My SQL
Performance
Schema

www.EngineeringBooksPdf.com

Abstract
This is the MySQL Performance Schema extract from the MySQL 5.6 Reference Manual.
For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages,
and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation
Library.

Licensing information—MySQL 5.6. This product may include third-party software, used under license. If you are
using a Commercial release of MySQL 5.6, see this document for licensing information, including licensing information
relating to third-party software that may be included in this Commercial release. If you are using a Community release
of MySQL 5.6, see this document for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Licensing information—MySQL Cluster. This product may include third-party software, used under license.

If you are using a Commercial release of MySQL Cluster NDB 7.3 or NDB 7.4, see this document for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Cluster NDB 7.3 or NDB 7.4, see this document for licensing
information, including licensing information relating to third-party software that may be included in this Community
release.

Document generated on: 2017-04-26 (revision: 51899)

www.EngineeringBooksPdf.com

http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://downloads.mysql.com/docs/licenses/mysqld-5.6-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysqld-5.6-gpl-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.4-com-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.4-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiie ittt ettt e e e et et e et et e e e e et e e e eebe e e eeenaaeeees v
1 MySQL Performance SCREMAccouuiiiiiiii et 1
2 Performance Schema QUICK STAN ...t e e e e e et e e e et e e e e eean s 3
3 Performance Schema Build ConfiQUrationuuiiiiiiiiiiiii e e 11
4 Performance Schema Startup ConfIQUIALIONiiiiiiiiiiiiii e 13
5 Performance Schema Runtime ConfiQUIationoooiiuiiiiiiii e 17
5.1 Performance Schema Event TimiNgoiiiiiiiii e 18

5.2 Performance Schema Event Filteringcoouuiiiiiiii e 21

5.3 EVENE Pre-FilterNg ..oove it e et ettt e e e e 23

5.4 Pre-Filtering DY INSITUMENT ...ttt 23

5.5 Pre-Filtering DY ODJECT ... ittt 25

5.6 Pre-Filtering DY TRIrEadcoooiiiiiiiii et 26

5.7 Pre-Filtering DY CONSUMETiiiii ettt e e e e e e aaa s 27

5.8 Example Consumer ConfiQUIatiONScoouuuiiiiiiieiiii et 30

5.9 Naming Instruments or Consumers for Filtering Operationsccccceiveiiiiiiieiiiiinieeeiieeenen 35

5.10 Determining What IS INSIrUMENTEAoooiiiiiiiii e 35

6 Performance SChema QUETIESttt et et e et e e e e e et e e e e e ean e eaeen 37
7 Performance Schema Instrument Naming CONVENTIONSiiiiiiiiiiiiiieiii e 39
8 Performance Schema Status MONITOIINGoiereieieii et enees 43
9 Performance Schema General Table CharaCteriStiCsooouiiiiiiiii e a7
10 Performance Schema Table DESCHPLONSuuiiiiiiieiiii e 49
10.1 Performance Schema Table INUEXiiuiiiii e 50

10.2 Performance Schema Setup TabIEScoouiiiiiiiii e 52
10.2.1 The setup_actors Tablecoouuiiiiiiii e 52

10.2.2 The setup_ConSUMErS TabIe ... e 53

10.2.3 The setup_instruments TabIe 53

10.2.4 The setup_0bJectS TabIeiiiiiii e e 54

10.2.5 The setup_timers Tablecoouuiiiiiii e 56

10.3 Performance Schema INStance Tablesiiiiii e 56
10.3.1 The cond_instances Tableoo e 57

10.3.2 The file_InStances TabIe ... e e 57

10.3.3 The mutex_iNStances Tableoooii e e 57

10.3.4 The rwlock_instances Table ... e 59

10.3.5 The socket_INStanCces Table ... e 59

10.4 Performance Schema Wait Event Tables ..., 61
10.4.1 The events_waits_current Table ... e 63

10.4.2 The events_waits_hisStory Table ... e 65

10.4.3 The events_waits_history _[ong Table ... 66

10.5 Performance Schema Stage Event Tables ... 66
10.5.1 The events_stages_current Table 68

10.5.2 The events_stages_history Tableccoouiiiiiiiii e 69

10.5.3 The events_stages_history_long Table ..., 69

10.6 Performance Schema Statement Event Tables ... 70
10.6.1 The events_statements_current Table ..o 73

10.6.2 The events_statements_history Table ... 77

10.6.3 The events_statements_history _long Table ..o 77

10.7 Performance Schema Connection TabIesco. i e 77
10.7.1 The accounts Table ... e 79

10.7.2 The hOStS TabBIe ... e 80

10.7.3 The USEIS TabIE ... e e e e e e e e e e eanaaees 80

10.8 Performance Schema Connection Attribute Tables ... 81

iii

www.EngineeringBooksPdf.com

MySQL Performance Schema

10.8.1 The session_account_connect_attrs Tableccooovviiiiiiiiii e, 82

10.8.2 The session_connect_attrs Tablecoiiiiiiiiiiiii e 83

10.9 Performance Schema Summary TabIESc.uiiiiiiiiiiiii e e 84
10.9.1 Wait Event SUMMArY TabIEScovuiiiiiiii et 85

10.9.2 Stage SumMmary Tablesccouiiiiii e 87

10.9.3 Statement SUMMArY TabBIEScouniiiici e e 88

10.9.4 Object Wait Summary Tablec.ooiiiiiii e 90

10.9.5 File 1/O SUMMArY TabIESciiiiiiii e e e e e e e e e 91

10.9.6 Table I/O and Lock Wait Summary Tablesccccoiiiiiiiiiiii e 92

10.9.7 Socket SUMMArY TabIESiiiiiiii e 95

10.10 Performance Schema Miscellaneous TabIescoovviiiiiiiiiiiiii e 96
10.10.1 The host_cache Tableccoouiiiii e e 97

10.10.2 The performance_timers Table ..o 99

10.10.3 The threads Tableccoouuniiiiii e e e 100

11 Performance Schema and PIUGINSoouiiiiiiiii e e e e e e e 105
12 Performance Schema System Variablescooouiiiiiiiiii e 107
13 Performance Schema Status Variablescoooiiiiiiii e 121
14 Using the Performance Schema to Diagnose Problemscccooiiiiiiiiiii i 125
14.1 Query Profiling Using Performance Schemaccooooii i 126

iv

www.EngineeringBooksPdf.com

Preface and Legal Notices

This is the MySQL Performance Schema extract from the MySQL 5.6 Reference Manual.

Legal Notices

Copyright © 1997, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

www.EngineeringBooksPdf.com

Legal Notices

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

vi

www.EngineeringBooksPdf.com

Chapter 1 MySQL Performance Schema

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level. The
Performance Schema has these characteristics:

The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE SCHEMA storage engine and the per f or mance_schena
database. The Performance Schema focuses primarily on performance data. This differs from

| NFORVATI ON_SCHEMA, which serves for inspection of metadata.

The Performance Schema monitors server events. An “event” is anything the server does that takes time
and has been instrumented so that timing information can be collected. In general, an event could be a
function call, a wait for the operating system, a stage of an SQL statement execution such as parsing or
sorting, or an entire statement or group of statements. Event collection provides access to information
about synchronization calls (such as for mutexes) file and table I/O, table locks, and so forth for the
server and for several storage engines.

Performance Schema events are distinct from events written to the server's binary log (which describe
data modifications) and Event Scheduler events (which are a type of stored program).

Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written to
the binary log.

Current events are available, as well as event histories and summaries. This enables you to determine
how many times instrumented activities were performed and how much time they took. Event information
is available to show the activities of specific threads, or activity associated with particular objects such as
a mutex or file.

The PERFORVANCE _SCHENA storage engine collects event data using “instrumentation points” in server
source code.

Collected events are stored in tables in the per f or mance_schena database. These tables can be
queried using SELECT statements like other tables.

Performance Schema configuration can be modified dynamically by updating tables in the
per f or mance_schena database through SQL statements. Configuration changes affect data collection
immediately.

Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply to
storage engines might not be implemented for all storage engines. Instrumentation of each third-party
engine is the responsibility of the engine maintainer. See also Restrictions on Performance Schema.

Data collection is implemented by modifying the server source code to add instrumentation. There are no
separate threads associated with the Performance Schema, unlike other features such as replication or
the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution while
having minimal impact on server performance. The implementation follows these design goals:

Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAI N) to change.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/performance-schema-restrictions.html
http://dev.mysql.com/doc/refman/5.6/en/explain.html

No memory allocation is done beyond that which occurs during server startup. By using early allocation
of structures with a fixed size, it is never necessary to resize or reallocate them, which is critical for
achieving good runtime performance.

Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

The parser is unchanged. There are no new keywords or statements.
Execution of server code proceeds normally even if the Performance Schema fails internally.

When there is a choice between performing processing during event collection initially or during event
retrieval later, priority is given to making collection faster. This is because collection is ongoing whereas
retrieval is on demand and might never happen at all.

It is easy to add new instrumentation points.

Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code will continue to work. This benefits developers of third-party plugins because it is not necessary to
upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

The MySQL sys schema is a set of objects that provides convenient access
to data collected by the Performance Schema. In MySQL 5.7, the sys schema
is installed by default. For MySQL 5.6, you can obtain it from the schema
development web site at https://github.com/mysql/mysql-sys. For usage
instructions, see MySQL sys Schema.

www.EngineeringBooksPdf.com

https://github.com/mysql/mysql-sys
http://dev.mysql.com/doc/refman/5.7/en/sys-schema.html

Chapter 2 Performance Schema Quick Start

This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Chapter 14, Using the Performance Schema to Diagnose Problems.

For the Performance Schema to be available, support for it must have been configured when

MySQL was built. You can verify whether this is the case by checking the server's help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
perfor mance_schema:

shel | > nysqgl d --verbose --help

- - per f ormance_schema

Enabl e t he perfornance schena.
--performance_schema_events_wai ts_hi story_| ong_si ze=#

Nunber of rows in events_waits_history_| ong.

If such variables do not appear in the output, your server has not been built to support the Performance
Schema. In this case, see Chapter 3, Performance Schema Build Configuration.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the per f or rance_schena variable set to an appropriate value. For
example, use these lines in your ny. cnf file:

[mysql d]
per f or mance_schema=0N

When the server starts, it sees per f or mance_schena and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

nysql > SHOW VARI ABLES LI KE ' per f or mance_schena' ;

Fom e e eemaaao C +
| Variabl e_nane | Val ue |
Fom e e eemaaao C +
| perfornmance_schenma | ON |
Fom e e eemaaao C +

A value of ON means that the Performance Schema initialized successfully and is ready for use. A value of
OFF means that some error occurred. Check the server error log for information about what went wrong.

The Performance Schema is implemented as a storage engine. If this engine is available (which you
should already have checked earlier), you should see it listed with a SUPPORT value of YES in the output
from the | NFORMATI ON_SCHENMA. ENG NES table or the SHOW ENG NES statement:

nmysqgl > SELECT * FROM | NFORMATI ON_SCHEMA. ENG NES
WHERE ENG NE=' PERFORVANCE SCHEMA' \ G
khkkkhkkhkkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhhhkkk 1 I’OW khkkkhkkhkkhkhkkhkhkhkhkdrhhkhkhkkhkkhkhkhkhkhhdxkk
ENG NE: PERFORMANCE_SCHEMA
SUPPORT: YES
COWMENT: Per f or mance Schenma
TRANSACTI ONS: NO
XA: NO
SAVEPO NTS: NO
nmysql > SHOW ENG NES\ G

Engi ne: PERFORMANCE SCHENA

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/engines-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-engines.html

Support: YES
Conment : Per formance Schema

Transacti ons: NO

XA: NO

Savepoi nts: NO

The PERFORMANCE SCHENA storage engine operates on tables in the per f or nance_schena database.
You can make per f or mance_schenma the default database so that references to its tables need not be
qualified with the database name:

nmysql > USE perf or mance_schena
Many examples in this chapter assume per f or mance_schena as the default database.

Performance Schema tables are stored in the per f or nance_schena database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the | NFORVATI ON_SCHENA database or by using SHOWstatements. For example, use either of these
statements to see what Performance Schema tables exist:

nysqgl > SELECT TABLE NAME FROM | NFORMATI ON_SCHEMA. TABLES
WHERE TABLE_SCHENMA = ' perfor mance_schena’

account s

cond_i nst ances

event s_st ages_current

event s_stages_hi story

event s_st ages_hi story_I| ong

event s_st ages_sunmary_by_account _by_event _nane
event s_st ages_sunmary_by_host _by_event _nane
event s_stages_sunmary_by_t hread_by_event _nane
event s_st ages_sunmary_by_user_by_event _nanme
event s_st ages_sunmary_gl obal _by_event _nane
event s_st at enment s_current

event s_statements_hi story

event s_statements_hi story_| ong

file_instances
file_summary_by_event _nane
file_summary_by_instance

host _cache

host s

mut ex_i nst ances

obj ect s_sunmary_gl obal _by_t ype
performance_tinmers

rw ock_i nst ances

sessi on_account _connect _attrs
sessi on_connect _attrs
setup_actors

set up_consuner s

setup_i nstrument s

set up_obj ect s

setup_tiners

socket _i nst ances

socket _sunmary_by_event _nane
socket _sunmary_by_i nst ance
table_i o_waits_sumrary_by_i ndex_usage
table_io_waits_sumrary_by table
tabl e_| ock_waits_summary_by_tabl e
t hr eads

users

4

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show.html

| accounts |
| cond_i nstances |
| events_stages_current |
| events_stages_history |
| events_stages_history_| ong |

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

The name of the per f or nance_schena database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHON CREATE TABLE:

nmysql > SHOW CREATE TABLE setup_tinmers\G
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkkhkkkhkkkx*x 1. I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkkhkkhkkhkkk*x
Tabl e: setup_tiners
Create Tabl e: CREATE TABLE "setup_tiners (
"NAMVE varchar (64) NOT NULL,
“TI MER_NAME' enunt(' CYCLE' ,' NANOSECOND , ' M CROSECOND , ' M LLI SECOND , ' TI CK')
NOT NULL
) ENG NE=PERFORMANCE_SCHEMA DEFAULT CHARSET=ut f 8

Table structure is also available by selecting from tables such as | NFORVATI ON_SCHENMA. COLUWNS or by
using statements such as SHOW COLUWVNS.

Tables in the per f or mance_schena database can be grouped according to the type of information

in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information about
the tables in each group, see Chapter 10, Performance Schema Table Descriptions.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect all
events. To turn all of these on and enable event timing, execute two statements (the row counts may differ
depending on MySQL version):

nmysql > UPDATE setup_i nstruments SET ENABLED = 'YES', TIMED = ' YES ;
Query OK, 338 rows affected (0.12 sec)

nmysql > UPDATE set up_consuners SET ENABLED = ' YES ;

Query OK, 8 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the event s_wai t s_current table. It contains
one row per thread showing each thread's most recent monitored event:

mysql > SELECT * FROM events_waits_current\ G
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkhhkkhkkkx*x 1 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkk*x
THREAD_I D: 0
EVENT_|I D 5523
END_EVENT_| D: 5523
EVENT_NAME: wai t/ synch/ mut ex/ mysys/ THR_LOCK: : nut ex
SOURCE: thr_I| ock.c: 525
TI MER_START: 201660494489586
TI MER_END: 201660494576112
TI MER_WAI T: 86526
SPI'NS: NULL

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.6/en/columns-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-columns.html

OBJECT_SCHEMA: NULL
OBJECT_NAME: NULL
| NDEX_NAME: NULL
OBJECT_TYPE: NULL

OBJECT_| NSTANCE_BEG N: 142270668
NESTI NG_EVENT_| D: NULL
NESTI NG_EVENT_TYPE: NULL
OPERATI ON: | ock
NUMBER_OF BYTES: NULL

FLAGS: 0

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK: : mut ex, a mutex in the nysys subsystem. The first few columns provide the following
information:

* The ID columns indicate which thread the event comes from and the event number.

» EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

» The timer columns show when the event started and stopped and how long it took. If an event is still
in progress, the TI MER_END and TI MER_WAI T values are NULL. Timer values are approximate and
expressed in picoseconds. For information about timers and event time collection, see Section 5.1,
“Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and show
what the server has been doing “recently” rather than “currently.” The event s_wai t s_hi st ory and
events waits_history_ | ong tables contain the most recent 10 events per thread and most recent
10,000 events, respectively. For example, to see information for recent events produced by thread 13, do
this:

mysql > SELECT EVENT | D, EVENT_NAME, TINMER WAIT
FROM events_wai ts_hi story WHERE THREAD | D = 13
ORDER BY EVENT_I D;

[T o m e e e e e e eemeeceecmeccademeeaeaaaaaa +
| EVENT_ID | EVENT_NAME TIMER WAIT |
[T o m e e e e e e eemeeceecmeccademeeaeaaaaaa +
86 | wait/synch/ mutex/ mysys/ THR_LOCK: : mut ex 686322
87 | wait/synch/ mutex/ mysys/ THR_LOCK nal | oc 320535
88
89 | wait/synch/ mutex/ mysys/ THR_LOCK nal | oc 377100
90 | wait/synch/ mutex/sql /LOCK pl ugi n 614673

659925

I
I
I
I
I
I
494001 |
I
I
I
+

+
I
+
I I I
I I I
| | wait/synch/ nut ex/ nysys/ THR LOCK nal | oc | 339390
I I I
I I I
| 91 | wait/synch/ mutex/sql / LOCK open |
I I I
I I I
I I I
I I I
+

92 | wait/synch/ nmutex/sql/THD: : LOCK t hd_dat a

93 | wait/synch/ mut ex/ mysys/ THR_LOCK mal | oc 222489

94 | wait/synch/ mut ex/ mysys/ THR_LOCK nal | oc 214947

95 | wai t/synch/ mut ex/ mysys/ LOCK_al ar m 312993
[T o m e e e e e e eemeeceecmeccademeeaeaaaaaa

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times or
have taken the most wait time, sort the events_wai ts_sunmary_gl obal by event nane table on
the COUNT_STAR or SUM TI MER_WAI T column, which correspond to a COUNT(*) or SUM TI VER_WAI T)
value, respectively, calculated over all events:

nmysql > SELECT EVENT_NAME, COUNT_STAR
FROM events_wai t s_sunmary_gl obal _by_event _nane

www.EngineeringBooksPdf.com

ORDER BY COUNT_STAR DESC LIM T 10;

e e e e e e mmmeeeeeeeeceeeee-mmeeeeeeecccaaaa—- Fommmmmeeaaaa +

| EVENT_NAVE | COUNT_STAR |

e e e e e e mmmeeeeeeeeceeeee-mmeeeeeeecccaaaa—- Fommmmmeeaaaa +
wai t / synch/ mut ex/ mysys/ THR_LOCK nal | oc 6419
wait/iolfilelsql/FRM 452
wai t / synch/ mut ex/ sql / LOCK_pl ugi n 337
wai t / synch/ mut ex/ mysys/ THR_LOCK_open 187
wai t / synch/ mut ex/ mysys/ LOCK_al ar m 147

wait/synch/ mutex/sql/THD: : LOCK_t hd_dat a	115

wait/io/lfilelnyisamkfile 102
wai t / synch/ mut ex/ sql / LOCK_gl obal _system vari abl es 89
wai t / synch/ mut ex/ mysys/ THR_LOCK: : nut ex 89
wai t / synch/ mut ex/ sql / LOCK_open 88

nmysqgl > SELECT EVENT_NAME, SUM Tl MER WAI T
FROM events_wai t s_summary_gl obal _by_event _nane
ORDER BY SUM TI MER WAIT DESC LIM T 10;

e e e e e e e mmeeeeeeccceceemmmeaaaa dom e eeea e e +

| EVENT_NAVE | SUMTIMER WAIT |

e e e e e e e mmeeeeeeccceceemmmeaaaa dom e eeea e e +
wait/iol/filelsql/MSQ_LOG 1599816582
wai t / synch/ mut ex/ mysys/ THR_LOCK _nal | oc 1530083250
wai t/iol/filelsql/binlog_index 1385291934
wait/iolfilelsql/FRM 1292823243
wait/io/filelnyisamkfile 411193611

wait/iol/filelsql/casetest 104324715
wai t / synch/ mut ex/ sql / LOCK_pl ugi n 86027823

| |
| |
| |
| |
| |
| wait/io/filelnyisam dfile | 322401645
| |
| |
| |
| wait/io/filelsql/pid | 72591750

|
|
|
|
|
|
wai t / synch/ mut ex/ mysys/ LOCK_al ar m 145126935 |
|
|
|
+

These results show that the THR_LOCK mal | oc mutex is “hot,” both in terms of how often it is used and
amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK nal | oc mutex is used only in debug builds. In production builds it
is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when used

by the server, produces an event. These tables provide event names and explanatory notes or status
information. For example, the fi | e_i nst ances table lists instances of instruments for file I/O operations
and their associated files:

nmysql > SELECT * FROM fil e_i nstances\ G
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x l r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkk*%x
FI LE_NAME: /opt/mysql -1 og/ 60500/ bi nl og. 000007

EVENT_NAME: wait/io/file/sql/binlog

OPEN_COUNT: 0

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x 2 r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x
FI LE_NAME: /opt/ mysql / 60500/ dat a/ nysql /tabl es_priv. Wl
EVENT_NAMVE: wait/io/file/nyisamkfile

OPEN_COUNT: 1

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x 3 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkk*%x
FI LE_NAME: /opt/ nmysql / 60500/ dat a/ nysql / col utms_pri v. Ml
EVENT_NAME: wait/io/file/nyisamkfile

OPEN_COUNT: 1

Setup tables are used to configure and display monitoring characteristics. For example, to see which event
timers are selected, query the set up_ti ner s tables:

www.EngineeringBooksPdf.com

nmysql > SELECT * FROM setup_ti ners;

ooccocococooo fooccoccccoooao +
| NAVE | TIMER_NAME |
ooccocococooo fooccoccccoooao +
idle	M CROSECOND
wait	CYCLE
stage	NANOCSECOND
statenent	NANOSECOND
ooccocococooo fooccoccccoooao +

set up_i nstrunent s lists the set of instruments for which events can be collected and shows which of
them are enabled:

nmysql > SELECT * FROM set up_i nstrumnents;

e S S +
| NAMVE | ENABLED | TIMED |
e S S +
wait/synch/ nutex/sql/LOCK gl obal _read_	ock	YES	YES
wait/synch/ nutex/sql/LOCK gl obal _system vari abl es	YES	YES	
wait/synch/ nutex/sql/LOCK	ock_db	YES	YES
wait/synch/ nut ex/sql/LOCK nmanager	YES	YES	
wait/synch/rw ock/sqgl/LOCK grant	YES	YES	
wait/synch/rw ock/sqgl/LOGGER: : LOCK_	ogger	YES	YES
wait/synch/rw ock/sqgl/LOCK sys_init_connect	YES	YES	
wait/synch/rw ock/sqgl/LOCK sys_init_slave	YES	YES	
wait/iolfilelsql/binlog	YES	YES	
wait/iolfilelsql/binlog_index	YES	YES	
wait/iolfilelsql/casetest	YES	YES	
	YES	YES	

wait/iolfilelsql/dbopt
To understand how to interpret instrument names, see Chapter 7, Performance Schema Instrument
Naming Conventions.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

nmysql > UPDATE setup_i nstrunents SET ENABLED = ' NO
VWHERE NAME = 'wai t/synch/ mut ex/ sql / LOCK nysql _create_db';

The Performance Schema uses collected events to update tables in the per f or rance_schena
database, which act as “consumers” of event information. The set up_consuner s table lists the available
consumers and which are enabled:

nmysql > SELECT * FROM set up_consuners;

e e e e e e emmmeeeeeeceaeaaaa Hemmmmeaaa +
| NAMVE | ENABLED |
e e e e e e emmmeeeeeeceaeaaaa Hemmmmeaaa +
events_stages_current	NO	
events_stages_history	NO	
events_stages_history_	ong	NO
events_statenents_current	YES	
events_statenents_history	NO	
events_statenents_history_	ong	NO
events_waits_current	NO	
events_waits_history	NO	
events_waits_history_	ong	NO
gl obal _instrumentation	YES	

www.EngineeringBooksPdf.com

| thread_instrunmentation | YES |
| statenents_digest | YES |
P S holoioioim e +

To control whether the Performance Schema maintains a consumer as a destination for event information,
set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 5.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_ti nmers lists the available event timers and their characteristics. For information about
timers, see Section 5.1, “Performance Schema Event Timing”.

www.EngineeringBooksPdf.com

10

www.EngineeringBooksPdf.com

Chapter 3 Performance Schema Build Configuration

For the Performance Schema to be available, it must be configured into the MySQL server at build time.
Binary MySQL distributions provided by Oracle Corporation are configured to support the Performance
Schema. If you use a binary MySQL distribution from another provider, check with the provider whether the
distribution has been appropriately configured.

