s) = − v

γ + ξ ′(log(s))
,

μ(s) = m

v
σ(s) + 1

2
σ 2(s) + ξ ′′(log(s))

2v
σ 3(s),

and the term ξ(log(s)) represents the hedging demand created in the market. Ob-
serve that we started with a model S

(0)
t for stock price process and derived another

model S
(1)
t by equilibrium approach that incorporates the hedging decisions of the

large trader. However, the sophisticated large traders could also use the model S
(1)
t

to hedge derivatives so that we would obtain another model S
(2)
t in equilibrium. In

general, one can start from S(k) and use this to compute option values and hedging
strategies. The equilibrium argument will yield a new model S(k+1). In the end, one
wonders if there exists a fixed point S(∞) of this transformation. Such a model S(∞)

would be used by the hedgers to compute their hedging strategy and would also be
the one obtained in equilibrium.

Frey [15] takes the reaction function St = ψ(t,Ft , αt ) as given. He considers
replicating the payoff of certain non-path-dependent derivatives. In this continuous-
time setup, there is a nonlinear partial differential equation for the hedge of the
option replication problem. In particular, these hedging strategies take the feedback
effect of their implementation on the price process into account. Therefore, Frey
argues that the existence of these hedging strategies for certain payoffs corresponds
to the fixed point of the volatility transformation introduced in [27].
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Bank and Baum [7] assume that there exists a smooth family of semimartingales
Sz for z ∈ R that specify the price process of the risky asset when the large trader’s
holdings are kept at a constant size z. For fixed z, the semimartingale Sz can be
interpreted as the fluctuations of the asset prices when the large trader is not active
in the market. If the large trader follows a semimartingale strategy (Zt )0≤t≤T , then
the asset price obtained is given by

St = S
Zt
t =: S(Zt , t).

The self-financing portfolio strategies are characterized by

Xt = X0− −
∫ t

0
S(Zs− , s) dZs − [

S(Z, ·),Z]
t
.

Bank and Baum assume that asset prices are nondecreasing with respect to the posi-
tion of the large trader, i.e., for z ≤ z′, we have Sz ≤ Sz′

. In an illiquid market, there
are many possible ways to value the large trader’s portfolio. One can consider the
book value Yt of the portfolio evaluated at current prices,

Yt = Xt + S(Zt , t)Zt ,

or the real wealth achieved by the trading strategy Z until time t given by

Vt = Xt + L(Zt, t),

where

L(z, t) =
∫ z

0
S(x, t) dx.

The term L(z, t) represents the liquidation value of z shares by splitting the order
into infinitesimally small packages and selling them over an infinitesimally small
time period. By the Itô–Wentzell formula for smooth family of semimartingales, the
real wealth process has the dynamics

Vt = V0− +
∫ t

0
L(Zs− , ds) − 1

2

∫ t

0
Sz(Zs− , s) d[Z]cs

−
∑

0≤s≤t

∫ Zs

Zs−

{
S(Zs, s) − S(x, s)

}
dx.

The term
∫ t

0 L(Zs−, ds) represents the profit or loss coming from price fluctua-
tions caused by exogenous random shocks. The term 1

2

∫ t

0 S ′(Zs− , s) d[Z]cs gives
the transaction costs due to continuous trading, and

∑

0≤s≤t

∫ Zs

Zs−

{
S(Zs, s) − S(x, s)

}
dx
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sums up the transaction costs due to discrete block orders. These two transaction
terms disappear if one follows trading strategies that are continuous and of bounded
variation. As in [21, 22], Bank and Baum investigate the possibility of arbitrage
opportunities for the large trader. On one hand, the large trader has the power to
influence the market prices, and, on the other hand, her trading incurs transaction
costs, i.e., her orders affect the stock price before they are exercised. If there exists
a measure P∗ ≈ P which is a local martingale measure for all the processes P θ

simultaneously, then there are no arbitrage opportunities for the investor.
A natural problem in this setting is to describe the set of payoffs the large trader

can attain with continuous strategies of bounded variation. To answer this question,
Bank and Baum introduce two definitions. A contingent claim H ∈ L0(FT ) is at-
tainable modulo transaction costs for initial capital v if

H = v +
∫ T

0
L(Zs, ds)

almost surely for some L-integrable predictable process Z such that
∫ ·

0 L(Zs, ds)

is uniformly bounded from below. The claim H is approximately attainable for
initial capital v if for any ε > 0, there exists a self-financing strategy Zε such that∫ ·

0 L(Zε
s , ds) is uniformly bounded from below, and

∣
∣H − V ε

T

∣
∣ ≤ ε

holds P almost surely, in which V ε
T is the real wealth process associated to strat-

egy Zε . To this end, the authors establish an approximation scheme for stochastic
integrals. Let ε > 0. If Z is an L-integrable, predictable process with Z0 ∈ L0(F0)

and ZT ∈ L0(FT −), then there exists a predictable process Zε with continuous paths
of bounded variation such that Zε

0 = Z0, Zε
T = ZT and

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
L(Zs, ds) −

∫ t

0
L

(
Zε

s , ds
)
∣
∣
∣
∣ ≤ ε P-a.s.

From this it is easy to see that any contingent claim H ∈ L0(FT ) which is at-
tainable modulo transaction costs is approximately attainable with the same ini-
tial capital. Furthermore, under some further assumptions, the attainable claims
in a suitable small investor model become approximately attainable for the large
trader. Moreover, the authors show that to compute the superreplication cost of a
claim H(ω,ZT (ω)) ∈ FT − ⊗ B(R), one first determines the terminal position Z∗

T

which minimizes the payoff, i.e., Z∗
T (ω) = arg minz∈R H(ω, z), and then compute

the small investor superreplication price of the claim H(ω,Z∗
T (ω)).

Roch [28] extends the linear version of the liquidity risk model of Çetin et al.
[9] to allow for price impacts. The author considers the hedging problem faced by a
large trader who makes market order through a limit order book with stochastic den-
sity. More specifically, it is assumed that the limit order book has a constant density
at time t given by 1

2Mt
, in which M is an adapted stochastic process. Liquidity be-

comes a risk factor when the magnitude of the impact of these phenomena changes

www.TechnicalBooksPDF.com



352 S. Gökay et al.

randomly over time. We denote by S the observed marginal price process, i.e., St is
the price per share for an infinitesimal order size at time t . By the constant density
property of the LOB, it is clear that a transaction of size ΔZt at time t has a cost
of ΔZt(St + MtΔZt). The model proposed in [28] is based on a well-documented
feature of asset prices that volatility is high when liquidity is low, and low when liq-
uidity is high. Since M is a measure of illiquidity, we can expect the instantaneous
variance of the log-returns of the stock price to be in part correlated with M . Conse-
quently, we let F denote the unaffected marginal price process. It is the equilibrium
(or fundamental) price process observed in absence of large traders. It is defined by
the following stochastic volatility model:

dFt = ΣtFt dW1,t ,

where W1 is the first component of the three-dimensional Brownian motion W , and
Σt is the stochastic volatility. We are working directly under a risk-neutral measure
Q for unaffected prices, and hence F has no drift term. We model M and Σ as
follows. Define V and U as the solutions of

dUt = γ (Ut + η)dt + Φ(Ut ) dW2,t ,

dVt = α(Vt + a)dt + Θ(Vt ) dW3,t ,

where W = (Wj,t )j≤3,t≤T is a three-dimensional Brownian motion, and α,γ, η,

a ∈ R. We define Σ2
t = Ut + Vt and let M = εΓ (U), where Γ is strictly increasing

and twice continuously differentiable and ε > 0. Φ and Θ are given real-valued
functions. We are using a three-dimensional Brownian motion since there are three
different sources of risk in this model, namely the stock price, the liquidity level, and
the volatility, which is, in practice, only partially dependent on the level of liquidity.

The specification of the process S is similar to the one of the LOB models de-
scribed above. Indeed, it is assumed that the observed marginal price process S is
obtained from the unaffected process F by directly adding the impact of the large
trader as follows:

St+ = Ft + 2λ

∫ t

0
Mu− dZu + 2λ

∫ t

0
d[M,Z]u (t ≤ T )

for a semimartingale trading strategy Z. St+ denotes the observed price after the
trade at time t . λ is a resilience parameter and should be taken between 0 and 1. It
measures the proportion of buy (resp. sell) limit orders versus sell (resp. buy) limit
orders that come in to fill up the LOB after a market order to buy (resp. sell).

It can be shown that the money market account position X and the position Z in
the stock satisfy the following identity:

Xt + Zt

(
St+ − λMtZt

)

= Xt0− + Zt0−
(
St0 − λMt0Zt0−

) +
∫ T

t0

Zu− dFu
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− λ

∫ T

t0

Z2
u− dMu −

∫ T

t0

(1 − λ)Mu d[Z,Z]u. (13.10)

One can think of Yt +x(St −λMtx) as the liquidation value of a portfolio with x

shares at time t . Similar to the infinitely liquid case (M = 0), (13.10) states that the
difference in the liquidation values between time t0 and t is equal to the cumulative
gains in the risky asset

∫ t

t0
Zu− dFu, except that in this case there are added costs

coming from the finite liquidity of the asset. First note that if λ = 0, we get a linear
version of the CJP model. The integral with respect to M is related to the impact of
trading. If λ = 0, the limit order book is automatically refilled after a market order,
as in the CJP model. At the other extreme, when λ = 1, the impact of trading is at
its fullest. It is interesting to notice that whatever the trading strategy is used, an
investor always has a partial benefit from the asset becoming more liquid. Indeed,
as Mt decreases, the associated integral is positive no matter what the sign of Zt

is. To understand this, it is important to remember that the hedger’s trades have a
permanent impact on the quoted price which is proportional to the level of liquidity.
If the liquidity is low when he purchases a share and high when she sells it, the
price goes up higher after her purchase, and then it comes down after the sale. As a
result, the hedger has a partial gain from this trade. This is a typical characteristic
of large trader models. Note that, unless the hedger uses a trading strategy with zero
quadratic variation, this is only a partial benefit because there is always a liquidity
cost associated to her trades.

Equation (13.10) allows us to obtain a sufficient condition to rule out arbitrage
opportunities in this setting. Indeed, Roch [28] shows that the existence of an equiva-
lent measure Q under which the unaffected price process F is a local martingale and
M is a local submartingale suffices to exclude the existence of arbitrage opportuni-
ties. For a precise statement, we refer the reader to Definition 2.5 and Theorem 2.6
of [28]. The advantage of this result is that it is stated in terms of the exogenously
defined processes F and M . Note that in the terminology of Sect. 13.2 the impact of
the hedger’s trade in the above model is linear, i.e., a trade of size ΔZt at time t is of
the form gt (ΔZt) = 2λMtΔZt . The case of Mt constant corresponds to the linear
permanent impact models of Huberman and Stanzl [20], Almgren and Chriss [5],
and others. In this case, M clearly is a local submartingale under any risk-neutral
measure for S. In this sense, the no-arbitrage condition in [28] extends the results
of Huberman and Stanzl [20] in the case of a stochastic linear permanent impact
function.

We now turn to the replication problem. The relation between liquidity and
volatility risk is a key observation which enables us to hedge derivatives. Indeed,
we will see that one can hedge against the liquidity risk by trading variance swaps.
Since volatility is one of the most correlated quantities to liquidity risk, this is a
very natural choice. We thus consider contingent claims denoted by Gi (i = 1,2)
for which the payoff at time Ti > T (T1 	= T2) equals the difference between the
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realized variance over the time interval [0, Ti] and a strike Ki , i.e.,

Gi,Ti
=

∫ Ti

0
Σ2

s ds − Ki

=
∫ Ti

0
(Us + Vs) ds − Ki.

To rule out arbitrage opportunities, we assume the unaffected price processes Gi are
Q-martingales (i = 1,2).

Let h be the payoff function of a European option with maturity T . Suppose that
h is a Lipschitz function. For x ∈ R, define S̃x

T := FT − 2λ
∫ T

0 xẐu− dMu, where

Ẑ is the solution of the replication problem in the case λ = 0, ε = 0, and x = 1. It
can be shown that S̃x

T is an approximation of the observed price process S obtained
when the large trader hedges the option with payoff h. Jarrow [22] used a similar
approach and interpreted Ẑt as the market’s perception of the option’s “delta” Zt .
The main result of the paper states that xh(S̃x

T ) can be approximately replicated in
L2 for all x ∈ R in the sense that there exists a sequence of trading strategies Zn for
which the terminal wealth XT after liquidation converges to xh(S̃x

T ) in L2.
Due to the nonadditivity of liquidity costs, it is clear that the replicating cost

of x units of the option h is not x times the replicating price of one unit. Let
Hn

t (x) denote the approximate-replication cost per unit of x units of h; then
Hn

t (0) = E(h(ST )|Ft ), and Hn
t (x) is a.s. differentiable at x = 0. Furthermore, it

can be shown that

lim
n→∞

d

dx
Hn

t (0) = λE
(∫ T

t

μ(Ms)Ẑ
2
s ds

∣
∣
∣
∣Ft

)

− 2λE
(

h′(ST )

(∫ T

t

Ẑs dMs

)∣
∣
∣
∣Ft

)

when h is differentiable everywhere except at a finite number of points.
Jarrow et al. [23] have used ideas from the above setup to construct a liquidity-

based model for financial bubbles which explains both bubble formation and bubble
bursting. In contrast with the classical approach to bubbles based on local martin-
gales, the authors define the asset’s fundamental price process exogenously, and
asset price bubbles are endogenously determined by market trading activity. More
specifically, they assume that the stock price is governed by the following dynamic:

St = Ft + 2
∫ t

0
ΛuMu− dZu (t ≤ T ),

where F is the fundamental price process, Λ is a process version of the resilience
parameter λ in [28], and Z represents the signed volume of aggregate market orders
(volume of market buy orders minus volume of market sell orders). The bubble at
time t is then defined by St − Ft , the difference between the market price of the
stock and its fundamental value. In their model, the impact of trading activity on
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the fundamental price process—derived in terms of a liquidity risk process M , the
resilience process Λ, and the market orders—is what generates price bubbles. They
study conditions under which asset price bubbles are consistent with no arbitrage
opportunities.

13.4 Supply Curve Models

Çetin, Jarrow, and Protter [9] model illiquidity with a supply curve model. This
supply curve incorporates the temporary impact of the trade size into the price of the
security. Assume that the marginal price process S is given. Then the price deviation
at time t from St is determined by the supply curve in terms of the size of the trade.
We denote the price per share for a trade of ν shares at time t by S(t, St , ν). For
instance, for a supply curve of the form

S(t, St , ν) = St exp(Λν), (13.11)

a trade of size ν would deviate from the marginal price process by a factor of
exp(Λν). Since Λ measures the price impact, it is called the liquidity parameter
of the market. Λ = 0 corresponds to a infinitely liquid market. Investors are price-
takers with respect to the curve, and their trading decisions affect the price only in-
stantaneously, and hence they have no lasting impact. Therefore, the Çetin–Jarrow–
Protter model (henceforth called CJP model) belongs to a temporary price impact
setting. An order of size ν > 0 is a buy and of size ν < 0 is a sell. S(t, St ,0) is equal
to the marginal price St . Apart from measurability and smoothness assumptions, we
assume that S(t, St , ν) is monotone in ν.

Consider a finite horizon economy with T > 0. Take a filtered probability space
(Ω, F ,F,P) satisfying the usual conditions. We let (Wt )0≤t≤T be a standard Brow-
nian motion with respect to the filtration F = (Ft )0≤t≤T . Assume that there are two
assets in the economy, one risk-free asset, and one risky asset. We consider a money
market account as the risk-free asset and normalize its price to unity. The risky as-
set is by convention a stock, and the price per share of stock is S(t, St , ν) with the
marginal price process St . Let Xt and Zt represent the holdings of the trader at
time t in the money market account and in the stock, respectively. There are various
ways to value the wealth process of the investor. One way is to look at the block
liquidation value

Xt + ZtS(t, St ,−Zt).

Another way is to consider the book or paper value of the portfolio

Yt := Xt + ZtSt

evaluated at the marginal process S. It is shown in [33] that this value Yt also corre-
sponds to infinitesimal liquidation value. In the remainder of the section we focus on
the book value Yt and specify its dynamics. It is natural to define the self-financing

www.TechnicalBooksPDF.com



356 S. Gökay et al.

condition for simple strategies of the form Zt = ∑N
i=1 ΔZτi

1{t≥τi} with a sequence
of stopping times 0 = τ0 < τ1 < · · · < τN = T by

Xτk+1 = Xτk
− ΔZτk+1 S(τk+1, Sτk+1,ΔZτk+1), (13.12)

where ΔZτk+1 = (Zτk+1 − Zτk
). Then the dynamics of the book value Y for simple

strategies is described as

Yτk+1 = Yτk
+ Zτk

(Sτk+1 − Sτk
)

− ΔZτk+1

[
S(τk+1, Sτk+1 ,ΔZτk+1) − Sτk+1

]
. (13.13)

Formally, for general semimartingale strategies Z, one can pass to the limit as
N → ∞ to obtain the dynamics

Yt = y +
∫ t

0
Zu− dSu −

∑

0≤u≤t

ΔZu

[
S(u,Su,ΔZu) − Su

]
(13.14)

−
∫ t

0

∂S
∂ν

(u,Su,0) d[Z,Z]cu (13.15)

for 0 ≤ t ≤ T . The term
∫ t

0 Zu− dSu represents the capital gains and losses. The
other terms in the above equation appear because of liquidity effects, the first one
is a result of block orders, and the second one of continuous trading. These liquid-
ity costs can be eliminated by using continuous strategies of finite variation. Fur-
thermore, Çetin et al. [9] prove that for any appropriately integrable predictable
process Z, there exists a sequence {Zn}n≥0 of predictable continuous strategies of
finite variation such that

∫ T

0
Zn

u dSu →
∫ T

0
Zu dSu in L2.

This approximation also follows from the Bank and Baum [7] result as well.
Çetin et al. find sufficient conditions to rule out arbitrage in the CJP model. They

generalize the first fundamental theorem of asset pricing to their setting. They show
that there is no free lunch with vanishing risk in their framework if and only if there
exists an equivalent local martingale measure for the marginal price process St . They
also establish that if there exists an equivalent local martingale measure Q for the
marginal price process S, then any appropriately integrable claim C can be attained
in the L2 sense. Then the above approximation result shows that all liquidity costs
can be avoided in this setting and the value of the claim is the classical one given
by EQ[C].

The previous result is sometimes seen as a shortcoming of the CJP model. As
a response, Rogers and Singh consider a temporary price impact model in [29] in
which the liquidity cost cannot be avoided by the use of continuous strategies of
finite variation. In their setup, the admissible portfolio processes Z = (Zt )0≤t≤T are
taken to be absolutely continuous with density Ż = (Żt )0≤t≤T . The cost of liquidity
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enters into their wealth dynamics Y = (Yt )0≤t≤T as a penalization of the speed of
trading like in the framework of Almgren and Chriss [6]:

dYt = Zt dSt − St l(Żt ) dt.

They take St as a geometric Brownian motion with zero drift and l a convex, non-
negative function with l(0) = 0. In [7] and [9], all transaction costs due to illiquidity
can be eliminated by using continuous strategies of finite variation. However, in the
setup of Rogers and Singh [29], the use of these strategies induces a liquidity cost.
Assume that an investor holds Z0 number of shares, x units of money market ac-
count, and she wants to replicate a European contingent claim with payoff g(ST ).
Since the Black–Scholes hedge θ(t, St ) of a European contingent claim is of infi-
nite variation, it will incur infinite liquidity costs. As a result, the authors propose to
minimize the mean squared hedging error and the associated liquidity costs incurred
over portfolio processes Z = (Zt )0≤t≤T ,

1

2
E

[(

x + Z0S0 +
∫ T

0
Zt dSt − g(ST )

)2]

+ E

[∫ T

0
St l(Żt ) dt

]

.

They solve the Hamilton–Jacobi–Bellman equation for the associated optimal con-
trol problem in almost closed form and study it numerically.

Çetin, Soner, and Touzi [11] study the superreplication problem using the CJP
model under the additional constraint on the boundedness of the quadratic variation
and the absolute continuous parts of the portfolio processes. Their driving motiva-
tion is the lack of liquidity premium, i.e., the extra amount one has to pay due to
illiquidity, in the papers by Bank and Baum [7] and Çetin et al. [9] as a result of us-
ing continuous strategies of bounded variation. They link the absence of the liquidity
premium to the choice of admissible strategies and show that one can find a nonzero
liquidity premium in continuous time for a set of admissible strategies appropri-
ately defined. Their results and the justification for the set of admissible strategies
they consider are well supported by a convergence result of the discrete-time setting
in [18]. In fact, there are no restrictions on the portfolio strategies in [18]. As the
dynamics of the paper value of the portfolio Y in (13.14) is obtained as a limit of the
natural discrete-time self-financing conditions, this is a justification of the validity
of the constraints placed on the portfolio processes in [11]. In particular, Gökay and
Soner [18] analyze the asymptotic limit of the Binomial version of the CJP model
both numerically and theoretically. Although there are no constraints placed on the
portfolio processes in their model, Gökay and Soner recover the same superreplicat-
ing cost as in [11] in the limit and hence show that the liquidity premium persists in
the continuous time.

Çetin et al. [11] consider a marginal process S satisfying the stochastic differen-
tial equation

Sr = s +
∫ r

t

Suσ (u,Su) dW 0
u ,
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which has a strong solution denoted by St,s· with the initial condition St = s. More-
over, they take the portfolio process Z to be of the form

Zr =
N−1∑

n=0

zn1{r≥τn+1} +
∫ r

t

αu du +
∫ r

t

Γu dSt,s
u ,

where t = τ0 < τ1 < · · · is an increasing sequence of [t, T ]-valued F-stopping
times, the random variable

N := inf{n ∈ N : τn = T }
indicates the number of jumps, and zn is F (τn)-measurable. The infinite variation
part of this trading strategy consists of an integral with respect to the marginal
price process S, where the integrand is the gamma Γ = (Γt )0≤t≤T of the portfo-
lio. The integrands α and Γ are F-progressively measurable processes. Moreover,
there are additional constraints imposed on the processes Z, α, and Γ , similar to
those in [12] and [32]. Then the authors consider superreplicating a European con-
tingent claim with payoff g. The payoff g is continuous, nonnegative, and satisfies
g(s) ≤ C(1 + s) for some constant C. If the supply curve is of the form (13.11),
then the superreplicating cost φ(t, s) is the unique viscosity solution of the dynamic
programming equation

−φt (t, s) + sup
β≥0

(

−1

2
s2σ 2(φss(t, s) + β

) − Λs2σ 2(t, s)
(
φss(t, s) + β

)2
)

= 0

and satisfies the terminal condition φ(T , ·) = g(·) along with the growth condition
0 ≤ φ(t, s) ≤ C(1 + s) for some constant C. With constant volatility σ , one can
rewrite it as

−φt (t, s) − s2σ 2H
(
φss(t, s) + β

) = 0, (13.16)

where

H(γ ) =
{

1
2γ + Λγ 2, γ ≥ − 1

4Λ
,

− 1
16Λ

, γ < − 1
4Λ

,

and the liquidity parameter Λ is given as ∂S
∂ν

(t,0). For Λ = 0, one recovers the
Black–Scholes setting. In fact, if φBS is the Black–Scholes value of the claim g, then
by a maximum principle argument one concludes that φ(t, s) ≥ φBS(t, s). Moreover,
φ and φBS coincide if and only if the payoff is an affine function. This implies that
there exists a liquidity premium, a difference between the superreplicating cost φ

and the Black–Scholes value φBS, for nontrivial claims g. This result conflicts with
the statement that in an illiquid market all liquidity costs can be avoided by approx-
imating with continuous strategies with finite variation. The intuitive reasoning is
that such an approximation neutralizes the gamma of the portfolio process; how-
ever it makes α infinitely large in the limit so that it no longer satisfies the imposed
constraints.
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Çetin et al. [11] also study the associated superhedging strategy under liquidity
costs. They characterize a set C such that outside C , the hedging strategy is given
by φs(t, s) and in C the strategy is a mixture of dynamically replicating an auxiliary
function ψ and applying a buy and hold strategy to φ − ψ . The set C is determined
by a level of concavity on the value function φ.

Gökay and Soner [18] study a discrete version of the supply curve model. For
a fixed step size h > 0, they divide the trading period [0, T ] into equal intervals of
length h. The evolution of the marginal price process is given by a Binomial tree,
i.e., at any node (t, St ) it either goes up by a factor of 1 + σ

√
h or down by a factor

of 1 − σ
√

h. We use the notation

St+h = St (1 ± σ
√

h).

The filtration F is generated by the marginal price process S, and the portfolio pro-
cess Z is taken to be adapted with respect to F. They consider a supply curve of the
form

S(t, s, ν) = St + Λν

with liquidity parameter Λ. Observe that this supply curve may take negative values,
so one may consider S(t, St , ν) = (St + Λν)+; however, the analysis in [18] shows
that both supply curves yield the same partial differential equation in the limit. The
self-financing condition is given as in (13.12), and the book value Y has the dynam-
ics of (13.13). We introduce the notation Zt,z· to denote the portfolio process with

initial condition Zt = z and Y
t,y,Z
t the book value that starts Yt = y and uses the

control Z·. The authors study the superreplication problem of a European contin-
gent claim with payoff g. As in [11], the payoff g is continuous, nonnegative, and
satisfies the linear growth condition g(s) ≤ C(1 + s) for some C > 0. The minimal
superreplicating cost φh(t, s) at time t and St = s is given by

φh(t, s) = inf
{
y

∣
∣ ∃F-adapted {Z·} such that Y

t,y,Z·
T ≥ g

(
S

t,s
T

)
a.s.

}
.

The main observation is that dynamic programming approach fails for the value
function φh(t, s), therefore to restore dynamic programming one needs introduce
the dependence of the value function on the portfolio position z in addition to the
current stock price and time. So we define

vh(t, s, z) := inf
{
y

∣
∣ ∃F-adapted{Z·}

such that Zt = z and Y
t,y,Z·
T ≥ g

(
S

t,s
T

)
a.s.

}
.

Clearly,

φh(t, s) = inf
z

vh(t, s, z).

The following dynamic programming is the key element of the analysis of Gökay
and Soner [18]:

vh(t, s, z) = inf
{
y

∣
∣ ∃F-adapted {Z·}

s.t. Zt = z and Y t,y,Z·
τ ≥ vh

(
τ, St,s

τ ,Zτ

)
a.s.

}
,
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where t = nh < τ = mh ≤ T for some n,m ∈ N. In particular, for τ = t + h, we
have the following form:

vh(t, s, z) = max

(

min
a

{
vh(t + h, su, z + a) − zsσ

√
h + Λa2},

min
b

{
vh(t + h, sd, z + b) + zsσ

√
h + Λb2}

)

.

This equation is complemented by the terminal data

vh(T , s, z) = g(s).

Using the theory of viscosity solutions, the authors pass to the limit by letting
the time step h ↓ 0. In particular, they show that vh(t, s, z) converges to the solution
φ(t, s) of the partial differential equation (13.16) locally uniformly as h ↓ 0. To
this aim, they consider the standard upper and lower relaxed limits in the theory of
viscosity solutions

φ∗(t, s, z) = lim sup
h→0

(t ′,s′,z′)→(t,s,z)

vh(t ′, s′, z′),

φ∗(t, s, z) = lim inf
h→0

(t ′,s′,z′)→(t,s,z)

vh(t ′, s′, z′).

The authors prove that φ∗(t, s, z) is independent of z and set

φ∗(t, s) := φ∗(t, s, z).

However, it is difficult to derive directly a similar claim for φ∗(t, s, z). In fact, the
challenge in proving this convergence result is that in discrete-time the value func-
tion vh(t, s, z) depends on the initial portfolio value z, whereas this dependence be-
comes irrelevant in the limit φ(t, s). Therefore, the authors overcome this difficulty
by defining

φ∗(t, s) = inf
z

{
lim inf

h→0
(t ′,s′,z′)→(t,s,z)

vh(t ′, s′, z′)
}

and developing further the idea of corrector functions as in the applications of vis-
cosity solutions to homogenization. The authors proceed by showing that the up-
per semi-continuous relaxed limit φ∗(t, s) is a viscosity subsolution and the lower
semi-continuous relaxed limit φ∗(t, s) is a viscosity supersolution of the partial dif-
ferential equation (13.16). Moreover, both φ∗ and φ∗ are growing almost linearly
and attain φ∗(T , s) = φ∗(T , s) = g(s). So by the comparison argument established
in [11], they conclude that φ∗ = φ∗ and it is equal to the unique viscosity solution
of (13.16). Now the local uniform convergence of vh(t, s, z) to φ(t, s) will follow
from the definitions of φ∗ and φ∗.
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13.5 Expected Utility Maximization in Illiquid Markets

In this section, we briefly review some results regarding the problem of expected
utility maximization in illiquid markets. We first consider the permanent price im-
pact setting of Ly Vath et al. [24] and then the setup of temporary price impacts in
discrete time, as done in Çetin and Rogers [10].

Ly Vath et al. [24] solve the expected utility maximization problem with perma-
nent price impacts in continuous time with admissible strategies of the form

Zt = ξ0 +
N∑

i=1

ξn1{t≥τn} (0 ≤ t < T ), (13.17)

where {τn}n≥1 is a sequence of stopping times, and ξn ∈ Fτn for all n ≥ 1. A trade
of size ξ at time t is assumed to have a permanent impact of the exponential form.
Furthermore, they assume that the stock price evolves as a geometric Brownian
motion between trades, i.e.,

dSt = μSt− dt + σSt− dWt + λSt− dZt

for some positive constants λ, σ > 0, and μ ∈ R. Each time a transaction is made,
the investor pays a fixed transaction cost k so that the money market account obeys
the following equation:

Xt =
∫ t

0
rXs− ds −

∫ t

0
Ss−eλΔZs dZs −

∑

i≥1

k1{τn≤t}.

A strategy Z belongs to the set of admissible strategies A(t, x, z, s) started at time
t with Xt = x, Zt = z, and St = s if it satisfies the solvency constraint

Xs + Ss−e−λZs Zs − k ≥ 0

for all t ≤ s ≤ T . The second term in the above inequality is the liquidation value
of a position of size Zt in the risky asset S. The solvency constraint states that the
liquidation value of an admissible portfolio is always positive. Due to this fixed
cost at each transaction, the authors show that the optimal trading strategy which
maximizes the expected utility is indeed of the form of (13.17), and they describe
the optimal trading times τn in terms of the value of the money market account, the
position in the risky asset, and the current price. Their main result is to show that
the value function

v(t, x, z, s) = sup
Z∈A(t,x,z,s)

EU
(
XT + ST −e−λZT ZT − k

)

is a viscosity solution of the following quasi-variational Hamilton–Jacobi–Bellman
inequality:

min

{

−∂v

∂t
− rx

∂v

∂x
− Lv, v − Hv

}

= 0,
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where L is the infinitesimal generator of a geometric Brownian motion, and H is an
impulse generator of the form

Hv(t, x, z, s) = sup
ξ

v
(
t, x − seλξ ξ, z − ξ, seλξ

)

with the supremum taken over the set of transactions that satisfy the solvency con-
dition.

Çetin and Rogers [10] study the discrete-time utility maximization problem using
a supply curve of the form

S(t, St , ν) = ϕ(ν)St ,

where ϕ is a strictly increasing and strictly convex function. Their objective is
to maximize utility from terminal liquidation value YN = XN + ZNSN , where
ZN = 0, and U is a strictly concave and strictly increasing utility function. They
show that this problem has a solution. Moreover, the marginal utility of opti-
mal terminal wealth U ′(YN) is an equivalent martingale measure, and the process
Mn = ϕ′(ΔZn)Sn becomes a martingale under this measure.

13.6 Price Manipulation strategies in Price Impact Models

So far, there is one fundamental notion of finance we have not addressed: arbitrage
from price manipulations. The assumption that the large trader has a temporary and
permanent impact on the prices clearly suggests the possibility that she can ma-
nipulate the prices in her favor. In Sect. 13.2, this issue has been partly avoided
by either assuming a priori that the execution of the large sell (resp. buy) order is
restricted to smaller sell (buy) orders or that this condition is satisfied a posteriori
as a consequence of the assumptions made. Indeed, in the former case, arbitrage
is not possible since a sell order makes the price lower so that the next sell order
will come at a less favorable price. In more general models, however, there some-
times exists weaker version of the arbitrage condition. For instance, the widespread
concept of quasi-arbitrage and price manipulations which correspond to strategies
with a negative expected cost is often considered in the literature. This particular
approach can be found in the papers of Huberman and Stanzl [19], Gatheral [17],
and Jarrow [21, 22].

To make the notion of quasi-arbitrage more precise, Huberman and Stanzl [19]
define the notion of a round trip, a trading strategy that starts with zero shares and
terminates with zero shares of the risky asset. They consider a model in discrete
time, with n time steps. There are noise traders, and we denote by ηk the number of
shares of the risky asset they purchase at time k. As before, ξk denotes the trade size
of the large trader at time k. Let {ζk}k=1,...,N be i.i.d. random variables with zero
expectation. We also assume that {ηk}k=1,...,N are i.i.d. random variables with zero
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expectation. The authors consider the following dynamic for the marginal price of
the risky asset:

Sk = Sk−1 + g(ξk + ηk) + ζk.

They also hypothesize the existence of a temporary price impact function h, so
that the large trader pays a total of ξk(Sk + h(ξk + ηk)) at time k. The temporary
impact includes the noise traders’ trading volume ηk , and the ηk’s are assumed to be
unknown by the large trader at the moment of the transaction at time k. The profit
of a round trip is given by π(ξ) = −∑n

k=1 ξk(Sk + hk(ξk + ηk)). Huberman and
Stanzl [19] define a price manipulation as a round trip with positive expected value.
They also define a quasi-arbitrage as a sequence of round trips ξm = {ξm

k }k=1,...,n

for m = 1,2, . . . such that limm→∞ Eπ(ξm) = ∞ and

lim
m→∞

Eπ(ξm)√
Var(π(ξm))

= ∞.

Their main result states that if P(ηk = 0) = 1 (k = 1, . . . , n) or the ηk’s are nor-
mally distributed, then the absence of price manipulation implies that the permanent
impact function g is linear. On the other hand, no restriction is required on the tem-
porary impact function h.

Gatheral [17] considers models for stock prices with price impacts that decay
with time. More specifically, he focuses on models on the following form:

St = S0 +
∫ t

0
g(Ẋs)G(t − s) ds + σWt ,

where g is the permanent impact function, and G is the decay factor. In words,
the permanent impact of a trade at time t decays with time due to the function G.
The setting is the same as in (13.4) when G = 1. The author finds a relationship
between the shape of the market impact function g and the resilience function G

under the no-dynamic-arbitrage assumption. In particular, he obtains similar results
to Huberman and Stanzl [19] regarding the linearity of the price impact function.

In [21], Jarrow considers a discrete-time economy. In his model, the stock price
can be expressed in terms of a sequence {gtk }0≤k≤N with gtk : Ω × Rt+1 → R such
that

Stk (ω) = gtk

(
ω,Ztk (ω), . . . ,Z0(ω)

) ∀ω ∈ Ω, 0 ≤ k ≤ N.

The functions {gtk }0≤k≤N are the reaction functions that reflect how the participants
of the market react to large trader’s portfolio decisions. Particular cases of these
functions are the permanent and temporary impact function described in Sect. 13.2.
These reaction functions provide the reduced form equilibrium relationship between
relative prices and the large trader’s trades. In [21], Jarrow concentrates on market
manipulation strategies for the large trader. In Jarrow’s terminology, a market ma-
nipulation strategy is a strategy that can generate positive real wealth for the large
trader without taking any risk. The real wealth for the large trader is characterized as
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the value of her portfolio after liquidation. Market manipulation strategies are shown
to sometimes exist in this economy. Sufficient conditions are provided that restrict
the market manipulation strategies. These conditions include the requirement that
the stock price process is independent of the past holdings of the large trader and
depends only on her instantaneous holdings, i.e.,

Stk (ω) = gtk

(
ω,Ztk (ω)

)

and that if the large trader is not active in the time interval [tk, tk+1], then there
are no arbitrage opportunities available for the reference traders in this time period.
In [22], Jarrow extends this framework for markets that include a derivative secu-
rity. He finds sufficient conditions to exclude market manipulation strategies, after
showing that market manipulation strategies can exist after the introduction of the
derivative security. To avoid market manipulation strategies, the market must be in
synchrony. This means that the number of shares, whether bought in the stock mar-
ket or acquired jointly in the stock and derivative market, should yield the same
stock price. Moreover, Jarrow shows that one can hedge options using the standard
method based on the binomial model with random volatilities.
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Chapter 14
Some New BSDE Results for an Infinite-Horizon
Stochastic Control Problem

Ying Hu and Martin Schweizer

Abstract We study in a continuous filtration a quadratic BSDE with an unbounded
generator and an infinite time horizon. This equation comes from a stochastic con-
trol problem in the context of robust utility maximisation. We prove the existence
and uniqueness, in a suitable class, of a solution to the BSDE, and we show that the
BSDE characterises the dynamic value process of the stochastic control problem.

Keywords Backward stochastic differential equations · Infinite horizon ·
Quadratic BSDE · Unbounded solution · Stochastic control · Robust utility
maximisation

Mathematics Subject Classification (2010) 60H10 · 60H20 · 60G44 · 91B16

14.1 Introduction

This paper studies a stochastic control problem arising in the context of robust util-
ity maximisation and proves new results via BSDE techniques. A particular feature
is that the problem is formulated and solved for an infinite horizon and that we
also obtain new results on a certain infinite-horizon BSDE with quadratic genera-
tor.

In loose terms, the basic problem we should like to tackle has the form

find sup
π

inf
Q

U(π,Q),
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where U is some utility functional, π runs through a set of investment and consump-
tion strategies, and Q through a set of models given by probability measures. In a
first step, we focus only on the inner minimisation problem; thus we think of π as
being fixed and look for a worst-case model Q. The functional U(π,Q) we consider
has the form

U(π,Q) = EQ

[
U δ

0,∞ + βRδ
0,∞(Q)

]
,

where U δ
0,∞ = α

∫ ∞
0 Sδ

s Us ds stands for a discounted utility term (whose depen-

dence on the fixed π is suppressed), and Rδ
0,∞(Q) = ∫ ∞

0 Sδ
s logZ

Q
s ds is an entropic

penalty term. A precise formulation is given later.
The finite-horizon version of this problem has been studied in Bordigoni/

Matoussi/Schweizer [2], who have characterised the dynamic value process
V = V (T ) of the resulting stochastic control problem as the unique solution of the
BSDE

dYt = (δtYt − αUt) dt + 1

2β
d〈M〉t + dMt (14.1a)

with a final condition at time T . We generalise these results here to an infinite-
horizon setting with the terminal condition

lim
t→∞Yt = 0. (14.1b)

In an unpublished Ph.D. thesis, G. Bordigoni has already shown that V for the
infinite-horizon problem is a solution of the BSDE (14.1a), (14.1b); but uniqueness
and the required integrability (and hence the characterisation of V by the BSDE)
remained open. We close this gap here.

In contrast to Bordigoni [1], our approach and main results here are on the side
of BSDE theory. Equations (14.1a), (14.1b) are a quadratic BSDE in a continuous
filtration and have an unbounded generator (due to the presence of U ) and an infinite
horizon. For the finite-horizon case, the classical results of Kobylanski [10] on the
existence and uniqueness of a bounded solution for quadratic BSDEs in a Brownian
filtration have been extended to unbounded solutions in the Brownian setting by
Briand/Hu [5, 6], and to bounded solutions in a continuous filtration by Morlais
[12]. In infinite-horizon settings, Briand/Hu [4] and later Royer [13] have studied
bounded solutions for BSDEs with a Lipschitz generator, and Briand/Confortola
[3] have extended these results to bounded solutions for a quadratic generator. The
methods in all these papers rely on Girsanov techniques.

Our approach here is quite different. To prove the existence of a solution to
(14.1a), (14.1b), we have adapted the localisation method from Briand/Hu [5], while
for uniqueness, we have applied the θ -difference method from Briand/Hu [6]. Both
these techniques have so far only been used in finite-horizon settings.

Finally, let us also mention two closely related papers from the finance and eco-
nomics literature. Schroder/Skiadas [14] study the same BSDE as we do and obtain
the existence and uniqueness of unbounded solutions, but in a Brownian filtration
and with a finite time horizon. Hansen/Sargent/Turmuhambetova/Williams [9] study
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14 Some New BSDE Results for an Infinite-Horizon Stochastic Control Problem 369

robustness aspects for infinite-horizon utility maximisation problems; their main
ideas and problems are similar to ours, but the approach is rather heuristic, using
Hamilton–Jacobi–Bellman equations and formal manipulations in a Markovian set-
ting. For a more detailed discussion of additional references to the literature, we
refer to Sect. 6 of Bordigoni/Matoussi/Schweizer [2].

The paper is structured as follows. After some preliminaries and notation in
Sect. 14.2, we study in Sect. 14.3 the BSDE on a finite horizon. This serves as
preparation for the infinite-horizon BSDE studied in Sect. 14.4 and gives to that end
fairly precise estimates for the solution Y . Section 14.4 establishes the existence
and uniqueness of a solution (Y,M) for the infinite-horizon BSDE (14.1a), (14.1b)
and gives a sufficient condition for E (− 1

β
M) to be a martingale. In Sect. 14.5, we

prove by general arguments as in Bordigoni/Matoussi/Schweizer [2] and Bordigoni
[1] the existence of a solution to our stochastic control problem and show that its
value process V satisfies the boundary condition limt→∞ Vt = 0. Finally, Sect. 14.6
uses the BSDE results to characterise V as the unique solution, in a suitable space,
for the BSDE (14.1a), (14.1b), and in particular establishes that V has the required
good integrability properties.

14.2 Preliminaries and Overview

In this section, we introduce all required notation, the basic BSDEs and the basic
optimisation problems. We start with a probability space (Ω, F ,P ) and a time hori-
zon T ∈ (0,∞]. The filtration F = (Ft )t≥0 satisfies the usual conditions of right-
continuity and P -completeness, F0 is P -trivial, and we set F∞ := ∨

t≥0 Ft . The
basic ingredients for our optimisation problems are

• parameters α,α′ ∈ [0,∞) and β ∈ (0,∞);
• progressively measurable processes δ = (δt )t≥0 and U = (Ut )t≥0;
• an FT -measurable random variable U ′

T , with U ′∞ := 0 for T = ∞.

With these, we can formulate the BSDEs studied here. On the one hand, for a finite
horizon T < ∞, we introduce the BSDE

dYt = (δtYt − αUt) dt + 1

2β
d〈M〉t + dMt , YT = α′U ′

T . (14.2)

On the other hand, for an infinite horizon T = ∞, the BSDE is

dYt = (δtYt − αUt) dt + 1

2β
d〈M〉t + dMt , lim

t→∞Yt = 0. (14.3)

A solution of (14.2) or (14.3) is a pair (Y,M) satisfying (14.2) or (14.3), respec-
tively, where Y is a P -semimartingale and M is a locally P -square-integrable local
P -martingale null at 0.
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For the optimisation problems, we first define the discounting process

Sδ
t := exp

(

−
∫ t

0
δs ds

)

, t ≥ 0,

and for T < ∞ the auxiliary quantities, for 0 ≤ t ≤ T ,

U δ
t,T := α

∫ T

t

Sδ
s

Sδ
t

Us ds + α′ Sδ
T

Sδ
t

U ′
T

=
∫ T

t

αe− ∫ s
t δr drUs ds + α′e−∫ T

t δr drU ′
T , (14.4)

Rδ
t,T (Q) :=

∫ T

t

δs

Sδ
s

Sδ
t

log
Z

Q
s

Z
Q
t

ds + Sδ
T

Sδ
t

log
Z

Q
T

Z
Q
t

, (14.5)

for Q 
 P on FT with density process ZQ on [0, T ]. We consider the cost func-
tional

cT (Q) := U δ
0,T + βRδ

0,T (Q),

and the basic stochastic control problem on a finite horizon is to minimise the func-
tional

Q �→ ΓT (Q) := EQ

[
cT (Q)

]

over a suitable class of probability measures Q 
 P on FT . In a classical way, we
can choose an adapted RCLL process V = (Vt )0≤t≤T such that

Vt = ess inf
Q

EQ

[
U δ

t,T + βRδ
t,T (Q)

∣
∣Ft

]
, 0 ≤ t ≤ T .

For T = ∞, we define similarly, for t ≥ 0,

U δ
t,∞ := α

∫ ∞

t

Sδ
s

Sδ
t

Us ds =
∫ ∞

t

αe− ∫ s
t δr drUs ds,

Rδ
t,∞(Q) :=

∫ ∞

t

δs

Sδ
s

Sδ
t

log
Z

Q
s

Z
Q
t

ds

for Q
loc
P with density process ZQ. We consider the cost functional

c∞(Q) := U δ
0,∞ + βRδ

0,∞(Q)

and in principle want to minimise the functional

Q �→ Γ∞(Q) := EQ

[
c∞(Q)

]

over a suitable class of probability measures Q
loc
P . (For the precise formulation,

we refer to Sect. 14.5.) In a similar manner as for T < ∞, we can choose an adapted
RCLL process V = (Vt )t≥0, which is again called the dynamic value process of
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our stochastic control problem. Of course, to be accurate, we should distinguish in
notation between V (T ) and V (∞).

Our main results in this paper are:

(a) existence and uniqueness results for the above BSDEs (both with finite and
infinite horizon), and

(b) a characterisation of the value process V = V (∞) for the infinite-horizon setting
as the solution of the BSDE (14.3).

14.3 The BSDE on a Finite Horizon

The main goal of this section is to prove the existence of a solution to the finite-
horizon BSDE under weak conditions. This slightly extends previous work and,
above all, serves as preparation for the infinite-horizon case. So we fix T ∈ (0,∞)

and view U and δ as processes on [0, T ].

Hypothesis 14.1 Throughout this section, we impose the standing assumptions

F is a continuous filtration, i.e. all local (P,F)-martingales

are continuous. (14.6a)

δ ≥ 0 is uniformly bounded (by δ̄, say). (14.6b)

Precise assumptions on U,U ′
T will be specified below. Now we introduce the

quantities

B := α

∫ T

0
Sδ

s Us ds + α′Sδ
T U ′

T = U δ
0,T ,

B− := α

∫ T

0
Sδ

s U
−
s ds + α′Sδ

T

(
U ′

T

)−
,

B+ := α

∫ T

0
Sδ

s U
+
s ds + α′Sδ

T

(
U ′

T

)+
.

The BSDE (14.2) under study is

dYt = (δtYt − αUt) dt + 1

2β
d〈M〉t + dMt , YT = α′U ′

T . (14.7)

Definition 14.2 A solution of (14.7) is a pair of processes (Y,M) satisfying (14.7),
where Y is a P -semimartingale and M is a locally P -square-integrable local P -
martingale null at 0.

Due to the standing assumption (14.6a), M and then Y are continuous for any
solution (Y,M) of (14.7). Our proof of existence applies the localisation method
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originally developed in a Brownian setting by Briand/Hu [5]. To that end, we need
to establish precise a priori estimates in the bounded case. Note that 1/Sδ = S−δ .

Proposition 14.3 (A priori estimates) Suppose that
∫ T

0 |Us |ds and U ′
T are bounded

random variables. Then there exists a unique solution (Y,M) to (14.7) such that Y

is a bounded process. Moreover, we have for 0 ≤ t ≤ T the estimates

S−δ
t Y t −

∫ t

0
αe

∫ t
s δr drUs ds ≤ Yt ≤ S−δ

t Y t −
∫ t

0
αe

∫ t
s δr drUs ds, (14.8)

where

Y t := −βe−δ̄T logE
[
e
− 1

β
eδ̄T B

∣
∣Ft

]
and Y t := E[B|Ft ]. (14.9)

Proof The existence and uniqueness of a solution with Y bounded are immediate
from Theorems 2.5 and 2.6 of Morlais [12]. From the definitions of Y and Y and
from Itô’s formula, it is clear that there exist M and M such that

dY t = 1

2β
eδ̄T d〈M〉t + dMt, Y T = B, (14.10)

dY t = dMt , Y T = B. (14.11)

If we first set Y 1
t := Sδ

t Yt and M1
t := ∫ t

0 Sδ
s dMs , then the BSDE (14.7) is trans-

formed to

dY 1
t = −αSδ

t Ut dt + 1

2β
S−δ

t d
〈
M1〉

t
+ dM1

t , Y 1
T = α′Sδ

T U ′
T . (14.12)

If we next put Y 2
t := Y 1

t + ∫ t

0 αSδ
s Us ds and M2 := M1, the BSDE (14.12) becomes

dY 2
t = 1

2β
S−δ

t d
〈
M2〉

t
+ dM2

t , Y 2
T = α′Sδ

T U ′
T + α

∫ T

0
Sδ

s Us ds = B. (14.13)

Because 0 ≤ S−δ
t ≤ eδ̄T , we deduce by comparison of (14.10), (14.13) and (14.11)

that

Y t ≤ Y 2
t ≤ Y t , 0 ≤ t ≤ T .

Returning to Y by the formula Yt = S−δ
t Y 2

t − ∫ t

0 αe
∫ t
s δr drUs ds, we conclude the

proof. �

We now apply the localisation method to get the following existence result.

Theorem 14.4 (Existence of solution) Let us suppose that

E
[
e

1
β
eδ̄T B−] + E[B+] < ∞. (14.14)
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Then the BSDE (14.7) admits a solution (Y,M) which satisfies

S−δ
t Y t −

∫ t

0
αe

∫ t
s δr drUs ds ≤ Yt ≤ S−δ

t Y t −
∫ t

0
αe

∫ t
s δr drUs ds (14.15)

for 0 ≤ t ≤ T , with Y ,Y given in (14.9).

Proof (1) We first assume that U ′
T and U are nonnegative; then Y is also non-

negative. For each n ∈ N, we consider Un
t := Ut1{∫ t

0 Us ds≤n}, 0 ≤ t ≤ T , and

U
′,n
T := U ′

T ∧ n. According to Proposition 14.3, the BSDE

dYt = (
δtYt − αUn

t

)
dt + 1

2β
d〈M〉t + dMt, YT = α′U ′,n

T ,

admits a unique solution (Y n,Mn) such that Yn is a bounded process and, by (14.8),
extended from U

′,n
T and Un to U ′

T and U thanks to nonnegativity,

−
∫ t

0
αe

∫ t
s δr drUs ds ≤ Yn

t ≤ S−δ
t E[B|Ft ].

Since U
′,n
T ≤ U

′,n+1
T and Un ≤ Un+1, the sequence (Y n) is nondecreasing by a com-

parison result; this can be obtained similarly as in the proof of Theorem 8 in Mania/
Schweizer [11]. For k ∈ N, define the stopping times

τk := inf

{

t ∈ [0, T ] :
∫ t

0
αe

∫ t
s δr drUs ds + S−δ

t E[B|Ft ] ≥ k

}

∧ T

and note that (τk)k∈N increases to T stationarily. By construction, the stopped pro-
cesses Yn;k := (Y n)τk , n ∈ N, are uniformly bounded by k. Setting Mn;k := (Mn)τk ,
we have

Y
n;k
t = Yn

τk
−

∫ T

t

1{s≤τk}
(
δsY

n;k
s − αUn

s

)
ds −

∫ T

t

1

2β
d
〈
Mn;k〉

s
−

∫ T

t

dMn;k
s .

We now take the supremum over n and apply the monotonic stability theorem (see
e.g. Lemma 3.3 in Morlais [12]) to obtain, for each k, a solution (Y k,Mk) to the
BSDE

Y k
t = ξk −

∫ τk

t

(
δsY

k
s −αUs

)
ds −

∫ τk

t

1

2β
d
〈
Mk

〉
s
−

∫ τk

t

dMk
s with ξk := sup

n∈N

Yn
τk

.

More precisely, that result shows that as n → ∞, M
n;k
T converges to Mk

T in L2,

so that both M
n;k
t and 〈Mn;k〉t converge uniformly over t ∈ [0, T ] in probability to

Mk
t and 〈Mk〉t , respectively. Moreover, we have τk ≤ τk+1 by construction; hence

Y
n;k+1
t∧τk

= Y
n;k
t , and so we have the localisation property

Yk+1
t∧τk

= Y k
t and Mk+1

t∧τk
= Mk

t .
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So if we set τ0 := 0 and define the processes Y and M on [0, T ] by

Yt := Y 1
0 +

∞∑

k=1

Yk
t 1(τk−1,τk ](t) and Mt :=

∞∑

k=1

Mk
t 1(τk−1,τk](t),

the last BSDE can be rewritten as

Yt = ξk −
∫ τk

t

(δsYs − αUs) ds −
∫ τk

t

1

2β
d〈M〉s −

∫ τk

t

dMs.

Finally we observe that P -a.s., τk = T for k large enough. This allows us to send
k → ∞ in the previous equation and hence to prove that (Y,M) is a solution
to (14.7). Inequality (14.15) is satisfied by the process Y since it holds for each
Yn in view of Proposition 14.3.

