
MySQL Index Cookbook
Deep & Wide Index Tutorial

Rick James

www.EngineeringBooksPdf.com

TOC

• Preface
• Case Study
• PRIMARY KEY
• Use Cases
• EXPLAIN
• Work-Arounds
• Datatypes
• Tools
• PARTITIONing
• MyISAM
• Miscellany

www.EngineeringBooksPdf.com

Preface

Terminology

www.EngineeringBooksPdf.com

Engines covered

• InnoDB / XtraDB
• MyISAM
• PARTITIONing
• Not covered:
• NDB Cluster
• MEMORY
• FULLTEXT, Sphinx, GIS

• Except where noted, comments apply to both

InnoDB/XtraDB and MyISAM

www.EngineeringBooksPdf.com

Yahoo! Confidential

Index ~= Table

• Each index is stored separately

• Index is very much like a table

• BTree structure

• InnoDB leaf: cols of PRIMARY KEY

• MyISAM leaf: row num or offset into data

("Leaf": a bottom node in a BTree)

 www.EngineeringBooksPdf.com

Yahoo! Confidential

BTrees

• Efficient for keyed row lookup

• Efficient for “range” scan by key

• RoT ("Rule of Thumb): Fan-out of about

100 (1M rows = 3 levels)

• Best all-around index type

http://en.wikipedia.org/wiki/B-tree

http://upload.wikimedia.org/wikipedia/commons/thumb/6/6

5/B-tree.svg/500px-B-tree.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
 www.EngineeringBooksPdf.com

http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/B-tree
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/B-tree.svg/500px-B-tree.svg.png

Yahoo! Confidential

Index Attributes

• Diff Engines have diff attributes

• Limited combinations (unlike other
vendors) of
• clustering (InnoDB PK)

• unique

• method (Btree)

 www.EngineeringBooksPdf.com

KEY vs INDEX vs …

• KEY == INDEX

• UNIQUE is an INDEX

• PRIMARY KEY is UNIQUE

• At most 1 per table

• InnoDB must have one

• Secondary Key = any key but PRIMARY KEY

• FOREIGN KEY implicitly creates a KEY

www.EngineeringBooksPdf.com

Yahoo! Confidential

“Clustering”

• Consecutive things are ‘adjacent’ on disk

☺ , therefore efficient in disk I/O

• “locality of reference” (etc)

• Index scans are clustered

• But note: For InnoDB PK you have to step

over rest of data

• Table scan of InnoDB PK – clustered by

PK (only)

 www.EngineeringBooksPdf.com

“Table Scan”, “Index Scan”

• What – go through whole data/index

• Efficient because of way BTree works

• Slow for big tables

• When – if more than 10-30% otherwise

• Usually “good” if picked by optimizer

• EXPLAIN says “ALL”

Yahoo! Confidential www.EngineeringBooksPdf.com

Range / BETWEEN

A "range" scan is a "table" scan, but for

less than the whole table

• Flavors of “range” scan
• a BETWEEN 123 AND 456

• a > 123

• Sometimes: IN (…)

Yahoo! Confidential www.EngineeringBooksPdf.com

Common Mistakes

• “I indexed every column” – usually not

useful.

• User does not understand “compound

indexes”

• INDEX(a), INDEX(a, b) – redundant

• PRIMARY KEY(id), INDEX(id) – redundant

www.EngineeringBooksPdf.com

Size RoT

• 1K rows & fit in RAM: rarely performance

problems

• 1M rows: Need to improve datatypes &

indexes

• 1B rows: Pull out all stops! Add on

Summary tables, SSDs, etc.

www.EngineeringBooksPdf.com

Case Study

Building up to a Compound Index

www.EngineeringBooksPdf.com

The question

Q: "When was Andrew Johnson president of
the US?” Table `Presidents`:
+-----+------------+-----------+-----------+

| seq | last | first | term |

+-----+------------+-----------+-----------+

| 1 | Washington | George | 1789-1797 |

| 2 | Adams | John | 1797-1801 |

...

| 7 | Jackson | Andrew | 1829-1837 |

...

| 17 | Johnson | Andrew | 1865-1869 |

...

| 36 | Johnson | Lyndon B. | 1963-1969 |

...

www.EngineeringBooksPdf.com

The question – in SQL

 SELECT term

 FROM Presidents

 WHERE last = 'Johnson'

 AND first = 'Andrew';

What INDEX(es) would be best for that

question?

