


 
PREFACE

 Java Coding Interview is here
to help you through the
INTERVIEW process,
teaching you what you need to
know and enabling you to
perform at your very best. I've
coached and interviewed
hundreds of software
engineers. The result is this
book. These interview
questions are real; they are not



pulled out of computer science
textbooks. They reflect what's
truly being asked at the top
companies, so that you can be
as prepared as possible.
Cracking the Coding Interview
makes a lot easier! it gives you
the interview preparation you
need to get the top software
developer jobs. We are also
sharing 20 java interview
Programming questions; these
questions are frequently asked



by the recruiters. 
 
WHAT'S INSIDE?
- Programming Basics
-20 programming interview
questions, ranging from the
basics to the trickiest algorithm
problems.
-Steps required to preparing
for an interview at big
companies like Google, Apple
or Microsoft.
-Skills you must have to



become professional
programmer.
-Important data structures and
algorithms required for the
interview.
-Learn how to become a great
programmer!
-Coding interview tips.
-Programming Quotes!
 



Copyright © 2017 by Mr
Kotiyana
All rights reserved. No part of
this publication may be
reproduced, distributed, or
transmitted in any form or by
any means, including
photocopying, recording, or
other electronic or mechanical
methods, without the prior
written permission of the
publisher, except in the case of
brief quotations embodied in



critical reviews and certain
other noncommercial uses
permitted by copyright law.
 
ISBN:  9781520689197



Table of Contents
1) Introduction Basic 5

1.1 What This Book Is About? 6
1.2 Why Read This Book? 7
1.3 Steps to prepare for a Microsoft,
Amazon, and Google Interview               9
 

2) Programming Basics 12
2.1 What is Programming? 13
2.2 What is Data? 15
2.3 Understanding Variables. 17
2.4 Naming Variables. 18
2.5 Keywords 23
2.6 Tokens 24
2.7 What are Functions? 25
2.8 Logic and Operators 30
2.9 Return Keyword 33



2.10 Class/Static Variables 35
2.11 Arrays 37
2.12 Loops 43
2.13 Thinking in Algorithms. 55
2.14 Statements and Expression. 56
2.15 Learning to copy & paste code. 58
2.16 Understanding floating points. 60

 
3) Interview Questions on Data Structures

61
3.1 Binary Search. 62
3.2 Bubble Sort 69
3.3 Insertion Sort 72
3.4 Merge Sort. 74
3.5 Quick Sort. 78
3.6 Selection Sort 83
3.7 Linked List 86

 



4) 20 Most Asked Programming Questions and
Answers 100
5) Tips and Advice

5.1 Skills self-taught programmers
commonly lack. 145
5.2 Important data structure and algorithms

149
5.3 9 ways to become Great Programmer.

152
5.4 4 Secrets of Great Programmers. 166
5.5 Difference between a programmers, a
good Programmer and a great programmer.
.               168

6) RESUME ADVICE
        6.1 Resume mistakes to avoid 169
7) 4 Reasons why Your Program
Crashes 173
8) 5 Coding Interview Tips! 174
9) Programming Quotes! 182



 

 
 
 
 
 
 
 
 
 

CHAPTER 1 | Introduction



 

What This Book Is About
 
This book was written as an answer for
anyone to pick up a programming
language and be productive. You will be
able to start from scratch without having
any previous exposure to any
programming language. By the end of
this book, you will have the skills to be
a capable programmer, or at least know
what is involved with how to read and
write code. Afterward you should be
armed with the knowledge required to
feel confident in learning more. You



should have general computer skills
before you get started. After this you’ll
know what it takes to at least look at
code without your head spinning.



 

Why Read This Book?
 
You could go online and find videos and
tutorials to learn; however, there is a
distinct disadvantage when it comes to
learning things in order and in one place.
Most YouTube or tutorial websites
either gloss over a topic or dwell at a
turtle’s pace for an hour on a particular
subject. Online content is often brief and
doesn’t go into much depth on any given
topic. It is incomplete or still a work in
progress. You’ll often find yourself



waiting weeks for another video or
tutorial to come out.
Most online tutorials for Java are
scattered, disordered, and incohesive. It
is difficult to find a good starting point
and even more difficult to find a
continuous list of tutorials to bring you
to any clear understanding of the Java
programming language. Just so you
know, you should find the act of learning
exciting. If not, then you’ll have a hard
time continuing through to the end of this
book. To learn any new skill, a lot of
patience is required.
I remember asking an expert programmer
how I’d learn to program. He told me to
write a compiler. At that time, it seemed



rather mean, but now I understand why
he said that. It is like telling someone
who wants to learn how to drive
Formula 1 cars to go compete in a race.
In both cases, the “learn” part was left
out of the process of learning. It is very
difficult to tell someone who wants to
learn to write code where to begin.
However, it all really does start with
your preparedness to learn. Your
motivation must extend beyond the
content of this book. You may also have
some preconceived notions about what a
programming is.
I can’t change that, but you should be
willing to change your thoughts on the
topic if you make discoveries contrary to



your knowledge. Keep an open mind.
Computer artists often believe that
programming is a technical subject that
is incompatible with art. I find the
contrary to be true. Programming is an
art, much as literature and design is an
art. Programming just has a lot of
obscure rules that need to be understood
for anything to work.
 
 
 
 
 
 
 



 
 
 
 
 



 
STEPS TO PREPARE FOR A

MICROSOFT, AMAZON, GOOGLE
OR APPLE INTERVIEW.

 
Software engineer interview at any of
these companies are quite standard and
general, you can expect to have the
similar kind of interviews as other big
companies like Amazon, Facebook etc...
Various skills are evaluated including
general technical skill (data
structure/algorithm), system design,
testing, communication, analysis ability
etc. and since the whole process is quite
standard, certain ways of preparation



can definitely make your life easier.
 
What you need to prepare is case by
case and I'll try to give some general
tips, which you should always try to
adjust to make them work for you.
 
 
STEP 1: DATA STRUCTURE AND
ALGORITHMS PREPARATION

 
I would assume you already finish those
basic courses at school so that you are
not learning everything from scratch.
Then this process may take one to
several months.
 



The reason you should prepare well for
data structure and algorithms first is that
they are really the foundation of most
software engineer interviews. A real
interview question is like asking you to
solve a problem with combination of
skills you learnt from these basic
knowledge, also you should be quite fast
when analyzing time/space complexity,
which is covered in this book as well.
 
 
 
 
STEP 2: BE FAMILIAR WITH GENERAL
CODING QUESTIONS

 



At this step, you should be quite familiar
with basic knowledge and concepts of
computer science, it's better to practice
with some real coding questions. This
may take several months as well
depending on your time and how
familiar you are with data structure and
algorithms.
 
 
The idea of this step is to teach you how
to use what you learnt from those books
to solve a real question and give you
some ideas about what kind of questions
is asked in a general interview. In fact I
don't have much suggestion in this step
instead of delving into those questions



and practice as much as you can.
 
 
STEP 3: SEARCH REAL QUESTIONS
FROM THE COMPANY

 
Suppose you are preparing interviews
for Facebook, then I'd suggest you do
some Google search and it won't be hard
for you to get tons of questions from
Facebook interviews.
 
Since different company has different
styles and focuses, this approach will
help you be more familiar and prepared
for that company's interview. Don't try to
memorize questions and answers as



these companies usually avoid asking
questions leaked on public, so it's quite
unlikely to encounter the same question
again.
 
 
 
 
 
 
 
 STEP 4: KEEP PRACTICING

At this step, I expect you to have maybe
1 month left and you should be equipped
with all you need for an interview
except experiences.



 
Technical interview doesn't only
evaluate your coding ability, but a
variety of skills and abilities like
communication skills, analysis ability
etc.. Also many people will feel nervous
solving a problem when someone is
looking over his shoulder, thus he may
even fail in the simplest questions.
 
I'd suggest you to find a friend who is
also preparing for an interview, you guys
can conduct mock interviews with each
other and try to be familiar with this kind
of intense atmosphere.
 
 



Conclusion:

 
It's highly recommended to make a
preparation timeline and stick to it. Also
spending half hour a day on preparation
won't work normally. There's no better
way than keep practicing and eventually
you're going to crack the interview.
 



 
 

 
 
 
 

 
 
 
 
 

Chapter 2 | Programming
Basics

 
 
 



 
 
 
 
 



 

What Is Programming?
It’s all about writing code. Programming
is a process in which we organize data
and use logic to do something with those
data. The data are everything a computer
can store; they can range from numbers
to zombie characters in a video game.

You do this by writing text into files
called source code. Source code written
into text files replaces punch cards used
by the computing machines half a century
ago.
When data are combined with logic and
then written into a single file, they’re



called a class. Classes are also data, and
as such can be managed with more logic.
 

 
Classes are used to create objects in the
computer’s memory and can be
duplicated to have a life of their own.
Classes are used to build objects. Each
piece of data within the class becomes a
part of that object. Different chunks of
data inside of a class are called class

http://4.bp.blogspot.com/-0LaVc78_c2U/WBNMx1x7OdI/AAAAAAAAGsQ/dlzw-uNb7PEAZFkRM5Rqx4RqLhMVFkyGQCK4B/s1600/class.png


members.
Class members can also be chunks of
logic called functions or methods.
For Example, in a game with a horde of
zombies, each zombie is duplicated or
instanced from a zombie class. Each
zombie has unique values for each
attribute or data element in the class.



This means hit points, and locations are
unique for each duplicate zombie object.
Objects created from a class are called
instances. Similar to families, objects
can inherit properties from one another.
The child sometimes called a subclass
inherits attributes from its parent. For
instance, the child created from a zombie
may inherit the parent’s hunger for
brains.
To be useful, the child zombie can also
add new objects and change the objects
it inherited from its parent class. As a
result, now the child zombie might have



tentacles that the parent didn’t have.
Objects talk to each other through events
and messages.

Shooting at zombies can create an event,
or in programmer terms, it “raises” an
event. The bullet impact event tells the
zombie class to then take necessary steps
when hit by a bullet.
Events command the class to take
actions on its data, which is where
functions come in.
Functions, also known as methods, are
sections of logic that act on data. They
allow your class to create additional
events and talk to yet more objects.
As the player presses the trigger and



moves the joystick around, yet more
events can be raised and messages can
be sent. Events and messages allow the
player to interact with your world; logic
events and objects together build your
game.
 
 
 



What is Data?
 
Data, in a general sense, is sort of like a
noun. Like nouns, data can be a person,
place, or thing. Programmers refer to
these nouns as objects, and these objects
are stored in memory as variables. The
word variable infers something that
might change, but this isn’t always the
case. It’s better to think of a variable as
a space in your computer’s memory to
put information. When you play word
games like MadLibs you might ask for
someone’s name, an object, an adverb,
and a place. Your result could turn out



like “Garth ate a jacket, and studiously
played at the laundry-mat.” In this case
the name, object, adverb, and place are
variable types. The data is the word you
use to assign the variable with.
Programmers use the word type to
denote what kind of data is going to be
stored. Computers aren’t fluent in
English and don’t usually know the
difference between the English types
noun and adjective, but they do know the
difference between letters and a whole
variety of numbers. There are many
predefined types in java or any other
language.
If you add that to the ability to create
new types of data, the kinds of data we



can store is practically unlimited.
The C# built-in types are sometimes
called POD, or plain old data. The term
POD came from the original C++
standard which finds its origin dating
back to 1979. POD types have not
fundamentally changed from their
original implementation.
So far we’ve used the word type several
times. Programmers define the word
type to describe the variety of data to be
stored.



 
Variables are created using declarations.
Declaration is defined as a formal
statement or announcement.
Each set of words a programmer writes
is called a statement. In English we’d
use the word sentence, but programmers
like to use their own vocabulary.
Declaration statements for variables
define both the type and the identifier for
a variable.

public class Example
{
int i;
}



Programmers use a semicolon (;) rather
than a period to end the statement.
Therefore, if you want to sound like a
programmer you can say you can “write
a statement to declare a variable of type
int with the identifier i.” Or if you want
to be overly dramatic you can proclaim
“I declare a new variable of type int to
be known as i!” and so it shall be.
 
 



 

Variables
 

Variables are used to store information
to be referenced and manipulated in a
computer program. They also provide a
way of labeling data with a descriptive
name, so our programs can be
understood more clearly by the reader
and ourselves. It is helpful to think of
variables as containers that hold
information. Their sole purpose is to
label and store data in memory. This
data can then be used throughout your
program.
 



A variable’s name is called an
identifier. For the most part an identifier
is a unique word that a programmer, or
in this case you, picks to name a
variable. An identifier is always
something that a programmer invented to
describe a variable; it’s like naming a
new pet or a baby.
 
Identifiers:
Identifiers, which are considered
symbols or tokens, are words that you
invent which you then assign a meaning.
Identifiers can be as simple as the letter
i or as complex as
@OhHAICanIHasIdentifier01.
identifier is the word that’s used to name
any function, variable, or type of data



you create. When the keyword class is
used it’s followed by another word
called an identifier. After properly
identifying a function, or other chunk of
data, you can now refer to that data by
its identifier. In other words, when you
name some data Charles you access that
data by the name Charles.
 

class MyNewClassImWriting
{
}
 



 

Variable Names
 
 
It’s important to know that variable
identifiers and class identifiers can
be pretty much anything. There are
some rules to naming anything when
programming. Here are some
guidelines to help. Long names are
more prone to typos, so keep
identifiers short. A naming
convention for variables should
consider the following points.
 
The variable name should indicate



what it’s used for, or at least what
you’re going to do with it. This
should be obvious, but a variable
name shouldn’t be misleading. Or
rather, if you’re using a variable
named radius, you shouldn’t be using
it as a character’s velocity. It’s also
helpful if you can pronounce the
variable’s name; otherwise you’re
likely to have issues when trying to
explain your code to another
programmer.
 
int
someLong_complex_hardToRememberVariableName;
 
There is an advantage to keeping
names as short as possible but still



quite clear. Your computer screen,
and most computers for that matter,
can only fit so many characters on a
single line. You could make the font
smaller, but then you run into
readability issues when letters get too
small. Consider the following
function, which requires more than
one variable to work.
 
 
 
 



 
SomeCleverFunction(TopLeftCorner
– SomeThickness +
OffsetFromSomePosition,
BottomRightCorner – SomeThickness
+ OffsetFromSomePosition);
The code above uses many long
variable names. Because of the length
of each variable, the statement takes
up multiple lines making a single
statement harder to read. We could
shorten the variable names, but it’s
easy to shorten them too much.
 
CleverFunc(TL–Thk+Ofst,LR–
Thk+Ofst);
Variable names should be



descriptive, so you know what you’re
going to be using them for: too short
and they might lose their meaning.
 
int a;
While short and easy to remember,
it’s hard for anyone else coming in to
read your code and know what you’re
using the variable a for. This
becomes especially difficult when
working with other programmers.
Variable naming isn’t completely
without rules.
 
int 8;
A variable name can’t be a number.
This is bad; numbers have a special
place in programming as much of it



has other uses for them. IDE will try
to help you spot problems. A squiggly
red line will appear under any
problems it spots. And speaking of
variable names with numbers, you
can use a number as part of a
variable name.
 
 
int varNumber2;
The above name is perfectly valid,
and can be useful, but conversely
consider the following.
 
int 13thInt;
Variable names can’t start with any
numbers. To be perfectly honest, I’m
not sure why this case breaks the



compiler, but it does seem to be
related to why numbers alone can’t
be used as variable names.
 
int $; int this-that; int (^_ )̂;
Most special characters also have
meanings, and are reserved for other
uses. For instance, in JAVA a - is
used for subtracting; in this case
JAVA may think you’re trying to
subtract that from this. Keywords,
you should remember, are also
invalid variable names as they
already have a special meaning for
JAVA. In IDE (integrated
Development Environment), you
might notice that the word this is
highlighted, indicating that it’s a



keyword. Spaces in the middle of a
variable are also invalid.
 
int Spaces are bad;
Most likely, adding characters that
aren’t letters will break the compiler.
Only the underscore and letters can
be used for identifier names. As fun
as it might be to use emoticons for a
variable, it would be quite difficult to
read when in use with the rest of the
code.
 
int ADifferenceInCase; int
adifferenceincase;
The two variables here are actually
different. Case-sensitive languages
like java do pay attention to the case



of a character; this goes for
everything else when calling things
by name. Considering this: A is
different from a.