If you build MySQL from a source distribution, enable the Performance Schema by running CMake with the
W TH PERFSCHENMA STORAGE ENG NE option enabled:

shel | > cmake . - DW TH_PERFSCHEMA STORAGE_ENG NE=1

Configuring MySQL with the - DW THOUT_PERFSCHEMA_STORAGE_ENG NE=1 option prevents inclusion
of the Performance Schema, so if you want it included, do not use this option. See MySQL Source-
Configuration Options.

If you install MySQL over a previous installation that was configured without the Performance Schema
(or with an older version of the Performance Schema that may not have all the current tables), run
nmysql _upgr ade after starting the server to ensure that the per f or rance_schena database exists
with all current tables. Then restart the server. One indication that you need to do this is the presence of
messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'

has the wong structure

[ERROR] Native table 'performance_schema'.'events_waits_history_|ong'
has the wrong structure

To verify whether a server was built with Performance Schema support, check its help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
per formance_schena:

shel | > nysqgl d --verbose --help

- - per f ormance_schenma

Enabl e t he perfornance schena.
--performance_schenma_events_waits_history | ong_size=#

Nunber of rows in events_waits_history_| ong.

You can also connect to the server and look for a line that names the PERFORMANCE SCHEIVA storage
engine in the output from SHOW ENG NES:

nysql > SHOW ENG NES\ G

Engi ne: PERFORMANCE_SCHEMA
Support: YES
Coment : Performance Schema
Transacti ons: NO
XA: NO
Savepoi nts: NO

If the Performance Schema was not configured into the server at build time, no row for

PERFORMANCE _SCHENA will appear in the output from SHOWV ENG NES. You might see

per f or mance_schena listed in the output from SHOW DATABASES, but it will have no tables and you will
not be able to use it.

11

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_storage_engine_options
http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_storage_engine_options
http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html
http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html
http://dev.mysql.com/doc/refman/5.6/en/show-engines.html
http://dev.mysql.com/doc/refman/5.6/en/show-engines.html
http://dev.mysql.com/doc/refman/5.6/en/show-databases.html

A line for PERFORMANCE SCHENMA in the SHOW ENG NES output means that the Performance Schema is
available, not that it is enabled. To enable it, you must do so at server startup, as described in the next
section.

12

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-engines.html

Chapter 4 Performance Schema Startup Configuration

To use the MySQL Performance Schema, it must be enabled at server startup to enable event collection to
occur.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it

explicitly, start the server with the per f or rance_schena variable set to an appropriate value. For
example, use these lines in your ny. cnf file:

[mysql d]
per f or mance_schema=0N

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets per f or mance_schena to OFF, and the server runs without
instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

- - performance- schema-i nstrunment =" i nstrunment _nanme=val ue'

Here, i nst runent _nane is an instrument name such as wai t / synch/ nut ex/ sql / LOCK _open, and
val ue is one of these values:

* OFF, FALSE, or 0: Disable the instrument
* ON, TRUE, or 1: Enable and time the instrument

e COUNTED: Enable and count (rather than time) the instrument

Each - - per f or mrance- schena- i nstrunent option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns are
permitted in instrument names to configure instruments that match the pattern. To configure all condition
synchronization instruments as enabled and counted, use this option:

--performance- schema-i nstrunment =" wai t/ synch/ cond/ %COUNTED

To disable all instruments, use this option:

- - per f or mance- schena- i nst r unent =" %=0OFF'

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 5.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

So perf or mance- schema- consuner - consuner _nhane=val ue

13

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/performance-schema-options.html#option_mysqld_performance-schema-instrument

Here, consuner _nane is a consumer name such as events_wai ts_hi st ory, and val ue is one of
these values:

* OFF, FALSE, or 0: Do not collect events for the consumer
* ON, TRUE, or 1: Collect events for the consumer

For example, to enable the event s_wai t s_hi st or y consumer, use this option:

- - per f or mance- schema- consuner - event s- wai t s- hi st or y=0ON

The permitted consumer names can be found by examining the set up_consuner s table. Patterns are
not permitted. Consumer names in the set up_consuner s table use underscores, but for consumers set
at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

nysqgl > SHOW VARI ABLES LI KE ' perf % ;

e F T - +
| Variabl e_nane | Val ue
e F T - +
| perfornmance_schena | ON

| perfornmance_schena_accounts_si ze | 100

| perfornmance_schena_di gests_si ze | 200

| perfornmance_schena_events_stages_hi story_l ong_si ze | 10000

| perfornmance_schena_events_stages_hi story_si ze | 10

| perfornmance_schena_events_statenents_history_| ong_size | 10000

| perfornmance_schena_events_statenents_hi story_si ze | 10

| perfornmance_schena_events_waits_history_|l ong_size | 10000

| perfornmance_schena_events_waits_history_size | 10

| perfornmance_schena_hosts_size | 100

| perfornmance_schena_nax_cond_cl asses | 80

| perfornmance_schena_nax_cond_i nst ances | 1000

The per f or mance_schena variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. It may be
necessary to tune the values of Performance Schema system variables to find the
number of instances that balances insufficient instrumentation against excessive
memory consumption.

To change the value of Performance Schema system variables, set them at server startup. For example,
put the following lines in a ny. cnf file to change the sizes of the history tables for wait events:

[nysgl d]

per f or mance_schena

per f or mance_schema_events_wai ts_hi story_si ze=20

per f or mance_schenma_events_wai ts_hi story_| ong_si ze=15000

The Performance Schema automatically sizes the values of several of its parameters at server startup if
they are not set explicitly. For example, it sizes the parameters that control the sizes of the events waits
tables this way. To see which parameters are autosized under this policy, use nysql d --ver bose - -

14

www.EngineeringBooksPdf.com

hel p and look for those with a default value of -1, or see Chapter 12, Performance Schema System
Variables.

For each autosized parameter that is not set at server startup (or is set to —1), the Performance Schema
determines how to set its value based on the value of the following system values, which are considered as
“hints” about how you have configured your MySQL server:

max_connecti ons
open_files_ limt

tabl e_definition_cache
t abl e_open_cache

To override autosizing for a given parameter, set it to a value other than -1 at startup. In this case, the
Performance Schema assigns it the specified value.

At runtime, SHOW VARI ABLES displays the actual values that autosized parameters were set to.

If the Performance Schema is disabled, its autosized parameters remain set to -1 and SHOW VARI ABLES
displays -1.

15

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-variables.html
http://dev.mysql.com/doc/refman/5.6/en/show-variables.html

16

www.EngineeringBooksPdf.com

Chapter 5 Performance Schema Runtime Configuration

Table of Contents

5.1 Performance Schema EVENt TiMING ...ocvuiiiiiiii e e e e e e e e e e e e e et e e e eeanns 18
5.2 Performance Schema EVENt FILEIHNG .. .c.uiiiiiiii e e e e e e e e e eees 21
IR Y= T o | Al (= 11T o e 23
5.4 Pre-Filtering DY INStIUMENT .. .ceeii e e e e e e e et e e et r e e e eanaeeeen 23
5.5 Pre-Filtering DY ODJECTioui et e r e 25
5.6 Pre-Filtering DY TRr@adooiiiiiiiii e e e e e e e an 26
5.7 Pre-Filtering BY CONSUMETcuuiiii et e e e e e e e e e e et e e e e e e et s e e eaeeeneees 27
5.8 Example Consumer CoNfIQUIAtIONSiiiiiiiiii e e e e e e e e e e e e e e et e e e e e eanaeees 30
5.9 Naming Instruments or Consumers for Filtering Operationscc.oviviiieiiiieiii i e 35
5.10 Determining What IS INStrUMENTEAoiiiiiiiii e e e e e e e e e e e e eeen 35

Specific Performance Schema features can be enabled at runtime to control which types of event collection
occur.

Performance Schema setup tables contain information about monitoring configuration:

nysqgl > SELECT TABLE NAME FROM | NFORMATI ON_SCHEMA. TABLES
WHERE TABLE_SCHENMA = ' performance_schena’
AND TABLE_NAME LI KE ' setup% ;

| setup_actors |
| setup_consuners |
| setup_instrunents |
| setup_objects |
| setup_tinmers |

You can examine the contents of these tables to obtain information about Performance Schema monitoring
characteristics. If you have the UPDATE privilege, you can change Performance Schema operation by
modifying setup tables to affect how monitoring occurs. For additional details about these tables, see
Section 10.2, “Performance Schema Setup Tables”.

To see which event timers are selected, query the set up_t i ner s tables:

nysql > SELECT * FROM setup_ti ners;

T Fommmmemee oo +
| NAMVE | TIMER_NAME |
T Fommmmemee oo +
idle	M CROSECOND
wait	CYCLE
stage	NANOCSECOND
statenent	NANOSECOND
T Fommmmemee oo +

The NANME value indicates the type of instrument to which the timer applies, and TI MER_NAME indicates
which timer applies to those instruments. The timer applies to instruments where their name begins with a
component matching the NANME value.

To change the timer, update the NAVE value. For example, to use the NANOSECOND timer for the wai t
timer:

17

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_update

Performance Schema Event Timing

nysql > UPDATE setup_tiners SET TI MER NAME = ' NANOCSECOND
WHERE NAME = 'wait';
nmysqgl > SELECT * FROM set up_ti nmers;

frooccocooooooo ffooocococoooocoooo +
| NAMVE | TIMER NAME |
frooccocooooooo ffooocococoooocoooo +
idle	M CROSECOND
wait	NANOSECOND
stage	NANOCSECOND
statenent	NANOSECOND
frooccocooooooo ffooocococoooocoooo +

For discussion of timers, see Section 5.1, “Performance Schema Event Timing”.

The set up_i nstrunent s and set up_consuner s tables list the instruments for which events can be
collected and the types of consumers for which event information actually is collected, respectively. Other
setup tables enable further modification of the monitoring configuration. Section 5.2, “Performance Schema
Event Filtering”, discusses how you can modify these tables to affect event collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the statements
in a file and start the server with the - -i ni t-fi | e=fi| e_namne option. This strategy can also be useful
if you have multiple monitoring configurations, each tailored to produce a different kind of monitoring, such
as casual server health monitoring, incident investigation, application behavior troubleshooting, and so
forth. Put the statements for each monitoring configuration into their own file and specify the appropriate
file asthe--init-fileargument when you start the server.

5.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also possible
to configure instruments not to collect timing information. This section discusses the available timers and
their characteristics, and how timing values are represented in events.

Performance Schema Timers
Two Performance Schema tables provide timer information:
» performance_ti nmers lists the available timers and their characteristics.
e setup_tiners indicates which timers are used for which instruments.
Each timer row in set up_t i mer s must refer to one of the timers listed in per f or nance_ti ners.

Timers vary in precision and amount of overhead. To see what timers are available and their
characteristics, check the per f or mance_t i mer s table:

nysqgl > SELECT * FROM performance_ti ners;

focooooooooooo [R T focoooooooooooo00 +
| TIMER NAME | TIMER FREQUENCY | TI MER RESOLUTI ON | TI MER OVERHEAD |
focooooooooooo [R T focoooooooooooo00 +
CYCLE [2389029850	1] 72	
NANOSECOND	1000000000	1] 112
M CROSECOND	1000000	1] 136
M LLI SECOND	1036	1] 168
TICK	105	1] 2416
focooooooooooo [R T focoooooooooooo00 +

18

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/server-options.html#option_mysqld_init-file
http://dev.mysql.com/doc/refman/5.6/en/server-options.html#option_mysqld_init-file

Performance Schema Timers

The columns have these meanings:

e The TI MER_NAME column shows the names of the available timers. CYCLE refers to the timer that is
based on the CPU (processor) cycle counter. The timers in set up_t i ner s that you can use are those
that do not have NULL in the other columns. If the values associated with a given timer name are NULL,
that timer is not supported on your platform.

e TI MER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds. For Tl CK, the frequency may vary
by platform (for example, some use 100 ticks/second, others 1000 ticks/second).

e TI MER_RESCLUTI ONindicates the number of timer units by which timer values increase at a time. If a
timer has a resolution of 10, its value increases by 10 each time.

e Tl MER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given timer.
The overhead per event is twice the value displayed because the timer is invoked at the beginning and
end of the event.

To see which timers are in effect or to change timers, access the set up_ti ner s table:

nysqgl > SELECT * FROM setup_ti ners;

S e +

| NAVE | TIMER NAME |

S e +

| idle | M CROSECOND |

| wait | CYCLE |

| stage | NANOSECOND |

| statement | NANOSECOND |

S e +

nysqgl > UPDATE setup_tiners SET TI MER_ NAMVE = ' M CROSECOND
WHERE NAME = 'idle';

nysqgl > SELECT * FROM setup_ti ners;

S e +

| NAVE | TIMER NAME |

S e +

| idle | M CROSECOND |

| wait | CYCLE |

| stage | NANOSECOND |

| statenment | NANOSECOND |

S e +

By default, the Performance Schema uses the best timer available for each instrument type, but you can
select a different one.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1 GHz
(one hillion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using the cycle
counter is much cheaper than getting the actual time of day. For example, the standard get t i neof day/()

19

www.EngineeringBooksPdf.com

Performance Schema Timer Representation in Events

function can take hundreds of cycles, which is an unacceptable overhead for data gathering that may occur
thousands or millions of times per second.

Cycle counters also have disadvantages:

» End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

» Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a CPU
slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from cycles to
real-time units is subject to error.

» Cycle counters might be unreliable or unavailable depending on the processor or the operating system.
For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C instruction)
and it is theoretically possible for the operating system to prevent user-mode programs from using it.

» Some processor details related to out-of-order execution or multiprocessor synchronization might cause
the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, OS X, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three columns to
represent timing information: TI MER_START and Tl MER_END indicate when an event started and finished,
and TI MER_WAI T indicates event duration.

The set up_i nst runent s table has an ENABLED column to indicate the instruments for which to collect
events. The table also has a Tl MED column to indicate which instruments are timed. If an instrument is not
enabled, it produces no events. If an enabled instrument is not timed, events produced by the instrument
have NULL for the TI MER_START, TI MER_END, and TI MER_WAI T timer values. This in turn causes those
values to be ignored when calculating the sum, minimum, maximum, and average time values in summary
tables.

Internally, times within events are stored in units given by the timer in effect when event timing begins.
For display when events are retrieved from Performance Schema tables, times are shown in picoseconds
(trillionths of a second) to normalize them to a standard unit, regardless of which timer is selected.

Modifications to the set up_t i ner s table affect monitoring immediately. Events already in progress may
use the original timer for the begin time and the new timer for the end time. To avoid unpredictable results
after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TI MER_START and TI MER_END values in events represent picoseconds since the baseline. TI VER_WAI T
values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor rate
varies, there might be drift. For these reasons, it is not reasonable to look at the TI VER_START value for
an event as an accurate measure of time elapsed since server startup. On the other hand, it is reasonable
to use TI MER_START or TI MER_WAI T values in ORDER BY clauses to order events by start time or
duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.

20

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Performance Schema Event Filtering

In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other

words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary to
perform a division for every instrumentation. Division is expensive on many platforms. Multiplication is not
expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest possible
TI MER_FREQUENCY value, using a multiplier large enough to ensure that there is no major precision

loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the decision enables
overhead to be minimized.

Before MySQL 5.6.26, while a wait, stage, or statement event is executing, the respective current-event
tables display the event with TI MER_START populated, but with TI MER_END and TI MER_WAI T set to
NULL:

events_waits_current
event s_stages_current
event s_stat ements_current

As of MySQL 5.6.26, current-event timing provides more information. To make it possible to determine how
how long a not-yet-completed event has been running, the timer columns are set as follows:

e TI MER_START is populated (unchanged from previous behavior)
» TI MER_ENDis populated with the current timer value
e TI MER_WAI T is populated with the time elapsed so far (TI MVER_END - TI MER_START)

Events that have not yet completed have an END_EVENT | Dvalue of NULL. To assess time elapsed so far
for an event, use the TI MER_WAI T column. Therefore, to identify events that have not yet completed and
have taken longer than N picoseconds thus far, monitoring applications can use this expression in queries:

WHERE END EVENT_ID I'S NULL AND TIMER WVAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TI MED set to YES and that the relevant consumers are enabled.

5.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion;

* Instrumented code is the source for events and produces events to be collected. The
set up_i nst runent s table lists the instruments for which events can be collected, whether they are
enabled, and (for enabled instruments) whether to collect timing information:

nysqgl > SELECT * FROM setup_i nstrunents;

L e e ccemoe== b= mme oo +
| NAME | ENABLED | TI MED |
L e e ccemoe== b= mme oo +
wai t / synch/ nut ex/ sql / LOCK_gl obal _read_| ock YES YES
wai t/ synch/ nut ex/ sql / LOCK_gl obal _syst em vari abl es YES YES

wait/synch/ nutex/sql /LOCK_	ock_db	YES	YES
wait/synch/ nut ex/ sql / LOCK_nmanager			

The set up_i nstrunent s table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 5.3, “Event Pre-Filtering”.

21

www.EngineeringBooksPdf.com

Performance Schema Event Filtering

» Performance Schema tables are the destinations for events and consume events. The
set up_consuner s table lists the types of consumers to which event information can be sent and
whether they are enabled:

nmysql > SELECT * FROM set up_consuners;
diecccccococcccocococccooccccocoocoooo drmccccccoo +
| NAVE |
diecccccococcccocococccooccccocoocoooo +
event s_stages_current |
event s_stages_hi story |
events_stages_history_I| ong |
event s_stat ements_current | YES

|

|

|

|

|

|

|

|

| |
| |
| |
| |
| events_statenents_history NO |
| events_statenents_history_|ong NO |
| events_waits_current NO |
| events waits_history NO |
| events_waits_history_|ong NO |
| gl obal _instrumentation YES |
| thread_instrunmentation YES |
| statenents_digest YES |
diecccccococcccocococccooccccocoocoooo drmccccccoo +

Filtering can be done at different stages of performance monitoring:

» Pre-filtering. This is done by modifying Performance Schema configuration so that only certain types
of events are collected from producers, and collected events update only certain consumers. To do this,
enable or disable instruments or consumers. Pre-filtering is done by the Performance Schema and has a
global effect that applies to all users.

Reasons to use pre-filtering:

* To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and want to
disable the timing code to eliminate timing overhead.

« To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If you
enable only file instruments with pre-filtering, no rows are collected for nonfile instruments. With post-
filtering, nonfile events are collected, leaving fewer rows for file events.

e To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about event
histories, you can disable the history table consumers to improve performance.

» Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:
¢ To avoid making decisions for individual users about which event information is of interest.

« To use the Performance Schema to investigate a performance issue when the restrictions to impose
using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Chapter 6, Performance Schema Queries.

22

www.EngineeringBooksPdf.com

Event Pre-Filtering

5.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

» To configure pre-filtering at the producer stage, several tables can be used:

e setup_i nstrunent s indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables. An
instrument enabled in this table is permitted to produce events, subject to the contents of the other
tables.

e set up_obj ect s controls whether the Performance Schema monitors particular table objects.
e t hr eads indicates whether monitoring is enabled for each server thread.
e setup_act or s determines the initial monitoring state for new foreground threads.

» To configure pre-filtering at the consumer stage, modify the set up_consuner s table. This determines
the destinations to which events are sent. set up_consuner s also implicitly affects event production. If
a given event will not be sent to any destination (that is, will not be consumed), the Performance Schema
does not produce it.

Modifications to any of these tables affect monitoring immediately, with some exceptions:

» Modifications to some instruments in the set up_i nst r unent s table are effective only at server startup;
changing them at runtime has no effect. This affects primarily mutexes, conditions, and rwlocks in the
server, although there may be other instruments for which this is true.

» Modifications to the set up_act or s table affect only foreground threads created subsequent to the
modification, not existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history tables.
Events already collected remain in the current-events and history tables until displaced by newer events.

If you disable instruments, you might need to wait a while before events for them are displaced by newer
events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear
collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary table
sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

5.4 Pre-Filtering by Instrument

The set up_i nstrunent s table lists the available instruments:

mysql > SELECT * FROM setup_i nstruments;

P S S e holoioioo o holoioioo +

| NAMVE | ENABLED | TIMED |

P S S e holoioioo o holoioioo +

| wait/synch/ nut ex/sql/LOCK gl obal _read_| ock | YES | YES |

| wait/synch/ nutex/sql/LOCK gl obal _system vari abl es | YES | YES |

| wait/synch/ nut ex/sql/LOCK | ock_db | YES | YES |
23

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Pre-Filtering by Instrument

wait/synch/ nut ex/sql/LOCK _nmanager	YES	YES	
wait/synch/rw ock/sqgl/LOCK grant	YES	YES	
wait/synch/rw ock/sqgl/LOGGER: : LOCK_	ogger	YES	YES
wait/synch/rw ock/sqgl/LOCK sys_init_connect	YES	YES	
wait/synch/rw ock/sqgl/LOCK sys_init_slave	YES	YES	
wait/iolfilelsql/binlog	YES	YES	
wait/iolfilelsql/binlog_index	YES	YES	
wait/iolfilelsql/casetest	YES	YES	
	YES	YES	

wait/iolfilelsql/dbopt

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure whether
to collect timing information for an enabled instrument, set its TI MED value to YES or NO. Setting the TI MED
column affects Performance Schema table contents as described in Section 5.1, “Performance Schema
Event Timing”.

Modifications to most set up_i nst r unent s rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

The set up_i nstrunent s table provides the most basic form of control over event production. To further
refine event production based on the type of object or thread being monitored, other tables may be used as
described in Section 5.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the set up_i nst runent s table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LI KE operator
and a pattern match instrument names. For additional information about specifying patterns to select
instruments, see Section 5.9, “Naming Instruments or Consumers for Filtering Operations”.

» Disable all instruments:

nysql > UPDATE setup_i nstrunents SET ENABLED = ' NO ;
Now no events will be collected.