www.EngineeringBooksPdf.com

The INDEX choices

• No indexes

• INDEX(first), INDEX(last)

• Index Merge Intersect

• INDEX(last, first) – “compound”

• INDEX(last, first, term) – “covering”

• Variants

www.EngineeringBooksPdf.com

No Indexes

The interesting rows in EXPLAIN:
 type: ALL <-- Implies table scan

 key: NULL <-- Implies that no index is

useful, hence table scan

 rows: 44 <-- That's about how many rows

in the table, so table scan

Not good.

www.EngineeringBooksPdf.com

INDEX(first), INDEX(last)

Two separate indexes

MySQL rarely uses more than one index

Optimizer will study each index, decide that 2

rows come from each, and pick one.

EXPLAIN:
 key: last

key_len: 92 ← VARCHAR(30) utf8: 2+3*30

 rows: 2 ← two “Johnson”

www.EngineeringBooksPdf.com

INDEX(first), INDEX(last) (cont.)

What’s it doing?

1.With INDEX(last), it finds the Johnsons

2.Get the PK from index (InnoDB): [17,36]

3.Reach into data (2 BTree probes)

4.Use “AND first=…” to filter

5.Deliver answer (1865-1869)

www.EngineeringBooksPdf.com

Index Merge Intersect

(“Index Merge” is rarely used)

1. INDEX(last) → [7,17]

2. INDEX(first) → [17, 36]

3. “AND” the lists → [17]

4.BTree into data for the row

5.Deliver answer
 type: index_merge

possible_keys: first, last

 key: first, last

 key_len: 92,92

 rows: 1

 Extra: Using intersect(first,last); Using where

www.EngineeringBooksPdf.com

INDEX(last, first)

1. Index BTree to the one row: [17]

2. PK BTree for data

3. Deliver answer

key_len: 184 ← length of both fields

 ref: const, const ← WHERE had constants

 rows: 1 ← Goodie

www.EngineeringBooksPdf.com

INDEX(last, first, term)

1. Index BTree using last & first; get to leaf

2. Leaf has the answer – Finished!
key_len: 184 ← length of both fields

 ref: const, const ← WHERE had constants

 rows: 1 ← Goodie

 Extra: Using where; Using index ← Note

“Covering” index – “Using index”

www.EngineeringBooksPdf.com

Variants

• Reorder ANDs in WHERE – no diff

• Reorder cols in INDEX – big diff

• Extra fields on end of index – mostly

harmless

• Redundancy: INDEX(a) + INDEX(a,b) –

DROP shorter

• “Prefix” INDEX(last(5)) – rarely helps;

can hurt

www.EngineeringBooksPdf.com

Variants – examples

INDEX(last, first)

• WHERE last=... – good

• WHERE last=... AND first=… – good

• WHERE first=... AND last=… – good

• WHERE first=... – index useless

INDEX(last) (applied above):

good, so-so, so-so, useless

www.EngineeringBooksPdf.com

Cookbook

SELECT → the optimal compound INDEX to

make.

1.all fields in WHERE that are “= const” (any

order)

2.One more field (no skipping!):

 1. WHERE Range (BETWEEN, >, …)

 2. GROUP BY

 3. ORDER BY

www.EngineeringBooksPdf.com

Cookbook – IN

IN (SELECT ...) – Very poor opt. (until 5.6)

IN (1,2,...) – Works somewhat like “=“.

www.EngineeringBooksPdf.com

PRIMARY KEY

Gory details that you really

should know

www.EngineeringBooksPdf.com

Yahoo! Confidential

PRIMARY KEY

• By definition: UNIQUE & NOT NULL

• InnoDB PK:

• Leaf contains the data row

• So... Lookup by PK goes straight to row

• So... Range scans by PK are efficient

• (PK needed for ACID)

• MyISAM PK:

• Identical structure to secondary index

 www.EngineeringBooksPdf.com

Yahoo! Confidential

Secondary Indexes

• BTree

• Leaf item points to data row

• InnoDB: pointer is copy of PRIMARY KEY

• MyISAM: pointer is offset to row

 www.EngineeringBooksPdf.com

Yahoo! Confidential

"Using Index"

When a SELECT references only the fields

in a Secondary index, only the secondary

index need be touched. This is a

performance bonus.

 www.EngineeringBooksPdf.com

What should be the PK?