 
As a programmer, you need to
consider what a variable should be
named. It must be clear to you and
anyone else with whom you’ll be
sharing your work with. You’ll also
be typing your variable name many
times, so they should be short and
easy to remember and type. The last
character we discuss here is the little
strange @ or at. The @ can be used
only if it’s the first character in a
variable’s name.
 
 int @home;
int noone@home;
In the second variable declared here



we’ll get an error. Some of these less
regular characters are easy to spot in
your code. When you have a long list
of variables it’s sometimes best to
make them stand out visually. Some
classically trained programmers like
to use an underscore to indicate a
class scope variable. The underscore
is omitted in variables which exist
only within a function. You would
find the reason for the odd rule
regarding @ when you use int, which
is reserved as a keyword. You’re
allowed to use int @int, after which
you can assign @int any integer
value. However, many programmers
tend to use MyInt, mInt, or _ int
instead of @int based on their



programming upbringing.
 
Good programmers will spend a
great deal of time coming up with
useful names for their variables and
functions. Coming up with short
descriptive names takes some getting
used to, but here are some useful tips.
Variables are often named using
nouns or adjectives as they describe
an attribute related to what they’re
used for.



 
 

 
In the end once you start using the
name of the variable throughout the
rest of your code, it becomes harder
to change it as it will need to be
changed everywhere it’s used. Doing
a global change is called refactoring,
and this happens so often that there is
software available to help you
“refactor” class, variable, and
function names.

 
 
 

NOTE:



 
You may also notice the pattern in which
uppercase and lowercase letters are
used. This is referred to as either
BumpyCase or CamelCase. Sometimes,
the leading letter is lowercase, in which
case it will look like
headlessCamelCase rather than
NormalCamelCase. Many long debates
arise between programmers as to which
is correct, but in the end either one will
do. Because Java is case sensitive, you
and anyone helping you should agree
whether or not to use a leading
uppercase letter. These differences
usually come from where a person
learned how to write software or who
taught that person. The use of intermixed



uppercase and lowercase is a part of
programming style. Style also includes
how white space is used.



 

Keywords
 
Keywords are special words, or
symbols, that tell the compiler to do
specific things. For instance, the
keyword class at the beginning of a line
tells the compiler you are creating a
class. A class declaration is the line of
code that tells the compiler you’re about
to create a new class. The order in
which words appear is important.
English requires sentences and grammar
to properly convey our thoughts to the
reader.
In code, Java or otherwise, programming



requires statements and  syntax to
properly convey instructions to the
computer.
 

class className
{
}

 
Every class needs a name; in the above
example we named our class className,
although we could have easily named the
class Charles. When a new class is
named the name becomes a new
identifier. This also holds true for every
variable’s name, though scope limits
how long and where the variable’s
identifier exists. We’ll learn more about
variables and scope soon. You can’t use



keywords for anything other than what
Java expects them to be used for. There
are exceptions, but in general, keywords
provide you with specific commands.
Altogether in Java there are roughly 80
keywords you should be aware of.
 



 

Tokens
 

In written English the smallest elements
of the language are letters and numbers.
Individually, most letters and numbers
lack specific meaning. The next larger
element after the letter is the word. Each
word has more meaning, but complex
thoughts are difficult to convey in a
single word. To communicate a thought,
we use sentences. The words in a
sentence each have a specific use, as
seen in the diagram below. To convey a
concept we use a collection of sentences
grouped into a paragraph. And to convey



emotion we use a collection of many
paragraphs organized into chapters. To
tell a story we use a book, a collection
of chapters.
 

 
Programming has similar organizational
mechanisms. The smallest meaningful



element is a token, followed by
statements, code blocks, functions,
followed by classes and namespaces and
eventually a program, or in our case a
game. We will begin with the smallest
element and work our way up to writing
our own classes. However, it’s
important to know the very smallest
element to understand how all the parts
fit together before we start writing any
complex code.



 

What Are Functions?
 

Functions, sometimes called methods,
contain statements which can process
data. The statements can or cannot
process data. Methods can be accessed
by other statements. This action is
referred to as calling a function or
making a function call.
Functions may look different in different
programming languages, but the way they
work is mostly the same. The usual
pattern is taking in data and using logic
to manipulate that data. Functions may



also be referred to by other names, for
example, methods. The major
differences come from the different ways
the languages use syntax. Syntax is
basically the use of spaces or tabs,
operators, or keywords.
In the end, all you’re doing is telling the
compiler how to convert your
instructions into computer-interpreted
commands. Variables and functions make
up the bulk of programming. Any bit of
data you want to remember is stored in a
variable. Variables are manipulated by
your functions. In general, when you
group variables and functions together in
one place, you call that a class.
Example:



public void PrintNum ()
{
System.out.println (anotherNum);
}



 
When writing a new function, it’s good
practice to fill in the entirety of the
function’s layout before continuing on to
another task. This puts the compiler at
ease; leaving a function in the form void
MyFunction and then moving on to
another function leaves the compiler
confused as to what you’re planning on
doing. The integrated development
environment, in this case MonoDevelop,
is constantly reading and interpreting
what you are writing, somewhat like a
spell checker in a word processor. When
it comes across a statement that has no
conclusive form, like a variable,



function, or class definition, its
interpretation of the code you’re writing
will raise a warning or an error.
MonoDevelop might seem a bit fussy,
but it’s doing its best to help.
 
Writing a Function:
A function consists of a declaration and
a body. Some programmers like to call
these methods, but semantics aside, a
function is basically a container for a
collection of statements.
Let’s continue with the example:

void MyFunction ()
{
}



Here is a basic function called
MyFunction. We can add in additional
keywords to modify the function’s
visibility. One common modifier we’ll
be seeing is public.



 
public void MyFunction ()
{
}

The public keyword needs to appear
before the return type of the function. In
this case, it’s void, which means that the
function doesn’t return anything. but
functions can act as a value in a few
different ways. For reference, a function
that returns an int would look like this. A
return statement of some kind must
always be present in a function that has a
return type.

public int MyFunction ()



{
return 1;
}

The public modifier isn’t always
necessary, unless you need to make this
function available to other classes. If
this point doesn’t make sense, it will
soon. The last part of the function that is
always required is the parameter list.
It’s valid to leave it empty, but to get a
feeling for what an arg, or argument in
the parameter list, looks like, move on to
the next example.

public void MyFunction (int i)
{
}



 
For the moment, we’ll hold off on using
the parameter list, but it’s important to
know what you’re looking at later on so
it doesn’t come as a surprise. Parameter
lists are used to pass information from
outside of the function to the inside of
the function. This is how classes are
able to send information from one to
another.
Function declaration is similar to class
declaration. Functions are the meat of
where logic is done to handle variables.
Function Scope:
Variables often live an ephemeral life.
Some variables exist only over a few



lines of code. Variables may come into
existence only for the moment a function
starts and then disappear when the
function is done. Variables in the class
scope exist for as long as the class
exists. The life of the variable depends
on where it’s created.
Example:

public class Classscopm{
int ClassInt;

void first()
{

int firsttint;
}
void second()

{
int secondint;



}
}

If we look at the above figure we can
visualize how scope is divided. The
outer box represents who can see
ClassInt. Within the first () function we
have a firsttint that only exists within
the first () function.
 
The same is repeated for the
secondint, found only in the second
() function. This means that first () can
use both ClassInt and firsttint  but not
secondint. Likewise, second () can
see ClassInt and secondint but not



firsttint.



 

Logic and Operators
 
Logic allows you to control what part of
a function is evaluated based on changes
to variables. Using logic, you'll be able
to change which statements in your code
will run. Simply put, everything you
write must cover each situation you plan
to cover. Logic is controlled through a
few simple systems, primarily the if
keyword and variations of if.
Booleans:
In Java booleans, or bools for short, are
either true or false. It’s easiest to think of



these as switches either in on or in off
position. To declare a var as a bool, you
use something like the following.

public class Example
{
public bool SomeBool;
}
 
 

Equality Operators:
Equality operators create boolean
conditions. There are many ways to set a
boolean variable. For instance,
comparisons between values are a useful
means to set variables. The most basic
method to determine equality is using the
following operator: ==. There’s a
difference between use of a single and a



double equals to symbol. = is used to
assign a value whereas == is used to
compare values.
 
When you need to compare two values
you can use the following concept.
You’ll need to remember that these
operators are called equality operators,
if you need to talk to a programmer. The
syntax here may look a bit confusing at
first, but there are ways around that.
 

void Func ()
{ 
SomeBool = (1 == 1);
}

There are other operators to be aware
of. You will be introduced to the other



logical operators later in the chapter. In
this case, we are asking if two number
values are the same.
 
To make this a more clear, we can break
out the code into more lines. Now, we’re
looking at a versus b. Clearly, they don’t
look the same; they are different letters
after all. However, they do contain the
same integer value, and that’s what’s
really being compared here.
 

void Func ()
{
int a = 1;
int b = 1;
SomeBool = (a == b);
}

 



Evaluations have a left and a right side.
The single equal to operator (=)
separates the different sides. The left
side of the = is calculated and looks to
the value to the right to get its
assignment. Because 1 == 1, that is to
say, 1 is equivalent to 1, the final result
of the statement is that SomeBool is true.
 
Relational Operators :

Bool values can also be set by
comparing values. The operators used to
compare two different values are called
relational operators. We use ==, the is
equal symbol, to check if values are the
same; we can also use !=, or not equal,
to check of two variables are different.
This works similarly to the ! in the



previous section. Programmers more
often check if one value is greater or
lesser than another value. They do this
by using >, or greater than, and <, or less
than. We can also use > =, greater or
equal to,
and < =, less than or equal to. Let’s see a
few examples of how this is used.
 
 

public class Test {

 

   public static void main(String args[]) {

      int a = 10;

      int b = 20;

 

      System.out.println("a == b = " + (a ==



b) );

      System.out.println("a != b = " + (a !=
b) );

      System.out.println("a > b = " + (a > b)
);

      System.out.println("a < b = " + (a < b)
);

      System.out.println("b >= a = " + (b >=
a) );

      System.out.println("b <= a = " + (b <=
a) );

   }

}

 

Output:
 



a == b = false
a != b = true
a > b = false
a < b = true
b >= a = true
b <= a = false

 

Return Keyword
 
We need to love the return keyword.
This keyword turns a function into data.
There are a couple of conditions that
need to be met before this will work. So
far, we’ve been using the keyword void
to declare the return type of a function.
This looks like the following code
fragment.
 



void MyFunction()
{
//code here...
}
 
In this case, using return will be pretty
simple.
 
 
void MyFunction()
{
//code here ...
return;
}
 
This function returns void. This
statement has a deeper meaning.
Returning a value makes a lot more



sense when a real value, something other
than a void, is actually returned. Let’s
take a look at a function that has more
meaning. The keyword void at the
beginning of the function declaration
means that this function does not have a
return type. If we change the declaration,
we need to ensure that there is a returned
value that matches the declaration. This
can be as simple as the following code
fragment.
 



 
 
int MyFunction()
{
//code here...
return 1;
//1 is an int
}
 
This function returns int 1.
Declaring a function with a return value
requires that the return type and the
declaration match. When the function is
used, it should be treated like a data type
that matches the function’s return type.
 
 



 
 
 
 
 
 
 
 
 
 



 

Class/Static Variables
 
Class variables also known as static
variables are declared with the static
keyword in a class, but outside a
method, constructor or a block.
There would only be one copy of each
class variable per class, regardless of
how many objects are created from it.
Static variables are rarely used other
than being declared as constants.
Constants are variables that are declared
as public/private, final and static.
Constant variables never change from



their initial value.
Static variables are stored in static
memory. It is rare to use static variables
other than declared final and used as
either public or private constants.
Static variables are created when the
program starts and destroyed when the
program stops.
Visibility is similar to instance
variables. However, most static
variables are declared public since they
must be available for users of the class.
Default values are same as instance
variables.
For numbers, the default value is 0; for
Booleans, it is false; and for
Object references, it is null. Values can
be assigned during the declaration or



within the constructor. Additionally
values can be assigned in special static
initializer blocks.
Static variables can be accessed by
calling with the class name.
ClassName.VariableName.
When declaring class variables as
public static final, then variables names
(constants) are all in upper case. If the
static variables are not public and final
the naming syntax is the same as instance
and local variables.
 



 

Example:
import java.io.*; 
public class Employee{   
// salary  variable is a private static
variable  
private static double salary; 
   // DEPARTMENT is a constant   
public static final String DEPARTMENT
= "Development "; 
   public static void main(String args[])
{      
salary = 1000;     
System.out.println(DEPARTMENT+"average



salary:"+salary);  
}
}
Output:

Development average salary:
1000

 
Note: If the variables are access from
an outside class the constant should be
accessed as Employee.DEPARTMENT
 
 



Arrays
 

Arrays are nicely organized lists of data.
Think of a numbered list that starts at
zero and extends one line every time you
add something to the list. Arrays are
useful for any number of situations
because they’re treated as a single hunk
of data. For instance, if you wanted to
store a bunch of high scores, you’d want
to do that with an array. Initially, you
might want to have a list of 10 items.
You could in theory use the following
code to store each score.
 



int score1;
int score2;
int score3;
int score4;
int score5;
int score6;
int score7;
int score8;
int score9;
int score10;
 
To make matters worse, if you needed to
process each value, you’d need to create
a set of code that deals with each
variable by name. To check if score2 is
higher than score1, you’d need to write a
function specifically to check those two
variables before switching them. Thank



goodness for arrays.
There are two types of array:

Single Dimensional Array
Multidimensional Array



 

Single Dimensional Array in
java:
 
Syntax to Declare an Array in java:

dataType[] arr; (or)  
dataType []arr; (or)  
dataType arr[];  

Instantiation of an Array in java:
arrayRefVar=new datatype[size];  
 
Example of single dimensional java
array:
Let's see the simple example of java
array, where we are going to declare,
instantiate, initialize and traverse an



array.
 
class Testarray{  
public static void main(String args[]){  
int a[]=new int[5];//declaration and instantiation
a[0]=10;//initialization  
a[1]=20;  
a[2]=70;  
a[3]=40;  
a[4]=50;  
//printing array  
for(int i=0;i<a.length;i++)//length is the property of array
System.out.println(a[i]);  
  }}  
 
Output:  10
           20
              70



               40
               50



 

Declaration, Instantiation
and Initialization of Java
Array:
 
We can declare, instantiate and initialize
the java array together by:
 
int a[]=
{33,3,4,5};//declaration, instantiation and initialization
Let's see the simple example to print this
array.
class Testarray1{  
public static void main(String args[]){  
  
int a[]=



{33,3,4,5};//declaration, instantiation and initialization
  
//printing array  
for(int i=0;i<a.length;i++)//length is the property of array
System.out.println(a[i]);  
  
}}  
 
Output: 33
              3
             4
              5
 
 
 
 
 
 
 



 

Passing Array to method in
java:
We can pass the java array to method so
that we can reuse the same logic on any
array.
Let's see the simple example to get
minimum number of an array using
method.
class Testarray2{  
static void min(int arr[]){  
int min=arr[0];  
for(int i=1;i<arr.length;i++)  
 if(min>arr[i])  
  min=arr[i];  
  



System.out.println(min);  
}  
  
public static void main(String args[]){  
  
int a[]={33,3,4,5};  
min(a);//passing array to method  
  
}}  
 
Output: 3
 
 
 
 
 
 



 

Multidimensional array in
java:
In such case, data is stored in row and
column based index (also known as
matrix form).
Syntax to Declare Multidimensional
Array in java:

 
dataType[][] arrayRefVar; (or)  
dataType [][]arrayRefVar; (or)  
dataType arrayRefVar[][]; (or)  
dataType []arrayRefVar[];   

 
Example to instantiate Multidimensional
Array in java:



int[][] arr=new int[3]
[3];//3 row and 3 column  
 
Example to initialize Multidimensional
Array in java
arr[0][0]=1;  
arr[0][1]=2;  
arr[0][2]=3;  
arr[1][0]=4;  
arr[1][1]=5;  
arr[1][2]=6;  
arr[2][0]=7;  
arr[2][1]=8;  
arr[2][2]=9;  
 
 
 



 
 

Example of Multidimensional java
array:
Let's see the simple example to declare,
instantiate, initialize and print the
2Dimensional array.
class Testarray3{  
public static void main(String args[]){  
  
//declaring and initializing 2D array  
int arr[][]={{1,2,3},{2,4,5},{4,4,5}};  
  
//printing 2D array  
for(int i=0;i<3;i++){  
 for(int j=0;j<3;j++){  
   System.out.print(arr[i][j]+" ");  



 }  
 System.out.println();  
}  
  
}}  
 
Output:1 2 3
       2 4 5
       4 4 5
 
 
 
 
 



Loop
 
There may be a situation when you need
to execute a block of code several
number of times. In general, statements
are executed sequentially: The first
statement in a function is executed first,
followed by the second, and so on.
Programming languages provide various
control structures that allow for more
complicated execution paths.
A loop statement allows us to execute a
statement or group of statements
multiple times and following is the
general form of a loop statement in most



of the programming languages −

Java programming language provides the following
types of loop to handle looping requirements.