(2) If U ′
T and U are not necessarily nonnegative, we use a double approxima-

tion by introducing the quantities U
n,p
t := U+

t 1{∫ t
0 |Us |ds≤n} − U−

t 1{∫ t
0 |Us |ds≤p} and

U
′,n,p
T := (U ′

T )+ ∧ n − (U ′
T )− ∧ p. Condition (14.14) is used here to extend (14.8)

from the truncated to the general case and to ensure that Y ,Y remain well defined.
In some more detail, we define τk (with |U | and |B|) and Yn,p;k and Mn,p;k analo-
gously as before. Then Yn,p;k is increasing in n and decreasing in p, and it remains
bounded by k. Arguing as before, we set Yk := infp supn Y n,p;k to get the exis-

tence of Mk such that limp→∞ limn→∞ M
n,p;k
s∧τk

= Mk
s and (Y k,Mk) still solves the

BSDE. The rest of the proof is unchanged. �

In connection with the stochastic control problem, it will be important to know
when the stochastic exponential E (− 1

β
M) is a true martingale, where M comes

from the solution of the BSDE (14.7).

Theorem 14.5 Suppose that there exists a constant λ > 1 + eδ̄T −1
eδ̄T

such that

E
[
e
λ 1

β
eδ̄T B+] + E

[
e
λ 1

β
eδ̄T B−]

< ∞. (14.16)

Then the stochastic exponential E (− 1
β
M) is bounded in L logL(P ) and hence a

(uniformly integrable) martingale on [0, T ].

Proof Since (14.16) clearly implies (14.14), the existence of a solution is ensured
by Theorem 14.4. For any stopping time τ with values in [0, T ], the BSDE (14.7)
gives

E
(

− 1

β
M

)

τ

= exp

(

− 1

β

(

Mτ + 1

2β
〈M〉τ

))

= exp

(

− 1

β

(

Yτ − Y0 −
∫ τ

0
δsYs ds + α

∫ τ

0
Us ds

))

.
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Hence it suffices to prove that there exists a constant λ1 > 1 such that

E

[

exp

(

−λ1
1

β

(

Yτ −
∫ τ

0
δsYs ds + α

∫ τ

0
Us ds

))]

≤ C,

where C ∈ (0,∞) is a constant independent of τ .
From the estimate (14.15) we have

Yτ + α

∫ τ

0
Us ds −

∫ τ

0
δtYt dt ≥ S−δ

τ Y τ +
∫ τ

0
α
(
1 − e

∫ τ
s δr dr

)
Us ds

−
∫ τ

0
δt

(

S−δ
t Y t −

∫ t

0
αe

∫ t
s δr drUs ds

)

dt.

But Fubini’s theorem gives
∫ τ

0 δt

∫ t

0 αe
∫ t
s δr drUs ds dt = ∫ τ

0 α(e
∫ τ
s δr dr − 1)Us ds,

and so we deduce that

Yτ −
∫ τ

0
δsYs ds + α

∫ τ

0
Us ds ≥ S−δ

τ Y τ −
∫ τ

0
δtS

−δ
t Y t dt. (14.17)

Now pick p > 1 with λ > p > 1 + eδ̄T −1
eδ̄T

and set λ1 = λ
p

> 1. Using (14.17) and
(14.9) and setting L∗

t := sup0≤s≤t E[B+|Fs], we obtain with (14.6b) that

E

[

exp

(

−λ1
1

β

(

Yτ −
∫ τ

0
δsYs ds + α

∫ τ

0
Us ds

))]

≤ E

[

exp

(

−λ1
1

β

(

S−δ
τ Y τ −

∫ τ

0
δtS

−δ
t Y t dt

))]

≤ E

[

exp
(
λ1 logE

[
e

1
β
eδ̄T B− ∣

∣Fτ

])
exp

(

λ1
1

β
L∗

T

∫ T

0
δtS

−δ
t dt

)]

≤ E
[(

E
[
e

1
β
eδ̄T B− ∣

∣Fτ

])λ1e
λ1
β

(eδ̄T −1)L∗
T
]
.

Finally, we set q := p
p−1 and r := (p − 1) eδ̄T

eδ̄T −1
> 1 and use Hölder’s inequality,

λ1p = λ, Jensen’s inequality and Doob’s inequality in Lr to get

E

[

exp

(

−λ1
1

β

(

Yτ −
∫ τ

0
δsYs ds + α

∫ τ

0
Us ds

))]

≤ E
[(

E
[
e

1
β
eδ̄T B−∣

∣Fτ

])λ1p
]1/p

E
[
e

λ1q

β
(eδ̄T −1)L∗

T
]1/q

≤ C ′
rE

[
e
λ 1

β
eδ̄T B−]1/p

E
[
e

λ1qr

β
(eδ̄T −1)B+] 1

qr = C < ∞,

because λ1qr(eδ̄T − 1) = λeδ̄T . �
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14.4 The BSDE on an Infinite Horizon

In this section, we use BSDE techniques to prove the existence and uniqueness of a
solution to the infinite-horizon BSDE under suitable conditions.

Hypothesis 14.6 Throughout this section, we impose the standing assumptions

F is a continuous filtration, i.e. all local (P,F)-martingales

are continuous. (14.18a)

δ ≥ 0 is uniformly bounded (by δ̄, say). (14.18b)

Again, the assumptions on U = (Ut )t≥0 will be specified later; U ′
T does not

appear here. The BSDE (14.3) under study is now

dYt = (δtYt − αUt ) dt + 1

2β
d〈M〉t + dMt , lim

t→∞Yt = 0 P -a.s., (14.19)

and as before, a solution of (14.19) is a pair (Y,M) satisfying (14.19), where Y is a
P -semimartingale and M is a locally P -square-integrable local P -martingale null
at 0.

The first step in tackling (14.19) is to obtain a priori estimates for the finite-
horizon version with terminal condition YT = 0. But in contrast to Sect. 14.3, we
now need the bounds to be uniform in T , and so we need stronger assumptions
on U .

Definition 14.7 We say that a random variable X is in Dexp if E[eλ|X|] < ∞ for all
λ > 0. A progressively measurable process U = (Ut )t≥0 is in D

exp
1,T for T ∈ (0,∞] if

∫ T

0 |Us |ds is in Dexp, and an RCLL process Y = (Yt )t≥0 is in D
exp
0,T for T ∈ (0,∞]

if Y ∗
T := sup0≤t≤T |Yt | is in Dexp. (By convention, Y ∗∞ := supt≥0 |Yt |.)

Let us now consider the BSDE

dYt = (δtYt − αUt ) dt + 1

2β
d〈M〉t + dMt , YT = 0. (14.20)

Proposition 14.8 (A priori estimates) Suppose that
∫ T

0 |Us |ds is a bounded random
variable. Then there exists a unique solution (Y,M) to (14.20) such that Y is a
bounded process. Moreover, we have the estimate

|Yt | ≤ β logE

[

exp

(
1

β

∫ T

t

α|Us |ds

)∣
∣
∣
∣Ft

]

, 0 ≤ t ≤ T . (14.21)

Proof The existence and uniqueness of a solution with Y bounded follow as for
Proposition 14.3 from Theorems 2.5 and 2.6 of Morlais [12]. Applying Tanaka’s
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formula then first yields

d|Yt | = sign(Yt ) dYt +dLt = sign(Yt )

(

(δtYt −αUt ) dt + 1

2β
d〈M〉t +dMt

)

+dLt ,

where L is the local time at 0 of the continuous semimartingale Y . Next, applying
Itô’s formula to the bounded process Zt := exp( 1

β
(|Yt | +

∫ t

0 α|Us |ds)), we obtain

dZt = 1

β
Zt sign(Yt )

(

(δtYt − αUt ) dt + 1

2β
d〈M〉t + dMt

)

+ 1

β
Zt dLt + 1

β
Ztα|Ut |dt + 1

2β2
Zt d〈M〉t

≥ 1

β
Zt sign(Yt ) dMt,

in the sense that the difference of the terms on the two sides of the inequality is an
increasing process. So Z is a submartingale, which gives

exp

(
1

β

(

|Yt | +
∫ t

0
α|Us |ds

))

≤ E

[

exp

(
1

β

∫ T

0
α|Us |ds

)∣
∣
∣
∣Ft

]

since YT = 0, and (14.21) follows. �

From this a priori estimate and the localisation method we obtain the existence
of a solution to the infinite-horizon BSDE (14.19).

Theorem 14.9 (Existence of solution) Let us suppose that

E

[

exp

(
1

β

∫ ∞

0
α|Us |ds

)]

< ∞, i.e. exp

(
1

β

∫ ∞

0
α|Us |ds

)

∈ L1. (14.22)

Then the BSDE (14.19) admits a solution (Y,M) which satisfies

|Yt | ≤ β logE

[

exp

(
1

β

∫ ∞

t

α|Us |ds

)∣
∣
∣
∣Ft

]

, t ≥ 0. (14.23)

If exp( 1
β

∫ ∞
0 α|Us |ds) is in Lr for some r > 1, then so is exp( 1

β
Y ∗∞). If U ∈ D

exp
1,∞,

then Y ∈ D
exp
0,∞.

Proof (1) We first assume that U is nonnegative and set Un
t := Ut1{∫ t

0 Us ds≤n} for

each n ∈ N. According to Proposition 14.8, the BSDE

dYt = (
δtYt − αUn

t

)
dt + 1

2β
d〈M〉t + dMt , Yn = 0,

on [0, n] admits a unique solution (Yn,Mn) with Yn bounded, and by (14.21),

∣
∣Yn

t

∣
∣ ≤ β logE

[

exp

(
1

β

∫ ∞

t

α|Us |ds

)∣
∣
∣
∣Ft

]

, t ∈ [0, n].
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If we set Yn
t = 0 and Mn

t = Mn
n for t > n, then (Y n,Mn) also satisfies on [0, n + 1]

the BSDE

dYt = (
δtYt − α1{t≤n}Un

t

)
dt + 1

2β
d〈M〉t + dMt , Yn+1 = 0.

Because U is nonnegative, 1{t≤n}Un
t ≤ Un+1

t for t ∈ [0, n + 1], and so the sequence
(Y n) is nondecreasing by the comparison theorem. For each k ∈ N, we define the
stopping time

τk := inf

{

t ≥ 0 : β logE

[

exp

(
1

β

∫ ∞

t

α|Us |ds

)∣
∣
∣
∣Ft

]

≥ k

}

∧ k.

Introducing the stopped processes Y n;k := (Y n)τk and Mn;k := (Mn)τk , we can ar-
gue exactly as in the proof of Theorem 14.4 to construct processes Y and M , now
on [0,∞), satisfying for each T the BSDE

Yt = YT −
∫ T

t

(δsYs − αUs) ds −
∫ T

t

1

2β
d〈M〉s −

∫ T

t

dMs.

Since each Yn satisfies estimate (14.23) by Proposition 14.8, it follows from the
construction that so does Y , and this implies, due to (14.22), that

lim
t→∞Yt = 0 P -a.s.

(2) In the general case where U need not be nonnegative, we use the double
approximation U

n,p
t := U+

t 1{∫ t
0 |Us |ds≤n}1{t≤n} −U−

t 1{∫ t
0 |Us |ds≤p}1{t≤p}, t ≥ 0, and

denote by (Y n,p,Mn,p) the solution to

dYt = (
δtYt − αU

n,p
t

)
dt + 1

2β
d〈M〉t + dMt , Yn∨p = 0.

Then the proof goes like for Theorem 14.4, using that Yn,p increases in n and de-
creases in p.

(3) The integrability assertions about Y follow from (14.23) and Doob’s inequal-
ity. �

To get a uniqueness result for the infinite-horizon BSDE (14.19), we need a
stronger assumption.

Theorem 14.10 (Uniqueness of solution) Suppose that U is in D
exp
1,∞. Then the

BSDE (14.19) admits a unique solution (Y,M) with Y ∈ D
exp
0,∞.

Proof The existence is clear from Theorem 14.9. For uniqueness, let (Y,M) and
(Y ′,M ′) be two such solutions and note that the martingale part is always unique
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by the uniqueness of the canonical decomposition of a special semimartingale. Fix
θ ∈ (0,1) and set Ŷ := Y − θY ′ and M̂ := M − θM ′. Then

dŶt = (
δt Ŷt − α(1 − θ)Ut

)
dt + 1

2β
d
(〈M〉t − θ〈M ′〉t

) + dM̂t . (14.24)

Noting that convexity gives

d〈M〉t = d

〈

θM ′ + (1 − θ)
M̂

1 − θ

〉

t

≤ θ d〈M ′〉t + 1

1 − θ
d〈M̂〉t , (14.25)

we rewrite (14.24) as

dŶt = (
δt Ŷt − α(1 − θ)Ut

)
dt + dM̂t

+ 1

2β
d

(

〈M〉t − θ〈M ′〉t − 1

1 − θ
〈M̂〉t

)

+ 1

2β(1 − θ)
d〈M̂〉t . (14.26)

Now Tanaka’s formula yields dŶ−
t = −1{Ŷt≤0} dŶt + 1

2 dL̂t , where L̂ is the local

time at 0 of the process Ŷ . Applying next Itô’s formula to the process

Zt := exp

(
1

β(1 − θ)

(

Ŷ−
t +

∫ t

0
α(1 − θ)|Us |ds

))

, t ≥ 0,

we get

dZt = 1

β(1 − θ)
Zt

(

−1{Ŷt≤0} dŶt + 1

2
dL̂t + α(1 − θ)|Ut |dt

)

+ 1

2β2(1 − θ)2 Zt1{Ŷt≤0} d〈M̂〉t

≥ − 1

β(1 − θ)
Zt1{Ŷt≤0} dM̂t ,

where the last inequality uses (14.26) and (14.25). Thus Z is a local submartingale,
and so there exists an increasing sequence of stopping times τn ↗ ∞ such that

exp

(
1

β(1 − θ)
Ŷ−

t∧τn

)

≤ E

[

exp

(
1

β(1 − θ)
Ŷ−

T ∧τn
+ 1

β

∫ T ∧τn

t∧τn

α|Us |ds

)∣
∣
∣
∣Ft

]

.

Because Ŷ ∈ D
exp
0,∞, U ∈ D

exp
1,∞ and limt→∞ Ŷt = 0, we obtain for n → ∞ and

T → ∞ that

exp

(
1

β(1 − θ)
Ŷ−

t

)

≤ E

[

exp

(
1

β

∫ ∞

t

α|Us |ds

)∣
∣
∣
∣Ft

]

,

which is equivalent to

(Yt − θY ′
t )

− = Ŷ−
t ≤ β(1 − θ) logE

[

exp

(
1

β

∫ ∞

t

α|Us |ds

)∣
∣
∣
∣Ft

]

.
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Letting θ → 1, we deduce that Yt ≥ Y ′
t , and since a symmetrical argument gives the

reverse inequality, the proof is complete. �

As in Sect. 14.3, we again want to know when the stochastic exponential
E (− 1

β
M) is a true martingale, where M now comes from the solution of the

BSDE (14.19). However, we only expect to obtain this here on the open interval
[0,∞), and the proof below shows why T = ∞ causes a difficulty.

Theorem 14.11 Suppose that U is in D
exp
1,∞ and denote by (Y,M) the solution to

(14.19) from Theorem 14.9. Then for every finite T and every r < ∞, the stochastic
exponential (E (− 1

β
M)t )0≤t≤T is bounded in Lr , and so E (− 1

β
M) is a martingale

on [0,∞).

Proof Fix T ∈ (0,∞) and let τ be a stopping time with values in [0, T ]. As in the
proof of Theorem 14.5, the BSDE (14.19) gives

E
(

− 1

β
M

)

τ

= exp

(

− 1

β

(

Yτ − Y0 −
∫ τ

0
δsYs ds + α

∫ τ

0
Us ds

))

≤ exp

(
1

β
Y0

)

exp

(
1

β
Y ∗

T (1 + δ̄T ) + 1

β

∫ ∞

0
α|Us |ds

)

,

and the conclusion follows from Theorem 14.9 because Y ∈ D
exp
0,∞. �

14.5 The Stochastic Control Problem on an Infinite Horizon

In this section, we prove the existence and uniqueness of a solution to the infinite-
horizon stochastic control problem.

Let us first give a precise formulation. We recall from Sect. 14.2 the underlying
filtered probability space (Ω, F ,F,P ) with F = (Ft )0≤t≤∞, the parameters α ≥ 0,
β > 0 and the processes δ = (δt )t≥0 and U = (Ut )t≥0. We denote by Q the set of all

probability measures Q
loc
P and by ZQ = (Z

Q
t )t≥0 an RCLL version of the density

process of Q with respect to P . Since F0 is trivial, we have
{
ZQ

∣
∣ Q ∈ Q

}

⊆ {
all RCLL P -martingales Z = (Zt )t≥0 with Z ≥ 0 and Z0 = 1

} =: Z.

Now define for any t ≥ 0 and Z ∈ Z , in analogy to (14.4) and (14.5),

Ũ δ
t,∞(Z) := α

∫ ∞

t

Sδ
s

Sδ
t

Zs

Zt

Us ds,

R̃δ
t,∞(Z) :=

∫ ∞

t

δs

Sδ
s

Sδ
t

Zs

Zt

log
Zs

Zt

ds
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and the cost functional

c̃∞(Z) := Ũ δ
0,∞(Z) + βR̃δ

0,∞(Z).

The stochastic control problem studied here is to minimise the functional

Z �→ Γ∞(Z) := EP

[
c̃∞(Z)

]

over a subset Zf of Z , defined below. Note that by the minimum principle for
supermartingales, Z ∈ Z remains 0 if it ever hits 0; so both summands of c̃∞(Z) are
well defined.

Hypothesis 14.12 Throughout this section, we impose the standing assumptions

There exists some T0 ∈ (0,∞) such that for all γ > 0,

EP

[

exp

(

γ

∫ T0

0
|Us |ds

)]

+ EP

[∫ ∞

T0

exp
(
γ |Us |

)
1{Us �=0} ds

]

< ∞. (14.27a)

0 < δ ≤ δt ≤ δ̄ < ∞, uniformly in (t,ω), for constants δ, δ̄. (14.27b)

The first condition in (14.27a) says that U is in D
exp
1,T0

; we remark that the indica-
tor function in the second term fixes an obvious oversight in (4.4) of Bordigoni [1].
Condition (14.27b) is natural for an infinite-horizon problem. Note that we do not
assume here that F is a continuous filtration.

Definition 14.13 Zf denotes the set of all martingales Z ∈ Z satisfying
EP [R̃δ

0,∞(Z)] < ∞.

Our stochastic control problem is slightly more general than the one studied in
Chap. 4 of Bordigoni [1] since we do not insist on working on the canonical (Sko-
rokhod) path space. The presentation here is linked to Bordigoni [1] and to the
slightly different formulation in Sect. 14.2 as follows. For any Q with ZQ ∈ Zf , we
have under (14.27a), for any t ≥ 0,

EP

[
R̃δ

t,∞
(
ZQ

)∣
∣Ft

] = EP

[∫ ∞

t

δs

Sδ
s

Sδ
t

Z
Q
s

Z
Q
t

log
Z

Q
s

Z
Q
t

ds

∣
∣
∣
∣Ft

]

= EQ

[
Rδ

t,∞(Q)
∣
∣Ft

]
,

EP

[
Ũ δ

t,∞
(
ZQ

)∣
∣Ft

] = EP

[∫ ∞

t

Sδ
s

Sδ
t

Z
Q
s

Z
Q
t

Us ds

∣
∣
∣
∣Ft

]

= EQ

[
U δ

t,∞
∣
∣Ft

];

this is proved in Lemma 4.6 and Remark 4.10 of Bordigoni [1], essentially by using
Bayes’ rule. In particular, this shows that

Γ∞
(
ZQ

) := EP

[
c̃∞

(
ZQ

)] = EQ

[
c∞(Q)

] =: Γ∞(Q).
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Expressing everything under P and working with martingales Z ∈ Zf turns out to

be a bit more flexible than working with probability measures Q
loc
P . From now

on, all expectations without subscript are under P .

Remark 14.14 Under (14.27b),
∫ ∞
t

δsS
δ
s ds = Sδ

t for every t ≥ 0, and hence also

E

[∫ ∞

t

δs

Sδ
s

Sδ
t

Zs

Zt

ds

∣
∣
∣
∣Ft

]

= 1 for every t ≥ 0 and any Z ∈ Z.

We start with some auxiliary estimates. These are true for any Z ∈ Z , with the
understanding that we set E[R̃δ

0,∞(Z)] = +∞ for Z ∈ Z \ Zf .

Lemma 14.15 For every Z ∈ Z and every T ∈ (0,∞),

E[ZT logZT ] ≤ 1

δ
eδ̄(T +1)

(
E

[
R̃δ

0,∞(Z)
] + e−1).

Proof Since t �→ E[Zt logZt ] is increasing and z log z ≥ −e−1, Fubini and (14.27b)
give

E[ZT logZT ] ≤ E

[∫ T +1

T

δs

δ
Sδ

s e
δ̄s

(
Zs logZs + e−1)ds

]

≤ 1

δ
eδ̄(T +1)E

[∫ ∞

0
δsS

δ
s

(
Zs logZs + e−1)ds

]

= 1

δ
eδ̄(T +1)

(
E

[
R̃δ

0,∞(Z)
] + e−1)

by Remark 14.14. �

Proposition 14.16 There is a constant C < ∞ such that for every Z ∈ Z ,

E

[∫ ∞

0
Sδ

s Zs |Us |ds

]

≤ C
(
1 + E

[
R̃δ

0,∞(Z)
]) ≤ C

(
1 + Γ∞(Z)

)
. (14.28)

Proof This is a simplified version of the proofs for Lemma 4.9 and Proposition 4.11
in Bordigoni [1]. In the sequel, we use several times the elementary inequality
xy ≤ ex + y logy for x ∈ R, y ≥ 0, typically applied to xy = γ x 1

γ
y. Starting with

c̃∞(Z), we split Ũ δ
0,∞(Z) into an integral from 0 to T0 and another from T0 to ∞ to

write first

E

[∫ T0

0
Sδ

s Zs |Us |ds

]

≤ E

[

ZT0

∫ T0

0
|Us |ds

]

≤ E

[

exp

(

γ

∫ T0

0
|Us |ds

)]

+ 1

γ
E

[
ZT0

(
logZT0 + | logγ |)].

(14.29)
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Next, we have due to Sδ ≤ 1 and Remark 14.14 that

E

[∫ ∞

T0

Sδ
s Zs |Us |ds

]

≤ E

[∫ ∞

T0

eγ |Us |1{Us �=0} ds

]

+ E

[∫ ∞

T0

1

γ
Sδ

s Zs log

(
1

γ
Sδ

s Zs

)

1{Us �=0} ds

]

≤ E

[∫ ∞

T0

eγ |Us |1{Us �=0} ds

]

+ 1

γ
E

[∫ ∞

0

δs

δ
Sδ

s

(
Zs logZs + e−1)ds

]

+ 1

γ
| logγ |E

[∫ ∞

0

δs

δ
Sδ

s Zs ds

]

= E

[∫ ∞

T0

eγ |Us |1{Us �=0} ds

]

+ 1

γ δ

(
E

[
R̃δ

0,∞(Z)
] + e−1 + | logγ |). (14.30)

Combining (14.29) with Lemma 14.15 and (14.30) gives the left inequality in
(14.28) in the form

E

[∫ ∞

0
Sδ

s Zs |Us |ds

]

≤ C + E
[

R̃δ
0,∞(Z)

] 1

γ δ

(
eδ̄(T0+1) + 1

)
, (14.31)

where the constant C depends on γ and also on U via (14.27a). By definition, then,

Γ∞(Z) = E
[

Ũ δ
0,∞(Z)

] + βE
[

R̃δ
0,∞(Z)

]

≥ −αE

[∫ ∞

0
Sδ

s Zs |Us |ds

]

+ βE
[

R̃δ
0,∞(Z)

]

≥ −αC + E
[

R̃δ
0,∞(Z)

]
(

β − α

γ δ

(
1 + eδ̄(T0+1)

)
)

,

and so the right inequality in (14.28) follows by taking γ large enough and choosing
a new constant appropriately. �

The above argument also shows that Γ∞(Z) ≤ C(1 + E[R̃δ
0,∞(Z)]) for all

Z ∈ Z , with a suitable constant. Another direct consequence is the following result
that will be used later.

Corollary 14.17 For every T ≥ T0, every Z ∈ Z and every γ > 0,

E

[∫ ∞

T

Sδ
s ZsUs ds

]

≤ E

[∫ ∞

T

eγ |Us |1{Us �=0} ds

]

+ 1

γ δ

(
E

[
R̃δ

0,∞(Z)
] + e−1 + | logγ |).

With these preparations, we are ready to prove the existence and uniqueness of a
solution to our stochastic control problem.
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Theorem 14.18 Under Hypothesis 14.12, there exists a unique Z∗ ∈ Zf that min-
imises the cost functional Z �→ Γ∞(Z) over all Z ∈ Zf .

Proof This again follows closely the arguments in Bordigoni [1]; see there the proof
of Theorem 4.15. Since we optimise over Z instead of Q, we need not work on path
space and can simplify some arguments.

First of all, the uniqueness is clear because Z �→ Γ∞(Z) is strictly convex like
z �→ z log z. The existence is proved in several steps.

(1) Since Z ≡ 1 is in Zf and E[R̃δ
0,∞(1)] = 0, (14.27a) and Proposition 14.16

imply that −∞ < infZ∈Zf
Γ∞(Z) < ∞. So we can take a sequence (Zn)n∈N

in Zf such that Γ∞(Zn) decreases to infZ∈Zf
Γ∞(Z) as n → ∞. Combining

the well-known Komlós-type result in Lemma A1.1 in Delbaen/Schachermayer
[7] with a diagonalisation argument produces a sequence (Z̄n)n∈N with
Z̄n ∈ conv(Zn,Zn+1, . . . ) for all n and such that with probability 1,

lim
n→∞ Z̄n

r =: Z̄∞
r exists in [0,∞] for all r ∈ Q

+.

Since each Z̄n is like the Zn a martingale ≥ 0 with expectation 1, Fatou’s lemma
yields that each Z̄∞

r is integrable and (Z̄∞
r )r∈Q+ is a supermartingale. By a stan-

dard argument (see Dellacherie/Meyer [8], Theorem VI.2), we can therefore extend
(Z̄∞

r )r∈Q+ to a process Z∗ = (Z∗
t )t≥0 with RCLL trajectories and such that Z∗

is a supermartingale ≥ 0 (now over [0,∞) instead of Q
+). In fact, we can take

Z∗
t := limr↘t, r∈Q+ Z̄∞

r .
(2) In order to show that Z∗ is even a martingale and in Zf , we first use

Lemma 14.15 to obtain for each r ∈ Q
+ that

sup
n∈N

E
[
Z̄n

r log Z̄n
r

] ≤ 1

δ
eδ̄(r+1)

(
sup
n∈N

E
[

R̃δ
0,∞

(
Z̄n

)] + e−1
)

< ∞,

because by Proposition 14.16 and the convexity of Z �→ Γ∞(Z),

E
[

R̃δ
0,∞

(
Z̄n

)] ≤ C
(
1 + Γ∞

(
Z̄n

))

≤ C
(

1 + sup
m≥n

Γ∞
(
Zm

)) ≤ C
(
1 + Γ∞

(
Z1)) < ∞.

So (Z̄n
r )n∈N is uniformly integrable for each r ∈ Q

+, and this implies

E
[
Z̄∞

r

] = lim
n→∞E

[
Z̄n

r

] = 1 for all r ∈ Q
+,

which means that the supermartingale Z̄∞ is a martingale (over Q
+). Using Doob’s

maximal inequality and the fact that (Z̄n
m)n∈N converges to Z∗

m in L1 for every
m ∈ N next shows that with probability 1, (Z̄n)n∈N converges to Z∗ uniformly on
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compact subsets of [0,∞), and the same uniform integrability argument as above
then yields that also Z∗ is a martingale (over [0,∞)), hence in Z . Finally, Fatou’s
lemma, Remark 14.14 and Proposition 14.16 give

E
[

R̃δ
0,∞

(
Z∗)] = E

[∫ ∞

0
δsS

δ
s Z

∗
s logZ∗

s ds

]

≤ lim inf
n→∞ E

[
R̃δ

0,∞
(
Z̄n

)] ≤ sup
n∈N

C
(
1 + Γ∞

(
Z̄n

))
< ∞,

so that Z∗ is in Zf .
(3) To show that Z∗ is optimal, we want to prove that Z �→ Γ∞(Z) is lower

semicontinuous along the sequence (Z̄n)n∈N, because we then get by convexity

Γ∞
(
Z∗) ≤ lim inf

n→∞ Γ∞
(
Z̄n

) ≤ lim inf
n→∞ Γ∞

(
Zn

) = inf
Z∈Zf

Γ∞(Z).

We have just seen in step (2) that E[R̃δ
0,∞(Z∗)] ≤ lim infn→∞ E[R̃δ

0,∞(Z̄n)], so

that it only remains to prove the analogous inequality for the part with Ũ δ
0,∞(Z).

Now U ∈ D
exp
1,T0

by (14.27a), and so we can use the finite-horizon results in Bor-
digoni/Matoussi/Schweizer [2] to obtain

E

[∫ T0

0
Sδ

s Z
∗
s Us ds

]

= E

[

Z∗
T0

∫ T0

0
Sδ

s Us ds

]

≤ lim inf
n→∞ E

[

Z̄n
T0

∫ T0

0
Sδ

s Us ds

]

= lim inf
n→∞ E

[∫ T0

0
Sδ

s Z̄
n
s Us ds

]

;

see step (4) in the proof of Theorem 9 in Bordigoni/Matoussi/Schweizer [2]. We
then split the remaining integral from T0 to ∞ into one integral from T0 to T ≥ T0

and another from T to ∞. The integral over the finite interval (T0, T ] is again treated
as above, using that (14.27a) also gives U ∈ D

exp
1,T by Jensen’s inequality. Finally,

Corollary 14.17 gives

E

[∫ ∞

T

Sδ
s Z̄

n
s Us ds

]

≤ E

[∫ ∞

T

eγ |Us |1{Us �=0} ds

]

+ 1

γ δ

(
sup
n∈N

E
[

R̃δ
0,∞

(
Z̄n

)] + e−1 + | logγ |
)

for all γ > 0 and all n ∈ N, and the same estimate holds for Z∗ instead of Z̄n as
well. Choosing first γ large to make the second summand above small and then,
using (14.27a), T large to get the first summand small as well, we deduce that

lim
T →∞ sup

{

E

[∫ ∞

T

Sδ
s ZsUs ds

]

: Z = Z∗ or Z = Z̄n for some n ∈ N

}

= 0,
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and so we obtain after putting everything together that

E

[∫ ∞

0
Sδ

s Z
∗
s Us ds

]

≤ lim inf
n→∞ E

[∫ ∞

0
Sδ

s Z̄
n
s Us ds

]

.

This completes the proof. �

As in the finite-horizon case treated in Bordigoni/Matoussi/Schweizer [2], one
can show that the optimal Z∗ from Theorem 14.18 is strictly positive. If there exists
Q∗ with density process Z∗ (e.g. as in Bordigoni [1] if one works on path space),

this translates into saying that Q∗ loc≈ P . The proof of positivity can be found in
Bordigoni [1], Theorem 4.18, and largely parallels that of Theorem 12 in Bordigoni/
Matoussi/Schweizer [2].

Also as in Bordigoni/Matoussi/Schweizer [2], one can show that the martingale
optimality principle holds in our setting; see Proposition 4.19 and Corollary 4.20 in
Bordigoni [1] for details of this standard argument. As a consequence, the optimal
Z∗ from Theorem 14.18 is also conditionally optimal at any time t or even stopping
time τ . To properly formulate this, we denote by V = (Vt )t≥0 an RCLL version of
the process

Vt := ess inf
Z∈Zf

E
[

Ũ δ
t,∞(Z) + βR̃δ

t,∞(Z)
∣
∣Ft

] =: ess inf
Z∈Zf

Jt (Z), t ≥ 0. (14.32)

Then conditional optimality says that

Vt = Jt

(
Z∗) P -a.s. for all t ≥ 0,

and we now use this to describe the behaviour of Vt as t → ∞.

Proposition 14.19 Under Hypothesis 14.12,

lim
t→∞ Vt = 0 P -a.s.

Proof This is analogous to the proof of Lemma 4.22 in Bordigoni [1]. Since Z ≡ 1
is in Zf , Sδ is decreasing and E[R̃δ

t,∞(Z)|Ft ] ≥ 0, we have

Vt = Jt

(
Z∗) ≤ Jt (1) ≤ αE

[∫ ∞

t

|Us |ds

∣
∣
∣
∣Ft

]

,

which yields lim supt→∞ Vt ≤ 0 due to (14.27a). To get a lower bound for Vt , we
use analogous arguments as in the proof of Proposition 14.16 to first obtain

∣
∣
∣
∣E

[∫ ∞

t

Sδ
s

Sδ
t

Z∗
s

Z∗
t

Us ds

∣
∣
∣
∣Ft

]∣
∣
∣
∣ ≤ E

[∫ ∞

t

eγ |Us |1{Us �=0} ds

∣
∣
∣
∣Ft

]

+ 1

γ δ

(
E

[
R̃δ

t,∞
(
Z∗)∣∣Ft

] + e−1 + | logγ |).
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Hence,

Vt = Jt

(
Z∗) ≥ −αE

[∫ ∞

t

eγ |Us |1{Us �=0} ds

∣
∣
∣
∣Ft

]

− α

γ δ

(
e−1 + | logγ |) +

(

β − α

γ δ

)

E
[

R̃δ
t,∞

(
Z∗)∣∣Ft

]
,

and taking γ so large that β − α
γ δ

≥ 0, we get from E[R̃δ
t,∞(Z∗)|Ft ] ≥ 0 and

(14.27a) that

lim inf
t→∞ Vt ≥ − α

γ δ

(
e−1 + | logγ |) P -a.s.

Since γ is arbitrary, we conclude that lim inft→∞ Vt ≥ 0 P -a.s., which completes
the proof. �

All results in this section so far hold for a general filtration. If F is continuous,
one can in addition show as in Bordigoni/Matoussi/Schweizer [2] that V obeys the
dynamics

dVt = (δtVt − αUt ) dt + 1

2β
d〈M〉t + dMt

for some (continuous) local martingale M ; see Theorem 4.27 in Bordigoni [1] for
a detailed proof. Together with Proposition 14.19, this explains where the infinite-
horizon BSDE (14.3) comes from. Since the above derivation uses no essential new
ideas in comparison with Bordigoni/Matoussi/Schweizer [2], we refrain from giving
more details.

14.6 Solving the Stochastic Control Problem via the BSDE

Our goal in this section is to use the results on the infinite-horizon BSDE (14.19) for
a characterisation of the dynamic value process V for the stochastic control problem
from Sect. 14.5. As just mentioned, we could have shown that V solves (14.19), but
this is not enough: The uniqueness result in Theorem 14.10 only holds for solutions
(Y,M) with Y ∈ D

exp
0,∞, and we do not know at this point how to argue directly

that V from the control problem is in D
exp
0,∞. The BSDE techniques developed so

far will enable us to prove this. To that end, we now show how one can construct
from a (particular) solution to the BSDE (14.19) a (and actually the, by uniqueness)
solution for the infinite-horizon stochastic control problem.

Hypothesis 14.20 Throughout this section, we impose the standing assumptions

F is a continuous filtration, i.e. all local (P,F)-martingales

are continuous. (14.33a)

0 < δ ≤ δt ≤ δ̄ < ∞, uniformly in (t,ω), for constants δ, δ̄. (14.33b)
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Conditions on U will be specified below, when we successively treat three cases.
Our arguments rely substantially on the finite-horizon results proved in Bor-

digoni/Matoussi/Schweizer [2], so that we very briefly recall these here. Fix T < ∞
and consider on [0, T ] the BSDE

dYt = (δtYt − αUt) dt + 1

2β
d〈M〉t + dMt , YT = α′U ′

T . (14.34)

Recall from (14.4) and (14.5) the definitions of U δ
t,T and Rδ

t,T , and assume

that U (as a process on [0, T ]) is in D
exp
1,T and U ′

T is in Dexp. Then Theorem 17
of Bordigoni/Matoussi/Schweizer [2] states that (14.34) has a unique solution
(Y,M) in D

exp
0,T × M0,loc(P ), that Z̄ := E (− 1

β
M) is a martingale on [0, T ] with

E[Z̄T log Z̄T ] < ∞, and that for any martingale Z ≥ 0 on [0, T ] with Z0 = 1 and
E[ZT logZT ] < ∞, we have for any stopping time τ ≤ T that

Yτ = E

[
Z̄T

Z̄τ

U δ
τ,T + βR̃δ

τ,T (Z̄)

∣
∣
∣
∣Fτ

]

≤ E

[
ZT

Zτ

U δ
τ,T + βR̃δ

τ,T (Z)

∣
∣
∣
∣Fτ

]

.

(This reformulates the statement that the dynamic value process of the finite-horizon
stochastic control problem is the unique solution of (14.34).) For τ ≡ 0, this reduces
to

Y0 ≤ E

[

ZT α

∫ T

0
Sδ

s Us ds + ZT α′Sδ
T U ′

T

]

+ βE

[∫ T

0
δsS

δ
s Zs logZs ds + Sδ

T ZT logZT

]

, (14.35)

with equality for Z = Z̄.

14.6.1 The Bounded Case

Let us now first study the case where
∫ ∞

0 |Us |ds is bounded. This is of course a
restrictive assumption, but it allows fairly simple arguments and provides a basic
building block. We shall see that the proofs in more general cases follow the same
scheme.

Proposition 14.21 Suppose that
∫ ∞

0 |Us |ds is a bounded random variable. For any
solution (Y,M) to the infinite-horizon BSDE (14.19) with Y bounded, we then have,
for any t ≥ 0,

Yt = ess inf
Z∈Zf

E
[

Ũ δ
t,∞(Z) + βR̃δ

t,∞(Z)
∣
∣Ft

]
.
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Proof Without loss of generality, we prove the result for t = 0.
(1) Let us start by arguing that for any Z ∈ Zf , we have

Y0 ≤ E
[

Ũ δ
0,∞(Z) + βR̃δ

0,∞(Z)
]
. (14.36)

We first note that the nonnegative function g(s) := E[δsS
δ
s (Zs logZs + e−1)] satis-

fies, by Remark 14.14 and Fubini,
∫ ∞

0
g(s) ds = E

[∫ ∞

0
δsS

δ
s

(
Zs logZs + e−1)ds

]

= E
[

R̃δ
0,∞(Z)

] + e−1 < ∞.

This implies that there exists a sequence of deterministic times Tn ↗ ∞ such that

lim
n→∞E

[
Sδ

Tn

(
ZTn logZTn + e−1)] ≤ lim

n→∞
1

δ
g(Tn) = 0

and therefore also

lim
n→∞E

[
Sδ

Tn
ZTn

logZTn

] = 0, (14.37)

since Sδ
Tn

≤ e−δTn → 0. Moreover, because Y is bounded and Z ≥ 0 is a martingale,
we have

lim
n→∞

∣
∣E

[
Sδ

Tn
ZTnYTn

]∣
∣ ≤ lim

n→∞ e−δTn‖Y‖∞E[ZTn] = 0. (14.38)

Now Y is bounded, hence in D
exp
0,Tn

, and satisfies the finite-horizon BSDE (14.34)
with final value α′U ′

Tn
:= YTn . Moreover, Z ∈ Zf verifies E[ZTn logZTn ] < ∞ due

to Lemma 14.15, and so the finite-horizon results tell us that

Y0 ≤ E

[

α

∫ Tn

0
Sδ

s ZsUs ds + Sδ
Tn

ZTnYTn

]

+ βE

[∫ Tn

0
δsS

δ
s Zs logZs ds + Sδ

Tn
ZTn logZTn

]

. (14.39)

On the right-hand side, the second and the fourth summands tend to 0 as n → ∞ by
(14.38) and (14.37), respectively. Next, Fatou’s lemma yields

E

[∫ ∞

0
Sδ

s Zs |Us |ds

]

≤ lim inf
n→∞ E

[

ZTn

∫ Tn

0
Sδ

s |Us |ds

]

≤ lim inf
n→∞ E

[

ZTn

∫ ∞

0
|Us |ds

]

< ∞

since
∫ ∞

0 |Us |ds is bounded and Z ≥ 0 is a martingale. By the dominated con-
vergence theorem, we thus deduce that the first summand in (14.39) converges to
E[α ∫ ∞

0 Sδ
s ZsUs ds] = E[Ũ δ

0,∞(Z)] as n → ∞. Finally,

∫ Tn

0
δsS

δ
s Zs logZs ds =

∫ Tn

0
δsS

δ
s

(
Zs logZs + e−1)ds − e−1(1 − Sδ

Tn

)
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implies via monotone integration and by using
∫ ∞

0 δsS
δ
s ds = 1 that the third

summand in (14.39) converges to βE[∫ ∞
0 δsS

δ
s Zs logZs ds] = βE[R̃δ

0,∞(Z)] as
n → ∞. Putting everything together gives (14.36).

(2) Now define Z̄ := E (− 1
β
M). Since

∫ ∞
0 |Us |ds is bounded, U is in D

exp
1,∞;

and since (Y,M) solves (14.19), Theorem 14.11 tells us that Z̄ is a martingale on
[0,∞), so that Z̄ ∈ Z . We want to prove that Z̄ is even in Zf . To that end, we apply
the finite-horizon results to write

Y0 = E

[

Z̄Tnα

∫ Tn

0
Sδ

s Us ds + Sδ
Tn

Z̄TnYTn

]

+ βE

[∫ Tn

0
δsS

δ
s Z̄s log Z̄s ds + Sδ

Tn
Z̄Tn

log Z̄Tn

]

.

Using Fatou’s lemma and z log z ≥ −e−1 therefore gives

βE
[

R̃δ
0,∞(Z̄)

]

= βE

[∫ ∞

0
δsS

δ
s Z̄s log Z̄s ds

]

≤ lim inf
n→∞ βE

[∫ Tn

0
δsS

δ
s Z̄s log Z̄s ds

]

= lim inf
n→∞

(

Y0 − βE
[
Sδ

Tn
Z̄Tn log Z̄Tn

] − E

[

Z̄Tnα

∫ Tn

0
Sδ

s Us ds + Sδ
Tn

Z̄TnYTn

])

≤ lim inf
n→∞

(

Y0 + βe−1 + α

∥
∥
∥
∥

∫ ∞

0
|Us |ds

∥
∥
∥
∥

L∞
E[Z̄Tn ] + ∥

∥Y ∗∞
∥
∥

L∞E[Z̄Tn ]
)

< ∞

because Y and
∫ ∞

0 |Us |ds are bounded and Z̄ ≥ 0 is a martingale. Hence Z̄ is indeed
in Zf .

(3) Since Z̄ is in Zf by step (2) and satisfies (14.35) with equality, the same
argument as in step (1) shows that the inequality in (14.36) becomes an equality for
Z = Z̄. Hence Z̄ attains the infimum, and the proof is complete. �

14.6.2 The Positive Case

We now turn to the case where U is nonnegative and satisfies some integrability
condition. Note that U ≥ 0 is a fairly natural assumption. Indeed, if we think of
a full-fledged robust control problem for utility maximisation, then Ut typically
represents the utility U(ct ) from consumption at time t , where we still optimise
over c in a second step. As a consumption rate, ct ≥ 0; so Ut = U(ct ) ≥ 0 for any
nonnegative utility function U on [0,∞), like e.g. the power utility U(x) = 1

γ
xγ for

γ ∈ (0,1).
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Theorem 14.22 Suppose that U ≥ 0 and U is in D
exp
1,∞. For the solution (Y,M) to

(14.19) from Theorem 14.9, we then have, for any t ≥ 0,

Yt = ess inf
Z∈Zf

E
[

Ũ δ
t,∞(Z) + βR̃δ

t,∞(Z)
∣
∣Ft

]
.

Proof Without loss of generality, we again argue for t = 0. The overall structure of
the proof is like for Proposition 14.21, but we first need to recall the construction of
(Y,M). For each n ∈ N, set Un

t := Ut1{∫ t
0 Us ds≤n} and denote by (Y n,Mn) with Yn

bounded the solution to the BSDE

dYt = (
δtYt − αUn

t

)
dt + 1

2β
d〈M〉t + dMt , Yn = 0,

on [0, n]. Extending (Y n,Mn) to [0,∞) by setting Yn
t = 0, Mn

t = Mn
n for t > n, we

then get on [0,∞) a solution (Y n,Mn) to the BSDE

dYt = (
δtYt − α1{t≤n}Un

t

)
dt + 1

2β
d〈M〉t + dMt , lim

t→∞Yt = 0, (14.40)

and Yt =↗ - limn→∞ Yn
t for all t ≥ 0. We first prove that, for any Z ∈ Zf ,

Y0 ≤ E
[

Ũ δ
0,∞(Z) + βR̃δ

0,∞(Z)
]
. (14.41)

Indeed, applying Proposition 14.21 to the process (1{t≤n}Un
t )t≥0 and the solution to

(14.40) gives

Yn
0 ≤ E

[

α

∫ ∞

0
Sδ

s Zs1{s≤n}Un
s ds + β

∫ ∞

0
δsS

δ
s Zs logZs ds

]

,

and (14.41) follows by monotone integration since U ≥ 0.
Now set Z̄ := E (− 1

β
M), so that Z̄ ∈ Z by Theorem 14.11; this uses the in-

tegrability assumption on U . To prove that Z̄ is even in Zf , we first note that
by Proposition 14.21 and its proof, we have equality in (14.41) for the choice
Z = Z̄n := E (− 1

β
Mn), so that

Yn
0 = E

[

α

∫ ∞

0
Sδ

s Z̄
n
s 1{s≤n}Un

s ds + β

∫ ∞

0
δsS

δ
s Z̄

n
s log Z̄n

s ds

]

.

But by construction, (Y n
0 )n∈N increases to Y0, and (Mn)n∈N and (〈Mn〉)n∈N con-

verge to M and 〈M〉 locally uniformly in probability, so that also Z̄n → Z̄ locally
uniformly in probability as n → ∞. Hence Fatou’s lemma yields

Y0 ≥ E

[

α

∫ ∞

0
Sδ

s Z̄sUs ds+β

∫ ∞

0
δsS

δ
s Z̄s log Z̄s ds

]

= E
[

Ũ δ
0,∞(Z̄)+βR̃δ

0,∞(Z̄)
]
,

and so Z̄ ∈ Zf because U ≥ 0. Since (14.41) gives the converse inequality, we
actually have equality in (14.41) for Z = Z̄, and this completes the proof. �
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14.6.3 The General Case

Finally, we study a situation where U can be real-valued. Then we need slightly
stronger integrability assumptions.

Theorem 14.23 Suppose that U is in D
exp
1,∞ and that U also satisfies (14.27a),

i.e. there exists some T0 ∈ (0,∞) such that, for all γ > 0,

EP

[

exp

(

γ

∫ T0

0
|Us |ds

)]

+ EP

[∫ ∞

T0

exp
(
γ |Us |

)
1{Us �=0} ds

]

< ∞.

For the solution (Y,M) to (14.19) from Theorem 14.9, we then have, for any t ≥ 0,

Yt = ess inf
Z∈Zf

E
[

Ũ δ
t,∞(Z) + βR̃δ

t,∞(Z)
∣
∣Ft

]
.

Proof As already in the last proof, we argue for t = 0 without loss of generality and
again first recall from the proof of Theorem 14.9 the construction of (Y,M). For
n,p ∈ N, set

U
n,p
t := U+

t 1{∫ t
0 |Us |ds≤n}1{t≤n} − U−

t 1{∫ t
0 |Us |ds≤p}1{t≤p}

and denote by (Y n,p,Mn,p) with Yn,p bounded the solution to the BSDE

dYt = (δtYt − αUt) dt + 1

2β
d〈M〉t + dMt , Yn∨p = 0,

on [0, n ∨ p]. We extend (Y n,p,Mn,p) to [0,∞) by setting Y
n,p
t = 0 and

M
n,p
t = M

n,p
n∨p for t > n ∨ p to get on [0,∞) a solution to the BSDE

dYt = (
δtYt − α1{t≤n∨p}Un,p

t

)
dt + 1

2β
d〈M〉t + dMt , lim

t→∞Yt = 0. (14.42)

Then Yt =↗ - limn→∞ ↘ - limp→∞ Y
n,p
t and Mt = limn→∞ limp→∞ M

n,p
t . We

proceed on a familiar path.
(1) First we prove that, for any Z ∈ Zf ,

Y0 ≤ E
[

Ũ δ
0,∞(Z) + βR̃δ

0,∞(Z)
]
. (14.43)

Like in Sect. 14.6.2, using Proposition 14.21 gives

Y
n,p

0 ≤ E

[

α

∫ ∞

0
Sδ

s Zs1{s≤n∨p}Un,p
s ds + β

∫ ∞

0
δsS

δ
s Zs logZs ds

]

,

and (14.43) follows by letting p → ∞ and then n → ∞, provided that we can
use dominated convergence. But this is ensured by the first estimate in Proposi-
tion 14.16; indeed, (14.27a) yields E[∫ ∞

0 Sδ
s Zs |Us |ds] < ∞ for Z ∈ Zf .

www.TechnicalBooksPDF.com



14 Some New BSDE Results for an Infinite-Horizon Stochastic Control Problem 393

(2) Thanks to the first integrability assumption on U , Theorem 14.11 implies
that the process Z̄ := E (− 1

β
M) is in Z . To show that it is even in Zf , we use

Proposition 14.21 for Z̄n,p := E (− 1
β
Mn,p) to get

Y
n,p

0 = E

[

α

∫ ∞

0
Sδ

s Z̄
n,p
s 1{s≤n∨p}Un,p

s ds + β

∫ ∞

0
δsS

δ
s Z̄

n,p
s log Z̄

n,p
s ds

]

.

(14.44)
But (14.31) in the proof of Proposition 14.16 gives

∣
∣
∣
∣E

[

α

∫ ∞

0
Sδ

s Z̄
n,p
s 1{s≤n∨p}Un,p

s ds

]∣
∣
∣
∣ ≤ E

[

α

∫ ∞

0
Sδ

s Z̄
n,p
s |Us |ds

]

≤ Cγ,U + E
[

R̃δ
0,∞

(
Z̄n,p

)] 1

γ δ

(
eδ̄(T0+1) + 1

)
,

where the constant Cγ,U depends on γ and U via (14.27a), but not on n and p.
Plugging this estimate with a minus sign into (14.44) and taking γ big enough yields

sup
n,p∈N

E
[

R̃δ
0,∞

(
Z̄n,p

)] ≤ C
(

1 + sup
n,p∈N

Y
n,p

0

)
< ∞, (14.45)

because applying the a priori estimate (14.23) from Theorem 14.9 to (14.42) tells us
that

∣
∣Y

n,p

0

∣
∣ ≤ β logE

[

exp

(
1

β

∫ ∞

0
α|Us |ds

)]

< ∞

for all n and p, by using the definition of Un,p . As n → ∞ and p → ∞, we
have locally uniformly in probability Mn,p → M and 〈Mn,p〉 → 〈M〉, hence
also Z̄n,p → Z̄, and so Z̄ ∈ Zf because E[R̃δ

0,∞(Z̄)] < ∞ by Fatou’s lemma
and (14.45).

(3) To prove that we have equality in (14.43) for Z = Z̄, we start from the
equality in (14.44). As n → ∞ and p → ∞, Y

n,p

0 tends to Y0, and we have
lim infn→∞ lim infp→∞ E[R̃δ

0,∞(Z̄n,p)] ≥ E[R̃δ
0,∞(Z̄)] by Fatou’s lemma. Be-

cause Z �→ E[R̃δ
0,∞(Z)] is bounded along the sequence (Z̄n,p)n,p∈N by (14.45),

almost the same argument as in step 3) of the proof of Theorem 14.18 gives

lim inf
n→∞ lim inf

p→∞ E

[

α

∫ ∞

0
Sδ

s Z̄
n,p
s 1{s≤n∨p}Un,p

s ds

]

≥ E

[

α

∫ ∞

0
Sδ

s Z̄sUs ds

]

= E
[

Ũ δ
0,∞(Z̄)

]
.

Note that this exploits the integrability assumption (14.27a). Therefore (14.44) im-
plies that Y0 ≥ E[Ũ δ

0,∞(Z̄) + βR̃δ
0,∞(Z̄)], and so we must have equality due to

(14.43) since Z̄ ∈ Zf . This completes the proof. �
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14.6.4 Consequences for the Stochastic Control Problem

As in (14.32), denote by V = (Vt )t≥0 the dynamic value process of the infinite-
horizon stochastic control problem. We already mentioned at the end of Sect. 14.5
that if F is continuous, then V satisfies the infinite-horizon BSDE (14.19). For the
proof, we referred to Bordigoni [1]; let us just note here that the required assump-
tions are Hypothesis 14.12 plus continuity of F, i.e. Hypothesis 14.20 plus (14.27a).
Under a slightly stronger condition, we can now even prove a BSDE characterisation
for V .