Plan A: A “natural”, such as a unique name;

possibly compound

Plan B: An artificial INT AUTO_INCREMENT

Plan C: No PK – generally not good

Plan D: UUID/GUID/MD5 – inefficient due to

randomness

www.EngineeringBooksPdf.com

AUTO_INCREMENT?

id INT UNSIGNED NOT NULL

AUTO_INCREMENT PRIMARY KEY

• Better than no key – eg, for maintenance

• Useful when “natural key” is bulky and lots

of secondary keys; else unnecessary

• Note: each InnoDB secondary key includes

the PK columns. (Bulky PK → bulky

secondary keys)

www.EngineeringBooksPdf.com

Size of InnoDB PK

Each InnoDB secondary key includes the PK

columns.

• Bulky PK → bulky secondary keys

• "Using index" may kick in – because you

have the PK fields implicitly in the

Secondary key

www.EngineeringBooksPdf.com

No PK?

InnoDB must have a PK:

1.User-provided (best)

2.First UNIQUE NOT NULL key (sloppy)

3.Hidden, inaccessible 6-byte integer (you

are better off with your own A_I)

"Trust me, have a PK."

www.EngineeringBooksPdf.com

Redundant Index

PRIMARY KEY (id),

INDEX (id, x),

UNIQUE (id, y)

Since the PK is “clustered” in InnoDB, the

other two indexes are almost totally

useless. Exception: If the index is “covering”.

INDEX (x, id) – a different case

www.EngineeringBooksPdf.com

Compound PK - Relationship

CREATE TABLE Relationship (

foo_id INT …,

bar_id INT …,

PRIMARY KEY (foo_id, bar_id),

INDEX (bar_id, foo_id) –- if

going both directions

) ENGINE=InnoDB;

www.EngineeringBooksPdf.com

Use Cases

Derived from real life

www.EngineeringBooksPdf.com

Yahoo! Confidential

Normalizing (Mapping) table

Goal: Normalization – id ↔ value

 id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 name VARCHAR(255),

 PRIMARY KEY (id),

 UNIQUE (name)

In MyISAM add these to “cover”: INDEX(id,name), INDEX(name,id)

 www.EngineeringBooksPdf.com

Normalizing BIG

id MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT,

md5 BINARY(16/22/32) NOT NULL,

stuff TEXT/BLOB NOT NULL,

PRIMARY KEY (id),

UNIQUE (md5)

INSERT INTO tbl (md5, stuff) VALUES($m,$s)

 ON DUPLICATE KEY UPDATE id=LAST_INDERT_ID(id);

$id = SELECT LAST_INSERT_ID();

Caveat: Dups burn ids.

www.EngineeringBooksPdf.com

Avoid Burn

1.UPDATE ... JOIN ... WHERE id IS NULL --

Get the ids (old) – Avoids Burn

2.INSERT IGNORE ... SELECT DISTINCT ... --

New rows (if any)

3.UPDATE ... JOIN ... WHERE id IS NULL --

Get the ids (old or new) – multi-thread is

ok.

www.EngineeringBooksPdf.com

WHERE lat … AND lng …

• Two fields being range tested

• Plan A: INDEX(lat), INDEX(lng) – let

optimizer pick

• Plan B: Complex subqueries / UNIONs

beyond scope

• Plan C: Akiban

• Plan D: Partition on Latitude; PK starts with

Longitude:
http://mysql.rjweb.org/doc.php/latlng

Yahoo! Confidential www.EngineeringBooksPdf.com

Yahoo! Confidential

Index on MD5 / GUID

• VERY RANDOM! Therefore,

• Once the index is bigger than can fit in RAM

cache, you will be thrashing on disk

• What to do??

• Normalize

• Some other key

• PARTITION by date may help INSERTs

• http://mysql.rjweb.org/doc.php/uuid

(type-1 only)

 www.EngineeringBooksPdf.com

http://mysql.rjweb.org/doc.php/uuid
http://mysql.rjweb.org/doc.php/uuid

Yahoo! Confidential

Key-Value

• Flexible, expandable

• Clumsy, inefficient
• http://mysql.rjweb.org/doc.php/eav

• Horror story about RDF...