 

While loop:
If we want to run a specific statement
more than once in a loop, we need
another method. To do this, java comes
with another couple of keywords, while
and for. The while statement is
somewhat easier to use. It needs only
one bool argument to determine if it
should continue to execute. This
statement is somewhat like the if
statement, only that it returns to the top
of the while statement when it’s done
with its evaluations.
 



The syntax of a while loop is :

while(Boolean_expression) {
   // Statements
}
 
Here, statement(s) may be a single
statement or a block of statements.
The condition may be any expression,
and true is any non zero value.
When executing, if
the boolean_expression result is true,
then the actions inside the loop will be
executed. This will continue as long as
the expression result is true.
When the condition becomes false,



program control passes to the line
immediately following the loop.



Flow Diagram:





Here, key point of the while loop is that
the loop might not ever run. When the
expression is tested and the result is
false, the loop body will be skipped and
the first statement after the while loop
will be executed.



Example:
public class Test {

 
   public static void main(String args[])
{
      int x = 10;
 
      while( x < 20 ) {
         System.out.print("value of x : " +
x );
         x++;
         System.out.print("\n");
      }



   }
}
This will produce the following result:



Output:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19



 

For Loop:
To gain a bit more control over the
execution of a loop, we have another
option. The for loop requires three
different statements to operate. The first
statement is called an initialization, the
second is a condition, and the third is an
operation.
Syntax:

for(initialization;
Boolean_expression; update)
{
   // Statements



}
 
Here is the flow of control in a for loop
−

    The initialization step is executed
first, and only once. This step allows
you to declare and initialize any loop
control variables and this step ends
with a semi colon (;).

    Next, the Boolean expression is
evaluated. If it is true, the body of the
loop is executed. If it is false, the
body of the loop will not be executed
and control jumps to the next
statement past the for loop.

    After the body of the for loop gets



executed, the control jumps back up
to the update statement. This
statement allows you to update any
loop control variables. This
statement can be left blank with a
semicolon at the end.

    The Boolean expression is now
evaluated again. If it is true, the loop
executes and the process repeats
(body of loop, then update step, then
Boolean expression). After the
Boolean expression is false, the for
loop terminates.

 



Flow Diagram:





Example:
 

Following is an example code of the for
loop in Java.

public class Test {

 
   public static void main(String args[])
{
 
      for(int x = 10; x < 20; x = x + 1) {
         System.out.print("value of x : " +
x );
         System.out.print("\n");
      }



   }
}
This will produce the following result:



Output:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19



Loop Control Statements:
 

Loop control statements change
execution from its normal sequence.
When execution leaves a scope, all
automatic objects that were created in
that scope are destroyed.
Java supports the following control
statements.

Break Statement
Continue Statement

 
The break statement in Java
programming language has the following
two usages −



    When the break statement is
encountered inside a loop, the loop
is immediately terminated and the
program control resumes at the next
statement following the loop.

    It can be used to terminate a case
in the switch statement (covered in
the next chapter).



 
Syntax
The syntax of a break is a single
statement inside any loop:

break;



Flow Diagram:





Example:
 

public class Test {

 
   public static void main(String args[])
{
      int [] numbers = {10, 20, 30, 40,
50};
 
      for(int x : numbers ) {
         if( x == 30 ) {
            break;
         }
         System.out.print( x );



         System.out.print("\n");
      }
   }
}
 
This will produce the following result:



Output
10
20



 
The continue keyword can be used in
any of the loop control structures. It
causes the loop to immediately jump to
the next iteration of the loop.

    In a for loop, the continue
keyword causes control to
immediately jump to the update
statement.

    In a while loop or do/while loop,
control immediately jumps to the
Boolean expression.



Syntax
The syntax of a continue is a single
statement inside any loop −

continue;



 
Flow Diagram:





Example:
 

public class Test {

 
   public static void main(String args[])
{
      int [] numbers = {10, 20, 30, 40,
50};
 
      for(int x : numbers ) {
         if( x == 30 ) {
            continue;
         }
         System.out.print( x );



         System.out.print("\n");
      }
   }
}
This will produce the following result :



Output
10
20
40
50



Thinking in Algorithms
An algorithm is a detailed step-by-step
instruction set or formula for solving a
problem or completing a task. In
computing, programmers write
algorithms that instruct the computer
how to perform a task.
When you think of an algorithm in the
most general way (not just in regards to
computing), algorithms are everywhere.
A recipe for making food is an
algorithm, the method you use to solve
addition or long division problems is an
algorithm, and the process of folding a
shirt or a pair of pants is an algorithm.
Even your morning routine could be



considered an algorithm! In fact, here’s
what your child’s morning might look
like written out as an algorithm:





 

Statements and Expressions
 
When reading a book or story you
extract meaning from an ordered chain of
words.
In a similar way, computers extract
commands from a chain of ordered
instructions.
In English we call this a sentence;
programmers call this a statement.

A statement is considered to be any
chunk of code which accomplishes some
sort of task separated by a semicolon. At
the center of any given task is the



algorithm, not to be confused with a
logarithm.
An algorithm is a systematic process that
accomplishes something. In many ways
you can think of it as a recipe, or rather a
recipe is an algorithm for making food.
It can take just one or two statements to
accomplish a task, or it could take many
hundreds of statements.



 



 
This all depends on the difficulty of a
given task. Each individual statement is
a step toward a goal. This is the
difference between spending a few
minutes frying an egg, or spending an
hour baking a souffle. Each step is
usually fairly simple; it’s the final result
that matters.
Like sentences, statements have different
forms. Statements can declare and assign
values to variables. These are called
declaration and assignment statements.
These statements are used to set up
various types of data and give them
names.



Expressions:
The subjects of your statements are
called identifiers. An assignment
statement is used to give an identifier a
value. When you read “Jack is a boy and
Jill is a girl,” you’ve mentally assigned
two subjects their genders.
In Java this might look more like:
gender Jack = male;
gender Jill = female;

Assignment statements often incorporate
some sort of operation.
These are called expressive statements.
Different from expressing an emotion,
expressions in code look more like “x +



y.” Expressions process data. After
processing, the result of an expression
can be assigned to a variable.

A collection of statements is called a
code block, not like a roadblock which
might stop your code, but more like a
building block, anything that’s used to
build.
When writing a story, we call a
collection of sentences a paragraph. The
statements in a block of code work with
each other to accomplish a task.



 

Learning To Copy & Paste
 

“A good artist creates, a great artist
steals.” There are code examples for you
to copy and paste into your project. The
content of this book and all
downloadable content are no different.
This means that you’ll have to
understand what the code is doing to
interpret it to fit your needs.
Every programmer does this habitually.

 



It is important to learn how to do this
since it is something that you actually
need to do in many cases not only to
learn but also to get any unfamiliar task
done. Programming is a constant
learning process. It is a language to
command computers.
Anytime you learn a new language, there
will be plenty of words which you’ll
have to look up.
Add to this the fact that every
programmer gets to make up new words,
and you’ve got a language that you’ll
always need a dictionary for.

When some code is shown, you’ll be
expected to copy that code into your



project. With your fingers ready on the
keyboard, you’ll want to get in the habit
of typing.
There is a reason why programmers are
usually fast typists. This is also cause
for programmers to be picky about what
keyboard they prefer. In most cases, the
projects in this book will be in some
state where you can read text that is
already in place.



Most of the projects are in a more
complete state, where you’ll be able to
run them and see an intended result. As a
programmer I’ve gotten used to
searching the Internet for example code.
Once I’ve discovered something that
looks useful, I copy that code and paste
it into a simple test case. After I’ve
wrapped my head around what the code
is doing, I rewrite it in a form that is
more suited for my specific case.
Even if the code involves some fun trick,
I’ll learn from that code.
As I learn new tricks, I grow as a
programmer. The only way to learn new



tricks is to find the necessity to solve a
new problem for which I haven’t already
figured out a solution. Finding solutions
to problems is a fundamental part of
being a programmer.
 
 
 
 



 

Understanding Floating
Points

 
Floating point numbers have been a
focus of computers for many years.
Gaining floating point accuracy was the
goal of many early computer scientists.
Because there are an infinite
possibilities of how many numbers can
follow a decimal point, it’s impossible
to truly represent any fraction
completely using binary computing.
A common example is π, which we call
pi. It’s assumed that there are an endless
number of digits following 3.14. Even



today computers are set loose to
calculate the hundreds of billions of
digits beyond the decimal point.
Computers set aside some of the bits of a
floating point number aside to represent
where the decimal appears in the
number, but even this is limited. The first
bit is usually the sign bit, setting the
negative or positive range of the number.
The following 8 bits is the exponent for
the number called a mantissa. The
remaining bits are the rest of the number
appearing around the decimal point. A
float value can move the decimal 38
digits in either direction, but it’s limited
to the values it’s able to store.
 
Without special considerations,



computers are not able to handle
arbitrarily large numbers. To cast a float
into an int, you need to be more explicit.
That’s why Java requires you to use the
cast and you need to add the (int) in
int Zint = (int)Zmove;.
The (int) is a cast operator; or rather
(type) acts as a converter from the type
on the right to the type needed on the left.



 
 
 
 
 
 
 
 
 

Chapter 3 | Data Structures &
Interview Questions



 

Sorting and Searching



Binary Search
Binary search is one of the fundamental
algorithms in computer science. In order
to explore it, we’ll first build up a
theoretical backbone, then use that to
implement the algorithm properly and
avoid those nasty off-by-one errors
everyone’s been talking about.
Finding a value in a sorted sequence
In its simplest form, binary search is
used to quickly find a value in a sorted
sequence (consider a sequence an
ordinary array for now). We’ll call the
sought value the target value for clarity.
Binary search maintains a contiguous
subsequence of the starting sequence



where the target value is surely located.
This is called the search space. The
search space is initially the entire
sequence. At each step, the algorithm
compares the median value in the search
space to the target value. Based on the
comparison and because the sequence is
sorted, it can then eliminate half of the
search space. By doing this repeatedly, it
will eventually be left with a search
space consisting of a single element, the
target value.
For example, consider the following
sequence of integers sorted in ascending
order and say we are looking for the
number 55:

0 5 13 19 22 41 55 68 72



 
We are interested in the location of the
target value in the sequence so we will
represent the search space as indices
into the sequence. Initially, the search
space contains indices 1 through 11.
Since the search space is really an
interval, it suffices to store just two
numbers, the low and high indices. As
described above, we now choose the
median value, which is



the value at index 6 (the midpoint
between 1 and 11): this value is 41 and
it is smaller than the target value. From
this we conclude not only that the
element at index 6 is not the target value,
but also that no element at indices
between 1 and 5 can be the target  value,
because all elements at these indices are
smaller than 41, which is smaller than
the target value. This brings the search
space down to indices 7 through 11:

55 68 72 81 98
Proceeding in a similar fashion, we chop
off the second half of the search space
and are left with:

55 68



Depending on how we choose the
median of an even number of elements
we will either find 55 in the next step or
chop off 68 to get a search space of only
one element. Either way, we conclude
that the index where the target value is
located is 7.
If the target value was not present in the
sequence, binary search would empty the
search space entirely. This condition is
easy to check and handle. Here is some
code to go with the description:

binary_search(A, target):

   lo = 1, hi = size(A)

   while lo <= hi:

      mid = lo + (hi-lo)/2



      if A[mid] == target:

         return mid           

      else if A[mid] < target:

         lo = mid+1

      else:

         hi = mid-1

 

   // target was not found

 
 
Complexity: 
Since each comparison binary search
uses halves the search space, we can
assert and easily prove that binary



search will never use more than (in big-
oh notation) O(log N) comparisons to
find the target value.
The logarithm is an awfully slowly
growing function. In case you’re not
aware of just how efficient binary search
is, consider looking up a name in a
phone book containing a million names.
Binary search lets you systematically
find any given name using at most 21
comparisons. If you could manage a list
containing all the people in the world
sorted by name, you could find any
person in less than 35 steps. 
 

 

 

 



 

 

 



 

Program: Java implementation
of recursive Binary Search

 

class BinarySearch
{
    // Returns index of x if it is present in
arr[l..r], else
    // return -1
    int binarySearch(int arr[], int l, int r,
int x)
    {
        if (r>=l)
        {
            int mid = l + (r - l)/2;
 
            // If the element is present at the



middle itself
            if (arr[mid] == x)
               return mid;
 
            // If element is smaller than mid,
then it can only
            // be present in left subarray
            if (arr[mid] > x)
               return binarySearch(arr, l, mid-
1, x);
 
            // Else the element can only be
present in right
            // subarray
            return binarySearch(arr, mid+1,
r, x);
        }
 



        // We reach here when element is
not present in array
        return -1;
    }
 
 
 



 
 
    public static void main(String args[])
    {
        BinarySearch ob = new
BinarySearch();
        int arr[] = {2,3,4,10,40};
        int n = arr.length;
        int x = 10;
        int result =
ob.binarySearch(arr,0,n-1,x);
        if (result == -1)
            System.out.println("Element not
present");
        else
            System.out.println("Element
found at index "+result);



    }
}

 
 

Output:
 

Element is present at index 3
 
 
 



 

Program:
Iterative implementation of
Binary Search

 
class BinarySearch
{
    // Returns index of x if it is present in
arr[], else
    // return -1
    int binarySearch(int arr[], int x)
    {
        int l = 0, r = arr.length - 1;
        while (l <= r)
        {



            int m = l + (r-l)/2;
 
            // Check if x is present at mid
            if (arr[m] == x)
                return m;
 
            // If x greater, ignore left half
            if (arr[m] < x)
                l = m + 1;
 
            // If x is smaller, ignore right half
            else
                r = m - 1;
        }
 
        // if we reach here, then element
was not present
        return -1;



    }
 



 
    public static void main(String args[])
    {
        BinarySearch ob = new
BinarySearch();
        int arr[] = {2, 3, 4, 10, 40};
        int n = arr.length;
        int x = 10;
        int result = ob.binarySearch(arr, x);
        if (result == -1)
            System.out.println("Element not
present");
        else
            System.out.println("Element
found at index "+result);
    }
}



 
 

Output:
 
Element is present at index 3
 
 



 

Bubble Sort
 
Bubble sort algorithm is known as the
simplest sorting algorithm.
In bubble sort algorithm, array is
traversed from first element to last
element. Here, current element is
compared with the next element. If
current element is greater than the next
element, it is swapped.