Theorem 14.24 Assume Hypothesis 14.20 and that U is in D
exp
1,∞. If in addition

either U ≥ 0 or U satisfies (14.27a), then V is the first component of the unique
solution in D

exp
0,∞ × M0,loc(P ) to the infinite-horizon BSDE (14.19). In particular,

V ∈ D
exp
0,∞.

Proof By Theorem 14.10 (14.19) has a unique solution (Y,M) with Y ∈ D
exp
0,∞; and

by the definition of V in (14.32) and either Theorem 14.22 or Theorem 14.23, Y

coincides with V . �

Remark 14.25

(1) The second case of Theorem 14.24 is the infinite-horizon analogue to the finite-
horizon Theorem 17 in Bordigoni/Matoussi/Schweizer [2], with assumptions
and conclusions almost exactly parallel. The only difference lies in the condi-
tions on U : In (14.27a), we need U ∈ D

exp
1,T0

, but also an exponential moment
control over U on the infinite time interval [T0,∞). See Remark 4.28 in Bor-
digoni [1] for a more detailed comment on this point. The result for U ≥ 0 has
no precedent.

(2) Our approach for T = ∞ here is different from Bordigoni [1] in that we show
for the solution of the BSDE (14.19) that it satisfies the defining property
(14.32) of the value process V . As a bonus, we are able to deduce that V is
indeed in D

exp
0,∞; this was conjectured, but not proved, in Bordigoni [1].

(3) Again in remarkable analogy to the finite-horizon results in Bordigoni/Matoussi/
Schweizer [2], we obtain the existence of a solution to the stochastic control
problem for a general filtration F. But the integrability property V ∈ D

exp
0,∞ is

only known for continuous F, since its proof exploits the BSDE results. Like
in Bordigoni/Matoussi/Schweizer [2], we do not know if V ∈ D

exp
0,∞ also holds

for general F.
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Chapter 15
Functionals Associated with Gradient Stochastic
Flows and Nonlinear SPDEs

B. Iftimie, M. Marinescu, and C. Vârsan

Abstract In this paper we construct and provide a representation for a classical so-
lution of some nonlinear SPDE driven by Fisk–Stratonovich stochastic integral. Our
main assumption is the commuting property of the drift and diffusion vector fields
with respect to the usual Lie bracket. This result is next applied for a system of Burg-
ers equations with stochastic perturbations and also to the computations of some
expectations of functionals depending on the final value of some non-Markovian
process.

Keywords Stochastic partial differential equations · Fisk–Stratonovich stochastic
integral · Stochastic flow · Gradient representation · Hamilton–Jacobi equations

Mathematics Subject Classification (2010) 60H15 · 60H30 · 35F20 · 35Q35

15.1 Introduction

The investigation of evolution equations with stochastic perturbations serves a large
variety of areas of applicability, among which mathematical finance as well. Nonlin-
ear SPDEs have for instance applications in modelling of interest rates, in stochastic
control with partial information (as it is specified in Lions and Souganidis [15]).
Other applications of SPDEs (including finance) may be found in Da Prato and
Tubaro [6].
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During the last three decades, SPDEs of the form

⎧
⎪⎪⎨

⎪⎪⎩

du(t, x) = L(t, x,u(t, x),∇u(t, x),D2u(t, x)) dt

+ ∑n
i=1 Pi(t, x,u(t, x),∇u(t, x)) dWi(t),

u(0, x) = ϕ(x), x ∈ R
n,

have been intensively studied, under suitable assumptions imposed on the coeffi-
cients. Here W(t) stands for a standard n-dimensional Wiener process, and the first-
order operators Pi(t, x,u,p) are linear with respect to u, p, i.e. Pi(t, x,u,p) =
〈bi(t, x),p〉 + ci(t, x)u.

The case when L is a linear differential operator

L(t, x,u,p, q) =
n∑

i,j=1

aij (t, x)qij +
n∑

i=1

ai(t, x)pi + a0(t, x)u

and ci(t, x) = 0 was studied in [19]. The idea is to transform the SPDE into a linear
parabolic equation with random parameter ω (for which the author uses a semi-
group approach based on the Kato–Tanabe theory), via the stochastic characteris-
tics method (which was introduced by Kunita for first order SPDEs, see [13]). More
precisely, the solution ξ(t, x) of the SDE

ξ(t) = x + 1

2

n∑

i=1

∫ t

0
∇bi

(
s, ξ(s)

) · bi

(
s, ξ(s)

)
ds −

n∑

i=1

∫ t

0
bi

(
s, ξ(s)

)
dWi(s)

= x +
n∑

i=1

∫ t

0

(−bi

(
s, ξ(s)

)) ◦ dWi(s), (15.1)

called the stochastic characteristics, is a diffeomorphism with respect to x and if
η(t, x) denotes its inverse, then the random mapping v(t, x,ω) := u(t, ξ(t, x,ω),ω)

solves a linear parabolic PDE with random parameter. Next, the unique solution u

is obtained as u(t, x) = v(t, η(t, x)). Notice that the stochastic integral appearing
in the last line of the formula (15.1) has to be understood in the Fisk–Stratonovich
sense.

The case when the operator L is semilinear, i.e.,

L(t, x,u,p, q) =
n∑

i,j=1

aij (t, x)qij + a0(t, x,u,p),

was treated by several authors (see, for instance, [4]), while the quasilinear case

L(t, x,u,p, q) =
n∑

i,j=1

aij (t, x,p)qij + a0(t, x,u,p)
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was studied only by a few authors (see, e.g., [1], where a splitting up method was
used for operators L in divergence form, or [7], where a semigroup approach was
preferred). In all the situations from above, the mappings a0(t, x,u,p), aij (t, x,

u,p) were assumed (locally) Lipschitz continuous with respect to u,p.
In [5] the authors treat the case of a fully nonlinear operator L(t, x,u,p, q) under

suitable assumptions, and in particular L is locally Lipschitz continuous with respect
to u,p and q , uniformly with respect to t, x. The presence of the additional term
c(t, x)u in the diffusion part of the SPDE does not modify too much the approach
used in [19]. Indeed, with the notation from above, by the transformation w(t, x) :=
ρ(t, x)u(t, ξ(t, x)), where

ρ(t, x) = exp

[

−
n∑

i=1

∫ t

0
ci

(
s, ξ(s, x)

)
dWi(s) + 1

2

n∑

i=1

∫ t

0
c2
i

(
s, ξ(s, x)

)
ds

]

,

the SPDE is transformed in a deterministic nonlinear equation with random param-
eter, for the unknown w(t, x,ω). Finally, u is easily obtained from w and ρ via the
diffeomorphism η.

Buckdahn and Ma are treating in [2] nonlinear SPDEs driven by Fisk–Stratono-
vich integrals of the form

⎧
⎪⎪⎨

⎪⎪⎩

du(t, x) = L̃(t, x, u(t, x),∇u(t, x),D2u(t, x)) dt

+ ∑m
i=1 gi(t, x,u(t, x)) ◦ dWi(t),

u(0, x) = u0(x), t ∈ [0, T ], x ∈ R
n,

where

L̃(t, x, u,p, q) =
n∑

i,j=1

aij (x)qij +
n∑

i=1

bi(x)pi + f
(
t, x, u,σ ∗(x)p

)
,

where a = σσ ∗, under the assumption that f is Lipschitz with respect to u,p. Under
the notation from above,

L(t, x,u,p, q) = L̃(t, x, u,p, q) + 1

2

m∑

i=1

∇ugi(t, x, u) · gi(t, x,u).

They prove, under weak conditions on the coefficients, the existence (and the
uniqueness in a latter paper) of the so-called stochastic viscosity solution, introduced
by Lions and Souganidis for a general class of SPDEs in [15], via the corresponding
stochastic flow ξ(t, x, y), solution of the SDE determined by the stochastic pertur-
bation of the SPDE, i.e.,

ξ(t, x, y) = y + 1

2

m∑

i=1

∫ t

0
∇ugi

(
s, x, ξ(s, x, y)

) · gi

(
s, x, ξ(s, x, y)

)
ds
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+
m∑

i=1

∫ t

0
gi

(
s, x, ξ(s, x, y)

)
dWi(s)

= y +
m∑

i=1

∫ t

0
gi

(
s, x, ξ(s, x, y)

) ◦ dWi(s).

This is not the usual stochastic characteristic, which cannot be associated here since
the diffusion part of the SPDE depends only on u (nonlinearly), being independent
of its gradient.

In this paper we are dealing with the Cauchy problem associated to the first-order
nonlinear SPDE, considered in the strong sense,

{
du(t, x) = 〈∇u(t, x), g0(x)〉 u(t, x) dt + ∑m

i=1〈∇u(t, x), gi(x)〉 ◦ dWi(t),

u(0, x) = ϕ(x), t ∈ [0, T ], x ∈ R
n,

(15.2)
or, equivalently,

u(t, x) = ϕ(x) +
∫ t

0

〈∇u(s, x), g0(x) u(s, x)
〉
ds

+
m∑

i=1

∫ t

0

〈∇u(s, x), gi(x)
〉 ◦ dWi(s), (15.3)

where the stochastic integral is understood in the Fisk–Stratonovich sense. In our
case Pi(t, x,u,p) := 〈gi(x),p〉, and the drift L(t, x,u,p, q) contains the term
〈g0(x),p〉u which is not Lipschitz with respect to u,p, and this is the main differ-
ence between the results we mentioned above and our case. Thus, if we try to reduce
the SPDE to a random PDE, using the stochastic characteristics, then the existence
of a solution is not easy to obtain. In order to overcome this issue, we adopt another
approach by considering the system of characteristics defined by (15.2) (which is
defined in analogy to the characteristics associated to deterministic PDEs). This
leads us to a system of SDEs and ODEs for which existence of solutions is not hard
to prove. The technique of considering the system of characteristics associated to a
parabolic SPDE was already used by Iftimie and Vârsan in [10].

A main assumption is the commuting property of the vector fields gi , i =
0, . . . ,m, with respect to the usual Lie bracket (see Assumption (A.4)). Kunita also
made this hypothesis (see [13], pp. 236 and 238, and also [12]), and some authors are
referring to it as a compatibility condition concerning the mentioned vector fields
(see [2], Remark 3.3). Under this hypothesis, we obtain a gradient representation
for the stochastic flow associated with the stochastic differential equation obtained
by means of the system of characteristics defined by the SPDE (15.2) and the corre-
sponding fundamental solution ψ(t, x) of the same SPDE. ψ(t, x) will be described
as the composition between the fundamental solution of some deterministic non-
linear Hamilton–Jacobi equations (see Lemma 15.13 below) and the fundamental
solution of a reduced SPDE (see (15.17)).

www.TechnicalBooksPDF.com



15 Functionals Associated with Gradient Stochastic Flows and Nonlinear SPDEs 401

The turbulent fluid motion can be described by the Burgers equation

∂u

∂t
(t, x) = ν

∂2u

∂x2 (t, x) + u(t, x)
∂u

∂x
(t, x),

where u(t, x) stands for the velocity field, and the positive constant ν is the viscosity.
Burgers equations with a forcing term given by a random perturbation are more
realistic. In [3], the authors establish an existence result for mild solutions of the
Cauchy problem with additive space-time white noise, given by

∂u

∂t
(t, x) = ν

∂2u

∂x2 (t, x) − u(t, x)
∂u

∂x
(t, x) + ε

∂2W

∂t∂x
(t, x),

where W(t, x) is a space-time white noise, and the partial derivative ∂2W
∂t∂x

(t, x) has
to be understood in the generalized sense. Using the so called Cole–Hopf transfor-
mation, the initial integral equation obtained by convolution with the heat kernel is
transformed into a linear SPDE driven by a Fisk–Stratonovich stochastic integral.

Another class of stochastic Burgers equations can be obtained from the SPDEs

∂u

∂t
(t, x) = ∂2u

∂x2 (t, x) + f
(
t, x, u(t, x)

) + ∂g

∂x

(
t, x, u(t, x)

)

+ σ
(
t, x, u(t, x)

) ∂2W

∂t∂x
(t, x),

where again W(t, x) is a space-time white noise, and the mapping g(t, x,u) has
quadratic growth with respect to u. The existence of a unique generalized solution
(which is proved to be a mild solution also) of the associated Cauchy problem is
shown, based on several estimates of the heat kernel partial derivatives.

Being motivated by these results, we study a system of Burgers equations with
stochastic perturbations defined by a Wiener process, for which constant vector
fields, both in the drift and diffusion part, are used in order to derive the existence
of a global classical solution. We hope that this example would be of some interest
for specialists in the field.

Another application consists in computing expectations of functionals depend-
ing on the terminal value of some non-Markovian process, obtained via the solution
of the SDE obtained by writing down the system of characteristics associated to
system (15.2). Usually, these types of expectations are related to Kolmogorov back-
ward parabolic equations, but this procedure is not applicable in our case due to the
non-Markovian nature of the process involved. Under appropriate conditions and
avoiding SPDE techniques, the parameterized conditional expectation is the solu-
tion of a backward parabolic equation of Kolmogorov type with parameter.

15.2 Preliminaries

Let {W(t), t ≥ 0} be an m-dimensional Wiener process on a complete filtered prob-
ability space {Ω, F , {Ft},P }, where the filtration {Ft } stands for the augmentation
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under P of the natural filtration {F W
t } generated by the Brownian motion W . T is a

fixed time horizon. Let the following assumptions be in force:

(A.1) The vector fields g1, . . . , gm belong to C 2(Rn;R
n) and have bounded deriva-

tives of first two orders; g0 ∈ C 1
b(Rn;R

n), and its partial derivatives are
bounded.

(A.2) The initial condition ϕ ∈ C 2(Rn) and admits bounded first-order partial
derivatives.

(A.3) ρ := T MK < 1, where M := sup{|∇ϕ(x)|, x ∈ R
n} and K := sup{|g0(x)|,

x ∈ R
n}.

Throughout this paper we shall use the notations 〈, 〉 for the inner product and
∇h for the gradient with respect to x of some (vector) function h(t, x).

If Y(t) and X(t) are continuous one-dimensional semimartingales, then the Fisk–
Stratonovich integral of Y(t) with respect to X(t) is defined as

∫ t

0
Y(s) ◦ dX(s) :=

∫ t

0
Y(s) dX(s) + 1

2
〈Y,X〉t , (15.4)

where the stochastic integral on the right-hand side is the usual Itô integral, and
〈Y,X〉t stands for the quadratic variation of the processes (Y (t)) and (X(t)). If Y(t)

is d-dimensional, we can still define the integral
∫ t

0 Y(s) ◦ dX(s) := (
∫ t

0 Yi(s) ◦
dX(s))1≤i≤d . We state the Itô’s formula involving the Fisk–Stratonovich integral
(see, e.g., [11], Problem 3.14, p. 156, or [17], Theorem 34, p. 82).

Proposition 15.1 Let Y(t) be a d-dimensional continuous semimartingale, and f :
R

d → R
k a vector function with the components belonging to C 3(Rd). Then

f
(
Y(t)

) = f
(
Y(0)

) +
d∑

i=1

∫ t

0

∂f

∂xi

(
Y(s)

) ◦ dYi(s). (15.5)

We shall also need the following result.

Lemma 15.2 Let X(t) and Y(t) be continuous semimartingales with decom-
positions X(t) = X(0) + A(t) + ∫ t

0 M(s)dW(s) and Y(t) = Y(0) + B(t) +
∫ t

0 N(s)dW(s), where A(t),B(t) are adapted, continuous processes with bounded
variation, and the processes defined by the stochastic integrals are (local) mar-
tingales (this decomposition holds for any continuous semimartingale, since the
filtration (Ft ) stands for the completion of the natural filtration generated by W ,
see [17], Theorem 43, Chap. IV). Then

∫ t

0
X(s) ◦ d

(∫ s

0
Y(r) ◦ dW(r)

)

=
∫ t

0
X(s)Y (s) ◦ dW(s). (15.6)

Proof The first term of the left-hand side of the formula can be written as
∫ t

0
X(s) ◦ d

(∫ s

0
Y(r) ◦ dW(r)

)
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=
∫ t

0
X(s) ◦ d

(∫ s

0
Y(r) dW(r) + 1

2

∫ s

0
N(r)dr

)

=
∫ t

0
X(s)d

(∫ s

0
Y(r) dW(r) + 1

2

∫ s

0
N(r)dr

)

+ 1

2

∫ t

0
M(s)Y (s) ds

=
∫ t

0
X(s)Y (s) dW(s) + 1

2

∫ t

0
X(s)N(s) ds + 1

2

∫ t

0
M(s)Y (s) ds

=
∫ t

0
X(s)Y (s) dW(s) + 1

2
〈XY,W 〉t ,

where the formula of integration by parts (for semimartingales) was also used, in
order to derive the martingale part of X(t)Y (t). �

The corresponding system of characteristics (see, e.g., [14], Chap. 6) is given by

⎧
⎨

⎩

dx̂(t;λ) = −û(t;λ)g0(x̂(t;λ)) dt + ∑m
i=1(−gi)(x̂(t;λ)) ◦ dWi(t);

x̂(0, λ) = λ;
dû(t, λ) = 0, û(0, λ) = ϕ(λ), λ ∈ R

n.

(15.7)

Remark 15.3 Notice that the integrals
∫ t

0 (−gi)(x̂(s;λ)) ◦ dWi(s) and − ∫ t

0 gi(x̂(s;
λ)) ◦ dWi(s) are not equal.

We deduce that û(t, λ) = ϕ(λ) and x̂ is the solution of the SDEs

x̂(t;λ) = λ − ϕ(λ)

∫ t

0
g0

(
x̂(s;λ)

)
ds +

m∑

i=1

∫ t

0
(−gi)

(
x̂(s;λ)

) ◦ dWi(s)

= λ −
∫ t

0

[

ϕ(λ)g0
(
x̂(s;λ)

) − 1

2
∇gi

(
x̂(s;λ)

) · gi

(
x̂(s;λ)

)
]

ds

−
m∑

i=1

∫ t

0
gi

(
x̂(s;λ)

)
dWi(s). (15.8)

According to formula (15.4), the (local) martingale part of
∫ t

0 (−gi)(x̂(s;λ)) ◦
dWi(s) is given by − ∫ t

0 gi(x̂(s;λ)) dWi(s), which is also the (local) martingale
part of the process x̂(t;λ) (see (15.7)). Hence, by virtue of Itô’s lemma, the martin-
gale part of (−gi)(x̂(t;λ)) is

∫ t

0 ∇gi(x̂(s;λ)) · gi(x̂(s;λ)) dWi(s), and this implies
that

〈(−g
j
i

)(
x̂(·;λ)

)
,Wi(·)

〉
t
=

∫ t

0

(∇gi

(
x̂(s;λ)

) · gi

(
x̂(s;λ)

))j
ds

for j = 1, . . . , n.
The assumptions imposed on the coefficients gi, i = 0, . . . ,m, ensure the exis-

tence of a unique solution x̂ϕ(t;λ) of system (15.8). Under the same assumptions,
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the vector fields gi i = 0,1, . . . ,m, are complete, i.e., they generate globally defined
flows Gi(t, x) = Gi(t)(x) satisfying

∂Gi

∂t
(t, x) = gi

(
Gi(t, x)

)
for all t ∈ R, x ∈ R

n; Gi(0, x) = x.

It is well known that for each t , Gi(t)(·) is a diffeomorphism, the map (t, x) ∈
R × R

n �→ Gi(t, x) is smooth, and Gi(t1 + t2, x) = Gi(t1)(Gi(t2, x)). The last
property implies that (Gi(t))

−1(·) = Gi(−t)(·) := Hi(t)(·). We define G(p)(x),
p = (t1, . . . , tm) ∈ R

m, x ∈ R
n, as the composition of the flows associated to

g1, . . . , gm, i.e.,

G(p)(x) = G(p,x) := G1(t1) ◦ · · · ◦ Gm(tm)(x). (15.9)

We assume from now on that the vector fields g0, . . . , gm commute with respect to
the usual Lie bracket, i.e.,

(A.4) [gi, gj ](x) := ∇gi(x)gj (x) − ∇gj (x)gi(x) = 0,

and this means that Gi(ti) ◦ Gj(tj ) = Gj(tj ) ◦ Gi(ti) for 0 ≤ i, j ≤ m. Under this
assumption, the composition of flows G(p,x) is the solution of the gradient system
defined by the original vector fields, i.e.,

∂G

∂ti
(p, x) = gi

(
G(p,x)

)
.

Set also H(p,x) := G(−p,x) for p = (t1, . . . , tm).

15.3 Gradient Representation of Stochastic Flow and
Construction of a Solution of Nonlinear SPDE

The next lemma provides a gradient representation for the stochastic flow x̂ϕ(t;λ).

Lemma 15.4 The stochastic flow generated by the solution of the SDEs (15.8) can
be represented as

x̂ϕ(t;λ) = G
(−W(t)

) ◦ G0
(−tϕ(λ)

)
(λ) = H

(
W(t)

) ◦ H0
(
tϕ(λ)

)
(λ). (15.10)

Proof Set v(t, y) := G(−y) ◦ G0(−tϕ(λ))(λ). It is obvious that v ∈ C 1,3(R ×
R

m;R
n), and a slightly modified version of Proposition 15.1 leads us to

v
(
t,W(t)

) = λ +
∫ t

0

∂v

∂t

(
s,W(s)

)
ds +

m∑

i=1

∫ t

0

∂v

∂yi

(
s,W(s)

) ◦ dWi(s)

= λ − ϕ(λ)

∫ t

0
g0

(
v
(
s,W(s)

))
ds
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+
m∑

i=1

∫ t

0
(−gi)

(
v
(
s,W(s)

)) ◦ dWi(s).

The result follows by the uniqueness of solutions of SDEs. �

The next step consists in finding the inverse mapping of the diffeomorphism λ →
x̂ϕ(t;λ), i.e., we solve the equation

x̂ϕ(t;λ) = x (15.11)

with respect to the unknown λ. Taking into account the formula (15.10) and the
properties of the flows Gi (which are preserved by G), this is equivalent with

G0
(−tϕ(λ)

)
(λ) = G

(
W(t)

)
(x) := z(t, x).

We first consider the equation G0(−tϕ(λ))(λ) = z for arbitrary t ∈ [0, T ] and
z ∈ R

n, which can be rewritten as

G0
(
tϕ(λ)

)
(z) = λ. (15.12)

Set V (t, z, λ) := G0(tϕ(λ))(z).

Lemma 15.5 Equation (15.12) admits a unique solution given by a (deterministic)
smooth mapping ψ̂(t, z) ∈ C 1,1([0, T ] × R

n;R
n), which satisfies the estimate

∣
∣ψ̂(t, z) − z

∣
∣ ≤ T K

1 − ρ

∣
∣ϕ(z)

∣
∣.

In addition, ψ̂(t, z) is the unique solution of the Hamilton–Jacobi equations
⎧
⎨

⎩

∂ψ̂
∂t

(t, z) = ∇ψ̂(t, z) g0(z) ϕ(ψ̂(t, z)),

ψ̂(0, z) = z.
(15.13)

Proof Notice that the mapping λ ∈ R
n �→ V (t, z, λ) is a contractive mapping, uni-

formly with respect to (t, z) ∈ [0, T ] × R
n, since

∣
∣∇λV (t, z, λ)

∣
∣ = ∣

∣g0
(
V (t, z, λ)

)∣
∣
∣
∣t∇ϕ(λ)

∣
∣ ≤ ρ < 1, (15.14)

according to assumption (A3). The sequence (λk)(t, z) defined by

λ0(t, z) = z, λk+1(t, z) = V
(
t, z, λk(t, z)

)

satisfies
∣
∣λk+1(t, z) − λk(t, z)

∣
∣ ≤ ρk

∣
∣λ1(t, z) − λ0(t, z)

∣
∣

and
∣
∣λ1(t, z) − λ0(t, z)

∣
∣ = ∣

∣V (t, z, z) − z
∣
∣ ≤ T K

∣
∣ϕ(z)

∣
∣.
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A standard procedure leads us to the first part of the lemma. Furthermore, using the
properties of flows, we get

ψ̂(0, z) = V
(
0, z, ψ̂(0, z)

) = G0(0, z) = z

and

V
(
t,G0

(−tϕ(λ), λ
)
, λ

) = G0
(
tϕ(λ),G0

(−tϕ(λ), λ
)) = λ.

A straight differentiation with respect to t leads us to

∂V

∂t

(
t,G0

(−tϕ(λ), λ
)
, λ

) − ∇zV
(
t,G0

(−tϕ(λ), λ
)
, λ

)
g0

(
G0

(−tϕ(λ), λ
))

ϕ(λ)

= 0,

and in particular, for λ = ψ̂(t, z), it yields

∂V

∂t

(
t, z, ψ̂(t, z)

) − ∇zV
(
t, z, ψ̂(t, z)

)
g0(z) ϕ

(
ψ̂(t, z)

) = 0. (15.15)

On the other hand, differentiation with respect to t , λ in the equality V (t, z, ψ̂(t, z))

= ψ̂(t, z) yields

∂ψ̂

∂t
(t, z) = ∂V

∂t

(
t, z, ψ̂(t, z)

) + ∇λV
(
t, z, ψ̂(t, z)

)∂ψ̂

∂t
(t, z)

and

∇ψ̂(t, z) = ∇zV
(
t, z, ψ̂(t, z)

) + ∇λV
(
t, z, ψ̂(t, z)

)∇ψ̂(t, z).

Taking into account estimate (15.14), it is easy to see that the matrix In −
∇λV (t, z, ψ̂(t, z)) is invertible (here In stands for the (n × n)-identity matrix), and
it holds

∂ψ̂

∂t
(t, z) = [

In − ∇λV
(
t, z, ψ̂(t, z)

)]−1 ∂V

∂t

(
t, z, ψ̂(t, z)

)

and

∇ψ̂(t, z) = [
In − ∇λV

(
t, z, ψ̂(t, z)

)]−1∇zV
(
t, z, ψ̂(t, z)

)
.

Finally, combining the last two formulas with (15.15), we get the last conclusion of
the lemma. �

The next result is straightforward.

Corollary 15.6 The flow equation (15.11) allows a unique solution λ = ψ(t, x),
which can be represented as ψ(t, x) := ψ̂(t, z(t, x)), where recall that z(t, x) =
G(W(t))(x). Moreover, the mapping ψ(t, x) is smooth with respect to (t, x) and is
(Ft )-adapted for every fixed x.
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Notice now that the composition of flows G(p,x) is the solution of the following
Hamilton–Jacobi equations

∂G

∂ti
(p, x) = ∇G(p,x)gi(x), G(0, x) = x. (15.16)

For notational convenience, let us prove this formula only for m = 1. Obviously,
G1(t,G1(−t, x)) = x, and differentiation with respect to t yields

∂G1

∂t

(
t,G1(−t, x)

) − ∇G1
(
t,G1(−t, x)

)
g1

(
G1(t, x)

) = 0.

Replacing now x with G1(t, x), we get the desired result. Since z(t, x) =
G(W(t), x), by virtue of Proposition 15.1 and formula (15.16), we obtain

z(t, x) = x +
m∑

i=1

∫ t

0

∂G

∂ti

(
W(s), x

) ◦ dWi(s)

= x +
m∑

i=1

∫ t

0
∇G

(
W(s), x

)
gi(x) ◦ dWi(s)

= x +
m∑

i=1

∫ t

0
∇z(s, x)gi(x) ◦ dWi(s). (15.17)

Recall that the vector fields gi, i = 0, . . . ,m, are commuting. Hence,

G0
(
t0, z(t, x)

) = z
(
t,G0(t0, x)

)
,

and differentiation with respect to t0 yields

g0
(
G0

(
t0, z(t, x)

)) = ∇z
(
t,G0(t0, x)

)
g0

(
G0(t0, x)

)
.

By replacing x with G0(−t0, x) we get

g0
(
z(t, x)

) = ∇z(t, x)g0(x). (15.18)

We are now in position to state the main result of this section.

Theorem 15.7 Set u(t, x) := ϕ(ψ(t, x)). Then, under assumptions (A.1)–(A.4),
u(t, x) is a classical solution of the nonlinear SPDE (15.2).

Proof The stochastic rule of derivation stated in Proposition 15.1 applied to
u(t, x) = ϕ(ψ̂(t, z(t, x))) reads

du(t, x) =
〈

∇ϕ
(
ψ̂

(
t, z(t, x)

))
,
∂ψ̂

∂t

(
t, z(t, x)

)
〉

dt

+ (∇ϕ
(
ψ̂

(
t, z(t, x)

)))∗∇ψ̂
(
t, z(t, x)

) ◦ dz(t, x).
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Taking into account the system of PDEs (15.13) satisfied by ψ̂(t, z) and formula
(15.18), notice that the first term from the right-hand side is equal to

〈∇ϕ
(
ψ̂

(
t, z(t, x)

))
,∇ψ̂

(
t, z(t, x)

)
g0

(
z(t, x)

)〉
ϕ
(
ψ̂

(
t, z(t, x)

))

= 〈∇u(t, x), g0(x)
〉
u(t, x),

while by virtue of Lemma 15.2 and formula (15.17), the second term from the r.h.s.
is rewritten as

m∑

i=1

〈(∇ϕ
(
ψ̂

(
t, z(t, x)

)))∗∇ψ̂
(
t, z(t, x)

)∇z(t, x), gi(x)
〉 ◦ dWi(t)

=
m∑

i=1

〈∇u(t, x), gi(x)
〉 ◦ dWi(t).

The proof is complete. �

Remark 15.8 The random smooth vector function ψ(t, x) is a fundamental solution
of the SPDE (15.2) constructed via n linearly independent solutions. It is obtained as
the composition between the deterministic smooth mapping ψ̂(t, x) (which satisfies
the Hamilton–Jacobi equations (15.13)) and z(t, x), the fundamental solution of the
reduced SPDE (15.17). It fulfills the nonlinear SPDE

⎧
⎪⎨

⎪⎩

dψ(t, x) = 〈∇ψ(t, x), g0(x)〉 ϕ(ψ(t, x)) dt

+ ∑m
i=1〈∇ψ(t, x), gi(x)〉 ◦ dWi(t),

ψ(0, x) = x, t ∈ [0, T ], x ∈ R
n.

(15.19)

Remark 15.9 If we drop the commuting property of the vector fields g0, g1, . . . , gm,
one step forward would consist in assuming that the vector fields g1, . . . , gm are in
involution over R, i.e.,

[gi, gj ](x) =
m∑

k=1

αkgk(x) ∀x ∈ R
n,

with the scalars αk depending on gi, gj . In this case, we have a global gradient
representation of the form

∇pG(p,x) = (
g1

(
G(p,x)

)
, . . . , gm

(
G(p,x)

))
A(p),

where A(p) is a nonsingular (m × m)-matrix for every p ∈ R
m, not depending on

the origin x.
According to [20], there exist smooth vector fields qj (p), j = 1, . . . ,m, such that

∇pG(p,x)qj (p) = gj (G(p,x)), which implies

∇pH(p,x)qj (p) = −∇xH(p,x)gj (x).
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Consider the stochastic differential system

y(t) = λ +
m∑

j=1

∫ t

0
(−gj )

(
y(s)

) ◦ dWj (s),

which is obtained by taking only the “diffusion part” of (15.7). When solving the
auxiliary SDE

p(t) = −
m∑

j=1

∫ t

0
qj

(
p(s)

) ◦ dWj (s),

notice that the diffusion fields are not Lipschitz and do not have linear growth.
Define a C∞

0 function ρ(p) which is equal to 1 in the closed ball {p ∈ R
m |

|p| ≤ M}, where M is an arbitrary positive number. Set q̃j (p) := ρ(p)qj (p). The
SDE p(t) = −∑m

j=1

∫ t

0 q̃j (p(s)) ◦ dWj(s) satisfies the conditions of existence and
uniqueness of the solution, and let p̃(t) be its solution. Define now the stopping time
τ := inf{t ∈ [0, T ] | |p̃(t)| ≥ M}. It follows that the stopped process p̂(t) := p̃(t ∧τ)

takes values in BM and satisfies

p̂(t) = −
m∑

j=1

∫ t∧τ

0
qj

(
p̂(s)

) ◦ dWj (s).

If we assume that g0 commutes with each gj , j = 1, . . . ,m, it is easy to check that
the gradient representation for the stochastic flow x̂ϕ(t;λ) is given by x̂ϕ(t;λ) =
G(−p̂(t)) ◦ G0(−tϕ(λ))(λ) for t ∈ [0, τ ]. The results stated in Lemma 15.5 and
Theorem 15.7 remain valid, but the differential equations appearing there are satis-
fied only for t ∈ [0, τ ].

Using the same type of arguments, we can extend our analysis to SDEs of the
form

y(t) = λ +
d∑

i=1

∫ t

0
ϕi(λ)fi

(
y(s)

)
ds +

m∑

j=1

∫ t

0
gj

(
y(s)

) ◦ dWj(s),

t ∈ [0, T ]. (15.20)

Here we assume that

• f1, . . . , fd , g1, . . . , gm commute with respect to the usual Lie bracket;
• the vector fields g1, . . . , gm belong to C 2(Rn;R

n) with bounded partial deriva-
tives of first and second orders; f1, . . . , fd ∈ C 1

b(Rn;R
n), and their partial deriva-

tives are bounded;
• ϕ1, . . . , ϕd ∈ C 2(Rn) and admit bounded first-order partial derivatives.
• ρ := T MK < 1, where M := sup{|∇ϕi(x)|, x ∈ R

n, i = 1, . . . d} and K :=
sup{|fi(x)|, x ∈ R

n, i = 1, . . . , d}.
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Denote by Gj(t, x) = Gj(t)(x) the global flow associated to each complete vec-
tor field gj (x) and by Fi(t, x) = Fi(t)(x) the global flow generated by the com-
plete vector field fi(x). Set also the compositions of flows G(p)(x) = G(p,x) :=
G1(t1) ◦ · · · ◦ Gm(tm)(x) for p = (t1, . . . , tm) ∈ R

m and F(q)(x) = F(q, x) :=
F1(t1) ◦ · · · ◦ Fp(td)(x) for q = (t1, . . . , td) ∈ R

d .
The following lemma can be proved by combining the same type of arguments

with those leading to Lemma 15.5.

Lemma 15.10 There exists a (unique) smooth mapping ψ̂(t, z) such that

G
(
p
(
t, ψ̂(t, z)

))(
ψ̂(t, z)

) = z, ψ̂(0, z) = z.

Moreover,

∣
∣ψ̂(t, z) − z

∣
∣ ≤ T K

1 − ρ

∣
∣ϕ(z)

∣
∣,

and ψ̂(t, z) satisfies the Hamilton–Jacobi equation

∂ψ̂

∂t
(t, z) +

d∑

i=1

∇ψ̂(t, z) · fi(z) ϕi

(
ψ̂(t, z)

) = 0. (15.21)

We are in position to state the following:

Theorem 15.11 Under the assumptions from above, the stochastic flow associated
to SDE (15.20) has the form

ŷ(t;λ) = G
(
W(t)

) ◦ F
(
p(t, λ)

)
(λ), t ∈ [0, T ], λ ∈ R

n, (15.22)

where p(t, λ) := (tϕ1(λ), . . . , tϕd(λ)). In addition, the flow equation ŷ(t;λ) = x

admits the solution λ = ψ(t, x) := ψ̂(t, z(t, x)), where z(t, x) := G(−W(t))(x).

The proof of this theorem is quite similar to the proof of Theorem 15.7.

15.4 Applications

15.4.1 Pathwise Solutions of Burgers Equations with Stochastic
Perturbations

In this section we provide a construction of a solution of a system of Burgers equa-
tions with stochastic perturbations by using the results obtained in the previous sec-
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15 Functionals Associated with Gradient Stochastic Flows and Nonlinear SPDEs 411

tion. The SPDEs under consideration are given by

⎧
⎪⎪⎨

⎪⎪⎩

dui(t, x) = [ 1
2Δui(t, x) + 〈∇ui(t, x), u(t, x)〉]dt

+ ∑n
k=1

∂ui

∂xk
(t, x) dWk(t), t ∈ [0, T ],

ui(0, x) = ϕi(x), x ∈ R
n, i = 1, . . . , n.

(15.23)

Here (W(t)) is a standard n-dimensional Brownian motion defined on a complete
filtered probability space {Ω, F , {Ft},P }, ϕi ∈ C 2(Rn) with bounded first-order
derivatives, and the stochastic integral is the usual Itô integral.

We are looking for smooth solutions with respect to the space variable and which
are (Ft )-adapted for fixed x. Differentiation with respect to xl yields

∂ui

∂xl

(t, x) = ∂ϕi

∂xl

(x) +
n∑

k=1

∫ t

0

[
1

2

∂3ui

∂xl∂x2
k

(s, x) + ∂2ui

∂xl∂xk

(s, x)uk(s, x)

+ ∂ui

∂xk

(s, x)
∂uk

∂xl

(s, x)

]

ds +
n∑

k=1

∫ t

0

∂2ui

∂xl∂xk

(s, x) dWk(s),

where the derivatives with respect to xl have to be understood in the L2 sense,
and since the mapping u(t, ·) is smooth, they coincide with the classical ones. We
deduce

〈
∂ui

∂xl

(·, x),Wl(·)
〉

t

=
∫ t

0

∂2ui

∂x2
l

(s, x) ds.

Therefore, using formula (15.4), it is easy to see that system (15.23) can be rewritten
as

⎧
⎪⎨

⎪⎩

dui(t, x) = 〈∇ui(t, x),
∑n

k=1 uk(t, x)ek〉dt

+ ∑n
k=1〈∇ui(t, x), ek〉 ◦ dWk(t),

ui(0, x) = ϕi(x),

(15.24)

where the system {e1, . . . , en} stands for the canonical basis of R
n. Proceeding in

a similar way we did for (15.2), we associate the following system of characteris-
tics

⎧
⎪⎨

⎪⎩

dx̂(t;λ) = −∑n
k=1 ûk(t;λ)ek dt − ∑n

k=1 ek ◦ dWk(t),

x̂(0, λ) = λ ∈ R
n;

dûi(t, λ) = 0, t ∈ [0, T ], ûi (0, λ) = ϕi(λ).

(15.25)

It yields ûi (t, λ) = ϕi(λ), and x̂(t;λ) satisfies the system of SDEs

x̂(t;λ) = λ −
n∑

k=1

∫ t

0
ϕi(λ)ek ds −

n∑

k=1

∫ t

0
ek ◦ dWk(s)
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= λ +
n∑

k=1

∫ t

0
ϕi(λ)(−ek) ds

+
n∑

k=1

∫ t

0
(−ek) ◦ dWk(s), 0 ≤ t ≤ T . (15.26)

Assume that T K = ρ < 1, where K := sup{|∇ϕi(λ|;λ ∈ R
n, i = 1, . . . , n}. In the

setting of Theorem 15.11, d = m = n and fi(y) = gi(y) = −ei for 1 ≤ i ≤ n.
Hence, Fi(t, x) = Gi(t, x) = −tei + x, and for t = (t1, . . . , tn),

F(t, x) = G(t, x) = −
n∑

i=1

tiei + x = −t + x.

Set p(t, λ) := tϕ(λ), where ϕ(λ) = (ϕ1(λ), . . . , ϕn(λ)). Then

G
(
W(t)

) ◦ F
(
p(t, λ)

)
(λ) = −W(t) + F

(
tϕ(λ)

)
(λ) = −W(t) − tϕ(λ) + λ.

We apply now Theorem 15.11 and obtain the following:

Theorem 15.12 The stochastic flow x̂(t;λ) can be represented as x̂(t;λ) = λ −
tϕ(λ) − W(t), and the flow equation x̂(t;λ) = x has a unique solution given by
λ = ψ(t, x) = ψ̂(t, x +W(t)), where ψ̂(t, z) is the solution of the Hamilton–Jacobi
equations

⎧
⎨

⎩

∂ψ̂
∂t

(t, z) = ∑n
i=1

∂ψ̂
∂zi

(t, z)ϕi(ψ̂(t, z)),

ψ̂(0, z) = z.

Set ui(t, x) := ϕi(ψ(t, x)) for i = 1, . . . , n. Then u(t, x) = (u1(t, ), . . . , un(t, x)) =
ϕ(ψ(t, x)) is a solution of the system of stochastic Burgers equations (15.24).

15.4.2 A Filtering Problem for SDEs Associated with
Parameterized Backward Parabolic Equations

In the setting of Sect. 15.3, we consider the (slightly modified) SDE

{
dx(t) = ϕ(λ)g0(x(t)) dt + ∑m

i=1 gi(x(t)) ◦ dWi(t),

x(0) = λ
(15.27)

(which is obtained from the SDE (15.8) by simply replacing gi with −gi) and ad-
mitting as a solution the stochastic flow x̂ϕ(t, λ). The flow equation x̂ϕ(t, λ) = x,
with respect to the unknown λ, has a unique solution λ = ψ(t, x).
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Set x̂ϕ(s; t, x), t ≤ s ≤ T , the stochastic flow associated to the SDE

dx(s) = ϕ
(
ψ(t, x)

)
g0

(
x(s)

)
ds +

m∑

i=1

gi

(
x(s)

) ◦ dWi(s), (15.28)

obtained by means of the SDE (15.27) with parameter λ = ψ(t, x).
Our goal is to compute expectations of the form E(h(x̂ϕ(T ; t, x))), involving the

non-Markovian process x̂ϕ(s; t, x).
Usually, when one wants to compute u(t, x) defined as the expectation of

some functional depending on the final value ξ(T ; t, x) of some diffusion process
ξ(s; t, x), t ≤ s ≤ T , starting at time t from the point x, it is well known that the
function u(t, x) is the solution of some backward parabolic equation, called the Kol-
mogorov equation (see, for instance, [8], Theorem 6.1). This procedure cannot be
applied in our case if we take into account the non-Markovian nature of the process
involved.

Let h ∈ C 2(Rn) with bounded first-order partial derivatives. In order to com-
pute the expectation E(h(x̂ϕ(T ; t, x))), we consider the conditional expectation
v(t, x) := E[h(x̂ϕ(T ; t, x))|ψ(t, x)]. A direct computation of v(t, x) involves the
knowledge of the process ψ(t, x), for which a favorable situation indicates a non-
linear SPDE. A more suitable description of v(t, x) = u(t, x,ψ(t, x)) is obtained
by using the parameterized version u(t, x, λ), which is the solution of a backward
Kolmogorov equation with parameter.

Using the results obtained in Sect. 15.3, notice that the gradient representation of
the stochastic flow x̂ϕ(T ; t, x) is given by

x̂ϕ(T ; t, x) = G
(
W(T ) − W(t)

) ◦ G0
(
(T − t)ϕ

(
ψ(t, x)

))
(x). (15.29)

Set v(t, x) := E[h(x̂ϕ(T ; t, x))|ψ(t, x)] and yϕ(s; t, x, λ) := G(W(s) − W(t)) ◦
G0((s − t)ϕ(λ))(x) for t ≤ s ≤ T .

Since ψ(t, x) = ψ̂(t,G(−W(t), x)) (see Corollary 15.6) and ψ̂(t, z) is de-
terministic (recall Lemma 15.5), it follows that the random variables ψ(t, x)

and yϕ(T ; t, x, λ) are independent. Notice that x̂ϕ(T ; t, x) = yϕ(T ; t, x,ψ(t, x)).
Therefore, the Independence Lemma (see [18], Lemma 2.3.4) leads us to the repre-
sentation

v(t, x) = E
[
h
(
yϕ(T ; t, x, λ)

)]∣
∣
λ=ψ(t,x)

.

Define u(t, x;λ) := E[h(yϕ(T ; t, x, λ))]. Obviously, yϕ(s; t, x, λ) is the solution of
the SDE

y(s) = x + ϕ(λ)

∫ s

t

g0
(
y(r)

)
dr +

m∑

i=1

∫ s

t

gi

(
y(r)

) ◦ dWi(r), s ∈ [t, T ].

Clearly, yϕ(s; t, x, λ) is a Markovian process. Applying now Theorem 6.1 of [8], it
is straightforward that u(t, x;λ) satisfies the parameterized Kolmogorov backward
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parabolic equation
⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t

(t, x;λ) + 〈∇u(t, x;λ), g(x,λ)〉
+ 1

2

∑m
i=1〈D2u(t, x;λ)gi(x), gi(x)〉 = 0,

u(T , x;λ) = h(x), t ∈ [0, T ],
(15.30)

where g(x,λ) := g0(x)ϕ(λ) + 1
2

∑m
i=1 ∇gi(x)gi(x), and D2u stands for the Jaco-

bian matrix of u. The analysis from above can be summarized in the next statement

Theorem 15.13 Under assumptions (A.1)–(A.4), the conditional expectation
v(t, x) = E[h(x̂ϕ(T ; t, x))|ψ(t, x)] can be represented as

v(t, x) = u(t, x;λ)|λ=ψ(t,x),

where u(t, x;λ) is the solution of the backward parabolic equation (15.30). In ad-
dition, the expectation E(h(x̂ϕ(T ; t, x))) can be computed as

E
(
h
(
x̂ϕ(T ; t, x)

)) = E
(
v(t, x)

)
.
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Chapter 16
Pricing and Hedging of Rating-Sensitive Claims
Modeled by F-doubly Stochastic Markov Chains

Jacek Jakubowski and Mariusz Niewęgłowski

Abstract In this paper, we achieve two goals. First we give a formula describing
prices of defaultable rating-sensitive claims of general type. Secondly, we solve
the problem of replication of an arbitrary rating-sensitive claim on a market on
which we can trade in default free assets and a fixed number of defaultable general
rating-sensitive claims. The credit rating migration process is modeled by F-doubly
stochastic Markov chains, a broad class of processes which contains Markov chains
and is fully characterized by some martingale property.

Keywords Credit derivatives · Ex-dividend price · Cumulative price · Cash flow ·
Rating migration · Hedging · F-doubly stochastic Markov chain

Mathematics Subject Classification (2010) Primary 91G40 · Secondary 91G20 ·
60H30

16.1 Introduction

In this paper, we are interested in pricing and hedging of rating-sensitive claims of
general form.

The problem of modeling credit risk taking into consideration rating migra-
tion was proposed by Jarrow, Lando, and Turnbull [17]. They took Markov chains
to model time evolution of credit ratings. Jarrow et al. [17] considered both the
discrete- and continuous-time cases, and within this framework, they derived a val-
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uation formula for defaultable bonds expressed through risk-neutral transition prob-
abilities. Subsequently, Lando [19] extended the framework of Jarrow et al. [17]
by constructing a rating migration process which follows a conditional Markov
chain (see also Bielecki and Rutkowski [5] for a precise definition of conditional
Markov property). In Lando [19] and Bielecki and Rutkowski [5], the generator of
the credit rating process follows a matrix-valued stochastic process. We also stress
that Lando [19] has considered the problem of providing explicit formulas for some
credit derivatives connected with ratings, which is also of interest to us. Lando has
shown that, under the assumption that the generator matrix process has eigenvec-
tors constant in time, it is possible to solve the conditional Kolmogorov equation
and obtain explicit formulas for bond prices and rating-dependent payoffs. How-
ever, the structure of payoffs considered in [19] was very simple compared to ours:
only a terminal payoff contingent on rating at a terminal date was considered. We
also mention the recent work of Bielecki et al. [7], which deals with the problem
of pricing basket derivatives with rating migrations in a very efficient Markovian
setting. Recently Hurd and Kuznetsov [12, 13] introduced so-called affine Markov
chains models for valuation of basket credit derivatives with rating migrations. They
constructed rating processes as continuous Markov chains with time change via an
independent affine process. They showed how to price efficiently simple instruments
such as defaultable bonds and more complicated ones like CDO’s tranches.

The topic of hedging of credit risk was started by Blanchet and Jeanblanc [9] and
also Belanger, Shreve, and Wong [3]. In Blanchet and Jeanblanc [9], the martingale
representation for some class of payoffs is derived, and then a self-financing trading
strategy under the H hypothesis is calculated. Bielecki, Jeanblanc, and Rutkowski
[6] examine the problem of pricing and hedging of defaultable claims within Marko-
vian setting. This allows them to use PDE techniques for describing prices and hedg-
ing strategies for defaultable claims which are attainable. Bielecki, Jeanblanc, and
Rutkowski [8] derive the dynamic of a general defaultable claim under a martingale
measure without assuming the H hypothesis. Then they show that in the market with
a family of single names CDS, the value of a replication portfolio of an attainable
claim coincides with the cumulated price of this claim. Therefore the risk-neutral
pricing of claims is supported by replication of these claims by dynamic trading
strategies. This holds under the H hypothesis. Subsequently, they generalized these
results to a market with several correlated credit names and to pricing and hedg-
ing of the so-called first-to-default claims. We emphasize that all these results are
proved in the case without rating migrations. In Sect. 16.2, we consider the general
notion of pricing and hedging of payment stream. We introduce the notions of ex-
dividend price, cumulative price, D-financing portfolio, admissibility for a process
D describing total cash flows. To model rating migration, we use F-DS Markov
chains. This class of processes contains Markov chains and other processes usually
used to model rating migrations. Also the constructions given by Lando [19] and
Bielecki and Rutkowski [5] are F-DS Markov chains. We describe F-DS Markov
chains in Sect. 16.3. In Sect. 16.4, we consider the problem of pricing defaultable
rating-sensitive claims. By a defaultable rating-sensitive claim we mean a classical
one broadened by a migration process and payoffs connected with rating changes.
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We give a general formula for the ex-dividend price process of defaultable rating-
sensitive claim in terms of processes defining this claim and characteristics of the
rating migration process (see Theorem 16.38). This generalizes the known results
obtained for the case without rating migration (see, e.g., Bielecki, Jeanblanc, and
Rutkowski [8]). As an example, we give formulas for some known claims such as
a defaultable bond with fractional recovery of par value, Credit Sensitive Note and
Credit Default Swap. Section 16.5 is devoted to problems of hedging general rating-
sensitive claims. We prove that by trading in default free assets and fixed number
of general defaultable rating-sensitive claims, we can replicate an arbitrary rating-
sensitive claim. We find appropriate martingale representations, which allows us to
construct replication strategies.

This paper significantly extends the results of [14], where only the problem of
pricing rating-sensitive claims was considered.

16.2 General Notion of Hedging a Payment Stream

We consider processes on a complete probability space (Ω, F ,P) with filtration G

satisfying the “usual conditions.”
Let D be a given stochastic process which represents total cash flows (dividends)

generated by some unspecified claim up to time t . We make the following assump-
tions concerning D:

1. D is a càdlàg process of finite variation.
2. D0 = 0, that is, there are no payments at t = 0.
3. Dt = Dt∧T , which means that D matures at T .

Now, for a given cash flow process D, we introduce a counterpart of the notion
of self-financing strategy. We assume that an investor can invest in a money account
with price process denoted by B and satisfying

dBt = rtBt dt, B0 = 1,

and some m dividend paying assets with price process (given by the market) denoted
by Y = (Y 1, . . . , Ym)�, which is assumed to be a semimartingale. While holding
assets, we get some cash flows (dividends). By F = (F 1, . . . ,Fm)� we denote the
process of cumulated cash flows. The process F is supposed to satisfy the same
conditions as D. By Vt (φ) we denote the wealth of the portfolio held by the investor
at time t , i.e., Vt (φ) := ψtBt +〈ϕt , Yt 〉, where ϕ = (ϕ1, . . . , ϕm)� is a G-predictable
stochastic process, and ψ is a G-adapted stochastic process. Considering dividend
paying assets, it is convenient to introduce the following process:

Yc
t := Yt + Bt

∫

�0,t �

1

Bu

dFu,

we refer to Y c as the cumulative price process (see also Bielecki et al. [8]). This cu-
mulative price process represents the (ex-dividend) price plus the dividends invested
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in the money account. Let Y c∗
t := B−1

t Y c
t denote the discounted cumulative prices

process. The following definition of martingale measure generalizes the notion of
martingale measure for the market with dividend paying assets (see also Duffie [11,
Sect. 6.L]).

Definition 16.1 A probability measure Q equivalent to P is called a martingale
measure (spot) for the market (B, (Y,F )) if the discounted cumulative price process
Y c∗ is a G-martingale under Q.

Assumption EMM In this paper, we assume that the set of equivalent martingale
measures for the market (B, (Y,F )) is nonempty.

Remark 16.2 If primary assets do not pay dividends, i.e., F ≡ 0, then the above
notion of martingale measure is well known from classical arbitrage pricing theory.
If primary assets pay dividends, then the definition of martingale measure implies
that for each t ≤ T , we have

Y ∗
t +

∫

�0,t �

1

Bu

dFu = EQ

(

Y ∗
T +

∫

�0,T �

1

Bu

dFu

∣
∣
∣
∣Gt

)

,

and this gives

Yt = BtEQ

(
YT

BT

+
∫

�t,T �

1

Bu

dFu

∣
∣
∣
∣Gt

)

. (16.1)

Throughout the rest of the paper, we make the following assumption:

Assumption INT-1 For a given payment process D maturing at T < ∞, we assume
that for some martingale measure Q,

EQ

(∫

�0,T �

1

Bu

d|D|u
)

< ∞,

where |D| denotes the total-variation process of D.