• Indexes cannot make up for the

clumsiness

 www.EngineeringBooksPdf.com

Yahoo! Confidential

ORDER BY RAND()

• No built-in optimizations

• Will read all rows, sort by RAND(), deliver

the LIMIT
• http://mysql.rjweb.org/doc.php/random

 www.EngineeringBooksPdf.com

Pagination

• ORDER BY … LIMIT 40,10 – Indexing

won't be efficient

• → Keep track of “left off”

• WHERE x > $leftoff ORDER BY …

LIMIT 10

• LIMIT 11 – to know if there are more
• http://mysql.rjweb.org/doc.php/pagination

www.EngineeringBooksPdf.com

Latest 10 Articles

• Potentially long list

• of articles, items, comments, etc;

• you want the "latest"

But

• JOIN getting in the way, and

• INDEXes are not working for you

Then build an helper table with a useful index:

http://mysql.rjweb.org/doc.php/lists

www.EngineeringBooksPdf.com

LIMIT rows & get total count

• SELECT SQL_CALC_FOUND_ROWS …

LIMIT 10

• SELECT FOUND_ROWS()

• If INDEX can be used, this is not “too”

bad.

• Avoids a second SELECT

Yahoo! Confidential www.EngineeringBooksPdf.com

ORDER BY x LIMIT 5

• Only if you get to the point of using x in

the INDEX is the LIMIT going to be

optimized.

• Otherwise it will

1. Collect all possible rows – costly

2. Sort by x – costly

3. Deliver first 5

Yahoo! Confidential www.EngineeringBooksPdf.com

“It’s not using my index!”

SELECT … FROM tbl WHERE x=3;

INDEX (x)

• Case: few rows have x=3 – will use

INDEX.

• Case: 10-30% match – might use INDEX

• Case: most rows match – will do table scan

The % depends on the phase of the moon

www.EngineeringBooksPdf.com

Getting ORDERed rows

Plan A: Gather the rows, filter via WHERE,

deal with GROUP BY & DISTINCT, then

sort (“filesort”).

Plan B: Use an INDEX to fetch the rows in

the ‘correct’ order. (If GROUP BY is used,

it must match the ORDER BY.)

The optimizer has trouble picking between

them.

www.EngineeringBooksPdf.com

INDEX(a,b) vs (b,a)

INDEX (a, b) vs INDEX (b, a)

WHERE a=1 AND b=2 – both work equally well

WHERE a=1 AND b>2 – first is better

WHERE a>1 AND b>2 – each stops after 1st col

WHERE b=2 – 2nd only

WHERE b>2 – 2nd only

www.EngineeringBooksPdf.com

Compound “>”

• [assuming] INDEX(hr, min)

• WHERE (hr, min) >= (7,45) -- poorly optimized

• WHERE hr >= 7 AND min >= 45 – wrong

• WHERE (hr = 7 AND min >= 45) OR (hr > 7) – slow

because of OR

• WHERE hr >= 7 AND (hr > 7 OR min >= 45) – better;

[only needs INDEX(hr)]

• Use TIME instead of two fields! – even better

Yahoo! Confidential www.EngineeringBooksPdf.com

UNION [ALL | DISTINCT]

• UNION defaults to UNION DISTINCT;

maybe UNION ALL will do? (Avoids

dedupping pass)

• Best practice: Explicitly state ALL or

DISTINCT

Yahoo! Confidential www.EngineeringBooksPdf.com

DISTINCT vs GROUP BY

• SELECT DISTINCT … GROUP BY →

redundant

• To dedup the rows: SELECT DISTINCT

• To do aggregates: GSELECT GROUP BY

Yahoo! Confidential www.EngineeringBooksPdf.com

OR --> UNION

• OR does not optimize well

• UNION may do better

SELECT ... WHERE a=1 OR b='x'

-->

SELECT ... WHERE a=1

UNION DISTINCT

SELECT ... WHERE b='x'

Yahoo! Confidential www.EngineeringBooksPdf.com

(break)

www.EngineeringBooksPdf.com

EXPLAIN SELECT …

To see if your INDEX is useful

http://dev.mysql.com/doc/refman/5.5/en/explain-output.html

www.EngineeringBooksPdf.com

Yahoo! Confidential

EXPLAIN

• Run EXPLAIN SELECT ... to find out how

MySQL might perform the query today.

• Caveat: Actual query may pick diff plan

• Explain says which key it will use; SHOW

CREATE TABLE shows the INDEXes

• If using compound key, look at byte len to

deduce how many fields are used.