Algorithm:
We assume list is an array
of n elements. We further assume
that swap function swaps the values of
the given array elements.

begin BubbleSort(list)

 
   for all elements of list
      if list[i] > list[i+1]
         swap(list[i], list[i+1])
      end if
   end for
 
   return list



 
end BubbleSort



 
Program: Bubble sort program in java
 
 
public class BubbleSortExample {  
    static void bubbleSort(int[] arr) {  
       int n = arr.length;  
        int temp = 0;  
         for(int i=0; i < n; i++){  
                 for(int j=1; j < (n-i); j++){  
                          if(arr[j-1] > arr[j]){  
                                 //swap elements  
                                 temp = arr[j-1];  
                                 arr[j-1] = arr[j];  
                                 arr[j] = temp;  
                         }  
                          



                 }  
         }  
  
    }  
 
 
 
 
    public static void main(String[] args) {  
                int arr[] =
{3,60,35,2,45,320,5};  
                 
               System.out.println("Array Before Bubble Sort"
                for(int i=0; i < arr.length; i++)
{  
                        System.out.print(arr[i] + " "
                }  
                System.out.println();  



                  
                bubbleSort(arr);//sorting array elements using bubble sort
                 
                System.out.println("Array After Bubble Sort"
                for(int i=0; i < arr.length; i++)
{  
                        System.out.print(arr[i] + " "
                }  
   
        }  

}  
Output:
Array Before Bubble Sort
3 60 35 2 45 320 5
Array After Bubble Sort
2 3 5 35 45 60 320
 



 



Insertion sort
 
 
Insertion sort is a simple sorting
algorithm that works the way we sort
playing cards in our hands.
 
Algorithm

Step 1 − If it is the first element, it is
already sorted. return 1;
Step 2 − Pick next element
Step 3 − Compare with all elements in
the sorted sub-list
Step 4 − Shift all the elements in the
sorted sub-list that is greater than the



         value to be sorted
Step 5 − Insert the value
Step 6 − Repeat until list is sorted

 
 
Program: Java program for
implementation of Insertion
Sort
 
class InsertionSort
{
    /*Function to sort array using
insertion sort*/
    void sort(int arr[])
    {
        int n = arr.length;
        for (int i=1; i<n; ++i)



        {
            int key = arr[i];
            int j = i-1;
            /* Move elements of arr[0..i-1],
that are



 
               greater than key, to one
position ahead
               of their current position */
 
while (j>=0 && arr[j] > key)
            {
                arr[j+1] = arr[j];
                j = j-1;
            }
            arr[j+1] = key;
        }
    }
    /* A utility function to print array of
size n*/
    static void printArray(int arr[])
    {



        int n = arr.length;
        for (int i=0; i<n; ++i)
            System.out.print(arr[i] + " ");
 
        System.out.println();
    }
 
    public static void main(String args[])
    {       
        int arr[] = {12, 11, 13, 5, 6};
        InsertionSort ob = new
InsertionSort();       
        ob.sort(arr);
        printArray(arr);
    }
}
Output:



5 6 11 12 13



Mergesort
The Mergesort algorithm can be used to
sort a collection of objects. Mergesort is
a so called divide and conquer
algorithm. Divide and
conquer algorithms divide the original
data into smaller sets of data to solve the
problem.

Algorithm:
Step 1 − if it is only one element in the
list it is already sorted, return.
Step 2 − divide the list recursively
into two halves until it can no more be
divided.
Step 3 − merge the smaller lists into



new list in sorted order.

 
 

Program: Java program for
Merge Sort
 
class MergeSort
{
    // Merges two subarrays of arr[].
    // First subarray is arr[l..m]
    // Second subarray is arr[m+1..r]
    void merge(int arr[], int l, int m, int r)
    {
        // Find sizes of two subarrays to be
merged
        int n1 = m - l + 1;
        int n2 = r - m;



 
        /* Create temp arrays */
        int L[] = new int [n1];
        int R[] = new int [n2];



 
 
        /*Copy data to temp arrays*/
        for (int i=0; i<n1; ++i)
            L[i] = arr[l + i];
        for (int j=0; j<n2; ++j)
            R[j] = arr[m + 1+ j];
 
 
 
        /* Merge the temp arrays */
 
        // Initial indexes of first and second
subarrays
        int i = 0, j = 0;
 
        // Initial index of merged subarry



array
        int k = l;
        while (i < n1 && j < n2)
        {
            if (L[i] <= R[j])
            {
                arr[k] = L[i];
                i++;
            }
            else
            {
                arr[k] = R[j];
                j++;
            }
            k++;
        }
 
        /* Copy remaining elements of L[]



if any */
        while (i < n1)
        {
            arr[k] = L[i];
            i++;
            k++;
        }
 
        /* Copy remaining elements of L[]
if any */
        while (j < n2)
        {
            arr[k] = R[j];
            j++;
            k++;
        }
    }
 



    // Main function that sorts arr[l..r]
using
    // merge()
    void sort(int arr[], int l, int r)
    {
        if (l < r)
        {
            // Find the middle point
            int m = (l+r)/2;
 
            // Sort first and second halves
            sort(arr, l, m);
            sort(arr , m+1, r);
 
            // Merge the sorted halves
            merge(arr, l, m, r);
        }
    }



 



 
    /* A utility function to print array of
size n */
    static void printArray(int arr[])
    {
        int n = arr.length;
        for (int i=0; i<n; ++i)
            System.out.print(arr[i] + " ");
        System.out.println();
    }
 
    public static void main(String args[])
    {
        int arr[] = {12, 11, 13, 5, 6, 7};
 
        System.out.println("Given Array");
        printArray(arr);



 
        MergeSort ob = new MergeSort();
        ob.sort(arr, 0, arr.length-1);
 
        System.out.println("\nSorted
array");
        printArray(arr);
    }
}
 
Output:
Given array is
12 11 13 5 6 7
 
Sorted array is
5 6 7 11 12 13



Quicksort
 
Sort algorithms order the elements of an
array according to a predefined order.
Quicksort is a divide and conquer
algorithm. In a divide and conquer sorting
algorithm the original data is separated
into two parts "divide" which are
individually sorted and "conquered" and
then combined

Algorithm:
If the array contains only one element or
zero elements than the array is sorted.
If the array contains more than one
element than:



Select an element from the array. This
element is called the "pivot element".
For example select the element in the
middle of the array.
All elements which are smaller then
the pivot element are placed in one
array and all elements which are larger
are placed in another array.
Sort both arrays by recursively
applying Quicksort to them.
Combine the arrays.

Quicksort can be implemented to sort
"in-place". This means that the sorting
takes place in the array and that no
additional array needs to be created.
 



 

Program: Java program for
implementation of QuickSort
 
class QuickSort
{
    /* This function takes last element as
pivot,
       places the pivot element at its
correct
       position in sorted array, and places
all
       smaller (smaller than pivot) to left
of



       pivot and all greater elements to
right
       of pivot */
    int partition(int arr[], int low, int high)
    {
        int pivot = arr[high];
        int i = (low-1); // index of smaller
element
        for (int j=low; j<=high-1; j++)
        {
            // If current element is smaller
than or
            // equal to pivot
            if (arr[j] <= pivot)
            {



                i++;
                // swap arr[i] and arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
        // swap arr[i+1] and arr[high] (or
pivot)
        int temp = arr[i+1];
        arr[i+1] = arr[high];
        arr[high] = temp;
 
        return i+1;
    }



    /* The main function that implements
QuickSort()
      arr[] --> Array to be sorted,
      low  --> Starting index,
      high  --> Ending index
*/
    void sort(int arr[], int low, int high)
    {
        if (low < high)
        {
            /* pi is partitioning index, arr[pi]
is
              now at right place */
            int pi = partition(arr, low, high);
 



            // Recursively sort elements
before
            // partition and after partition
            sort(arr, low, pi-1);
            sort(arr, pi+1, high);
        }
    }
 
    /* A utility function to print array of
size n */
    static void printArray(int arr[])
    {
        int n = arr.length;
        for (int i=0; i<n; ++i)
            System.out.print(arr[i]+" ");



        System.out.println();
    }
    public static void main(String args[])
    {
        int arr[] = {10, 7, 8, 9, 1, 5};
        int n = arr.length;
 
        QuickSort ob = new QuickSort();
        ob.sort(arr, 0, n-1);
 
        System.out.println("sorted array");
        printArray(arr);
    }
}
Output:



Sorted array:
1 5 7 8 9 10



 

Selection sort
 

Selection sort is a simple sorting
algorithm. This sorting algorithm is an
in-place comparison-based algorithm in
which the list is divided into two parts,
the sorted part at the left end and the
unsorted part at the right end. Initially,
the sorted part is empty and the unsorted
part is the entire list.
The smallest element is selected from
the unsorted array and swapped with the
leftmost element, and that element
becomes a part of the sorted array. This



process continues moving unsorted
array boundary by one element to the
right.
This algorithm is not suitable for large
data sets as its average and worst case
complexities are of Ο(n2), where n is
the number of items.
 
Algorithm:
Step 1 − Set MIN to location 0
Step 2 − Search the minimum element
in the list
Step 3 − Swap with value at location
MIN
Step 4 − Increment MIN to point to
next element
Step 5 − Repeat until list is sorted



 
 
 
 
 



 
Program: Selection Sort in
Java
 
 
public class SelectionSortExample {  
    public static void selectionSort(int[] arr)
{  
        for (int i = 0; i < arr.length - 1; i++)  
        {  
            int index = i;  
            for (int j = i + 1; j < arr.length; j++)
{  
                if (arr[j] < arr[index]){  
                    index = j;//searching for lowest index



                }  
            }  
            int smallerNumber = arr[index];   
            arr[index] = arr[i];  
            arr[i] = smallerNumber;  
        }  
    }  
       
    public static void main(String a[]){  
        int[] arr1 = {9,14,3,2,43,11,58,22};  
        System.out.println("Before Selection Sort"
        for(int i:arr1){  
            System.out.print(i+" ");  
        }  
        System.out.println();  
          
        selectionSort(arr1);//sorting array using selection sort
         



        System.out.println("After Selection Sort"
        for(int i:arr1){  
            System.out.print(i+" ");  
        }  
    }  
}  
 

Output:
Before Selection Sort
9 14 3 2 43 11 58 22
After Selection Sort
2 3 9 11 14 22 43 58
 
 



 

Linked List
 

A linked list is a sequence of data
structures, which are connected together
via links.
Linked List is a sequence of links which
contains items. Each link contains a
connection to another link. Linked list is
the second most-used data structure
after array. Following are the important
terms to understand the concept of
Linked List.

    Link − Each link of a linked list
can store a data called an element.



    Next − Each link of a linked list
contains a link to the next link called
Next.

    LinkedList − A Linked List
contains the connection link to the
first link called First.



 
Linked List Representation
Linked list can be visualized as a chain
of nodes, where every node points to the
next node.



 

As per the above illustration, following
are the important points to be
considered.
 

    Linked List contains a link
element called first.

    Each link carries a data field(s)
and a link field called next.

    Each link is linked with its next
link using its next link.

    Last link carries a link as null to
mark the end of the list.



 
Types of Linked List:
Following are the various types of
linked list.

    Simple Linked List − Item
navigation is forward only.

    Doubly Linked List − Items can
be navigated forward and backward.

    Circular Linked List − Last item
contains link of the first element as
next and the first element has a link
to the last element as previous.



Basic Operations:
Following are the basic operations
supported by a list.

    Insertion − Adds an element at
the beginning of the list.

    Deletion − Deletes an element at
the beginning of the list.

    Display − Displays the complete
list.

    Search − Searches an element
using the given key.

    Delete − Deletes an element
using the given key.



Insertion Operation:
Adding a new node in linked list is a
more than one step activity. We shall
learn this with diagrams here. First,
create a node using the same structure
and find the location where it has to be
inserted.

Imagine that we are inserting a
node B (NewNode),
between A (LeftNode)



and C (RightNode). Then point B.next to
C −
NewNode.next −> RightNode;
It should look like this −

Now, the next node at the left should
point to the new node.

LeftNode.next −> NewNode;
 



 

This will put the new node in the middle
of the two. The new list should look like
this −



Similar steps should be taken if the node
is being inserted at the beginning of the
list. While inserting it at the end, the
second last node of the list should point
to the new node and the new node will
point to NULL.



Deletion Operation:
Deletion is also a more than one step
process. We shall learn with pictorial
representation. First, locate the target
node to be removed, by using searching
algorithms.

The left (previous) node of the target
node now should point to the next node
of the target node –



 

LeftNode.next −> TargetNode.next;

This will remove the link that was
pointing to the target node. Now, using
the following code, we will remove
what the target node is pointing at.

TargetNode.next −> NULL;



We need to use the deleted node. We can
keep that in memory otherwise we can
simply deallocate memory and wipe off
the target node completely.



Reverse Operation:
This operation is a thorough one. We
need to make the last node to be pointed
by the head node and reverse the whole
linked list.

First, we traverse to the end of the list.
It should be pointing to NULL. Now, we
shall make it point to its previous node
−



We have to make sure that the last node
is not the lost node. So we'll have some
temp node, which looks like the head
node pointing to the last node. Now, we
shall make all left side nodes point to
their previous nodes one by one.

Except the node (first node) pointed by
the head node, all nodes should point to



their predecessor, making them their
new successor. The first node will point
to NULL.



 

We'll make the head node point to the
new first node by using the temp node.

The linked list is now reversed
 



Program: Given a linked list
which is sorted, how will you
insert in sorted way?
 
Algorithm: 
Let input linked list is sorted in
increasing order.

1) If Linked list is empty then make
the node as head and return it.
2) If value of the node to be inserted
is smaller than value of head node
    then insert the node at start and
make it head.
3) In a loop, find the appropriate
node after which the input node (let



9) is
    to be inserted. To find the
appropriate node start from head,
keep moving
    until you reach a node GN (10 in
the below diagram) who's value is
    greater than the input node. The
node just before GN is the
appropriate
    node (7).
4) Insert the node (9) after the
appropriate node (7) found in step 3.

 
Initial Linked List



 
 
Linked List after insertion of 9

 
 
 



 

class LinkedList
{
    Node head;  // head of list
 
    /* Linked list Node*/
    class Node
    {
        int data;
        Node next;
        Node(int d) {data = d; next = null;
}
    }
 
    /* function to insert a new_node in a
list. */
    void sortedInsert(Node new_node)



    {
         Node current;
 
         /* Special case for head node */
         if (head == null || head.data >=
new_node.data)
         {
            new_node.next = head;
            head = new_node;
         }
         else {
 
            /* Locate the node before point
of insertion. */
            current = head;
 
            while (current.next != null &&
                   current.next.data <



new_node.data)
                  current = current.next;
 
            new_node.next = current.next;



 
            current.next = new_node;
         }
     }
 
                  /*Utility functions*/
 
    /* Function to create a node */
    Node newNode(int data)
    {
       Node x = new Node(data);
       return x;
    }
 
     /* Function to print linked list */
     void printList()
     {



         Node temp = head;
         while (temp != null)
         {
            System.out.print(temp.data+" ");
            temp = temp.next;
         }
     }
 
     /* Drier function to test above
methods */
     public static void main(String args[])
     {
         LinkedList llist = new
LinkedList();
         Node new_node;
         new_node = llist.newNode(5);
         llist.sortedInsert(new_node);
         new_node = llist.newNode(10);



         llist.sortedInsert(new_node);
         new_node = llist.newNode(7);
         llist.sortedInsert(new_node);
         new_node = llist.newNode(3);
         llist.sortedInsert(new_node);
         new_node = llist.newNode(1);
         llist.sortedInsert(new_node);
         new_node = llist.newNode(9);
         llist.sortedInsert(new_node);
         System.out.println("Created Linked
List");
         llist.printList();
     }
}
 

 
Output:



Created Linked List
1 3 5 7 9 10

 
 
 
 
 
 
 



Program: Delete a given node in Linked
List under given constraints
 
Given a Singly Linked List, write a
function to delete a given node. Your
function must follow following
constraints:
1) It must accept pointer to the start node
as first parameter and node to be deleted
as second parameter i.e., pointer to head
node is not global.
2) It should not return pointer to the head
node.
3) It should not accept pointer to pointer
to head node.
 
You may assume that the Linked List
never becomes empty.