In the following, we are going to consider dividend paying securities; for such
securities, it is common to define their price at time t ∈ �0, T � as the conditional
expectation of the integral over the time interval �t, T � of the discount factor pro-
cess with respect to the dividend flow process D (see, e.g., Duffie [11] or Bielecki
et al. [8]). The natural idea that calculating the value at time t we take only dis-
counted future cash flows (from the time interval �t, T �) goes back to Lucas [21]
(see also a recent paper of Aase [1]).

Definition 16.3 The ex-dividend price S associated with the payment process D is
defined, for every t ∈ [0, T ], by setting

St = BtEQ

(∫

�t,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

.

www.TechnicalBooksPDF.com



16 Pricing and Hedging of Rating-Sensitive Claims 421

Assumption INT-1 immediately implies that the ex-dividend price is well defined
for each t ∈ �0, T �, and moreover ST = 0. As was observed in Bielecki et al. [4], if
assets mature at T and their value comes only from their cash flows, this means that
if Yt = 0 for t ≥ T , we see immediately by (16.1) that the price of the asset given by
the market is equal to the ex-dividend price of the asset. In the following, it is also
convenient to introduce the notion of cumulative price of the payment process D.

Definition 16.4 The cumulative price Sc for the payment process D equals, for
every t ∈ [0, T ],

Sc
t = St + Bt

∫

�0,t �

1

Bu

dDu = BtEQ

(∫

�0,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

. (16.2)

Remark 16.5

(a) From Assumption INT-1 it follows that

S
c,∗
t := Sc

t B
−1
t = EQ

(∫

�0,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

(16.3)

is a G-martingale under Q.
(b) Consider a single payment X at T . Then the corresponding dividend process D

equals Dt = X1�T ,∞[(t), and the ex-dividend price process S is different from
the cumulative price process Sc only at maturity time, i.e., we have

St = Sc
t 1�0,T �(t).

We will show that the existence of a replication portfolio for D implies that
at given t , the value of replication portfolio equals the ex-dividend price. Before
we do this, we need to introduce appropriate notions of self-financing strategy and
replication of the payment process D. The following definition generalizes the stan-
dard idea of self-financing portfolio to the case of assets with cash flows (see also
Karatzas and Shreve [18, Sect. 2]).

Definition 16.6 We call φ = (ψ,ϕ) a D-financing portfolio for the payment process
D if the following condition holds:

Vt(φ) = V0(φ) +
∫ t

0
ψu dBu +

∫

�0,t �
〈ϕu, dYu + dFu〉 − Dt. (16.4)

The class of all D-financing trading strategies (portfolios) for the payment process
D is denoted by Φ(D).

Notice that for φ ∈ Φ(D), we have

VT (φ) − Vt (φ) =
∫

�t,T �
ψu dBu +

∫

�t,T �
〈ϕu, dYu + dFu〉 − (DT − Dt). (16.5)
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Intuitively, this D-financing condition means that the change in the portfolio value
is due to gains from investing in primary assets and that only inflows and outflows
of funds are made through the dividend process D. Note also that Vt (φ) should be
viewed as the wealth of the portfolio after paying liabilities (or receiving payments).
If we take the point of view of the seller of D who is obliged to deliver payments
according to D, then the process of cumulated cash flows D plays a role of con-
sumption.

We have the following condition equivalent to the D-financing condition.

Lemma 16.7 A portfolio φ is D-financing iff

V ∗
t (φ) := Vt (φ)

Bt

= V ∗
0 (φ) +

∫

�0,t �

〈
ϕu, dY c∗

u

〉 −
∫

�0,t �

1

Bu

dDu.

Proof Assume that φ is a D-financing portfolio. Then Itô’s lemma yields

d

(
Vt(φ)

Bt

)

= 1

Bt

dVt (φ) + Vt (φ)d

(
1

Bt

)

= 1

Bt

(
ψtdBt + 〈ϕt , dYt + dFt 〉 − dDt

) − Vt (φ)

Bt

rt dt,

and hence we obtain

d

(
Vt (φ)

Bt

)

=
(

ψtrtdt +
〈

ϕt , dY ∗
t + 1

Bt

dFt

〉

+ 〈ϕt , Yt 〉
Bt

rt dt − 1

Bt

dDt

)

− Vt (φ)

Bt

rt dt =
〈

ϕt , dY ∗
t + 1

Bt

dFt

〉

− 1

Bt

dDt,

which completes the proof of the first part. To prove the converse, we proceed in a
analogous way. �

Remark 16.8 Lemma 16.7 implies that if we know an investment strategy ϕ for
risky assets and the initial value x of the D-financing portfolio φ = (ψ,ϕ), then an
investment ψ in a money account is uniquely determined by the formula

ψt = V ∗
t (φ) − 〈

ϕt , Y
∗
t

〉 = V ∗
0 (φ) +

∫

�0,t �

〈
ϕu, dY c∗

u

〉 −
∫

�0,t �

1

Bu

dDu − 〈
ϕt , Y

∗
t

〉

and the condition that V ∗
0 (φ) = x.

Following an idea of Karatzas and Shreve [18] and Møller [22], we can now
define what we mean by replication of a given stream D.

Definition 16.9 We say that a portfolio φ = (ψ,ϕ) replicates a payments stream D

if

1. the portfolio φ is D-financing.
2. VT (φ) = 0 P a.s.
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If there exists a portfolio that replicates a given payment stream D, then we say that
the stream D (or just claim D) is attainable.

Remark 16.10 We stress that the first notion of hedging in this spirit can be found
in Sect. 2 of Karatzas and Shreve [18]. They introduced the general European con-
tingent claim which corresponds to our dividend process D. A portfolio hedges D

if there exists a (−D)-financed portfolio with terminal wealth VT (φ) ≥ 0 such that
an agent who has sold the claim D is still solvent at the maturity of the claim. How-
ever, Karatzas and Shreve worked within the setting of a multidimensional complete
Black–Scholes market, and they considered only nondividend paying primary as-
sets. Møller [22] defined attainability of the payment process in the form given by
the above Definition 16.9 (see also Schweizer [23]). Møller also treated nondividend
paying primary assets, and he was mainly concerned with risk minimization of the
payment stream and not with the notion of attainability in the context of replication.
Definition 16.9 appears also in Dana and Jeanblanc [10, Definition 7.3.1] for the
market described by Itô processes.

Remark 16.11 Definitions 16.6 and 16.9 imply that if we start trading from an initial
investment V0(φ) and trade according to φ, then at maturity T , we will cover all
liabilities, i.e.,

DT = V0(φ) +
∫

�0,T �
ψu dBu +

∫

�0,T �
〈ϕu, dYu + dFu〉,

and hence V0(φ) can be viewed as the replication price for the payment stream D

viewed from time t = 0.

Now, we give a condition which is equivalent to condition (2) of Definition 16.9,
provided that φ ∈ Φ(D). This equivalent condition should be viewed as a dynamic
version of the property described in Remark 16.11.

Lemma 16.12 Assume that φ is a D-financing portfolio. Then the following condi-
tions are equivalent:

1. φ replicates D.
2. For every t ∈ [0, T ], we have

DT − Dt = Vt (φ) +
∫

�t,T �
ψu dBu +

∫

�t,T �
〈ϕu, dYu + dFu〉.

Proof The equivalence is obvious from (16.5) and Definition 16.9. �

The preceding lemma says that for a D-financing portfolio φ that replicates D,
the value Vt (φ) can be viewed, at each time t , as the replication price for the process
of remaining payments, i.e., for (Ds − Dt)s≥t .
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Definition 16.13 Let Q be a martingale measure. We say that a D-financing port-
folio φ = (ψ,ϕ) is Q-admissible if the process of discounted gains

G∗
t (φ) :=

∫

�0,t �

〈
ϕs, dY c∗

s

〉

follows a martingale under Q. The class of all Q-admissible trading strategies which
are D-financing is denoted by Φ(D,Q).

If there exists a replication portfolio for D which is Q-admissible, then its value
process is given by the risk-neutral valuation formula. To prove this fact, we need
Assumption INT-1 on integrability of the discounted cash flow process D.

Proposition 16.14 Assume that φ = (ψ,ϕ) is D-financing. These statements are
equivalent:

(i) φ is Q-admissible and replicates D,
(ii) for every t ∈ [0, T ],

Vt (φ) = BtEQ

(∫

�t,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

. (16.6)

Proof Let us observe that by Assumption INT-1 the RHS of (16.6) is well defined
for every t ∈ [0, T ].

(i) ⇒ (ii) Using Lemma 16.7, we have

V ∗
T (φ) − V ∗

t (φ) =
∫

�t,T �

〈
ϕu, dY c∗

u

〉 −
∫

�t,T �

1

Bu

dDu,

and taking expectation yields

EQ

(
V ∗

T (φ) − V ∗
t (φ)

∣
∣Gt

) = EQ

(∫

�t,T �

〈
ϕu, dY c∗

u

〉
∣
∣
∣
∣Gt

)

− EQ

(∫

�t,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

.

Since φ replicates D, we have VT (φ) = 0. Admissibility of ϕ implies that the first
term on the RHS vanishes, which yields (16.6).

(ii) ⇒ (i) By (16.6), VT (φ) = 0, so φ replicates D, and

V ∗
t (φ) +

∫

�0,t �

1

Bu

dDu = EQ

(∫

�0,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

.

Since the RHS is a martingale, application of Lemma 16.7 completes the proof. �

This proposition gives a justification of the risk-neutral valuation formula based
on the replication arguments. Usually using the term price for the RHS of (16.6) is
justified by assuming that the asset with a given dividend process D is tradable and
by considering a self-financing buy-and-hold trading strategy (see, e.g., Bielecki and
Rutkowski [4, Sect. 2.1.3]).
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We have proved that under a fixed martingale measure Q, the value process
of a D-financing Q-admissible portfolio that replicates the payment stream D is
uniquely determined. We also expect that in the case of several martingale measures
and a claim which is attainable under each of them, the price of the claim is inde-
pendent of the choice of an equivalent martingale measure. To prove this conjecture,
we need, as in the classical case, additional assumptions and a different class of ad-
missible trading strategies.

Definition 16.15 We call a D-financing strategy φ ∈ Φ(D) admissible if

(i) φ ∈ Φ(D,Q) for some equivalent martingale measure Q;
(ii) φ is tame for D, i.e., for some K ∈ R and for each t ∈ [0, T ], we have V ∗

t (φ) +∫
�0,t �

1
Bu

dDu ≥ K .

Proposition 16.16 Let Q1 and Q2 be two equivalent martingale measures, and D a
payment process. Assume that there exist tame strategies φ1 ∈ Φ(D,Q1) and φ2 ∈
Φ(D,Q2) which replicate D. Then

EQ1

(∫

�t,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

= EQ2

(∫

�t,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

.

Proof Follows by standard arguments. �

Thus, we have proved that the price of a claim which is replicated by an admis-
sible strategy is independent of the choice of an equivalent martingale measure.

Similarly to the classical case, a representation of the martingale Sc∗, i.e., the
discounted cumulated price of D, as a stochastic integral with respect to Y c,∗, gives
a replication strategy for D.

Lemma 16.17 Suppose that the martingale Sc∗ given by (16.3) has a representation

Sc∗
t = Sc∗

0 +
∫

�0,t �

〈
ϕu, dY c∗

u

〉
, (16.7)

where ϕ is a G-predictable process. Then the portfolio φ = (ψ,ϕ), where

ψt = Sc∗
t − 〈

ϕt , Y
∗
t

〉 −
∫

�0,t �

1

Bu

dDu,

replicates the payment stream D.

Proof Notice that the portfolio φ is D-financing, since

V ∗
t (φ) =

((

Sc∗
t −

∫

�0,t �

1

Bu

dDu

)

− 〈
ϕt , Y

∗
t

〉
)

+ 〈
ϕt , Y

∗
t

〉

= Sc∗
0 +

∫

�0,t �

〈
ϕu, dY c∗

u

〉 −
∫

�0,t �

1

Bu

dDu.
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Moreover, VT (φ) = 0. Indeed,

VT (φ) = 〈ϕT ,YT 〉 + ψT BT

= 〈ϕT ,YT 〉 +
(

Sc∗
T −

∫

�0,T �

1

Bu

dDu

)

BT − 〈
ϕT ,Y ∗

T

〉
BT = 0,

by (16.3). �

We emphasize that we consider hedging of a general dividend process in a market
with dividend paying primary assets, which is not a standard case. We also stress that
a replication strategy for a single payment in the sense of Definition 16.9 coincides
with a replication strategy in the classical sense for t < T . These two strategies
differ at t = T in the money account.

16.3 Doubly Stochastic Markov Chains

In this section we describe doubly stochastic Markov chains and present several
results that are used in the subsequent sections. For the convenience of the reader,
we repeat the relevant material from Jakubowski and Niewęgłowski [16] without
proofs, thus making our exposition self-contained. By F

X we denote the filtration
generated by a process X. We always assume that F

X satisfies the “usual condi-
tions.”

Definition 16.18 A càdlàg process C is called an F-doubly stochastic Markov chain
with state space K ⊂ Z = {. . . ,−1,0,1,2, . . .} if there exists a family of stochastic
matrices P(s, t) = (pi,j (s, t))i,j∈K for 0 ≤ s ≤ t such that

1. the matrix P(s, t) is Ft -measurable, and P(s, ·) is F-progressively measurable,
2. for any t ≥ s ≥ 0 and every i, j ∈ K, we have

P
(
Ct = j

∣
∣ F∞ ∨ F C

s

)
1{Cs=i} = 1{Cs=i}pi,j (s, t). (16.8)

The process P is called the conditional transition probability process of C.

The class of F-DS Markov chains contains many well-known processes.

Example 16.19 A Markov chain is an F-DS Markov chain with respect to the trivial
filtration F.

Example 16.20 Let X be a compound Poisson process with jumps in Z. By stan-
dard calculations we see that X is an F-DS Markov chain with respect to the trivial
filtration F.
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Example 16.21 (Cox process) A Cox process C with intensity λ is an F
λ-DS

Markov chain with K = N. Using the definition of a Cox process, we can calcu-
late explicitly transition probabilities

pi,j (s, t) =
⎧
⎨

⎩

(
∫ t
s

λu du)j−i

(j−i)! e−∫ t
s λu du for j ≥ i,

0 for j < i.

Example 16.22 (Time-changed discrete Markov chain) Assume that C̄ is a discrete-
time Markov chain with values in K = {1, . . . ,K}, N is a Cox process, and the
processes (C̄k)k≥0 and (Nt )t≥0 are independent and conditionally independent
given F∞. Then the process Ct := C̄Nt

is an F-DS Markov chain (see Jakubowski
and Niewęgłowski [15, Theorems 7 and 9]).

Example 16.23 The process C obtained by the canonical construction in Bielecki
and Rutkowski [4] is an F-DS Markov chain.

For F-DS Markov chains, we introduce the concept of intensity, analogous to
that for continuous-time Markov chains.

Definition 16.24 We say that an F-DS Markov chain C has an intensity if there
exists an F-adapted matrix-valued process Λ = (Λ(s))s≥0 = (λi,j (s))s≥0 such that:

(1) Λ is locally integrable, i.e., for any T > 0,
∫

�0,T �

∑

i∈K

∣
∣λi,i(s)

∣
∣ds < +∞; (16.9)

(2) Λ satisfies the conditions:

λi,j (s) ≥ 0 ∀i, j ∈ K, i �= j, λi,i (s) = −
∑

j �=i

λi,j (s) ∀i ∈ K, (16.10)

the Kolmogorov backward equation: for all v ≤ t ,

P(v, t) − I =
∫ t

v

Λ(u)P (u, t) du, (16.11)

the Kolmogorov forward equation: for all v ≤ t ,

P(v, t) − I =
∫ t

v

P (v,u)Λ(u)du. (16.12)

A process Λ satisfying the above conditions is called an intensity of the F-DS
Markov chain C.

Remark 16.25

(a) The solution to ODEs (16.11) and (16.12) is an invertible matrix, and by Q(s, t)

we denote the inverse of P(s, t). The inverse matrix Q(s, t) is a solution of the
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following (random) ODE:

∂Q(s, t)

∂t
= −ΛtQ(s, t) dt, Q(s, s) = I.

(b) The conditional transition matrices (P (t, u))0≤t≤u satisfy the Chapman–
Kolmogorov equations, i.e., for 0 ≤ u ≤ t , we have

P(0, u) = P(0, t)P (t, u).

If C has an intensity matrix Λ, then P(0, t) is invertible, which implies that we
can write

P(t, u) = Q(0, t)P (0, u). (16.13)

(c) If C is an F-DS Markov chain, then F is immersed in F ∨ F
C , i.e., every F-

martingale is an F ∨ F
C -martingale (for proof, see [16, Proposition 3.4]).

Theorem 16.26 Let (Λ(t))t≥0 be an arbitrary F-adapted matrix-valued stochastic
process which satisfies conditions (16.9) and (16.10). Then there exists an F-DS
Markov chain with intensity (Λ(t))t≥0.

Further, the following theorem will be crucial:

Theorem 16.27 Let G̃ = (G̃t )t≥0, where G̃t := F∞ ∨ F C
t . Suppose that (Ct )t≥0 is

a K-valued stochastic process and (Λ(t))t≥0 is a matrix-valued process satisfying
(16.9) and (16.10). The following conditions are equivalent:

1. The process C is an F-DS Markov chain with an intensity Λ.
2. The process M defined by

Mt := Ht −
∫ t

0
Λ�

u Hu du, (16.14)

where Hi
t = 1{Ct=i}, and Ht := (H 1

t , . . . ,HK
t )� is a G̃-local martingale.

3. The process L defined by

Lt := Q�(0, t)Ht = H0 +
∫

�0,t �
Q�(0, u) dMu (16.15)

is a G̃-local martingale.

Remark 16.28 In a view of the above characterization, the class of F-DS Markov
chains can be described as the class of processes that behave like time-inhomogen-
eous Markov chains when conditioned on F∞. The word behave should be under-
stood by means of a behavior of F∞-conditional transition probabilities.

We say that a given random time ρ avoids F-stopping times if P(ρ = σ) = 0 for
every F-stopping time σ .
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Proposition 16.29 Let C be an F-DS Markov chain with an intensity, τ0 = 0, and let

τk := inf {t > τk−1 : Ct �= Cτk−1}. (16.16)

For k ≥ 1, the stopping time τk avoids F-stopping times, provided that τk < ∞ a.s.

16.4 Valuation of Defaultable Rating-Sensitive Claims with
Ratings Given by a Doubly Stochastic Markov Chain

16.4.1 Description of Claims

We consider an arbitrage-free market with finite horizon on which defaultable in-
struments are also traded. We denote by F the reference filtration corresponding
to observation of the market without credit rating, i.e., a filtration corresponding
to the interest rate risk and other market factors that drive the credit risk. C is a
credit rating process which takes values in the set of rating classes K = {1, . . . ,K}
with the unique absorbing state K . If K = 2, then it is understood that there are
only two states, nondefault and default. We assume that the process C is càdlàg.
Let Gt = Ft ∨ F C

t . By a defaultable rating-sensitive claim we mean a classical one
broadened by a migration process.

Definition 16.30 By a defaultable rating-sensitive claim maturing at T we mean a
quintuple (X,A,Z,C, τ), where X = (X1, . . . ,XK−1)� is a (K − 1)-dimensional
vector of FT -measurable random variables, A = (A1, . . . ,AK−1)� is a (K − 1)-
dimensional vector-valued F-progressively measurable stochastic process of finite
variation, Z is an F-predictable K × K-dimensional matrix-valued process with
zero on the diagonal, C is a càdlàg process with values in K, and τ is a positive
random variable defined by

τ := inf {t ≥ 0 : Ct = K}.
In this definition, X describes the promised payoff which is contingent on rating

at maturity T , i.e., the payoff is equal to Xi , provided that {CT = i}; the process
A models the process of promised dividends which can depend on current credit
rating; the processes Zi,j describe the payments at times when the rating changes
from i to j ; in particular, Zj,K specifies the recovery payment at the default time τ ,
provided that before the default time, we are in the state j ; and C is the credit rating
process. This definition of claim is very general and covers many different types of
claims.

Remark 16.31 If we put Xi = Y for each i, where Y is FT -measurable, bounded
random variable, then the promised payment depends only on the default time:

K−1∑

i=1

Xi1{CT =i} = Y

K−1∑

i=1

1{CT =i} = Y1{CT �=K} = Y1{τ>T }.
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Remark 16.32 Since

K−1∑

i=1

∫

�0,t∧T �
Zi,K

u dH i,K
u =

K−1∑

i=1

Zi,K
τ 1{0<τ≤t∧T ,Cτ−=i} = Z

Cτ−,K
τ 1{0<τ≤t∧T },

the recovery process allows recovery depending on the rating of the bond before the
default time τ .

Now, we define the dividend process which describes the cash flows from the
claim in the interval [0, T ].

Definition 16.33 The dividend process D = (Dt )t≥0 of the claim (X,A,Z,C, τ)

maturing at T equals, for t ≥ 0,

Dt =
K−1∑

i=1

(

XiHi
T 1�T ,+∞�(t) +

∫

�0,t∧T �
Hi

u dAi
u +

∑

j �=i∈K

∫

�0,t∧T �
Z

i,j
u dH

i,j
u

)

.

(16.17)

Remark 16.34 For fixed i, if at time t the rating process changes from state i to
state j , then the promised dividend Ai

t − Ai
t− is not passed over to the holder of

the claim, and if the rating process changes from some j to i, then the promised
dividend Ai

t − Ai
t− is passed over to the holder of the claim.

Example 16.35 Consider a defaultable bond with fractional recovery of par value.
In this case, the bond’s holder receives at maturity time T its face value (say 1 unit
of cash), provided that default did not occur before or at T . If the default occurred
before or at time T , the recovery δCτ− is paid at the default time τ to the bond holder.
So, the recovery payment depends on the predefault rating Cτ−, and it is assumed
that the recovery δi ∈ [0,1) is a fixed number for each i ∈ K \ K . By taking

Xi = 1, Ai = 0, Zi,K = δi for i = 1, . . . ,K − 1, Zi,j = 0 for j �= K,

we see that a defaultable bond is a claim in the sense of our definition. The dividend
process for such a claim equals

Dt = 1{τ>T }1�T ,+∞�(t) + δCτ−1{0<τ≤t∧T }.

Example 16.36 Another example is a defaultable credit-sensitive note. It is a cor-
porate bond with coupons linked to the rating of corporation. The coupons of this
note are paid at prespecified coupon dates 0 < T1 < T2 < · · · < Tn if default does
not arise and the value of the coupon is contingent on rating corporate at the coupon
date. If a default occurred before or at time T , the recovery δCτ− is paid at the default
time τ to the bond holders. It is assumed that δi ∈ [0,1) is fixed for each i ∈ K \ K .
So

Xi = 1, Zi,K = δi for i ≤ K − 1, Zi,j = 0 for j �= K,
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Ai
t =

n∑

j=1

1{t≥Tj }di,j ,

where di,j are fixed constants chosen in advance, and the dividend process of this
note is given by

Dt = 1{τ>T }1�T ,+∞�(t) +
K−1∑

i=1

∫

�0,t∧T �
δi dHi,K

u +
K−1∑

i=1

∫

�0,t∧T �
Hi

u dAi
u.

Example 16.37 We can consider modification of the example above with Ai
t = di t ,

which corresponds to continuous payments at the rate di , provided that at time t the
rating is equal to i. The dividend process of this note is given by

Dt = 1{τ>T }1�T ,+∞�(t) +
K−1∑

i=1

∫

�0,t∧T �
δi dHi,K

u +
K−1∑

i=1

∫

�0,t∧T �
Hi

u di du.

16.4.2 Pricing of Rating-Sensitive Claims

Now, we consider the problem of pricing of rating-sensitive claims. We put our-
selves in an arbitrage-free framework, which means that we assume existence of a
spot martingale measure Q for the underlying market. We fix Q in what follows.
As usual, the spot martingale measure Q is a measure related to the choice of the
saving account B as a numéraire. Then the price process discounted by B of any
tradable security (nondividend paying) is a martingale under Q. We assume that the
dynamics of saving account B is given by

dBt = rtBt dt, B0 = 1,

where r is a nonnegative F-progressively measurable stochastic process. So B−1 is
a discount factor. In what follows, we assume that the process C of rating migration
is an F-DS Markov chain under Q with intensity process Λ which satisfies the
following integrability condition:

EQ

(∫

�0,T �

∑

i∈K

∣
∣λi,i(s)

∣
∣ds

)

< ∞. (16.18)

In this subsection, conditional expectations are calculated under spot martingale
measure Q; hence, for short, we shall write E instead of EQ.

The main theorem of this subsection gives a convenient form of the ex-dividend
price process S of a defaultable rating-sensitive claim. It generalizes the results of
Bielecki et al. [8] obtained for K = 2.
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Theorem 16.38 Let (X,A,Z, τ,C) be a defaultable rating-sensitive claim with X,
Z, A bounded. For t < T , the value of ex-dividend price is given by the formula

St1{Ct=i} = 1{Ct=i}
K−1∑

j=1

BtE

(
Xjpi,j (t, T )

BT

+
∫

�t,T �
B−1

u pi,j (t, u) dA
j
u

+
∫

�t,T �

K∑

k=1

Z
j,k
u

Bu

pi,j (t, u)λj,k(u) du

∣
∣
∣
∣Ft

)

. (16.19)

In the proof of theorem, we need the following lemmas which generalize results
of Bielecki et al. [4, Corollary 5.1.1, Propositions 5.1.1, and 5.1.2] to the case of
multiple ratings. In the proofs, we will use the immersion property of filtrations
connected with F-DS Markov chains.

Lemma 16.39 Let X be a bounded FT -measurable random variable, and j ∈ K \
K . Then

E(X1{CT =j}|Gt ) =
K−1∑

i=1

1{Ct=i}E
(
Xpi,j (t, T )

∣
∣Ft

)
.

Proof This is an easy consequence of the definition of an F-DS Markov chain and
the immersion property (see [16, Proposition 3.4]). Indeed,

E(X1{CT =j}|Gt ) = E
(
XE

(
1{CT =j}

∣
∣F∞ ∨ F C

t

)∣
∣Gt

)

=
K−1∑

i=1

1{Ct=i}E
(
Xpi,j (t, T )

∣
∣Gt

)

=
K−1∑

i=1

1{Ct=i}E
(
Xpi,j (t, T )

∣
∣Ft

)
.

�

Lemma 16.40 Let Z be a bounded F-predictable stochastic process, and j ∈ K \K .
Under condition (16.18), for k �= j , we have

E

(∫

�t,T �
Zu dH

j,k
u

∣
∣
∣
∣Gt

)

=
K−1∑

i=1

1{Ct=1}E
(∫

�t,T �
Zupi,j (t, u)λj,k(u) du

∣
∣
∣
∣Ft

)

.

(16.20)

Proof Fix k �= j ∈ K. Because

∫

�t,T �
Zu dH

j,k
u =

∫

�t,T �
Zu dM

j,k
u +

∫

�t,T �
ZuH

j
u λj,k(u) du,
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and Mj,k is a martingale and Z a bounded process, we have

E

(∫

�t,T �
Zu dH

j,k
u

∣
∣
∣
∣Gt

)

= E

(∫

�t,T �
ZuH

j
u λj,k(u) du

∣
∣
∣
∣Gt

)

= I.

Using the conditional version of Fubini’s theorem (see, e.g., Applebaum [2, p. 12]),
the definition of an F-DS Markov chain, hypothesis H, and taking G̃t := F∞ ∨ F C

t ,
we have

I =
∫

�t,T �
E

(
ZuH

j
u λj,k(u)

∣
∣Gt

)
du =

∫

�t,T �
E

(
E

(
ZuH

j
u λj,k(u)

∣
∣G̃t

)∣
∣Gt

)
du

=
∫

�t,T �
E

(

Zuλj,k(u)

(
K−1∑

i=1

1{Ct=i}pi,j (t, u)

)∣
∣
∣
∣
∣

Gt

)

du

=
K−1∑

i=1

1{Ct=i}
∫

�t,T �
E

(
Zupi,j (t, u)λj,k(u)

∣
∣Ft

)
du

=
K−1∑

i=1

1{Ct=i}E
(∫

�t,T �
Zupi,j (t, u)λj,k(u) du

∣
∣
∣
∣Ft

)

,

and this completes the proof. �

Lemma 16.41 Let A be an F-predictable bounded stochastic process of finite vari-
ation. Under condition (16.18), for any j ∈ K \ K , we have

E

(∫

�t,v�
H

j
u dAu

∣
∣
∣
∣Gt

)

=
K−1∑

i=1

1{Ct=i}E
(∫

�t,v�
pi,j (t, u) dAu

∣
∣
∣
∣Ft

)

.

Proof We follow the idea from Bielecki and Rutkowski’s book [4], in which the case
with two states (default and no default) is considered. Fix t . Define Ãu := Au − At

for u ∈ [t, v]. Obviously, this is an F-predictable bounded process of finite variation,
and Ãt = 0. The integrals with respect to A and Ã are equal, and therefore,

E

(∫

�t,v�
H

j
u dAu

∣
∣
∣
∣Gt

)

= E

(∫

�t,v�
H

j
u dÃu

∣
∣
∣
∣Gt

)

= E

(

ÃvH
j
v − ÃtH

j
t −

∫

�t,v�
Ãu− dH

j
u

∣
∣
∣
∣Gt

)

= E

(

ÃvH
j
v −

∫

�t,v�
Ãu− dH

j
u

∣
∣
∣
∣Gt

)

= I1 + I2,

where

I1 := E
(
ÃvH

j
v

∣
∣Gt

)
, I2 := E

(∫

�t,v�
Ãu− dH

j
u

∣
∣
∣
∣Gt

)

.
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Since Ãv is F∞-measurable, it follows that

I1 = E
(
ÃvE

(
Hj

v

∣
∣F∞ ∨ F C

t

)∣
∣Gt

) =
K−1∑

i=1

1{Ct=i}E
(
Ãvpi,j (t, v)

∣
∣Ft

)
.

Now we calculate I2. By boundedness of Ã, using martingale property of Mj , the
conditional Fubini theorem, hypothesis H, and the Kolmogorov forward equation
(16.12), we have

I2 = E

(∫

�t,v�
Ãu− dM

j
u +

∫

�t,v�
Ãu−λCu,j (u) du

∣
∣
∣
∣Gt

)

= E

(∫

�t,v�
Ãu−

K−1∑

k=1

Hk
u λk,j (u) du

∣
∣
∣
∣
∣

Gt

)

=
∫

�t,v�
E

(

Ãu−
K−1∑

k=1

Hk
uλk,j (u)

∣
∣
∣
∣
∣

Gt

)

du

=
∫

�t,v�
E

(

Ãu−
K−1∑

k=1

E
(
Hk

u

∣
∣F∞ ∨ F C

t

)
λk,j (u)

∣
∣
∣
∣
∣

Gt

)

du

=
K−1∑

i=1

1{Ct=i}
∫

�t,v�
E

(

Ãu−

(
K−1∑

k=1

pi,k(t, u)λk,j (u)

)∣
∣
∣
∣
∣

Ft

)

du

=
K−1∑

i=1

1{Ct=i}E
(∫

�t,v�
Ãu−

(
K−1∑

k=1

pi,k(t, u)λk,j (u)

)

du

∣
∣
∣
∣
∣

Ft

)

=
K−1∑

i=1

1{Ct=i}E
(∫

�t,v�
Ãu− dpi,j (t, u)

∣
∣
∣
∣Ft

)

.

Hence,

I1 + I2 =
K−1∑

i=1

1{Ct=i}E
(

Ãvpi,j (t, v) −
∫

�t,v�
Ãu−dpi,j (t, u)

∣
∣
∣
∣Ft

)

,

and by integration by parts,

I1 + I2 =
K−1∑

i=1

1{Ct=i}E
(

Ãtpi,j (t, t) +
∫

�t,v�
pi,j (t, u) dÃu

∣
∣
∣
∣Ft

)

=
K−1∑

i=1

1{Ct=i}E
(∫

�t,v�
pi,j (t, u) dAu

∣
∣
∣
∣Ft

)

.
�

Proof of Theorem 16.38 The theorem follows immediately from (16.17) and the
above lemmas applied to X̃ := X

BT
, dÃu := 1

Bu
dAu, Z̃u := Zu

Bu
. Of course, Assump-

tion INT-1 is satisfied. �
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Remark 16.42 In Theorem 16.38, we have assumed that X, A, Z are bounded. This
assumption can be relaxed, e.g., one can assume weaker conditions:

E
(
B−1

T

∣
∣Xi

∣
∣
)
< ∞, E

(∫

�0,T �

∣
∣Ai

u

∣
∣2∣∣λCu,i(u)

∣
∣du

)

< ∞ ∀i ∈ K \ K,

E

(∫

�0,T �

∣
∣Z

i,j
u

∣
∣2

Hi
u−λi,j (u) du

)

< ∞ ∀i �= j, i, j ∈ K \ K.

(16.21)

Under these assumptions, the results of Lemmas 16.39–16.41 remain valid. More-
over, these conditions imply that INT-1 is satisfied, so the ex-dividend price is well
defined. Indeed, it is easily seen that Assumption INT-1 for a dividend process D of
a defaultable rating-sensitive claim (X,A,Z,C, τ) is equivalent to

E
(
B−1

T

∣
∣Xi

∣
∣
)
< ∞, E

(∫

�0,T �
Hi

uB
−1
u d

∣
∣Ai

∣
∣
u

)

< ∞ ∀i ∈ K \ K,

E

(∫

�0,T �

∣
∣Z

i,j
u

∣
∣B−1

u H i
u− dH

j
u

)

< ∞ ∀i �= j, i, j ∈ K \ K,

and (16.21) imply these conditions.

16.4.3 Examples of Pricing of Selected Instruments

In a series of propositions, we now give examples of application of general Theo-
rem 16.38. All these results are stated under the assumption that the migration pro-
cess C is an F-DS Markov chain with intensity process (Λt )t≥0. Whenever we apply
results based on Lemma 16.40, we assume that (Λt)t≥0 satisfies condition (16.18).

Defaultable Bond with Fractional Recovery of Par Value

This simple example of a rating-sensitive claim is described in Example 16.35. We
only stress that the recovery payment is contingent on the predefault rating, i.e.,
on Cτ−.

Proposition 16.43 The ex-dividend price Dδ of a defaultable bond with fractional
recovery of par value has for t < T , on the set {Ct = i}, the form

Dδ(t, T ) =
K−1∑

j=1

BtE

(
pi,j (t, T )

BT

+
∫

�t,T �

δj

Bu

pi,j (t, u)λj,K(u)du

∣
∣
∣
∣Ft

)

.
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Credit Sensitive Note (CNS)-Resetting at Coupon Payment Date

Recall that CSN are, generally speaking, corporate coupon bonds that pay coupons
which are sensitive to credit rating of a firm assigned by some rating agency (see
Example 16.36). Coupons are usually greater if the rating is worse.

Proposition 16.44 The ex-dividend price of a Credit Sensitive Note with coupons
resetting at coupon payment date is, for t < T , equal to

St1{Ct=i} = 1{Ct=i}
K−1∑

j=1

E

(

e−∫ T
t ru dupi,j (t, T ) +

∑

k:t<Tk

e− ∫ Tk
t ru dudj,kpi,j (t, Tk)

+ δj

∫

�t,T �
e−∫ u

t rv dvpi,j (t, u)λj,K(u)du

∣
∣
∣
∣Ft

)

.

Remark 16.45 Specifying d by dj,k = sU (j − iU )+ where sU is constant, one
can include a rating-triggering step-up feature to coupon payments. If the rating
crosses level iU (step-up), then the coupon will increase proportionally. The so-
called Rating-Triggered Step-Up Bonds were issued by some European telecom
companies, e.g., Deutsche Telecom, France Telecom; for details, see Lando and
Mortensen [20].

Credit Sensitive Note—Continuous Coupon Payments

One can consider CSN with coupons that are paid continuously in time at rate dCt

depending on rating state at t (see Example 16.37). This is a mathematical ideal-
ization of the previous case, rather than a real-life example, but it might be seen as
approximation of discrete payments considered in the previous subsection.

Proposition 16.46 The ex-dividend price of the Credit Sensitive Note with continu-
ous coupon payments is, for t ≤ T , equal to

St1{Ct=i} = 1{Ct=i}
K−1∑

j=1

E

(

e−∫ T
t ru dupi,j (t, T ) +

∫

�t,T �
dj e

− ∫ u
t rv dvpi,j (t, u) du

+ δj

∫

�t,T �
e− ∫ u

t rv dvpi,j (t, u)λj,K(u)du

∣
∣
∣
∣Ft

)

.

Credit Default Swap

Credit Default Swap is an agreement between two parties, protection buyer and
protection seller. This agreement has two legs:
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Premium Leg: The protection buyer agrees to pay a fixed amount κ (CDS spread)
at fixed times T = {T1 < T2 < · · · < Tn}. He pays κΔk at time Tk (where Δk :=
Tk − Tk−1), provided that no default has occurred before or at Tk . Then for t < Tn,
the value of the premium leg is equal to

VP (t) = BtE

(
κ

Bτ

(τ − Tβ(τ)−1)1{t<τ≤Tn} +
n∑

k=β(t)

κΔk

BTk

1{τ>Tk}

∣
∣
∣
∣
∣

Gt

)

,

where β(t) := inf{j : Tj ≥ t}.
Default leg: The protection seller agrees to cover all losses on the reference bond,

provided that the loss occurs before the protection horizon Tn. For t < Tn, the value
of this default leg is equal to

VD(t) = BtE

(
1 − δCτ−

Bτ

1{t<τ≤Tn}
∣
∣
∣
∣Gt

)

.

If we know the value of the spread, i.e., κ , then the CDS value at time t is the
difference between the premium leg and the default leg,

CDS(t, T , κ) = VP (t) − VD(t).

A market CDS spread (fair spread) κ = κ(t, T ) is agreed at contract’s incep-
tion (at some time t < T1) in such a way that the value of the contract is 0,
i.e., CDS(t, T , κ) = 0. The next theorem, which is an easy consequence of The-
orem 16.38, provides formulas for the value of both legs expressed through the
conditional transition probability process P and intensity process Λ, so we can cal-
culate CDS(t, T , κ).

Theorem 16.47 Assume that C is an F-DS Markov chain with intensity matrix pro-
cess (Λu)u≥0 and conditional transition probability process P(s, t). The value of
the default leg of CDS, for t < Tn, is equal to

VD(t) =
K−1∑

i=1

1{Ct=i}

(
K−1∑

j=1

(1 − δj )

∫ Tn

t

E
(
e− ∫ u

t rv dvpi,j (t, u)λj,K(u)
∣
∣Ft

)
du

)

.

The value of the premium leg of CDS is given by

VP (t) =
K−1∑

i=1

1{Ct =i}

(
n∑

k=β(t)

E
(
e−∫ Tk

t ru du
(
1 − pi,K(t, Tk)

)
Δk

∣
∣Ft

)

+
K−1∑

j=1

∫ Tn

t

(u − Tβ(u)−1)E
(
e−∫ u

t ru dupi,j (t, u)λj,K(u)
∣
∣Ft

)
du

)

.

In the case of the model given in Example 16.22, one can obtain a more explicit
formula for values of the default leg and the premium leg of the CDS (see Sect. 4.2
in [15]).
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16.5 Hedging of Rating-Sensitive Claims

Considering the problem of hedging requires a detailed description of the market.
Especially, we have to specify instruments which we use in hedging. We assume
that on the market, we can put money into a saving account and trade in n nondivi-
dend paying default free assets with price Y . Let F = F

B,Y , C be a rating migration
process, and R be an ex-dividend price process of a (K − 1)-dimensional vector of
rating-sensitive claims. To construct a hedging strategy for a given payment stream
D, according to Lemma 16.17, it is convenient to have some form of martingale rep-
resentation of discounted cash flows accumulated till maturity T , i.e., a martingale
representation of

∫

�0,T �

1

Bu

dDu.

In what follows, we find such representation. We assume throughout the rest of the
paper that the following hypotheses hold:

Assumption 16.48 There exists a martingale measure Q for the market consisting
with the saving account and the default free assets with price process Y , i.e., a mea-
sure such that Q ∼ P and Y ∗ = Y/B is an F-martingale. Moreover, we assume that
the market is F-complete in the sense that every square-integrable FT -measurable
random variable is attainable.

Assumption 16.49 There exists an equivalent martingale measure for the extended
market, i.e., a probability measure Q

∗ ∼ P such that (Y ∗,Rc∗) is a G = F
B,Y,C -

martingale.

Assumption 16.50 The rating migration process C is an F-doubly stochastic
Markov chain under Q

∗ with intensity matrix process Λ and absorbing state K .

Remark 16.51 For Q and any Q
∗ satisfying the above assumptions, there holds

Q
∗|FT

= Q|FT
.

Remark 16.52 Let C be an F-DS Markov chain under a probability measure P.
The process C does not have to be an F-DS Markov chain under an equivalent
probability measure Q. However, there is a large class of equivalent probability
measures under which C is an F-DS Markov chain (see [16]).

Remark 16.53 Obviously, processes obtained from M and L by removing the last
K th coordinate are also G-local martingales. The last row of Λ contains only zeros
since the state K is an absorbing state of C, and so

M̃t := H̃t −
∫ t

0
Λ̃�

u H̃u du, (16.22)
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where˜denotes the matrix (vector) with the last row and last column (last coordi-
nate) deleted. The same remark concerns L:

L̃t := Q̃�(0, t)H̃t = H̃0 +
∫

�0,t �
Q̃�(0, u) dM̃u, (16.23)

where Q̃(0, u) denotes the matrix Q(0, u) with the last row and last column deleted.
However, for simplicity, we abuse notation and in what follows write M , L, Q, Λ

for M̃ , L̃, Q̃, Λ̃. We insist here on working with these “reduced” versions of ma-
trices/vectors since they are in some sense “minimal.” The reduced form models
of credit risk can be considered as two-state rating models, and martingale repre-
sentation theorems are also given with “reduced” versions of vectors/matrices (see
Blanchet-Scaillet [9]). Martingales which correspond to M and L are in this case
given by

M ′
t = 1{τ≤t} −

∫ t

0
1{τ>u}λu du, L′

t = e
∫ t

0 λu du1{τ>t}.

In the following, all conditional expectations are calculated under the martingale
measure Q

∗; hence, for short, we shall write E instead of EQ∗ . We divide our results
into two subsections.

In the first part, for simplicity of exposition, we assume that the rating-sensitive
claims are of a very special form, namely, they are T maturing defaultable claims
with only terminal payoffs at time T of the form 1{CT =i}. The vector of prices is
denoted by

R(t, T ) = (
R1(t, T ), . . . ,RK−1(t, T )

)�
, (16.24)

and according to our convention, Rc denotes its cumulative price, so we have
Rc

i (T ,T ) = 1{CT =i}, whereas Ri(T ,T ) = 0 (see Remark 16.5). We show how to
deal with hedging of rating-sensitive claims by using rating digital options. In the
subsequent subsection, we will show that similar results can be derived for more
complex primary instruments with a little effort.

16.5.1 Hedging with Rating Digital Options

Our main aim in this subsection is to show that general rating-sensitive claims can
be replicated by trading in some default free assets and a system of K − 1 spe-
cial rating-sensitive claims, namely the rating digital options. We will proceed in
two steps. First, we provide a replication strategy for very simple rating-sensitive
claims, i.e., (X,0,0,C, τ), and in the second step, we show how to deal with the
case of a general rating-sensitive claim (X,A,Z,C, τ). Although from the result of
the second step we can easily obtain a replication strategy for simple rating-sensitive
claims, we believe that this makes the presentation of the results more transparent.
We want to apply Lemma 16.17, so we need to know the dynamics of the discounted
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cumulative prices Rc∗ of the primary assets (which are rating-sensitive claims) un-
der the martingale measure Q

∗. Secondly, we find a representation of the martingale
Sc∗ given by formula (16.3) as a stochastic integral with respect to some martingale
and then translate it into a stochastic integral with respect to discounted primary
assets as in (16.7) of Lemma 16.17. The proposition below gives the dynamics of
the vector-valued process Rc∗ which represents the discounted cumulative price of
rating digital options (see Remark 16.2):

Rc∗
j (t, T ) := E

(
1{CT =j}

BT

∣
∣
∣
∣Gt

)

,

where R is given by (16.24).

Proposition 16.54 Assume that rating digital options with the price R are tradable
assets. Then we have the following representation for the vector Rc of cumulative
prices of T -maturing rating digital options:

Rc(t, T ) = R̂(t, T )�Ht,

where

R̂(t, T ) := BtE

(
P(t, T )

BT

∣
∣
∣
∣Ft

)

. (16.25)

Moreover, Rc∗(t, T ) := Rc(t, T )B−1
t has the following dynamics:

dRc∗(t, T ) = (
B−1

t R̂(t−, T )
)�

dMt + (
H�

t Q(0, t) dmt

)�
,

where Mt is defined by (16.22), and mt is a matrix-valued martingale defined by the
formula

[mt ]i,j := E

(
pi,j (0, T )

BT

∣
∣
∣
∣Ft

)

. (16.26)

Proof For the j th coordinate of Rc(t, T ), we have

Rc
j (t, T )

Bt

= E

(
1{CT =j}

BT

∣
∣
∣
∣Gt

)

=
K−1∑

i=1

Hi
t E

(
pi,j (t, T )

BT

∣
∣
∣
∣Ft

)

,

where the second equality follows from the fact that C is assumed to be an F-DS
stochastic Markov chain. So, in the matrix-vector notation, we have

Rc(t, T )

Bt

=
(

E

(
P(t, T )

BT

∣
∣
∣
∣Ft

))�
Ht =

(

Q(0, t)E

(
P(0, T )

BT

∣
∣
∣
∣Ft

))�
Ht

=
(

E

(
P(0, T )

BT

∣
∣
∣
∣Ft

))�
Lt = m�

t Lt .
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By integration by parts it follows that

dRc∗(t, T ) = m�
t−Q�(0, t) dMt + (

dm�
t

)
Q�(0, t)Ht− + Δm�

t Q�(0, t)ΔHt

= (
Q(0, t)mt−

)�
dMt + (

H�
t−Q(0, t) dmt

)�
,

where the last equality follows from Proposition 16.29. �

Remark 16.55

(a) We have derived formulas for cumulative prices of rating digital options. Since
these instruments have only terminal payment at the maturity time T , the ex-
dividend price process R is different from the cumulative price process Rc only
at maturity time (see Remark 16.5).

(b) Elements of the matrix R̂ are conditional cumulative prices of rating digital
options R, i.e., [R̂(t, T )]i,j is the price of the digital option on the j th rating on
the set {Ct = i}.

Lemma 16.56 For pi,j (0, T )/BT which is an FT measurable random variable,
i, j ∈ K \K , there exist F-predictable stochastic processes μl,i,j , l = 1, . . . , n, such
that the following representation holds:

pi,j (0, T )

BT

= E

(
pi,j (0, T )

BT

)

+
∫

�0,T �

n∑

l=1

μ
l,i,j
t dY l∗

t .

If we denote by μ
(l)
t the matrix [μ(l)

t ]i,j := μ
l,i,j
t , then the above representation can

be written in the following matrix form:

P(0, T )

BT

= E

(
P(0, T )

BT

)

+
∫

�0,T �

n∑

l=1

μ
(l)
t dY l∗

t . (16.27)

Proof The random variable pi,j (0, T )/BT is bounded, hence it is square integrable,
and therefore the assertion follows by Assumption 16.48. �

Lemma 16.56 gives the representation of matrix-valued martingale (mt )t∈�0,T �

defined by formula (16.26). The following proposition gives a representation of the
martingale E(X�HT /BT |Gt ) in terms of stochastic integrals with respect to the
martingales (mX

t )t∈�0,T � and (Mt )t≥0.

Proposition 16.57 Let T > 0, and X = (X1, . . . ,XK−1)� be a vector of FT -

measurable random variables such that X�HT

BT
is square integrable. Then the G-

martingale defined by

Xc∗(t, T ) := E

(
X�HT

BT

∣
∣
∣
∣Gt

)

, t ∈ [0, T ], (16.28)
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has the representation

Xc∗(t, T ) = B−1
t X̂(t, T )�Ht,

where X̂(t, T ) is defined by

X̂(t, T ) := BtE

(
P(t, T )X

BT

∣
∣
∣
∣Ft

)

. (16.29)

Moreover, the martingale Xc∗ has the following representation via stochastic inte-
grals w.r.t. M and mX :

Xc∗(t, T ) = E

(
P(0, T )X

BT

)�
H0 +

∫

�0,t �

(
B−1

t X̂(u−, T )
)�

dMu

+
∫

�0,t �
H�

u−Q(0, u) dmX
u , (16.30)

where mX is the vector-valued F-martingale given by

mX
t := E

(
P(0, T )X

BT

∣
∣
∣
∣Ft

)

.

Proof The proof is analogous to the proof of Proposition 16.54. �

Remark 16.58

(a) The coordinates of the vector X̂ are conditional cumulative prices of the claim
(X,0,0,C, τ), i.e., [X̂(t, T )]i is the price of the digital option on the set
{Ct = i}, provided that t < T .

(b) The stochastic integrals in formula (16.30) are stopped at τ . The fact that the
first integral is stopped at τ is obvious and follows from the fact that M is
stopped at τ . The second integral is also stopped at τ , since Ht− is constant and
equal to zero after τ .

Corollary 16.59 Assume that X/BT is an R
K−1-valued vector of square-integrable

random variables. Then there exist F-predictable stochastic processes μX,l (with
values in R

K−1) such that

mX
T = mX

0 +
∫

�0,T �

n∑

l=1

μ
X,l
t dY

l,∗
t . (16.31)

Proof Note that P(0, T )�X/BT is a square-integrable random variable, and there-
fore Assumption 16.48 implies the desired representation. �

Representation (16.31) is a generalization of Lemma 16.56 and gives a represen-
tation of the martingale (mX

t )t∈[0,T ].
The theorem below yields a replication strategy for the claim (X,0,0,C, τ) ma-

turing at T > 0.

www.TechnicalBooksPDF.com



16 Pricing and Hedging of Rating-Sensitive Claims 443

Theorem 16.60 Let (X,0,0,C, τ) be a rating-sensitive claim such that XB−1
T is

square integrable. Assume that for each t , X̂(t, T ) ∈ Im(R̂(t, T )), where R̂ is given
by (16.25), and X̂ by (16.29). Then the portfolio (ψ,ϕ, γ ) with the initial capi-
tal V0(φ) = E(

P (0,T )X
BT

)�H0 is a D-financing portfolio that replicates the claim
(X,0,0,C, τ), provided that γ is given as a minimum norm solution to the follow-
ing system of linear equations:

R̂(t−, T )γt = X̂(t−, T ), (16.32)

and ψ , ϕ are defined by

ϕl
t = H�

t−Q(0, t)
(
μ

X,l
t − μ

(l)
t γt

)
,

ψt = V0(φ) +
∫

�0,t �

n∑

l=1

ϕl
u dY l∗

u +
∫

�0,t �
γ �
t dRc∗(u,T ) (16.33)

−
n∑

l=1

ϕl
t Y

l,∗
t − γ �

t R∗(t, T ) − X�HT

BT

1�T ,∞�(t)

with μX,l given by (16.31) and μ
(l)
t by (16.27).

Proof We have to show that there exists a D-financing portfolio for the dividend
process Dt := X�HT 1[T ,+∞[(t). From Proposition 16.57 and (16.31) it follows that

Xc∗(t, T ) = E

(
P(0, T )X

BT

)�
H0 +

∫

�0,t �

(
B−1

u X̂(u−, T )
)�

dMu

+
∫

�0,t �
H�

u−Q(0, u−)

n∑

l=1

μX,l
u dY l,∗

u .

Now, if we find G-predictable processes ϕ and γ such that

Xc∗(t, T ) = V ∗
0 +

∫

�0,t �

n∑

l=1

ϕl
u dY l,∗

u +
∫

�0,t �
γ �
u dRc∗(u,T ) =: I, (16.34)

then, by Lemma 16.17, we can choose ψ in such a way that (ψ,ϕ, γ ) is a D-
financing portfolio that replicates D. Proposition 16.54 implies that the RHS of
(16.34) has the form

I = V ∗
0 +

∫

�0,t �

n∑

l=1

ϕl
u dY l,∗

u +
∫

�0,t �
γ �
u

(
B−1

u R̂(u−, T )
)�

dMu

+
∫

�0,t �

(
H�

u Q(0, u) dmuγu

)�
,
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and Lemma 16.56 gives

I = V ∗
0 +

∫

�0,t �
γ �
u

(
B−1

u R̂(u−, T )
)�

dMu

+
∫

�0,t �

n∑

l=1

(
ϕl

u + H̃�
u Q(0, u)μ(l)

u γu

)
dY l∗

u .