 <#> www.EngineeringBooksPdf.com

Yahoo! Confidential

EXPLAIN – “using index”

• EXPLAIN says “using index”
• Benefit: Don’t need to hit data ☺

• How to achieve: All fields used are in one index

• InnoDB: Remember that PK field(s) are in secondary
indexes

• Tip: Sometimes useful to add fields to index:
• SELECT a,b FROM t WHERE c=1

• SELECT b FROM t WHERE c=1 ORDER BY a

• SELECT b FROM t WHERE c=1 GROUP BY a

• INDEX (c,a,b)

 www.EngineeringBooksPdf.com

EXPLAIN EXTENDED

EXPLAIN EXTENDED SELECT …;

SHOW WARNINGS;

The first gives an extra column.

The second details how the optimizer

reformulated the SELECT. LEFT

JOIN→JOIN and other xforms.

www.EngineeringBooksPdf.com

Yahoo! Confidential

EXPLAIN – filesort

• Filesort: ☹ But it is just a symptom.

• A messy query will gather rows, write to

temp, sort for group/order, deliver

• Gathering includes all needed columns

• Write to tmp:

• Maybe MEMORY, maybe MyISAM

• Maybe hits disk, maybe not -- can't tell easily

 www.EngineeringBooksPdf.com

“filesort”

These might need filesort:

• DISTINCT

• GROUP BY

• ORDER BY

• UNION DISTINCT

Possible to need multiple filsorts (but no

clue)

Yahoo! Confidential www.EngineeringBooksPdf.com

Yahoo! Confidential

“Using Temporary”

• if

• no BLOB, TEXT, VARCHAR > 512, FULLTEXT, etc

(MEMORY doesn’t handle them)

• estimated data < max_heap_table_size

• others

• then “filesort” is done using the MEMORY

engine (no disk)

• VARCHAR(n) becomes CHAR(n) for MEMORY

• utf8 takes 3n bytes

• else MyISAM is used

 www.EngineeringBooksPdf.com

EXPLAIN PARTITIONS SELECT

Check whether the “partition pruning”

actually pruned.

The “first” partition is always included when

the partition key is DATE or DATETIME.

This is to deal with invalid dates like

20120500.

Tip: Artificial, empty, “first” partition.

www.EngineeringBooksPdf.com

INDEX cost

• An INDEX is a BTree.

• Smaller than data (usually)

• New entry added during INSERT (always up to
date)

• UPDATE of indexed col -- juggle index entry

• Benefit to SELECT far outweighs cost of
INSERT (usually)

www.EngineeringBooksPdf.com

Work-Arounds

Inefficiencies, and what to do

about them

www.EngineeringBooksPdf.com

Yahoo! Confidential

Add-an-Index-Cure (not)

• Normal learning curve:

• Stage 1: Learn to build table

• Stage 2: Learn to add index

• Stage 3: Indexes are a panacea, so go wild

adding indexes

• Don’t go wild. Every index you add costs

something in

• Disk space

• INSERT/UPDATE time

 www.EngineeringBooksPdf.com

Yahoo! Confidential

OR → UNION

• INDEX(a), INDEX(b) != INDEX(a, b)

• Newer versions sometimes use two

indexes

• WHERE a=1 OR b=2 =>

(SELECT ... WHERE a=1)

UNION

(SELECT ... WHERE b=2)

 www.EngineeringBooksPdf.com

Subqueries – Inefficient

Generally, subqueries are less efficient than the

equivalent JOIN.

Subquery with GROUP BY or LIMIT may be

efficient

5.6 and MariaDB 5.5 do an excellent job of

making most subqueries perform well

Yahoo! Confidential www.EngineeringBooksPdf.com

Subquery Types

SELECT a, (SELECT …) AS b FROM …;

 RoT: Turn into JOIN if no agg/limit

 RoT: Leave as subq. if aggregation

SELECT … FROM (SELECT …);

 Handy for GROUP BY or LIMIT

SELECT … WHERE x IN (SELECT …);

SELECT … FROM (SELECT …) a

 JOIN (SELECT …) b ON …;

 Usually very inefficient – do JOIN instead (Fixed in

5.6 and MariaDB 5.5)

Yahoo! Confidential www.EngineeringBooksPdf.com

Subquery – example of utility

• You are SELECTing bulky stuff (eg TEXT/BLOB)

• WHERE clause could be entirely indexed, but is messy

(JOIN, multiple ranges, ORs, etc)

• → SELECT a.text, … FROM tbl a

 JOIN (SELECT id FROM tbl WHERE …) b

 ON a.id = b.id;

• Why? Smaller “index scan” than “table scan”

Yahoo! Confidential www.EngineeringBooksPdf.com

Extra filesort

• “ORDER BY NULL” – Eh? “I don’t care

what order”

• GROUP BY may sort automatically

• ORDER BY NULL skips extra sort if

GROUP BY did not sort

• Non-standardNo

Yahoo! Confidential www.EngineeringBooksPdf.com

Yahoo! Confidential

USE, FORCE ("hints")

• SELECT ... FROM foo USE INDEX(x)

• RoT: Rarely needed

• Sometimes ANALYZE TABLE fixes the

‘problem’ instead, by recalculating the

“statistics”.