 Disable all file instruments, adding them to the current set of disabled instruments:

nysql > UPDATE setup_i nstrunents SET ENABLED = ' NO
WHERE NAME LIKE 'wait/io/filel%;

 Disable only file instruments, enable all other instruments:

nysql > UPDATE setup_i nstrunents
SET ENABLED = | F(NAVE LIKE "wait/io/file/ %, 'NO, 'YES);

» Enable all but those instruments in the nysys library:

nysql > UPDATE setup_i nstrunents
SET ENABLED = CASE WHEN NAME LI KE ' % mysys/ % THEN ' YES ELSE ' NO END;

» Disable a specific instrument:

nysql > UPDATE setup_i nstrunents SET ENABLED = ' NO
VWHERE NAME = 'wai t/synch/ mut ex/ mysys/ TMPDI R_nut ex' ;

24

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/string-comparison-functions.html#operator_like

Pre-Filtering by Object

e To toggle the state of an instrument, “flip” its ENABLED value:

nysql > UPDATE setup_i nstrunents
SET ENABLED = | F(ENABLED = 'YES', 'NO, 'YES)
WHERE NAME = 'wai t/synch/ mut ex/ mysys/ TMPDI R_nut ex' ;

 Disable timing for all events:

nmysql > UPDATE setup_i nstrunments SET TIMED = ' NO ;

5.5 Pre-Filtering by Object

The set up_obj ect s table controls whether the Performance Schema monitors particular table objects.
The initial set up_obj ect s contents look like this:

nysqgl > SELECT * FROM set up_obj ect s;

e L EE fhemccomoo—ccooooooooo fmccomoooo=on LT e mmm==o +
| OBJECT TYPE | OBJECT SCHEMA | OBJECT NAME | ENABLED | TIMED |
e L EE fhemccomoo—ccooooooooo fmccomoooo=on LT e mmm==o +
TABLE	nysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
e L EE fhemccomoo—ccooooooooo fmccomoooo=on LT e mmm==o +

Modifications to the set up_obj ect s table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects table
I/O events (wai t /i o/ t abl e/ sql / handl er instrument) and table lock events (wai t / | ock/ t abl e/
sql / handl er instrument).

The OBJECT _SCHEMA and OBJECT _NANME columns should contain a literal schema or table name, or ' %
to match any name.

The ENABLED column indicates whether matching objects are monitored, and Tl MED indicates whether
to collect timing information. Setting the Tl MED column affects Performance Schema table contents as
described in Section 5.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all tables except those in the nysql ,

| NFORVATI ON_SCHEMA, and per f or mance_schena databases. (Tables in the | NFORVATI ON_SCHENA
database are not instrumented regardless of the contents of set up_obj ect s; the row for

i nf or mat i on_schema. %simply makes this default explicit.)

When the Performance Schema checks for a match in set up_obj ect s, it tries to find more specific
matches first. For rows that match a given OBJECT _TYPE, the Performance Schema checks rows in this
order:

* Rows with OBJECT_SCHEMA=' | i teral ' and OBJECT_NAME='literal ".
* Rows with OBJECT_SCHEMA='literal ' and OBJECT NAME=' % .
* Rows with OBJECT_SCHENMA=' % and OBJECT_NAME=" % .

For example, with a table db1. t 1, the Performance Schema looks in TABLE rows for a match for ' db1'
and't1' ,thenfor' dbl' and' % ,thenfor' % and' % . The order in which matching occurs matters
because different matching set up_obj ect s rows can have different ENABLED and T MED values.

25

www.EngineeringBooksPdf.com

Pre-Filtering by Thread

For table-related events, the Performance Schema combines the contents of set up_obj ect s with
set up_i nstrunent s to determine whether to enable instruments and whether to time enabled
instruments:

» For tables that match a row in set up_obj ect s, table instruments produce events only if ENABLED is
YESin both set up_i nstrunent s and set up_obj ect s.

» The TI MED values in the two tables are combined, so that timing information is collected only when both
values are YES.

Suppose that set up_obj ect s contains the following TABLE rows that apply to db1, db2, and db3:

| N] S | N frmz======= fmzc==== +
| OBJECT_TYPE | OBJECT SCHEMA | OBJECT_NANE | ENABLED | TIMED |
| N] S | N frmz======= fmzc==== +
TABLE	dbl	t1	YES	YES
TABLE	dbl	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO
TABLE	%	%	YES	YES
N] S	N frmz======= fmzc==== +			

If a table-related instrument in set up_i nst rument s has an ENABLED value of NO, events for the object
are not monitored. If the ENABLED value is YES, event monitoring occurs according to the ENABLED value
in the relevant set up_obj ect s row:

e dbl. t 1 events are monitored

e dbl.t 2 events are not monitored

db2. t 3 events are monitored

db3. t 4 events are not monitored
e db4. t 5 events are monitored

Similar logic applies for combining the Tl MED columns from the set up_i nstrunent s and
set up_obj ect s tables to determine whether to collect event timing information.

If a persistent table and a temporary table have the same name, matching against set up_obj ect s
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the other.
However, each table is instrumented separately.

5.6 Pre-Filtering by Thread

The t hr eads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a thread, these
things must be true:

» Thethread_instrunentation consumer inthe set up_consuner s table must be YES.
» Thet hreads. | NSTRUVENTED column must be YES.

» Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instrunents table.

The | NSTRUVENTED column in the t hr eads table indicates the monitoring state for each thread. For
foreground threads (resulting from client connections), the initial | NSTRUVENTED value is determined by
whether the user account associated with the thread matches any row in the set up_act or s table.

26

www.EngineeringBooksPdf.com

Pre-Filtering by Consumer

For background threads, there is no associated user. | NSTRUVENTED is YES by default and
set up_act or s is not consulted.

The initial set up_act or s contents look like this:

nysqgl > SELECT * FROM set up_act ors;

EN ENR ENR +
| HOST | USER | ROLE |
EN ENR ENR +
Il % | % | % |
EN ENR ENR +

The HOST and USER columns should contain a literal host or user name, or ' % to match any name.

The Performance Schema uses the HOST and USER columns to match each new foreground thread. (ROLE
is unused.) The | NSTRUVENTED value for the thread becomes YES if any row matches, NO otherwise. This
enables instrumenting to be applied selectively per host, user, or combination of host and user.

By default, monitoring is enabled for all new foreground threads because the set up_act or s table initially
contains a row with ' % for both HOST and USER. To perform more limited matching such as to enable
monitoring only for some foreground threads, you must delete this row because it matches any connection.

Suppose that you modify set up_act or s as follows:

TRUNCATE TABLE set up_actors;

Now set up_act or s is empty and there are no rows that could match incoming connections.
Consequently, the Performance Schema sets the | NSTRUVENTED column to NO for all new foreground
threads.

Suppose that you further modify set up_act ors:

I NSERT | NTO set up_actors (HOST, USER, ROLE) VALUES('| ocal host','joe',"'%);
I NSERT | NTO set up_actors (HOST, USER, ROLE) VALUES(' % ,'sam ,'%);

Now the Performance Schema determines how to set the | NSTRUVENTED value for new connection
threads as follows:

« If j oe connects from the local host, the connection matches the first inserted row.
 If] oe connects from any other host, there is no match.

 If samconnects from any host, the connection matches the second inserted row.
» For any other connection, there is no match.

Modifications to the set up_act or s table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the | NSTRUVENTED column of
t hr eads table rows.

5.7 Pre-Filtering by Consumer

The set up_consuner s table lists the available consumer types and which are enabled:

nmysql > SELECT * FROM set up_consuners;

0000000000000 000000000000000000 s ooooooa0 +

| NAME | ENABLED |

0000000000000 000000000000000000 s ooooooa0 +
27

www.EngineeringBooksPdf.com

Global and Thread Consumers

events_stages_current	NO	
events_stages_history	NO	
events_stages_history_	ong	NO
events_statenents_current	YES	
events_statenents_history	NO	
events_statenents_history_	ong	NO
events_waits_current	NO	
events_waits_history	NO	
events_waits_history_	ong	NO
gl obal _instrunmentation	YES	
thread_instrunmentation	YES	
statenents_digest	YES	
P S holoioioim e +

Modify the set up_consumer s table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES or
NO.

Modifications to the set up_consuner s table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer. For
example, if you do not care about historical event information, disable the history consumers:

nysql > UPDATE set up_consuners
SET ENABLED = ' NO WHERE NAME LI KE ' %i st ory% ;

The consumer settings in the set up_consumner s table form a hierarchy from higher levels to lower. The
following principles apply:

» Destinations associated with a consumer receive no events unless the Performance Schema checks the
consumer and the consumer is enabled.

» A consumer is checked only if all consumers it depends on (if any) are enabled.

« If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are not
checked.

» Dependent consumers may have their own dependent consumers.
« If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 5.8, “Example Consumer
Configurations”.

* Global and Thread Consumers
* Wait Event Consumers
» Stage Event Consumers

« Statement Event Consumers

Statement Digest Consumer

Global and Thread Consumers

e gl obal _instrunentati on isthe highest level consumer. If gl obal _i nst runment ati on is NQ,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual

28

www.EngineeringBooksPdf.com

Wait Event Consumers

events are collected in the current-events or event-history tables. If gl obal i nstrunentati on
is YES, the Performance Schema maintains information for global states and also checks the
thread_i nstrunent ati on consumer.

thread_instrunentationis checked onlyif gl obal i nstrunentati on is YES. Otherwise,

if t hread_i nstrument ati on is NO, it disables thread-specific instrumentation and all lower-level
settings are ignored. No information is maintained per thread and no individual events are collected
in the current-events or event-history tables. If t hr ead_i nstrunent ati on is YES, the Performance
Schema maintains thread-specific information and also checks event s_xxx_current consumers.

Wait Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe YES
or they are not checked. If checked, they act as follows:

events waits_current, if NO, disables collection of individual wait events in the
events waits_current table. If YES, it enables wait event collection and the Performance Schema
checks the events waits_history andevents waits_history_ | ong consumers.

events waits_history isnotcheckedifevent waits_current is NO. Otherwise, an
events waits_history value of NOor YES disables or enables collection of wait events in the
events _waits_history table.

events waits_history | ongisnotcheckedifevent waits_current is NO. Otherwise, an
events waits_history_ | ong value of NOor YES disables or enables collection of wait events in the
events waits_history | ong table.

Stage Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe YES
or they are not checked. If checked, they act as follows:

events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the event s_st ages_hi story and events_stages_hi story_| ong consumers.

events_stages_ history is not checked if event st ages_current is NO. Otherwise, an
events_stages_hi story value of NOor YES disables or enables collection of stage events in the
events_stages_hi story table.

events_stages_history | ongis notchecked if event stages_current is NO. Otherwise, an
events_stages_history | ong value of NOor YES disables or enables collection of stage events in
the event s_stages_hi story_| ong table.

Statement Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe YES
or they are not checked. If checked, they act as follows:

events_statenents_current, if NO, disables collection of individual statement

events inthe event s_statenents_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_st at enents_hi st ory and
events_statenents_hi story_| ong consumers.

events_statenents_history isnotcheckedifevents statenents current is NO. Otherwise,
anevents_statenents_history value of NOor YES disables or enables collection of statement
events inthe events_st at enent s_hi st ory table.

29

www.EngineeringBooksPdf.com

Statement Digest Consumer

e events_statenents_history | ongis notchecked if events_statenents_current is NO.
Otherwise, an events_statenents_hi story_| ong value of NOor YES disables or enables collection
of statement events in the event s_stat enents_hi story_| ong table.

Statement Digest Consumer

The st at enent s_di gest consumer requires gl obal _i nstrunent ati on to be YES oritis not
checked. There is no dependency on the statement event consumers, So you can obtain statistics per
digest without having to collect statistics in event s_st at enent s_cur r ent , which is advantageous
in terms of overhead. Conversely, you can get detailed statements in event s_st at enents_curr ent
without digests (the DI GEST and DI GEST_TEXT columns will be NULL).

For more information about statement digesting, see Performance Schema Statement Digests.

5.8 Example Consumer Configurations

The consumer settings in the set up_consumner s table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not need
the information provided by enabling lower-level settings, disable them and the Performance Schema will
execute less code on your behalf and you will have less information to sift through.

The set up_consuner s table contains the following hierarchy of values:

gl obal _i nstrunent ati on
thread_i nstrunent ati on
events_waits_current
events_wai ts_history
events_wai ts_history_| ong
event s_st ages_current
events_stages_history
events_stages_hi story_| ong
event s_st at ements_current
events_statenments_history
events_statements_hi story_| ong
st at enment s_di gest

Note

In the consumer hierarchy, the consumers for waits, stages, and statements are
all at the same level. This differs from the event nesting hierarchy, for which wait
events nest within stage events, which nest within statement events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated with
the consumer and ignores all lower-level settings. If a given setting is YES, the Performance Schema
enables the instrumentation associated with it and checks the settings at the next lowest level. For a
description of the rules for each consumer, see Section 5.7, “Pre-Filtering by Consumer”.

For example, if gl obal _i nstrunent ati on is enabled, t hread i nst runent at i on is checked. If

t hread i nstrunent ati on is enabled, the event s_xxx_current consumers are checked. If of these
events waits_current isenabled, events waits_historyandevents waits history | ong
are checked.

30

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/performance-schema-statement-digests.html

No Instrumentation

Each of the following configuration descriptions indicates which setup elements the Performance Schema
checks and which output tables it maintains (that is, for which tables it collects information).

* No Instrumentation

» Global Instrumentation Only

Global and Thread Instrumentation Only

Global, Thread, and Current-Event Instrumentation

Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Global

Server configuration state:

nmysql > SELECT * FROM set up_consuners;

- L T +
| NAMVE | ENABLED |
- L T +
| gl obal _instrunentation | NO |
e TR +

In this configuration, nothing is instrumented.

Setup elements checked:

» Table set up_consuner s, consumer gl obal i nstrunentation
Output tables maintained:

* None

Instrumentation Only

Server configuration state:

nysqgl > SELECT * FROM set up_consuners;

Fom e eeeeeeeaaaaaa [T - +
| NAMVE | ENABLED |
Fom e eeeeeeeaaaaaa [T - +
| gl obal _instrunentation | YES |
| thread_instrunentation | NO |
Fom e eeeeeeeaaaaaa [T - +

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:
e Table set up_consuners, consumert hread i nstrunentation
e Table setup_instruments

e Table setup_obj ects

31

www.EngineeringBooksPdf.com

Global and Thread Instrumentation Only

e Tablesetup tiners

Additional output tables maintained, relative to the preceding configuration:
e nut ex_i nstances

 rw ock_instances

e cond_i nst ances

e« file_instances

e users

* hosts

e accounts

e socket _summary_by event nane

e file_sumuary_ by instance

e file_summary_ by event nane

» obj ects_summary_gl obal by type

e table | ock_waits_sunmmary_ by table

e table io waits sumary_ by index_usage

e table io waits summary_ by table

e events waits_sumary_ by instance

« events waits_summary_gl obal by event nane
* events_stages_summary_gl obal by event nane

 events_statenents_summary_gl obal by event nane

Global and Thread Instrumentation Only

Server configuration state:

nysqgl > SELECT * FROM set up_consuners;

R L T L e LT +
| NAVE | ENABLED

R L T L e LT +
gl obal _instrunentation	YES
thread_instrunentation	YES
events_waits_current	NO
events_stages_current	NO
events_statenents_current	YES
R L T L e LT +

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

32

www.EngineeringBooksPdf.com

Global, Thread, and Current-Event Instrumentation

Additional setup elements checked, relative to the preceding configuration:

e Table set up_consuner s, consumers event s_xxx_current, where xxx iswai t s, st ages,
statenents

e Table setup_actors
e Columnthreads.instrunented
Additional output tables maintained, relative to the preceding configuration:

 events xxx_sunmary_ by yyy by event nane, where xxx iswai t s, st ages, st at enent s; and
yyy ist hr ead, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

nmysqgl > SELECT * FROM set up_consuners;

disccocccoocccosocccoocococooocoooo dhmozoocoas +
| NAME | ENABLED |
disccocccoocccosocccoocococooocoooo dhmozoocoas +
gl obal _i nstrunentation	YES	
thread_instrunmentation	YES	
events_waits_current	YES	
events_waits_history	NO	
events_waits_history_	ong	NO
events_stages_current	YES	
events_stages_history	NO	
events_stages_history_I ong	NO	
events_statenents_current	YES	
events_statenents_history	NO	
events_statenents_history_long	NO	
disccocccoocccosocccoocococooocoooo dhmozoocoas +

In this configuration, instrumentation is maintained globally and per thread. Individual events are collected
in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:
e Consumers event s_xxx_hi st ory, where xxx iswai t s, st ages, st at enent s
» Consumers event s_xxx_hi story_| ong, where xxx iswai t s, st ages, st at enent s
Additional output tables maintained, relative to the preceding configuration:
* events_xxx_current, where xxx iswai t s, st ages, statenents
Global, Thread, Current-Event, and Event-History instrumentation
The preceding configuration collects no event history because the event s_xxx_hi st ory and

event s_xxx_hi story_| ong consumers are disabled. Those consumers can be enabled separately or
together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

nysqgl > SELECT * FROM set up_consuners;

33

www.EngineeringBooksPdf.com

Global, Thread, Current-Event, and Event-History instrumentation

e e e e e e mmmeeeeeeceeaaaaa Hemmmmeeaa +
| NAME | ENABLED |
e e e e e e mmmeeeeeeceeaaaaa Hemmmmeeaa +
gl obal _i nstrument ati on YES
thread_i nstrunentation YES
events_wai ts_current YES
event s_wai ts_hi story YES
events_waits_history_| ong NO

events_stages_current	YES

event s_st ages_hi story YES
event s_st ages_hi story_I| ong NO
event s_statenments_current YES
event s_statenments_hi story YES
event s_statements_hi story_| ong NO
e e e e e e mmmeeeeeeceeaaaaa Hemmmmeeaa +

Event-history tables maintained for this configuration:
» events_xxx_hi story, where xxx iswai t s, st ages, st atenents

This configuration collects event history globally, but not per thread:

nmysql > SELECT * FROM set up_consuners;

frmccoooooooooooooooooooooooooooos fhmccooooos +
| NAME | ENABLED |
frmccoooooooooooooooooooooooooooos fhmccooooos +
gl obal _i nstrument ati on YES
t hread_i nstrunent ati on YES
events_waits_current YES
events_wai ts_hi story NO
events_waits_history_| ong YES

events_stages_current	YES
[[

event s_st ages_hi story NO
event s_st ages_hi story_I| ong YES
events_statenents_current YES
event s_stat ement s_hi story NO
event s_st atement s_hi story_| ong YES
o m e e e eeeeecceaaaaa- S +

Event-history tables maintained for this configuration:
» events_xxx_history_ | ong, where xxx iswai ts, st ages, statenents

This configuration collects event history per thread and globally:

nmysql > SELECT * FROM set up_consuners;

fmocoooossoooosooooooooooooooooos L +
| NAME | ENABLED |
fmocoooossoooosooooooooooooooooos L +
gl obal _i nstrunment ati on YES
t hread_i nstrunent ati on YES
events_waits_current YES
event s_wai ts_hi story YES
events_waits_hi story_| ong YES

events_stages_current	YES

event s_st ages_hi story YES
event s_st ages_hi story_I| ong YES
events_statenents_current YES
event s_statements_hi story YES
event s_st atements_hi story_| ong YES
o m e e eeeeeeaceaaaaa- S +

34

www.EngineeringBooksPdf.com

Naming Instruments or Consumers for Filtering Operations

Event-history tables maintained for this configuration:
* events_xxx_hi story, where xxx iswai t s, st ages, st at enents

* events_xxx_history_| ong, where xxx iswai t s, st ages, st atenment s

5.9 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

nmysql > UPDATE set up_i nstrunents

SET ENABLED = ' NO

WHERE NAME = 'wai t/synch/ nut ex/ nyi sammr g/ MYRG_| NFO: : nut ex' ;
nmysql > UPDATE set up_consuners

SET ENABLED = ' NO WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

nysql > UPDATE set up_i nstrunents
SET ENABLED = ' NO
WHERE NAME LI KE ' wai t/synch/ mut ex/ % ;
nysql > UPDATE set up_consuners
SET ENABLED = ' NO WHERE NAME LI KE ' %hi story% ;

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For

example, to select all file /0 instruments, it is better to use a pattern that includes the entire instrument
name prefix:

WHERE NAME LIKE 'wait/iof/filel%;
A pattern of ' % fi | e/ % will match other instruments that have a component of ' / fi |l e/' anywhere
in the name. Even less suitable is the pattern' % i | e% because it will match instruments with ' fi | e’
anywhere in the name, such as wai t / synch/ nut ex/ sql / LOCK des_key file.

To check which instrument or consumer names a pattern matches, perform a simple test:

nmysqgl > SELECT NAME FROM set up_i nstrunments WHERE NAME LI KE 'pattern';
nmysql > SELECT NAME FROM set up_consuners WHERE NAME LI KE 'pattern';

For information about the types of names that are supported, see Chapter 7, Performance Schema
Instrument Naming Conventions.

5.10 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking the
set up_i nstrunent s table. For example, to see what file-related events are instrumented for the | nnoDB
storage engine, use this query:

nmysql > SELECT * FROM setup_i nstruments WHERE NAME LIKE 'wait/io/file/innodb/% ;

S S e S holoioioo o hoioioioo +

| NAMVE | ENABLED | TIMED |

S S e S holoioioo o hoioioioo +

| wait/io/filelinnodb/innodb_data file | YES | YES |

| wait/io/filelinnodb/innodb_|og file | YES | YES |
35

www.EngineeringBooksPdf.com

Determining What Is Instrumented

| wait/io/filelinnodb/innodb_tenp file | YES | YES |
S S S e S holoioioo o holoioioio +

An exhaustive description of precisely what is instrumented is not given in this documentation, for several
reasons:

» What is instrumented is the server code. Changes to this code occur often, which also affects the set of
instruments.

* Itis not practical to list all the instruments because there are hundreds of them.

» As described earlier, it is possible to find out by querying the set up_i nst r unent s table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used by
automated tools.

36

www.EngineeringBooksPdf.com

Chapter 6 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate WVHERE
clauses that restrict what event information to select from the events available after pre-filtering has been
applied.

In Section 5.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the event
tables contain both file and nonfile information, post-filtering is another way to see information only for file
events. Add a VVHERE clause to queries to restrict event selection appropriately:

nmysqgl > SELECT THREAD | D, NUMBER OF BYTES
FROM event s_wai t s_hi story
VWHERE EVENT_NAME LIKE 'wait/io/filel%
AND NUMBER _OF BYTES |I'S NOT NULL;

foooccoosooso e +
| THREAD | D | NUMBER OF BYTES |
foooccoosooso e +
[11 | 66 |
| 11 | 47 |
| 11 | 139 |
I 5 | 24 |
| 5 | 834 |
foooccoosooso e +

37

www.EngineeringBooksPdf.com

38

www.EngineeringBooksPdf.com

Chapter 7 Performance Schema Instrument Naming Conventions

An instrument name consists of a sequence of components separated by ' /' characters. Example names:

wai t/iol/filelnyisanmlog

wai t/iol/filelnysys/charset

wai t/ | ock/ t abl e/ sql / handl er

wai t/ synch/ cond/ nysys/ COND_al ar m

wai t/ synch/ cond/ sql / BI NLOG : updat e_cond
wai t/ synch/ nut ex/ nysys/ Bl TVAP_nut ex

wai t/ synch/ nut ex/ sql / LOCK_del et e

wai t/ synch/rw ock/ sql / Query_cache_query: : | ock
stage/ sqgl / cl osi ng tabl es
stage/sqgl/Sorting result

st at ement / conf Execut e

st at ement / com Query
statement/sql/create_table

stat ement/sql /| ock_t abl es

The instrument name space has a tree-like structure. The components of an instrument name from left to
right provide a progression from more general to more specific. The number of components a name has
depends on the type of instrument.