If V0 = E(
P (0,T )X

BT
)�H0 and ϕ,γ are G-predictable processes satisfying

(
X̂(u−, T )

)� = γ �
u

(
R̂(u−, T )

)�
, (16.35)

H�
u−Q(0, u−)μX,l

u = (
ϕl

u + H�
u−Q(0, u−)μ(l)

u γu

)
, (16.36)

then (16.34) holds. Note that the system of linear equations (16.35) is equivalent to
(16.32); moreover, the solution to the second system (16.36) is obviously given by
(16.33). The component ϕ is clearly G-predictable, and taking γ to be a minimum
norm solution to (16.32) gives a G-predictable solution to (16.32). This finishes the
proof. �

Now we pass to general rating-sensitive claims. We present the way of hedging
general rating-sensitive claims using digital options and default-free assets. We start
by introducing matrix notation which will be very convenient in the subsequent
calculations.

Notation 16.61 We will use the following notation:

Žt =

⎡

⎢
⎢
⎢
⎢
⎣

−Z
1,K
t Z

1,2
t − Z

1,K
t . . . Z

1,K−1
t − Z

1,K
t

Z
2,1
t − Z

2,K
t −Z

2,K
t . . . Z

2,K−1
t − Z

2,K
t

...
...

. . .
...

Z
K−1,1
t − Z

K−1,K
t Z

K−1,2
t − Z

K−1,K
t . . . −Z

K−1,K
t

⎤

⎥
⎥
⎥
⎥
⎦

,

(ZΛ)
j
t := [

ZtΛ
�
t

]
j,j

=
K∑

k=1,k �=j

Z
j,k
t λj,k(t) =

K∑

k=1

Ž
j,k
t λj,k(t) =: (ŽΛ)

j
t .

Using our notation, we can represent the vector of ex-dividend price of the rating-
sensitive claim (X,A,Z,C, τ) described in Theorem 16.38 in the compact form

St

Bt

= E

(
P(t, T )X

BT

1{t<T } +
∫

�t,T �

P(t, u)

Bu

dAu

+
∫

�t,T �

P(t, u)

Bu

(ŽΛ)u du

∣
∣
∣
∣Ft

)�
Ht . (16.37)
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As we have seen in the case of claims of the form (X,0,0,C, τ), the crucial point
in finding a replication strategy is a suitable martingale representation theorem for
Xc∗, i.e., for the cumulative price process of the claim (X,0,0,C, τ). For a gen-
eral rating-sensitive claim (X,A,Z,C, τ), we will present a similar version of a
martingale representation for Sc∗.

The following martingale representation theorem allows us to separate hedging
of default risk, associated with jumps due to rating changes, and spread risk, asso-
ciated with uncertainty as to the predefault value of the claim.

Theorem 16.62 Let (X,A,Z,C, τ) be an arbitrary rating-sensitive claim satisfy-
ing Assumption INT-1. Then

Sc
t

Bt

= Sc
0 +

∫

�0,t �
α�

u dmS
u +

∫

�0,t �
β�

u dMu, (16.38)

where M is given by (16.22), mS is an F-martingale given by

mS
t := E

(
P(0, T )X

BT

+
∫

�0,T �

P(0, u)

Bu

dAu +
∫

�0,T �

P(0, u)

Bu

(ŽΛ)u du

∣
∣
∣
∣Ft

)

,

(16.39)
and α, β are G-predictable stochastic processes defined by

αt = Q�(0, t)Ht−, βt = Ŝ(t−, T ) + Ž�
t Ht−

Bt

, (16.40)

with

Ŝ(t, T ) := BtE

(
P(t, T )X

BT

+
∫

�t,T �

P(t, u)

Bu

dAu +
∫

�t,T �

P(t, u)

Bu

(ŽΛ)u du

∣
∣
∣
∣Ft

)

(16.41)
and Sc

0 = (mS
0 )�H0.

Proof The processes mS and Ŝ are well defined by Assumption INT-1. It is enough
to prove the theorem for the claim of the form (0,A,Z,C, τ). Indeed, having a
general rating-sensitive claim (X, Â,Z,C, τ), observe that by letting At = Ât +
X1�T ,∞�(t) we can restrict to the case of (0,A,Z,C, τ). For such a claim, we have

Sc
t

Bt

= E

(∫

�0,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

= I
(1)
t + I

(2)
t ,

where

I
(1)
t :=

∫

�0,t �

1

Bu

dDu and I
(2)
t := E

(∫

�t,T �

1

Bu

dDu

∣
∣
∣
∣Gt

)

.

Using (16.22) and the fact that
∫

�0,t �

1

Bu

(
Z�

u Ĥu−
)�

dĤu =
∫

�0,t �

1

Bu

(
Ž�

u Hu−
)�

dHu,

www.TechnicalBooksPDF.com



446 J. Jakubowski and M. Niewęgłowski

where Ĥt := (H 1
t , . . . ,HK

t )�, we have

I
(1)
t =

∫

�0,t �

1

Bu

H�
u dAu +

∫

�0,t �

1

Bu

(
Z�

u Ĥu−
)�

dĤu

=
∫

�0,t �

1

Bu

H�
u dAu +

∫

�0,t �

1

Bu

(
Ž�

u Hu−
)�

dMu

+
∫

�0,t �

1

Bu

(
Ž�

u Hu−
)�

Λ�
u Hu− du

=
∫

�0,t �

1

Bu

H�
u dAu +

∫

�0,t �

1

Bu

(
Ž�

u Hu−
)�

dMu +
∫

�0,t �

1

Bu

(ŽΛ)�u Hu− du,

where in the last equality, we have used

(
Ž�

u Hu−
)�

Λ�
u Hu− = H�

u−ŽuΛ
�
u Hu− = (ŽΛ)�u Hu−.

Equation (16.19) implies that

I
(2)
t =

K−1∑

i=1

Hi
t

K−1∑

j=1

E

(∫

�t,T �
B−1

u pi,j (t, u) dA
j
u

+
∫

�t,T �

K∑

k=1

Z
j,k
u

Bu

pi,j (t, u)λj,k(u) du

∣
∣
∣
∣
∣

Ft

)

.

Using Notation 16.61, we can write I (2) in the form

I
(2)
t =

(

E

(∫

�t,T �

P(t, u)

Bu

dAu +
∫

�t,T �

P(t, u)

Bu

(ŽΛ)u du

∣
∣
∣
∣Ft

))�
Ht

=
(

E

(∫

�t,T �

P(0, u)

Bu

dAu +
∫

�t,T �

P(0, u)

Bu

(ŽΛ)u du

∣
∣
∣
∣Ft

))�
Q�(0, t)Ht

=
(

mt −
∫

�0,t �

P(0, u)

Bu

dAu −
∫

�0,t �

P(0, u)

Bu

(ŽΛ)u du

)�
Lt,

where Lt = Q�(0, t)Ht (so L is given by (16.23)), and m is defined by

mt := E

(∫

�0,T �

P(0, u)

Bu

dAu +
∫

�0,T �

P(0, u)

Bu

(ŽΛ)u du

∣
∣
∣
∣Ft

)

. (16.42)

Hence,

dI
(2)
t =

(

mt− −
∫

�0,t �

P(0, u)

Bu

dAu −
∫

�0,t �

P(0, u)

Bu

(ŽΛ)u du

)�
dLt
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+
(

dmt − P(0, t)

Bt

dAt − P(0, t)

Bt

(ŽΛ)t dt

)�
Lt−

since the continuous martingale part of L is zero. Thus, by the continuity of Q(0, ·)
and (16.23) we have

dI
(2)
t =

(

Q(0, t)

(

mt− −
∫

�0,t �

P(0, u)

Bu

dAu −
∫

�0,t �

P(0, u)

Bu

(ŽΛ)u du

))�
dMt

+
(

Q(0, t) dmt − Q(0, t)
P (0, t)

Bt

dAt − Q(0, t)
P (0, t)

Bt

(ŽΛ)t dt

)�
Ht−

=
(

Q(0, t)

(

mt− −
∫

�0,t �

P(0, u)

Bu

dAu −
∫

�0,t �

P(0, u)

Bu

(ŽΛ)u du

))�
dMt

+
(

Q(0, t) dmt − 1

Bt

dAt − 1

Bt

(ŽΛ)t dt

)�
Ht−.

Finally, since I
(2)
0 = Sc

0, we have

Sc
t

Bt

= Sc
0 +

∫

�0,t �
H�

u−Q(0, u) dmu +
∫

�0,t �

1

Bu

(
Ž�

u Hu−
)�

dMu

+
∫

�0,t �

(

Q(0, u)

(

mu− −
∫

�0,u�

P(0, v)

Bv

dAv

−
∫

�0,u�

P(0, v)

Bv

(ŽΛ)v dv

))�
dMu

with Sc
0 = m�

0 H0. Hence, to obtain representation (16.38), it is enough to observe
that (16.42) implies

Q(0, t)

(

mt −
∫

�0,t �

P(0, v)

Bv

dAv −
∫

�0,t �

P(0, v)

Bv

(ŽΛ)v dv

)

= Ŝ(t, T )

Bt

.

The process β is G-predictable since Ŝ(t−,T )
Bt

and Z are G-predictable processes by
definition. �

Remark 16.63 We note that, in general, the components of the vector Ŝ(t, T )

defined in Theorem 16.62 do not represent the ex-dividend price of claim (X,A,Z,

C, τ) given by (16.37) on the sets {Ct− = i}. There are two differences. The first is
that Ŝ(t, T ) includes possible payment of promised dividend at time t . The second
is at time T , when the ex-dividend price is by definition equal to zero.

Now we introduce another assumption on rating sensitive claims.
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Assumption INT-2 We assume that a defaultable rating-sensitive claim satisfies

E

(∣
∣
∣
∣
P(0, T )X

BT

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∫

�0,T �

P(0, u)

Bu

dAu

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∫

�0,T �

P(0, u)

Bu

(ŽΛ)u du

∣
∣
∣
∣

2)

< ∞.

As an immediate consequence of Assumption 16.48, we obtain:

Remark 16.64 If a claim (X,A,Z,C, τ) satisfies INT-2, then there exist (K − 1)-
dimensional F-predictable stochastic processes μS,l , l = 1, . . . , n, such that mS

given by (16.39) has the representation

mS
T = mS

0 +
∫

�0,T �

n∑

l=1

μ
S,l
t dY l∗

t , (16.43)

where

mS
0 := E

(
P(0, T )X

BT

+
∫

�0,T �

P(0, u)

Bu

dAu +
∫

�0,T �

P(0, u)

Bu

(ŽΛ)u du

)

.

The following theorem yields replication strategy for the general rating-sensitive
claims.

Theorem 16.65 Let (X,A,Z,C, τ) be an arbitrary rating-sensitive claim satisfy-
ing Assumption INT-2. Assume that, for each t ,

(
Ŝ(t−, T ) + Ž�

t Ht−
) ∈ Im

(
R̂(t−, T )

)
,

where R̂ is given by (16.25), and Ŝ by (16.41). Then the portfolio (ψ,ϕ, γ ) with the
initial capital

V0(φ) = E

(
P(0, T )X

BT

+
∫

�0,T �

P(0, u)

Bu

dAu +
∫

�0,T �

P(0, u)

Bu

(ŽΛ)u du

)�
H0

is a D-financing portfolio which replicates claim (X,A,Z,C, τ), provided that γ

is given as a minimum norm solution to the following system of linear equations:

R̂(t−, T )γt = Ŝ(t−, T ) + Ž�
t Ht−,

and ϕ, ψ are defined by

ϕl
t = H�

t−Q(0, t)
(
μ

S,l
t − μ

(l)
t γt

)
,

ψt = V0(φ) +
∫

�0,t �

n∑

l=1

ϕl
u dY l∗

u +
∫

�0,t �
γ �
t dRc∗(u,T ) −

n∑

l=1

ϕl
t Y

l
t − γ �

t R(t, T )

−
∫

�0,t �

1

Bu

dDu

with μS,l given by (16.43) and μ(l) by (16.27).
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Proof For the proof, it is sufficient to repeat the arguments from Theorem 16.60 and
use Theorem 16.62. �

16.5.2 Hedging with General Rating-Sensitive Claims

In the previous subsection, we have solved problem of replication of general rating-
sensitive claims by trading in default-free assets and in the system of digital rating
options. This result is unsatisfactory for practitioners since we have used in a repli-
cation the digital rating options which are not traded on the real market. In this
subsection, we give a generalization of the previous results by allowing to trade in
an arbitrary (to some extent) system of tradable general rating-sensitive claims. We
point out that this system includes defaultable bonds, Credit Sensitive Notes, CDS,
etc.

Now we will consider the case where an investor can trade in m general rating-
sensitive claims, where m ≥ K − 1. In the other words, we consider the case where,
on the market, we can trade in general rating-sensitive claims (X(i),A(i),Z(i),C, τ ),
i = 1, . . . ,m, and we are interested in providing sufficient conditions for the exis-
tence of replication strategy for an arbitrary claim (X,A,Z,C, τ). Before we pro-
ceed further, we introduce another convenient matrix notation.

Notation 16.66

X := [
X(1), . . . ,X(m)

]
, At := [

A
(1)
t , . . . ,A

(m)
t

]
,

[ŽH]t := [(
Ž

(1)
t

)�
Ht−, . . . ,

(
Ž

(m)
t

)�
Ht−

]
,

[Ž�]t := [(
Ž(1)Λ

)
t
, . . . ,

(
Ž(m)Λ

)
t

]
.

In the next proposition, we give the dynamics of the discounted cumulative prices
of a system of m ≥ K − 1 rating-sensitive claims. We will use the same idea and
proceed as before.

Proposition 16.67 Assume that a system of m traded general rating-sensitive
claims ((X(i),A(i),Z(i),C, τ ))mi=1 satisfies Assumption INT-1. Then the discounted
cumulative price process Rc∗ of these claims has the dynamics

Rc(t, T )

Bt

= Rc(0, T ) +
∫

�0,t �

(
α�

u dmu

)� +
∫

�0,t �
��

u dMu, (16.44)

where m is an F-martingale with values in the space of matrices of dimension
(K − 1) × m, given by

mt := E

(
P(0, T )X

BT

+
∫

�0,T �

P(0, u)

Bu

dAu +
∫

�0,T �

P(0, u)

Bu

[Ž�]u du

∣
∣
∣
∣Ft

)

,

(16.45)
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and α, β are G-predictable stochastic processes defined by

αt = Q�(0, t)Ht−, �t = R̂(t−, T ) + [ŽH]t
Bt

, (16.46)

with Rc(0, T ) = m�
0 H0 and

R̂(t, T ) := BtE

(
P(t, T )X

BT

+
∫

�t,T �

P(t, u)

Bu

dAu +
∫

�t,T �

P(t, u)

Bu

[Ž�]u du

∣
∣
∣
∣Ft

)

.

(16.47)

Proof The thesis follows immediately from the martingale representation, Theo-
rem 16.62. �

Remark 16.68 Assume that the claims (X(i),A(i),Z(i),C, τ ), i = 1, . . . ,m, satisfy
Assumption INT-2 for every i. Then Assumption 16.48 implies that mT given by
(16.45) has the following representation

mT = m0 +
∫

�0,T �

n∑

l=1

μ
(l)
t dY l∗

t , (16.48)

where μ(l), l = 1, . . . , n, are F-predictable stochastic processes with values in ma-
trices of dimension (K − 1) × m and

m0 := E

(
P(0, T )X

BT

+
∫

�0,T �

P(0, u)

Bu

dAu +
∫

�0,T �

P(0, u)

Bu

[Ž�]u du

)

.

Now we present the theorem which gives sufficient conditions for a replication
of a general rating-sensitive claim.

Proposition 16.69 Let (X,A,Z,C, τ) be an arbitrary rating-sensitive claim satis-
fying Assumption INT-2. Assume that, for each t ,

Ŝ(t−, T ) + Ž�
t Ht− ∈ Im

(
R̂(t−, T ) + [ŽH]t

)
,

where R̂ is given by (16.47) and Ŝ by (16.41). Then the portfolio (ψ,ϕ, γ ) with
initial capital

V0(φ) = E

(
P(0, T )X

BT

+
∫

�0,T �

P(0, u)

Bu

dAu +
∫

�0,T �

P(0, u)

Bu

(ŽΛ)u du

)�
H0

is a D-financing portfolio that replicates claim (X,A,Z,C, τ), provided that γ is
given as a minimum norm solution to the following system of linear equations:

(
R̂(t−, T ) + [ŽH]t

)
γt = Ŝ(t−, T ) + Ž�

t Ht−,
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and ϕ, ψ are defined by

ϕl
t = H�

t−Q(0, t)
(
μ

S,l
t − μ

(l)
t γt

)
,

ψt = V0(φ) +
∫

�0,t �

n∑

l=1

ϕl
u dY l∗

u +
∫

�0,t �
γ �
u dRc∗(u,T )

−
n∑

l=1

ϕl
t Y

l
t − γ �

t R(t, T ) −
∫

�0,t �

1

Bu

dDu, (16.49)

where μ(l) are F-predictable stochastic processes that appear in representation
(16.48), and μS,l are given in representation (16.43).

Proof According to Lemma 16.17, we are looking for process (ϕ, γ ) such that

Sc∗
t = V0(φ) +

∫

�0,t �

n∑

l=1

ϕl
u dY l∗

u +
∫

�0,t �
γ �
u dRc∗(u,T ). (16.50)

Lemma 16.17 also implies that by taking ψ given by (16.49) we obtain a D-
financing portfolio which replicates (X,A,Z,C, τ). Equation (16.44) and repre-
sentation (16.48) imply that

Sc∗
t = V0(φ) +

∫

�0,t �

n∑

l=1

ϕl
u dY l∗

u +
∫

�0,t �
γ �
u

(
α�

u dmu

)� +
∫

�0,t �
γ �
u ��

u dMu

= V0(φ) +
∫

�0,t �

n∑

l=1

(
ϕl

u + (
α�

u μ(l)
u γu

)�)
dY l∗

u +
∫

�0,t �
(�uγu)

� dMu.

(16.51)

Moreover, by (16.38) and representation (16.43),

Sc∗
t = Sc

0 +
∫

�0,t �

n∑

l=1

α�
u μS,l

u dY ∗,l
u +

∫

�0,t �
β�

u dMu. (16.52)

Comparing coefficients in (16.51) and (16.52), we see that (16.50) holds, provided
that γ,ϕ satisfies the system of linear equations

�t γt = βt ,

ϕl
t + α�

t μ
(l)
t γt = α�

t μ
S,l
t for l = 1, . . . , n,

where β and α are given by (16.40). The proof is complete. �

Remark 16.70 We assume that primary rating-sensitive instruments have the same
maturity T > 0 as the rating-sensitive claim we want to replicate. This assumption
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can be easily relaxed. We could allow the primary rating-sensitive instruments to
have different maturities Ti but greater or equal to T , the maturity of the rating-
sensitive claim we want to replicate.

Remark 16.71 If the number of primary rating-sensitive assets is large, then system
of equations

�t γt = βt

can have infinitely many solutions. One can ask the question whether we can choose
γ in such a way that additional n constrains will be satisfied? More precisely, can
we choose γ such that

μ
(l)
t γt = μ

S,l
t

for l = 1, . . . , n? The positive answer implies that we do not need nondefaultable
primary assets in the portfolio, i.e., ϕl = 0 for each l = 1, . . . , n. A sufficient condi-
tion for this to hold is that the matrix

Gt :=

⎡

⎢
⎢
⎢
⎢
⎣

�t

μ
(1)
t
...

μ
(n)
t

⎤

⎥
⎥
⎥
⎥
⎦

of dimensions (K − 1)(n + 1) × m has the rank equal to (K − 1)(n + 1). In this
case, for an arbitrary rating-sensitive claim (X,A,Z,C, τ), we can solve the system
of equations

Gtγt = [
βt ,μ

S,1
t , . . . ,μ

S,n
t

]�

and obtain portfolio with ϕ = 0. A necessary condition for this gives trivially that
the number of primary rating-sensitive assets m should satisfy m ≥ (K − 1)(n + 1).
This condition can be viewed as a nonsingularity condition for the volatility matrix.
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Chapter 17
Exotic Derivatives under Stochastic Volatility
Models with Jumps

Aleksandar Mijatović and Martijn Pistorius

Abstract In equity and foreign exchange markets the risk-neutral dynamics of
the underlying asset are commonly represented by stochastic volatility models with
jumps. In this paper we consider a dense subclass of such models and develop ana-
lytically tractable formulae for the prices of a range of first-generation exotic deriva-
tives. We provide closed-form formulae for the Fourier transforms of vanilla and for-
ward starting option prices as well as a formula for the slope of the implied volatil-
ity smile for large strikes. A simple explicit approximation formula for the variance
swap price is given. The prices of volatility swaps and other volatility derivatives
are given as a one-dimensional integral of an explicit function. Analytically tractable
formulae for the Laplace transform (in maturity) of the double-no-touch options and
the Fourier–Laplace transform (in strike and maturity) of the double knock-out call
and put options are obtained. The proof of the latter formulae is based on extended
matrix Wiener–Hopf factorisation results. We also provide convergence results.

Keywords Double-barrier options · Volatility surface · Volatility derivatives ·
Forward starting options · Stochastic volatility models with jumps · Fluid
embedding · Complex matrix Wiener–Hopf factorisation

Mathematics Subject Classification (2010) 60K15 · 91G20

17.1 Introduction

A key step in the valuation and hedging of exotic derivatives in financial markets
is to decompose these in terms of simpler securities, e.g. vanilla options, which
trade in larger volumes, are generally very liquid and therefore have a well-defined
price. Such a decomposition is often achieved in two steps. First a model for the
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underlying asset under a risk-neutral measure is calibrated to the implied volatility
surface. In this step the current state of the market, as described by the prices of
vanilla derivatives, is expressed in terms of the parameter values of the model. In
other words the chosen model is used to impose a structure on the option prices.
The second step consists of pricing the exotic derivative of interest in the calibrated
model.

It is well known that in equity and foreign exchange markets stochastic volatility
models with jumps can be used to accomplish the first step described above (see
e.g. [17, 24]). In the present paper we consider forward starting vanilla options,
volatility derivatives and barrier options, which are among the most widely traded
exotic derivatives in the equity and foreign exchange markets.

The desired properties of the model in each of the two steps described above
place diametrically opposite restrictions on the choice of modelling framework.
This is because in the calibration step one requires a flexible stochastic process
that can describe well the current state of the vanilla market (i.e. can calibrate ac-
curately to the observed implied volatility surface), while such flexibility can be a
source of problems in the second step, where one needs to compute expectations of
path-dependent functionals of the process. A more rigid modelling framework with,
say, continuous trajectories and some distributional properties (e.g. independence
of increments) could yield the structure of the process needed to establish efficient
pricing algorithms for exotic derivatives.

We investigate two families of stochastic volatility models with jumps: the time-
changed exponential Lévy models and the stochastic volatility models driven by
Lévy processes, where the volatility process is independent of the Lévy driver. In
these two families of models, the pricing of European derivatives is well under-
stood, and efficient calibration methods have been developed (see for example [12]
and [24]), i.e. the first step of the two-stage procedure outlined above. However once
the model is calibrated, the problem of pricing the first-generation exotic derivatives
(e.g. barrier options) is quite involved. The law of the first-exit time from a bounded
interval in stochastic volatility models with jumps, for instance, is not usually avail-
able in analytically tractable form. Because of the lack of structural properties that
can be exploited to find the laws of the path-dependent functionals of interest, one
would typically need to resort to Monte Carlo methods for the pricing of such deriva-
tives in this setting. It is well known that these methods are time-consuming and
yield unstable results, especially when used to calculate the sensitivities of deriva-
tive securities. The method proposed in this paper to calculate the prices of such
contracts consists of two steps: (i) a Markov chain approximation of the volatility
process and (ii) an analytically tractable solution of the value function of the con-
tract of interest in the approximating model. We provide proofs for the convergence
of option prices under this approximation and derive explicit expressions of Laplace
and/or Fourier transforms of the value functions under the approximating model.

The approximating class of stochastic volatility processes with jumps considered
in this paper retains the structural properties required for the semi-analytic pricing
(i.e. up to an integral transform) of forward starting options, volatility derivatives
and barrier options. In the case of double-barrier option prices we will show that
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the process considered here admits explicit formulae for the Laplace/Fourier trans-
forms in terms of the solutions of certain quadratic matrix equations. The main
mathematical contribution of the present paper, which underpins the derivation of
these closed form formulae, is the proof of the existence and uniqueness of the
matrix Wiener–Hopf factorisation of a class of complex-valued matrices related to
the approximating model (see Theorem 17.21). These results extend those of [21]
where the corresponding results for the real-valued case are established. In the con-
text of noisy fluid flow models, the matrix Wiener–Hopf factorisation for the case
of a regime-switching Brownian motion is studied by [4, 28].

It should be noted that the matrix Wiener–Hopf factorisation results developed
in this paper can also be applied to the pricing of American call and put options in
model (17.19) as follows. First we apply the main result in [21] to obtain the price
of the perpetual American call or put and then, via the randomization algorithm
introduced in [11], find the actual price of the option.

Related Markov chain mixture models, which are special cases of the model
considered in this paper, have been studied before in the mathematical finance lit-
erature. In [19] and [22] explicit formulae were derived for the price of a perpetual
American put option under a regime-switching Brownian motion model. The same
process was used in [18] to model stochastic dividend rates where the problem of the
pricing of barrier options on equity was considered. Finite maturity American put
options were considered in [10] under a regime-switching Brownian motion model.
More generally in [7, 8] numerical algorithms were developed in the case of regime-
switching Lévy processes. Furthermore extensive work has been done on derivative
pricing under stochastic volatility models with and without jumps (see the standard
references [14, 17, 24] and [9]).

The remainder of the paper is organized as follows. In Sect. 17.2 we state and
prove the properties of continuous-time Markov chains and phase-type distributions
that are needed to define the class of stochastic volatility models with jumps studied
in this paper. In Sect. 17.3 we give a precise definition of this class of models and
describe an explicit construction of an approximating sequence of models, based on
Markov chains, which converges to the given stochastic volatility model with jumps.
The models are set against the backdrop of a foreign exchange market which al-
lows us to include naturally the stochastic foreign and domestic discount factors. In
Sect. 17.4 we provide explicit formulae for the Fourier transforms in model (17.19)
for vanilla and forward starting options. This section also gives an approximate
explicit formula for the pricing of variance swaps, a one-dimensional integral repre-
sentation of the price of a volatility swap and formulae for the asymptotic behaviour
of the implied volatility smile for large strikes. Section 17.5 is devoted to the first-
passage times of regime-switching processes. Section 17.6 discusses the pricing of
double-no-touch and double-barrier knock-out options. It provides a formula for the
single Laplace transform (in maturity) and the Laplace–Fourier transform (in strike
and maturity) of the double-no-touch and the double-barrier knock-out options re-
spectively in terms of the quantity that can be obtained from the complex matrix
Wiener–Hopf factorisation (see Theorem 17.25). Section 17.7 describes the fluid
embedding of the model in (17.19), which plays a central role in the Wiener–Hopf
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factorisation. The key mathematical results of the paper, which allow us to price
barrier options in the setting of stochastic volatility, are contained in Sect. 17.8,
where matrix Wiener–Hopf factorisation is defined, and the theorems asserting its
uniqueness and existence are stated.

17.2 Markov Chains and Phase-Type Distributions

17.2.1 Finite-State Markov Chains

We start by collecting some useful and well-known properties of finite-state Markov
chains that will be important in the sequel (see e.g. [16]). For completeness, we will
also present the proofs. Throughout the paper we will denote by

M(i, j) = Mij = e′
iMej , m(j) = mj = m′ej , i, j = 1, . . . , n,

the ij th element of an n × n matrix M and the j th element of an n-dimensional
vector m, where the vectors ei , i = 1, . . . , n, denote the standard basis of C

n, and
where ′ means transposition. Throughout the paper I will denote an identity matrix
of appropriate size, and R+ = [0,∞) the nonnegative real line.

Lemma 17.1 Let Z be a Markov chain on a state space E0 := {1, . . . ,N0}, where
N0 ∈ N, and let B : E0 → C be any function. If Q denotes the generator of Z

and ΛB is a diagonal matrix of size N0 with diagonal elements equal to B(i), i =
1, . . . ,N0, then it holds that

Ei

[

exp

(∫ t

0
B(Zs) ds

)

I{Zt=j}
]

= exp
(
t (Q+ΛB)

)
(i, j) for any i, j ∈ E0, t ≥ 0,

(17.1)
where Ei[·] = E[·|Z0 = i], Pi[·] = P[·|Z0 = i], and I{·} is the indicator of a set {·}.

Proof Let (Pt )t≥0 be a family of N0-dimensional square matrices with entries
Pt (i, j), i, j = 1, . . . ,N0, given by the left-hand side of (17.1). It is clear that
P0 = I , where I is the N0-dimensional identity matrix. The Markov property of
the chain Z yields the Chapman–Kolmogorov equation Pt+s = PsPt = PtPs for all
s, t ≥ 0. If we show that the family of matrices (Pt )t≥0 satisfies the system of ODEs
with constant coefficients

dPt

dt
= (Q + ΛB)Pt , P0 = I, (17.2)

then the lemma will follow, since (17.2) is well known to have a unique solution
given by the right-hand side of (17.1). The Chapman–Kolmogorov equation implies
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that Pt+h − Pt = (Ph − I )Pt , and it is therefore enough to show limh→0(Ph −
I )/h = Q + ΛB . In other words, we need to prove

lim
h→0

(
Ph(i, j) − I (i, j)

)
/h =

{
Q(i, j) if i �= j,

Q(i, j) + B(j) if i = j.
(17.3)

The random variables B(Zs) are bounded uniformly in s, and hence the Taylor
expansion of the exponential yields

Ph(i, j) = Ei

[

I{Zh=j}
(

1 +
∫ h

0
B(Zs) ds

)]

+ o(h) for all i, j ∈ {1, . . . ,N0}.

It is clear that

lim
h→0

I{Zh=j}
1

h

∫ h

0
B(Zs) ds = I{Z0=j}B(Z0) Pi-a.s. for all i, j ∈ {1, . . . ,N0},

since the paths of Z are Pi -a.s. constant for exponentially distributed amount of
time. The dominated convergence theorem and the well-known fact Ei[I{Zh=j}] =
h(I (i, j) + Q(i, j)) + o(h) therefore imply (17.3). This concludes the proof. �

We now apply Lemma 17.1 to establish a simple but important property of the
spectrum of a discounted generator.

Lemma 17.2 Let Q be a generator of a Markov chain with N0 ∈ N states, and let
D be a complex diagonal matrix of dimension N0. Then every eigenvalue λ ∈ C of
the matrix Q−D (i.e. a solution of the equation (Q−D)x = λx for some nonzero
element x in C

N0 ) satisfies the inequality

�(λ) ≤ −min
{�(di) : i = 1, . . . ,N0

}
,

where di = D(i, i), i = 1, . . . ,N0, are diagonal elements of D. In particular, if
min{�(di) : i = 1, . . . ,N0} > 0, then the matrix Q − D is invertible. Furthermore,
the real part of every eigenvalue of Q is nonpositive.

Proof Let λ be an eigenvalue of the matrix Q − D that corresponds to the eigen-
vector x ∈ C

N0 . Then x is also an eigenvector with eigenvalue exp(λ) of the matrix
exp(Q − D). Lemma 17.1 implies that if Z is the chain generated by Q, then the
following identity holds:

e′
i exp(Q − D)x =

N0∑

j=1

xjEi

[

exp

(

−
∫ 1

0
dZt dt

)

I{Z1=j}
]

, i = 1, . . . ,N0,

(17.4)
where ei (resp. di) denotes the ith basis vector in C

N0 (resp. diagonal element of
the matrix D).

www.TechnicalBooksPDF.com
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Assume now without loss of generality that the norm ‖x‖∞ := max{|xi | : i =
1, . . . ,N0} of the vector x is one. Then identity (17.4) implies the estimate

exp
(�(λ)

)= ∣∣exp(λ)
∣
∣= ∥∥exp(Q − D)x

∥
∥∞ ≤ exp

(−min
{�(di) : i = 1, . . . ,N0

})
,

which proves the lemma. �

Lemma 17.3 Let q ∈ C be such that �(q) > 0, and M a matrix whose eigenval-
ues all have nonpositive real part. Then the matrix qI − M is invertible, and the
following formula holds:

∫ ∞

0
e−qt exp(tM)dt = (qI − M)−1. (17.5)

Proof The following identity holds for any T ∈ (0,∞) by the fundamental theorem
of calculus:

∫ T

0
exp
(
(M − qI)t

)
dt = (M − qI)−1(exp

(
(M − qI)T

)− I
)
,

and, since the real part of the spectrum of the matrix M − qI is strictly negative by
Lemma (17.2), in the limit as T → ∞, we obtain

∫ ∞

0
exp
(
(M − qI)t

)
dt = (qI − M)−1. �

17.2.2 (Double) Phase-Type Distributions

In this section we review basic properties of phase-type distributions, as these will
play an important role in the sequel. We refer to Neuts [27] and Asmussen [2] for
further background on phase-type distributions.

A distribution function F : R+ → [0,1] is called phase-type if it is the distribu-
tion of the absorption time of a continuous-time Markov chain on (m + 1) states,
for some m ∈ N, with one state absorbing and the remaining states transient. The
distribution F is uniquely determined by the matrix A ∈ R

m×m, which is the gener-
ator of the chain restricted to the transient states, and the initial distribution of the
chain on the transient states α ∈ R

m (i.e. the coordinates of α are nonnegative, and
the inequalities 0 ≤ α′1 ≤ 1 hold, where 1 is the m-dimensional vector with each
coordinate equal to one and ′ denotes transposition). The notation X ∼ PH(α,A) is
commonly used for a random variable X with cumulative distribution function F .
Note also that the law of the original chain on the entire state space is given by

the initial distribution

(
α

1 − α′1

)

and the generator matrix

(
A (−A)1
0 0

)

,
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where 0 denotes a row of m zeros. It is clear from this representation that the cumu-
lative distribution function F and its density f are of the form

F(t) = 1 − α′etA1 and f (t) = −α′etAA1 for any t ∈ R+. (17.6)

Note also that 0 is an atom of the distribution if and only if α′1 < 1, in which case
the function f is a density of a subprobability measure on (0,∞). The nth moment
of the random variable X ∼ PH(α,A) is given by

E
[
Xn
]= n!α′(−A)−n1.

It follows from the definition the phase-type distribution that the matrix A can be
viewed as a generator of a killed continuous-time Markov chain on m states. There-
fore we can express the matrix A as A = Q−D, where Q is the generator of a chain
on m states, and D is a diagonal matrix with nonnegative diagonal elements that are
equal to the coordinates of the vector −A1. Lemma 17.2 therefore implies that the
real part of each eigenvalue of A is nonpositive. The next proposition gives a char-
acterisation of the existence of exponential moments of a phase-type distribution in
terms of the eigenvalues of the matrix A.

Proposition 17.4 Let X ∼ PH(α,A) be a phase-type random variable as defined
above, and let λ0 be the eigenvalue of the matrix A with the largest real part, i.e.
�(λ0) = max{�(λ) : λ eigenvalue of A}. Then, for any u ∈ C, the exponential mo-
ment E[exp(uX)] exists and is finite if and only if �(u) < −�(λ0), in which case
the following formula holds:

E
[
exp(uX)

]= α′(A + uI)−1A1 + (1 − α′1),

where I denotes an m-dimensional identity matrix.

Proof It is clear that the identity

E
[
exp(uX)

]= P(X = 0) +
∫ ∞

0
exp(tu)f (t) dt (17.7)

must hold for all u ∈ R, where f is the density of X on the interval (0,∞). Hence
the question of existence of E[exp(uX)] is equivalent to the question of convergence
of the integral. Using formula (17.6) for the density f , the fact exp(t (A + uI)) =
exp(tA) exp(tu) for all u ∈ C and the Jordan canonical decomposition of the matrix
A, we can conclude that

E
[∣
∣exp(uX)

∣
∣
]
< ∞ ⇐⇒ − α′

(∫ ∞

0
exp
((
A + �(u)I

)
t
)
dt

)

A1 < ∞

⇐⇒ �(λ0 + u) < 0,

where λ0 is as defined above. This proves the equivalence in the proposition.
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Note that the condition �(u) < −�(λ0) implies, by Lemma (17.2), that the ma-
trix A + uI is invertible. For any T ∈ R+ the fundamental theorem of calculus
therefore yields the matrix identity

∫ T

0
exp
(
(A + uI)t

)
dt = (A + uI)−1[exp

(
(A + uI)T

)− I
]
. (17.8)

Since all the eigenvalues of A + uI have a strictly negative real part, it follows
from Jordan canonical decomposition of A+uI that limT→∞ exp((A+uI)T ) = 0.
Therefore identities (17.7) and (17.8) conclude the proof of the proposition. �

More generally, a double phase-type jump distribution DPH(p,β+,B+, β−,B−)

is defined to have density

f (x) := pf+(x)I(0,∞)(x) + (1 − p)f−(−x)I(−∞,0)(x) such that

p ∈ [0,1], f± ∼ PH
(
β±,B±), f±(x) = −(β±)′exB±

B±1 and

1′β± = 1, (17.9)

where the phase-type distributions PH(β±,B±) are as described above, 1 is a vector
of the appropriate size with all coordinates equal to 1, and as usual IA denotes the
indicator of a set A. The condition 1′β± = 1 ensures that the distribution of jump
sizes has no atom at zero.

The class of double phase-type distributions is vast. Not only does it contain
double exponential distributions

f (x) := pα+e−xα+
I(0,∞)(x) + (1 − p)α−exα

−
I(−∞,0)(x)

where α± > 0 and p ∈ [0,1], (17.10)

mixtures of double exponential distributions and Erlang distributions, but this class
is in fact dense in the sense of weak convergence in the space of all probability
distributions on R.

Proposition 17.5 Let F be a probability distribution function on R. Then there
exists a sequence (Fn)n∈N of double-phase-type distributions Fn such that Fn ⇒ F

as n → ∞.1

This result directly follows from the three observations that (a) any probability
distribution on the real line can be approximated in distribution arbitrarily closely
by a random variable taking only finitely many values and (b) any constant ran-
dom variable is the limit in distribution of Erlang or the negative of Erlang random
variables, and (c) a mixture of Erlang distributions is a phase-type distribution.

1We write Fn ⇒ F for a sequence of distribution functions Fn and a distribution function F if Fn

converges in distribution to F , that is, limn→∞ Fn(x) = F(x) for all x where F is continuous.
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An important property of exponential distributions is the lack-of-memory prop-
erty, which can be generalised to stopping times as follows:

Lemma 17.6 Let (Ft )t≥0 a filtration, and let ρ be any stopping time2 with respect
to this filtration. Let eq be an exponentially distributed random variable with pa-
rameter q > 0 which is independent of the σ -algebra generated by

⋃
t≥0 Ft . Then

the equality

E
[
I{ρ<eq } exp

(−λ(eq − ρ)
)∣
∣Fρ

]= q

λ + q
e−qρ holds for all λ ≥ 0,

and hence the positive random variable eq − ρ defined on the event {ρ < eq} is,
conditional on Fρ , exponentially distributed with parameter q .

Remarks

(i) This lemma can be viewed as a generalisation of the lack of memory property,

P(eq > t + s|eq > s) = P(eq > t),

of the exponential random variable eq when the constant time s is substituted by
a stopping time ρ. Note also that it follows from the lemma that the conditional
probability of the event {ρ < eq} equals

P(eq > ρ|Fρ) = exp(−qρ).

(ii) Phase-type distributions enjoy a similar property that can be seen as a generali-
sation of the lack-of-memory of the exponential distribution. More specifically,
let T follow a PH(α,B) distribution independent of the σ -algebra generated
by
⋃

t≥0 Ft . Then for any stopping time ρ with respect to (Ft )t≥0, the random
variable T − ρ defined on the event {ρ < T }, conditional on Fρ , is PH(αρ,B)

distributed where

αρ = (α′eρB1
)−1

α′ exp{ρB},
since the identity

E
[
I{ρ<T } exp

(−λ(T − ρ)
)∣
∣Fρ

]= α′ exp(ρB)(B − λI)−1B1

holds for all λ ≥ 0. This follows by the same argument as in the proof of
Lemma 17.6. Furthermore we have the following expression for the conditional
probability of the event {ρ < T }:

P(T > ρ|Fρ) = α′ exp(ρB)1.

2By definition the stopping time ρ takes values in [0,∞] and satisfies the condition {ρ ≤ t} ∈ Ft

for all t ∈ [0,∞). The σ -algebra Fρ consists of all events A such that A ∩ {ρ ≤ t} ∈ Ft for all
t ∈ [0,∞).
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Proof The following direct calculation based on Fubini’s theorem, which is appli-
cable since all the functions are nonnegative,

E
[
IAI{ρ<eq } exp

(−λ(eq − ρ)
)] = E

[

IAI{ρ<∞}eλρq
∫ ∞

ρ

e−(λ+q)t dt

]

= E

[

IA
q

λ + q
e−qρ

]

, where A ∈ Fρ,

proves the identity in the lemma for all nonnegative λ. Since the Laplace transform
uniquely determines the distribution of a random variable, the lemma follows. �

17.3 Stochastic Volatility Models with Jumps

We next describe in detail the two classes of stochastic volatility models with jumps
that we will consider.

Let v = {vt}t≥0 be a Markov process that takes positive values, modelling the
underlying stochastic variance, and let X be a Lévy process3 which drives the noise
in the log-price process. The processes are taken to be mutually independent and are
both defined on some probability space (Ω, F ,P).

The law of X is determined by its characteristic exponent ψ : R → R which is
according to the Lévy–Khintchine formula given by

E
[
eiuXt

]= etψ(u) (17.11)

with

ψ(u) = icu − σ 2

2
u2 +

∫ ∞

−∞
[
eiux − 1 − iuxI{|x|≤1}

]
ν(dx), (17.12)

where σ 2 ≥ 0 and c are constants, and ν is the Lévy measure that satisfies the in-
tegrability condition

∫
R
(1 ∧ x2)ν(dx) < ∞. The triplet (c, σ 2, ν) is also called the

characteristic triplet of X.
To guarantee that the option prices be finite, we impose the usual restriction that

X admits (positive) exponential moments; more precisely, we assume that for some
p > 1,

∫ ∞

1
epxν(dx) < ∞, (17.13)

which implies that E[epXt ] < ∞ for all t ≥ 0. In this case identity (17.11) remains
valid for all u in the strip {u ∈ C : �(u) ∈ (−p,0]} in the complex plan, where the
function ψ is analytically extended to this strip.

3A Lévy process X = {Xt }t≥0 is a stochastic process that has independent and stationary incre-
ments, and has right-continuous paths with left limits with X0 = 0.
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In this setting a candidate stochastic volatility process with jumps S = {St }t∈[0,T ],
where T > 0 denotes a maturity or time-horizon, is given by

St := S0 exp

(

(r − d)t +
∫ t

0

√
vu dXu −

∫ t

0
ψ(−i√

vs) ds

)

, S0 = s > 0,

(17.14)
where r and d are the instantaneous interest rate and dividend yield respectively.
Here we assume that the variance process v satisfies the following integrability con-
dition:

∫ T

0

∣
∣ψ(−i√

vs)
∣
∣ds < ∞ a.s. (17.15)

It is easy to see by conditioning on the filtration generated by the variance process
v that the integrability condition in (17.15) implies the martingale property of the
discounted process {e−(r−d)t St }t∈[0,T ].

Note that if we take for example X to be a Brownian motion with drift and v

an independent square-root process, the process S reduces to a Heston model with
zero correlation between the driving Brownian factors (see e.g. [17]). The class of
models described by (17.14) is quite flexible and contains for example the stochas-
tic volatility models with jumps described in Lipton [24], as long as there is no
correlation between the driving Brownian motions.

A related class of models that has been proposed in the literature is the one where
the effect of stochasticity of volatility is achieved by randomly changing the time-
scale (see e.g. Carr et al. [12]); in the setting above the price process {St}t∈[0,T ] is
defined by

St := S0 exp
(
(r − d)t + XVt

− ψ(−i)Vt

)
, S0 = s > 0, where Vt :=

∫ t

0
vu du,

(17.16)
and we assume that v satisfies the integrability condition

VT < ∞ a.s. (17.17)

Also in this case the discounted process {e−(r−d)tSt}t∈[0,T ] is a martingale.
It is clear from the definitions that in the case where X is a Brownian motion

with drift, the classes of models in (17.14) and (17.16) coincide, due to the scaling
property of Brownian motion. Whereas the effect of the variance process v on the
Brownian motion with drift is the same in both classes of models, the effect of the
process v on the behaviour of jumps is different. In (17.16) the Markov process v

modulates only the intensity of the jumps of X, while in model (17.14) the volatility
scales the distribution of size of the jumps but does not affect the intensity.

In the next section we will describe a modelling framework in which any model
in the classes given by (17.14) and (17.16) can be approximated. The approximation
in Sect. 17.3.2 retains the structural properties required for the semi-analytic pricing
(i.e. up to an integral transform) of barrier options, forward starting options and
volatility derivatives.
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17.3.1 A Class of Regime-Switching Models

Let the set E0 := {1, . . . ,N0} be the state space of a continuous-time Markov chain
Z = (Zt )t≥0, and let the process W = (Wt )t≥0 denote a standard Brownian motion
which is independent of the chain Z. For each i ∈ E0, let the process J i := (J i

t )t≥0
be a compound Poisson process with intensity λi ≥ 0 and jump-sizes distributed ac-
cording to a double-phase-type distribution DPH(pi, β

+
i ,B+

i , β−
i ,B−

i ). In particu-
lar the jump-size distributions have no atom at zero, i.e. (β+

i )′1 = 1 for all i ∈ E0

such that λipi > 0 and analogously for β−
i . Assume further that the processes J i

are mutually independent as well as independent from the Brownian motion W and
the chain Z.

In this setting consider the following model for the underlying price process S =
(St )t≥0, the (domestic) money market account BD = (BD

t )t≥0 and the cumulative
dividend yield BF = (BF

t )t≥0:

BD
t := exp

(∫ t

0
RD(Zs) ds

)

, BF
t := exp

(∫ t

0
RF (Zs) ds

)

,

St := exp(Xt ),

(17.18)

where

Xt := x +
∫ t

0
μ(Zs) ds +

∫ t

0
σ(Zs) dWs +

∑

i∈E0

∫ t

0
I{Zs=i} dJ i

s . (17.19)

In the case of the Foreign Exchange market the process BF can be interpreted as a
foreign money market account. The point x ∈ R is the starting value of the process
X, and RD,RF ,μ,σ : E0 → R are given real-valued functions on E0 such that
RD,RF are nonnegative and σ is strictly positive. To price derivatives in our model,
we need to understand the law of the Markov process (X,Z), which is determined
by the characteristic matrix exponent K , defined as follows.

Definition The characteristic matrix exponent K : R → C
N0×N0 of (X,Z) is given

by

K(u) = Q + Λ(u),

where Q denotes the generator of the chain Z, and, for u ∈ R, Λ(u) is a diagonal
matrix of size N0 × N0, where the ith diagonal element equals the characteristic
exponent of the process X in regime i, given by

ψi(u) := iuμi − σ 2
i u

2/2 + λi

[
pi

(
β+
i

)′(
B+

i + iuI
)−1

B+
i 1

+ (1 − pi)
(
β−
i

)′(
B−

i − iuI
)−1

B−
i 1 − 1

]
, (17.20)

where I and 1 are an identity matrix and a vector with all coordinates equal to one
of the appropriate dimensions.

www.TechnicalBooksPDF.com



17 Exotic Derivatives under Stochastic Volatility Models with Jumps 467

Remarks

(i) Note that the functions ψi defined in (17.20) can be analytically extended to
the strip in the complex plane �(u) ∈ (−α+

i , α−
i ), where

α±
i := min

{−�(λ) : λ eigenvalue of B±
i

}
for any state i ∈ E0. (17.21)

(ii) In the special case that the jumps follow a double exponential distribution, the
diagonal elements of the matrix Λ(u) take the simpler form

ψi(u) = iuμi −σ 2
i u

2/2+λipi

(
β+
i

β+
i − iu

−1

)

+λi(1−pi)

(
β−
i

β−
i + iu

−1

)

,

where β±
i and pi are the parameters of the double exponential distribution.

(iii) Throughout the paper we will use Ex,i [·] to denote the conditional expectation
E[·|X0 = x,Z0 = i] and on occasion Ei[·] to represent E0,i[·].

We now define two matrices the will play an important role in the sequel.

Definition The discount rate matrix ΛD is the diagonal matrix with elements
ΛD(i, i) := RD(i) where i ∈ E0. The dividend yield matrix ΛF is the diagonal
matrix given by ΛF (i, i) := RF (i) for i ∈ E0.

Theorem 17.7 The discounted characteristic function of the Markov process (X,Z)

is given by the formula

Ex,i

[
exp(iuXt)

BD
t

I{Zt=j}
]

= exp(iux) · exp
(
t
(
K(u) − ΛD

))
(i, j) (17.22)

for all u ∈ R.

Remarks

(i) The left-hand side is finite for all u ∈ C in the strip �(u) ∈ (−α+∗ , α−∗ ) where

α+∗ = min
{
α+
k : λkpk > 0, k ∈ E0} and

α−∗ = min
{
α+
k : λk(1 − pk) > 0, k ∈ E0},

(17.23)

the quantities α±
i are defined in (17.21), and the minimum over the empty set is

taken to be +∞. It follows, by analytical continuation, that identity (17.22) re-
mains valid for all u in this strip. Furthermore, the slope of the implied volatil-
ity smile in model (17.19) is determined by α+∗ and α−∗ (see Sect. 17.4.2).

(ii) The Markov property and Theorem 17.7 imply that the process {StB
F
t /BD

t }t≥0
is a martingale if the following two conditions hold:

1 < α+
k for all k ∈ E0 such that λpk > 0, (17.24)

Λ(−i) = ΛD − ΛF . (17.25)
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Condition (17.24) ensures that Ei,x[ST ] is finite for all T ≥ 0 and hence by
Theorem 17.7 takes the form Ei,x[ST ] = ex[exp(T K(−i))1](i). The equal-
ity in (17.25) guarantees that S has instantaneous drift given by the rates
ΛD − ΛF . Any model from the class (17.18)–(17.19) that satisfies condi-
tions (17.24) and (17.25) can be taken as a specification of the price pro-
cess of the risky asset under a pricing measure. From now on we assume
that model (17.19) is specified under the pricing measure given by condi-
tion (17.24)–(17.25).

(iii) For later reference we record that, under a pricing measure, the price at time s

of a zero-coupon bond maturing at time t ≥ s is given by

Ei

[
1

BD
t

∣
∣
∣
∣F (X,Z)

s

]

= 1

BD
s

· (exp
(
(t − s)(Q − ΛD)

)
1
)
(Zs), (17.26)

where F (X,Z)
s = σ {(Xu,Zu)}u≤s denotes the standard filtration generated by

(X,Z). In particular, at time 0 the price is given by

Ei

[(
BD

t

)−1]= (exp
(
t (Q − ΛD)

)
1
)
(i).

(iv) The infinitesimal generator L of the Markov process (X,Z) acts on sufficiently
smooth functions4 f : R × E0 → R as

Lf (x, i) = σ 2(i)

2
f ′′(x, i) + μ(i)f ′(x, i)

+ λ(i)

[∫

R

f (x + z, i)gi(z) dz − f (x, i)

]

+
∑

j∈E0

qij
[
f (x, j) − f (x, i)

]
, (17.27)

where gi is the density of the double phase-type distribution DPH(pi, β
+
i ,B+

i ,

β−
i ,B−

i ), qij is the ij th element of Q, and ′ denotes differentiation with respect
to x.

(v) For a specific regime-switching model (namely the case where the Markov
chain Z has two states only), the calibration is studied in [26].