• RoT: Inconsistent cardinality → FORCE

is a mistake.

• STRAIGHT_JOIN forces order of table

usage (use sparingly)
 www.EngineeringBooksPdf.com

Datatypes

little improvements that can be

made

www.EngineeringBooksPdf.com

• VARCHAR (utf8: 3x, utf8mb4: 4x) →

VARBINARY (1x)

• INT is 4 bytes → SMALLINT is 2 bytes,

etc

• DATETIME → TIMESTAMP (8*:4)

• DATETIME → DATE (8*:3)

• Normalize (id instead of string)

• VARCHAR → ENUM (N:1)

Yahoo! Confidential

Field Sizes

www.EngineeringBooksPdf.com

Yahoo! Confidential

Smaller → Cacheable → Faster

• Fatter fields → fatter indexes →

more disk space → poorer caching →

more I/O → poorer performance

• INT is better than a VARCHAR for a url

• But this may mean adding a mapping table

 www.EngineeringBooksPdf.com

WHERE fcn(col) = ‘const’

• No functions!

• WHERE <fcn>(<indexed col>) = …

• WHERE lcase(name) = ‘foo’

• Add extra column; index `name`

• Hehe – in this example lcase is

unnecessary if using COLLATE *_ci !

Yahoo! Confidential www.EngineeringBooksPdf.com

Date Range

• WHERE dt BETWEEN ‘2009-02-27’

 AND ‘2009-03-02’ →

• “Midnight problem”
WHERE dt >= ‘2009-02-27’

 AND dt < ‘2009-02-27’ + INTERVAL 4 DAY

• WHERE YEAR(dt) = ‘2009’ →

• Function precludes index usage
WHERE dt >= ‘2009-01-01’

 AND dt < ‘2009-01-01’ + INTERVAL 1 YEAR

www.EngineeringBooksPdf.com

WHERE utf8 = latin1

• Mixed character set tests (or mixed

collation tests) tend not to use INDEX

o Declare VARCHAR fields consistently
DD

• WHERE foo = _utf8 'abcd'

Yahoo! Confidential www.EngineeringBooksPdf.com

Don’t index sex

• gender CHAR(1) CHARSET ascii

• INDEX(gender)

• Don’t bother!

• WHERE gender = ‘F’ – if it occurs > 10%,

index will not be used

www.EngineeringBooksPdf.com

Prefix Index

• INDEX(a(10)) – Prefixing usually bad

• May fail to use index when it should

• May not use subsequent fields

• Must check data anyway

• Etc.

• UNIQUE(a(10)) constrains the first 10

chars to be unique – probably not what

you wanted!

• May be useful for TEXT/BLOB

Yahoo! Confidential www.EngineeringBooksPdf.com

VARCHAR – VARBINARY

• Collation takes some effort

• UTF8 may need 3x the space (utf8mb4: 4x)

• CHAR, TEXT – collated (case folding, etc)

• BINARY, BLOB – simply compare the bytes

• Hence… MD5s, postal codes, IP

addresses, etc, should be BINARY or

VARBINARY

Yahoo! Confidential www.EngineeringBooksPdf.com

IP Address

• VARBINARY(39)

• Avoids unnecessary collation

• Big enough for Ipv6

• BINARY(16)

• Smaller

• Sortable, Range-scannable

• http://mysql.rjweb.org/doc.php/ipranges

Yahoo! Confidential www.EngineeringBooksPdf.com

Tools

www.EngineeringBooksPdf.com

Tools

• slow log

• show create table

• status variables

• percona toolkit or others.