Let the function name be deleteNode().
In a straightforward implementation, the
function needs to modify head pointer
when the node to be deleted is first
node.
 
class LinkedList {
 
    static Node head;
 
    static class Node {
 
        int data;
        Node next;
 
        Node(int d) {
            data = d;
            next = null;
        }



    }
 
    void deleteNode(Node node, Node n)
{
         
        // When node to be deleted is head
node
        if (node == n) {
            if (node.next == null) {
                System.out.println("There is
only one node. The list "
                                 + "can't be made
empty ");
                return;
            }
 
            /* Copy the data of next node to
head */



            node.data = node.next.data;
 
            // store address of next node
            n = node.next;
 
            // Remove the link of next node
            node.next = node.next.next;
 
            // free memory
            System.gc();
 
            return;
        }
 
        // When not first node, follow the
normal deletion process
        // find the previous node
        Node prev = node;



        while (prev.next != null &&
prev.next != n) {
            prev = prev.next;
        }
 
        // Check if node really exists in
Linked List
        if (prev.next == null) {
            System.out.println("Given node
is not present in Linked List");
            return;
        }
 
        // Remove node from Linked List
        prev.next = prev.next.next;
 
        // Free memory
        System.gc();



 
        return;
    }
 
    /* Utility function to print a linked list
*/
    void printList(Node head) {
        while (head != null) {
            System.out.print(head.data + " ");
            head = head.next;
        }
        System.out.println("");
    }
 
    public static void main(String[] args)
{
        LinkedList list = new LinkedList();
        list.head = new Node(12);



        list.head.next = new Node(15);
        list.head.next.next = new Node(10);
        list.head.next.next.next = new
Node(11);
        list.head.next.next.next.next = new
Node(5);
        list.head.next.next.next.next.next =
new Node(6);
        list.head.next.next.next.next.next.next
= new Node(2);
        list.head.next.next.next.next.next.next.next
= new Node(3);
 
        System.out.println("Given Linked
List :");
        list.printList(head);
        System.out.println("");
         



 
        // Let us delete the node with value
10
        System.out.println("Deleting node
:" + head.next.next.data);
        list.deleteNode(head,
head.next.next);
 
        System.out.println("Modified
Linked list :");
        list.printList(head);
        System.out.println("");
 
        // Lets delete the first node
        System.out.println("Deleting first
Node");
        list.deleteNode(head, head);



        System.out.println("Modified
Linked List");
        list.printList(head);
 
    }
}
 
Output:

Given Linked List: 12 15 10
11 5 6 2 3
 
Deleting node 10:
Modified Linked List: 12 15
11 5 6 2 3



 
Deleting first node
Modified Linked List: 15 11
5 6 2 3



 
 
 

 
 
 

Chapter 4 | Basic
Programming Interview

Questions



 
 

 
Q.1) PROGRAM TO CHECK

UNIQUE NUMBER IN JAVA
 
 

import
java.util.*;                                
import java.io.*;
 
  public class IsUnique
{
 
public static boolean
isUniqueUsingHash(String word)
{
char[] chars = word.toCharArray();



 
Set<Character> set = new
HashSet<Character>();
for (char c : chars)
 
if (set.contains(c))
return false;
else
set.add(c);
return true;
}
 
public static boolean
isUniqueUsingSort(String word)

{
char[] chars = word.toCharArray();

 
if (chars.length <= 1)



return true;
Arrays.sort(chars);

 
 
char temp = chars[0];
 
for (int i = 1; i < chars.length; i++)
{
if (chars[i] == temp)
return false;
temp = chars[i];
}
 
return true;
 
}

 
public static void main(String[] args)



throws IOException
{
System.out.println(isUniqueUsingHash("Word")
? "Unique" : "Not Unique");
System.out.println(isUniqueUsingSort("Nootunique")
? "Unique" : "Not Unique");
 
}
}

 
Output:
 



Q.2) PROGRAM TO FIND
PERMUTATION OF A STRING

 
 
                          import java.util.*;
                import java.io.*;
 
           public class CheckPermutations
                {
 

         public static boolean
isPermutation(String s1,
String s2)
              {
            char[] a =
s1.toCharArray();

 



         
char[]

b =
s2.toCharArray();
                                                                                                                                
Arrays.sort(a);
Arrays.sort(b);
         if
(a.length !=
b.length)
         return
false;
        for (int
i = 0; i <
a.length;
i++)
        {



 
     if (a[i] != b[i]) return false;

 
         }

 
         return true;

 
           }
 

 
 

public static void main(String[]
args)

{
System.out.println(isPermutation("abc",

"cba") ? "It is a permutation" :
"It is not a permutation");

 



System.out.println(isPermutation("test",
"estt") ? "It is a permutation" : "It is
not a permutation");

 
System.out.println(isPermutation("testt",
"estt") ? "It is a permutation" : "It is
not a  permutation");

 
}

 
  }
 
 
 

Output:
 





Q.3) PROGRAM TO PUT HTML
LINKS AROUND
URLS STRINGS

 
import java.util.*;

        import java.io.*;
 
  public class URLify
   {
public static char[] URLify(char[]
chars, int len)
{
  int spaces = countSpaces(chars,
len);
 
int end = len - 1 + spaces *2;
for (int i = len - 1; i >= 0; i-)



{
if (chars[i] == ' ')
{
 
chars[end - 2] ='%';
chars[end - 1] ='2';
chars[end] = '0';
end -= 3;
 
}
else
{
chars[end] =chars[i]; end--;
}
 
}
return chars;
}



 
 
 
 
 

static int countSpaces(char[] chars,
int len)
{
int count = 0;
 
for (int i = 0; i < len;i++)
if (chars[i] == ' ') count++;
 
return count;
 
}
 



public static void main(String[] args)
throws IOException
{
   char[] chars = "Mr John Smith
".toCharArray();
System.out.println(URLify(chars,
13));
 
}

 
}

 
 
 

Output:
 



 



 
Q.4) PROGRAM TO CHECK

PALINDROME PERMUTATIONS
OF A STRING

 
 

import java.util.*;
 
 
  public class PalindromePermutation
{
 
public static boolean
permuteHash(String str)
{



Map<Character, Integer> map = new
HashMap<Character, Integer>();
for (int i = 0; i < str.length(); i++) {
 
Character c =
Character.toLowerCase(str.charAt(i));
 
if (!Character.isLetter(c))
continue;
 
if (map.containsKey(c)) 
map.put(c, map.get(c) + 1);
else
map.put(c, 1);
}
 
int odd = 0;
 



for (Character key : map.keySet())
if (map.get(key) % 2 != 0)
odd++;

 
 

 
if (odd > 1)
return false;
else
return true;
}
public static void main(String[] args)
{
System.out.println(permuteHash("Tact
Coa") ? "True" : "False");
System.out.println(permuteHash("test")



? "True" : "False");
  }

 
 
 

Output:
 

 
 



 
Q.5) PROGRAM TO COMPRESS

STRING
 
 

 
public class
StringCompression
{
public String
compress(String input)
{
char[] cs =
input.toCharArray();



char temp = cs[0];
int i = 0, j = 0, count = 0,
len = cs.length;
while(j < len)
{
cs[i++] = temp;
while (j < len && temp ==
cs[j])
{
j++;
count++;
}
if(j < len)



temp = cs[j++];
cs[i++] =
String.valueOf(count).charAt(0);
count = 1;
}
return new String(cs, 0, i);
}
 
 
 
 
 
 



 
 
public static void
main(String[] args)
{
 
StringCompression
compression = new
StringCompression();
System.out.println(compression.compress("aabbbccc"));
}
}

 
Output:



 



Q.6) PROGRAM TO ROTATE
MATRIX

 
 
 

   import java.util.*;
 
 
   public class RotateMatrix {
 
public static void rotate(int[][]
matrix)
{
int n = matrix.length;
 
for (int layer = 0; layer < n / 2;
layer++)



{
int first = layer;
int last = n - 1 - layer;
for (int i = first; i < last; i++)
{
int offset = i - first;
int top = matrix[first][i];
 
// left -> top
 
matrix[first][i] = matrix[last-offset]
[first];
// bottom -> left
matrix[last-offset][first] =
matrix[last][last-offset];
// right -> bottom matrix[last][last-
offset] = matrix[i][last];
// top -> right matrix[i][last] = top;



}
 

}
 
}

 
 
 

 
 

 
public static void main(String[] args)
{
int[][] arr = new int[][]
{
 
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10},
{11, 12, 13, 14, 15},



{16, 17, 18, 19, 20},
{21, 22, 23, 24, 25}
 
};

 
rotate(arr);
 
for (int[] a : arr)
System.out.println(Arrays.toString();
 
   }

 
Output:

 





 
     Q.7) PROGRAM TO CONVERT

ALL 1 INTO ZERO
MATRIX.

 
import java.util.*;
 
  public class ZeroMatrix {
 
public static void zero(int[][] matrix)
{
int m = matrix.length;
 
int n = matrix[0].length;
boolean[] row = new boolean[m];
boolean[] col = new boolean[n];



 
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
row[i] = true;
col[j] = true;
}
}
}

 
for (int i = 0; i < m; i++) {
  for (int j = 0; j < n; j++) {
if (row[i] == true || col[j] == true)
matrix[i][j] = 0;
}
}
return;

 



}
 
 
 
 

public static void main(String[] args)
{
int[][] matrix = new int[][]
{
{0, 1, 1, 1, 0},
{1, 0, 1, 0, 1},
{1, 1, 1, 1, 1},
{1, 0, 1, 1, 1},
{1, 1, 1, 1, 1}
};
 
for (int i = 0; i < matrix.length; i++)
System.out.println(Arrays.toString(matrix[i]));



zero(matrix);
System.out.println();
 
for (int i = 0; i < matrix.length; i++)
System.out.println(Arrays.toString(matrix[i]));
}
}

 
 

  Output:
 



Q.8) PROGRAM TO ROTATE A
STRING.

 
 

import java.util.*;
 
  public class StringRotation {
 
public static boolean
isRotation(String s1, String s2)
{
if (s1.length() != s2.length())
return false;
String s3 = s1 + s1;
return s3.contains(s2);
 
}
 



public static void main(String[] args)
{

         
System.out.println(isRotation("waterbottle",
"erbottlewat") ? "True" :

"False");
System.out.println(isRotation("waterbottl",
"erbottlewat") ? "True" : "False");
System.out.println(isRotation("pandeesh",
"deeshpand") ? "True" : "False");
}
 
 
Output:
 





Q.9) PROGRAM TO ADD TWO
NUMBERS WITHOUT USING

PLUS ('+') SIGN
 
 
public class AddWithoutPlus
{
public static int add(int a, int b)
{
if (b > a)
{
int temp = b;
b = a;
a = temp;
}
 
int carry = 0;



while (b != 0)
{
carry = a & b;
a = a  ̂b;
b = carry << 1;
}
return a;
 
}
 
public static int recursiveAdd(int a,
int b)
{
if (b == 0)
 
return a;
else
 



return recursiveAdd(a  ̂b, (a & b) <<
1);
}
 

 
 
public static void main(String[] args)
{
int a = 12;
 
int b = 34;
System.out.println(add(a, b));
 
System.out.println(recursiveAdd(b,
a));
 
}
 



 
 
Output:
 
 



Q.10) PROGRAM TO REMOVE
DUPLICATES CHARACTER

FROM A STRING
 
import java.util.*;
 
public class RemoveDups {
public static class Node {
Node next;
 
char val;
 
public Node(char val)
{
this.val = val;
}
 



public String toString() {
 
StringBuilder sb = new
StringBuilder();
Node temp = this;
 
while (temp != null)
{
sb.append(temp.val);
temp = temp.next;
}
 
return sb.toString();
 
}
}
 
 



 
 

 
 
public static void
removeDupes(Node node)
{
Set<Character> set = new
HashSet<Character>();
set.add(node.val);
 
Node prev = node;
Node temp = node.next;
 
while (temp != null)
{
if (set.contains(temp.val))
{



prev.next = temp.next;
}
 
else
{
set.add(temp.val);
 
prev = temp;
}
 
temp = temp.next;

 
}
 
}
 
 

 



 
public static void main(String[] args)
{
Node a = new Node('F');
Node b = new Node('O');
Node c = new Node('L');
Node d = new Node('L');
Node e = new Node('O');
Node f = new Node('W');
Node g = new Node(' ');
Node h = new Node('U');
Node i = new Node('P');
 
a.next = b;
b.next = c;
c.next = d;
d.next = e;
e.next = f;



f.next = g;
g.next = h;
h.next = i;
 
System.out.println(a);
removeDupes(a);
System.out.println(a);
}
}

 

Output:



Q.11) PROGRAM TO RETURN A
CHARACTER FROM THE

STRING.
 
 import java.util.*;
 
 
public class ReturnKth {
  public static class Node {
    Node next;
    char val;
    public Node(char val) {
      this.val = val;
    }
    public String toString() {
      StringBuilder sb = new
StringBuilder();



      Node temp = this;
      while (temp != null) {
        sb.append(temp.val);
        temp = temp.next;
      }
      return sb.toString();
    }
  }
  public static Node returnKth(Node
node, int k) {
    k--;
    Node first = node;
    Node last = node;
    for (int i = 0; i < k; i++)
      last = last.next;
    while (last.next != null) {
      last = last.next;
      first = first.next;



    }
 
 
    return first;
  }
 
 
  public static void main(String[]
args) {
    Node a = new Node('a');
    Node b = new Node('b');
    Node c = new Node('c');
    Node d = new Node('d');
    Node e = new Node('e');
    a.next = b;
    b.next = c;
    c.next = d;
    d.next = e;



    System.out.println(a);
    System.out.println(returnKth(a,
2).val);
  }
}
 
 
 
Output:
 

 



Q.12) PROGRAM TO REMOVE
MIDDLE CHARATER

FROM A STRING
 
 
import java.util.*;
 
public class DeleteMiddle
{
public static class Node
{
Node next;
 
char val;
 
public Node(char val)
{



this.val = val;
}
 
public String toString()
{
StringBuilder sb = new
StringBuilder();
Node temp = this;
 
while (temp != null)
{
sb.append(temp.val);
temp = temp.next;
}
 
return sb.toString();
}
 



 
public static boolean
deleteMiddle(Node node) {
if (node == null || node.next == null)
{
return false;
}
else
{
node.val = node.next.val;
node.next = node.next.next;
return true;
}
}
public static void main(String[] args
) {
  Node a = new Node('a');
   Node b = new Node('b');



   Node c = new Node('c');
   Node d = new Node('d');
    Node e = new Node('e');
a.next = b;
b.next = c;
c.next = d;
d.next = e;
System.out.println(a);
deleteMiddle(c);
System.out.println(a);
} }

 

Output:



 
Q.13) WRITE A PROGRAM FOR

BUBBLE SORT IN JAVA
 

 
public class MyBubbleSort {
 
    // logic to sort the elements
    public static void bubble_srt(int
array[])
{
        int n = array.length;
        int k;
        for (int m = n; m >= 0; m--) {
            for (int i = 0; i < n - 1; i++) {
                k = i + 1;
                if (array[i] > array[k]) {



                    swapNumbers(i, k,
array);
                }
            }
            printNumbers(array);
        }
    }
 
    private static void
swapNumbers(int i, int j, int[] array)
 {
 
        int temp;
        temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }
 



 
 

 
    private static void
printNumbers(int[] input) {
         
        for (int i = 0; i < input.length;
i++) {
            System.out.print(input[i] + ",
");
        }
        System.out.println("\n");
    }
 
    public static void main(String[]
args) {
        int[] input = { 4, 2, 9, 6, 23, 12,
34, 0, 1 };



        bubble_srt(input);
 
    }
}
 
 
Output:
 



 



 
 

Q.14) WRITE A PROGRAM FOR
INSERTION SORT IN JAVA.

 
 
 
public class MyInsertionSort {
 
    public static void main(String[]
args)
{
        int[] input = { 4, 2, 9, 6, 23, 12,
34, 0, 1 };
        insertionSort(input);
    }
 
    private static void



printNumbers(int[] input)
{
         
        for (int i = 0; i < input.length;
i++) {
            System.out.print(input[i] + ",
");
        }
        System.out.println("\n");
    }
 
    public static void insertionSort(int
array[])
 {
        int n = array.length;
        for (int j = 1; j < n; j++) {
            int key = array[j];
            int i = j-1;



            while ( (i > -1) && ( array [i]
> key ) ) {
                array [i+1] = array [i];
                i--;
            }
 
 
            array[i+1] = key;
            printNumbers(array);
        }

 
}
 
}
 
 
Output:
 



 
 
 
 
 
 
 



 
 

 
 

 
Q.15) WRITE A PROGRAM TO
IMPLEMENT HASHCODE AND

EQUALS.
 