Proof It is clear from the definition of (X,Z) that it is a Markov process. Let F Z
t :=

σ(Zs : s ∈ [0, t]) be the σ -algebra generated by the chain Z up to time t . Since the
compound Poisson processes and Brownian motion in model (17.19) are mutually
independent as well as independent of the σ -algebra F Z

t , it is easy to see that by

4For example, functions f with f (·, i) ∈ C2
c (R) for i ∈ E0, where C2

c (R) are the twice continu-
ously differentiable functions with compact support.
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conditioning on F Z
t for any i ∈ E0 we obtain

Ex,i

[
exp(uXt )

∣
∣F Z

t

]

= exp

(

ux + u

∫ t

0
μ(Zs) ds + u2

2

∫ t

0
σ(Zs)

2 ds +
∫ t

0
ν(Zs,u) ds

)

,

ν(i, u) := λi

[
E
[
exp(uJi)

]− 1
]

= λi

[
pi

(
β+
i

)′(
B+

i + uI
)−1

B+
i 1 + (1 − pi)

(
β−
i

)′(
B−

i − uI
)−1

B−
i 1 − 1

]
,

(17.28)

where the random variable Ji denotes the size of jumps of the compound Poisson
process J i . The last equality in this calculation is a consequence of the choice (17.9)
of the distribution of jump sizes and Proposition 17.4. Therefore the complex num-
ber u must be contained in all intervals (−α−

k , α+
k ), k ∈ E0, where α±

k are de-
fined in Theorem 17.7. The identity in (17.28) holds more generally for any jump-
distribution that admits a moment-generating function. The well-known identity
from the theory of Markov chains given in Lemma 17.1 can now be applied to
obtain the expectations of the expressions on both sides of (17.28). This concludes
the proof of Theorem 17.7. �

From Theorem 17.7 one may obtain an explicit expression for the marginal dis-
tributions of (X,Z) by inverting the Fourier transform (17.22):

Proposition 17.8 For any T > 0, the joint distribution q
x,i
T (y, j) = d

dy
Px,i [XT ≤

y,ZT = j ] of (XT ,ZT ) is given by

q
x,i
T (y, j) = 1

2π

∫

R

eiξ(x−y) exp
(
K(ξ)T

)
(i, j) dξ, y ∈ R, i, j ∈ E0. (17.29)

In particular, XT is a continuous random variable with probability density function
q
x,i
T (y) = Px,i [XT ∈dy]

dy
given by

q
x,i
T (y) = 1

2π

∫

R

eiξ(x−y)
[
exp(K(ξ)T )1

]
(i) dξ, y ∈ R, i ∈ E0. (17.30)

Proof It is well known that a probability law on the real line R has a density with
respect to the Lebesgue measure if its characteristic function is in L1(R). The char-
acteristic function of XT by Theorem 17.7 equals

Ex,j

[
exp(iξXT )

]= eiξx
[
exp
(
K(ξ)T

)
1
]
(j). (17.31)

We now show that this characteristic function is asymptotically equal to exp(−cξ 2),
as |ξ | → ∞, for some positive constant c. Note first that the volatility vector σ

in model (17.19) has nonzero coordinates by assumption and the spectra of matri-

www.TechnicalBooksPDF.com
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ces B±
i , i = 1, . . . ,N0, do not contain any points of the form iξ , for ξ ∈ R, by

Lemma 17.2. Therefore the functions ξ �→ ψi(ξ), i = 1, . . . ,N0, defined in (17.20)
are asymptotically equal to downward facing parabolas. A further application of
Lemma 17.2 implies that the characteristic function has the desired asymptotic be-
haviour. This further implies that the density q

x,i
T exists and is given by the inversion

formula (17.30).

ξ �→ eiξx exp
(
TK(ξ)

)
(i, j) = Ex,i

[
exp(iξXT )I{ZT =j}

]

is in L1(R) and that the two equalities hold. Therefore the Fourier inversion formula
is valid, and the identity in (17.29) follows. �

17.3.2 Two-Step Approximation Procedure

The construction of a regime-switching Lévy process with jump sizes distributed
according to a double phase-type distribution that approximates a given stochastic
volatility process with jumps from either of the two-classes (17.14) and (17.16)
takes place in two steps:

(i) Approximation of the variance process v by a finite-state continuous-time
Markov chain and

(ii) Approximation of the Lévy process X by a Lévy process with double-phase-
type jumps.

By approximating the variance process by a finite-state Markov chain the resulting
approximating process is a regime-switching Lévy process. The approximation of
the jump part of X by a compound Poisson process with double phase-type jumps
will enable us to employ matrix Wiener–Hopf factorisation results, needed to ob-
tain tractable formulae for the prices of barrier-type options. The two steps will be
described in detail in the present section.

Markov Chain Approximation of the Variance Process

The first step of the approximation procedure that was outlined above is to approxi-
mate the variance process v by a finite-state continuous-time Markov chain on some
grid contained in the positive real line. We will restrict ourselves to the case that the
variance process v is a Feller process on the state space R+ = [0,∞). This assump-
tion implies that v is a Markov process satisfying some regularity properties.

The Feller property is phrased in terms of the semi-group (Pt )t≥0 of v acting on
C0(R+), the set of continuous functions on R+ that tend to zero at infinity. Recall
that, for any Borel function f on R+ and t ≥ 0, the map Ptf : R+ → R is given by

Ptf (x) = Ex

[
f (vt )

]
.
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17 Exotic Derivatives under Stochastic Volatility Models with Jumps 471

Assumption 17.9 The Markov process v = {vt }t≥0 is a Feller process; that is, for
any f ∈ C0(R+), the family (Ptf )t≥0 satisfies the following two properties:

(i) Ptf ∈ C0(R+) for any t > 0;
(ii) limt↓0 Ptf (v) = f (v) for any v ∈ R+.

An approximating Markov chain Z with generator Q on a state-space E0 =
{x1, . . . , xN0} can be constructed by choosing E0 to be some appropriate (nonuni-
form) grid in R+, and specifying the generator Q such that an appropriate set of
instantaneous (local) moments of the chain Z and the target process v are matched.
See [25] for details on this procedure.

Denote by G : D → C0(R+) the infinitesimal generator of v defined on its do-
main D, and let Z(n) be a sequence of Markov chains with generators Q(n) and state
spaces E0(n) = {x(n)

1 , . . . , x
(n)

N(n)}, and denote by Q(n)fn the vector with coordinates

Q(n)fn(xi) =
∑

xj∈E0(n)

Q(n)(xi, xj )f (xj ), xi ∈ E0(n).

The sequence Z(n) weakly approximates the variance process v if the range of the
state spaces E0(n) grows sufficiently fast as n tends to infinity and if, for all regular
functions f , Q(n)fn converges uniformly to Gf , that is, εn(f ) → 0, where

εn(f ) := max
x∈(E0(n))o

∣
∣Q(n)fn(x) − Gf (x)

∣
∣,

and (E0(n))o is equal to E0(n) without the smallest and the largest elements. The
precise statement reads as follows:

Theorem 17.10 Assume that the following two conditions are satisfied for any func-
tion in a core5 of L:

εn(f ) → 0 as n → ∞, (17.32)

either (i) lim
y↘0

Gf (y) = 0 or (ii) lim
n→∞ Px

[
τ
(n)

(E0(n))o
> T

]= 1, (17.33)

where for any set G ⊂ R+, we define τ
(n)
G = inf{t ≥ 0 : X(n)

t /∈ G}. Then it holds

that, as n → ∞, v(n) L⇒ v.6

5A core C of the operator L is a subspace of the domain of L that is (i) dense in C0(R+) and
(ii) there exists λ > 0 such that the set {(λ − L)f : f ∈ C} is dense in C0(R+).
6By v(n) L⇒ v we denote the convergence in law of v(n) to v in the Skorokhod topology, i.e. conver-
gence of the distributions of v(n) to those of v in the set of probability measures on the Skorokhod
space endowed with the Skorokhod topology.
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472 A. Mijatović and M. Pistorius

Remark

(i) Note that the convergence in law implies in particular that

Ex

[
g
(
Z

(n)
T

)] −→ Ex

[
g(vT )

]

for any bounded continuous function g.
(ii) A proof of this statement can be found in [25].

Approximation of a Lévy Process

The second stage of the aforementioned approximation procedure amounts to an ap-
proximation of a Lévy process by a compound Poisson process with double phase-
type jumps.

Proposition 17.11 For any Lévy process X, there exists a sequence (X(n))n∈N of

Lévy processes with double phase-type jumps such that X(n) L⇒ X as n → ∞.

Remarks

(i) A proof of this result can be found in e.g. Jacod and Shiryaev [20, Sect. VII.3].
It is based on the fact that a sequence (X(n))n∈N of Lévy processes weakly
converges to a given Lévy process X if and only if X(n)

1 converges in distribution
to X1 (see e.g. [20, Corollary VII.3.6] for a proof).

(ii) Furthermore [20, Corollary VII.3.6] implies that a sufficient condition to guar-
antee that X(n)

1 converges in distribution to X1 is that the characteristic triplets
(cn, σ

2
n , νn) of X(n) converges to the triplet (c, σ 2, ν) of X as follows as

n → ∞: for some a > 0 that is a continuity point of ν(dx) and ν(−dx), it
holds that

cn → c, σ 2
n +

∫

(−a,a)

x2νn(dx) → σ 2 +
∫

(−a,a)

x2ν(dx), (17.34)

∫

(0,∞)

(
x2 ∧ a

)∣
∣νn(x) − ν(x)

∣
∣dx +

∫

(−∞,0)

(|x|2 ∧ a
)∣
∣νn(x) − ν(x)

∣
∣dx → 0

(17.35)

where, for any measure m on R, m and m are the left and right tails, m(x) =
m([x,∞)), m(x) = m((−∞, x]).

Suppose now that the Lévy process X is a model for the log of a stock price. Then
X has a triplet (c, σ 2, ν) satisfying the exponential moment condition in (17.13).
An example of a sequence of Lévy processes with DPH distributed jumps that
weakly converges to X is then given as follows. Let λn = ν((−1/n,1/n)c), and Fn

be a double phase-type distribution that approximates in distribution the probabil-
ity measure F̃n(dx) = I{|x|≥1/n}ν(dx)/λn, and define the measure νn by νn(dx) =
λnFn(dx). Here the Fn and σ 2

n are to be chosen such that (17.35) and the second
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17 Exotic Derivatives under Stochastic Volatility Models with Jumps 473

requirement in (17.34) hold true. See e.g. [3] for a fitting procedure based on the EM
algorithm. Then the sequence of Lévy processes X(n) with triplets (c, σ 2

n , λnFn) sat-
isfies the conditions (17.35) and thus approximates X in law as n tends to infinity.

17.3.3 Convergence of the Approximation Procedure

Combining the two steps in the approximation, we can now identify candidate
sequences of regime-switching processes that converge to either of the stochastic
volatility processes with jumps (17.14) and (17.16) and establish the convergence.

Let (X(n))n∈N be a sequence of Lévy processes with DPH jumps, and let
(Z(n))n∈N be a sequence of Markov chains that is independent of X and (X(n))n∈N.
Let ψn denote the characteristic exponent of X(n), and (cn, σ

2
n , νn) the character-

istic triplet. Consider then the sequences of stochastic processes (S(int-n))n∈N and
(S(tc-n))n∈N with S(int-n) = {S(int-n)

t }t∈[0,T ] and S(tc-n) = {S(tc-n)
t }t∈[0,T ] given by

S
(int-n)
t := S0 exp

(

(r − d)t +
∫ t

0

√

Z
(n)
s dX(n)

s −
∫ t

0
ψn

(−i
√

Z
(n)
s

)
ds

)

,

S
(tc-n)
t := S0 exp

(
(r − d)t + X(n)

(
V

(n)
t

)− ψn(−i)V (n)
t

)
,

where V
(n)
t =

∫ t

0
Z(n)

s ds.

The processes S(int-n) and S(tc-n) are in law equal to exponential Lévy processes:

Proposition 17.12 For n ∈ N, logS(int-n) and logS(tc-n) are in law equal to regime-
switching Lévy processes of the form (17.19).

Proof Note first that since X(n) = (X
(n)
t )t≥0 is a Lévy process with DPH jumps, it

is of the form

X
(n)
t = μ(n)t + σ (n)Wt + J

(n)
t with J

(n)
t =

M
(n)
t∑

i=1

Ui, (17.36)

where μ(n), σ (n) are constants, M(n) = (M
(n)
t )t≥0 Poisson processes with jump-

rates λ(n), and Ui are i.i.d. random variables following a DPH distribution. Then
it is clear that X(int-n) = log(S(int-n)/S0) is in law equal to the process X̃(int-n) =
(X̃

(int-n)
t )t≥0 given by

X̃
(int-n)
t =

∫ t

0

(
r − d + μ(n)

√

Z
(n)
s − ψ(n)

(−i
√

Z
(n)
s

))
ds +

∫ t

0
σ (n)

√

Z
(n)
s dWs

+
N(n)
∑

j=1

∫ t

0
I{Z(n)

s =x
(n)
j } dJ̃

(n,j)
s ,
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where J̃ (n,j), j = 1, . . . ,N(n), are independent compound Poisson processes that

are in law equal to the processes J (n,j) = (J
(n,j)
t )t≥0 with J

(n,j)
t =∑N

(n)
t

i=1

√
x
(n)
j Ui ,

respectively. Since, for any constant c �= 0, cUi follows a DPH distribution, X̃(int-n)

is a regime-switching Lévy process of the form (17.19).
As a consequence of the scaling property of Brownian motion, it follows that

X(tc-n) = log(S(tc-n)/S0) is in law equal to the process X̃(tc-n) = (X̃
(tc-n)
t )t≥0 given

by

X̃
(tc-n)
t =

∫ t

0

(
r − d + [μ(n) − ψ(n)(−i)]Z(n)

s

)
ds +

∫ t

0
σ (n)

√

Z
(n)
s dWs

+
N(n)
∑

j=1

∫ t

0
I{Z(n)

s =x
(n)
j } dĴ

(n,j)
s ,

where Ĵ (n,j), j = 1, . . . ,N(n), are independent compound Poisson processes that

are in law equal to the processes J (n,j) = (J
(n,j)
t )t≥0 with J

(n,j)
t =∑M

(n,j)
t

i=1 Ui , re-

spectively, where M(n,j) is a Poisson process with jump-rate λ · x(n)
j . Here we used

that, conditional on Z(n), the process X(tc-n) has independent increments, so that
the law of X(tc-n) conditional on Z(n) is determined by the conditional characteristic
functions of X(tc-n)

t , t ≥ 0. A straightforward calculation verifies that the conditional
characteristic functions of X(tc-n)

t and X̃
(tc-n)
t are equal for t ≥ 0. �

To establish the convergence in law of (S(int-n))n∈N and (S(tc-n))n∈N, we will first
show the convergence of the finite-dimensional distributions.7

Proposition 17.13 Assume that X(n) L⇒ X and Z(n) L⇒ v as n tends to infinity. Then
the following holds true:

(a) (Z(n), S(int-n))n
fidis⇒ (v, S), where S is the model given in (17.14).

(b) (V (n), S(tc-n))n
fidis⇒ (V ,S), where S is the time-change model given in (17.16).

Remark The convergence of European put option prices (and hence, by put–call
parity, also of European call option prices) under the approximating models to those
under the limiting models is a direct consequence of the convergence in finite-
dimensional distributions. To establish the convergence of path-dependent option
prices such as barrier option prices, it is required to prove that the approximating
models converge in law.

7A sequence of processes (Yn)n∈N converges in finite-dimensional distributions to the process Y =
{Yt }t∈[0,T ] if, for any partition t1 < · · · < tm of [0, T ], P(Y

(n)
t1

≤ x1, . . . , Y
(n)
tm

≤ xm) → P(Yt1 ≤
x1, . . . , Ytm ≤ xm). We will denote this convergence by Yn

fidis⇒ Y .
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Proof (b) To prove the convergence of the finite-dimensional distributions, it suf-
fices, in view of the Markov property, to show that, for each fixed t ∈ [0, T ], the
characteristic functions χn of (V

(n)
t ,X(n)(V

(n)
t )) converge pointwise to the charac-

teristic function χ of (Vt ,X(Vt )) as n tends to infinity. By conditioning and using
the independence of V (n) from X(n) and of V from X we find that

χn(u, v) = Ex,i

[
exp
{(
iu + ψn(v)

)
V

(n)
t

}]
,

χ(u, v) = Ex,i

[
exp
((
iu + ψ(v)

)
Vt

)]
.

Since v(n) converges in law to v in the Skorokhod topology, the Skorokhod represen-
tation theorem implies that on some probability space Z(n) → v, almost surely, with
the convergence with respect to the Skorokhod metric. Since, for any t ∈ [0, T ], the
map it : DR[0, T ] → R given by it : x �→ ∫ t

0 x(s) ds is continuous in the Skorokhod

topology, we deduce that V (n)
t → Vt almost surely. In particular, χn converges point-

wise to χ .
The proof of (a) is similar and omitted. �

The next result concerns the convergence in law of the sequences (S(int-n))n∈N

and (S(tc-n))n∈N:

Theorem 17.14 The following statements hold true:

(a) Assume that (v, S) is a Feller process, where S is the model given in (17.14),
that Z(n) satisfies the conditions in Theorem 17.10, and that the characteristics
of X(n) satisfy conditions (17.34) and (17.35). Then, as n → ∞,

S(int-n) L⇒ S.

(b) Assume that X(n) L⇒ X and Z(n) L⇒ v as n → ∞. Then it holds that

S(tc-n) L⇒ S,

where S is the time-change model given in (17.16).

Remark The convergence in law stated above carries over to the convergence of
barrier option prices under the respective models if the boundaries are continuity
points of the limiting model. For instance, if we denote by τA = inf{t ≥ 0 : St /∈ A}
the first time that S leaves the set A := [�,u], and P(ST ∈ {�,u}) = 0, then, for any
bounded continuous pay-off functions g,h : R+ → R, we have that, as n → ∞, the
double knock-out option and rebate option prices under the approximating models
converge to those under the limiting model:

Ex

[
g
(
S
(n)
T

)
I{τ (n)

A >T }
] −→ Ex

[
g(ST )I{τA>T }

]
,

Ex

[
e−rτ

(n)
A h
(
S
(n)

τ
(n)
A

)
I{τ (n)

A ≤T }
] −→ Ex

[
e−rτAh(SτA)I{τA≤T }

]
,

where S(n) denotes S(int-n) or S(tc-n). A proof of this result was given in [25].
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Proof In view of Proposition 17.13, it suffices8 to verify that the sequences
(S(int-n))n∈N and (S(tc-n))n∈N are relatively compact in DR[0, T ].

(a) We will establish the relative compactness of the sequence (X(int-n))n∈N =
(logS(int-n))n∈N. Let X′ = logS. It is straightforward to check that the set of func-
tions f : R+ × R+ → R of the form f (x, v) = g(x)h(v) with h in the core of G ,
the infinitesimal generator of v, and with g ∈ C∞

c (R)9 is dense in C0(R+ × R)

and is contained in the domain D(L′) of the infinitesimal generator L′ of (v,X′).
Furthermore, L′ acts on such f as

L′f (x, v) = 1

2
vh(v)σ 2g′′(x) + [(r − d) + c

√
v − ψ(−i√

v)
]
h(v)g′(x)

+ h(v)

∫

R

[
g(x + z

√
v) − g(x) − z

√
vg′(x)I{|z|≤1}

]
ν(dz)

+ g(x)Gh(v), x ∈ R, v > 0,

since by construction the stochastic integral {∫ t

0
√
vs dXs}t≥0 jumps if and only if

the Lévy process X jumps and, if the jump occurs at time t , the quotient of the
jump sizes equals

√
vt . On the other hand, the infinitesimal generator L(n) of the

regime-switching processes (Z(n),X(int-n)) acts on f (x, v) = g(x)h(v) as

L(n)f (x, v) = 1

2
vσ 2

n h(v)g
′′(x) + [(r − d) + cn

√
v − ψn(−i

√
v)
]
h(v)g′(x)

+ h(v)

∫

R

[
g(x + z

√
v) − g(x) − z

√
vg′(x)I{|z|≤1}

]
νn(dz)

+ g(x)Q(n)h(v), x ∈ R, v ∈ E0(n).

L(n)f converges to L′f uniformly as n → ∞:

ε′
n(f ) := sup

x∈R,v∈E0(n)

∣
∣L′f (x, v) − L(n)f (x, v)

∣
∣→ 0. (17.37)

To see why this is true, note that the triangle inequality and integration by parts
imply that

ε′
n(f ) ≤ ∥∥Gh − Q(n)h

∥
∥
n
‖g‖∞ + C1

∣
∣ν(a) − νn(a)

∣
∣+ C2 max

{∣
∣σ 2

n − σ 2
∣
∣, |cn − c|}

+ C3

{∫ ∞

a

∣
∣ν(z) − νn(z)

∣
∣dz +

∫ −a

−∞
∣
∣ν(z) − νn(z)

∣
∣dz

}

+ C4

{∫

(0,a)
z2
∣
∣ν(z) − νn(z)

∣
∣dz +

∫

(−a,0)
z2
∣
∣ν(z) − νn(z)

∣
∣dz

}

, (17.38)

8See e.g. Theorem 3.7.8 in Ethier and Kurtz [15] for a proof of this well-known fact.
9C∞

c (R+) denotes the set of infinitely differentiable functions with compact support contained
in R+.
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where a is a continuity point of the measures ν(dx) and ν(−dx), and C1,

. . . ,C4, are certain finite constants independent of n, and we denoted ‖f ‖n =
supx∈E0(n) |f (x)| and ‖f ‖∞ = supx∈R

|f (x)|. In view of conditions (17.34) and
(17.35), ε ′

n(f ) tends to zero as n tends to infinity. Corollary 4.8.6 in Ethier and
Kurtz [15] implies then that (Z(n),X(int-n))n∈N and hence (Z(n), S(int-n))n∈N is rel-
atively compact in DR2 [0, T ].

(b) Denote by X̃(n) = {X̃(n)
t }t≥0 and X̃ = {X̃t}t≥0 the Lévy processes given by

X̃
(n)
t = X

(n)
t − ψ(n)(−i)t and X̃t = Xt − ψ(−i)t.

We will verify10 the relative compactness of the sequence (Y (n))n∈N with Y
(n)
t =

X̃(n)(V
(n)
t ). In view of the Skorokhod embedding theorem and the convergence in

law of (Z(n), X̃(n)) to (v, X̃), we may and shall assume that (Z(n), X̃(n))n∈N and
(v, X̃) are defined on the same probability space (Ω ′, F ′,P′), and that, P

′-almost
surely, (Z(n),X(n)) → (v,X) with respect to the Skorokhod metric. Fix an ω ∈ Ω ′
for which this convergence holds true.

Observe that, for any U > 0, z = supn Z
(n)
U (ω) is finite, as vU (ω) is finite and

|Z(n)
U (ω)−vU(ω| → 0 as n tends to infinity. For x ∈ DR[0,U ], δ > 0, U > 0, denote

by w′(x, δ,U) the modulus of continuity

w′(x, δ,U) = inf{ti }
max

i
sup

s,t∈[ti−1,ti )

∣
∣x(s) − x(t)

∣
∣,

where {ti} ranges over all partitions 0 = t0 < t1 < · · · < tn−1 < U ≤ tn with
min1≤i≤n |ti − ti−1| > δ. Note that w′(x, δ,U) is nondecreasing in δ and U . There-
fore it is straightforward to check that

w′
n(U) := w′(Y (n)(ω), δ,U

)≤ w′(X̃(n)(ω), δz,Uz
)
. (17.39)

Furthermore, observe that

Yn(ω) := {Y (n)
s (ω) : s ≤ U

}⊂ {X̃(n)
s (ω) : s ≤ Uz

}
. (17.40)

Since {X̃(n)(ω)}n∈N is convergent in DR[0,∞), it follows that (I) for every rational
t ∈ [0,U ], there exists a compact set Ct ⊂ R such that Y (n)

t (ω) ∈ Ct for all n and (II)
for every U > 0, limδ→0 supn w

′
n(U) = 0 and, as a consequence,11 Yn is relatively

compact in DR[0,∞). �

10The proof draws on and combines a number of results from the theory of weak convergence of
probability measures that can be found in Ethier and Kurtz [15, Chaps. 3, 6]
11Both applications follow from the fact that conditions (I) and (II) are necessary and sufficient for
the relative compactness of (Y (n))n∈N (Ethier and Kurtz [15, Theorem 3.6.3]).
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17.4 European and Volatility Derivatives

17.4.1 Call and Put Options

We first turn to the valuation of a call option price. In the model under consideration
a closed-form expression is available, in terms of the original parameters, for the
Fourier transform c∗

T in log-strike k = logK of the call prices CT (K) with matu-
rity T ,

c∗
T (ξ) =

∫

R

eiξkCT (e
k) dk where �(ξ) < 0.

Proposition 17.15 Define, for any ξ ∈ C\{0,i}, x ∈ R and j ∈ E0, the value
D(ξ, x, j) by the formula

D(ξ, x, j) := e(1+iξ)x

iξ − ξ2
· [exp

{
T
(
K(1 + iξ) − ΛD

)}
1
]
(j). (17.41)

Then if �(ξ) < 0, it holds that

c∗
T (ξ) = D(ξ, x, j),

where x = logS0 is the log-price at the current time, and Z0 = j the initial level of
the volatility.

Remarks

(i) The call option price can now be calculated using the method described in Carr–
Madan [13] by evaluating the integral

CT (K) = exp(−αk)

2π

∫ ∞

−∞
e−iskc∗

T (s − iα)ds

= exp(−αk)

π

∫ ∞

0
�[e−iskD(s − iα, logS0,Z0)

]
ds (17.42)

for k = log(K) and any strictly positive α. The integral in (17.42) can be
approximated efficiently by a finite sum using the FFT algorithm (see [13]).
Since in our model we have an explicit formula for the transform c∗

T (s) given
by (17.41), the pricing of European call options is immediate.

(ii) A simple calculation shows that the put option price PT (K) = Ex,j [(BD
T )−1 ×

(K − ST )
+] can be expressed in terms of the formula for D(ξ, x, j) in (17.41)

and any strictly negative constant α in the following way:

PT (K) = exp(−αk)

π

∫ ∞

0
�[e−iskD(s − iα, logS0,Z0)

]
ds,

where k = log(K).
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Proof To find the European call option price CT (K) = Ex,j [(BD
T )−1(ST − K)+]

in model (17.19), we first need to find the Fourier transform in the log-strike k =
log(K) of the function

cT (k) = exp(αk)Ex,j

[(
BD

T

)−1(
ST − exp(k)

)+]
,

where α is some strictly positive constant. Fubini’s theorem and the form of the
characteristic function (17.31) imply the following for ξ = v − iα:

c∗
T (ξ) =

∫

R

exp
(
(iv + α)k

)
Ex,j

[(
BD

T

)−1(
ST − exp(k)

)+]
dk

= Ex,j

[
(
BD

T

)−1
∫

R

exp
(
(iv + α)k

)(
ST − exp(k)

)+
dk

]

= Ex,j

[(
BD

T

)−1 exp
(
(1 + α + iv)XT

)]
/
(
α2 + α − v2 + i(2α + 1)v

)

= ex(1+α+iv)

α2 + α − v2 + i(2α + 1)v

[
exp
(
T
(
K(1 + α + iv) − ΛD

))
1
]
(j).

This concludes the proof. �

17.4.2 Implied Volatility at Extreme Strikes

The implied volatility σx,i(K,T ) for a given strike K and maturity T is uniquely
defined by the identity

CBS(S0,K,T ,σx,i(K,T )
)= Ex,i

[(
BD

T

)−1
(ST − K)+

]
, (17.43)

where CBS(S0,K,T ,σ ) is the Black–Scholes formula, and S0 = exp(x). The results
in Lee [23] and refinements in Benaim and Friz [6] imply that in model (17.19)
the slope of the volatility smile is uniquely determined by the quantities α±

i ,
i = 1, . . . , n, defined in (17.21). In the particular case where the distribution of
jumps is double exponential, α±

i are in fact the reciprocals of mean-jump sizes in
model (17.19).

In order to state the precise result, define

q+ := sup
{
u : Ex,i

[
S1+u
T

]
< ∞ for all i ∈ E0},

q− := sup
{
u : Ex,i

[
S−u
T

]
< ∞ for all i ∈ E0}.

If the chain Z is irreducible, the quantities q± can be identified explicitly to be equal
to

q+ = min
{
α+
i − 1 : i ∈ {1, . . . ,N0}&piλi > 0

}
, (17.44)

q− = min
{
α−
i : i ∈ {1, . . . ,N0}& (1 − pi)λi > 0

}
. (17.45)
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As noted above, the quantities q+ and q− depend only on the mean-jump sizes of
the compound Poisson processes in model (17.19).

Denote the forward price by FT := Ex,i[ST ]. Then the asymptotic behaviour for
the implied volatility is described as follows:

Proposition 17.16 Suppose that Z is irreducible. For T > 0 and K > 0 and with
q± given in (17.44)–(17.45), it holds that

lim
K→∞

T σx,i(K,T )2

log(K/FT )
= 2 − 4

(√
q2+ + q+ − q+

)
,

lim
K→0

T σx,i(K,T )2

|log(K/FT )| = 2 − 4
(√

q2− + q− − q−
)
.

Remark Note that if the Markov chain Z is irreducible, the asymptotic slope of
the implied volatility smile for large and small strikes depends neither on the spot
S0 = ex nor on the starting volatility regime i.

17.4.3 Forward Starting Options and the Forward Smile

A forward starting call option is a call option whose strike is fixed at a later date
as a proportion of the value of the underlying at that moment. More precisely, the
pay-off of a T1-forward starting call option at maturity T2 > T1 is given by

(ST2 − κST1)
+, κ ∈ R+.

Denote the current value of this forward starting option by FT1,T2(κ) and let

F ∗
T1,T2

(ξ) =
∫

R

eiξkFT1,T2

(
ek
)
dk, where �(ξ) < 0,

be its Fourier transform in the forward log-strike k = logκ .

Proposition 17.17 For ξ with �(ξ) < 0, it holds that

F ∗
T1,T2

(ξ) = e(1+iξ)x

iξ − ξ2
· [exp

(
T1(Q−ΛF)

)
exp
{
(T2 −T1)

(
K(1 +iξ)−ΛD

)}
1
]
(j),

(17.46)
where x = logS0 is the log-spot price, and Z0 = j the initial level of the volatility.

Remark An inversion formula, analogous to the one in (17.42), can be used to obtain
the value FT1,T2(κ) from Proposition 17.17.

Proof The price of a T1-forward starting option is given by the expression

FT1,T2(κ) = Ex,i

[(
BD

T2

)−1
(ST2 − κST1)

+], κ ∈ R+.
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The process (X,Z) is Markov, and therefore, by conditioning on the σ -algebra gen-
erated by the process up to time T1, employing the form (17.31) of the characteristic
function of XT and using the spatial homogeneity of the log-price Xt = logSt in
our model, we obtain the following expression for the price of the forward starting
option

FT1,T2(κ) = Ex,i

[(
BD

T2

)−1
(ST2 − κST1)

+] (17.47)

= Ex,i

[
ST1

BD
T1

E0,ZT1

[(
BD

T2−T1

)−1
(ST2−T1 − κ)+

]
]

=
∑

j∈E0

Ex,i

[
ST1

BD
T1

I{ZT1=j}
]

E0,j
[(
BD

T2−T1

)−1
(ST2−T1 − κ)+

]

= S0

∑

j∈E0

e′
i exp

(
T
(
K(−i) − ΛD

))
ejE0,j

[(
BD

T2−T1

)−1
(ST2−T1 − κ)+

]

= S0e
′
i exp

(
T
(
K(−i) − ΛD

))
CT2−T1(κ;1), (17.48)

where CT2−T1(κ;1) is a vector (of call option prices) with the j th component equal
to E0,j [(BD

T2−T1
)−1(ST2−T1 − κ)+]. The martingale condition in (17.25) and Propo-

sition 17.15 conclude the proof. �

Remarks

(i) A quantity of great interest in the derivatives markets is the forward implied
volatility σ

fw
x,i (ST , κ, T ) at a future time T implied by the model. It is defined

as the unique solution to the equation

CBS(ST1 , κST1 , T2 − T1, σ
fw
x,i (ST1 , κ, T1)

)= Ex,i

[
BD

T1

BD
T2

(ST2 − κST1)
+
∣
∣
∣
∣ST1

]

,

(17.49)
where the left-hand side denotes the Black–Scholes formula with strike κST1

and spot ST1 . The reason for the importance of the forward implied volatility

σ
fw
x,i (ST , κ, T ) lies in the problem of hedging of exotic derivatives using vanilla

options. If at a future time T the spot trades at the level ST , then the trader
needs to know where, according to the model, would the vanilla surface be
trading at. This is of particular importance when hedging a barrier contract that
knocks out at the level ST , because conditional on this event the trader is left
with a portfolio of vanilla options that was created as a semi-static hedge for
the exotic derivative.

(ii) In the model given by (17.18) we can compute the right-hand side of (17.49). In
view of the Markov property of the process (X,Z), this equation is equivalent
to

CBS(ST1 , κST1 , T2 − T1, σ
fw
x,i (ST1 , κ, T1)

)
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= ST1Ex,i

[
E0,ZT1

[(
BD

T2−T1

)−1
(ST2−T1 − κ)+

]∣
∣ST1

]

= ST1

∑

j∈E0

Px,i[ZT1 = j |ST1 ]E0,j
[(
BD

T2−T1

)−1
(ST2−T1 − κ)+

]

= ST1f
x,i(XT1 , T1)

′CT2−T1(κ,1),

where the coordinates of the vector f x,i(y, T ) are defined by

f
x,i
j (y, T ) := Px,i[ZT = j |XT = y] (17.50)

and CT2−T1(κ;1) is as defined in the line following (17.48).
(iii) The vector CT2−T1(κ;1) can be computed by formula (17.42), and, in the light

of definition (17.50), Proposition 17.8 and formulae (17.29) and (17.30) for
q
x,i
T (y, j) and q

x,i
T (y), it follows that

f
x,i
j (y, T )q

x,i
T (y) = q

x,i
T (y, j).

This yields the quantity in (17.50) and hence a formula for the forward implied
volatility in our model.

17.4.4 Volatility Derivatives

An option on the realized variance is a derivative security that delivers φ(ΣT ) at
expiry T , where φ : R+ → R is some measurable payoff function, and ΣT is the
quadratic variation up to time T of the process logS = X. More formally, for a
refining sequence of partitions12 (Πn)n∈N of the interval [0, T ], ΣT is given by

ΣT := lim
n→∞

∑

tni ∈Πn,i≥1

log

(
Stn

i

Stn
i−1

)2

.

It is well known that the sequence on the right-hand side converges in probability,
uniformly on compact time intervals (see Jacod and Shiryaev [20], Theorem 4.47)
and the limit is given by

ΣT =
∫ T

0
σ(Zt )

2 dt +
∑

i∈E0

∑

t≤T

I{Zt=i}
(
ΔJ i

t

)2
, (17.51)

where ΔJ i
t := J i

t − J i
t−. The process {Σt }t≥0 is called the quadratic variation or

realized variance process of X, and its law is explicitly characterised as follows:

12The sets Πn = {tn0 , tn1 , . . . , tnn }, n ∈ N, consist of increasing sequences of times such that tn0 = 0,
tnn = T , Πn ⊂ Πn+1 for all n ∈ N and limn→∞ max{|tni − tni−1| : i = 1, . . . , n} = 0.
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Proposition 17.18

(i) The process {(Σt ,Zt )}t≥0 is a Markov process with

Σt =
∫ t

0
σ(Zs)

2 ds +
∑

i∈E0

∫ t

0
I{Zs=i} dJ̃ i

s ,

where J̃ i , i ∈ E0, is a compound Poisson process with intensity λi and positive
jump sizes Ki with probability density

gi(x) = 1

2
√
x

[
piβ

+
i e

√
xB+

i
(−B+

i

)
1 + (1 − pi)β

−
i e

√
xB−

i
(−B−

i

)
1
]
I(0,∞)(x).

(ii) The discounted Laplace transform of Σt is given by

Ei

[
exp(−uΣt)

BD
t

]

= [exp
(
t
(
KΣ(u) − ΛD

))
1
]
(i), u > 0, (17.52)

where KΣ(u) = Q+ΛΣ(u) with ΛΣ(u) an N0 ×N0 diagonal matrix with ith
element given by

ψΣ
i (u) := −uσ 2

i + λi

(
E
[
exp(−uKi)

]− 1
)

(17.53)

with

E
[
exp(−uKi)

] =
√

π

u

(

piβ
+
i Φ

(
1√
2u

B+
i

)
(−B+

i

)

+ (1 − pi)β
−
i Φ

(
1√
2u

B−
i

)
(−B−

i

)
)

1,

where Φ(x) := exp(x2/2)N (x) with the cumulative normal distribution func-
tion N .

Remarks

(i) As a given matrix M in practice typically13 admits a spectral decomposi-
tion M = UDU−1 where D is a diagonal matrix, Φ(M) can be evaluated by
Φ(M) = UΦ(D)U−1, where Φ(D) is the diagonal matrix with ith element
Φ(Dii).

(ii) It is important to note that the realized variance process Σ does not possess
exponential moments of any order. This follows directly from the fact that the
distribution of jumps gi given in (17.60) decays at the rate e−c

√
x , for some

positive constant c, and implies that the left-hand side in formula (17.52) will
be infinite for complex numbers u with negative imaginary part.

13This is the case since the set of all square matrices that do not possess a diagonal decomposition
is of codimension one in the space of all square matrices and therefore has Lebesgue measure zero.
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(iii) The expression (17.52) for the discounted Laplace transform can be employed
to obtain explicit results for the values of volatility derivatives. The buyer of a
swap on the realized variance pays premiums at a certain rate (the swap rate)
to receive at maturity a pay-off φ(ΣT ) that is a function φ of the realized
variance ΣT , with as most common examples the volatility and the variance
swap. In the case of a variance swap this function is linear (φ(x) = x/T ),
whereas for a volatility swap, it is a square root (φ(x) = √

x/T ). The swap
rates are determined such that at initiation the value of the swap is nil.

Corollary 17.19 Suppose that Z0 = j . Then the variance and volatility swap rates
ςvar(T , j) and ςvol(T , j) are given as follows:

ςvol(T , j) = 1

2
√
πT

∫ ∞

0

{[
exp
(
T (Q − ΛD)

)

− exp
(
T
(
KΣ(u) − ΛD

))]
1
}
(j)

du

u3/2
, (17.54)

ςvar(T , j) = 1

T

∫ T

0

[
exp
{
t (Q − ΛD)

}
ΛV exp

{
(T − t)(Q − ΛD)

}
1
]
(j) dt (17.55)

= 1

T h

[{
exp
(
T (Q − ΛD)

)− exp
(
T
(
KΣ(h) − ΛD

))}
1
]
(j)

+ o(h), h ↓ 0, (17.56)

where ΛV is an N0 × N0 diagonal matrix with ith element given by

V (i) = σ 2
i + 2λi

(
pi

(
β+
i

)′(
B+

i

)−2 + (1 − pi)
(
β−
i

)′(
B−

i

)−2)1. (17.57)

Remarks

(i) The Laplace transform σ̂var(q, j) of σvar(·, j) : T �→ T ςvar(T , j) is explicitly
given by

σ̂var(q, j) = [(qI − ΛD − Q)−1ΛV (qI − ΛD − Q)−11
]
(j). (17.58)

(ii) It is clear from the definition of KΣ(u) that the integral in (17.54) converges at
the rate proportional to 1/

√
U , where U is an arbitrary upper bound used in the

numerical integration in (17.54).

Proof of Proposition 17.18 It is clear from the representation (17.51) that the incre-
ment Σt − Σs , for any t > s ≥ 0, satisfies the equation

Σt − Σs =
∫ t

s

σ 2(Zu)du +
∑

i∈E0

∫ t

s

I{Zu=i} dJ̃ i
u, (17.59)

where J̃ i , i ∈ E0, is a compound Poisson process with intensity λi and positive
jump sizes Ki distributed as (U i)2 where Ui follows a DPH(pi, β

+
i ,B+

i , β−
i ,B−

i )
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distribution. In particular, Ki is distributed according to the density

gi(x) = 1

2
√
x

(
fi(

√
x) + fi(−√

x)
)
, x > 0, (17.60)

where the probability density function fi is given by

fi(x) = pi

(
β+
i

)′
exB

+
i
(−B+

i

)
1I(0,∞)(x) + (1 − pi)

(
β−
i

)′
exB

−
i
(−B−

i

)
1I(−∞,0)(x).

As the J̃ i have independent increments, and Z is a Markov chain, it directly follows
from (17.59) that (Σt ,Zt ) is a Markov process and, moreover, a regime-switching
subordinator. The form of the discounted Laplace transform can be derived as in
Theorem 17.7. �

Proof of Corollary 17.19 Employing the following representation for the square
root,

√
x = 1

2
√
π

∫ ∞

0

[
1 − exp(−ux)

] du

u3/2
for any x ≥ 0,

as well as the form of the discounted characteristic function given in (17.52) and
Fubini’s theorem yields that the volatility swap rate can be calculated via a single
one-dimensional integral

Ei

[
√

1
T
ΣT

BD
T

]

= 1

2
√
πT

∫ ∞

0
e′
i

[
exp
(
T (Q−ΛD)

)− exp
(
T
(
KΣ(u)−ΛD

))]
1

du

u3/2 .

The derivation of the variance swap rate formula (17.55) rests on a conditioning ar-
gument. Indeed, by conditioning on the sigma algebra F Z

T = σ({Zt }t≤T ) generated
by Z up to time T , it follows that

Ex,i

[
1

BD
T

{∫ t

0
σ(Zs)

2 ds +
∑

i∈E0

∫ t

0
I{Zs=i} dJ̃ i

s

}]

=
∑

j∈E0

Ex,i

[
1

BD
T

∫ T

0
I{Zs=j} ds

]

w(j),

where w(j) := σ 2(j) + E[J̃ j

1 ]. From the definition of J̃ j it is easily checked that

E[J̃ j

1 ] is equal to λj times the second moment of the density fi . One verifies by a
straightforward calculation that w(j) is equal to V (j) given in (17.57). Furthermore,
the Markov property of Z applied at time t yields that

Ex,i

[
1

BD
T

∫ T

0
I{Zs=j} ds

]

= e′
i exp

(
t (Q − ΛD)

)
e′
j ej exp

(
(T − t)(Q − ΛD)

)
1.
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Equation (17.55) follows then by an application of Fubini’s theorem. Furthermore,
(17.56) follows by noting that the expectation Ex,i [ΣT /B

D
T ] can also be obtained

by calculating the negative of the derivative of the Laplace transform at zero:

Ex,i

[
ΣT

BD
T

]

= − d

du

{[
exp
(
T
(
KΣ(u) − ΛD

))
1
]
(i)
}
∣
∣
∣
∣
u=0

. �

17.5 First Passage Times for Regime-Switching Processes

17.5.1 Three Key Matrices

The characteristics of the process (X,Z) can be summarised in terms of three ma-
trices Q0, Σ and V that will shortly be specified. Given those three matrices, we
will show how to reconstruct (X,Z) in Sect. 17.7.

The matrices Q0, Σ and V will be specified in nine-block matrices using block
notation; the middle block of Q0, Σ and V describes the rates of regime-switches,
and the volatility and drift of the process in the different regimes, while the upper
left and lower right blocks of Q0 specify the distribution of up-ward and down-
ward jumps in the different regimes, in terms of the (phase-type) generators. More
precisely, we define the three key matrices Q0, Σ and V , in block notation, by

Q0 :=
⎛

⎝
B+ b+ O

A+ Q − Λλ A−
O b− B−

⎞

⎠ , (17.61)

Σ :=
⎛

⎝
O O O
O ΛS O
O O O

⎞

⎠ , V :=
⎛

⎝
I O O
O ΛM O
O O −I

⎞

⎠ . (17.62)

Here Q is the generator matrix of the chain Z, and Λλ, ΛS , ΛM denote the N0 ×N0
diagonal matrices with elements

Λλ(i, i) := λi, ΛS(i, i) := σ(i) and ΛM(i, i) := μ(i). (17.63)

Further, O and I are zero and identity matrices of appropriate sizes such that Q0,
Σ and V are square matrices of the same dimension. In block notation A±, B± and
b± are given by

A± :=
⎛

⎜
⎝

λ±
1 β±′

1
. . .

λ±
Nβ±′

N

⎞

⎟
⎠ , B± :=

⎛

⎜
⎝

B±
1

. . .

B±
N

⎞

⎟
⎠ ,

b± :=
⎛

⎜
⎝

−B±
1 1

. . .

−B±
N1

⎞

⎟
⎠ ,

(17.64)

where λ+
i := λipi and λ−

i := λi(1 − pi).
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Remark The matrix Q0 is in fact the generator matrix of a Markov chain, as it has
nonnegative off-diagonal elements and zero row sums. We denote the state space of
this Markov chain by E. In the sequel we will frequently use the following partition
of the set E:

E± = {i ∈ E : Σii �= 0}, E+ = {i ∈ E : Σii = 0,Vii > 0},
E− = {i ∈ E : Σii = 0,Vii < 0}.

(17.65)

Note further that E± can and will be identified with the state space E0 of the
chain Z. See Sect. 17.7 for further properties of the Markov chain defined by the
generator Q0.

17.5.2 Matrix Wiener–Hopf Factorisation

For a given vector of discount rates h : E → C, the matrix Wiener–Hopf factorisa-
tion associates to the matrix

Qh := Q0 − Λh,

where Λh is a diagonal matrix with ith diagonal element Λh(i, i) = h(i), a quadru-
ple of matrices which, as we will show below, characterises the distributions of the
running maximum and minimum of X.

Let us briefly describe the sets of matrices of which this quadruple are elements.
Denote by D(n) the set of n×n square matrices whose eigenvalues all have nonpos-
itive real part. Note that by Lemma 17.2, D(n) includes the set G(n) of n × n sub-
generator matrices (i.e. matrices with nonnegative off-diagonal elements and non-
positive rows). Recall that C

n×m denotes the set of n × m matrices with complex
entries. Denote by H(n,m) the set of n × m subprobability matrices (i.e. matrices
with nonnegative elements and row sums smaller or equal to one).

Denote by N , N+, N+, N− and N− the number of elements of the sets E,
E0 ∪ E+, E+, E0 ∪ E− and E−, respectively. Also, let H denote the set

H =
{
h : E → C : min

i∈E
�(h(i))≥ 0, min

i∈E0
�(h(i))> 0

}
.

Definition 17.20 Let h ∈ H, and let W+, G+, W− and G− be elements of the
sets CN×N+

, D(N+), C
N×N−

and D(N−), respectively. A quadruple (W+,G+,

W−,G−) is called a matrix Wiener–Hopf factorisation of Qh if the following matrix
equations are satisfied:

1

2
Σ2W+(G+)2 − VW+G+ + QhW

+ = O+, (17.66)

1

2
Σ2W−(G−)2 + VW−G− + QhW

− = O−, (17.67)

where O+ and O− are zero matrices of sizes N × N+ and N × N−.
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Theorem 17.21

(i) For any h ∈ H, there exists a unique matrix Wiener–Hopf factorisation of Qh,
denoted by (η+

h ,Q+
h , η−

h ,Q−
h ).

(ii) If h = �(h), then Q+
h ∈ G(N+) and Q−

h ∈ G(N−) are subgenerator matrices,
and η+

h ∈ H(N,N+) and η−
h ∈ H(N,N−) are in block notation given by

η+
h =

(
I+
η+
h

)

and η−
h =

(
η−
h

I−

)

(17.68)

for some matrices η+
h

∈ H(N−,N+) and η−
h

∈ H(N+,N−), and identity ma-

trices I+ and I− of sizes N+ × N+ and N− × N−.

Remarks

(i) For h given by h(i) = qIE0(i) with q > 0, we will also write (η+
q ,Q+

q , η−
q ,Q−

q ).
The proof of Theorem 17.21 will be given in Sect. 17.8.

(ii) We allow the vector h to take complex values to be able to deal with a Laplace
inversion using a Browmich integral, which involves the integration of the re-
sulting first-passage quantities over a curve in the complex plane. Note that, for
any real-valued h ∈ H, i.e. h = �(h), the matrix Qh is a transient generator
matrix, since the off-diagonal elements of Qh are nonnegative and Qh1 �= 0.

17.5.3 First-Passage into a Half-Line

The marginal distributions of the maximum and minimum as well as the distribu-
tions of the first-passage times into a half-line can be described explicitly in terms
of the matrix Wiener–Hopf factorisation. Denote by Xt = sup0≤s≤t Xs the running
maximum of X at time t and by Xt = inf0≤s≤t Xs the corresponding running mini-
mum, and let T +

a and T −
a be the first passage times of X into a half-line,

T +
a = inf

{
t ≥ 0 : Xt ∈ (a,∞)

}
, T −

a = inf
{
t ≥ 0 : Xt ∈ (−∞, a)

}
.

The distributions of those random variables are related via

Γ +(t) = Px,i

(
T +
a < t

)= Px,i(Xt > a),

Γ −(t) = Px,i

(
T −
a < t

)= Px,i(−Xt > a).

If eq denotes a random time that is exponentially distributed with parameter q > 0
and that is independent of (X,Z), then the running maximum and minimum at time
eq follow a phase-type distribution, with parameters explicitly given in terms of the
matrix Wiener–Hopf factorisation (η+

q ,Q+
q , η−

q ,Q−
q ).
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For any h ∈ H, define the N × N+ and N × N− matrices Φ+
h,a(x) and Φ−

h,a(x)

by

Φ+
h,a(x, i, j) = [η+

h exp
(
(a − x)Q+

h

)]
(i, j)I(−∞,a](x) + δij I(a,∞)(x),

i ∈ E,j ∈ E+ ∪ E0, (17.69)

Φ−
h,a(x, i, j) = [η−

h exp
(
(x − a)Q−

h

)]
(i, j)I[a,∞)(x) + δij I(−∞,a)(x),

i ∈ E,j ∈ E− ∪ E0, (17.70)

where δij is the Kronecker delta (i.e. δij = I{i}(j)). For h given by h(i) = qIE0(i)

with q > 0, we will also denote Φ±
h,a(x) by Φ±

q,a(x).

Proposition 17.22 For q > 0, it holds that under Px,i

Xeq − x ∼ PH
(
η+
q (i),Q+

q

)
, x ∈ R, i ∈ E0,

−Xeq + x ∼ PH
(
η−
q (i),Q−

q

)
, x ∈ R, i ∈ E0,

where η+
q (i) and η−

q (i) are the ith rows of η+
q and η−

q . In particular the Laplace

transforms Γ̂ ±(q) := ∫∞
0 e−qtΓ ±(t) dt , for q > 0, are given by the formulae

Γ̂ +(q) = 1

q

∑

j∈E0

Ex,i

[
e−qT +

a I{Z
T

+
a

=j}
]= 1

q

∑

j∈E0

Φ+
q,a(x, i, j), x, a ∈ R, i ∈ E0,

Γ̂ −(q) = 1

q

∑

j∈E0

Ex,i

[
e−qT −

a I{Z
T

−
a

=j}
]= 1

q

∑

j∈E0

Φ−
q,a(x, i, j), x, a ∈ R, i ∈ E0.

Remarks

(i) The proof of Proposition 17.22 will be given in Sect. 17.8.
(ii) Denote by Φ+

q,υ(x, i) and Φ−
q,�(x, i) the N+-dimensional and N−-dimensional

row vectors with j th elements Φ+
q,υ(x, i, j) and Φ−

q,�(x, i, j), respectively.
Then Proposition 17.22 implies that, under the probability measure Px,i , x ∈ R,
i ∈ E0, the processes M+ = {M+

t }t≥0 and M− = {M−
t }t≥0, defined by

M+
t = e−q(t∧T +

υ )Φ+
q,υ(Xt∧T +

υ
,Zt∧T +

υ
),

M−
t = e−q(t∧T −

� )Φ−
q,�(Xt∧T −

�
,Zt∧T −

�
),

are row-vectors of bounded martingales. Indeed, the Markov property of
(X,Z) implies that

Ex,i

[
e−qT +

υ I{Z
T

+
υ

=j}
∣
∣F (X,Z)

t

]

= I{t<T +
υ }e

−qt
EXt ,Zt

[
e−qT +

υ I{Z
T

+
υ

=j}
]+ I{t≥T +

υ }e
−qT +

υ I{Z
T

+
υ

=j}
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= I{t<T +
υ }e

−qt
EXt ,Zt

[
e−qT +

υ I{Z
T

+
υ

=j}
]

+ I{t≥T +
υ }e

−qT +
υ EX

T
+
υ

,Z
T

+
υ

[
e−qT +

υ I{Z
T

+
υ

=j}
]

= e−q(t∧T +
υ )

EX
t∧T

+
υ

,Z
t∧T

+
υ

[
e−qT +

υ I{Z
T

+
υ

=j}
]

= e−q(t∧T +
υ )Φ+

q,υ(Xt∧T +
υ
,Zt∧T +

υ
)e+

j = M+
t e+

j ,

where e+
j denotes the j th standard basis vector in R

N+
, and we used that

Ex,i[e−qT +
υ I{Z

T
+
υ

=j}] = e+
j (i) if x ≥ υ and i ∈ E0, which directly follows from

the definition (17.69).
(iii) Suppose that Q0 = O . This corresponds to a model in which there are no jumps

and no switches between the regimes (i.e. with probability one the process stays
in the starting regime and evolves as a Brownian motion with drift). In this case
we can identify the matrix Wiener–Hopf factorisation in closed form. Note that
we have N+ = N− = N , and hence the matrices G± and W± are of dimension
N ×N . If we take W± to be equal to the identity matrix and h(i) = RD(i)+q ,
the matrix equations (17.66)–(17.67) reduce to

1

2
Σ2(G+)2 − VG+ = (ΛD + qI) = 1

2
Σ2(G−)2 + VG−,

where I is the N × N identity matrix (recall that the discount rate matrix ΛD

is diagonal and satisfies ΛD(i, i) = RD(i) for all i ∈ E0). These equations are
satisfied by the diagonal matrices

G+ = diag
(−ω+

i , i = 1, . . . ,N
)
, G− = diag

(−ω−
i , i = 1, . . . ,N

)
,

(17.71)
where

ω±
i = ∓μi

σ 2
i

+
√
√
√
√
(
μi

σ 2
i

)2

+ 2(q + ri)

σ 2
i

and ri := RD(i). (17.72)

In particular, we obtain the well-known fact that the maximum of a Brown-
ian motion with drift at an independent exponential time is exponentially dis-
tributed:

Px,i (Xeq+ri
> a) = e−ω+

i (a−x) for x < a.