The interpretation of a given component in a name depends on the components to the left of it. For
example, nyi samappears in both of the following names, but nmyi samin the first name is related to file I/
O, whereas in the second it is related to a synchronization instrument:

wait/iol/filel/nyisam | og
wai t/ synch/ cond/ nyi sami M _SORT_| NFQ: : cond

Instrument names consist of a prefix with a structure defined by the Performance Schema implementation
and a suffix defined by the developer implementing the instrument code. The top-level component of an
instrument prefix indicates the type of instrument. This component also determines which event timer in
the set up_ti nmer s table applies to the instrument. For the prefix part of instrument names, the top level
indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

» A name for the major component (a server module such as nyi sam i nnodb, nysys, orsql) ora
plugin name.

» The name of a variable in the code, in the form XXX (a global variable) or CCC: : MVM(a member MVMin
class CCC). Examples: COND_t hr ead_cache, THR_LOCK nyi sam Bl NLOG : LOCK_i ndex.

e Top-Level Instrument Components
« Idle Instrument Components

» Stage Instrument Components

e Statement Instrument Components

» Wait Instrument Components

Top-Level Instrument Components

e i dl e: Aninstrumented idle event. This instrument has no further components.

39

www.EngineeringBooksPdf.com

Idle Instrument Components

e st age: Aninstrumented stage event.
e st at enent : An instrumented statement event.

* wai t : An instrumented wait event.

Idle Instrument Components

The i dl e instrument is used for idle events, which The Performance Schema generates as discussed
in the description of the socket i nst ances. STATE column in Section 10.3.5, “The socket_instances
Table”.

Stage Instrument Components

Stage instruments have names of the form st age/ code_ar ea/ st age_nane, where code_ar ea is
a value such as sql or nyi sam and st age_nane indicates the stage of statement processing, such
as Sorting result orSendi ng data. Stages correspond to the thread states displayed by SHOW
PROCESSLI ST or that are visible in the | NFORVATI ON_SCHENMA. PROCESSLI ST table.

Statement Instrument Components

» statenent/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is known,
then changed to a more specific statement instrument when the type is known. For a description of this
process, see Section 10.6, “Performance Schema Statement Event Tables”.

e st at enent/ com An instrumented command operation. These have names corresponding to
COM xxx operations (see the nysql _com h header file and sql / sql _par se. cc. For example,
the st at enent / conf Connect and st at enent/ com | ni t DB instruments correspond to the
COM _CONNECT and COM | NI T_DB commands.

» statenent/sql : Aninstrumented SQL statement operation. For example, the st at enent / sql /
create_db andstatenent/sql/sel ect instruments are used for CREATE DATABASE and SELECT
statements.

Wait Instrument Components
s wait/io
An instrumented 1/O operation.
e wait/io/lfile

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a callto f wri t e()). Due to caching, the physical file /0O on the disk might not
happen within this call.

e wait/iol socket

An instrumented socket operation. Socket instruments have names of the form wai t /i o/ socket /
sql / socket type. The server has a listening socket for each network protocol that it supports.
The instruments associated with listening sockets for TCP/IP or Unix socket file connections have a
socket type value of server tcpi p_socket orserver_uni x_socket, respectively. When a
listening socket detects a connection, the server transfers the connection to a new socket managed

40

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.6/en/create-database.html
http://dev.mysql.com/doc/refman/5.6/en/select.html

Wait Instrument Components

by a separate thread. The instrument for the new connection thread has a socket _t ype value of
client_connection.

e wait/ioltable

An instrumented table 1/O operation. These include row-level accesses to persistent base tables or
temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view, waits
are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file /O
or memory operations. Thus, events_wai ts_current for a table 1/0O wait usually has two rows. For
more information, see Performance Schema Atom and Molecule Events.

Some row operations might cause multiple table 1/0 waits. For example, an insert might activate a
trigger that causes an update.

 wait/lock
An instrumented lock operation.
 wait/lock/table
An instrumented table lock operation.
* wai t/synch

An instrumented synchronization object. For synchronization objects, the TI MER_WAI T time includes the
amount of time blocked while attempting to acquire a lock on the object, if any.

e wai t/synch/ cond

A condition is used by one thread to signal to other threads that something they were waiting for has
happened. If a single thread was waiting for a condition, it can wake up and proceed with its execution.
If several threads were waiting, they can all wake up and compete for the resource for which they were
waiting.

e wai t/synch/ mut ex

A mutual exclusion object used to permit access to a resource (such as a section of executable code)
while preventing other threads from accessing the resource.

e wai t/synch/rw ock

A read/write lock object used to lock a specific variable for access while preventing its use by other
threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive write
lock can be acquired by only one thread at a time.

41

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/performance-schema-atom-molecule-events.html

42

www.EngineeringBooksPdf.com

Chapter 8 Performance Schema Status Monitoring

There are several status variables associated with the Performance Schema:

nysqgl > SHOW STATUS LI KE ' perf % ;

Perfornmance_schena_account s_	ost	O	
Perfornmance_schena_cond_cl asses_	ost	O	
Perfornmance_schena_cond_i nst ances_	ost	O	
Perfornance_schena_di gest _	ost	O	
Perfornmance_schena_fil e_cl asses_	ost	O	
Perfornmance_schena_fil e_handl es_	ost	O	
Perfornmance_schena_fil e_i nstances_	ost	O	
Perfornmance_schena_hosts_	ost	O	
Perfornmance_schena_	ocker _	ost	O
Perfornmance_schena_nut ex_cl asses_	ost	O	
Perfornmance_schena_nut ex_i nst ances_	ost	O	
Perfornmance_schenma_rw ock_cl asses_	ost	O	
Perfornmance_schena_rw ock_i nst ances_	ost	O	
Perfornmance_schena_sessi on_connect _attrs_lost	O		
Perfornmance_schena_socket _cl asses_	ost	O	
Perfornmance_schena_socket _i nst ances_	ost	O	
Perfornmance_schena_st age_cl asses_	ost	O	
Perfornmance_schena_st at enent _cl asses_	ost	O	
Perfornmance_schena_t abl e_handl es_	ost	O	
Perfornmance_schena_t abl e_i nst ances_	ost	O	
Perfornmance_schena_t hread_cl asses_	ost	O	
Perfornmance_schena_t hread_i nst ances_	ost	O	
Perfornmance_schena_users_	ost	O	

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

» Performance_schema_xxx_cl asses_| ost indicates how many instruments of type xxx could not
be loaded.

e Performance_schena_xxx_instances_| ost indicates how many instances of object type xxx
could not be created.

» Performance_schena_xxx_handl es_| ost indicates how many instances of object type xxx could
not be opened.

» Performance_schema_| ocker | ost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory

for the instrumentation at runtime, it increments Per f or nance_schenma_nut ex_cl asses_| ost .

The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it will not be collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there will be
only one instance. Other mutexes have an instance per connection, or per page in various caches

and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers will increase the maximum number of instances that
might be allocated at once. If the server cannot create a given instrumented mutex instance, it increments
Per f or mance_schema_nut ex_i nstances_| ost.

Suppose that the following conditions hold:

43

www.EngineeringBooksPdf.com

e The server was started with the - - per f or mance_schema_nmax_nut ex_cl asses=200 option and
thus has room for 200 mutex instruments.

» 150 mutex instruments have been loaded already.
» The plugin named pl ugi n_a contains 40 mutex instruments.
e The plugin named pl ugi n_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how many
are available, as illustrated by the following sequence of statements:

I NSTALL PLUG N pl ugi n_a

The server now has 150+40 = 190 mutex instruments.

UNI NSTALL PLUG N pl ugi n_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still available,
but new events for the instruments are not collected.

I NSTALL PLUG N pl ugi n_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

I NSTALL PLUG N pl ugi n_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Per f ormance_schena_nut ex cl asses_| ost indicates the number of instruments (mutex classes)
lost:

nmysql > SHOW STATUS LI KE " per f %rut ex_cl asses_| ost";

e e L e e mmo oo +
| Vari abl e_nane | Val ue |
e e L e e mmo oo +
| Performance_schema_nut ex_cl asses_l ost | 10 |
e e L e e mmo oo +

1 rowin set (0.10 sec)

The instrumentation still works and collects (partial) data for pl ugi n_b.
When the server cannot create a mutex instrument, these results occur:

» No row for the instrument is inserted into the set up_i nst runent s table.
e Performance_schema_nut ex cl asses_| ost increases by 1.

» Performance_schema_mnut ex i nstances | ost does not change. (When the mutex instrument is
not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Per f or mance_schema_nut ex_cl asses_| ost greater than 0 can happen in two cases:

44

www.EngineeringBooksPdf.com

» To save a few bytes of memory, you start the server with - -
per formance_schema_max_nut ex_cl asses=N, where Nis less than the default value. The default
value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but this can
be reduced if some plugins are never loaded. For example, you might choose not to load some of the
storage engines in the distribution.

* You load a third-party plugin that is instrumented for the Performance Schema but do not allow for the
plugin's instrumentation memory requirements when you start the server. Because it comes from a third
party, the instrument memory consumption of this engine is not accounted for in the default value chosen
for per f or mance_schena_max_mut ex_cl asses.

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate more
using - - per f or mance_schema_max_mnut ex_cl asses=N, loading the plugin leads to starvation of
instruments.

If the value chosen for per f or mance_schenma_nmax_mnut ex_cl asses is too small, no error is

reported in the error log and there is no failure at runtime. However, the content of the tables in the

per f or mance_schena database will miss events. The Per f or nance_schena_nut ex_cl asses_| ost
status variable is the only visible sign to indicate that some events were dropped internally due to failure to
create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wai t / synch/ mut ex/ sql / LOCK _del et e is the name of a mutex instrument

in the set up_i nstrunent s table. This single instrument is used when creating a mutex in the code (in
THD: : LOCK del et e) however many instances of the mutex are needed as the server runs. In this case,
LOCK del et e is a mutex that is per connection (THD), so if a server has 1000 connections, there are 1000
threads, and 1000 instrumented LOCK _del et e mutex instances (THD: : LOCK del et e).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments

Per f ormance_schena_nut ex_i nst ances_| ost by 200 to indicate that instances could not be
created.

A value of Per f or mance_schema_nut ex_i nst ances_| ost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for - -
performance_schema_max_nut ex_i nst ances=N.

The bottom line is that if SHOW STATUS LI KE ' perf % says that nothing was lost (all values are zero),
the Performance Schema data is accurate and can be relied upon. If something was lost, the data is
incomplete, and the Performance Schema could not record everything given the insufficient amount

of memory it was given to use. In this case, the specific Per f or mance_schena_xxx_| ost variable
indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you do not
care about performance data for file I/O, you can start the server with all Performance Schema parameters
related to file 1/0 set to 0. No memory will be allocated for file-related classes, instances, or handles, and
all file events will be lost.

Use SHOW ENG NE PERFORVANCE SCHENMA STATUS to inspect the internal operation of the Performance
Schema code:

nysql > SHOW ENGI NE PERFORMVANCE SCHEMA STATUS\ G

kkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkhkkkkkkkkkkx* 3 r ow kkhkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkkhkhkkkkkkkkx*x

Type: performance_schema

45

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-status.html
http://dev.mysql.com/doc/refman/5.6/en/show-engine.html

Name: events_waits_history.row_size

Status: 76

khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkkkx*x 4 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkhhkkhkkx*x
Type: performance_schema
Name: events_wai ts_hi story.row_count

Status: 10000

khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkkhkkx*x 5 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkkx*x
Type: performance_schema
Name: events_waits_hi story. nenory

Status: 760000

KXKKKKKKKK KK AKX KKK AKX XK * k% §7 FOW *XX*hdkdkkkkkhhhkkxkhhdkkkxkhk

Type: performance_schema
Name: perfornmance_schema. nenory
Status: 26459600

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see SHOW ENGINE
Syntax.

46

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-engine.html
http://dev.mysql.com/doc/refman/5.6/en/show-engine.html

Chapter 9 Performance Schema General Table Characteristics

The name of the per f or mance_schena database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the per f or mance_schena database are read only and cannot be modified:

nysqgl > TRUNCATE TABLE set up_i nstrunents;
ERROR 1683 (HY000): Invalid perfornmance_schena usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named with
aprefixofevents waits .

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:

* To retrieve from per f or mance_schemna tables, you must have the SELECT privilege.
» To change those columns that can be modified, you must have the UPDATE privilege.
« To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT ALL
as shorthand for granting privileges at the database or table leval fail with an error:

nmysqgl > GRANT ALL ON performance_schenma. *

TO "ul' @I ocal host "' ;
ERROR 1044 (42000): Access denied for user 'root' @l ocal host'
to dat abase ' perfornmance_schema'
nmysqgl > GRANT ALL ON performance_schema. set up_i nstrunents

TO '"u2' @I ocal host ' ;
ERROR 1044 (42000): Access denied for user 'root' @l ocal host'
to dat abase ' perfornmance_schema'

Instead, grant exactly the desired privileges:

nmysql > GRANT SELECT ON perfornmance_schema. *
TO 'ul' @I ocal host "' ;

Query OK, 0 rows affected (0.03 sec)

nmysql > GRANT SELECT, UPDATE ON performance_schena. set up_i nstrunents
TO 'u2' @I ocal host "' ;

Query OK, 0 rows affected (0.02 sec)

47

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_update
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_drop

48

www.EngineeringBooksPdf.com

Chapter 10 Performance Schema Table Descriptions

Table of Contents

10.1 Performance Schema Table INAEXco.uuiiiiiii e 50
10.2 Performance Schema Setup TabIEsco.uioiiiiiii e e 52
10.2.1 The Setup_actors Tableccciuiiiiii e e e e e e eans 52
10.2.2 The setup_consSUMErs TabIlecoouiiiiiii e e 53
10.2.3 The setup_inStruments Tablecooiiiiiiii e e e 53
10.2.4 The setup_0bJECES TabBIEcc.uuiiiiiiii e e e e e e 54
10.2.5 The setup_timers Tablecooiiiiii e e e e e eaes 56
10.3 Performance Schema INStanCe TabIESc.uuiiiiiiiiii e 56
10.3.1 The cond_iNStances Tableocoiiiiiii e e s 57
10.3.2 The file_INStanCes TabIeccouiiiiii i e e e e e ean s 57
10.3.3 The mutex_INStances Tablecooiiiiiiii e e 57
10.3.4 The rwlock_instances Tableccouuiiiii i e e e e e 59
10.3.5 The socket INStaNCES TabBIEciieiiii e e e e 59
10.4 Performance Schema Wait Event Tablesoi i 61
10.4.1 The events_waits_current Tableccouiiiiiiii e e e e e 63
10.4.2 The events_waits_hiStory Tablecc.iiiiiiiiii e 65
10.4.3 The events_waits_history 10ng Tablecoouiiiiiiii e 66
10.5 Performance Schema Stage EVeNnt TabIlescc..oiiiiiiiiii e e 66
10.5.1 The events_stages _CUIMENt TabIEcouuiiiiiiei e e e e e e e 68
10.5.2 The events_stages _history TabIec..oiiiiiiiiii e e 69
10.5.3 The events_stages_history 10ng Tablecoouiiiiiiiiii e 69
10.6 Performance Schema Statement Event TabIesoiiiiiiiiiiiiiii e 70
10.6.1 The events_statements_current Tableccooiiiiiiiii e 73
10.6.2 The events_statements_history Tablecoooviiiii i 77
10.6.3 The events_statements_history _long Tableccoovviiiii i 77
10.7 Performance Schema Connection TabIESviiiiiiiiiiii e 77
10.7.1 The @CCOUNLS TADIE ...t e et e e e 79
10.7.2 The NOSES TADIE ... e s 80
10.7.3 The USEIS TaADIE .uuiiiiii ettt et e et e e e eaa e e eenans 80
10.8 Performance Schema Connection Attribute Tablescoooiiiiiiiiii e 81
10.8.1 The session_account_connect_attrs Tablec.oiiiiiiiir e 82
10.8.2 The session_connect_attrs TabIEcccuuiiiiiiii e e rae e 83
10.9 Performance Schema Summary TabIESocviiiiiiii i e e e e e 84
10.9.1 Wait Event SUMMArY TabBIEScovuiiiii e e e e e e e e an s 85
10.9.2 Stage SUMMANY TabIESiiieiiiii e e e e e e e et e e e e eanees 87
10.9.3 Statement SUMMArY TabIES ... cc.uiiiiiei e e e e e e e eees 88
10.9.4 Object Wait SUMMAry Tableccoouiiiiii e e e 90
10.9.5 File I/O SUMMAIY TaADIESvieiiiii e e r e e e e e ean s 91
10.9.6 Table I/O and Lock Wait Summary TabIeScceeuiiiiiiiiie e e 92
10.9.7 Socket SUMMArY TabBIESc..uiiiiiciii e e e e e e e e 95
10.10 Performance Schema Miscellaneous TabIesSoiiiiiiiiiiiii e 96
10.10.1 The host_CaChe TabIecieeiiei e e e e e e e e e e 97
10.10.2 The performance_timers Tableccouiiiiiiiii e e e e e 99
10.10.3 The thre@ds TabIEcieiiii e et e e e eaanns 100

Tables in the per f or mance_schena database can be grouped as follows:

» Setup tables. These tables are used to configure and display monitoring characteristics.

49

www.EngineeringBooksPdf.com

Performance Schema Table Index

e Current events tables. The events_wai t s_cur rent table contains the most recent event for

each thread. Other similar tables contain current events
events_stages_current for stage events, and even
events.

History tables. These tables have the same structure as

at different levels of the event hierarchy:
ts_statenents_current for statement

the current events tables, but contain more

rows. For example, for wait events, event s_wai t s_hi st ory table contains the most recent 10 events
per thread. event s_wai ts_hi st ory_| ong contains the most recent 10,000 events. Other similar

tables exist for stage and statement histories.

To change the sizes of the history tables, set the approp
at server startup. For example, to set the sizes of the wa
tables, set perf or mance_schena_events_wai ts_hi

riate system variables
it event history
story_si ze and

performance_schena_events waits_history | ong_size.

that have been discarded from the history tables.

when used by the server, produces an event. These tabl
or status information.

» Miscellaneous tables. These do not fall into any of the ot

10.1 Performance Schema Table Index

Summary tables. These tables contain information aggregated over groups of events, including those

Instance tables. These tables document what types of objects are instrumented. An instrumented object,

es provide event names and explanatory notes

her table groups.

The following table lists each Performance Schema table and provides a short description of each one.

Table 10.1 Performance Schema Tables

Table Name

Description

accounts

Connection statistics per client account

cond_i nst ances

synchronization object instances

events_stages_current

Current stage events

events_stages_history

Most recent stage events for each thread

events_stages_history | ong

Most recent stage events overall

events_stages_summary_by_account by event _n

(Btage events per account and event name

events_stages_sumary_by host by event name

Stage events per host name and event name

events_stages_sunmary_ by thread by event na

IBtage waits per thread and event name

events_stages_sumary_by user by event name

Stage events per user name and event name

events_stages_sumary_gl obal by event nane

Stage waits per event name

events_statenents_current

Current statement events

events_statenents_history

Most recent statement events for each thread

events_statenents_history | ong

Most recent statement events overall

events_statenents_summary_by_account _by eve

IBtatesnent events per account and event name

events_statenents_sunmary_by di gest

Statement events per schema and digest value

events_statenents_sunmary_ by host by event _

IBtatement events per host name and event
name

events_statenents_summary_by thread_by even

(Statemeent events per thread and event name

50

www.EngineeringBooksPdf.com

Performance Schema Table Index

Table Name

Description

events_statenents_sunmary_by user_ by event _

rBtatement events per user name and event
name

events_statenents_summary_gl obal by event n

eStatement events per event name

events_waits_current

Current wait events

events_waits_history

Most recent wait events for each thread

events_waits_history_ | ong

Most recent wait events overall

events waits_summary_by account by event na

NWait events per account and event name

events_waits_summary_ by host by event nane

Wait events per host name and event name

events_waits_summary_by instance

Wait events per instance

events_waits_summary_by thread_by event nam

BVait events per thread and event name

events_waits_summary_ by user by event nane

Wait events per user name and event name

events _waits_sunmmary_ gl obal by event name

Wait events per event name

file_instances

File instances

file_sumary_ by event nane

File events per event name

file summary_ by instance

File events per file instance

host cache

Information from the internal host cache

host s

Connection statistics per client host name

mut ex_i nst ances

Mutex synchronization object instances

obj ects_sunmmary_gl obal by type

Object summaries

performance_tiners

Which event timers are available

rw ock i nstances

Lock synchronization object instances

sessi on_account _connect _attrs

Connection attributes per for the current
session

session_connect _attrs

Connection attributes for all sessions

setup_actors

How to initialize monitoring for new foreground
threads

setup_consuners

Consumers for which event information can be
stored

setup_instrunents

Classes of instrumented objects for which
events can be collected

setup_objects

Which objects should be monitored

setup_tinmers

Current event timer

socket i nstances

Active connection instances

socket _summary_by_ event nane

Socket waits and I/O per event name

socket summary_by instance

Socket waits and I/O per instance

table io waits _summary_ by index_usage

Table I/O waits per index

table_ io_waits_summary_ by table

Table 1/0O waits per table

tabl e | ock_waits_sumrary_by table

Table lock waits per table

t hr eads

Information about server threads

51

www.EngineeringBooksPdf.com

Performance Schema Setup Tables

Table Name Description

users Connection statistics per client user name

10.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you have
the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree of flexibility
in modifying Performance Schema configuration. For example, you can use a single statement with
standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

» setup_act or s: How to initialize monitoring for new foreground threads

» set up_consuner s: The destinations to which event information can be sent and stored

» setup_i nstrunent s: The classes of instrumented objects for which events can be collected
» set up_obj ect s: Which objects should be monitored

e setup_tiners: The current event timer

10.2.1 The setup_actors Table

The set up_act or s table contains information that determines whether to enable monitoring for new
foreground server threads (threads associated with client connections). This table has a maximum size of
100 rows by default. To change the table size, modify the per f or rance_schenma_set up_actors_si ze
system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the set up_act or s table. If a row from that table matches, its ENABLED column value
is used to set the the | NSTRUVENTED column of the t hr eads table row for the thread. This enables
instrumenting to be applied selectively per host, user, or account (user and host combination). If there is no
match, the | NSTRUVENTED column for the thread is set to NO.

For background threads, there is no associated user. | NSTRUVENTED is YES by default and
set up_act or s is not consulted.

The initial contents of the set up_act or s table match any user and host combination, so monitoring is
enabled by default for all foreground threads:

nysqgl > SELECT * FROM set up_act ors;

EN ENR ENR +
| HOST | USER | ROLE |
EN ENR ENR +
Il % | % | % |
EN ENR ENR +

For information about how to use the set up_act or s table to affect event monitoring, see Section 5.6,
“Pre-Filtering by Thread”.

Modifications to the set up_act or s table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the | NSTRUVENTED column of
t hr eads table rows.

52

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_update

The setup_consumers Table

The set up_act or s table has these columns:
e HOST

The host name. This should be a literal name, or ' % to mean “any host.”
» USER

The user name. This should be a literal name, or ' % to mean “any user.”
« ROLE

Unused.

TRUNCATE TABLE is permitted for the set up_act or s table. It removes the rows.