Description:
The hashcode of a Java Object is
simply a number, it is 32-bit signed
int, that allows an object to be
managed by a hash-based data
structure. We know that hash code is
an unique id number allocated to an
object by JVM. But actually



speaking,           Hash code is not an
unique number for an object.
If two objects are equals then these
two objects should return same hash
code. So we have to implement
hashcode() method of a class in such
way that if two objects are equals, ie
compared by equal() method of that
class, then those two objects must
return same hash code. If you are
overriding hashCode you need to
override equals method also. 

The below example shows how to
override equals and hashcode
methods. The class Price overrides
equals and hashcode. If you notice the



hashcode implementation, it always
generates unique hashcode for each
object based on their state, ie if the
object state is same, then you will get
same hashcode. A HashMap is used
in the example to store Price objects
as keys. It shows though we generate
different objects, but if state is same,
still we can use this as key.

 
 
 
import java.util.HashMap;
 
public class MyHashcodeImpl {
 
    public static void main(String a[])
{



        HashMap<Price, String> hm =
new HashMap<Price, String>();
        hm.put(new Price("Banana",
20), "Banana");
        hm.put(new Price("Apple", 40),
"Apple");
        hm.put(new Price("Orange",
30), "Orange");
        //creating new object to use as
key to get value
        Price key = new
Price("Banana", 20);
        System.out.println("Hashcode of
the key: "+key.hashCode());
        System.out.println("Value from
map: "+hm.get(key));
    }
}



 
class Price{
    private String item;
    private int price;
    public Price(String itm, int pr){
        this.item = itm;
        this.price = pr;
    }
    public int hashCode(){
        System.out.println("In
hashcode");
        int hashcode = 0;
        hashcode = price*20;
        hashcode += item.hashCode();
        return hashcode;
    }
 
 



 
   
 public boolean equals(Object obj){
        System.out.println("In equals");
        if (obj instanceof Price) {
            Price pp = (Price) obj;
            return
(pp.item.equals(this.item) &&
pp.price == this.price);
}
else {
            return false;
        }
    }
     
    public String getItem() {
        return item;
    }



 
    public void setItem(String item) {
        this.item = item;
    }
 
    public int getPrice() {
        return price;
    }
 
    public void setPrice(int price) {
        this.price = price;
    }
 
    public String toString(){
        return "item: "+item+"  price:
"+price;
    }
}



 
 
 
 
Output:
 

 
 
 



 
Q.16) HOW TO GET DISTINCT

ELEMENTS FROM AN ARRAY BY
AVOIDING DUPLICATE

ELEMENTS?
 
 
public class MyDisticntElements {
    public static void
printDistinctElements(int[] arr){
         
        for(int i=0;i<arr.length;i++){
            boolean isDistinct = false;
            for(int j=0;j<i;j++){
                if(arr[i] == arr[j]){
                    isDistinct = true;
                    break;



                }
            }
            if(!isDistinct){
                System.out.print(arr[i]+"
");
            }
        }
    }
     
    public static void main(String a[])
{
        int[] nums = {5,2,7,2,4,7,8,2,3};
        MyDisticntElements.printDistinctElements(nums);
    }
}
 
Output:
 



 
Q.17) WRITE A PROGRAM TO

FIND THE SUM OF THE FIRST 1000
PRIME NUMBERS.

 
public class Main {
    public static void main(String
args[]){
        int number = 2;
        int count = 0;
        long sum = 0;
        while(count < 1000){
            if(isPrimeNumber(number)){
                sum += number;
                count++;



            }
            number++;
        }
        System.out.println(sum);
    }
    private static boolean
isPrimeNumber(int number){
        for(int i=2; i<=number/2; i++){
            if(number % i == 0){
                return false;
            }
        }
        return true;
    }
}

 
Output:



              

Q.18) WRITE A PROGRAM TO
REMOVE DUPLICATES FROM

SORTED ARRAY.
 

public class MyDuplicateElements
  {
    public static int[]
removeDuplicates(int[] input)
     {
    
        int j = 0;
        int i = 1;
        //return if the array length is less
than 2
        if(input.length < 2)



           {
            return input;
        }
 
        while(i < input.length)
          {
            if(input[i] == input[j])
            {
                i++;
            }else
           {
                input[++j] = input[i++];
            }   
        }
        int[] output = new int[j+1];
        for(int k=0; k<output.length;
k++){
            output[k] = input[k];



        }
         
        return output;
    }
 
    public static void main(String a[])
{
        int[] input1 =
{2,3,6,6,8,9,10,10,10,12,12};
        int[] output =
removeDuplicates(input1);
        for(int i:output){
            System.out.print(i+" ");
        }
    }
}
 
 



 
Output:
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 

Q.19) FIND LONGEST SUBSTRING
WITHOUT REPEATING

CHARACTERS.
 

import java.util.HashSet;
import java.util.Set;
 
public class MyLongestSubstr {
 
    private Set<String> subStrList =
new HashSet<String>();
    private int finalSubStrSize = 0;



     
    public Set<String>
getLongestSubstr(String input){
        //reset instance variables
        subStrList.clear();
        finalSubStrSize = 0;
        // have a boolean flag on each
character ascii value
        boolean[] flag = new
boolean[256];
        int j = 0;
        char[] inputCharArr =
input.toCharArray();
        for (int i = 0; i <
inputCharArr.length; i++) {
            char c = inputCharArr[i];
            if (flag[c]) {
                extractSubString(inputCharArr,j,i);



                for (int k = j; k < i; k++) {
                    if (inputCharArr[k] ==
c) {
                        j = k + 1;
                        break;
                    }
                    flag[inputCharArr[k]] =
false;
                }  
            } else {
                flag[c] = true;
            }
        
 
 
 
}

 



 
        extractSubString(inputCharArr,j,inputCharArr.length);
        return subStrList;
    }
     
 
    private String
extractSubString(char[] inputArr, int
start, int end){
         
        StringBuilder sb = new
StringBuilder();
        for(int i=start;i<end;i++){
            sb.append(inputArr[i]);
        }
        String subStr = sb.toString();
        if(subStr.length() >
finalSubStrSize){



            finalSubStrSize =
subStr.length();
            subStrList.clear();
            subStrList.add(subStr);
        } else if(subStr.length() ==
finalSubStrSize){
            subStrList.add(subStr);
        }
         
        return sb.toString();
    }
 
    public static void main(String a[])
{
        MyLongestSubstr mls = new
MyLongestSubstr();
        System.out.println(mls.getLongestSubstr("java2novice"));
       Sytem.out.println(mls.getLongestSubstr("java_language_is_sweet"));



        Sytem.out.println(mls.getLongestSubstr("java_java_java_java"));
        System.out.println(mls.getLongestSubstr("abcabcbb"));
    }
}

 
 

Output:



Q.20) HOW TO SORT A
STACK USING A TEMPORARY

STACK?
 

import java.util.Stack;
 
public class StackSort
{
 
    public static Stack<Integer>
sortStack(Stack<Integer> input)
   {
        Stack<Integer> tmpStack = new
Stack<Integer>();
        System.out.println("===============
debug logs ================");
        while(!input.isEmpty())



      {
            int tmp = input.pop();
            System.out.println("Element
taken out: "+tmp);
            while(!tmpStack.isEmpty()
&& tmpStack.peek() > tmp)
        {
                input.push(tmpStack.pop());
            }
            tmpStack.push(tmp);
            System.out.println("input:
"+input);
            System.out.println("tmpStack:
"+tmpStack);
         }
        System.out.println("===============
debug logs ended
================");



        return tmpStack;
    }
 
 
 
 
 
 
 
 
 
    public static void main(String a[])
    {
        Stack<Integer> input = new
Stack<Integer>();
        input.add(34);
        input.add(3);
        input.add(31);



        input.add(98);
        input.add(92);
        input.add(23);
        System.out.println("input:
"+input);
        System.out.println("final sorted
list: "+sortStack(input));
    }
}
 
 
 
 
Output:
 
input: [34, 3, 31, 98, 92, 23]
=============== debug logs
================



Element taken out: 23
input: [34, 3, 31, 98, 92]
tmpStack: [23]
Element taken out: 92
input: [34, 3, 31, 98]
tmpStack: [23, 92]
Element taken out: 98
input: [34, 3, 31]
tmpStack: [23, 92, 98]
Element taken out: 31
input: [34, 3, 98, 92]
tmpStack: [23, 31]
Element taken out: 92
input: [34, 3, 98]
tmpStack: [23, 31, 92]
Element taken out: 98
input: [34, 3]
tmpStack: [23, 31, 92, 98]



Element taken out: 3
input: [34, 98, 92, 31, 23]
tmpStack: [3]
Element taken out: 23
input: [34, 98, 92, 31]
tmpStack: [3, 23]
Element taken out: 31
input: [34, 98, 92]
tmpStack: [3, 23, 31]
Element taken out: 92
input: [34, 98]
tmpStack: [3, 23, 31, 92]
Element taken out: 98
input: [34]
tmpStack: [3, 23, 31, 92, 98]
Element taken out: 34
input: [98, 92]
tmpStack: [3, 23, 31, 34]



Element taken out: 92
input: [98]
tmpStack: [3, 23, 31, 34, 92]
 
 
 
 
Element taken out: 98
input: []
tmpStack: [3, 23, 31, 34, 92, 98]
=============== debug logs
ended ================
final sorted list: [3, 23, 31, 34, 92,
98]



5 SKILLS SELF-TAUGHT
PROGRAMMERS COMMONLY LACK

 

 
1. ALGORITHMS

This is classic computer science right
here. Programming without knowledge
of algorithms is like carpentry with just
one kind of saw: you can get the job
done, but it’s going to take a lot longer.
 

You can look at an algorithm as
“discipline”. When you learn to write
them, what you’re doing is solving a



problem with discipline; using structure,
patterns, and logical steps.
 
When you don’t know how to
discipline your mind, you don’t know
how to write algorithms.

 
Not only can you not write

algorithms unless you’ve studied them,
you don’t know how many algorithms
others have written, too.
 

I spent four days trying to figure out
how to do a permutation. I was so proud
of myself when I figured it out. Right up
until I discovered that B.R. Heaps had
figured it out in 1963.

 



2. DESIGN PATTERNS

This comes with education and/or
experience. There’s more than one way
to structure your code, and there’s a right
time and a wrong time for each. You
either need to make mistakes along the
way and learn when to use each pattern,
or learn from someone else who’s
already made the mistake (a teacher).
 

3. PROGRAMMING
PARADIGMS
 
 Object-Oriented Programming is not
The Way. Neither is Functional

https://en.wikipedia.org/wiki/Reactive_programming


Programming. Nor Reactive
 Programming. It is A Way.
 
There are different ways to program, and
they each have a purpose. Not only that,
some languages are naturally better-
suited for one paradigm or another.
 
If all you have is a hammer, everything
looks like a nail.
 
Take that into self-taught programming
and you’ll find yourself hammering in
nails, screws, staples, and thumb tacks.
 
I remember a self-taught .NET
programmer actually telling me once,
“well, it’s not programming unless it’s

https://en.wikipedia.org/wiki/Reactive_programming


object-oriented. And that’s why I don’t
consider JavaScript a programming
language.” That’s a very, very flawed
train of thought.



 
4. DATA STRUCTURES

 
Granted, your language can give you a
basic idea of what the different data
structures are. But again, that’s a basic
idea.
 
Self -taught programmers can have a
tendency to only stick to data structures
that work within their
Favorite language. Just because it’s not a
primitive, or even a common structure in
your language, that doesn’t mean it can’t



exist. Of course, that also means that
maybe it shouldn’t exist, either.
 
The world is very small if it all can fit
inside of an array.

 
 
 
5. TESTING

 
Maybe it’s just me, but there’s a lot of
ways to test your code before pushing it
to an environment. Learn how to do unit
testing.
 
More importantly, learn test-driven
development.



 
There’s a difference between testing
your code, and writing testable code.
 
 
 
 
 
 
 
 
 
 
 
 
 
SELF-TAUGHT PROGRAMMERS
I HAVE INTERVIEWED OFTEN



LACKED KNOWLEDGE IN
THESE AREAS:

 
FORMAL VOCABULARY. You
have to know the correct names of
data structures and other things by
heart to by able to have an effective
conversation related to a project in
software development.

 
TESTING. Most of the autodidacts
lack knowledge or generally do not
understand the importance of the
testing process.

 
PROGRAM PARADIGMS (and
corresponding language). “If you



only have a hammer, every problem
looks like a nail”. I’ve had many of
these hammer-types. They often just
do not understand why not every
problem can be solved the same
way/with the same methodology.

 
MACHINE RELATED
MATHEMATICAL PROBLEMS.
They lack numerical mathematics
skills and do not understand why
floating points arithmetic can fail you
if you don’t watch out



WHAT ARE THE MOST
IMPORTANT DATA STRUCTURE
AND ALGORITHMS TO
PREPARE FOR AN INTERVIEW?

 
Did you know that the top 10 data
structures account for 99% of all data
structure use in the real world? Probably
not, because I just made those numbers
up — but they're in the right ballpark.
Yes, on occasion we ask a problem
whose optimal solution requires a
Bloom filter or suffix tree, but even
those problems tend to have a near-
optimal solution that uses a much more
mundane data structure. The data

http://en.wikipedia.org/wiki/Bloom_filter
http://en.wikipedia.org/wiki/Suffix_tree


structures that are going to show up most
frequently are:

Array
Stack / Queue
Hashset / Hashmap / Hashtable /
Dictionary
Tree / binary tree
Heap
Graph

You should know these data structures
inside and out. What are the
insertion/deletion/lookup
characteristics? (O(log n) for a balanced
binary tree, for example.) What are the
common caveats? (Hashing is tricky, and
usually takes O(k) time when k is the
size of the object being hashed.) What



algorithms tend to go along with each
data structure? (Dijkstra's for a graph.)
But when you understand these data
structures, sometimes the solution to a
problem will pop into your mind as soon
as you even think about using the right
one.
 
 
 
 

https://secure.wikimedia.org/wikipedia/en/wiki/Dijkstra%27s_algorithm


Stick to basics. I would classify the
following data structures as **must
know**

1. Linked List - Single and Doubly
 

2. Stack
 

3. Queues
 

4. Binary Search Trees or general
Binary Tree

 
5. Heaps
 

6. Basic Graph Traversal and Shortest
Path



 
7. Hashing

 
 
 

Following data structures may be
asked. I would say that their    
probability of being asked is between 50
to 75% -

1. Tries
 

2. Advance Graphs like flow and min-
cut etc.

 
3. Bit Manipulation

 
You will probably crack interviews
with sufficient knowledge of above.



 
 

 
Following have very low probability
of being asked (< 25%):

1. Segment Trees / Binary Indexed
Trees

 
2. AVL Trees
 

3. B+ Trees
 
 
 
 
Other hard data structures are
absolutely unnecessary.

 



Following Algorithms / Tricks / Topics
may also be important:

1. Memory Management
 

2. Basic Co-ordinate geometry -
Manhattan Distance, Closest Point
Pair

 
3. Divide and Conquer
 

4. Greedy
 

5. Dynamic Programming - Extremely
important

 
6. Probability and basic Number Theory
 



7. Sorting and Searching
 
 
Following topics is important for
Knowledge / Experience based
questions:

 
1. OS - Threads, Processes and Locks

using Mutex, Semaphores
2. Scalability Issues, RPCs, Rate

limiter, etc.
3. OOP Concepts
4. Databases - SQL, NoSQL, Writing

simple Queries, Transactions, ACID
5. Linux Commands - sed, grep, ps, etc.



9 WAYS TO BECOME A
GREAT PROGRAMMER!

 
 
 
1. PRACTICE

 
Asides from following tutorials, you
should work on your own projects.
 

 
"The most fundamental thing is

that you actually go and code. I’ve
heard it recommended that by the



time you finish college, you should
have written 100,000 lines at
minimum."