17.5.4 Joint Distribution of the Maximum and Minimum

In the previous section we have shown how the marginal distribution of the maxi-
mum and of the minimum can be explicitly expressed in terms of the matrix Wiener–
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Hopf factorisation. Also the joint distribution of the running maximum and mini-
mum,

ψx,i(t) = Px(Xt > �,Xt < υ),

can be explicitly identified in terms of the matrix Wiener–Hopf factorisation, by
considering appropriate linear combinations of the functions Φ+ and Φ− defined
in (17.69).

To formulate the result, introduce the matrices Z+ ∈ C
N−×N+

and Z− ∈
C

N+×N−
by

Z+(i, j) = [η+
h eQ

+
h (υ−�)

]
(i, j), i ∈ E0 ∪ E−, j ∈ E0 ∪ E+,

Z−(i, j) = [η−
h eQ

−
h
(υ−�)

]
(i, j), i ∈ E0 ∪ E+, j ∈ E0 ∪ E−,

and define, for any h ∈ H and any x ∈ R, the N × N+ and N × N− matrices
Ψ+

h,�,υ(x) and Ψ−
h,�,υ(x):

Ψ +
h,�,υ(x) = (η+

h eQ
+
h (υ−x) − η−

h eQ
−
h (x−�)Z+)(I − Z−Z+)−1

I[�,υ](x)

+ Δ+I(υ,∞)(x), (17.73)

Ψ −
h,�,υ(x) = (η−

h eQ
−
h (x−�) − η+

h eQ
+
h (υ−x)Z−)(I − Z+Z−)−1

I[�,υ](x)

+ Δ−I(−∞,�)(x), (17.74)

where Δ+ and Δ− are the N × N+ and N × N− matrices with elements

Δ+(i, j) = δij , Δ−(i, k) = δik, i ∈ E,j ∈ E+ ∪ E0, k ∈ E0 ∪ E−.

For h given by h(i) = qIE0(i) with q > 0, we will also write Ψ±
h,�,υ(x) = Ψ ±

q,�,υ(x).

Proposition 17.23 Let i ∈ E0 and

ψ+
x,i(t) = Px,i (T�,υ < t,XT�,υ

≥ υ), ψ−
x,i(t) = Px,i(T�,υ < t,XT�,υ

≤ �),

where

T�,υ := inf
{
t ≥ 0 : Xt /∈ [�,υ]}= T −

� ∧ T +
υ .

For any q > 0, the Laplace transforms in t of ψ+
x,i and ψ−

x,i are given by

ψ̂+
x,i(q) = 1

q

(
Ψ+

q,x1
)
(i), ψ̂−

x,i(q) = 1

q

(
Ψ −

q,x1
)
(i).

The Laplace transform of ψx,i (t) = Px,i(Xt > �,Xt < υ) is hence of the form

ψ̂x,i(q) = ψ̂+
x,i (q) + ψ̂−

x,i (q). (17.75)
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Remarks

(i) If Q0 = O , then η±
q are identity matrices, and the following identities hold:

Ψ +
q,x = (eQ+

q (υ−x) − eQ
−
q (x−�)eQ

+
q (υ−�)

)(
I − eQ

−
q (υ−�)eQ

+
q (υ−�)

)−1
,

Ψ −
q,x = (eQ+

q (υ−x) − eQ
+
q (x−�)eQ

−
q (υ−�)

)(
I − eQ

+
q (υ−�)eQ

−
q (υ−�)

)−1
,

where Q±
q are diagonal matrices given in (17.71). In particular, we find the

well-known two-sided exit identity for Brownian motion with drift:

ψ̂x,i(q) = Ex,i

[
e−qτ�,υ I{τυ<τ�}

]= eω
+
i (x−�) − eω

−
i (x−�)

eω
+
i (υ−�) − eω

−
i (υ−�)

,

where ω±
i is given in (17.72) with ri = 0.

(ii) In the case that no volatility is present (Σ ≡ 0) the identities simplify, and we
find the expressions in [5].

(iii) Under Px,i , x ∈ R, i ∈ E0, the process M̃+ = {M̃+
t }t≥0 defined by

M̃+
t = e−q(t∧T�,υ )Ψ+

q,�,υ(Xt∧T�,υ
,Zt∧T�,υ )

is a row-vector of bounded martingales, where we denoted by Ψ +
q,�,υ(x, i) the

N+-dimensional row vector with j th element Ψ +
q,�,υ(x, i, j).

Proof Let q > 0 and define

g+(x, i) = Ψ+
q,�,υ(x, i).

In view of the fact that M̃+ is a bounded martingale, it holds that

g+(x, i) =
∑

j∈E0∪E+
Ex,i

[
e−qτΨ+

q,�,υ(Xτ ,Zτ , j)I{τ<∞}
]

=
∑

j∈E0∪E+
Ex,i

[
e−qτ I{Xτ≥υ,Zτ =j}

]

= q

∫ ∞

0
e−qt

Px,i(τ < t,Xτ ≥ υ)dt = qψ̂+
x,i(q).

Here we used that, in view of the definitions (17.73) and (17.68) of Ψ+
q,�,υ and η+

q ,
the function g+ satisfies:

g+(x, i) = 1 if x ≥ υ, i ∈ E0,

g+(x, i) = 0 if x ≤ �, i ∈ E0.

The expression for ψ̂−
x,i can be derived by a similar reasoning. �
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17.5.5 Valuing a Double-Barrier Rebate Option

A double-barrier rebate option pays a constant rebate L at the moment τ one of the
barrier levels is crossed, if this happens before maturity T . By standard arbitrage
pricing arguments the Laplace transform v̂reb in maturity of the price of vreb of such
an option is given by

v̂reb(q) = 1

q
Ex,i

[(
BD

τ

)−1 exp(−qτ)
]
. (17.76)

We will find below the following more general quantity, which will also be em-
ployed in the sequel:

Hx,i(q,u, j) := Ex,i

[(
BD

τ

)−1 exp(iuXτ − qτ)I{Zτ=j}
]

for j = 1, . . . ,N.

(17.77)
In the following result an explicit expression is given for the quantity H

x,i
j in terms

of the matrix Wiener–Hopf factorisation, which is an extension of identity (17.75).
We denote by E+

i and E−
i , for i ∈ E0 = {1, . . . ,N}, the parts of the state space

E corresponding to the blocks B+
i and B−

i in the matrix Q0 in (17.61). Recall that
the definition of α±

i was given in (17.21).

Theorem 17.24 For any h ∈ H, i, j ∈ E0 and u ∈ C that satisfies �(u) ∈
(−α+

j , α−
j ), it holds that

H
x,i
j (h,u) = (Ψ +

h,xk
+
j,u

)
(i) + (Ψ−

h,xk
−
j,u

)
(i), (17.78)

where the column vectors k+
j,u = (k+

j,u(i), i ∈ E+ ∪ E0) and k−
j,u = (k−

j,u(i), i ∈
E0 ∪ E−) are given by

k+
j,u(i) = euυ ·

⎧
⎨

⎩

1 if i = j ∈ E0,

((−uI+
j − B+

j )−1(−B+
j )1)(i) if i ∈ E+

j ,

0 otherwise,

k−
j,u(i) = eu� ·

⎧
⎨

⎩

1 if i = j ∈ E0,

((uI−
j − B−

j )−1(−B−
j )1)(i) if i ∈ E−

j ,

0 otherwise,

where I+
j and I−

j are |E+
j | × |E+

j | and |E−
j | × |E−

j | identity matrices.

The proof is given in Sect. 17.8.
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17.6 Double-No-Touch and Other Barrier Options

In this section we show how the prices of double-no-touch and double knock-out
call options can be expressed in terms characteristic function H of the process at
the corresponding first passage time, which was identified in Theorem 17.24.

A double-no-touch is a derivative security that pays one unit of the underly-
ing asset at expiry T if the underlying asset price does not leave the interval
[exp(�), exp(υ)] during the time period [0, T ], where � < υ . Similarly a double
knock-out call option struck at K delivers the payoff (ST − K)+ := max{ST −
K,0} if throughout the life of the option the asset price stays within the inter-
val [exp(�), exp(υ)]. The arbitrage-free prices for a double-no-touch and a double
knock-out call options are respectively given by

Dx,i(T ) = Ex,i

[
I{τ>T }
BD

T

]

, (17.79)

Cx,i(k, T ) = Ex,i

[
I{τ>T }
BD

T

(ST − K)+
]

, (17.80)

where k = logK is the log-strike, and τ is the first time the process S leaves the
interval [exp(�), exp(υ)] or equivalently

τ := inf
{
t ≥ 0 : Xt /∈ [�,υ]}. (17.81)

We will find it more convenient to consider the double-touch-in and the knock-in
call options whose values vdti and vkic, as functions of maturity T and log strike
k = logK , are given by

vdti(T ) := Ex,i

[
I{τ≤T }
BD

T

]

= Ei

[(
BD

T

)−1]− Dx,i(T ), (17.82)

vkic(T , k) := Ex,i

[
I{τ≤T }
BD

T

(ST − K)+
]

= Ex,i

[(
BD

T

)−1(
ST − ek

)+]− Cx,i (k, T ). (17.83)

Since the zero-coupon bond price and the call option price have already been iden-
tified, the problem of calculating the double-no-touch and knock-out call prices
thus reduces to identifying vdti and vkic. In general, no closed-form expressions are
known for these functions in terms of elementary functions. Below we show that
the Laplace transform in T of vdti(T ) as well as the joint Fourier–Laplace transform
in (k, T ) of vkic can be identified explicitly in terms of the parameters that define
the log-price process X. Both transforms will be identified in terms of the Laplace
transform F̂x,i (u, q) in T of the function T �→ Fx,i(u,T ) given by

Fx,i(u,T ) := Ex,i

[
I{τ≤T }
BD

T

exp(iuXT )

]

. (17.84)
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The Laplace transform F̂x,i(u, q) in turn will be given in terms of the N0-vector
Hx,i(q,u) whose coordinates are given by

H
x,i
j (q,u) := Ex,i

[

exp

(

iuXτ −
∫ τ

0

(
RD(Zs) + q

)
ds

)

I{Zτ=j}
]

for j = 1, . . . ,N0.

Theorem 17.25 For any q > 0 and ξ with �(ξ) < 0, it holds that

v̂dti(q) = F̂x,i(0, q), (17.85)

v̂∗
kic(q, ξ) = 1

iξ − ξ2
F̂x,i (ξ − i, q). (17.86)

Here, F̂x,i (u, q) is given by

F̂x,i(u, q) = (Hx,i(q,u)
)′(

qI + ΛD − K(u)
)−11 (17.87)

for all q ∈ C such that �(q) > q∗ = max{�(ψi(u)) − RD(i) : i = 1, . . . ,N0}.

Remarks

(i) Note that if u = 0, then q∗ ≤ 0, as the interest rates RD(i) are assumed to be
nonnegative.

(ii) The Laplace transform in (17.87) can be inverted by evaluating the Bromwich
integral

Fx,i(u, t) = 1

2π

∫ c+i∞

c−i∞
etq
(
Hx,i(q,u)

)′(
qI + ΛD − K(u)

)−11dq (17.88)

for any c > q∗. An efficient algorithm to approximate this integral can e.g. be
found in Abate and Whitt [1].

Proof First note that by a calculation similar to the one in the proof of Proposi-
tion 17.15 we find that the Fourier transform in log-strike k of eαkvkic(T , k) can be
expressed in terms of F by

∫

R

e(iv+α)kvkic(T , k) dk

= 1

(α + iv)(1 + α + iv)
Ex,i

[
I{τ≤T }
BD

T

exp
{
(1 + α + iv)XT

}
]

for any α > 0.
Assume next that q > 0 is real with q > q∗. The Laplace transform F̂x,i(u, q)

has the following well-known equivalent probabilistic representation

F̂x,i(u, q) = E
[
Fx,i(u, eq)

]
/q, (17.89)
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where eq is an exponential random variable with parameter q which is independent
of the process (X,Z).

By conditioning on Fτ and applying strong Markov property at τ of the process
(X,Z) together with Lemma 17.6, we find that

E
[
Fx,i(u, eq)

] = Ex,i

[
exp(iuXτ )

BD
τ

E

[

I{τ≤eq } exp

(

−
∫ eq

τ

RD(Zs) ds

+ iu(Xeq − Xτ )

)∣
∣
∣
∣Fτ

]]

= Ex,i

[
exp(iuXτ )

BD
τ

h(Zτ , q,u)e
−qτ

]

=
∑

j

H
x,i
j (q,u)h(j, q,u), (17.90)

where the value h(j, q,u) for each state j ∈ E0 of the Markov chain Z is given by

h(j, q,u) := E0,j

[

exp

(

−
∫ e′

q

0
RD(Zs) ds + iuXe′

q

)]

= [(
qI + ΛD − K(u)

)−11
]
(j) (17.91)

for some exponential random variable e′
q with parameter q that is independent of

the Markov process (X,Z), where the second equality follows from Lemma 17.3
and Theorem 17.7.

A key observation that follows from the representation (17.90) is that the function

q �→ E
[
Fx,i(u, eq)

]
/q

has a holomorphic extension to the complex half-plane {q ∈ C : �(q) > q∗} which
therefore14 coincides on this domain with the Laplace transform. Thus, (17.90)
holds for q in this domain, and the proof is complete. �

17.7 Embedding of the Process (X,Z)

In this section and the next we will provide a proof of the matrix Wiener–Hopf
factorisation and its corollaries derived in previous sections. We will proceed in two
steps:

14If two holomorphic functions defined on a connected open set Ω in C coincide on a subset
with at least one accumulation point in Ω , then they coincide on the entire Ω . For a proof of this
well-known statement see [29], p. 208, Theorem 10.18.
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(i) Reduction of the first-passage problems of X over constant levels, which will
involve overshoots and undershoots due to the jumps of X, to the first-hitting
problem of a constant level by a regime-switching Brownian motion, employing
a classical argument for the embedding of phase-type jumps (see Asmussen
[2]), which we review in this section.

(ii) Solution of the first-passage problem of regime-switching Brownian motion via
a characterisation of the dynamics of the ladder processes, which is carried out
in Sect. 17.8.

Let Y be a continuous-time Markov chain with finite state space E∪∂ and gener-
ator restricted to E given by Q0, where ∂ is an absorbing cemetery state, and E and
Q0 will be specified shortly, and denote by ξ = {ξt , t ≥ 0} the Markov-modulated
Brownian motion given by

ξt = x +
∫ t

0
s(Ys) dWs +

∫ t

0
m(Ys) ds, (17.92)

where x ∈ R is the starting point of ξ , and s and m are functions from E ∪ ∂ to R

also to be specified shortly. The couple (ξ, Y ) defined as such is a two-dimensional
strong Markov process. In the sequel we will denote by P̃x,i and Ẽx,i the conditional
probability P̃x,i = P̃[·|ξ0 = x,Y0 = i] and conditional expectation Ẽx,i = Ẽ[·|ξ0 =
x,Y0 = i], respectively.

Let the state space E be as in Sect. 17.5. In other words, E = E− ∪ E0 ∪ E+,
where E0 is the state space of the chain Z, and E+ and E− are given in (17.65).
The generator Q0 is given in (17.61), and m(i) := ΛV (i, i), s(i) := ΛΣ(i, i) for all
i ∈ E, where the matrices ΛV , ΛΣ are defined in (17.62). Thus, while the chain Y

is in state j ∈ E0, ξ evolves as a Brownian motion with drift m(j) and volatility
s(j), and while Y takes values in E+ and E−, the path of ξ is linear with slope
+1 or −1. Informally, a path of X can be obtained from a path of ξ by replacing
these stretches of unit slope by jumps of the same length, as is illustrated in Fig. 1.
These linear increasing and decreasing stretches of path of ξ thus correspond to the
positive and negative jumps of X, respectively.

More formally, by appropriately time-changing (ξ, Y ) a stochastic process can
be constructed that has the same law as (X,Z). Denote by

T0(t) =
∫ t

0
I{Ys∈E0} ds and T −1

0 (u) = inf
{
t ≥ 0 : T0(t) > u

}
,

the time before t spent by the chain Y in E0 and its right-continuous inverse re-
spectively. It is clear from the definition of the generator Q0 in (17.61) that when
the chain Y jumps from any of the states in E+ ∪ E− to a state j ∈ E0, it must
have been in the state j just before it had left E0. Therefore the form of the ma-
trix (17.61) implies that the process Y ◦ T −1

0 , which simply ignores all excursions
of Y into E+ ∪ E−, is a Markov chain with the same generator as Z. Furthermore
it is straightforward to verify that ξ ◦ T −1

0 is a regime-switching jump-diffusion and
the law of the process (ξ ◦T −1

0 , Y ◦T −1
0 ) under P̃x,i is equal to that of (X,Z) under

Px,i for all x ∈ R and i ∈ E0.
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Fig. 1 Shown is a sample path of X until the first time τ that X exits the interval [�,υ]. The
process ξ has no positive jumps and always hits a level at first-passage

If we define the first-passage time

τ ξ = inf
{
t ≥ 0 : ξt /∈ [�,υ] and Yt ∈ E0}, (17.93)

it follows that random variables T0(τ
ξ ) and the stopping time τ defined in (17.81)

have the same distribution. In particular, with the extension of h to E that puts
h(i) = 0 for i /∈ E0 and that we will also denote by h, it holds that

(

ξτξ ,

∫ τ ξ

0
h(Ys) ds,Yτξ

)

under P̃x,i has the same distribution as

(

Xτ ,

∫ τ

0
h(Zs) ds,Zτ

)

under Px,i

for x ∈ R and i ∈ E0. The function H
x,i
j defined in (17.77) can thus be expressed in

terms of the embedding (ξ, Y ) as follows:

H
x,i
j (h,u) = Ẽx,i

[

exp

(

uξτξ −
∫ τ ξ

0
h(Ys) ds

)

I{Y
τξ

=j}
]

, i, j ∈ E0. (17.94)

17.8 Ladder Processes

This section is devoted to the proof of existence and uniqueness of the h-matrix
Wiener–Hopf factorisation for any h ∈ H. For real h ∈ H, the vector h has the
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probabilistic interpretation of a vector of state-dependent rates of discounting, and
in this case the matrix Wiener–Hopf factorisation has a probabilistic interpretation
in terms of ladder processes. The existence and uniqueness results are extended to
the case of general complex h ∈ H by analytical continuation arguments. It is of
interest to consider the case of complex entries, as the Laplace transforms of barrier
option prices are expressed in terms of the matrix Wiener–Hopf factorisation as we
saw above, and some widely used Laplace transform inversion algorithms are based
on the Bromwich (complex) integral representation.

A classical probabilistic approach to characterisation of the joint distribution of
τ+
a and the position of Y at τ+

a is to consider the up-crossing ladder process of
(ξ, Y ), defined as follows:

Definition 17.26 The up-crossing ladder process Y+ = {Y+
t }t≥0 of (ξ, Y ) is given

by

Y+
a :=

{
Y(τ+

a ) if τ+
a < ∞,

∂ otherwise,
(17.95)

where ∂ is a graveyard state, and

τ+
a = inf{s ≥ 0 : ξs > a}

with inf∅ = ∞.

Remark In the case that the original chain is killed at (state-dependent, real-valued)
rate h, the up-crossing ladder process can be defined as follows. Recall from Markov
chain theory that the chain Yh with state space E ∪ {∂} and generator matrix

(
Qh −Λh1
0 0

)

, where Qh := Q0 − Λh, and Λh is the diagonal matrix

with (Λh)ii = hi,

has the same distribution as the chain Y killed (i.e. sent to the graveyard state ∂)
independently at rate h(i) when Yt = i. In particular, for i, j ∈ E and t ≥ 0, it holds
that

Ẽi

[
e− ∫ t

0 h(Ys) dsI{Yt=j}
]= P̃

(
Yh
t = j

∣
∣Yh

0 = i
)= exp(Qht)(i, j). (17.96)

If we denote by ξh = {ξh
t }t≥0 the process defined by (17.92) driven by the “killed”

chain Yh instead of Y , then the up-crossing ladder process Yh+ is given by

Y h+
t =

{
Yh

τh+
t

if τh+
t < ∞,

∂ otherwise,

where τh+
a is the stopping time defined by

τh+
a = inf

{
s ≥ 0 : ξh

s > a
}

with inf∅ = ∞.
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Proposition 17.27 The process Y+ is a Markov chain with state space E0 ∪
E+ ∪ {∂}.

Remarks

(i) We denote by Q+
0 the generator of Y+ restricted to E0 ∪ E+, and by η+

0 the
initial distribution given by

η+
0 (i, j) = P̃0,i

[
Y+

0 = j, τ+
0 < ∞] for i ∈ E,j ∈ E+ ∪ E0. (17.97)

(ii) More generally, for any real-valued h ∈ H, it holds that Yh+ is a Markov
chain with generator restricted to E0 ∪ E+, denoted by Q+

h , and initial
(sub)probability distribution by η+

h = (η+
h (i, j), i ∈ E, j ∈ E+ ∪ E0) with

η+
h (i, j) = Ẽ0,i

[
e− ∫ τ

+
0

0 h(Ys) dsI{Y+
0 =j,τ+

0 <∞}
]

for i ∈ E,j ∈ E+ ∪ E0.

(17.98)

We have the following identities analogous to (17.96):

Ẽ
[
e− ∫ τ

+
t

0 h(Ys) dsI{Y
τ
+
t

=j,τ+
t <∞}

∣
∣Y0 = i

]

= Ẽ
[
e
− ∫ τ

+
t

τ
+
0

h(Ys) ds

I{Y
τ
+
t

=j,τ+
t <∞}

∣
∣Yτ+

0
= i
]

= P̃
(
Yh

τh+
t

= j, τh+
t < ∞∣∣Yh

τh+
0

= i
)

= P̃
(
Yh+
t = j

∣
∣Yh+

0 = i
)

= exp
(
Q+

h t
)
(i, j), i, j ∈ E0 ∪ E+, (17.99)

where we wrote P̃[·|A] := P̃[·|A ∩ {ξ0 = 0}] and Ẽ[·|A] := Ẽ[·|A ∩ {ξ0 = 0}] to
simplify the notation. Note that the first equality holds since τ+

0 = 0 if the chain Y

starts at i ∈ E0 ∪ E+. In particular, from (17.99) we find that, for i, j ∈ E0 ∪ E+,

Q+
h (i, j) = lim

t↓0

1

t
Ẽ0,i

[
e− ∫ τ

+
t

0 h(Ys) dsI{Y
τ
+
t

=j,τ+
t <∞}

]
, i �= j, (17.100)

Q+
h (i, i) = lim

t↓0

1

t

{
Ẽ0,i

[
e−∫ τ

+
t

0 h(Ys) dsI{Y
τ
+
t

=i,τ+
t <∞}

]− 1
}
. (17.101)

Proof Let f be any bounded real-valued Borel function, and let b < a. Denote by
Fa = σ {Y+

u }u≤a and Gt = σ {Ys}s≤t the sigma algebras generated by Y+
u up to time

a and by Ys up to time t . Observing that Fb ⊂ Gτb and using the spatial homogeneity
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and continuity of ξ and the strong Markov property of (ξ, Y ), we find that

Ẽx,i

[
f
(
Y+
a

)∣
∣Fb

] = Ẽx,i

[
Ẽx,i

[
f (Yτ+

a
)
∣
∣Gτb

]∣
∣Fb

]

= Ẽx,i

[
Ẽb,Y

τ
+
b

[
f (Yτ+

a
)
]∣
∣Fb

]

= Ẽx,i

[
ẼY+

b

[
f
(
Y+
a−b

)]∣
∣Fb

]= ẼY+
b

[
f
(
Y+
a−b

)]
,

where we wrote Ẽj = Ẽ0,j . �

For any h ∈ H, we define the square-matrix (resolvent) functions u �→ R+
h (u) of

dimension N+ on the complex half-plane C>0 by

R+
h (u)(i, j) = Ẽ0,i

[∫ ∞

0
e−uy−∫ τ

+
y

0 h(Ys) dsI{Y+
y =j,τ+

y <∞} dy
]

for i, j ∈ E+ ∪ E0 and u ∈ C>0. (17.102)

The matrix Q+
h can then be defined for any h ∈ H as follows:

Lemma 17.28 Let h ∈ H and a ≥ 0 and define the matrix Q+
h ∈ D(N+) by

Q+
h (i, j) = −ω+

i I{i=j} +
⎧
⎨

⎩

2
σ 2
i

(Q̃η+
h R+

h (ω−
i ))(i, j) if i ∈ E0,

(Q̃η+
h )(i, j) if i ∈ E+,

(17.103)

where qi = −Q0(i, i), hi = h(i), Q̃ = Q0 + diag{qi : i ∈ E}, and

ω+
i =

{
F(

μi

σ 2
i

,
qi+hi

σ 2
i

) if i ∈ E0,

qi + hi if i ∈ E±,
(17.104)

where

F(ν, θ) := −ν +
√
ν2 + 2θ, ν ∈ R, θ ∈ C>0. (17.105)

Then it holds that

Ẽ0,i
[
e− ∫ τ

+
a

0 h(Ys) dsI{Y+
a =j,τ+

a <∞}
]= exp

(
Q+

h a
)
(i, j), i, j ∈ E0 ∪ E+. (17.106)

Remarks

(i) Note that Proposition 17.22 follows as a direct consequence of (17.106) since

Px,i (Xeq > a) = Px,i

(
Y

q+
ζ > a

)
,

where ζ is the life time of the killed up-crossing ladder process.
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(ii) Equation (17.106) yields in particular the joint Laplace transform of the vector

Z+
a =

(∫ τ+
a

0
I{Ys=i} ds, i ∈ E

)

, (17.107)

whose components record the length of time spent by Y in each of the states in
E, until the moment τ+

a of first-passage.
(iii) The down-crossing ladder process Y−, defined as the up-crossing ladder pro-

cess of (−ξ,Y ), is a Markov chain with generator restricted to E0 ∪ E− de-
noted by Q−

0 . Analogously to (17.103), for any h ∈ H, a matrix Q−
h can be

defined, which satisfies

Ẽ0,i
[
e−∫ τ

−
a

0 h(Ys) dsI{Y−
a =j,τ−

a <∞}
]= exp

(
Q−

h a
)
(i, j), i, j ∈ E0 ∪ E−.

(17.108)

17.8.1 Proof of Lemma 17.28

We will show that the limits in (17.100)–(17.101) in fact exist for any h ∈ H, and
identify these. Let

ρ = inf{t ≥ 0 : Yt �= Y0}
be the first time that the chain Y jumps, and τ i

a = inf{t ≥ 0 : Xi
t > a} the first-

passage time of Xi
t := μit + σiWt (recall that if i ∈ E±, then μi = ±1 and σi = 0)

over the level a, and let ei be an exponential random time with mean 1/qi (with
qi = −Q0(i, i)) that is independent of Xi . In view of the definition of ξ (i.e. the first
jump time ρ of Y is independent of Xi ), it follows that

Ẽ0,i
[
e−∫ τ

+
t

0 h(Ys) dsI{Y+
t =j,τ+

t <∞,τ+
t <ρ}

]

= I{i=j}Ẽ
[
e−τ i

t h(i)I{τ i
t <ei }

]= I{i=j}Ẽ
[
e−τ i

t (hi+qi )
]

= I{i=j,i∈E+} exp
(−t (hi + qi)

)

+ I{i=j,i∈E0} exp
(−tσ−2

i

(−μi +
√
μ2

i + 2(qi + hi)σ
2
i

))

= I{i=j}
[
1 − ω+

i t + o(t)
]

as t ↓ 0,

where ω+
i was defined in Lemma 17.28, and we used the fact that the Laplace trans-

form of τ i
a is given by

Ẽ
[
e−qτ i

a
]= exp

(−aσ−2
i

(−μi +
√
μ2

i + 2qσ 2
i

))
, a > 0, q ∈ C>0.
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For every h ∈ H, we can define the following matrices:

P̃ h+
t (i, j) := Ẽ0,i

[
e− ∫ τ

+
t

0 h(Ys) dsI{Y+
t =j,τ+

t <∞}
]

for i, j ∈ E+ ∪ E0. (17.109)

Note that the definition in (17.102) implies that the identity R+
h (u)(i, j) =

∫∞
0 e−uyP̃ h+

y (i, j)dy holds for all u ∈ C>0. For every h ∈ H, x ∈ (−∞, t] and
m ∈ E, we have the following identity:

Ẽx,m

[
e−∫ τ

+
t

0 h(Ys) dsI{Y+
t =j,τ+

t <∞}
]

= Ẽ0,m
[
e−∫ τ

+
t−x

0 h(Ys) dsI{Y+
t−x=j,τ+

t−x<∞}
]

= (η+
h P̃ h+

t−x

)
(m, j) for j ∈ E+ ∪ E0, (17.110)

where η+
h is defined in (17.98). The first equality in (17.110) is a consequence of

the spacial homogeneity of the process ξ .
Let ξu = sups≤u ξs denote the running supremum of the stochastic process ξ . The

strong Markov property applied at the first jump time ρ of the chain Y and (17.110)
imply that

Ẽ0,i
[
e− ∫ τ

+
t

0 h(Ys) dsI{Y+
t =j,τ+

t <∞,τ+
t ≥ρ}

]

= Ẽ0,i
[
e−h(i)ρI{ξρ≤t}

(
η+
h P̃ h+

t−ξρ

)
(Yρ, j)

]

=
∑

m∈E\{i}

Q0(i,m)

qi
Ẽ0,i

[
e−h(i)ρI{ξρ≤t}

(
η+
h P̃ h+

t−ξρ

)
(m, j)

]
. (17.111)

The last equality is a consequence of the fact that Yρ is independent of the ran-
dom vector (ρ, ξρ, ξρ) and takes values in the set E\{i} with P̃0,i (Yρ = m) =
Q0(i,m)/qi . Since ρ is the first jump time of the chain Y , the vector (ρ, ξρ, ξρ)

has the same distribution as the vector (ei ,Xi
ei ,X

i

ei ), where, as above, ei is an expo-
nential random variable with mean 1/qi , independent of the Brownian motion with

drift Xi
t = μit +σiWt . The symbol X

i

ei denotes the maximum of Xi at the indepen-

dent exponential time ei . Note that if i ∈ E+, then X
i

t = Xi
t = t for all t ∈ R+ and

the expectation in (17.111) is very easy to compute.
Assume now that i ∈ E0. Then the Wiener–Hopf factorisation implies that the

random variables X
i

eu and X
i

eu − Xi
eu are exponentially distributed with parameters

σ−2
i

(−μi +
√
μ2

i + 2uσ 2
i

)
and σ−2

i

(
μi +

√
μ2

i + 2uσ 2
i

)

respectively and independent for any exponential random variable eu with parameter
u > 0, which is independent of Xi . Therefore the joint density f

X
i
t ,X

i
t−Xi

t

satisfies
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the following identity for any x, y ∈ (0,∞):
∫ ∞

0
ue−utf

X
i
t ,X

i
t−Xi

t

(x, y) dt =
∫ ∞

0
ue−utfXt

(x) dt

∫ ∞

0
ue−utf

X
i
t−Xi

t

(y) dt

for all u > 0, (17.112)

where f
X

i
t−Xi

t

and f
X

i
t

are the densities of the corresponding random variables. It

is clear that there exists a unique extension to the complex half-plane C>0 of both
sides of the formula in (17.112) and that the following formulae hold:

∫ ∞

0
e−utfXt

(x) dt =
σ−2
i (−μi +

√
μ2

i + 2uσ 2
i )

u
e
−xσ−2

i (−μi+
√
μ2

i +2uσ 2
i ),

x > 0, u ∈ C>0, (17.113)

∫ ∞

0
e−utf

X
i
t−Xi

t

(y) dt =
σ−2
i (μi +

√
μ2

i + 2uσ 2
i )

u
e
−yσ−2

i (μi+
√
μ2

i +2uσ 2
i ),

y > 0, u ∈ C>0. (17.114)

By substituting identity (17.112) into the expectation (17.111), applying the formu-
lae in (17.113) and (17.114) and taking the limit as t tends to zero, we see that the
limits in (17.100) and (17.101) are as stated for any h ∈ H. Furthermore the formula
in (17.103) holds.

The strong Markov property of (ξ, Y ) next implies that for any h ∈ H and any

t > 0, the matrices P̃ h+
t = (P̃ h+

t (i, j)t , i, j ∈ E0 ∪ E+) with P̃ h+
t (i, j) defined

by (17.109) satisfy the system of ordinary differential equations

d

dt
P̃ h+
t = P̃ h+

t Q+
h , t > 0, P h+

0 = I,

where I denotes the N+ ×N+ identity matrix, the unique solution of which is given
by

P̃ h+
t = exp

(
Q+

h t
)
.

This proves that the matrix Q+
h identified above satisfies (17.106). Since P̃ h+

t (i, j)

→ 0 for all i, j ∈ E0 ∪ E+ as t → ∞, it follows that all eigenvalues of Q+
h must

have nonpositive real parts and therefore Q+
h ∈ D(N+). The proof of the existence

of a matrix Q−
h ∈ D(N−) satisfying (17.108) is similar and omitted.

17.8.2 Proof of Theorem 17.21

(Existence) For any h ∈ H and x, � ∈ R, define the matrices Φ±
� (x) by

Φ+
� (x) = η+

h exp
(
Q+

h (� − x)
)
, Φ−

� (x) = η−
h exp

(
Q−

h (x − �)
)
. (17.115)
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The proof of existence rests on the martingale property of M+ = {M+
t }t≥0 and

M− = {M−
t }t≥0 given by

M+
t = e−∫ t∧τ

+
�

0 h(Ys) dsf+(Yt∧τ+
�
, ξt∧τ+

�
) and

M−
t = e−∫ t∧τ

−
�

0 h(Ys) dsf−(Yt∧τ−
�
, ξt∧τ−

�
)

(17.116)

with

f+(i, x) := e′
iΦ

+
� (x)k+, f−(i, x) := e′

iΦ
−
� (x)k−, (17.117)

where k+ and k− are N+- and N−-column vectors, respectively.
The martingale property of M+ follows from the equality

M+
t = Ẽx,i

[
e−∫ τ

+
�

0 h(Ys) dsk+
(
Y+
�

)
I{τ+

� <∞}
∣
∣Gt

]
,

where {Gt }t≥0 denotes the filtration generated by (ξ, Y ). To verify this identity, ob-
serve first that the Markov property of (ξ, Y ) yields that

Ẽx,i

[
e−∫ τ

+
�

0 h(Ys) dsk+
(
Y+
�

)
I{τ+

�
<∞}

∣
∣Gt

]

= e− ∫ t∧τ
+
�

0 h(Ys) dsẼx,i

[
e− ∫ τ

+
�

0 h(Ys) dsk+
(
Y+
�

)
I{τ+

� <∞}
]∣
∣
(x,i)=(ξ

t∧τ
+
�
,Y

t∧τ
+
�
)
.

Further, in view of the strong Markov property and spatial homogeneity of ξ , the
expectation on the right-hand side of the previous display is for x ≤ � given by

Ẽx,i

[
e−∫ τ

+
�

0 h(Ys) dsk+
(
Y+
�

)
I{τ+

� <∞}
]

= Ẽ0,i
[
e− ∫ τ

+
�−x

0 h(Ys) dsk+
(
Y+
�−x

)
I{τ+

�−x
<∞}

]

=
∑

j∈E0∪E+
Ẽ0,i

[
e− ∫ τ

+
0

0 h(Ys) dsI{Y+
0 =j,τ+

0 <∞}
]

× Ẽ
[
e− ∫ τ

+
�−x

0 h(Ys) dsk+
(
Y+
�−x

)
I{τ+

�−x
<∞}

∣
∣Y0 = j, ξ0 = 0

]

= e′
iη

+
h exp

(
Q+

h (� − x)
)= e′

iΦ
+
� (x)k+ = f+(i, x), (17.118)

where the last line follows by definitions (17.106) and (17.98) of Q+
h and η+

h .
As M+ is a martingale, an application of Itô’s lemma shows that f+ =

(f+(i, u), i ∈ E) satisfies, for all u < �,

1

2
s(i)2f ′′+(i, u) + m(i)f ′+(i, u) +

∑

j

qij
(
f+(j, u) − f+(i, u)

)= 0, (17.119)
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where f ′+ and f ′′+ denote the first and second derivatives of f+ with respect to u. By
substituting the expressions (17.115)–(17.117) into (17.119) we find, since k+ was
arbitrary, that Q+

h and η+
h satisfy the first set of equations of system (17.66). The

proof for Q−
h and η−

h is analogous and omitted.
(Uniqueness) Now we turn to the proof of the uniqueness of the Wiener–Hopf

factorization. To this end, let (W+,G+,W−,G−) be a complex matrix Wiener–
Hopf factorization and define the function f̃ as f+ in (17.117), but replacing η+
and Q+ by W+ and G+, respectively. Since the pair (W+,G+) satisfies (17.66), it

follows by an application of Itô’s lemma that M ′
t = e−∫ t

0 h(Ys)ds f̃ (Yt , ξt ) is a local
martingale. In view of the facts that G+ ∈ D(N+) and h ∈ H, it follows that M ′ is
in fact bounded on {t ≤ τ+

� }. An application of Doob’s optional stopping theorem
then yields that

f̃ (j, x) = Ẽx,j

[
e− ∫ t∧τ

+
�

0 h(Ys) ds f̃ (Yt∧τ+
�
, ξt∧τ+

�
)
]

= Ẽx,j

[
e− ∫ τ

+
�

0 h(Ys) ds f̃
(
Y+
� , ξτ+

�

)
I{τ+

� <∞}
]

+ lim
t→∞ Ẽx,j

[
e− ∫ t

0 h(Ys) ds f̃ (Yt , ξt )I{τ+
� =∞}

]
. (17.120)

By the definition of f̃ , the absence of positive jumps of ξ and (17.118), the first
expectation in (17.120) is equal to

Ẽx,j

[
e−∫ τ

+
�

0 h(Ys) ds f̃ (Y+
� , �)I{τ+

� <∞}
]

= Ẽx,j

[
e−∫ τ

+
�

0 h(Ys) dsk+(Y+
� )I{τ+

� <∞}
]= f+(j, x)

for x ≤ �. The second term in (17.120) is zero, since
∫ t

0 I{Ys∈E0} ds → ∞ P̃x,j al-
most surely on the event {τ+

� = ∞} for all j ∈ E and x ∈ R, and mini∈E0 �(h(i)) >

0. Thus f+ = f̃ for all N+-column vectors k+, and we deduce that G+ = Q+
h and

W+ = η+
h . Similarly, one can show that G− = Q−

h and W− = η−
h , and the unique-

ness is proved.

17.8.3 Proof of Theorem 17.24

Applying the strong Markov property at τ̄ and noting that τ̄ ≤ τ ξ yields, in view of
the representation (17.94), that

H
x,i
j (h,u) = Ẽx,i

[
e− ∫ τ̄

0 h(Ys) dsI{Yτ̄=j}F(ξτ̄ , Yτ̄ )
]

= Ẽx,i

[
e− ∫ τ̄

0 h(Ys) dsI{Yτ̄=j,τ+
υ <τ−

� }F(υ,Yτ̄ )
]
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+ Ẽx,i

[
e−∫ τ̄

0 h(Ys) dsI{Yτ̄=j,τ+
υ >τ−

� }F(�,Yτ̄ )
]
,

where

F(x, i) = Ẽx,i

[
e− ∫ τξ

0 h̃(Ys) ds+uξ
τξ I{Y

τξ
=j}
]= Ẽx,i

[
euξτξ I{Y

τξ
=j}
]

since h̃(i) = h(i)I{i∈E0}, by the definition of h̃. From the definition of τ ξ it is
straightforward to check that

P̃x,i

[
τ ξ = 0

]= 1 for i ∈ E0 and x ∈ {�,υ},
so that F(υ, i) = euυδij and F(�, i) = eu�δij if i ∈ E0, where δij denotes the Kro-
necker delta.

Moreover, in view of the form (17.61)–(17.62) of Qh and the definition of phase-
type distribution, it is clear that, conditionally on Y0 = i ∈ E+

j and ξ0 = υ , Yτξ = j

and τ ξ ∼ PH(δi,B
+
j ), where δi is the vector with elements δi = (δik). Therefore we

find, using (17.4), that, for u with �(u) < α+
j and i ∈ E+

j ,

F(υ, i) = Ẽυ,i

[
euξτξ

]

= euυẼυ,i

[
euτ

ξ ]= euυ
[(−uI+

j − B+
j

)−1(−B+
j

)
1
]
(i).

Similarly, it follows that, for i ∈ E−
j and u with �(u) > −α−

j ,

F(�, i) = eu�
[(
uI−

j − B−
j

)−1(−B−
j

)
1
]
(i).
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Chapter 18
Asymptotics of HARA Utility from Terminal
Wealth under Proportional Transaction Costs
with Decision Lag or Execution Delay and
Obligatory Diversification

Lukasz Stettner

Abstract In the paper optimal asymptotics of HARA utility from terminal wealth
under proportional transaction costs is considered. The asset prices are modeled
as exponents of diffusion with jumps whose parameters depend on a finite-state
Markov process of economic factors. An obligatory portfolio diversification is in-
troduced, according to which it is required to invest at least a fixed small portion
of our wealth in each asset. Since we are looking for optimal strategies within the
class of impulse controls, two kinds of delay are introduced: decision lag, when suc-
cessive portfolio changes are separated by a fixed time lag h, and execution delay,
when portfolio is changed after h units of time following the decision.

Keywords HARA utility · Terminal weath asymptotics · Proportional transaction
costs · Log Levy asset prices

Mathematics Subject Classification (2010) 91G10 · 91G80

18.1 Introduction

Assume that we are given a market with d assets. The prices Si(t) of the ith asset
are of the form

Si(t) = Si(0)eXi(t) (18.1)

for i = 1,2, . . . , d , with the vector X(t) being solution to the equation

dX(t) = α(zt ) dt + σ(zt ) dB(t) +
∫

Rd

γ (zt , u)Ñ(dt, du) (18.2)

with X(0) = 0, and where on a given complete probability space (Ω, F , (Ft ),P ),
we have (Ft )-adapted independent processes: a Brownian motion (B(t)), a com-
pensated Poisson measure Ñ , and a Markov process (zt ) of economic factors on
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510 L. Stettner

the finite state space D. We furthermore assume that γik(z, yk) depends on the kth
coordinate yk of y ∈ Rd and

∫

Rd

|γik|ι(z, yk)νk(dyk) < ∞ (18.3)

for ι = 1,2, i, k = 1,2, . . . , d , with νk being the Lévy measure corresponding to
Ñ(dt, du).

Denote by Wt and W−
t respectively the wealth processes after and before trans-

action at time t , and similarly by Ni(t) and N−
i (t) the numbers of assets at time

t in portfolio after and before possible transaction. Then π−
i (t) = N−

i (t)Si (t)

W−
t

and

πi(t) = Ni(t)Si (t)
Wt

are the portions of the capital invested in the ith asset before and

after transaction at time t . Clearly, π(t) ∈ S = {ν ∈ Rd : νi ≥ 0,
∑d

i=1 νi = 1}.
In the paper we shall assume either decision lag h, which means that the next

decision can be taken after h units of time, following the previous decision or ex-
ecution delay under which the portfolio change decision is executed with a fixed
delay h.

As a consequence of these assumptions, we shall consider impulse control
strategies V = {(τi, π

i)}, consisting of increasing stopping times (τi) such that
τi+1 ≥ τi + h and the portions of capital πi we would like to have after transac-
tion at time τi in the case of decision lag, or at time τi + h in the case of execution
delay, respectively.

For a given δ < 1
d

, let

S 0
δ =

{

ν ∈ Rd : νi > δ,

d∑

i=1

νi = 1

}

.

In what follows we shall impose an obligatory portfolio diversification: when
π(t) leaves S 0

δ , we change portfolio choosing new portfolio from Sδ′ = {ν ∈ Rd :
νi ≥ δ′,

∑d
i=1 νi = 1} with 1

d
> δ′ > δ. Let

T δ0 = inf
{
s ≥ 0 : π(s) ∈ S \ S 0

δ

}
. (18.4)

Clearly, τ1 ≤ T δ0
.

Remark 18.1 Notice that (for details, see Remark 1 in [4]) by the Law of Large
Numbers if there is a unique invariant measure μ for (zt ), we have

lim
t→∞

1

t
Xi(t) = lim

t→∞
1

t

∫ t

0
αi(zs) ds =

∫

αi(z)μ(dz) = ri .

Therefore, if there is k such that rk > ri for i �= k, then π(t) → π(∞) = δk , provided
that πk(0) > 0, and the limit portfolio is degenerate since we keep all capital in the
asset k.
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18 Asymptotics of HARA Utility 511

Given a utility function U , i.e., an increasing concave function, we would like to
find the best asymptotics of utility U from terminal wealth WT letting T → ∞. Our
expectation is that E[U(WT )] ∼T →∞ U(eλT ) with some constant λ. The problem
is to determine this λ and to find optimal investment strategies under which such
optimal growth λ is achieved. In particular cases of HARA utility functions, i.e.,
U(x) = lnx or U(x) = xγ with γ ∈ (0,1), we respectively might expect to have
linear or exponential growth asymptotics:

E
[
ln(WT )

] ∼ λT or E
[
(WT )γ

] ∼ eλrγ T .

The constants λ or λr can be determined from maximization of the following cost
functionals respectively:

J (V ) = lim inf
T →∞

1

T
E

[
ln(WT )

]
, (18.5)

J r
γ (V ) = lim inf

T →∞
1

γ T
E

[
(WT )γ

]
. (18.6)

The optimal portfolio strategy for the cost functional (18.5) is called growth optimal
portfolio (GOP), while the optimal strategy for (18.6) is called power utility optimal
portfolio (PUOP).

Remark 18.2 Very often we consider normalized utility functions U(x) = xγ

γ
. This

function is a utility function also for γ < 0. Such normalization is not important
when we study asymptotics. When we consider the cost functional 1

γ
lnE[(WT )γ ]

with γ < 0, we “measure” not only the average portfolio growth but also its variance
with negative weight γ , plus higher moments of WT , with weights being powers
of γ . Such cost functional is therefore called risk sensitive. There is a vast literature
concerning risk-sensitive control problems (see [3, 9, 11], and references therein).
Notice moreover that, for γ > 0,

−1

γ
lnE

[
(WT )−γ

] ≤ E
[
ln(WT )

] ≤ 1

γ
lnE

[
(WT )γ

]
,

and letting γ → 0, the external terms converge to the middle term.

In the case of HARA utility functions portfolio optimization with cost functionals
(18.5) and (18.6) leads to stationary strategies depending on the values of economic
factors only. In this paper we consider a more general case of proportional transac-
tion costs that in particular cover the case of no transaction costs. There is an inten-
sive literature concerning portfolio optimization with proportional transaction costs
and cost functionals of the form (18.5) or (18.6), see [1, 4, 5, 8, 9, 11, 12, 14, 15]
for lognormal or discrete-time asset prices. This paper generalizes former papers by
considering log Lévy asset prices with existence of economic factors. In the papers
[5, 14, 15], and [4] an additional fixed proportional transaction cost was introduced
to have optimal impulse strategies. Here, for this purpose, we impose decision lag
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512 L. Stettner

or execution delay. The existence of such delay creates additional difficulties in the
model. We use a number of analytic properties of the log Lévy asset prices shown
in [4]. The part of the paper concerning the cost functional (18.6) exploits new ar-
guments, and such continuous-time probabilistic approach seems to be completely
novel. In the paper we prove the existence of solutions to the suitable Bellman equa-
tions and show the form of optimal strategies, which is a standard step in the further
construction of nearly optimal strategies. In the final section we introduce a gen-
eral form of the Bellman equation, which covers both logarithmic and power utility
functions. As is shown in [7], unfortunately, the class of utility functions to which
this Bellman equation can be studied is practically limited to logarithmic and power
utility functions.

Under proportional transaction costs, the change of portfolio from π−
i (t) =

N−
i (t)Si (t)

W−
t

to πi(t) = Ni(t)Si (t)
Wt

, or from N−(t) to N(t) assets in portfolio results

in the change of the wealth process W−
t to Wt , where

W−
t = Wt + W−

t c
(
π ′ − π−(t)

)
(18.7)

with π ′ ∈ S 0 = {ν ∈ Rd : νi ≥ 0,
∑d

i=1 νi ≤ 1} such that π(t) = g(π ′), where

gi(π
′) = π ′

i∑d
j=1 π ′

j

and

c(ν) =
d∑

i=1

c+
i (νi)

+ +
d∑

i=1

c−
i (νi)

−. (18.8)

We have the following (see Lemma 1 of [11]):

Lemma 18.3 Given π, π̄ ∈ S , there is a continuous e(π, π̄) ∈ (0,1] such that
Fπ,π̄ (e(π, π̄)) = 1 with Fπ,π̄ (δ) = δ + c(δπ̄ − π). Consequently, the change of
portfolio at time t from π−(t) to π(t) results in the change of the wealth W−

t to
Wt , where W−

t = e(π−(t),π(t))Wt . Furthermore, if there are no transactions in
the time interval (s, s + t), then

W−
t+s = Wtπ(t) · eX(t+s)−X(s)

and

π−(t + s) = g
(
π(t) 
 eX(t+s)−X(t)

)
,

where π(t) 
 eX(t+s)−X(s) = (πi(t)e
Xi(t+s)−Xi(t)).

By the form of (18.2), it is clear that the pair (π(t), zt ) and the triple
(π(t), zt ,Wt ) are Markov processes with transition operators Πt and Πe

t , respec-
tively.
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18 Asymptotics of HARA Utility 513

Since (zt , t ≥ 0) is a finite-state continuous-time, time-homogeneous Markov
process, its evolution can be described in the following form:

ς1 = inf{s ≥ 0 : zs �= z0},
ςn+1 = inf{s ≥ 0 : zs+ςn �= zςn},

(18.9)

and for z0 = z,

Pz[ς1 ≤ t] =
∫ t

0
n(z, s) ds,

Pz

[
Pzςn

[ςn+1 ≤ t]] = Ez

[∫ t

0
n(zςn

, s) ds

]

,

Pz[zς1 = z′] = P(z, z′).

We shall assume that n(z, s) > 0 for z ∈ D and s > 0 and the matrix P(z, z′) is
ergodic, i.e., from one state we can enter the other state with probability one (the
states are communicative). It is assumed further that

(A) the matrix σ(z)σ (z)T is uniformly elliptic, i.e., there is ε > 0 such that for all
b ∈ Rd and z ∈ D,

bT σ (z)σ (z)T b ≥ εbT b.