10.2.2 The setup_consumers Table

The set up_consuner s table lists the types of consumers for which event information can be stored and
which are enabled:

nysqgl > SELECT * FROM set up_consuners;

I
+
event s_stages_current |
events_stages_history |
events_stages_hi story_| ong |
event s_st at ement s_current | YES
I
I
I
I
I
I
I
I

I I
I I
I I
I I
| events_statenents_history NO |
| events_statenents_history_| ong NO |
| events_waits_current NO |
| events_waits_history NO |
| events_waits_history_I|ong NO |
| gl obal _instrunentation YES |
| thread_instrunentation YES |
| statenents_digest YES |
Fom e e e eemeaaaaaaa f T - +

The consumer settings in the set up_consumer s table form a hierarchy from higher levels to lower. For
detailed information about the effect of enabling different consumers, see Section 5.7, “Pre-Filtering by
Consumer”.

Modifications to the set up_consuner s table affect monitoring immediately.
The set up_consuner s table has these columns:
» NAME
The consumer name.
» ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you disable a
consumer, the server does not spend time adding event information to it.

TRUNCATE TABLE is not permitted for the set up_consuner s table.

10.2.3 The setup_instruments Table

The set up_i nst runent s table lists classes of instrumented objects for which events can be collected:

53

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The setup_objects Table

nmysqgl > SELECT * FROM set up_i nst runent s;

g S doocoocooo doocoooo +
| NAME | ENABLED | TIMED |
g S doocoocooo doocoooo +
wai t / synch/ mut ex/ sql / LOCK_gl obal _read_| ock YES YES
wai t / synch/ mut ex/ sql / LOCK_gl obal _syst em vari abl es YES YES

I I I
I I I
| wait/synch/ mut ex/sql/LOCK | ock_db | YES | YES
I I I

wai t / synch/ mut ex/ sql / LOCK_nanager YES YES
wait/synch/rw ock/sqgl/LOCK grant	YES	YES	
wait/synch/rw ock/sql / LOGGER: : LOCK_	ogger	YES	YES
wait/synch/rw ock/sqgl/LOCK sys_init_connect	YES	YES	
wait/synch/rw ock/sqgl/LOCK sys_init_slave	YES	YES	
wait/iolfilelsql/binlog	YES	YES	
wait/iolfilelsql/binlog_index	YES	YES	
wait/iolfilelsql/casetest	YES	YES	
	YES	YES	

wait/iol/filelsql/dbopt

Each instrument added to the source code provides a row for this table, even when the instrumented code
is not executed. When an instrument is enabled and executed, instrumented instances are created, which
are visible in the * _i nst ances tables.

Modifications to most set up_i nst r unment s rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

For more information about the role of the set up_i nst r unent s table in event filtering, see Section 5.3,
“Event Pre-Filtering”.

The set up_i nst runment s table has these columns:
» NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed in
Chapter 7, Performance Schema Instrument Naming Conventions. Events produced from execution of
an instrument have an EVENT _NANME value that is taken from the instrument NAVE value. (Events do not
really have a “name,” but this provides a way to associate events with instruments.)

* ENABLED

Whether the instrument is enabled. The value is YES or NO. This column can be modified. A disabled
instrument produces no events.

« TI MED
Whether the instrument is timed. This column can be modified.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TI MER_START, TI MER_END, and TI MER_WAI T timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

TRUNCATE TABLE is not permitted for the set up_i nst runent s table.

10.2.4 The setup_objects Table

54

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The setup_objects Table

The set up_obj ect s table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
perfornmance_schenma_set up_obj ects_si ze system variable at server startup.

The initial set up_obj ect s contents look like this:

nmysql > SELECT * FROM set up_obj ect s;

dooccococccoocooo dooccococcocoocococococooo doococccoocooo doocoocooo doocoooo +
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
dooccococccoocooo dooccococcocoocococococooo doococccoocooo doocoocooo doocoooo +
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
dooccococccoocooo dooccococcocoocococococooo doococccoocooo doocoocooo doocoooo +

Modifications to the set up_obj ect s table affect object monitoring immediately.

For object types listed in set up_obj ect s, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT SCHEMA and OBJECT NAME columns. Objects for which
there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in the nysql ,

| NFORVATI ON_SCHEMA, and per f or mance_schenea databases. (Tables in the | NFORMATI ON_SCHENA
database are not instrumented regardless of the contents of set up_obj ect s; the row for

i nf or mati on_schena. %simply makes this default explicit.)

When the Performance Schema checks for a match in set up_obj ect s, it tries to find more specific
matches first. For example, with a table db1. t 1, it looks for a match for ' db1' and 't 1', then for' dbl’
and' % ,thenfor' % and' % . The order in which matching occurs matters because different matching
set up_obj ect s rows can have different ENABLED and TI MED values.

Rows can be inserted into or deleted from set up_obj ect s by users with the | NSERT or DELETE privilege
on the table. For existing rows, only the ENABLED and TI MED columns can be modified, by users with the
UPDATE privilege on the table.

For more information about the role of the set up_obj ect s table in event filtering, see Section 5.3, “Event
Pre-Filtering”.

The set up_obj ect s table has these columns:
+ OBJECT_TYPE
The type of object to instrument. This is always ' TABLE' (base table).

TABLE filtering affects table I/O events (wai t /i o/ t abl e/ sql / handl er instrument) and table lock
events (wai t /| ock/ t abl e/ sql / handl er instrument).

» OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or' % to mean “any schema.”
« OBJECT_NAME

The name of the instrumented object. This should be a literal name, or' % to mean “any object.”
 ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be modified.

55

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_insert
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_delete
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_update

The setup_timers Table

» TI MED
Whether events for the object are timed. This column can be modified.

TRUNCATE TABLE is permitted for the set up_obj ect s table. It removes the rows.

10.2.5 The setup_timers Table

The set up_t i ner s table shows the currently selected event timers:

nysqgl > SELECT * FROM setup_ti ners;

LT e ccmmmosoooon +
| NAMVE | TIMER NAME |
LT e ccmmmosoooon +
idle	M CROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
+

The set up_t i ners. TI MER_NANME value can be changed to select a different timer. The value can be any
of the values in the per f or mance_t i mers. TI MER_NAME column. For an explanation of how event timing
occurs, see Section 5.1, “Performance Schema Event Timing”.

Modifications to the set up_t i ner s table affect monitoring immediately. Events already in progress may
use the original timer for the begin time and the new timer for the end time. To avoid unpredictable results
after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The set up_ti nmer s table has these columns:
* NAME
The type of instrument the timer is used for.
« TI MER_NAVE
The timer that applies to the instrument type. This column can be modified.

TRUNCATE TABLE is not permitted for the set up_t i ner s table.

10.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

e cond_i nst ances: Condition synchronization object instances
« file_instances: File instances

e nut ex_i nst ances: Mutex synchronization object instances

» rwl ock_i nstances: Lock synchronization object instances

e socket i nstances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types of
synchronization objects: cond, mut ex, and r W ock. Each instance table has an EVENT_NANME or NAVE
column to indicate the instrument associated with each row. Instrument names may have multiple parts
and form a hierarchy, as discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

56

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The cond_instances Table

The nut ex_i nstances. LOCKED BY THREAD | Dand

rw ock instances. WRI TE_ LOCKED BY_ THREAD | Dcolumns are extremely important for investigating
performance bottlenecks or deadlocks. For examples of how to use them for this purpose, see Chapter 14,
Using the Performance Schema to Diagnose Problems

10.3.1 The cond_instances Table

The cond_i nst ances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event has
happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the thread is
waiting for, but there is no immediate way to tell which other thread, or threads, will cause the condition to
happen.

The cond_i nst ances table has these columns:
* NAME
The instrument name associated with the condition.
* OBJECT_I NSTANCE_BEG N
The address in memory of the instrumented condition.

TRUNCATE TABLE is not permitted for the cond_i nst ances table.

10.3.2 The file_instances Table

The fil e_i nst ances table lists all the files seen by the Performance Schema when executing file /10
instrumentation. If a file on disk has never been opened, it will not be infi | e_i nst ances. When afile is
deleted from the disk, it is also removed fromthe f i | e _i nst ances table.

Thefil e_i nstances table has these columns:
 FI LE_NAME
The file name.
« EVENT_NAME
The instrument name associated with the file.
« OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT will be 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT >
0.

TRUNCATE TABLE is not permitted forthe fi | e_i nst ances table.

10.3.3 The mutex_instances Table

The nut ex_i nst ances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

57

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The mutex_instances Table

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these two
threads will compete against each other, so that the first query to obtain a lock on the mutex will cause the
other query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The nmut ex_i nst ances table has these columns:
 NAME

The instrument name associated with the mutex.
* OBJECT_I NSTANCE_BEG N

The address in memory of the instrumented mutex.
« LOCKED BY THREAD | D

When a thread currently has a mutex locked, LOCKED BY THREAD | Dis the THREAD | D of the locking
thread, otherwise it is NULL.

TRUNCATE TABLE is not permitted for the nut ex_i nst ances table.
For every mutex instrumented in the code, the Performance Schema provides the following information.

e The set up_i nstrunent s table lists the name of the instrumentation point, with the prefix wai t /
synch/ mut ex/ .

» When some code creates a mutex, a row is added to the mut ex_i nst ances table. The
OBJECT | NSTANCE_BEG N column is a property that uniquely identifies the mutex.

» When a thread attempts to lock a mutex, the event s_wai t s_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT _NAME column), and indicating which mutex
is waited on (in the OBJECT _| NSTANCE_BEG N column).

» When a thread succeeds in locking a mutex:

e« events_waits_current shows that the wait on the mutex is completed (in the TI MER_END and
TI MER_WAI T columns)

« The completed wait event is added to the event s _wai ts_hi st ory and
events_waits_history_ | ong tables

e nut ex_i nst ances shows that the mutex is now owned by the thread (in the THREAD_| D column).

* When a thread unlocks a mutex, nmut ex_i nst ances shows that the mutex now has no owner (the
THREAD | D column is NULL).

» When a mutex object is destroyed, the corresponding row is removed from nmut ex_i nst ances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

* events_waits_current,to see what mutex a thread is waiting for

* mut ex_i nst ances, to see which other thread currently owns a mutex

58

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The rwlock_instances Table

10.3.4 The rwlock_instances Table

The rwl ock_i nst ances table lists all the r wl ock instances (read write locks) seen by the Performance
Schema while the server executes. An rwl ock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.
The resource is said to be “protected” by the r Wl ock. The access is either shared (many threads can have
a read lock at the same time) or exclusive (only one thread can have a write lock at a given time).

Depending on how many threads are requesting a lock, and the nature of the locks requested, access can
be either granted in shared mode, granted in exclusive mode, or not granted at all, waiting for other threads
to finish first.

The rwl ock_i nst ances table has these columns:
* NAME

The instrument name associated with the lock.
 OBJECT_I NSTANCE_BEG N

The address in memory of the instrumented lock.
« WRI TE_LOCKED BY_THREAD | D

When a thread currently has an r wl ock locked in exclusive (write) mode,
VRI TE_LOCKED BY_ THREAD | Dis the THREAD | D of the locking thread, otherwise it is NULL.

« READ_LOCKED BY_COUNT

When a thread currently has an r wl ock locked in shared (read) mode, READ LOCKED BY_ COUNT is
incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a read
lock, but it can be used to see whether there is a read contention on an r W ock, and see how many
readers are currently active.

TRUNCATE TABLE is not permitted for the r wl ock_i nst ances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect some
bottlenecks or deadlocks between threads that involve locks:

e events waits current,toseewhatrw ock athread is waiting for
e rwl ock_i nstances, to see which other thread currently owns an r w ock

There is a limitation: The rw ock_i nst ances can be used only to identify the thread holding a write lock,
but not the threads holding a read lock.

10.3.5 The socket_instances Table

The socket _i nst ances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information is
available in socket summary tables, including network activity such as socket operations and number of
bytes transmitted and received; see Section 10.9.7, “Socket Summary Tables”).

nysqgl > SELECT * FROM socket _i nstances\ G

LEERE R EEEEEEEEEEE L EEE FOW FXX*hdkkkkkkhokkkkkkkhkkkxxkhk

EVENT_NAME: wai t/i o/ socket/sql/server_uni x_socket

59

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The socket_instances Table

OBJECT_| NSTANCE_BEG N: 4316619408
THREAD | D: 1
SOCKET_I D: 16
I P:
PORT: O
STATE: ACTI VE

LEEREEEEEEEEEEEEEEE L] FOW *XX*hdkdkkkkkhhkkkxkhhkkkxkkhk

EVENT_NAME: wai t/i o/ socket/sql/client_connection
OBJECT_| NSTANCE_BEG N: 4316644608
THREAD_I D: 21
SOCKET_I D: 39
IP: 127.0.0.1
PORT: 55233
STATE: ACTI VE

LEER R EEEEEEEEEEE L] FOW XX *hdkdkkkkkhkhkkxkhhkkkxxhk

EVENT_NAME: wai t/i o/ socket/sql/server_tcpi p_socket
OBJECT_| NSTANCE_BEG N: 4316699040
THREAD_I D: 1
SOCKET_I D: 14
IP: 0.0.0.0
PORT: 50603
STATE: ACTI VE

Socket instruments have names of the form wai t /i o/ socket/ sql / socket type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments associated
with listening sockets for TCP/IP or Unix socket file connections have a socket t ype value of
server _tcpi p_socket orserver _uni x_socket , respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket _type
value of cl i ent _connecti on.

3. When a connection terminates, the row in socket _i nst ances corresponding to it is deleted.
The socket i nstances table has these columns:
« EVENT_NANME

The name of the wai t /i o/ socket / * instrument that produced the event. This is a NAVE value from
the set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

e OBJECT_| NSTANCE_BEG N
This column uniquely identifies the socket. The value is the address of an object in memory.
e THREAD | D

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

e SOCKET_I D
The internal file handle assigned to the socket.
< IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

60

www.EngineeringBooksPdf.com

Performance Schema Wait Event Tables

» PORT
The TCP/IP port number, in the range from 0 to 65535.
* STATE

The socket status, either | DLE or ACTI VE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the i dl e instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event row
in socket i nst ances that is tracking the socket switches from a status of ACTI VE to | DLE. The
EVENT _NAME value remains wai t / i o/ socket / *, but timing for the instrument is suspended. Instead,
an event is generated in the event s_wai ts_current table with an EVENT_NAME value of i dl e.

When the next request is received, the i dl e event terminates, the socket instance switches from | DLE
to ACTI VE, and timing of the socket instrument resumes.

TRUNCATE TABLE is not permitted for the socket _i nst ances table.

The | P: PORT column combination value identifies the connection. This combination value is used in the
OBJECT_NANME column of the event s_wai t s_xxx tables, to identify the connection from which socket
events come:

» For the Unix domain listener socket (ser ver _uni x_socket), the portis 0, and the IPis"' " .

* For client connections via the Unix domain listener (cl i ent _connect i on), the portis 0, and the IP is

» For the TCP/IP server listener socket (ser ver _t cpi p_socket), the port is always the master port (for
example, 3306), and the IP is always 0. 0. 0. 0.

 For client connections via the TCP/IP listener (cl i ent _connect i on), the port is whatever the server
assigns, but never 0. The IP is the IP of the originating host (127. 0. 0. 1 or : : 1 for the local host)

10.4 Performance Schema Wait Event Tables

The Performance Schema instruments waits, which are events that take time. Within the event hierarchy,
wait events nest within stage events, which nest within statement events.

These tables store wait events:

e events_waits_current: Current wait events

* events_waits_history: The most recent wait events per thread

 events waits_history_ | ong: The most recent wait events globally (across all threads)

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 10.9.1, “Wait Event Summary Tables”.

Wait Event Configuration

To control collection of wait events, set the state of the relevant instruments and consumers:

» The set up_i nstrunent s table contains instruments with names that begin with wai t . Use these
instruments to enable or disable collection of wait events.

61

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Wait Event Configuration

e The set up_consuner s table contains consumer values with names corresponding to the current and
recent wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

nysql > SELECT * FROM setup_i nstrunents
WHERE NAME LIKE 'wait/io/file/innodb% ;

e e e e e eeeemeeaaaaaaaa Femmmee s S - +
| NAMVE | ENABLED | TIMED |
e e e e e eeeemeeaaaaaaaa Femmmee s S - +
wait/io/filelinnodb/innodb_data_file	YES	YES
wait/io/filelinnodb/innodb_log file	YES	YES
wait/io/filelinnodb/innodb_tenp_file	YES	YES
e e e e e eeeemeeaaaaaaaa Femmmee s S - +

nysql > SELECT * FROM setup_i nstrunments WHERE
NAVE LI KE 'wait/i o/ socket/ % ;

e E S - +
| NAMVE | ENABLED | TIMED |
e E S - +
wait/iolsocket/sql/server_tcpip_socket	NO	NO
wait/iolsocket/sql/server_unix_socket	NO	NO
wait/iolsocket/sql/client_connection	NO	NO
e E S - +

The wait consumers are disabled by default:

nmysql > SELECT * FROM set up_consuners WHERE NAMVE LI KE ' %wai t s% ;

fooccoococccocococoooooocoooao fooccooooo +
| NAVE | ENABLED |
fooccoococccocococoooooocoooao fooccooooo +
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
fooccoococccocococoooooocoooao fooccooooo +

To control wait event collection at server startup, use lines like these in your ny. cnf file:

* Enable:

[mysql d]

per f or mance- schema- i nst runent =' wai t / %=0ON

per f or mance- schema- consuner - event s-wai t s- cur r ent =ON

per f or mance- schema- consuner - event s- wai t s- hi st or y=0ON

per f or mance- schena- consuner - event s- wai t s- hi st or y- 1 ong=ON

» Disable:

[nysql d]

per f or mance- schena- i nst runent =' wai t / %=0OFF'

per f or mance- schema- consuner - event s- wai t s- cur r ent =OFF

per f or mance- schema- consuner - event s- wai t s- hi st or y=0OFF

per f or mance- schema- consuner - event s- wai t s- hi st ory- | ong=0OFF

To control wait event collection at runtime, update the set up_i nstrunent s and set up_consuner s
tables:

* Enable:

UPDATE setup_i nstrunents SET ENABLED = 'YES', TIMED = ' YES
VWHERE NAME = 'wait/ % ;
UPDATE set up_consuners SET ENABLED = ' YES'

62

www.EngineeringBooksPdf.com

The events_waits_current Table

VWHERE NAME LI KE ' %\ai t s% ;

» Disable:

UPDATE setup_i nstrunents SET ENABLED = 'NO, TIMED = ' NO
VWHERE NAME = 'wait/ % ;

UPDATE set up_consuners SET ENABLED = ' NO

VWHERE NAME LI KE ' %\ai t s% ;

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait events
only for specific wait event tables, enable the wait instruments but only the wait consumers corresponding
to the desired tables.

The set up_ti ner s table contains a row with a NAVE value of wai t that indicates the unit for wait event
timing. The default unit is CYCLE:

nmysql > SELECT * FROM setup_tiners WHERE NAME = 'wait';

doocooo dooccoooccoooao +
| NAME | TI MER_NAME |
doocooo dooccoooccoooao +
| wait | CYCLE |
doocooo dooccoooccoooao +

To change the timing unit, modify the TI MER_NANME value:

UPDATE setup_timers SET TI MER NAME = ' NANOSECOND
WHERE NAME = 'wait';

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

10.4.1 The events_waits_current Table

The events_wai ts_current table contains current wait events, one row per thread showing the current
status of the thread's most recent monitored wait event.

Of the tables that contain wait event rows, events_wai t s_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the

events waits historyandevents waits_ history | ong tables are collections of the most recent
wait events, up to a fixed number of rows.

For information about configuration of wait event collection, see Section 10.4, “Performance Schema Wait
Event Tables”.

The events_wai ts_current table has these columns:
 THREAD | D, EVENT_I D

The thread associated with the event and the thread current event number when the event starts. The
THREAD | Dand EVENT | D values taken together uniquely identify the row. No two rows have the same
pair of values.

« END_EVENT_|I D

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

- EVENT_NAME

63

www.EngineeringBooksPdf.com

The events_waits_current Table

The name of the instrument that produced the event. This is a NAME value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can check
the context in which this occurs.

TI MER_START, TI MER_END, TI MER_WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TI MER_START and TI MER_END values indicate when event timing started and ended. TI MER WAI T is
the event elapsed time (duration).

If an event has not finished, TI MER_END and TI MER_WAI T are NULL before MySQL 5.6.26. As of
5.6.26, TI MER_END s the current timer value and TI MVER_WAI T is the time elapsed so far (TI MER_END
- TI MER_START).

If an event is produced from an instrument that has TI MED = NO, timing information is not collected,
and Tl MER_START, TI MER_END, and Tl MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

SPI NS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

OBJECT_SCHEMA, OBJECT_NANME, OBJECT_TYPE, OBJECT_| NSTANCE_BEG N
These columns identify the object “being acted on.” What that means depends on the object type.
For a synchronization object (cond, nut ex, r w ock):

« OBJECT_SCHEMA, OBJECT_NANE, and OBJECT_TYPE are NULL.

e OBJECT | NSTANCE BEG Nis the address of the synchronization object in memory.
For afile 1/O object:

¢ OBJECT_SCHEMA is NULL.

 OBJECT_NAME is the file name.

e OBJECT TYPEIis FI LE.

e OBJECT_ I NSTANCE_BEG Nis an address in memory.

For a socket object:

« OBJECT_NAME is the | P: PORT value for the socket.

e OBJECT | NSTANCE BEG Nis an address in memory.

64

www.EngineeringBooksPdf.com

The events_waits_history Table

For a table I/O object:

e OBJECT_SCHEMA is the name of the schema that contains the table.

* OBJECT_NAME is the table name.

e OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.
e OBJECT | NSTANCE_BEG Nis an address in memory.

An OBJECT_| NSTANCE_BEGQ N value itself has no meaning, except that different values indicate
different objects. OBJECT | NSTANCE_BEG N can be used for debugging. For example, it can be used
with GROUP BY OBJECT | NSTANCE BEG Nto see whether the load on 1,000 mutexes (that protect,
say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This can help you
correlate with other sources of information if you see the same object address in a log file or another
debugging or performance tool.

« | NDEX_NAME

The name of the index used. PRI MARY indicates the table primary index. NULL means that no index was
used.

« NESTI NG EVENT | D

The EVENT _| Dvalue of the event within which this event is nested.
* NESTI NG_EVENT_TYPE

The nesting event type. The value is STATEMENT, STAGE, or WAI T.
* OPERATI ON

The type of operation performed, such as | ock, read, orwite.
« NUMBER OF BYTES

The number of bytes read or written by the operation. For table 1/0 waits (events for the wai t /i o/
tabl e/ sqgl / handl er instrument), NUVBER _OF BYTESis NULL.

* FLAGS
Reserved for future use.

TRUNCATE TABLE is permitted for the event s_wai t s_current table. It removes the rows.

10.4.2 The events_waits_history Table

The events_wai t s_hi st ory table contains the most recent N wait events per thread.

The value of Nis autosized at server startup. To set the table size explicitly, set the
performance_schema_events waits_history_ size system variable at server startup. Wait events
are not added to the table until they have ended. As new events are added, older events are discarded if
the table is full.

The events_wai t s_hi st ory table has the same structure as events_wai ts_current. See
Section 10.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the event s_wai t s_hi st ory table. It removes the rows.

65

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The events_waits_history _long Table

For information about configuration of wait event collection, see Section 10.4, “Performance Schema Wait
Event Tables”.

10.4.3 The events_waits_history_long Table

The events_wai ts_hi story_| ong table contains the most recent N wait events.