 
— Andrei Thorp from Evernote.

 
But how do I get start, you may ask.

 
 

"I always tell people to find
something they’re doing more than
once a week and to try to automate
it. Ignore if anyone else has solved
the problem before, and just make a
tool/utility for yourself that fixes a
common issue in your life."

 
— Kasra Rahjerdi, Mobile Lead at



Stack Overflow.
 
 
 
 
 
 
 
 
 
 
 

 
"Like any other skill, it takes

practice – deliberate practice,
stepping outside of your comfort
zone and learning the nuance and
subtleties – that set apart great from



good.”
 

— Derick Bailey, the creator of
WatchMeCode.net.
 

 
Derick is a top 0.42% StackOverflow

user, and has also contributed to open
source frameworks such as has
MarionetteJS and BackboneJS.
 

It’s OK to fail. Coding is all about
failing and fixing things, and about
learning how to do things better. If you
don’t build things and work on areas that
you know you are weak on, you’ll never
get better.



 
If you ever need to receive advice on

how to improve and what you’re not
doing so well on, feel free to ask an
experienced developer to help your get
straightened up by either reviewing your
code or walking you through concepts
you are having trouble understanding.
 
2. BE PETEINT

 
No-brainer here, but it’s easy to get
frustrated by your lack of progress and
forget that you’re not alone.

"Becoming a good programmer
takes a long, long time and a lot of



tedious evenings. Before you can
write good code, you have to write
hundreds of thousands of lines."

 
— Mike Arpaia, a former Etsy dev
who now builds information security
software for Facebook.
 
 
 
 
Mike stresses that beginners should

give up on the assumption that one can
become an excellent developer quickly.
 

 
But… what if you’re not even past the



tutorial stages yet? What if you’re still
banging your head against the wall and
wondering perhaps you’re just not cut
out for programming? Before you leap to
conclusions,

 
know that everyone has a different
learning style. Author of the Ruby on
Rails Tutorial, Michael Hartl, points out
that beginners should try lots of different
resources (books, videos, etc.) to see
what ‘clicks’.
 
 

In fact, Craig Coffman, the CTO of



 Reserve, has personally learned through
a lot of trial-and-error and by picking
projects that were personal and
interesting. However, since all the
interesting challenges are big ones, he
suggests beginners to start with biting off
reasonably-sized pieces.
 

That way, when you lose interest or
get stuck, you still have a feeling of
progress and accomplishment.

 
 
 
 
 
 

https://reserve.com/


3. STAY INTERESTED

 
If you’re bored by the project you’re

working on, you should probably
reconsider any lofty goals of learning to
code. Or, maybe you’re just working on
the wrong project or learning through the
wrong resource. Always keep yourself
motivated by working on personal
projects that excites you.

 
 

Coraline Ada Ehmke, founder of
LGBTech and contributor to high-profile
open source projects such as  Rails and
 RSpec, started coding at a young age out

http://rubyonrails.org/
http://rspec.info/


of interest. However, her first class in
college as a Computer Science major
made her doubt her passion.
 

I remember our semester-long
project was to write software for an
ATM. I was so bored and not
challenged, I decided that if that’s
what life as an engineer was like, I
didn’t want any part of it, so I
dropped out soon after.

 
However, she continued to work on

projects she found interesting. By 1993
she was online and building web sites,
and has been developing web apps ever
since.

 



 



 

4. LOVE THE ERROR

 
As a beginner you’ll likely be mired

in bugs. If you feel intimidated by all the
red, you’re not alone. Ross Chapman, a
UX Engineer who coded for  Zendesk
and now working at  ScienceExchange,
admits to being a scared developer when
he first started out.
 

I didn’t have the patience because I
wasn’t ready to love the challenge of
fixing things. But that’s pretty much
where all my really bad habits come

https://www.zendesk.com/
https://www.scienceexchange.com/


from.
 

With that said, Ross urges beginners to
embrace errors as crucial learning
moments. Since you’ll be debugging for
life, you should get used to errors and
learn to recognize the error messages.
 

"Being able to quickly parse and
understand error messages will save
you a lot of time and get you a long
way. The fact you’ve tried will be
very much appreciated by the person
you’re asking for help."

 
— Jack Franklin, author of
“Beginning jQuery”



 
Jack also recommends beginners to
make an attempt at fixing problems on
their own at first. When

 
 
 
 
 
 
 
hitting a wall when debugging, Lee
Byron, co-contributor to React,
personally attempts to understand what’s
going on by making ample usage of the
debugger tools.
 

Once I understand exactly what is



happening – step by step, then I can
compare that to what I expected to
happen and isolate the surprising
parts and see where my assumptions
were wrong or how some code led to
the surprising situation.

 
Errors aren’t limited to bugs,

however. Sometimes, you make bad
decisions such as using the wrong data
structure. According to Mike, getting
burned by those bad decisions will
eventually help you learn when it’s
reasonable to use certain design patterns



 

5. UNDSERSTAND HOW
THINGS WORK

"No matter what level you’re at
I’ll say this: never ever write a line
of code without knowing why it
works, to the metal. Like, be
obsessively curious. Be the Indiana
Jones of source. Curiosity is one
constant among engineers. I don’t
think you could make it in this biz
without looking into the monitor
with wonder. Both childlike, and
ruthlessly academic."

 



— Ross Chapman
 

Suffice to say, interest is not enough.
You have to strive to understand how
things work if you’re aiming to become a
professional developer of some decency.
 

"You can start out understanding
the tools you use by sifting through
StackOverflow questions. I’ve
learned a thing or two from them.
[The top AngularJS questions are]
really interesting to read through as
Angular is such a big framework."

 
— Todd Motto, an AngularJS
conference speaker and Developer
Expert at Google



 
 

 
Rohan Singh, a senior infrastructure

engineer at Spotify, stresses the
importance of working towards
understanding the layer one level of the
stack beneath what you’re working on
right now. “Everything we do as
software engineers involves working at
some level of abstraction,” Rohan says.
In other words, if you use some sort of
database, you can take away the
internals of the database and expect it to
“just work”.

 
 



 
Furthermore, to really understand

how things work, you should be able to
explain why certain technical choices
are better than others, and be able to
troubleshoot problems when things
don’t work the way the do. Rohan
achieves this in practice by trying, a
little bit at a time, to learn about and
understand the fundamentals of whatever
platform or system he uses — whether
that’s Python or Go or the Linux
operating system. According to him, this
eventually helps you generate a mental
of model of how things work under the
covers, and broadens your base of
understanding.

 



 
Ultimately, you’ll grow as engineer,

and as a bonus you’d be able to debug
more efficiently by learning how to do
more “lean back” debugging as opposed
to “lean in” debugging. In other words,
you’d lean back and think hard about
how things work under the covers to
figure out what the problem might be.
“This can be a lot faster and involve a
lot less flailing than ‘lean in’ debugging
with an interactive debugger or other
tools,” Rohan says.

 
 
In fact, Andrei Thorp from Evernote
thinks everyone should learn basic C
early on.



 
Because it’s minimal and doesn’t

do much for you, it forces you to
understand how computers really
work on a lower level. For example,
C makes you manage the memory you
use yourself – which means that later,
when you use something like Python,
you actually understand what Python
is doing for you. Then, when you see
some strange bug, you have this
toolkit in your mind to understand
what the problem could be.



6. KEEP LEARNING NEW
THINGS

Nothing will kill your career/craft
trajectory more than working at some
shitty mundane programming job. Go
somewhere where you are
encouraged/forced to constantly learn
new tricks,

 
Says Jonathan Henson, who currently

works at Amazon Web Services.
Jonathan also tries to learn a new
programming language, paradigm, or
stack every year. He then puts himself on



projects where he would have the
opportunity to apply those skills.
 

 
“I think the most important skill to

learn is meta-learning,” says Kasra.
“That’s what separates engineers and
programmers to me. There’s something
to be said about spending 12 weeks at a
course learning one framework really
well, but I really respect (and like to
hire) devs that are able to learn
whatever they need, on the spot, to do a
task.”
 
 
So, what’s the best way to learn new
skills?



 
Reading about what you want to do is

a start. Steve Klabnik, who’s a Rust core
team member and ranked #37 on the all-
time Rails contributors list, seeks out
any established research on the topic and
also tries to figure out how people who
are good at the thing he wants to do
achieve their results.
 

The most important thing is to just
do it.

1. Try to do the thing, probably do
it poorly.

2. Figure out where I’m going
wrong, and what i need to improve



3. Work on what I’ve identified.
4. Repeat.”

 
CTO of Bellhops, Adam Haney, says

his favorite trick to learning new
languages is to reimplement a previous
project using the paradigms of that new
language. For example, he would take
something he wrote as object oriented
code in C++ and then reimplement it in a
functional language.

 
 

I feel like this kind practice has
prepared me to evaluate new
technologies because I understand the
underlying Computer Science



principles even if I don’t know the
intricate details of the language or
framework.

 
If you struggle with memorization,

Andrei recommends building a memory
palace. The general idea is that you use
your brain’s powerful visual memory,
and map that to more technical data, like
numbers. He also strongly believe in
techniques like The Seinfeld Calendar,
which is based on Jerry Seinfeld’s idea
that you don’t need to work hard every
day — you only need to progress a little
bit every day. “So with his calendar, you
just check off whether you worked on the
project today or not,” Andrei says.



“There are some nice apps that will help
you with this.

On Android, I use HabitBull. As your
streak gets longer, you feel more
motivated to keep it running



 
7. LEARN HOW TO WORK
WITH OTHERS

 
Another way you can learn new things
is to work on projects with other
people.

 
“The legend of the lone coder is a

myth,” Adam says. “Almost all
substantial projects require teamwork.”
This means you’ll need to learn the
skills of breaking a problem down into
multiple parts, build good interfaces
between parts of the codebase, and



collaborate on architecture.
 
“Working with a group of like-minded

engineers who challenge you will
definitely put you on the fast-track,”
Craig says. “Working in isolation makes
it hard to catch yourself making silly
choices and to learn new things.”
 

Everyone makes mistakes – that’s just
how programming is. Beginners should
strive to hang around great engineers and
receive feedback. “Don’t be sensitive
about your mistakes,” Jonathan stresses.
“That’s how you improve. Admit your
mistakes and learn from them.”
 

 



Getting your code reviewed will also
force you into thinking about why you
did something and understand code
better. “My favorite engineers to work
with are the ones who don’t let you off
the hook about the code you write,” says
Ross. “I remember when I first was
challenged, and it freaked the shit out of
me. But that night I went home and
studied till I knew I could at least
attempt a confident explanation of how
to pass this around closures.”
 
 
So, where do you find mentors or peers
who can pair up with you and help you
out?
 



 
 
According to Jack, local meetups

often have sessions where free coaching
is offered to anyone who would like it.
Other free resources include Twitter
groups, Slack groups, and iRC channels .
 
 
8. DON’T JUST CODE –
BUILD SOLUTIONS

"A lot of programming isn’t about
code; it’s about understanding other
disciplines or standards.

 
You can’t solve someone’s problem



with code if you don’t understand
their problem. Working on projects
exposed me to the way that small
businesses, marketers, brokers and
other professionals approach the
world. When you understand how
they currently solve problems, you
can work with them to come up with
new and better solutions."

 
—Adam Haney, CTO of Bellhops

 
One thing Ross wishes he had done

earlier in his career was to better
appreciate the discipline and history of
Software Engineering itself.
 

These days it’s easy to dive into the



vocation and only focus on the
“coding.” Especially as browser
coders or web app coders in a
booming market working with huge
dynamic programming languages
(Ruby, JavaScript) and vastly quirky
“computer” languages and formats
(HTML, CSS), we might be tempted
to spend all our time racing to master
the myriad tools, frameworks and
APIs so we can crush interviews or
level up at the job. But building a
product on a team is always a social
exercise, and a particular one at that
with a unique set of challenges that
are mostly non-technical. Like, turns
out the hardest thing in software



engineering is deciding what to build,
not how; though maybe this is less
true in as the JavaScript mycelium
rhizomes dramatically.

 
Ross said it took him a while to

understand that most of software
engineering happens in your head first.
“Coding will likely become the easy
part soon. But a dope engineer can draw
a solution with boxes, circles, and lines
—and I know that’s a learned skill
because I’ve been doing it more and it
I’m getting better at it.” The realization
that coding was much more “chin in hand
and white boarding” was actually so
resonant for him, he wrote a blog post



about it.
 

 
“Remember that this is about human

beings and our lives, not just about the
technology that you’re coding with,”
says Derick. “Learn how humans think,
interact and deal with each other. Then
represent what you’ve learned in your
software architecture and design.



9. DON’T RE-INVENT THE
WHEEL

 
Finally, no matter how good you get,

your code will never be 100% original,
as many problems have been solved in
your language of choice already.
“Absolutely ain’t no shame in keeping
the wheel as is,” Ross assures.
“However, when it’s time to commit,
you better be damn sure you can defend
that code to your team with Dwayne
Johnson-like charm and confidence.”
 
 



“Don’t re-invent the wheel just because
you don’t understand an abstraction,”
Mike reminds us.

 
 
However, this isn’t to say there is

absolutely no value to re-inventing the
wheel. Matthew Zeiler, CEO of Clarifai,
encourages people to build things that
already have existing solutions if that’s
what interests them. Building a tool from
scratch will help you learn more about
software engineering, system design,
scalability, and more.
 
 
Conclusion



Frustrations abound when learning
how to develop apps or projects, but
hopefully the tips above made you feel
more confident in your quest to become
a developer.



 
4 secrets of great

programmers!
 

 
#1.REGARDING CAREER

 
 
 

Write code that can be read,
understood, and manipulated by
others. This allows you to hand-off
and take on new challenges.



If you horde your knowledge, you'll
be the only care taker of it --- or in an
engineering/business minded
organization, a risk.

Stop taking pride in code or hackatons
survived, means nothing in a
permanent team. Execution and
collaboration will serve you greater.

 
#2.REGARDING SOLUTIONS AND
CODING

 
 

If you can't explain it to a non-
programmer, you might be over-



complicating or over-optimizing.

If you can't draw a architecture
diagram, you also might be over-
complicating it.

Don't show off by writing "compact
code"

 
 



 
 
#3.REGARDING PERSONAL
IMPROVEMENT

 
 

Don't be a Java or C/C++ (or other)
fan-boy/girl. You'll be learning 10+
languages in a long-term career.
Treat them as tools, not bandwagons.

 
There will always be a better
programmer and they are hard to
identify. Learn from them all.

 
You are not defined by the quality of



your code. Don't judge yourself that
way.

 
 
 
 
#4.REGARDING PHILOSOPHY

 
Programming is the art of enabling
non-programmers to do more than
what they can do alone.

 
Computer science is a catalyst to
nearly every field of study or
industry in the world. CS enables
humanity to do more, solve more, be
better.



 
Computer science != programming. If
your college only taught you how to
program, go ask for your money
back.

 
 
 

DIFFERENCE BETWEEN A
PROGRAMMER, A GOOD

PROGRAMMER AND A GREAT
PROGRAMMER.

 
Programmer: anyone who can write
working programs to solve
problems, given a sufficiently
detailed problem statement. 



 
Good programmer: a programmer
who collaborates with others to
create maintainable, elegant
programs suitable for use by the
customer, on time and with low
defect rates, with little or no
interpersonal drama.

 
Great programmer: a good
programmer who understands
algorithms and architectures
intuitively, can build self-consistent
large systems with little supervision,
can invent new algorithms, can
refactor live systems without
breaking them, can communicate
effectively and cogently with non-



technical staff on technical and non-
technical issues, understands how to
keep his or her ego in check, and can
teach his or her skills to others. 

 
The path of becoming a great
programmer is to start by being a
programmer, and then develop the skills
needed to be a good programmer, then
practice those skills until you master
them, then develop the skills needed to
be a great programmer, and then practice
those skills until you master them. 

The amount of time this takes depends on
your personal skills, personality, and
training.  It also depends on the
experience and opportunities that you



have during your career, and how you
react to them.
 