Yahoo! Confidential www.EngineeringBooksPdf.com

SlowLog

• Turn it on

• long_query_time = 2 -- seconds

• pt-query-digest -- to find worst queries

• EXPLAIN – to see what it is doing

www.EngineeringBooksPdf.com

Handler_read%

A tool for seeing what is happening…

FLUSH STATUS;

SELECT …;

SHOW STATUS LIKE ‘Handler_read%’;

www.EngineeringBooksPdf.com

PARTITIONing

Index gotchas, etc.

www.EngineeringBooksPdf.com

PARTITION Keys

• Either:

• No UNIQUE or PRIMARY KEY, or

• All Partition-by fields must be in all

UNIQUE/PRIMARY KEYs

• (Even if artificially added to AI)

• RoT: Partition fields should not be first in

keys

• Sorta like getting two-dimensional index -

- first is partition 'pruning', then PK.

Yahoo! Confidential www.EngineeringBooksPdf.com

PARTITION Use Cases

• Possible use cases

• Time series

• DROP PARTITION much better than DELETE

• “two” clustered indexes

• random index and most of effort spent in

last partition

Yahoo! Confidential www.EngineeringBooksPdf.com

PARTITION RoTs

Rules of Thumb

• Reconsider PARTITION – often no benefit

• Don't partition if under 1M rows

• BY RANGE only

• No SUBPARTITIONs

http://mysql.rjweb.org/doc.php/ricksrots#partitioning

 www.EngineeringBooksPdf.com

PARTITION Pruning

• Uses WHERE to pick some partition(s)

• Sort of like having an extra dimension

• Don't need to pick partition (cannot until

5.6)

• Each "partition" is like a table

Yahoo! Confidential www.EngineeringBooksPdf.com

MyISAM

The big differences between

MyISAM and InnoDB

www.EngineeringBooksPdf.com

MyISAM vs InnoDB Keys

InnoDB PK is “clustered” with the data

• PK lookup finds row

• Secondary indexes use PK to find data

MyISAM PK is just like secondary indexes

• All indexes (in .MYI) point to data (in .MYD)

via row number or byte offset
http://mysql.rjweb.org/doc.php/myisam2innodb

www.EngineeringBooksPdf.com

Yahoo! Confidential

Caching

• MyISAM: 1KB BTree index blocks are cached

in “key buffer”

• key_buffer_size

• Recently lifted 4GB limit

• InnoDB: 16KB BTree index and data blocks

are cached in buffer pool

• innodb_buffer_pool_size

• The 16K is settable (rare cases)

• MyISAM has “delayed key write” – probably

rarely useful, especially with RAID & BBWC

 www.EngineeringBooksPdf.com

Yahoo! Confidential

4G in MyISAM

• The “pointer” in MyISAM indexes is fixed at N
bytes.
• Old versions defaulted to 4 bytes (4G)

• 5.1 default: 6 bytes (256T)

• Fixed/Dynamic
• Fixed length rows (no varchar, etc): Pointer is row

number

• Dynamic: Pointer is byte offset

• Override/Fix: CREATE/ALTER TABLE ...
MAX_ROWS = ...

• Alter is slow

 www.EngineeringBooksPdf.com

Miscellany

you can’t index a kitchen sink

www.EngineeringBooksPdf.com

Impact on INSERT / DELETE

• Write operations need to update indexes

– sooner or later

• Performance

• INSERT at end = hot spot there

• Random key = disk thrashing

• Minimize number of indexes, especially

random

Yahoo! Confidential www.EngineeringBooksPdf.com

WHERE name LIKE ‘Rick%’

• WHERE name LIKE ‘Rick%’

• INDEX (name) – “range”

• WHERE name LIKE ‘%James’

• won’t use index

Yahoo! Confidential www.EngineeringBooksPdf.com

WHERE a=1 GROUP BY b

• WHERE a=1 GROUP BY b

 WHERE a=1 ORDER BY b

 WHERE a=1 GROUP BY b ORDER BY b

• INDEX(a, b) – nice for those

• WHERE a=1 GROUP BY b ORDER BY c

• INDEX(a, b, c) – no better than (a,b)

Yahoo! Confidential www.EngineeringBooksPdf.com

WHERE a > 9 ORDER BY a

• WHERE a > 9 ORDER BY a

• INDEX (a) – will catch both the WHERE and

the ORDER BY ☺

• WHERE b=1 AND a > 9 ORDER BY a

• INDEX (b, a)

Yahoo! Confidential www.EngineeringBooksPdf.com

Yahoo! Confidential

GROUP BY, ORDER BY

• if there is a compound key such that

• WHERE is satisfied, and

• there are more fields in the key,

• then, MySQL will attempt to use more

fields in the index for GROUP BY and/or

ORDER BY

• GROUP BY aa ORDER BY bb → extra

“filesort”

 www.EngineeringBooksPdf.com

Yahoo! Confidential

ORDER BY, LIMIT

• If you get all the way through the ORDER

BY, still using the index, and you have

LIMIT, then the LIMIT is done efficiently.