The value of Nis autosized at server startup. To set the table size explicitly, set the
performance_schema_events waits_history | ong_si ze system variable at server startup.
Wait events are not added to the table until they have ended. As new events are added, older events are
discarded if the table is full. When a thread ends, its rows are removed from the table.

The events_wai ts_hi story_| ong table has the same structure as events_wai ts_current. See
Section 10.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the event s_wai t s_hi st ory_I ong table. It removes the rows.

For information about configuration of wait event collection, see Section 10.4, “Performance Schema Wait
Event Tables”.

10.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution
process, such as parsing a statement, opening a table, or performingafi | esort operation.
Stages correspond to the thread states displayed by SHOW PROCESSLI ST or that are visible in the
| NFORVATI ON_SCHENMA. PROCESSLI ST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events.
These tables store stage events:

» events_stages_current: Current stage events

e events_stages_hi story: The most recent stage events per thread

* events_stages_history_ | ong: The most recent stage events globally (across all threads)

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 10.9.2, “Stage Summary Tables”.

Stage Event Configuration

To control collection of stage events, set the state of the relevant instruments and consumers:

* The set up_i nstrunent s table contains instruments with names that begin with st age. Use these
instruments to enable or disable collection of stage events.

» The set up_consuner s table contains consumer values with names corresponding to the current and
recent stage event table names. Use these consumers to filter collection of stage events.

The stage instruments are disabled by default. For example:

mysql > SELECT * FROM setup_i nstruments WHERE NAME RLI KE ' stage/sqgl/[a-c]"';
+

S P S S T +
| NAMVE | ENABLED | TIMED |
S P S holoioioo o holoioioim +
stage/sqgl/After create	NO	NO	
stage/sqgl/allocating	ocal table	NO	NO
stage/sqgl/altering table	NO	NO	

66

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html

Stage Event Configuration

stage/sql/committing alter table to storage engine
st age/ sql / Changi ng mast er

st age/ sql / Checki ng master version

st age/ sql / checki ng perm ssi ons

stage/ sql / checking privileges on cached query
st age/ sql / checki ng query cache for query

st age/ sql / cl eani ng up

stage/ sql /cl osing tabl es

stage/ sql / Connecti ng to master

stage/ sql / converting HEAP to Myl SAM

stage/ sql / Copying to group table

stage/ sql / Copying to tnp table

stage/sql /copy to tnp table

stage/ sql / Creating del ayed handl er

stage/ sql / Creating sort index

stage/sql /creating table

stage/sql/Creating tnp table

666666666666566666
666666666666566666

The stage consumers are disabled by default:

nmysqgl > SELECT * FROM set up_consuners WHERE NAME LI KE ' %t ages% ;

fmocccoocccosoccoosccoosooooo moococo==o +
| NAME | ENABLED |
fmocccoocccosoccoosccoosooooo moococo==o +
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
fmocccoocccosoccoosccoosooooo moococo==o +

To control stage event collection at server startup, use lines like these in your ny. cnf file:

e Enable:

[nysal d]

per f or mance- schema- i nst runent =' st age/ %=ON

per f or mance- schema- consuner - event s- st ages- cur r ent =ON

per f or mance- schema- consuner - event s- st ages- hi st or y=0ON

per f or mance- schema- consuner - event s- st ages- hi st ory- 1 ong=0ON

e Disable:

[nysql d]

per f or mance- schena- i nst runent =' st age/ %=OFF'

per f or mance- schema- consuner - event s- st ages- cur r ent =OFF

per f or mance- schema- consuner - event s- st ages- hi st or y=0OFF

per f or mance- schema- consuner - event s- st ages- hi st ory- | ong=0OFF

To control stage event collection at runtime, update the set up_i nst runent s and set up_consuner s
tables:

* Enable:

UPDATE setup_i nstrunents SET ENABLED = ' YES', TIMED = ' YES
WHERE NAME = 'stage/ % ;

UPDATE set up_consuners SET ENABLED = ' YES

WHERE NAME LI KE ' %t ages% ;

» Disable:

67

www.EngineeringBooksPdf.com

The events_stages_current Table

UPDATE setup_i nstrunents SET ENABLED = 'NO, TIMED = 'NO
VWHERE NAME = ' stage/ % ;

UPDATE set up_consuners SET ENABLED = ' NO

WHERE NAME LI KE ' %t ages% ;

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

The set up_t i ner s table contains a row with a NANME value of st age that indicates the unit for stage
event timing. The default unit is NANOSECOND:

nysql > SELECT * FROM setup_tinmers WHERE NAME = 'stage';
dhmocooos dmocccosococoo +
| NAME | TIMER_NAME |
dhmocooos dmocccosococoo +
| stage | NANCSECOND |
dhmocooos dmocccosococoo +

To change the timing unit, modify the TI MER_NANME value:

UPDATE setup_tinmers SET Tl MER_ NAME = ' M CROSECOND
WHERE NAME = 'stage';

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

10.5.1 The events_stages_current Table

The events_stages_current table contains current stage events, one row per thread showing the
current status of the thread's most recent monitored stage event.

Of the tables that contain stage event rows, event s_st ages_cur r ent is the most fundamental. Other
tables that contain stage event rows are logically derived from the current events. For example, the
events_stages_history andevents stages history | ong tables are collections of the most
recent stage events, up to a fixed number of rows.

For information about configuration of stage event collection, see Section 10.5, “Performance Schema
Stage Event Tables”.

The event s_st ages_current table has these columns:
e THREAD | D, EVENT I D

The thread associated with the event and the thread current event number when the event starts. The
THREAD_| Dand EVENT_| D values taken together uniquely identify the row. No two rows have the same
pair of values.

« END_EVENT_I D

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

o EVENT_NAMVE

The name of the instrument that produced the event. This is a NAMVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

68

www.EngineeringBooksPdf.com

The events_stages_history Table

» SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

« TI MER_START, TI MER_END, TI MER WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TI MER_START and TI MER_END values indicate when event timing started and ended. TI VER WAI T is
the event elapsed time (duration).

If an event has not finished, TI MER_END and TI MER_WAI T are NULL before MySQL 5.6.26. As of
5.6.26, TI MER_END s the current timer value and TI VER_WAI T is the time elapsed so far (TI MER_END
- TI MER_START).

If an event is produced from an instrument that has TI MED = NO, timing information is not collected,
and TI MER_START, TI MER_END, and TI MER WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

« NESTI NG_EVENT_| D

The EVENT _| Dvalue of the event within which this event is nested. The nesting event for a stage event
is usually a statement event.

* NESTI NG_EVENT_TYPE
The nesting event type. The value is STATEMENT, STAGE, or WAI T.

TRUNCATE TABLE is permitted for the event s_st ages_cur r ent table. It removes the rows.

10.5.2 The events_stages_history Table

The events_st ages_hi st ory table contains the most recent N stage events per

thread. The value of N is autosized at server startup. To set the table size explicitly, set the
perfornmance_schema_events stages hi story_si ze system variable at server startup. Stage
events are not added to the table until they have ended. As new events are added, older events are
discarded if the table is full.

The events_st ages_hi st ory table has the same structure as event s_st ages_current. See
Section 10.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the event s _st ages_hi st ory table. It removes the rows.

For information about configuration of stage event collection, see Section 10.5, “Performance Schema
Stage Event Tables”.

10.5.3 The events_stages_history long Table

The event s_st ages_hi st ory_| ong table contains the most recent N stage events.

The value of Nis autosized at server startup. To set the table size explicitly, set the
performance_schema_events_stages_hi story_| ong_si ze system variable at server startup.
Stage events are not added to the table until they have ended. As new events are added, older events are
discarded if the table is full. When a thread ends, its rows are removed from the table.

69

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Performance Schema Statement Event Tables

The events_stages_hi story_| ong table has the same structure as event s_st ages_current. See
Section 10.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the event s_st ages_hi st ory_| ong table. It removes the rows.

For information about configuration of stage event collection, see Section 10.5, “Performance Schema
Stage Event Tables”.

10.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of the
event hierarchy: Wait events nest within stage events, which nest within statement events.

These tables store statement events:

» events_statenents_current: Current statement events

* events_statenents_history: The most recent statement events per thread

* events_statenents_history | ong: The most recent statement events globally (across all threads)

The following sections describe the statement event tables. There are also summary tables that aggregate
information about statement events; see Section 10.9.3, “Statement Summary Tables”.

Statement Event Configuration

To control collection of statement events, set the state of the relevant instruments and consumers:

» The set up_i nstrunent s table contains instruments with names that begin with st at enent . Use
these instruments to enable or disable collection of statement events.

» The set up_consuner s table contains consumer values with names corresponding to the current and
recent statement event table names, and the statement digest consumer. Use these consumers to filter
collection of statement events and statement digesting.

The statement instruments are enabled by default, and the event s_st at enent s_current and
stat ement s_di gest statement consumers are enabled by default:

nysqgl > SELECT * FROM setup_i nstrunents WHERE NAME LI KE ' statenent/ % ;

e L T - Hommem - +
| NAMVE | ENABLED | TIMED |
e L T - Hommem - +
statenent/sql/select	YES	YES
statenent/sql/create_table	YES	YES
statenent/sql/create_index	YES	YES

st at ement/ sp/ st nt YES YES

st at enment / sp/ set YES YES

statement/sp/set_trigger_field YES YES

statenent/schedul er/event	YES	YES

st at ement/ cont S| eep YES YES

st at ement / com Qui t YES YES

statenment/com I nit DB YES YES
statenent/abstract/ Query	YES	YES	
statenent/abstract/new packet	YES	YES	
statenent/abstract/relay_	og	YES	YES
e L T - Hommem - +

70

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Statement Event Configuration

nmysql > SELECT * FROM set up_consuners WHERE NAME LI KE ' %st at ement s% ;

e e e e e e mmmeeeeeeceeaaaaa Hemmmmeaa - +
| NAMVE | ENABLED |
e e e e e e mmmeeeeeeceeaaaaa Hemmmmeaa - +
events_statenents_current	YES	
events_statenents_history	NO	
events_statenents_history_	ong	NO
statenents_digest	YES	
e e e e e e mmmeeeeeeceeaaaaa Hemmmmeaa - +

To control statement event collection at server startup, use lines like these in your ny. cnf file:

* Enable:

[nysql d]

per f or mance- schenma- i nst runent =' st at enent / %0ON

per f or mance- schema- consuner - event s- st at enent s- cur r ent =ON

per f or mance- schena- consuner - event s- st at enent s- hi st or y=0ON

per f or mance- schema- consuner - event s- st at enent s- hi st ory-1 ong=0ON
per f or mance- schena- consuner - st at enent s- di gest =ON

» Disable:

[nysql d]

per f or mance- schenma- i nst runent =' st at enent / %OFF'

per f or mance- schema- consuner - event s- st at enent s- cur r ent =OFF

per f or mance- schema- consuner - event s- st at ement s- hi st or y=OFF

per f or mance- schema- consuner - event s- st at enent s- hi st ory- | ong=0OFF
per f or mance- schema- consuner - st at ement s- di gest =OFF

To control statement event collection at runtime, update the set up_i nstrunent s and
set up_consuner s tables:

* Enable:

UPDATE set up_i nstrunents SET ENABLED = ' YES', TIMED = ' YES
WHERE NAME LI KE 'statement/ % ;

UPDATE set up_consuners SET ENABLED = ' YES

VWHERE NAME LI KE ' %t at enent s% ;

» Disable:

UPDATE setup_i nstrunents SET ENABLED = 'NO, TIMED = ' NO
WHERE NAME LI KE 'statement/ % ;

UPDATE set up_consuners SET ENABLED = ' NO

VWHERE NAME LI KE ' %t at enent s% ;

To collect only specific statement events, enable only the corresponding statement instruments. To collect
statement events only for specific statement event tables, enable the statement instruments but only the
statement consumers corresponding to the desired tables.

The set up_ti ner s table contains a row with a NAME value of st at enent that indicates the unit for
statement event timing. The default unit is NANOSECOND:

nmysql > SELECT * FROM setup_tiners WHERE NAME = 'statenent';

ooccocococooo ooccoccocoooo +
| NAVE | TI MER_NAME |
ooccocococooo ooccoccocoooo +
| statenment | NANOSECOND |
ooccocococooo ooccoccocoooo +

71

www.EngineeringBooksPdf.com

Statement Monitoring

To change the timing unit, modify the TI MER_NANME value:

UPDATE setup_timers SET TI MER_NAME = ' M CROSECOND
VWHERE NAME = 'statenent';

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread, to the
moment when all activity has ceased. Typically, this means from the time the server gets the first packet
from the client to the time the server has finished sending the response. Monitoring occurs only for top-
level statements. Statements within stored programs and subqueries are not seen separately.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it arrives
at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

» Server commands correspond to the COM xxx codes defined in the mysql _com h header file
and processed in sql / sql _par se. cc. Examples are COM_PI NGand COVI QUI T. Instruments for
commands have names that begin with st at enent / com such as st at enent / coml Pi ng and
statement/com Quit.

» SQL statements are expressed as text, such as DELETE FROM t 1 or SELECT * FROM t 2.
Instruments for SQL statements have names that begin with st at enent / sql , such as st at enent /
sql / del et e and st at enent/ sql / sel ect.

Some final instrument names are specific to error handling:

» statenent/com Error accounts for messages received by the server that are out of band. It can be
used to detect commands sent by clients that the server does not understand. This may be helpful for
purposes such as identifying clients that are misconfigured or using a version of MySQL more recent
than that of the server, or clients that are attempting to attack the server.

» statenent/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses but fails
due to an error during execution. For example, SELECT * FROMis malformed, and the st at enent /
sql / error instrument is used. By contrast, SELECT * parses but fails with a No t abl es used error.
In this case, st at enent / sql / sel ect is used and the statement event contains information to indicate
the nature of the error.

A request can be obtained from any of these sources:
» As a command or statement request from a client, which sends the request as packets
» As a statement string read from the relay log on a replication slave

The details for a request are not initially known and the Performance Schema proceeds from abstract to
specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an abstract
instrument name of st at enent / abstract/ new_packet .

72

www.EngineeringBooksPdf.com

The events_statements_current Table

2. When the server reads the packet number, it knows more about the type of request received, and the
Performance Schema refines the instrument name. For example, if the request is a COM Pl NG packet,
the instrument name becomes st at enent / conl Pi ng and that is the final name. If the request is
a COM_QUERY packet, it is known to correspond to an SQL statement but not the particular type of
statement. In this case, the instrument changes from one abstract name to a more specific but still
abstract name, st at enent / abstract/ Query, and the request requires further classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing, the
exact statement type is known. If the request is, for example, an | NSERT statement, the Performance
Schema refines the instrument name from st at enent / abstract/ Query to st at ement/ sql /

i nsert, which is the final name.

For a request read as a statement from the relay log on a replication slave:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol, so
the st at ement / abstract / new_packet instrument is not used. Instead, the initial instrument is
statement/ abstract/rel ay_I| og.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an | NSERT statement, the Performance Schema refines the instrument name from st at enent /
abstract/ Query tostatenent/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table 1/O
done on the slave as it processes row changes can be instrumented, but row events in the relay log do not
appear as discrete statements.

For statistics to be collected for statements, it is not sufficient to enable only the final st at enent/ sql / *
instruments used for individual statement types. The abtract st at ement / abst ract / * instruments must
be enabled as well. This should not normally be an issue because all statement instruments are enabled
by default. However, an application that enables or disables statement instruments selectively must

take into account that disabling abstract instruments also disables statistics collection for the individual
statement instruments. For example, to collect statistics for | NSERT statements, st at enent / sql /

i nsert must be enabled, but also st at enent / abstract/ new_packet and st at enent / abst ract/
Query. Similarly, for replicated statements to be instrumented, st at enent / abstract/rel ay_| og must
be enabled.

No statistics are aggregated for abstract instruments such as st at enent / abst ract / Quer y because no
statement is ever classified with an abstract instrument as the final statement name.

The abstract instrument names in the preceding discussion are as of MySQL 5.6.15. In earlier 5.6 versions,
there was some renaming before those names were settled on:

» statenent/abstract/ new packet was st at enent/com in MySQL 5.6.14, st at enent / coni
new_packet in MySQL 5.6.13, and st at ement / conl before that.

* statenent/abstract/ Query was st at ement / conml Query before MySQL 5.6.15.

* statenent/abstract/relay_| ogwasstatenment/rpl/relay_| ogfrom MySQL 5.6.13t0 5.6.14
and did not exist before that.

10.6.1 The events_statements_current Table

The events_statenents_current table contains current statement events, one row per thread
showing the current status of the thread's most recent monitored statement event.

Of the tables that contain statement event rows, event s_st at enents_current is the most
fundamental. Other tables that contain statement event rows are logically derived from the current events.

73

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html

The events_statements_current Table

For example, the events_statenents_hi story and events_statenents_hi story_ | ong tables
are collections of the most recent statement events, up to a fixed number of rows.

For information about configuration of statement event collection, see Section 10.6, “Performance Schema
Statement Event Tables”.

The events_statenents_current table has these columns;
e THREAD | D, EVENT I D

The thread associated with the event and the thread current event number when the event starts. The
THREAD_| Dand EVENT_| D values taken together uniquely identify the row. No two rows have the same
pair of values.

« END_EVENT_I D

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

o EVENT_NAMVE

The name of the instrument from which the event was collected. This is a NAVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

For SQL statements, the EVENT _NANE value initially is st at emrent / con? Quer y until the statement is
parsed, then changes to a more appropriate value, as described in Section 10.6, “Performance Schema
Statement Event Tables”.

» SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

* TI MER_START, TI MER_END, TI MER_VWAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TI MER_START and TI MER_END values indicate when event timing started and ended. TI VER WAI T is
the event elapsed time (duration).

If an event has not finished, TI MER_END and TI MER_WAI T are NULL before MySQL 5.6.26. As of
5.6.26, TI MER_END is the current timer value and TI MER_WAI T is the time elapsed so far (TI MER_END
- Tl MER_START).

If an event is produced from an instrument that has TI MED = NO, timing information is not collected,
and TI MER_START, TI MER_END, and TI MER WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

« LOCK TI ME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

. SQL_TEXT

74

www.EngineeringBooksPdf.com

The events_statements_current Table

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL. The maximum space available for statement display is 1024 bytes.

DI GEST

The statement digest MD5 value as a string of 32 hexadecimal characters, or NULL if the
stat enents_di gest consumer is no. For more information about statement digesting, see
Performance Schema Statement Digests.

DI GEST_TEXT

The normalized statement digest text, or NULL if the st at enent s_di gest consumer is no. For more
information about statement digesting, see Performance Schema Statement Digests.

The per f ormance_schena_nax_di gest | engt h system variable determines the maximum number
of bytes available for digest value storage. However, the display length of statement digests may be
longer than the available buffer size due to encoding of statement components such as keywords

and literal values in digest buffer. Consequently, values selected from the DI GEST_TEXT column of
statement event tables may appear to exceed the per f or mance_schema_nax_di gest | ength
value.

per formance_schenma_nax_di gest | engt h was added in MySQL 5.6.26. In MySQL 5.6.24 and
5.6.25, per f ormance_schenma_nax_di gest | engt h is not available and the max_di gest | ength
value determines the maximum number of bytes available for digest value storage. Before MySQL
5.6.24, neither max_di gest | engt h nor per f or mance_schena_nax_di gest | engt h are
available and a fixed maximum of 1024 bytes is available for digest value storage.

CURRENT_SCHENA

The default database for the statement, NULL if there is none.
OBJECT_SCHEMA, OBJECT_NANVE, OBJECT_TYPE

Reserved. Always NULL.

OBJECT_I NSTANCE_BEG N

This column identifies the statement. The value is the address of an object in memory.
MYSQL_ERRNO

The statement error number, from the statement diagnostics area.
RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.
MESSAGE_TEXT

The statement error message, from the statement diagnostics area.
ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

WARNI NGS

75

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/performance-schema-statement-digests.html
http://dev.mysql.com/doc/refman/5.6/en/performance-schema-statement-digests.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_digest_length
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_digest_length

The events_statements_current Table

The number of warnings, from the statement diagnostics area.
ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

ROWS_SENT

The number of rows returned by the statement.

ROWS_EXAM NED

The number of rows read from storage engines during statement execution.
CREATED_TMP_DI SK_TABLES

Like the Creat ed_t np_di sk_t abl es status variable, but specific to the statement.
CREATED TMP_TABLES

Like the Creat ed_t np_t abl es status variable, but specific to the statement.
SELECT_FULL_JO N

Like the Sel ect _ful | _j oi n status variable, but specific to the statement.
SELECT_FULL_RANGE JO N

Like the Sel ect _ful | _range_j oi n status variable, but specific to the statement.
SELECT_RANCE

Like the Sel ect _r ange status variable, but specific to the statement.
SELECT_RANGE_CHECK

Like the Sel ect _range_check status variable, but specific to the statement.
SELECT_SCAN

Like the Sel ect _scan status variable, but specific to the statement.
SORT_MERGE_PASSES

Like the Sort _ner ge_passes status variable, but specific to the statement.
SORT_RANGE

Like the Sort _range status variable, but specific to the statement.
SORT_RONS

Like the Sort _r ows status variable, but specific to the statement.
SORT_SCAN

Like the Sort _scan status variable, but specific to the statement.

76

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/mysql-affected-rows.html
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Created_tmp_disk_tables
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Created_tmp_tables
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Select_full_join
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Select_full_range_join
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Select_range
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Select_range_check
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Select_scan
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Sort_merge_passes
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Sort_range
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Sort_rows
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Sort_scan

The events_statements_history Table

» NO_I NDEX_USED
1 if the statement performed a table scan without using an index, O otherwise.
» NO_GOOD_| NDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Ext r a column from EXPLAI N output for the Range checked for each
recor d value in EXPLAIN Output Format.

* NESTI NG_EVENT_I D, NESTI NG_EVENT_TYPE
Reserved. Always NULL.

TRUNCATE TABLE is permitted for the event s_st at ement s_current table. It removes the rows.

10.6.2 The events_statements_history Table

The events_st at enent s_hi st ory table contains the most recent N statement events per

thread. The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schenma_events_statenents_hi story_ si ze system variable at server startup.
Statement events are not added to the table until they have ended. As new events are added, older events
are discarded if the table is full.

The events_st at enment s_hi st ory table has the same structure as events_statenents_current.
See Section 10.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the event s_st at enment s_hi st ory table. It removes the rows.

For information about configuration of statement event collection, see Section 10.6, “Performance Schema
Statement Event Tables”.

10.6.3 The events_statements_history long Table

The events_statenents_hi story_| ong table contains the most recent N statement

events. The value of Nis autosized at server startup. To set the table size explicitly, set the
performance_schenma_events_statenents_hi story | ong_si ze system variable at server
startup. Statement events are not added to the table until they have ended. As new events are added,
older events are discarded if the table is full. When a thread ends, its rows are removed from the table.

The events_statenents_hi story_| ong table has the same structure as
events_statenents_current. See Section 10.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the event s_st at enment s_hi st ory_| ong table. It removes the rows.

For information about configuration of statement event collection, see Section 10.6, “Performance Schema
Statement Event Tables”.

10.7 Performance Schema Connection Tables

When a client connects to the MySQL server, it does so under a particular user name and from a particular
host. The Performance Schema provides statistics about these connections, tracking them per account
(user and host combination) as well as separately per user name and host name, using these tables:

» account s: Connection statistics per client account

77

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/explain-output.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Performance Schema Connection Tables

» host s: Connection statistics per client host name
» user s: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables in
the mysql system database, in the sense that the term refers to a combination of user and host values.
They differ in that, for grant tables, the host part of an account can be a pattern, whereas for Performance
Schema tables, the host value is always a specific nonpattern host name.