 

Resume Advice
 
 

 
Writing a resume is like exercising:

You may not look forward to it, but you
feel better once it’s done. And like the
results of a good workout, a well-
presented resume can help you keep your
career in shape.
 
But when writing a resume, what works
and what doesn’t? We thought we’d turn
to Monster members like you for advice.



Here are some tips from both job
seekers who write resumes and hiring
professionals who read them for a
living. Keep in mind that like resumes,
opinions can vary -- what works for one
person may not work for you.
 
 
TITLE AND OBJECTIVE:

 
A strong, descriptive resume title will
help you stand out in a sea of resumes.
“Titling your resume ‘Joe's do-it-all
resume’ or ‘1975 hottie looking for a job
resume’ gets your resume passed over by
a busy recruiter,” says one Monster



member who should know -- he’s a
recruiter himself. “Make the title useful.
For instance, ‘Nursing Director,
Pediatrics Labor and Delivery’ or ‘IT
Telecom Project Manager, Microsoft and
Cisco Certified’ or ‘Enterprise Software
Sales Manager, Life Sciences’ -- enough
with the stupid titles we dismiss and
make fun of. This is your career we're
talking about.”
 
 



 
 
And an objective must get an employer’s
attention quickly or it won’t get any
attention at all, says a district manager
for a wireless company.
 
“I receive hundreds of resumes on a
monthly basis,” he says. “Two-thirds of
the resumes are rejected due to the
applicant having no clear objective in
seeking employment with my company.
Your resume must grab my attention
within the first few words of the
objective. It must be clearly written and
relevant to the position you are applying



for. Take a little extra time and
customize the objective to the position
you are seeking…. If you cannot sell
yourself with your resume, you might not
have the opportunity to sell yourself at
an interview.”
 
 
LOOK AND FEEL:

 
As for typeface, you had definite
opinions. “Don't use Times New Roman
font,” advises one seeker. “Your resume
will look like everyone else's. Georgia
and Tahoma are different, professional
and pleasant to look at.”



 
But another job seeker’s font advice is
more practical: “Use Times New Roman
or Arial Narrow instead of other wider
fonts to keep your resume to only one (or
two) pages and Save paper.”
 
Resume Expert Kim Isaacs recommends
using a standard Microsoft Word-
installed font so the layout will be
consistent when an employer opens your
resume. No matter what font you use, she
suggests you stick with one per resume.
“Also, the type should be large enough
to be read on screen without causing eye
fatigue,” she says.
 



 
For the hard copy of your resume, make
sure you invest in good paper stock, says
one HR professional who has also
composed and drafted resumes for
professional clients.
 
“Before our prospective employer even
takes one glance at our resume, there is
something they do first, and that is FEEL
it,” she says. “Having handled nearly
hundreds of resumes each week, I think
most people would be amazed how
much notice you can get with a resume
on good-quality paper.
 
Sometimes it is not even a conscious



thought, just as you shuffle stacks of
resumes from here to there, making all
the appropriate piles to serve your
needs, you always tend to linger just a
little longer over that one resume with
paper that feels a little heavier, like the
cotton/linen blends or the one that feels
just slightly different than normal, like
the parchments. You can double the
effect if you choose good-quality paper
in a professional color other than
white.”



 

LENGTH:

 
When President Lincoln was asked how
long a man’s legs should be, he said they
should be able to reach from a man’s
body to the floor. Likewise, your resume
should be long enough to sell you
properly without overstating your
accomplishments.
 
But of course, you had opinions on this,
too. The consensus on resume length is
simple: Keep it short. There are
exceptions, though. “Never exceed one
page, unless you have 15-plus years of



experience and are applying for a job in
upper management,” advises one job
seeker. “Make sure that your resume
remains one page and formatted
properly, even when viewed in different
formats and different views -- if
someone opens your resume in a view
other than the one you created it in and
sees a hanging line, it looks
unprofessional.”
 
STYLE AND GRAMMAR:

 
Finally, it may seem like grade-school
advice, but it bears repeating: “Although
I try to counsel people on how to write a



raving resume and an awesome cover
letter, I'm consistently shocked at how
many resumes and cover letters I receive
from people that are plagued with
misspelled words, grammatical mistakes
and basically little or no time spent
proofreading prior to sending,” says one
Monster member who’s been in the
Staffing industry for 15-plus years. “In
an era when competition seems to be one
of an applicant's worst enemies; it seems
that one would want to do everything
possible to stand out in the crowd. Trust
me: I won't give a second thought to
deleting a resume and/or cover letter that
is fraught with mistakes.”

 
 



4 REASONS WHY YOUR
PROGRAM CRASHES!

 
 
There may be 4 reasons why
your program may crash:

 
Your program may depend
on some element of
randomness: user input,
randomly generated
number, time, etc.

 



If Your program is using an
uninitialized variable, it
could be accessing data it
isn't supposed to (same with
accessing something outside
of an arrays indices)

 
Your program may be using
an external library that
crashes all the time.

 
 

Stack overflows!



 
 



5 CODING
INTERVIEW TIPS!

 
 
ATTITUDE

Before you begin, you need to approach
your practice sessions with the right
attitude. Think of programming
interviews as a form of standardized
testing. Don't whine and think to
yourself, "but I'll never have to
manually reverse a linked list in my
job, so these questions are lame!"
 



 
Ph.D. students are especially elitist
because they somehow think that they are
"above" preparing for petty
programming interviews. That is a fine
attitude if you are applying for pure
research or academic jobs, but if you are
interviewing at a company that uses
programming interviews, then you've
gotta prep!
 
 
As an analogy to high school
standardized testing, I raised my SAT
scores by 400 points (back when they
were still out of 1600) through a few
months of intense practice; there is no
way that I could've gotten into MIT with



my original scores.
 
 
So before you even start practicing,
you've gotta just view these interviews
as yet another standardized test, another
game that you need to play well and
beat.
 
 
 
 
 
 
 



 
 
PRACTICING

 
I don't care how smart you are; there is
simply no substitute for practicing a ton
of problems. Work on problems for as
long as you can before your brain
explodes, then take a long break to
reflect and internalize the lessons you
learned through your struggle. And then
repeat!
 
I practiced in front of the whiteboard for
1 to 2 hours at a time and did 1 to 3
practice sessions per day for two full



week’s right before my interviews. That
was around 40 hours of focused
practice, which felt about right to me.
You might need to practice more if you
have less programming experience.
 
 
I used these two books as my main
sources of practice problems:
 

Programming Interviews Exposed
Cracking the Coding Interview

Stanford linked list
problems (PDF)
Stanford binary tree problems

 
Even if you are not familiar with the
programming languages used in these

http://cslibrary.stanford.edu/105/LinkedListProblems.pdf
http://cslibrary.stanford.edu/110/BinaryTrees.html#s2


solutions, you can still code up solutions
in your own language of choice and
write tests to verify that they are correct.



 
 
Getting physical:

 
Buy your own whiteboard markers
and practice using them. I
personally like "MARKS-A-LOT
low-odor markers", since the
markers found in most office
conference rooms make me
nauseous.

 Always practice by writing code
on a whiteboard. If you are in
school, then there should be plenty
of whiteboards around campus for
you to use. If you are working in an



office, then you can use conference
rooms after-hours.

 
 If you cannot practice in front

of a whiteboard, then practice by
writing code on blank pieces of
white paper.

 
 After you write out your code by

hand, type it into your computer to
see if it actually compiles and runs
correctly. This is an easy way to
check for syntax or logical errors in
your code. After you have practiced
for a few weeks, you should be able
to write error-free code on the
whiteboard.

 



 After a week or two of intense
practice, you should be able to hand-
write legible, well-indented, well-
aligned code on the whiteboard. If you
cannot do that during your actual
interview, then that will make a bad
impression. Messiness is a turn-off.
  If you are doing a phone interview
where you need to write code in
Google Docs (or some other shared
document), then practice writing code
in that medium! Remember, you will
never have a compiler during your
interview, so you need to get good at
writing compliable, runnable, and
correct code even without a compiler
handy.



 



 
AT THE INTERVIEW

 
When the interviewer presents a
question to you, immediately sketch out a
bunch of examples and ask a ton of
clarifying questions to make sure you
understand exactly what the interviewer
is asking you to do.
 
 
Draw several examples and ask your
interviewer questions of the form, "for
this case, you want the result to be X,
right?" Do not make any assumptions
without first checking them over with
your interviewer.



 
And whatever you do, don't flip out or
try to jump straight to coding up an
answer. Chances are, you either
 

 have no idea how to solve the
problem, so you flip out and panic,

 
 or you think you have heard the

problem before, so you want to
jump the gun and sketch out a
solution right away.
 

 
The former is obviously bad, but the
latter might actually be worse, since you
might have seen a similar problem that
does not exactly match the problem you
have been given. You will look like an



idiot if you try to solve the wrong
problem by recalling it from memory!
 
 
 



 
 
 
COMMON PROGRAMMING
INTERVIEW IDIOMS

 
Here are some common idioms and
patterns that I have observed from doing
hundreds of practice interview
problems.
 
Strings:
 
 

 Get comfortable manipulating a
string as an array of characters,



one character at a time (like C-
style strings).

 
 Numerical arrays

 
Think about iterating backwards
over the array elements as well as
forwards. Backwards iteration is
useful for, say, merging the contents
of two arrays "in-place" (i.e., using
O(1) outside storage).

 Would the problem be easier if
your array were sorted? If so, you
can always tell the interviewer that
you'd first do an O(n lg n) sort.
Heapsort is an asymptotically
optimal "in-place" sort. Once your
array is sorted, think about



    how you can use a variant of
binary search to get O(lg n)
performance rather than O(n) for an
algorithm based on linear scanning.

 
 
 
 
 
 
 
 
 
 
 



 
 
Mappings and sets (hash tables) :

 Always think of mapping keys to
values to make your life easier. If you
can scan through your dataset and create
an auxiliary hash table to map keys to
values, then you can do O(1) lookups in
a latter part of your algorithm.
 

 For some array-based problems, you
might find it useful to create a "reverse
mapping" between array elements and
their indices. e.g., "the number 42
appears at index 6 in the array" is
represented as a mapping of "42 -> 6".
 



You can use a hash table as a set
to do O(1) membership lookups. If you
are being tested on low-level skillz, use
bitsets and the proper bit-level
operations to operate on them.

 
Linked lists:

Linked list problems almost always involve
singly-linked lists.

 
If you are implementing an iterative
algorithm to operate on a singly-linked list,
chances are that you'll need to walk two
pointers, which I like to
call cur and prev, down the list until one is
null.
Some problems require you to keep a gap
of N elements between your cur and prev



pointers.
 

Some problems requires your cur and prev
pointers to advance at different speeds.
e.g., moving prev up by one element while
moving cur up by two elements.
For most recursive algorithms, the base
case is when the pointer is null.  
Sometimes you might need to keep a
pointer to the final (tail) element of the list
as well as to the head.



 
 
  Binary trees:

Remember that not all binary
trees are binary search trees,
and know the  difference
between the two.

 
 Know about the idea of a

balanced binary search tree (e.g.,
AVL tree or red-black tree), but
don't worry about being able to
implement one during an
interview.

 
 



 Graphs:

Whenever you need to represent binary
relationships, think about using a graph.
e.g., X is friends with Y, or  X has a
crush on Y, or  Task X needs to be done
before task Y.
 

 Now that you have a graph
representation, what can you do with it?
Chances are, you won't be asked to
implement any sort of sophisticated
graph algorithm since you simply don't
have time in a 1-hour interview to do so.
 

 Definitely know how to implement a
depth-first search using a stack data
structure (or using recursion, which



implicitly uses your function call stack)
 

 Definitely know how to implement
breadth-first search using a queue data
structure.
 
 

 Draw a few examples of graphs for
your particular problem and see what
common structure arises, then tailor your
algorithms to that type of structure. For
example, you might find that the graphs
for your problem are all a cyclic, or that
they always have one unique source and
sink node, or that they are bipartite (e.g.,
for 'matchmaking' problems), or that they
are actually trees in disguise :)
 
 



 Know about the idea of topological
sort.
 
 
 
 
 
Edge cases:

 
Always test your algorithm on edge-case
examples. e.g., what if the user passes in
an empty list or tree, or a list/tree with a
single node.



Programming Quotes!

 
“Talk is cheap. Show me the code.” 
― Linus Torvalds

“Programs must be written for people to
read, and only incidentally for machines
to execute.” 
― Harold Abelson, Structure and
Interpretation of Computer Programs

“Programming today is a race between
software engineers striving to build
bigger and better idiot-proof programs,



and the Universe trying to produce
bigger and better idiots. So far, the
Universe is winning.” 
― Rick Cook, The Wizardry
Compiled

“Always code as if the guy who ends up
maintaining your code will be a violent
psychopath who knows where you live” 
― John Woods

“That's the thing about people who think
they hate computers. What they really
hate is lousy programmers.” 
― Larry Niven
“The best programs are written so that
computing machines can perform them



quickly and so that human beings can
understand them clearly. A programmer
is ideally an essayist who works with
traditional aesthetic and literary forms
as well as mathematical concepts, to
communicate the way that an algorithm
works and to convince a reader that the
results will be correct.” 
― Donald Ervin Knuth, Selected
Papers on Computer Science

“I'm not a great programmer; I'm just a
good programmer with great habits.” 
― Kent Beck

“Everyone knows that debugging is
twice as hard as writing a program in the



first place. So if you're as clever as you
can be when you write it, how will you
ever debug it?” 
― Brian W. Kernighan

“A language that doesn't affect the way
you think about programming is not
worth knowing.” 
― Alan J. Perlis

“The computer programmer is a creator
of universes for which he alone is the
lawgiver. No playwright, no stage
director, no emperor, however powerful,
has ever exercised such absolute
authority to arrange a stage or field of
battle and to command such



unswervingly dutiful actors or troops.” 
― Joseph Weizenbaum

“Walking on water and developing
software from a specification are easy if
both are frozen.” 
― Edward Berard

“Perl – The only language that looks the
same before and after RSA encryption.” 
― Keith Bostic

“The most disastrous thing that you can
ever learn is your first programming
language.” 
― Alan Kay



“A computer is like a violin. You can
imagine a novice trying first a
phonograph and then a violin. The latter,
he says, sounds terrible. That is the
argument we have heard from our
humanists and most of our computer
scientists. Computer programs are good,
they say, for particular purposes, but
they aren’t flexible. Neither is a violin,
or a typewriter, until you learn how to
use it.” 
― Marvin Minsky
“The most important property of a
program is whether it accomplishes the
intention of its user.” 
― C.A.R. Hoare



“Object-oriented programming offers a
sustainable way to write spaghetti code.
It lets you accrete programs as a series
of patches.” 
― Paul Graham, Hackers & Painters:
Big Ideas from the Computer Age

“At forty, I was too old to work as a
programmer myself anymore; writing
code is a young person’s job.” 
― Michael Crichton, Prey

“Some of the best programming is done
on paper, really. Putting it into the
computer is just a minor detail.” 
― Max Kanat-Alexander, Code
Simplicity: The Fundamentals of



Software

“Programmers are not to be measured by
their ingenuity and their logic but by the
completeness of their case analysis.” 
― Alan J. Perlis

“Progress is possible only if we train
ourselves to think about programs
without thinking of them as pieces of
executable code. ” 
― Edsger W. Dijkstra

“Don't gloss over a routine or piece of
code involved in the bug because you
"know" it works. Prove it. Prove it in
this context, with this data, with these



boundary conditions.” 
― Andrew Hunt, The Pragmatic
Programmer: From Journeyman to
Master

“Remember that code is really the
language in which we ultimately express
the requirements. We may create
languages that are closer to the
requirements. We may create tools that
help us parse and assemble those
requirements into formal structures. But
we will never eliminate necessary
precision—so there will always be
code.” 
― Robert C. Martin



“Software testing is a sport like hunting,
it's bughunting.” 
― Amit Kalantri

“Programming, it turns out, is hard. The
fundamental rules are typically simple
and clear. But programs built on top of
these rules tend to become complex
enough to introduce their own rules and
complexity. You’re building your own
maze, in a way, and you might just get
lost in it.” 
― Marijn Haverbeke



 
 

 
 
 
 

Thank You!