We have (see Lemma 1 of [4]) the following:

Lemma 18.4 Under (A), the solution to (18.2) with the initial condition X(0) =
x has a continuous density pt for each fixed zt = z with respect to the Lebesgue
measure ld at time t > 0, i.e., for a Borel set A ⊂ Rd ,

Pxz

{
Xz(t) ∈ A

} =
∫

A

pz
t (x, x ′) ld(dx ′), (18.10)

where Xz(t) is a solution to (18.2) with zt ≡ z, and pz
t (x, x′) is a continuous func-

tion of x and x′. Furthermore, given (A1), for Borel sets B ⊂ Rd and z′ ∈ D,

Px,z

{
X(t) ∈ B,zt = z′} =

∫

B

pt (x, x′, z, z′) ld (dx′), (18.11)

where

pt

(
x, x′, z, z′)

= 1z=z′
(

1 −
∫ t

0
n(z, s) ds

)

pz
t

(
x, x ′) +

∞∑

k=1

∑

z1∈D

∑

z2∈D

· · ·
∑

zk−1∈D

∫ t

0
n(z, s1)

×
∫

Rd

pz
s1

(x, x1)P
(
z, z1)

∫ t−s1

0
n
(
z1, s2

)
∫

Rd

pz1

s2
(x1, x2)P

(
z1, z2) . . .
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×
∫ t−s1−···−sk−1

0
n
(
zk−1, sk

)

×
∫

Rd

pzk−1

sk
(xk−1, xk)P

(
zk−1, z′)pz′

t−s1−···−sk
(xk, y)

×
∫ t

t−s1−···−sk

n(z′, u) du l(dxk) dsk l(dxk−1) dsk−1 . . . l(dx1) ds1. (18.12)

The following continuity properties are crucial in further investigations (see Propo-
sition 1, Lemma 7, Lemma 4 of [4] and also [2]):

Proposition 18.5 Under (A), the operator Πe
t is continuous in variation norm for

(π, z,W) ∈ Sδ × D × (0,∞), i.e., for (π(n), z,W(n)) → (π, z,W) ∈ Sδ × D ×
(0,∞), where (π(n), n ≥ 1) is a sequence in Sδ , and (W(n), n ≥ 1) is a sequence
in (0,∞) with W > 0, it follows that

sup
A∈B(S×D×(0,∞))

∣
∣Πe

t (π(n), z,W(n),A) − Πe
t (π, z,W,A)

∣
∣ → 0 (18.13)

as n → ∞, with B(S × D × (0,∞)) denoting the family of Borel subsets of S ×
D × (0,∞). In particular,

sup
A∈B(S×D)

∣
∣Πt(π(n), z,A) − Πt(π, z,A)

∣
∣ → 0, (18.14)

and there is a positive continuous density of operator Πt . Moreover, for any con-
tinuous bounded function F : S × D × (0,∞) → R and t > 0, it follows that the
mappings

S × D × (0,∞)  (π, z,W) �→ EπzW

[
χ

t≤T δ0 F
(
π(t), zt ,Wt

)]
(18.15)

and

S × D × (0,∞)  (π, z,W) �→ EπzW

[
F

(
π

(
t ∧ T δ0)

, z
t∧T δ0 ,W

t∧T δ0

)]
(18.16)

are continuous, and for sufficiently small γ > 0,

sup
z∈D

sup
π∈S 0

δ

Eπz

[
eγT δ0 ]

< ∞. (18.17)

18.2 Discounted GOP

In this section we shall consider the model with decision lag pointing out at the end
of the section differences in the case of execution delay. To obtain the existence of
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18 Asymptotics of HARA Utility 515

the solutions to the Bellman equation corresponding to the cost functional (18.5),
we introduce the first discounted cost functional of the form

Jα
π,z(V ) = Eπ,z

[ ∞∑

i=1

e−ατi
[
ln

(
π(τi−1) · eX(τi )−X(τi−1)

) + ln e
(
π−(τi),π

i
)]

]

(18.18)
and the value function corresponding to this functional,

wα(π, z) = sup
V

J α
π,z(V ). (18.19)

We have the following Bellman equation corresponding to the cost functional
(18.18)

wα(π, z) = sup
τ

Eπ,z

[
e−ατ∧T δ0 [

ln
(
π · eX(τ∧T δ0

)
)

+ Mα
h wα

(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)]]
(18.20)

with

Mα
h w(π, z) = sup

π ′∈Sδ′

[
ln e(π,π ′) + Eπ ′,z

[
e−αh

(
ln

(
π ′ · eX(h)

) + w
(
π(h), zh

))]]
.

(18.21)
From the very definition we immediately have that

sup
π,z

∣
∣Mα

h w1(π, z) − Mα
h w2(π, z)

∣
∣ ≤ e−αh‖w1 − w2‖ (18.22)

with ‖.‖ standing for the supremum norm. Therefore, one could expect to find a
solution to (18.20) using Banach contraction principle in the space of continuous
functions of the first coordinate. For this purpose, however, we need the continuity
of the right-hand side of (18.20), which follows from the following lemma

Lemma 18.6 If the function g : S × D �→ R is continuous and bounded, then

vα(π, z) := sup
τ

Eπ,z

[
e−ατ∧T δ0 [

ln
(
π · eX(τ∧T δ0

)
) + g

(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)]]

(18.23)
is also continuous and bounded.

Proof By the uniform integrability of the term ln(π · eX(τ∧T δ0
)) (which follows

from (18.17)) it suffices to show the continuity of

vα(π, z,W) := sup
τ

Eπ,z

[
e−ατ∧T δ0 [

f
(
W

τ∧T δ0 + g
(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

))]]
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with continuous bounded function f . The last problem can be solved using the so-
called penalty method, i.e., solving for β > 0 the equation

vα,β(π, z,W) = Eπ,z

[

β

∫ T δ0

0
e−αs

(
f (Ws) + g

(
π(s), zs

)

− vα,β
(
π(s), zs,Ws

))+
ds

+ eαT δ0 (
f (W

T δ0 ) + g
(
π

(
T δ0)

, z
T δ0

))
]

. (18.24)

By Theorem 1 of [4] (see also [13]) there is a unique continuous bounded function
vα,β : S 0 × D × (0,∞) which is a solution to the penalty equation (18.24), and
letting β → ∞, we have that vα,β converges to vα uniformly on compact subsets of

S 0 × D × (0,∞). �

We now have the following:

Theorem 18.7 There is a unique continuous bounded solution wα to (18.20), and
wα coincides with the value function (18.19) of the cost functional (18.18).

Proof By Lemma 18.6 the operator defined by the right-hand side of (18.20) trans-
forms the class of continuous bounded functions into itself. By (18.22) this operator
is a contraction. Consequently, by the Banach contraction principle there is a unique
continuous solution to (18.20). By the proof of Theorem 2 of [4] the continuous so-
lution to (18.20) is the value function (18.19). �

Remark 18.8 In the case of execution delay h, the form of the Bellman equation is
the same as (18.20) with the change in the operator M only, which is of the form

Mα
h w(π, z) = sup

π ′∈Sδ′
Eπ,z

[
e−αh

(
ln

(
π · eX(h)

) + ln e
(
π(h),π ′) + w(π ′, zh)

)]
.

(18.25)
By similar consideration we have the existence of a unique continuous solu-
tion to the Bellman equation, which is also the value function for the cost func-
tional (18.18).

18.3 Long-Run GOP

In this section, using vanishing discount approach, we prove the existence of solu-
tions to the long-run Bellman equation. We first need some auxiliary results.

Lemma 18.9 We have

sup
π,π ′∈Sδ

sup
z,z′

sup
A

∣
∣Πh(π, z,A) − Πh(π

′, z′,A)
∣
∣ := L < 1. (18.26)
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Proof Suppose that (18.26) is not satisfied. Then there are sequences (π(n)), (π
′
(n)),

(z(n)), (z
′
(n)), and An with π(n),π

′
(n) ∈ Sδ such that Πh(π(n), z(n),An) → 1 and

Πh(π
′
(n), z

′
(n),An) → 0. Choosing subsequences, there are π and π ′ ∈ Sδ and

z, z′ ∈ D such that (by Proposition 18.5) Πh(π, z,An) → 1 and Πh(π
′, z′,An) → 0.

Let f π,z(π̄ , z̄) be the density of the operator Πh(π, z, ·), and

Γ z̄
α = {

(π̄) : f π,z(π̄ , z̄) ≥ α, for (π, z) ∈ Sδ × D
}
.

By continuity of f π,z, the set Γ z̄
α is closed, and ld(

⋂
z̄∈D Γ z̄

α ) > 0 for a suffi-
ciently small α. If Πh(π, z,An) → 1, then Πh(π, z, S × D \ An) → 0, and con-
sequently ld(

⋂
z̄∈D Γ z̄

α \ An) → 0. Therefore, also Πh(π
′, z′,

⋂
z̄∈D Γ z̄

α ∪ An) → 0.
But Πh(π

′, z′,
⋂

z̄∈D Γ z̄
α ∪An) ≥ αld(

⋂
z̄∈D Γ z̄

α ) > 0, a contradiction. Thus we have
(18.26). �

Lemma 18.9 is crucial in the proof of the following property.

Proposition 18.10 We have

sup
α

∥
∥wα

∥
∥

sp
:= sup

α

(
sup
π,z

wα(π, z) − inf
π ′,z′ w

α(π ′, z′)
)

< ∞. (18.27)

Proof By (18.21), using (18.26), we have
∣
∣Mα

h wα(π, z) − Mα
h wα(π ′, z′)

∣
∣

≤ sup
π ′′∈Sδ′

[∣
∣
∣
∣ ln

e(π,π ′′)
e(π ′,π ′′)

∣
∣
∣
∣

+ ∣
∣Eπ ′′,z

[
e−αh ln

(
π ′′ · eX(h)

)] − Eπ ′′,z′
[
e−αh ln

(
π ′′ · eX(h)

)]∣
∣

+ ∣
∣Eπ ′′,z

[
wα

(
π(h), zh

)] − Eπ ′′,z′
[
wα

(
π(h), zh

)]∣
∣
]

≤ K + L
∥
∥wα

∥
∥

sp
(18.28)

with constant K independent of α. Now

wα(π, z) − wα(π ′, z′)
≤ wα(π, z) − Mα

h wα(π ′, z′)

= sup
τ

Eπ,z

[
e−ατ∧T δ0 [

lnπ · eX(τ∧T δ0
) + Mα

h wα
(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)

− Mα
h wα(π ′, z′)

] + (
e−ατ∧T δ0 − 1

)
Mα

h wα(π ′, z′)
]
. (18.29)

Notice that by Doob’s maximal inequalities (see, e.g., Theorem 3.8(iv) in [6]) we
have

d∑

i=1

sup
z∈D

Ez

[
sup

s

∣
∣Xi

(
s ∧ T δ0)∣∣

]
= K ′ < ∞, (18.30)
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and therefore,

∣
∣wα(π, z)

∣
∣ ≤

∞∑

i=1

Eπ,z

[
e−ατi

∣
∣ln

(
π(τi) · eX(τi )−X(τi−1)

)∣
∣
]

≤
∞∑

i=1

e−αhiK ′ = K ′

1 − e−αh
. (18.31)

Furthermore, since αx − α2x2

2 ≤ 1 − e−αx ≤ αx for x > 0, we have from (18.30)
and (18.31) that

∣
∣Eπ,z

[(
e−ατ∧T δ0 − 1

)
Mα

h wα(π ′, z′)
]∣
∣

≤ Eπ,z

[(
1 − e−αT δ0 )(

K̄ ′′ + sup
(π ′′,z′′)∈S×D

∣
∣wα(π ′′, z′′)

∣
∣
)]

≤ K ′′ + Eπ,z

[
T δ0]

α sup
(π ′′,z′′)∈S×D

∣
∣wα(π ′′, z′′)

∣
∣

≤ K ′′ + K ′Eπ,z

[
T δ0] α

1 − e−αh
≤ K ′′ + K ′Eπ,z

[
T δ0] 1

h − αh2 . (18.32)

Summarizing, from (18.29) and (18.28), using (18.32), we obtain that

sup
α

∥
∥wα

∥
∥

sp
≤ K + K ′′ + K ′ sup

(π,z)∈Sδ′×D

Eπ,z

[
T δ0] 1

h − αh2
+ L

∥
∥wα

∥
∥

sp
,

from which the assertion of proposition follows. �

Let

w̄α(π, z) = wα(π, z) − inf
π ′∈Sδ,z′∈D

wα(π ′, z′). (18.33)

From (18.20) we have

w̄α(π, z) = sup
τ

Eπ,z

[
e−ατ∧T δ0 [

ln
(
π · eX(τ∧T δ0

)
)

+ Mα
h w̄α

(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)]

+ inf
π ′∈Sδ,z

′∈D
wα(π ′, z′)

(
e−α(τ∧T δ0 +h) − 1

)]
. (18.34)

We let α → 0 in (18.34). Our main result can be formulated as follows.

Theorem 18.11 There are a constant λ and a bounded continuous solution w which
form a solution to the following Bellman equation:

w(π, z) = sup
τ

Eπ,z

[
ln

(
π · eX(τ∧T δ0

)
) − λ

(
τ ∧ T δ0 + h

)

+ Mhw
(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)]
(18.35)
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with

Mhw(π, z) = sup
π ′∈Sδ′

[
ln e(π,π ′) + Eπ ′,z

[(
ln

(
π ′ · eX(h)

) + w
(
π(h), zh

))]]
. (18.36)

Moreover,

λ = sup
V

lim inf
T →∞

1

T
Eπ,z

[ ∞∑

i=1

1τi≤T

[
ln

(
π(τi−1) · eX(τi )−X(τi−1)

)

+ ln e
(
π−(τi),π

i
)]

]

, (18.37)

and the strategy V̂ = (τ̂n, π̂
n) such that

τ̂ (π) = inf
{
s ≥ 0 : w

(
π(s), zs

) = Mhw
(
π(s), zs

)}
, (18.38)

τ̂1 = τ̂
(
π(0)

)
,

τ̂n+1 = τ̂n + τ̂
(
π(τ̂n)

) ◦ θτ̂n
,

(18.39)

and

π̂n = π̂
(
π−(τ̂n), zτ̂n

)
,

where π̂ : S × D → Sδ′ is a Borel function such that

Mhw(π, z) = ln e
(
π, π̂(π, z)

) + Eπ̂(π,z),z

[(
ln

(
π̂ (π, z) · eX(h)

) + w
(
π(h), zh

))]
,

is optimal.

Proof By Propositions 18.10 and 18.5, Mα
h w̄α(π, z) is equicontinuous and bounded,

hence, for a suitably chosen subsequence αn → 0, it converges to g(π, z) uniformly
on compact sets of S 0 × D. Furthermore, by (18.17)

sup
τ

Eπ,z

[
1

α

(
e−α(τ∧T δ0 +h) − 1

) + τ ∧ T δ0 + h

]

→ 0.

Choosing a further subsequence, which we denote for simplicity by (αn), by sim-
ilar arguments as in the proof of Proposition 18.10, there is a constant λ such that
1
αn

infπ ′∈S δ,z′∈D wαn(π ′, z′) → λ as n → ∞. Then there is a function w such that

sup
τ

Eπ,z

[
e−αnτ∧T δ0 [

ln
(
π · eX(τ∧T δ0

)
) + M

αn

h w̄αn
(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)]

+ inf
π ′∈S δ,z′∈D

wαn(π ′, z′)
(
e−αn(τ∧T δ0+h) − 1

)]

→ w(π, z)
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= sup
τ

Eπ,z

[
ln

(
π · eX(τ∧T δ0

)
) − λ

(
τ ∧ T δ0 + h

)

+ g
(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)]
(18.40)

as n → ∞. Moreover, M
αn

h w̄αn(π, z) → Mhw(π, z), and therefore from (18.40) we
have that w̄αn → w uniformly on compact subsets of S 0 × D, and finally we have
(18.35). Let

w̄(π, z,W) := sup
τ

Eπ,z

[
ln

(
Wπ · eX(τ∧T δ0

)
) − λ

(
τ ∧ T δ0 + h

)

+ Mhw
(
π

(
τ ∧ T δ0)

, z
τ∧T δ0

)]
. (18.41)

Clearly, w̄(π, z,W) = lnW + w(π, z), and therefore the optimal stopping time τ̂

is of the form (18.71) (see also the proofs of Theorems 1 and 3 in [4]). Equality
(18.37) can be justified in a standard way for impulsive control of Markov processes
as Theorem V.2.1 of [10] (see also Theorem 3 in [4]), using a suitable version of
Lemma II.2.2 of [10]. For completeness, we sketch below the main steps. For a given
impulsive strategy V = (τn,π

n), consider the following notation: for n = 1,2, . . . ,
πn(τn) = πn, πn(τn + s) = π−(τn + s) for s > 0, Wn

τn
= 1, and Wn

τn+s = W−
τn+s =

πn · eX(τn+s)−X(τn) for s > 0. It is clear that, for s ≥ 0,

w̄(π, z,W) ≥ Eπ,z

[
w̄

(
π−(

s ∧ T δ0)
, z

s∧T δ0 ,W
−
s∧T δ0

) − λ
(
s ∧ T δ0)]

, (18.42)

and therefore, for T δ0

τn+h := τn +h+T δ0 ◦ θτn+h, where θ is a Markov shift operator,
we have that

Zn(s) = w̄
(
πn

(
(τn + h + s) ∧ T δ0

τn+h

)
, z

(τn+h+s)∧T δ0
τn+h

,Wn

(τn+h+s)∧T δ0
τn+h

)

− λ
(
s ∧ (

T δ0 ◦ θτn+h

))
(18.43)

is a Gn
s = Fτn+h+s -supermartingale. For any stopping time τ ≥ τn + h, since

{τ − τn − h ≤ s} = {τ ≤ τn + h + s} ∈ Fτn+h+s = Gn
s ,

we have that τ −τn−h is a (Gn
s )-stopping time. Therefore, if additionally τ ≤ T δ0

τn+h,
we have

E
[
Zn(τ − τn − h)

∣
∣Fτn+h

] ≤ Zn(0) = w̄
(
πn(τn + h), zτn+h,Wn

τn+h

)
. (18.44)

Since by the definition of the operator Mh, using w̄(π, z,W) = lnW + w(π, z), we
have

w̄
(
πn−1(τn), zτn ,W

n−1
τn

) ≥ −λh + E
[
lnWn−1

τn
e
(
πn−1(τn),π

n
)

+ w̄
(
πn(τn + h), zτn+h

)
,Wn

τn+h)
∣
∣Fτn

]
(18.45)
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for fixed T > 0, we obtain

E
[
Zn

(
τn+1 ∧ (T + h) − τn − h

)
χτn≤T

∣
∣Fτn

]

≤ χτn≤T E
[
Zn(0)

∣
∣Fτn

]

≤ χτn≤T

(
w̄

(
πn−1(τn), zτn ,W

n−1
τn

) + λh − E
[
ln

(
Wn−1

τn
e
(
πn−1(τn),π

n
))∣

∣Fτn

])
.

Therefore,

E
[
χτn≤T

(
w̄

(
πn

(
τn+1 ∧ (T + h)

)
, zτn+1∧(T +h),W

n
τn+1∧(T +h)

)

− w̄
(
πn−1(τn), zτn ,W

n−1
τn

) + ln
(
Wn−1

τn
e
(
πn−1(τn),π

n
)))]

≤ E
[
χτn≤T λ

(
τn+1 ∧ (T + h) − τn

)]
. (18.46)

Summing up over n inequalities (18.45) and using again the identity w̄(π, z,W) =
lnW + w(π, z), we obtain the formula

E

[

w̄
(
πζ(T )−1

(
τζ(T ) ∧ (T + h)

)
, zτζ(T )∧(T +h),1

) − w̄(π, z,W)

+
ζ(T )−1∑

i=0

ln
(
Wi

τi+1
e
(
πi(τi+1),π

i+1)) − ln e
(
πζ(T )−1(τζ(T )),π

ζ(T )
)
]

≤ λE
[
τζ(T ) ∧ (T + h)

]
, (18.47)

where ζ(T ) = inf{n : τn ≥ T }. Notice that for the strategy V̂ defined in (18.38) and
(18.39), we have equalities in (18.45)–(18.47). Dividing both sides of (18.47) by T

and letting T → ∞, we obtain (18.37) and the optimality of the strategy V̂ . �

Remark 18.12 In the case of execution delay we easily obtain versions of Proposi-
tion 18.10 and Theorem 18.11. The only difference is in the form of the operator
Mh, which is now

Mhw(π, z) = sup
π ′∈Sδ′

Eπ,z

[(
ln

(
π · eX(h)

) + ln e
(
π(h),π ′) + w(π ′, zh)

)]
.

18.4 Discounted Discrete-Time PUOP

In this section we restrict ourselves to the model with execution delay. We con-
sider power utility function U(x) = xγ with γ ∈ (0,Γ ], where for γ ≤ Γ ≤ 1,
estimate (18.17) holds. We use again a version of vanishing discount approach. Due
to multiplicative form of the functional, we however have a number of difficulties
to overcome. In the case of decision lag we are not able to obtain technical esti-
mations (see Proposition 18.15 below) convenient for the vanishing discount ap-
proach, and therefore we consider the model with execution delay. We start with
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a discounted discrete-time problem. Assume that decisions are made in discrete
times {0,Δ,2Δ, . . . , iΔ, . . .}. The decision is executed with a delay h, which is a
multiplicity of Δ. Since delay h is fixed, we consider only such Δ for which its
multiplicity forms h. Denote by TΔ the family of stopping times with values in
{0,Δ,2Δ, . . . , iΔ, . . .}.

Discrete-time discounted problem is of the form: find a bounded function gΔ
α :

S × D × [0,Γ ] → R such that gΔ
α (π, x,0) ≡ 0 and

gΔ
α (π, z, γ ) = 1S 0

δ

c (π)M
r,α
h gΔ

α (π, z, γ ) + 1S 0
δ
(π)max

{
lnEπ,z

[
exp

{
γ e−αΔ

× [
ln

(
π · eX(Δ)

)] + gΔ
α

(
π(Δ), zΔ,γ e−αΔ

)}]
,M

r,α
h gΔ

α (π, z, γ )
}

(18.48)

with

M
r,α
h g(π, z, γ ) = sup

π ′∈Sδ′

[
lnEπ,z

[
exp

{
γ e−αh ln

(
π · eX(h)

)

+ γ e−αh ln e
(
π(h),π ′) + g

(
π ′, zh, γ e−αh

)}]]
. (18.49)

An equivalent form of (18.48) is

gΔ
α (π, z, γ )

= sup
τ∈TΔ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ M
r,α
h gΔ

α

(
π

(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ e−ατ∧T δ0
Δ

)
}]

(18.50)

with

T δ0

Δ = inf
{
iΔ : π(iΔ) ∈ S \ S 0

δ

}
. (18.51)

We have the following:

Proposition 18.13 There is a unique bounded function gΔ
α : S × D × [0,Γ ] → R

such that gΔ
α (π, z,0) ≡ 0, which is continuous in S 0

δ , and for which (18.48) and,
equivalently, (18.50) are satisfied. Moreover,

gΔ
α (π, z, γ )

= sup
V

lnEπ,z

[

exp

{

γ

τ1
Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]
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+ γ

∞∑

j=2

τj
Δ∑

i= τj−1+h

Δ
+1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ γ

∞∑

i=1

e−α(τi+h)
[
ln

(
π(τi) · eX(τi+h)−X(τi )

) + ln e
(
π−(τi + h),πi

)]
}]

.

(18.52)

Proof We first prove that the operator T defined by right-hand side of (18.48) as

T g(π, z, γ ) = 1S 0
δ

c (π)M
r,α
h g(π, z, γ ) + 1S 0

δ
(π)max

{
lnEπ,z

[
exp

{
γ e−αΔ

× [
ln

(
π · eX(Δ)

)] + g
(
π(Δ), zΔ,γ e−αΔ

)}]
,M

r,α
h g(π, z, γ )

}

transforms the class of bounded functions continuous in S 0
δ into itself. Note

first that by Proposition 18.5 the operator M
r,α
h transforms bounded functions

into bounded continuous functions. By the uniform integrability of the term

(π · eX(τ∧T δ0
))γ e−α(τ∧T δ0 +h)

(notice that Γ ≤ 1 and we have assumed (18.3)) it suf-
fices to show the continuity of

Gα(π, z,W,γ ) = sup
τ

lnEπ,z

[
exp

{
γ e−ατ∧T δ0

f (W
τ∧T δ0 )

+ g
(
π

(
τ ∧ T δ0)

, z
τ∧T δ0 , γ e−ατ∧T δ0 )}]

for continuous bounded functions f and g. Now, similarly as in the proof of
Lemma 18.6, we can use a penalty method (for time-dependent functions of π ,
z, and W studied in [4] and [13]) and obtain by (18.15) and (18.16) the continuity
of the function Gα . Consequently, for a bounded function g, the function T g is also
a continuous bounded function in S 0

δ , and T g(π, z,0) ≡ 0, whenever g(π, z,0) ≡ 0.
Moreover by the compactness of S × D we have the uniform convergence of
g(π, z, γ ) to 0 as γ → 0. Therefore, iterations of the operator T converge to a
function gα , which is a solution to (18.48). Since the term g diminishes in the suc-
cessive iterations of T , the limit does not depend on the function g, provided that
g is continuous bounded in S 0

δ and g(π, z,0) ≡ 0. The form of (18.50) follows by
iteration from (18.48) noticing that

ln
(
π · eX(τ∧T δ0

)
) + ln

(
π(τ) · eX(τ∧T δ0+h)−X(τ∧T δ0

)
) = ln

(
π · eX(τ∧T δ0+h)

)
. �

In what follows wee need the following lemma.

Lemma 18.14 We have

sup
π,π ′∈Sδ,π ′′∈Sδ′

sup
z,z′,z′′∈D

sup
0≤γ≤Γ

Eπ,z[exp{γ e−αh ln(π · eX(h)e(π(h),π ′′)}1z′′(zh)]
Eπ ′,z′ [exp{γ e−αh ln(π ′ · eX(h)e(π(h),π ′′)}1z′′(zh)]

:= L′ < ∞. (18.53)
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Proof Suppose that L′ = ∞. Then there are sequences (π(n)), (π ′
(n)), (π

′′
(n)), γn → 0

and elements z, z′, z′′ of D (since D is finite) such that

Eπ(n),z[exp{γne
−αh ln(π(n) · eX(h)e(π(h),π ′′

(n)
)}1z′′(zh)]

Eπ ′
(n)

,z′ [exp{γne−αh ln(π ′
(n) · eX(h)e(π(h),π ′′

(n))}1z′′(zh)] → ∞.

Since the numerator and denominator are bounded from above, it may happen only
when

Eπ ′
(n)

,z′
[
exp

{
γne

−αh ln(π ′
(n) · eX(h)e

(
π(h),π ′′

(n)

)}
1z′′(zh)

] → 0

as n → ∞. Therefore, Ez′ [1z′′(zh)] = 0. By the form of the transition density
(18.12), Ez′ [1z′′(zh)] > 0 for any z′ ∈ D, and we have a contradiction. �

The following two estimations play crucial role in the vanishing discount ap-
proach in the next section.

Proposition 18.15 There is a constant L < ∞ such that, for π,π ′ ∈ S , z, z′ ∈ D,
and γ ≤ Γ , we have

gΔ
α (π, z, γ ) − gΔ

α (π ′, z′, γ ) ≤ L (18.54)

and, for γ1 ≤ γ2,

sup
π∈Sδ′

gΔ
α (π, z, γ1) − gΔ

α (π, z, γ2) ≤ L
γ2 − γ1

1 − e−αh
. (18.55)

Proof Notice first that

gΔ
α (π, z, γ ) − gΔ

α (π ′, z′, γ )

≤ gΔ
α (π, z, γ ) − M

r,α
h gΔ

α (π ′, z′, γ )

≤ sup
τ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ M
r,α
h gΔ

α

(
π

(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ e−ατ∧T δ0
Δ

) − M
r,α
h gΔ

α

(
π ′, z′, γ e−ατ∧T δ0

Δ
)

+ M
r,α
h gΔ

α

(
π ′, z′, γ e−ατ∧T δ0

Δ
) − M

r,α
h gΔ

α (π ′, z′, γ )

}]

, (18.56)

and, using (18.53), we obtain

M
r,α
h gΔ

α (π, z, γ ) − M
r,α
h gΔ

α (π ′, z′, γ )

≤ sup
π ′′∈Sδ′

ln
Eπ,z[exp{γ e−αh ln(π · eX(h)e(π(h),π ′′)) + gΔ

α (π ′′, zh, γ e−αh)}]
Eπ ′,z′ [exp{γ e−αh ln(π ′ · eX(h)e(π(h),π ′′)) + gΔ

α (π ′′, zh, γ e−αh)}]
≤ L′. (18.57)
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To obtain (18.55), we have to estimate

M
r,α
h gΔ

α

(
π ′, z′, γ e−ατ∧T δ0

Δ
) − M

r,α
h gΔ

α (π ′, z′, γ ).

Let γ2 = e−ατ∧T δ0
Δ , and γ1 = γ γ2. By the conditional Hölder inequality

E
[
eγ γ2Z

∣
∣F

τ∧T δ0
Δ

] ≤ (
E

[
eγZ

∣
∣F

τ∧T δ0
Δ

])γ2

for a suitably integrable random variable Z and from (18.52) we have

1

γ2
gΔ

α (π, z, γ1) ≤ gΔ
α (π, z, γ ). (18.58)

Moreover,

M
r,α
h gΔ

α (π ′, z′, γ1) − M
r,α
h gΔ

α (π ′, z′, γ )

≤ sup
π ′′∈Sδ′

ln
Eπ ′,z′ [exp{γ1e

−αh ln(π ′ · eX(h)e(π(h),π ′′))+gΔ
α (π ′′, zh, γ1e

−αh)}]
Eπ ′,z′ [exp{γ e−αh ln(π ′ · eX(h)e(π(h),π ′′)) + gΔ

α (π ′′, zh, γ e−αh)}]
= sup

π ′′∈Sδ′
a(π ′′), (18.59)

and by (18.58) (applied to γ := γ e−αh), since γ2 < 1 and lnE{Z} ≥ E{lnZ} for a
positive random variable Z, we have

a(π ′′) ≤ ln
Eπ ′,z′ [exp{γ1e

−αh ln(π ′ · eX(h)e(π(h),π ′′)) + γ2g
Δ
α (π ′′, zh, γ e−αh)}]

Eπ ′,z′ [exp{γ e−αh ln(π ′ · eX(h)e(π(h),π ′′)) + gΔ
α (π ′′, zh, γ e−αh)}]

≤ ln
(Eπ ′,z′ [exp{γ e−αh ln(π ′ · eX(h)e(π(h),π ′′)) + gΔ

α (π ′′, zh, γ e−αh)}])γ2

Eπ ′,z′ [exp{γ e−αh ln(π ′ · eX(h)e(π(h),π ′′)) + gΔ
α (π ′′, zh, γ e−αh)}]

= (γ2 − 1) ln
(
Eπ ′,z′

[
exp

{
γ e−αh ln

(
π ′ · eX(h)e

(
π(h),π ′′))

+ gΔ
α

(
π ′′, zh, γ e−αh

)}])

≤ (γ2 − 1)Eπ ′,z′
[
γ e−αh ln

(
π ′ · eX(h)e

(
π(h),π ′′))

+ gΔ
α

(
π ′′, zh, γ e−αh

)]
. (18.60)

It remains to estimate (γ2 − 1) infπ∈Sδ′ g
Δ
α (π, z, γ ). By (18.52), changing portfolio

every time when it is allowed, i.e., changing portfolio after every h units of time, we
have (with π(0) = π )

gΔ
α (π, z, γ ) ≥ lnEπ,z

[

exp

{

γ

∞∑

i=1

e−α(ih)
[
ln

(
π

(
(i − 1)h

) · eX(ih)−X((i−1)h)
)

+ ln e
(
π−(ih),πi

)]
}]
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≥ Eπ,z

[{

γ

∞∑

i=1

e−α(ih)
[
ln

(
π

(
(i − 1)h

) · eX(ih)−X((i−1)h)
)

+ ln e
(
π−(ih),πi

)]
}]

≥ Kγe−αh

1 − e−αh
(18.61)

with K = infπ,π ′∈Sδ′ ,z∈D Eπ,z{ln(π · eX(h)) + ln e(π−(h),π ′))}. Therefore, by
(18.60),

a(π ′′) ≤ (γ2 − 1)γ e−αh

(

K + K

1 − e−αh

)

≤ (1 − γ2)γ
2|K|

1 − e−αh

≤ (
ατ ∧ T δ0

Δ

)
γ

2|K|
1 − e−αh

≤ α

1 − e−αh
T δ0

Δ 2γ |K|, (18.62)

and summarizing (18.56)–(18.62), we obtain (18.54).
We are going now to prove (18.55). For γ1 ≤ γ2 and a positive random variable Z,

by the Hölder inequality we have E[Zγ1 ] ≤ (E[Zγ2 ])
γ1
γ2 . Therefore,

egΔ
α (π,z,γ1)−gΔ

α (π,z,γ2)

≤ sup
V

Eπ,z[exp{γ1
∑ τ1

Δ

i=1 e−αiΔ[ln(π((i − 1)Δ) · eX(iΔ)−X((i−1)Δ))]
Eπ,z[exp{γ2

∑ τ1
Δ

i=1 e−αiΔ[ln(π((i − 1)Δ) · eX(iΔ)−X((i−1)Δ))]

+ γ1
∑∞

j=2
∑ τj

Δ

i= τj−1+h

Δ
+1

e−αiΔ[ln(π((i − 1)Δ) · eX(iΔ)−X((i−1)Δ))]

+ γ2
∑∞

j=2
∑ τj

Δ

i= τj−1+h

Δ
+1

e−αiΔ[ln(π((i − 1)Δ) · eX(iΔ)−X((i−1)Δ))]

+ γ1
∑∞

i=1 e−α(τi+h)[ln(π(τi) · eX(τi+h)−X(τi )) + ln e(π−(τi + h),πi))]}]
+ γ2

∑∞
i=1 e−α(τi+h)[ln(π(τi) · eX(τi+h)−X(τi )) + ln e(π−(τi + h),πi))]}]

≤
(

lnEπ,z

[

exp

{

γ2

τ1
Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ γ2

∞∑

j=2

τj
Δ∑

i= τj−1+h

Δ
+1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]
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+ γ2

∞∑

i=1

e−α(τi+h)
[
ln

(
π(τi) · eX(τi+h)−X(τi )

)

+ ln e
(
π−(τi + h),πi

)]
}]) γ1

γ2
−1

. (18.63)

Since lnE{Z} ≥ E{lnZ} for a positive random variable Z, and in the impulse
strategies V we can restrict ourselves to the Markov strategies (depending on the
current values of the processes (π(t)) and (z(t)) only), we have

gΔ
α (π, z, γ1) − gΔ

α (π, z, γ2)

≤ − inf
V

(

1 − γ1

γ2

)

× lnEπ,z

[

exp

{

γ2

τ1
Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ γ2

∞∑

j=2

τj
Δ∑

i= τj−1+h

Δ
+1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ γ2

∞∑

i=1

e−α(τi+h)
[
ln

(
π(τi) · eX(τi+h)−X(τi )

) + ln e
(
π−(τi + h),πi

)]
}]

≤ − inf
V

(

1 − γ1

γ2

)

Eπ,z

[

γ2

τ1
Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ γ2

∞∑

j=2

τj
Δ∑

i= τj−1+h

Δ +1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ γ2

∞∑

i=1

e−α(τi+h)
[
ln

(
π(τi) · eX(τi+h)−X(τi )

) + ln e
(
π−(τi + h),πi

)]
]

≤ sup
V

(γ2 − γ1)Eπ,z

[

1 +
∞∑

i=2

e−α(τi−1+h)

]

(ψ̄α)

≤ (γ2 − γ1)

∞∑

i=1

e−αh(i−1)(ψ̄α) = γ2 − γ1

1 − e−αh
(ψ̄α) (18.64)
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with ψ̄α ≥ 0 of the form

ψ̄α = − inf
π ′∈S,π ′′∈S 0

δ′ ,z
′∈D

inf
τ

Eπ ′,z′

[ τ∧T δ0
Δ

Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

)

· eX(iΔ)−X((i−1)Δ)
)]

+ e−α(τ∧T δ0
Δ +h) ln

(
π

(
τ ∧ T δ0

Δ + h
) · eX(τ∧T δ0

Δ +h)e
(
π−(

τ ∧ T δ0

Δ + h
)
,π ′′))

]

.

This completes the proof of (18.55). �

18.5 Long-Run PUOP

In this section we first consider a discrete-time version of the long-run power util-
ity optimal control and then by limit procedure, based on the bounds from Proposi-
tion 18.15, we obtain the continuous-time long-run Bellman equation. The approach
to discrete-time long-run PUOP will be based on vanishing discount. Fix π̄ ∈ Sδ and
z̄ ∈ D.

Let ḡΔ
α (π, z, γ ) = gΔ

α (π, z, γ ) − gΔ
α (π̄, z̄, γ ).

Then from (18.48) and (18.50) we have

ḡΔ
α (π, z, γ )

= 1S 0
δ

c (π)
(
M

r,α
h ḡΔ

α (π, z, γ ) + gΔ
α

(
π̄ , z̄, γ e−αh

) − gΔ
α (π̄, z̄, γ )

)

+ 1S 0
δ
(π)max

{
lnEπ,z

[
exp

{
γ e−αΔ

[
ln

(
π · eX(Δ)

)]

+ (
ḡΔ

α

(
π(Δ), zΔ,γ e−αΔ

) + gΔ
α

(
π̄ , z̄, γ e−αΔ

) − gΔ
α (π̄, z̄, γ )

)}]
,

M
r,α
h ḡΔ

α (π, z, γ ) + gΔ
α

(
π̄ , z̄, γ e−αh

) − gΔ
α (π̄, z̄, γ )

}
, (18.65)

and

ḡΔ
α (π, z, γ )

= sup
τ∈TΔ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

e−αiΔ
[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ M
r,α
h ḡΔ

α

(
π

(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ e−ατ∧T δ0
Δ

) + gΔ
α

(
π̄ , z̄, γ e−α(τ∧T δ0

Δ +h)
)

− gΔ
α (π̄, z̄, γ )

}]

. (18.66)
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We have the following:

Theorem 18.16 For each Δ ≤ Γ , there are a bounded function wr,Δ, which is
continuous in the set S 0

δ , and a constant λΔ(γ ) such that we have

wr,Δ(π, z, γ )

= 1S 0
δ

c (π)
(
Mr

hwr,Δ(π, z, γ ) − λΔ(γ )h
)

+ 1S 0
δ
(π)max

{
lnEπ,z

[
exp

{
γ
[
ln

(
π · eX(Δ)

)]

+ (
wr,Δ

(
π(Δ), zΔ,γ

) − λΔ(γ )Δ
)}]

,Mr
hwr,Δ(π, z, γ ) − λΔ(γ )h

}
(18.67)

with

Mr
hw(π, z, γ ) = sup

π ′∈Sδ′
lnEπ,z

[
exp

{
γ ln

(
π · eX(h)e

(
π(h),π ′)) + w(π ′, zh, γ )

}]

(18.68)
and, equivalently,

wr,Δ(π, z, γ )

:= sup
τ∈TΔ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ Mr
hwr,Δ

(
π

(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ
) − Δ

τ ∧ T δ0

Δ + h

Δ
λΔ(γ )

}]

. (18.69)

Furthermore, |wr,Δ(π, z, γ )| ≤ L (L is the same as in (18.54)).

Proof Notice first that by (18.54) we have that |ḡΔ
α (π, z, γ )| ≤ L and by (18.55),

that gΔ
α (π̄, z̄, γ e−αh) − gΔ

α (π̄, z̄, γ ) and gΔ
α (π̄, z̄, γ e−αΔ) − gΔ

α (π̄, z̄, γ ) are
bounded from above as functions of α. Therefore, by (18.59), gΔ

α (π̄, z̄, γ e−αΔ) −
gΔ

α (π̄, z̄, γ ) is bounded, and there is a subsequence (αn), limn→∞ αn = 0, and con-
stants λΔ

m(γ ) such that, for m = 1,2, . . . ,

lim
n→∞gΔ

αn

(
π̄ , z̄, γ e−αnmΔ

) − gΔ
αn

(
π̄ , z̄, γ e−αn(m−1)Δ

) = −ΔλΔ
m(γ ). (18.70)

By Proposition 18.5 one can choose a further subsequence of (αn), for simplicity
again denoted by (αn), such that, for k = 0,1, . . . ,

M
r,αn

h ḡΔ
αn

(
π, z, γ e−αnkΔ

) → wΔ
h (π, z, γ, k) (18.71)

for a certain function wΔ
h with convergence uniform on compact subsets of S 0

0 ×D.
Consequently,
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ḡΔ
αn

(π, z, γ )

→ sup
τ∈TΔ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ wΔ
h

(

π
(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ,
τ ∧ T δ0

Δ

Δ

)

− Δ

τ∧T δ0
Δ

+h

Δ∑

i=1

λΔ
i (γ )

}]

, (18.72)

and, for m = 1,2, . . . ,

ḡΔ
αn

(
π, z, γ e−αnmΔ

)

→ sup
τ∈TΔ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ wΔ
h

(

π
(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ,m + τ ∧ T δ0

Δ

Δ

)

− Δ

m+ τ∧T δ0
Δ

+h

Δ∑

i=m+1

λΔ
i (γ )

}]

:= qΔ(π, z, γ,m) (18.73)

as n → ∞ uniformly in π ∈ Sδ′ . Therefore,

M
r,αn

h ḡΔ
αn

(
π, z, γ e−αnkΔ

) → Mr
h,ΔqΔ(π, z, γ, k) (18.74)

with

Mr
h,Δg(π, z, γ, k) = sup

π ′∈Sδ′
lnEπ,z

[

exp

{

γ ln
(
π · eX(h)e

(
π(h),π ′))

+ qΔ

(

π ′, zh, γ, k + h

Δ

)}]

. (18.75)

Hence, from (18.66) we have

qΔ(π, z, γ,m) = sup
τ∈TΔ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ Mr
h,ΔqΔ

(

π
(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ,m + τ ∧ T δ0

Δ

Δ

)
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− Δ

m+ τ∧T δ0
Δ

+h

Δ∑

i=m+1

λΔ
i (γ )

}]

. (18.76)

The function f (γ ) := lnE[eγY ] with a given random variable Y , whenever is de-
fined, is convex. Consequently, gΔ

α as a function of γ is also convex, and neglecting
other variables, by convexity we have

gΔ
α (γ e−α(m−1)Δ) − gΔ

α (γ e−αmΔ)

γ e−α(m−1)Δ(1 − e−αΔ)
≥ gΔ

α (γ e−αmΔ) − gΔ
α (γ e−α(m+1)Δ)

γ e−αmΔ(1 − e−αΔ)

and

e−αΔ
(
gΔ

α

(
γ e−α(m−1)Δ

) − gΔ
α

(
γ e−αmΔ

)) ≥ gΔ
α

(
γ e−αmΔ

) − gΔ
α

(
γ e−α(m+1)Δ

)
.

Therefore, by (18.70), λΔ
m(γ ) ≥ λΔ

m+1(γ ). Since λΔ
m(γ )Δ is bounded, there is

λΔ(γ ) such that limm→∞ λΔ
m(γ ) = λΔ(γ ). Now, ḡΔ

αn
(π, z, γ e−αnmΔ) − ḡΔ

αn
(π, z,

γ e−αn(m−1)Δ) is bounded and is a difference of two sequences that in the limit
as αn → 0 are monotonic, one of them is convergent to λΔ(γ ). Consequently the
other sequence is also convergent, and there is a limit limm→∞ qΔ(π, z, γ,m) −
qΔ(π, z, γ,m − 1) := d(π, z, γ ). Since

qΔ(π, z, γ,m) = (
qΔ(π, z, γ,m) − qΔ(π, z, γ,m + 1)

) + · · ·
+ (

qΔ(π, z, γ,m + k − 1) − qΔ(π, z, γ,m + k)
)

+ qΔ(π, z, γ,m + k),

by the boundedness of qΔ we clearly have that d(π, z, γ ) = 0. By the uniform
continuity of qΔ(·, ·, γ,m) it follows then that there is a continuous function
wr,Δ(π, z, γ ) on S 0

δ × B such that limm→∞ qΔ(π, z, γ,m) = wr,Δ(π, z, γ ), uni-
formly on compact subsets of S 0

δ × B . Letting now m → ∞ in (18.76), we obtain

wr,Δ(π, z, γ )

= sup
τ∈TΔ

lnEπ,z

[

exp

{

γ

τ∧T δ0
Δ

Δ∑

i=1

[
ln

(
π

(
(i − 1)Δ

) · eX(iΔ)−X((i−1)Δ)
)]

+ wr,Δ
(
π

(
τ ∧ T δ0

Δ

)
, z

τ∧T δ0
Δ

, γ
) − Δ

τ ∧ T δ0

Δ + h

Δ
λΔ(γ )

}]

, (18.77)

which completes the proof. �

Basing on (18.69), we can now show the main result.
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Theorem 18.17 There are a constant λ and a bounded continuous function wr such
that the following Bellman equation is satisfied:

wr(π, z, γ ) = sup
τ

lnEπ,z

[
exp

{
γ
[
ln

(
π · eX(τ∧T δ0

)
)]

+ Mr
hwr

(
π

(
τ ∧ T δ0)

, z
τ∧T δ0 , γ

) − (
τ ∧ T δ0 + h

)
λ(γ )

}]
. (18.78)

Furthermore,

γ −1λ(γ ) = sup
V

J r
γ (V ). (18.79)

Proof By the proof of the previous theorem we know that wr,Δ and λΔ are bounded
uniformly in Δ. Therefore, for a fixed γ , one can choose a subsequence Δn → 0
such that λΔn(γ ) → λ and Mr

hwr,Δn → v uniformly on compact subsets of S 0
0 ×D.

Now, letting Δn → 0 in (18.69), we obtain that limn→∞ wr,Δn = wr and v = Mr
hwr .

This completes the proof of (18.78). To prove the formula (18.79), by an analogy to
the proof of Theorem 18.11 we have to introduce the function w̄r ,

w̄r (π, z,W,γ ) := sup
τ

lnEπ,z

[
exp

{
γ
[
ln

(
Wπ · eX(τ∧T δ0

)
)]

+ Mr
hwr

(
π

(
τ ∧ T δ0)

, z
τ∧T δ0 , γ

)

− (
τ ∧ T δ0 + h

)
λ(γ )

}]
. (18.80)

Clearly, w̄r (π, z,W,γ ) = γ lnW + wr(π, z, γ ). For a given impulsive strategy
V = (τn,π

n), consider the following notation: for n = 1,2, . . . , πn(τn + h) = πn,
πn(τn + h + s) = π−(τn + h + s) for s > 0. Recall that W−

t and Wt are the wealth
process before and after possible transaction at time t . It is clear that, for s ≥ 0,

ew̄(π,z,W,γ ) ≥ Eπ,z

[
exp

{
w̄r

(
π

(
s ∧ T δ0)

, z
s∧T δ0 ,W

−
s∧T δ0 , γ

) − λ(γ )
(
s ∧ T δ0)}]

.

(18.81)
Therefore,

Z̃n(s) = exp
{
w̄r

(
πn

(
(τn + h + s) ∧ T δ0

τn+h

)
, z

τ+h+s∧T δ0
τn+h

,

W−
τ+h+s∧T δ0

τn+h

, γ
) − λ(γ )

(
s ∧ (

T δ0 ◦ θτn+h

))}
(18.82)

is a Gn
s = Fτn+h+s -supermartingale. For any stopping time τ ≥ τn + h, since

{τ − τn − h ≤ s} = {τ ≤ τn + h + s} ∈ Fτn+h+s = Gn
s ,

we have that τ −τn −h is a (Gn
s )-stopping time. Therefore, if additionally τ ≤ T δ0

τn+h

(where, as before, T δ0

τn+h := τn + h + T δ0 ◦ θτn+h), we have

E
[
Z̃n(τ − τn − h)

∣
∣Fτn+h

] ≤ Z̃n(0) = ew̄r (πn(τn+h),zτn+h,Wτn+h,γ ). (18.83)
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By the form of the operator Mr
h , taking into account that w̄r (π, z,W,γ ) = γ lnW +

wr(π, z, γ ), we obtain

ew̄r (πn−1(τn),zτn ,W−
τn

,γ )

≥ e−λ(γ )hEπ,z

[
exp

{
w̄r

(
πn, zτn+h,Wτn+h, γ

)}∣
∣Fτn

]
, (18.84)

and therefore, for fixed T > 0, we have

E
[
exp

{
χτn≤T

(
w̄r

(
πn

(
τn+1 ∧ (T + h)

)
, zτn+1∧(T +h),W

−
τn+1∧(T +h)

, γ
)

− λ(γ )
(
τn+1 ∧ (T + h) − τn − h

))}∣
∣Fτn

]

≤ E
[
eχτn≤T w̄r (πn(τn+h),zτn+h,Wτn+h)

∣
∣Fτn

]

≤ eχτn≤T (λ(γ )h+w̄r (πn−1(τn),zτn ,W−
τn

,γ )).

Consequently,

E
[
exp

{
χτn≤T

(
w̄r

(
πn

(
τn+1 ∧ (T + h)

)
, zτn+1∧(T +h),W

−
τn+1∧(T +h)

, γ
)

− w̄r
(
πn−1(τn), zτn

,W−
τn

, γ
)

− λ(γ )
(
τn+1 ∧ (T + h) − τn

))}∣
∣Fτn

] ≤ 1, (18.85)

and therefore,

E

[

exp

{ ∞∑

n=1

χτn≤T

(
w̄r

(
πn

(
τn+1 ∧ (T + h)

)
, zτn+1∧(T +h),

W−
τn+1∧(T +h)

, γ
) − w̄r

(
πn−1(τn), zτn ,W

−
τn

, γ
)

− λ(γ )
(
τn+1 ∧ (T + h) − τn

))
}]

≤ 1.

Finally, using ζ(T ) = inf{n : τn ≥ T }, we rewrite the last inequality in the form

E
[
exp

{(
w̄r

(
πζ(T )−1

(
τζ(T ) ∧ (T + h)

)
, zτζ(T )∧(T +h),

W−
τζ(T )∧(T +h)

, γ
) − w̄r(π, z,W,γ ) − λ(γ )

(
τζ(T ) ∧ (T + h) − τζ(T )−1

))}] ≤ 1

and

E
[
exp

{(
wr

(
πζ(T )−1

(
τζ(T ) ∧ (T + h)

)
, zτζ(T )∧(T +h), γ

)

+γ lnW−
τζ(T )∧(T +h) + w̄r (π, z,W,γ )−λ(γ )

(
τζ(T ) ∧ (T +h)− τζ(T )−1

))}]≤1.

(18.86)
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Notice that for the strategy V̂ defined by optimal stopping times, from (18.81) and
portfolio changes accordingly to the selector of the operator Mr

h we have the equali-
ties in (18.84)–(18.86). Taking the logarithm, then dividing both sides of (18.86) by
T and letting T → ∞, we obtain (18.81) and the optimality of the strategy V̂ . �

18.6 General Form of the Long-Run Bellman Equations

We consider in this section (for simplicity) the case with execution delay. The case
with decision lag can be studied in a similar way. To simplify the notation, we ne-
glect here obligatory diversification. We would like to find a general, unified form
of the Bellman equation, which covers the cases of logarithmic and power utility
function. Following [7], we can define the problem as follows: find a function w

and a constant λ such that for any positive K , we have

U
(
Kew(W,π,z)

)

= sup
τ

Eπ,z

[
sup
π ′

U
((

π−(τ + h) · eX(τ+h)
)
e−λ(τ+h)

× Ke
(
π−(τ + h),π ′)ew(W(π−(τ+h)·eX(τ+h))e(π−(τ+h),π ′),π ′,zτ+h)

)]
. (18.87)

It can be shown (see Sect. 2 of [7]) that λ is an optimal utility growth. By (18.87)
we see that the mapping K �→ supτ U−1Eπ,z{U(K · · · )} is positively homogeneous.
This is satisfied in particular, when the mapping K �→ U−1E{U(KZ)} is positively
homogeneous for any random variable Z. By Theorem 3.1 of [7] it holds whenever
U(x) = Axγ + B with γ > 0, or U(x) = A lnx + B with A > 0 and arbitrary B .
Consequently, up to normalization, U should be a power or logarithmic utility func-
tion, and in fact this radically limits the use of the general Bellman equation of the
form (18.87). Notice furthermore that we can rewrite (18.87) in the form

U
(
ew(W,π,z)

) = sup
τ

Eπ,z

[
U

((
π−(τ ) · eX(τ)

)
e−λ(τ+h)Mw

(
Wτ ,π(τ), zτ

))]
,

(18.88)
where

M(W,π, z) = sup
π ′∈Sδ′

U−1(Eπ ′,z
{
U

(
π · eX(h)e

(
π(h),π ′)ew(Wh,π ′,zh)

)})
. (18.89)

As we can see in this paper, Bellman equations were independent of the initial value
of the wealth process (Wt ). Consequently, we may look for a solution to the equation

U
(
ew(π,z)

) = sup
τ

Eπ,z

[
U

((
π−(τ ) · eX(τ)

)
e−λ(τ+h)Mw

(
π(τ), zτ

))]
(18.90)

with

M(π, z) = sup
π ′

U−1(Eπ ′,z
[
U

(
π ′ · eX(h)

)
e
(
π(h),π ′)ew(π ′,zh)

])
.

In particular cases we obtain the following examples.
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Example 18.18 If U(x) = lnx, then

w(π, z) = sup
τ

Eπ,z

[
ln

(
π · eX(τ)

) − λ(τ + h) + Mhw
(
π(τ), zτ

)]

with

Mhw(π, z) = sup
π ′∈Sδ′

Eπ ′,z
[(

ln(π · eX(h)) + ln e
(
π(h),π ′) + w(π ′, zh)

)]
.

Example 18.19 If U(x) = xγ , then

eγw(π,z) = sup
τ

Eπ,z

[(
π−(τ ) · eX(τ)

)γ
e−λrγ (τ+h)Mr

hw
(
π−(τ ), zτ

)]

with

Mr
hw(π, z) = sup

π ′∈Sδ′
Eπ ′,z

[(
π · eX(h)

)γ
e
(
π(h),π ′)γ

eγw(π ′,zh)
]
,

which modulo small transformations coincide with the Bellman equations consid-
ered in Remark 18.12 and Theorem 18.17. As we pointed out above, these two
examples practically correspond to the only utility functions for which we could
expect to find solutions to (18.90).
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