Each connection table has CURRENT _CONNECTI ONS and TOTAL_ _CONNECTI ONS columns to track the
current and total number of connections per “tracking value” on which its statistics are based. The tables
differ in what they use for the tracking value. The account s table has USER and HOST columns to track
connections per user and host combination. The user s and host s tables have a USER and HOST column,
respectively, to track connections per user name and host name.

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user 1 and user 2 each connect one time from host a and host b. The
Performance Schema tracks the connections as follows:

* The account s table has four rows, for the user 1/host a, user 1/host b, user 2/host a, and
user 2/host b account values, each row counting one connection per account.

» The host s table has two rows, for host a and host b, each row counting two connections per host
name.

e The user s table has two rows, for user 1 and user 2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then
the Performance Schema increments by one the CURRENT _CONNECTI| ONS and TOTAL_CONNECTI ONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTI ONS
column in the row and leaves the TOTAL_CONNECTI ONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

» Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTI ONS = 0).

» Nonremoved rows are reset to count only current connections: For rows with CURRENT _CONNECT| ONS
> 0, TOTAL_CONNECTI ONS is reset to CURRENT _CONNECTI ONS.

* Summary tables that depend on the connection table are implicitly truncated, as described later in this
section.

The Performance Schema maintains summary tables that aggregate connection statistics for various event
types by account, host, or user. These tables have summary by account, summary_ by host, or
_sunmary_by user inthe name. To identify them, use this query:

nysql > SELECT TABLE_NAME FROM | NFORVATI ON_SCHENMA. TABLES
WHERE TABLE_SCHENMA = ' perfor mance_schema’
AND TABLE NAME RECGEXP ' _sunmary_by_(account| host| user)’

78

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The accounts Table

ORDER BY TABLE_NAME;

| events_stages_summary_by_account _by_event _nane |
| events_stages_summary_by_host _by_event _nane |
| events_stages_summary_by_user_by_event _nane |
| events_statenents_summary_by_account _by_event _nane |
| events_statenents_summary_by_host _by_event _nane |
| events_statenents_summary_by_user _by_event _nane |
| events_waits_summary_by_account _by_event _nane |
| events_waits_summary_by_ host_by_event _nane |
| events_waits_summary_by_user_by_event _nane |

For details about individual connection summary tables, consult the section that describes tables for the
summarized event type:

» Wait event summaries: Section 10.9.1, “Wait Event Summary Tables”

» Stage event summaries: Section 10.9.2, “Stage Summary Tables”

» Statement event summaries: Section 10.9.3, “Statement Summary Tables”

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,

or users with no connections, and resets the summary columns to zero for the remaining rows. In
addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 10.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing _sunmary by account,
_sunmary_by thread

host s Tables with names containing _sunmary_ by account,
_summary_by host, _summary_by t hread

users Tables with names containing _sumrary_by_account,
_summary_by_user, _sunmary_by thread

Truncating a _summary_gl obal summary table also implicitly truncates its corresponding connection and
thread summary tables. For example, truncating events_wai ts_sunmary_ gl obal by event nane
implicitly truncates the wait event summary tables that are aggregated by account, host, user, or thread.

10.7.1 The accounts Table

The account s table contains a row for each account that has connected to the MySQL server. For each
account, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the per f or mance_schena_account s_si ze system variable
at server startup. To disable account statistics, set this variable to 0.

The account s table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.7, “Performance
Schema Connection Tables”.

* USER

79

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The hosts Table

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

* HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

e CURRENT_CONNECTI ONS
The current number of connections for the account.
e TOTAL_CONNECTI ONS

The total number of connections for the account.

10.7.2 The hosts Table

The host s table contains a row for each host from which clients have connected to the MySQL server. For
each host name, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the per f or mance_schena_host s_si ze system
variable at server startup. To disable host statistics, set this variable to 0.

The host s table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 10.7, “Performance Schema
Connection Tables”.

« HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

» CURRENT _CONNECTI ONS
The current number of connections for the host.
e TOTAL_CONNECTI ONS

The total number of connections for the host.

10.7.3 The users Table

The user s table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the per f or mance_schemnma_user s_si ze system variable at
server startup. To disable user statistics, set this variable to 0.

The user s table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 10.7, “Performance Schema
Connection Tables”.

* USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

* CURRENT_CONNECTI ONS

80

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Performance Schema Connection Attribute Tables

The current number of connections for the user.
e TOTAL_CONNECTI ONS

The total number of connections for the user.

10.8 Performance Schema Connection Attribute Tables

Application programs can provide key/value pairs as connection attributes to be passed to the
server at at connect time. For the C API, define the attribute set using the nysql _opti ons() and
nysqgl _options4() functions. Other MySQL Connectors may provide their own attribute-definition
methods.

These tables expose attribute information:

* session_account _connect _attrs: Connection attributes for the current session, and other
sessions associated with the session account

e session_connect _attrs: Connection attributes for all sessions

Attribute names that begin with an underscore (_) are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes.

The set of connection attributes visible on a given connection varies depending on your platform and
MySQL Connector used to establish the connection.

The | i bnysqgl cl i ent client library (provided in MySQL and MySQL Connector/C distributions) sets these
attributes:

e client_nane: The client name (I i bnysql for the client library)
 client _version: The client library version

* _0s: The operating system (for example, Li nux, W n64)

* _pi d: The client process ID

e _pl at f or m The machine platform (for example, x86_64)

» _thread: The client thread ID (Windows only)

Other MySQL Connectors may define their own connection attributes.
MySQL Connector/J defines these attributes:

e« client _I|icense: The connector license type

e runtime_vendor: The Java runtime environment (JRE) vendor
e _runtime_ver sion: The Java runtime environment (JRE) version
MySQL Connector/Net defines these attributes:

 client _version: The client library version

» _0s: The operating system (for example, Li nux, W n64)

81

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-options4.html

The session_account_connect_attrs Table

e _pi d: The client process ID

» _pl at f or m The machine platform (for example, x86_64)

e _program name: The client name

e _thread: The client thread ID (Windows only)

PHP defines attributes that depend on how it was compiled:

e Compiled using | i brrysql cl i ent: The standard | i brrysql cl i ent attributes, described previously
» Compiled using mysqgl nd: Only the _cl i ent _nane attribute, with a value of mysql nd

Many MySQL client programs set a pr ogr am _nane attribute with a value equal to the client name.
For example, mysql adni n and mysql dunp set pr ogr am nane to nysql adni n and mysqgl dunp,
respectively.

Some MySQL clients define additional attributes:

* mysql bi nl og definesthe client _rol e attribute as bi nary | og | i stener.

» Replication slave connections define pr ogr am nane as nysql dand _client _rol e as
bi nary | og_|istener.

» FEDERATED storage engine connections define pr ogr am nane as nysql d and _client_rol e as
f eder at ed_st or age.

There are limits on the amount of connection attribute data transmitted from client to server: A fixed limit
imposed by the client prior to connect time; a fixed limit imposed by the server at connect time; and a
configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the | i brrysql cl i ent library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to nysql _opti ons() that cause

this limit to be exceeded produce a CR_| NVALI D_PARAMETER _NOerror. Other MySQL Connectors may
impose their own client-side limits on how much connection attribute data can be transmitted to the server.

On the server side, these size checks on connection attribute data occur:

» The server imposes a limit of 64KB on the aggregate size of connection attribute data it will accept. If a
client attempts to send more than 64KB of attribute data, the server rejects the connection.

» For accepted connections, the Performance Schema checks aggregate attribute size against the value
of the per f or mance_schena_sessi on_connect _attrs_si ze system variable. If attribute size
exceeds this value, these actions take place:

* The Performance Schema truncates the attribute data and increments the
Per f ormance_schena_sessi on_connect _attrs_| ost status variable, which indicates the
number of connections for which attribute truncation occurred.

« The Performance Schema writes a message to the error log if the | og_war ni ngs system variable is
greater than zero:

[Warni ng] Connection attributes of Iength N were truncated

10.8.1 The session_account_connect_attrs Table

82

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/federated-storage-engine.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.6/en/error-messages-client.html#error_cr_invalid_parameter_no
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_log_warnings

The session_connect_attrs Table

Application programs can provide key/value connection attributes to be passed to the server at connect
time, using the nysql _options() and nysqgl options4() C API functions.

The sessi on_account _connect _at tr s table contains connection attributes only for sessions open for
your own account. To see connection attributes for all sessions, look in the sessi on_connect _attrs
table. For descriptions of common attributes, see Section 10.8, “Performance Schema Connection Attribute
Tables”.

The sessi on_account _connect _at tr s table contains these columns:
e PROCESSLI ST_I D
The connection identifier for the session.
« ATTR_NAME
The attribute name.
« ATTR_VALUE
The attribute value.
e ORDI NAL_PGCsI TI ON
The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the sessi on_account _connect attrs table.

10.8.2 The session_connect_attrs Table

Application programs can provide key/value connection attributes to be passed to the server at connect
time, using the nysql _opti ons() and mysqgl _opti ons4() C API functions. For descriptions of
common attributes, see Section 10.8, “Performance Schema Connection Attribute Tables”.

The sessi on_connect _attr s table contains connection attributes for all sessions. To see connection
attributes only for sessions open for your own account, look in the sessi on_account _connect _attrs
table.

The sessi on_connect _at tr s table contains these columns:
e PROCESSLI ST _ID
The connection identifier for the session.
« ATTR_NAME
The attribute name.
« ATTR_VALUE
The attribute value.
« ORDI NAL_POSI TI ON
The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the sessi on_connect _attrs table.

83

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-options4.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-options4.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Performance Schema Summary Tables

10.9 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this group
summarize event data in different ways.

Wait Event Summaries

events_waits_sunmary_by account by event name: Wait events per account and event name
events_waits_sunmary_by host by event nane: Wait events per host name and event name
events waits_sunmary_ by instance: Wait events per instance

events waits sunmary_ by thread by event namne: Wait events per thread and event name
events waits_sunmary by user by event namne: Wait events per user name and event name

events_waits_sunmary_gl obal by event nane: Wait events per event name

Stage Summaries

events_stages _summary by account by event name: Stage events per account and event
name

events _stages sunmmary by host by event nane: Stage events per host name and event name
events_stages summary by thread by event nane: Stage waits per thread and event name
events_stages_summary_by user by event nane: Stage events per user name and event name

events_stages_summary_gl obal _by event nane: Stage waits per event name

Statement Summaries

events_statenents_summary_ by account by event name: Statement events per account and
event name

events_statenents_sunmary by di gest: Statement events per schema and digest value

events_statenents_sunmmary_by host by event nane: Statement events per host name and
event name

events_statenents_summary_by thread_ by event nane: Statement events per thread and
event name

events_statenents _summary by user by event nane: Statement events per user name and
event name

events _statenents _summary gl obal by event nane: Statement events per event name

Object Wait Summaries

obj ects_summary_gl obal _by_t ype: Object summaries

File I/O Summaries

file summary_ by event nane: File events per event name

84

www.EngineeringBooksPdf.com

Table /O and Lock Wait Summaries

« file_summary_by_instance: File events per file instance

Table I/0 and Lock Wait Summaries
e table io waits summary by index_usage: Table I/O waits per index
e table_io waits sumary_ by tabl e: Table I/O waits per table

e« table | ock_waits sunmmary by tabl e: Table lock waits per table

Socket Summaries

» socket summary_ by instance: Socket waits and I/O per instance
» socket _summary_by event nane: Socket waits and I/O per event name

Each summary table has grouping columns that determine how to group the data to be aggregated, and
summary columns that contain the aggregated values. Tables that summarize events in similar ways often
have similar sets of summary columns and differ only in the grouping columns used to determine how
events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

10.9.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and aggregates
that information in summary tables. Section 10.4, “Performance Schema Wait Event Tables” describes the
events on which wait summaries are based. See that discussion for information about the content of wait
events, the current and recent wait event tables, and how to control wait event collection, which is disabled
by default.

Example wait event summary information:

nysqgl > SELECT * FROM events_wai ts_sunmary_gl obal _by_event _nane\ G

LEE R EEEEEEEEEEE LR FOW FXX*hdkkkkkkhokkkkxkhhkkkxxkhk

EVENT_NAME: wai t/ synch/ mut ex/ sql / Bl NARY_LOG : LOCK_i ndex
COUNT_STAR: 8

SUM TI MER WAI T: 2119302

M N_TI MER WAI T: 196092

AVG TI MER WAI T: 264912

MAX_TI MER WAI T: 569421

AXKKKKKXXKK KKK XXX KKk kk kX k*% Q FOW FXX*hdkkkkkkhokkkkxkhhkkkxxkhk

EVENT_NAME: wai t/ synch/ nut ex/ sql / hash_fil o:: | ock
COUNT_STAR: 69

SUM TI MER_ WAI T: 16848828

MNTIMER VAIT: O

AVG TI MER WAI T: 244185

MAX_TI MER WAI T: 735345

Each wait event summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst runent s table:

85

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Wait Event Summary Tables

events waits_sunmary_by account by event nane has EVENT NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

events waits_sunmary_ by host by event nane has EVENT NAME and HOST columns. Each
row summarizes events for a given host and event name.

events waits_sunmary_by instance has EVENT _NAME and OBJECT | NSTANCE BEG N
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT | NSTANCE BEG Nvalue and is
summarized separately in this table.

events_waits_sunmary_by thread_by event name has THREAD | Dand EVENT _NAME
columns. Each row summarizes events for a given thread and event name.

events waits sunmary by user by event nane has EVENT NAME and USER columns. Each
row summarizes events for a given user and event name.

events waits_sunmmary_ gl obal by event nane has an EVENT_NANME column. Each row
summarizes events for a given event name. An instrument might be used to create multiple instances
of the instrumented object. For example, if there is an instrument for a mutex that is created for each
connection, there are as many instances as there are connections. The summary row for the instrument
summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

COUNT_STAR
The number of summarized events. This value includes all events, whether timed or nontimed.
SUM TI MER WAI T

The total wait time of the summarized timed events. This value is calculated only for timed events
because nontimed events have a wait time of NULL. The same is true for the other xxx_TI MER_ WAI T
values.

M N_TI MER WAI T

The minimum wait time of the summarized timed events.
AVG TI MER WAI T

The average wait time of the summarized timed events.
MAX_TI MER_ WAI T

The maximum wait time of the summarized timed events.

TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of

86

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Stage Summary Tables

events waits_sunmary_gl obal by event nane. For details, see Section 10.7, “Performance
Schema Connection Tables”.

10.9.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and aggregates
that information in summary tables. Section 10.5, “Performance Schema Stage Event Tables” describes
the events on which stage summaries are based. See that discussion for information about the content of
stage events, the current and recent stage event tables, and how to control stage event collection, which is
disabled by default.

Example stage event summary information:

nysqgl > SELECT * FROM events_stages_sumnmary_gl obal _by_event _nane\ G

khkkkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkhkkkkkkkkkkx* 5 r ow khkkkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkhkhkhkkkkkkkkkx*

EVENT_NAME: st age/ sql / checki ng per mi ssi ons
COUNT_STAR: 57

SUM TI MER_ WAI T: 26501888880

M N_TI MER WAI T: 7317456

AVG Tl MER WAI T: 464945295

MAX_TI MER WAI T: 12858936792

khkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkkkkkkx* 9 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkx*

EVENT_NAME: st age/sql/closing tables
COUNT_STAR: 37

SUM TI MER_ WAI T: 662606568

M N_TI MER WAI T: 1593864

AVG Tl MER WAI T: 17907891

MAX_TI MER WAI T: 437977248

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst r unent s table:

e events_stages_summary_by account by event nane has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

* events_stages_sunmary_ by host by event nane has EVENT NAME and HOST columns. Each
row summarizes events for a given host and event name.

* events_stages_sunmmary_by thread_by event name has THREAD | Dand EVENT NAME
columns. Each row summarizes events for a given thread and event name.

e events_stages_sunmary_ by user by event nane has EVENT NAME and USER columns. Each
row summarizes events for a given user and event name.

 events_stages _summary_ gl obal by event nane has an EVENT_NANE column. Each row
summarizes events for a given event name.

Each stage summary table has these summary columns containing aggregated values: COUNT_STAR,
SUM TI MER_ VWAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, and MAX_TI MER_WAI T. These columns
are analogous to the columns of the same names in the wait event summary tables (see Section 10.9.1,
“Wait Event Summary Tables”), except that the stage summary tables aggregate events from

event s_stages_current ratherthanevents waits_current.

TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

87

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Statement Summary Tables

» For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each stage summary table that is aggregated by account, host, user, or thread is

implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_gl obal by event nane. For details, see Section 10.7, “Performance
Schema Connection Tables”.

10.9.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 10.6, “Performance Schema Statement Event
Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and recent statement event tables, and how
to control statement event collection, which is partially disabled by default.

Example statement event summary information:

nysqgl > SELECT * FROM events_st at enents_summary_gl obal _by_event _nane\ G
khkkkkhkkhkkhkkhkkhkkhkhkhkkhkhkkhkhkhkhkkhkkkkkk*x*x 1 I’OW khkkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkhkhkhkkkkkk*x*%
EVENT_NAME: st at enent/ sql / sel ect
COUNT_STAR: 25
SUM TI MER_WAI T: 1535983999000
M N_TI MER_ WAI T: 209823000
AVG TI MER_ WAI T: 61439359000
MAX_TI MER_WAI T: 1363397650000
SUM LOCK_TI ME: 20186000000
SUM ERRORS: 0
SUM WARNI NGS: 0
SUM RONS_AFFECTED: 0O
SUM _ROAS_SENT: 388
SUM _ROAS_EXAM NED: 370
SUM CREATED_TMP_DI SK_TABLES:
SUM CREATED_TMP_TABLES:
SUM SELECT_FULL_JO N:
SUM SELECT_FULL_RANGE_JO N:
SUM _SELECT_RANGE:
SUM_SELECT_RANGE_CHECK:
SUM_SELECT_SCAN:
SUM _SORT_MERGE_PASSES:
SUM_SORT_RANGE:
SUM_SORT_ROWE:
SUM_SORT_SCAN:
SUM_NO_| NDEX_USED:
SUM_NO_GOCD_| NDEX_USED:

oo NeoNeoNeoNolNeoNeololNoNoNeNe]

Each statement summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

e events_statenents_summary_ by account by event nane has EVENT _NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

e events_statenents_summary_ by di gest has SCHEMA NANE and DI GEST columns. Each
row summarizes events per schema and digest value. (The DI GEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor summary column.)

88

www.EngineeringBooksPdf.com

Statement Summary Tables

e events_statenents _sumuary by host by event name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

 events_statenments_summary by thread by event nane has THREAD | Dand EVENT_ NAVE
columns. Each row summarizes events for a given thread and event name.

* events_statenents_summary_ by user by event nane has EVENT_NANVE and USER columns.
Each row summarizes events for a given user and event name.

e events_statenents_sumuary_gl obal by event nane has an EVENT _NAME column. Each row
summarizes events for a given event name.

Each statement summary table has these summary columns containing aggregated values:

 COUNT_STAR, SUM TI MER WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_WAI T

These columns are analogous to the columns of the same names in the wait event summary tables (see
Section 10.9.1, “Wait Event Summary Tables”), except that the statement summary tables aggregate
events from event s_st at enents_current ratherthan events_wai ts_current.

* SUM XXX

The aggregate of the corresponding xxx column in the event s_st at ement s_current table. For
example, the SUM LOCK Tl ME and SUM ERRORS columns in statement summary tables are the
aggregates of the LOCK_TI ME and ERRCRS columns in event s_st at enent s_current table.

The events_statenments_summary_by di gest table has these additional summary columns:

 FI RST_SEEN_TI MESTAMP, LAST_SEEN_TI MESTAMP
The times at which a statement with the given digest value were first seen and most recently seen.

TRUNCATE TABLE is permitted for statement summary tables. It has these effects:
e Forevents statenents sumary by di gest, it removes the rows.

» For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

» For other summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statenents_sunmary_gl obal by event nane. For details, see Section 10.7,
“Performance Schema Connection Tables”.

Statement Digest Aggregation Rules

If the st at ement s_di gest consumer is enabled, aggregation into
events_statenents_sunmary_ by di gest occurs as follows when a statement completes.
Aggregation is based on the DI GEST value computed for the statement.

» Ifaevents_statenments_summary_by_di gest row already exists with the digest value for the
statement that just completed, statistics for the statement are aggregated to that row. The LAST_SEEN
column is updated to the current time.

89

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Object Wait Summary Table

« If no row has the digest value for the statement that just completed, and the table is not full, a new row
is created for the statement. The FI RST_SEEN and LAST _SEEN columns are initialized with the current
time.

« If no row has the statement digest value for the statement that just completed, and the table is full, the
statistics for the statement that just completed are added to a special “catch-all” row with DI GEST =
NULL, which is created if necessary. If the row is created, the FI RST_SEEN and LAST_SEEN columns
are initialized with the current time. Otherwise, the LAST _SEEN column is updated with the current time.

The row with DI GEST = NULL is maintained because Performance Schema tables have a maximum size
due to memory constraints. The DI GEST = NULL row permits digests that do not match other rows to be
counted even if the summary table is full, using a common “other” bucket. This row helps you estimate
whether the digest summary is representative:

» A DI GEST = NULL row that has a COUNT _STAR value that represents 5% of all digests shows that the
digest summary table is very representative; the other rows cover 95% of the statements seen.

» A DI GEST = NULL row that has a COUNT _STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DI GEST = NULL row would be counted using more specific rows instead. To do this, set the
performance_schenma_di gests_si ze system variable to a larger value at server startup. The default
size is 200.

10.9.4 Object Wait Summary Table

The Performance Schema maintains the obj ect s_sunmmary_gl obal _by_t ype table for aggregating
object wait events.

Example object wait event summary information:

nmysql > SELECT * FROM obj ects_sunmary_gl obal _by_type\ G

kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 3 r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

OBJECT_TYPE: TABLE
OBJECT_SCHEMA: t est
OBJECT_NAME: t
COUNT_STAR: 3
SUM TI MER WAI T: 263126976
M N_TI MER WAI T: 1522272
AVG Tl MER WAI T: 87708678
MAX_TI MER_ WAI T: 258428280

kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkk*x 10 r ow kkkkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x

OBJECT_TYPE: TABLE
OBJECT_SCHEMA: nysdl
OBJECT_NAME: user
COUNT_STAR: 14
SUM TI MER WAI T: 365567592
M N_TI MER WAIT: 1141704
AVG TI MER WAI T: 26111769
MAX_TI MER_ WAI T: 334783032

The obj ect s_sumrary_gl obal _by_t ype table has these grouping columns to indicate how the table
aggregates events: OBJECT_TYPE, OBJECT _SCHEMA, and OBJECT _NAME. Each row summarizes events
for the given object.

obj ects_sunmmary_gl obal by type has the same summary columns as the
events waits_sunmary_ by xxx tables. See Section 10.9.1, “Wait Event Summary Tables”.

90

www.EngineeringBooksPdf.com

File /O Summary Tables

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero rather
than removing rows.