• If not, it has to gather all the data, sort it,

finally deliver what LIMIT says.

• This is the “Classic Meltdown Query”.

 www.EngineeringBooksPdf.com

GROUP+ORDER+LIMIT

• Efficient:

• WHERE a=1 GROUP BY b

INDEX(a,b)

• WHERE a=1 ORDER BY b LIMIT 9

INDEX(a,b)

• GROUP BY b ORDER BY c

INDEX(b,c)

• Inefficient:

• WHERE x.a=1 AND y.c=2 GROUP/ORDER/LIMIT

• (because of 2 tables)

Yahoo! Confidential www.EngineeringBooksPdf.com

Yahoo! Confidential

Index Types (BTree, etc)

• BTree
• most used, most general

• Hash
• MEMORY Engine only

• useless for range scan

• Fulltext
• Pretty good for “word” searches in text

• GIS (Spatial) (2D)

• No bit, etc.

 www.EngineeringBooksPdf.com

FULLTEXT index

• “Words”

• Stoplist excludes common English words

• Min length defaults to 4

• Natural

• IN BOOLEAN MODE

• Trumps other INDEXes

• Serious competitors: Lucene, Sphinx

• MyISAM only until 5.6.4

o Multiple diffs in InnoDB FT
Yahoo! Confidential www.EngineeringBooksPdf.com

AUTO_INCREMENT index

• AI field must be first in some index

• Need not be UNIQUE or PRIMARY

• Can be compound (esp. for PARTITION)

• Could explicitly add dup id (unless ...)

• (MyISAM has special case for 2nd field)

www.EngineeringBooksPdf.com

RoTs

Rules of Thumb

• 100 I/Os / sec (500/sec for SSD)

• RAID striping (1,5,6,10) – divide time by striping

factor

• RAID write cache – writes are “instantaneous”

but not sustainable in the long haul

• Cached fetch is 10x faster than uncached

• Query Cache is useless (in heavy writes)

www.EngineeringBooksPdf.com

Yahoo! Confidential

Low cardinality, Not equal

• WHERE deleted = 0

• WHERE archived != 1

• These are likely to be poorly performing
queries. Characteristics:
• Poor cardinality

• Boolean

• !=

• Workarounds
• Move deleted/hidden/etc rows into another table

• Juggle compound index order (rarely works)

• "Cardinality", by itself, is rarely of note

 www.EngineeringBooksPdf.com

Not NOT

• Rarely uses INDEX:

• NOT LIKE

• NOT IN

• NOT (expression)

• <>

• NOT EXISTS (SELECT * …) –

essentially a LEFT JOIN; often efficient

Yahoo! Confidential www.EngineeringBooksPdf.com

Replication

• SBR

• Replays query

• Slave could be using different Engine and/or

Indexes

• RBR

• PK important

www.EngineeringBooksPdf.com

Index Limits

• Index width – 767B per column

• Index width – 3072B total

• Number of indexes – more than you should

have

• Disk size – terabytes

www.EngineeringBooksPdf.com

Location

• InnoDB, file_per_table – .ibd file

• InnoDB, old – ibdata1

• MyISAM – .MYI

• PARTITION – each partition looks like a

separate table

www.EngineeringBooksPdf.com

ALTER TABLE

1. copy data to tmp

2. rebuild indexes (on the fly, or separately)

3. RENAME into place

Even ALTERs that should not require the copy

do so. (few exceptions)

RoT: Do all changes in a single ALTER. (some

PARTITION exceptions)

5.6 fixes most of this

www.EngineeringBooksPdf.com

Tunables

• InnoDB indexes share caching with data in

innodb_buffer_pool_size – recommend 70% of

available RAM

• MyISAM indexes, not data, live in

key_buffer_size – recommend 20% of available

RAM

• log_queries_not_using_indexes – don’t bother

www.EngineeringBooksPdf.com

Yahoo! Confidential

Closing

• More Questions?

• http://forums.mysql.com/list.php?24

 www.EngineeringBooksPdf.com