10.9.5 File /O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

Example file I/O event summary information:

mysql > SELECT * FROM fil e_summary_by_event _nane\ G

kkhkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 2 r ow kkhkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x

EVENT_NAME: wait/io/filel/sql/binlog
COUNT_STAR: 31

SUM TI MER_ WAl T: 8243784888

MN.TIMER WAIT: O

AVG TI MER_ WAI T: 265928484

MAX_TI MER_ WAI T: 6490658832

nmysql > SELECT * FROM fil e_summary_by_i nstance\ G

kkhkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk*x 2 r ow kkhkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

FI LE_NAME: /var/nysql/share/ english/errnsg. sys
EVENT_NAME: wait/io/filel/sql/ERRMSG
EVENT_NAME: wait/io/filel/sql/ERRMSG
OBJECT_| NSTANCE_BEG N: 4686193384
COUNT_STAR: 5
SUM TI MER_ WAI T: 13990154448
M N_TI MER WAI T: 26349624
AVG TI MER_ WAI T: 2798030607
MAX_TI MER_ WAI T: 8150662536

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

o file_summary_ by event nane has an EVENT NANME column. Each row summarizes events for a
given event name.

e« file_summary by instance has FI LE _NAVE, EVENT NANME, and OBJECT | NSTANCE BEG N
columns. Each row summarizes events for a given file and event name.

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

e COUNT_STAR, SUM TI MER WAI T, M N_TI MER_WAI T, AVG_TI MER WAI T, MAX_TI MER WAI T
These columns aggregate all I/O operations.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG _TI MER_READ, MAX_TI MER_READ,
SUM NUVBER_OF BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

« COUNT_WRI TE, SUM TI MER VR TE, M N_TI MER WRI TE, AVG_TI MER WRI TE, MAX_TI MER WRI TE,
SUM NUMBER_OF BYTES WRI TE

91

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

These columns aggregate all write operations, including FPUTS, FPUTC, FPRI NTF, VFPRI NTF, FWRI TE,
and PV\RI TE.

« COUNT_M SC, SUM TI MER_M SC, M N_TI MER_M SC, AVG_TI MER_M SC, MAX_TI MER_M SC

These columns aggregate all other 1/0 operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM OPEN, STREAM CLCSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSI ZE, RENAME, and SYNC.
There are no byte counts for these operations.

TRUNCATE TABLE is permitted for file /O summary tables. It resets the summary columns to zero rather
than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from files,
so it is possible that statements you might expect to result in /O events will not. You may be able to ensure
that I/O does occur by flushing caches or restarting the server to reset its state.

10.9.6 Table I/O and Lock Wait Summary Tables

The following sections describe the table 1/0 and lock wait summary tables:
e table_ io waits sumary by index_usage: Table I/O waits per index
e table_io_waits_sumary_by tabl e: Table I/O waits per table

e« table | ock_waits _sunmary_ by tabl e: Table lock waits per table
10.9.6.1 The table_io_waits_summary_by table Table

Thetable io waits summary by tabl e table aggregates all table 1/0 wait events, as generated by
thewai t/i o/ tabl e/ sql / handl er instrument. The grouping is by table.

Thetable_ i o waits _summary by tabl e table has these grouping columns to indicate how the table
aggregates events: OBJECT _TYPE, OBJECT _SCHEMA, and OBJECT_NANME. These columns have the same
meaning as in the event s_wai t s_curr ent table. They identify the table to which the row applies.

tabl e _io waits_summary_ by tabl e has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate all
writes hold the sum of the corresponding columns that aggregate inserts, updates, and deletes. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

 COUNT_STAR, SUM TI MER WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_ WAI T

These columns aggregate all /0O operations. They are the same as the sum of the corresponding
xxX_READ and xxx_WRI TE columns.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG _TI MER_READ, MAX_TI MER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
XXX__FETCH columns.

« COUNT_WRI TE, SUM_TI MER_WRI TE, M N_TI MER_WRI TE, AVG_TI MER WRI TE, MAX_TI MER Rl TE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxX_| NSERT, xxx_UPDATE, and xxx_DELETE columns.

92

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

e COUNT_FETCH, SUM Tl MER_FETCH, M N_TI MER_FETCH, AVG_TI MER_FETCH, MAX_TI MER_FETCH
These columns aggregate all fetch operations.

« COUNT_I NSERT, SUM _TI MER | NSERT, M N_TI MER | NSERT, AVG_TI MER_| NSERT,
MAX_TI MER_| NSERT

These columns aggregate all insert operations.

» COUNT_UPDATE, SUM Tl MER_UPDATE, M N_TI MER_UPDATE, AVG_TI MER_UPDATE,
MAX_TI MER_UPDATE

These columns aggregate all update operations.

« COUNT_DELETE, SUM TI MER_DELETE, M N_TI MER_DELETE, AVG_TI MER DELETE,
MAX_TI MER_DELETE

These columns aggregate all delete operations.

TRUNCATE TABLE is permitted for table 1/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io waits_sunmary_by index_usage table.

10.9.6.2 The table_io_waits_summary_by index_usage Table

Thetable io waits sunmary by index_usage table aggregates all table index I/0O wait events, as
generated by the wai t /i o/ t abl e/ sql / handl er instrument. The grouping is by table index.

The columns of t abl e_i 0o_wai ts_sunmmary_by i ndex_usage are nearly identical to

table_io waits_sunmmary_by tabl e. The only difference is the additional group column,

I NDEX_NANE, which corresponds to the name of the index that was used when the table 1/0O wait event
was recorded:

» A value of PRI MARY indicates that table I/O used the primary index.
» A value of NULL means that table 1/0 used no index.
* Inserts are counted against | NDEX_NAME = NULL.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary

columns to zero rather than removing rows. This table is also truncated by truncation of the

table io waits sunmary by tabl e table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

10.9.6.3 The table_lock_waits_summary_by table Table

Thetabl e | ock waits summary by tabl e table aggregates all table lock wait events, as generated
by the wai t / | ock/ t abl e/ sql / handl er instrument. The grouping is by table.

This table contains information about internal and external locks:
» Aninternal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to

thr | ock() . In event rows, these locks are distinguished by the OPERATI ON column, which has one of
these values:

read nor nmal

93

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

read with shared | ocks
read high priority
read no insert

wite allow wite
write concurrent insert
wite del ayed

wite |low priority
write nornal

An external lock corresponds to a lock in the storage engine layer. This is currently implemented by a
call to handl er: : ext ernal _I ock() . In event rows, these locks are distinguished by the OPERATI ON
column, which has one of these values:

read external
wite external

Thetabl e | ock_waits_summary_by tabl e table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT _SCHEMA, and OBJECT_NAME. These columns have the
same meaning as in the event s_wai t s_current table. They identify the table to which the row applies.

table | ock waits summary by tabl e has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate

all locks hold the sum of the corresponding columns that aggregate read and write locks. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

COUNT_STAR, SUM_TI MER_ WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER WAl T

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxX_READ and xxx_WRI TE columns.

COUNT_READ, SUM TI MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ

These columns aggregate all read-lock operations. They are the same as the sum of the corresponding
xxx_READ_NORMAL, xxx_READ W TH_SHARED LOCKS, xxx_READ_Hl GH_PRI ORI TY, and
xxX_READ_NO_| NSERT columns.

COUNT_WRI TE, SUM Tl MER WRI TE, M N_TI MER Rl TE, AVG_TI MER_WRI TE, MAX_TI MER WRI TE

These columns aggregate all write-lock operations. They are the same as the sum of the corresponding
XXX_WRI TE_ALLOW WRI TE, xxx_WRI TE_CONCURRENT _| NSERT, xxx_WRI TE_DELAYED,
XXX_WRI TE_LOW PRI ORI TY, and xxx_WRI TE_NORVAL columns.

COUNT_READ_NORMAL, SUM Tl MER_READ NORVAL, M N_TI MER_READ NORVAL,
AVG_TI MER_READ NORMAL, MAX_TI MER_READ NORVAL

These columns aggregate internal read locks.

COUNT_READ W TH_SHARED LOCKS, SUM TI MER_READ W TH_SHARED LOCKS,
M N_TI MER_READ W TH_SHARED LOCKS, AVG_TI MER_ READ W TH_SHARED LOCKS,
MAX_TI MER_READ W TH_SHARED LOCKS

These columns aggregate internal read locks.

COUNT_READ_HI GH_PRI ORI TY, SUM TI MER_READ_Hl GH_PRI ORI TY,
M N_TI MER_READ HI GH_PRI ORI TY, AVG Tl MER_READ Hl GH_PRI ORI TY,
MAX_TI MER_READ HI GH_PRI ORI TY

94

www.EngineeringBooksPdf.com

Socket Summary Tables

These columns aggregate internal read locks.

« COUNT_READ _NO | NSERT, SUM Tl MER_READ NO | NSERT, M N_TI MER_READ_NO_| NSERT,
AVG_TI MER_READ_NO | NSERT, MAX_TI MER_READ NO | NSERT

These columns aggregate internal read locks.

« COUNT_READ EXTERNAL, SUM TI MER_READ EXTERNAL, M N_TI MER_READ_EXTERNAL,
AVG Tl MER_READ EXTERNAL, MAX_TI MER_READ EXTERNAL

These columns aggregate external read locks.

« COUNT_WRI TE_ALLOW WRI TE, SUM_TI MER_ WRI TE_ALLOW WRI TE,
M N_TI MER WRI TE_ALLOW WRI TE, AVG_TI MER WRI TE_ALLOW WRI TE,
MAX_TI MER WRI TE_ALLOW WRI TE

These columns aggregate internal write locks.

« COUNT_WRI TE_CONCURRENT _| NSERT, SUM TI MER_WRI TE_CONCURRENT _| NSERT,
M N_TI MER_WRI TE_CONCURRENT | NSERT, AVG_TI MER_WRI TE_CONCURRENT _| NSERT,
MAX_TI MER_WRI TE_CONCURRENT _| NSERT

These columns aggregate internal write locks.

« COUNT_WRI TE_DELAYED, SUM Tl MER WRI TE_DELAYED, M N_TI MER_ WRl TE_DELAYED,
AVG_TI MER WRI TE_DELAYED, MAX_TI MER_WRI TE_DELAYED

These columns aggregate internal write locks.
DELAYED inserts are deprecated, so these columns will be removed in a future release.

« COUNT_WRI TE_LOW PRI ORI TY, SUM_TI MER_WRI TE_LOW PRI ORI TY,
M N_TI MER_ WRI TE_LOW PRI ORI TY, AVG_TI MER_W\RI TE_LOW PRI ORI TY,
MAX_TI MER_ WRI TE_LOW PRI ORI TY

These columns aggregate internal write locks.

« COUNT_WRI TE_NORMAL, SUM TI MER_WRI TE_NORMAL, M N_TI MER_WRI TE_NORMAL,
AVG_TI MER_WRI TE_NORMAL, MAX_TI MER_WRI TE_NORVAL

These columns aggregate internal write locks.

* COUNT_WRI TE_EXTERNAL, SUM Tl MER_WRI TE_EXTERNAL, M N_TI MVER_WRI TE_EXTERNAL,
AVG_TI MER_VRI TE_EXTERNAL, MAX_TI MER_WRI TE_EXTERNAL

These columns aggregate external write locks.

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

10.9.7 Socket Summary Tables

The Performance Schema maintains socket summary tables, which aggregate timer and byte count
information for socket operations:

» socket summary_ by event nane: Aggregate timer and byte count statistics generated by the
wai t /i o/ socket /* instruments for all socket I/O operations, per socket instrument.

95

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Performance Schema Miscellaneous Tables

e socket summary_ by i nstance: Aggregate timer and byte count statistics generated by the wai t /
i o/ socket /* instruments for all socket I/O operations, per socket instance. When a connection
terminates, the row in socket _summary_ by i nstance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by i dl e events while sockets are waiting
for the next request from the client. For i dl e event aggregations, use the wait-event summary tables; see
Section 10.9.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

» socket _summary_ by event nane has an EVENT NANME column. Each row summarizes events for a
given event name.

e socket _sunmary_by instance has an OBJECT | NSTANCE BEG N column. Each row summarizes
events for a given object.

Each socket summary table has these summary columns containing aggregated values:
e COUNT_STAR, SUM TI MER WAI T, M N_TI MER_WAI T, AVG_TI MER_ WAI T, MAX_TI MER WAI T
These columns aggregate all operations.

« COUNT_READ, SUM TI MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ,
SUM NUVBER OF BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROV| and RECVNSG).

« COUNT_WRI TE, SUM TI MER VR TE, M N_TI MER WRI TE, AVG_TI MER WRI TE, MAX_TI MER WRI TE,
SUM NUMBER_OF BYTES_WRI TE

These columns aggregate all send operations (SEND, SENDTO, and SENDVSG).
e« COUNT_M SC, SUM TI MER_M SC, M N_TI MER_M SC, AVG TI MER_M SC, MAX_TI MER_M SC

These columns aggregate all other socket operations, such as CONNECT, LI STEN, ACCEPT, CLCSE, and
SHUTDOWN. There are no byte counts for these operations.

The socket _sunmary_by i nst ance table also has an EVENT _NAME column that indicates the class of
the socket: cl i ent _connection, server tcpi p_socket,server _uni x_socket . This column can
be grouped on to isolate, for example, client activity from that of the server listening sockets.

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statenments_sunmary_by di gest, tt resets the summary columns to zero rather than
removing rows.

10.10 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the preceding
sections:

» host cache: Information from the internal host cache
» performance_ti mer s: Which event timers are available

» t hr eads: Information about server threads

96

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The host_cache Table

10.10.1 The host_cache Table

The host _cache table provides access to the contents of the host cache, which contains client host name
and IP address information and is used to avoid DNS lookups. (See DNS Lookup Optimization and the
Host Cache.) The host _cache table exposes the contents of the host cache so that it can be examined
using SELECT statements. The Performance Schema must be enabled or this table is empty.

The host _cache table has these columns:
< 1P

The IP address of the client that connected to the server, expressed as a string.
* HOST

The resolved DNS host name for that client IP, or NULL if the name is unknown.
e HOST_VALI DATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If
HOST_VALI DATED s YES, the HOST column is used as the host name corresponding to the IP so that
calls to DNS can be avoided. While HOST_VALI DATED is NO, DNS resolution is attempted again for each
connect, until it eventually completes with either a valid result or a permanent error. This information
enables the server to avoid caching bad or missing host names during temporary DNS failures, which
would affect clients forever.

« SUM_CONNECT ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect _errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALI DATED = YES).

« COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM CONNECT ERRORS exceeded the value of
the max_connect _errors system variable.

* COUNT_NAMEI NFO_TRANSI ENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.
* COUNT_NAMEI NFO_PERVANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.
« COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values

in the nysqgl . user table against host names for which one or more of the initial components of the
name are entirely numeric, such as 1. 2. exanpl e. com The client IP address is used instead. For the
rationale why this type of matching does not occur, see Specifying Account Names.

« COUNT_ADDRI NFO _TRANSI ENT_ERRORS
The number of transient errors during host name-to-IP reverse DNS resolution.

« COUNT_ADDRI NFO_PERMVANENT ERRORS

97

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/host-cache.html
http://dev.mysql.com/doc/refman/5.6/en/host-cache.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_connect_errors
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_connect_errors
http://dev.mysql.com/doc/refman/5.6/en/account-names.html

The host_cache Table

The number of permanent errors during host name-to-IP reverse DNS resolution.
COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when |P-to-host name-to-IP
DNS resolution produces an IP address that does not match the client originating IP address.

COUNT_HOST_ACL_ERRORS

The number of errors that occur because no user from the client host can possibly log in. In such cases,
the server returns ER_HOST_NOT_PRI VI LEGED and does not even ask for a user name or password.

COUNT_NO_AUTH_PLUG N_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

COUNT_AUTH_PLUG N_ERRCRS
The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root cause

of a failure. Depending on the type of error, one of these columns is incremented:

COUNT_AUTHENTI CATI ON_ERRORS, COUNT_AUTH_PLUGQ N_ERROCRS, COUNT_HANDSHAKE._ERRORS.
New return codes are an optional extension to the existing plugin APIl. Unknown or unexpected plugin
errors are counted in the COUNT_AUTH PLUGQ N_ERRORS column.

COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

COUNT_PROXY_USER_ERRCRS

The number of errors detected when a proxy user A is proxied to another user B who does not exist.
COUNT_PROXY_USER ACL_ERRORS

The number of errors detected when a proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

COUNT_AUTHENTI CATI ON_ERRORS

The number of errors caused by failed authentication.
COUNT_SSL_ERRORS

The number of errors due to SSL problems.

COUNT _MAX_USER CONNECTI ONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Setting Account Resource
Limits.

COUNT_MAX_USER_CONNECTI ONS_PER_HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See Setting Account
Resource Limits.

98

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/error-messages-server.html#error_er_host_not_privileged
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_proxy
http://dev.mysql.com/doc/refman/5.6/en/user-resources.html
http://dev.mysql.com/doc/refman/5.6/en/user-resources.html
http://dev.mysql.com/doc/refman/5.6/en/user-resources.html
http://dev.mysql.com/doc/refman/5.6/en/user-resources.html

The performance_timers Table

» COUNT_DEFAULT_DATABASE _ERRORS

The number of errors related to the default database. For example, the database did not exist or the user
had no privileges for accessing it.

« COUNT_I NI T_CONNECT_ERRORS

The number of errors caused by execution failures of statements inthe i nit _connect system variable
value.

o COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network, authentication, or
authorization. For example, out-of-memory conditions fall into this category.

* COUNT_UNKNOWN_ERRCRS

The number of other, unknown errors not accounted for by other columns in this table. This column is
reserved for future use, in case new error conditions must be reported, and if preserving the backward
compatibility and table structure of the host _cache table is required.

* FI RST_SEEN

The timestamp of the first connection attempt seen from the client in the | P column.
 LAST_SEEN

The timestamp of the last connection attempt seen from the client in the | P column.
 FI RST_ERROR_SEEN

The timestamp of the first error seen from the client in the | P column.
« LAST_ERROR_SEEN

The timestamp of the last error seen from the client in the | P column.

FLUSH HOSTS and TRUNCATE TABLE host cache have the same effect: They clear the host cache.
This also removes rows from the host _cache table (because it is the visible representation of the cache)
and unblocks any blocked hosts (see Host 'host_name' is blocked.) FLUSH HOSTS requires the RELOAD
privilege. TRUNCATE TABLE requires the DROP privilege for the host _cache table.

10.10.2 The performance_timers Table

The per f or mance_ti nmer s table shows which event timers are available:

nysql > SELECT * FROM per formance_ti ners;

fr=ccoscsscsssos fr=cccscoscoscossos fr=cccccoscoscososss frmcccscoscssossss +
| TIMER NAME | TINMER FREQUENCY | TIMER RESOLUTION | TI MER_OVERHEAD |
fr=ccoscsscsssos fr=cccscoscoscossos fr=cccccoscoscososss frmcccscoscssossss +
CYCLE	2389029850	1] 72
NANCSECOND	1000000000	1] 112
M CROSECOND	1000000	1] 136
M LLI SECOND	1036	1] 168
TICK	105	1] 2416
fr=ccoscsscsssos fr=cccscoscoscossos fr=cccccoscoscososss frmcccscoscssossss +

The timers in set up_t i nmer s that you can use are those that do not have NULL in the other columns. If
the values associated with a given timer name are NULL, that timer is not supported on your platform.

99

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_init_connect
http://dev.mysql.com/doc/refman/5.6/en/flush.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/blocked-host.html
http://dev.mysql.com/doc/refman/5.6/en/flush.html
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_reload
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_drop

The threads Table

The per f or mance_ti ner s table has these columns:
« TI MER_NANVE

The name by which to refer to the timer when configuring the set up_t i mer s table.
* TI MER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to the CPU
speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to 2400000000.

e TI MER_RESOLUTI ON

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10, its
value increases by 10 each time.

* Tl MER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The Performance
Schema determines this value by invoking the timer 20 times during initialization and picking the smallest
value. The total overhead really is twice this amount because the instrumentation invokes the timer at
the start and end of each event. The timer code is called only for timed events, so this overhead does
not apply for nontimed events.

The maximum number of rows in the table is autosized at server startup. To set this maximum explicitly,
set the per f or mance_schena_di gest s_si ze system variable at server startup.

TRUNCATE TABLE is not permitted for the per f or mance_t i ner s table.

10.10.3 The threads Table

The t hr eads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring is enabled for it:

nysql > SELECT * FROM t hr eads\ G
IR R E R EEEEEEEEEEEEEEEEESEESEES] 1 I’OW IR R E R EEEEEEEEEEEEEEEEESEESEES]
THREAD I D: 1
NAMVE: t hread/ sql/ main
TYPE: BACKGROUND
PROCESSLI ST_I D: NULL
PROCESSLI ST_USER: NULL
PROCESSLI ST_HOST: NULL
PROCESSLI ST_DB: NULL
PROCESSLI ST_COMVAND: NULL
PROCESSLI ST_TI ME: 80284
PROCESSLI ST_STATE: NULL
PROCESSLI ST_I NFO. NULL
PARENT_THREAD | D: NULL
ROLE: NULL
| NSTRUVENTED: YES

khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkkkkkkkk*%x 4 r ow kkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkkhkkkkhkkkkkkk*%

THREAD | D: 51
NAMVE: t hread/ sqgl / one_connecti on
TYPE: FOREGROUND
PROCESSLI ST_I D: 34
PROCESSLI ST_USER: i sabel | a
PROCESSLI ST_HOST: | ocal host
PROCESSLI ST_DB: performance_schena
PROCESSL| ST_COMVAND: Query

100

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

The threads Table

PROCESSLI ST_TIME: O
PROCESSLI ST_STATE: Sendi ng dat a
PROCESSLI ST_| NFO SELECT * FROMt hr eads
PARENT_THREAD | D: 1
ROLE: NULL
| NSTRUMENTED: YES

When the Performance Schema initializes, it populates the t hr eads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The | NSTRUVENTED column value for new threads is determined by the contents of the set up_act ors
table. For information about how to use the set up_act or s table to control this column, see Section 5.6,
“Pre-Filtering by Thread”.

Removal of rows from the t hr eads table occurs when threads end. For a thread associated with a client
session, removal occurs when the session ends. If a client has auto-reconnect enabled and the session
reconnects after a disconnect, the session becomes associated with a new row in the t hr eads table
that has a different PROCESSLI ST_I Dvalue. The initial | NSTRUVENTED value for the new thread may be
different from that of the original thread: The set up_act or s table may have changed in the meantime,
and if the | NSTRUMENTED value for the original thread was changed after it was initialized, that change
does not carry over to the new thread.

The t hr eads table columns with names having a prefix of PROCESSLI ST_ provide information similar

to that available from the | NFORVATI ON_SCHEMA. PROCESSLI ST table or the SHOW PROCESSLI ST
statement. Thus, all three sources provide thread-monitoring information. Use of t hr eads differs from use
of the other two sources in these ways:

» Accesstot hr eads does not require a mutex and has minimal impact on server performance.
| NFORVATI ON_SCHENMA. PROCESSLI ST and SHOW PROCESSLI ST have negative performance
consequences because they require a mutex.

* t hr eads provides additional information for each thread, such as whether it is a foreground or
background thread, and the location within the server associated with the thread.

» t hr eads provides information about background threads, so it can be used to monitor activity the other
thread information sources cannot.

* You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented). To control the initial | NSTRUVENTED value for new foreground threads, use the
set up_act or s table. To control monitoring of existing threads, set the | NSTRUVENTED column of
t hr eads table rows. (For more information about the conditions under which thread monitoring occurs,
see the description of the | NSTRUVENTED column.)

For these reasons, DBAs who perform server monitoring using | NFORVMATI ON_SCHENMA. PROCESSLI ST or
SHOW PROCESSLI ST may wish to monitor using the t hr eads table instead.

Note

For | NFORVATI ON_SCHEMA. PROCESSLI ST and SHOW PROCESSLI ST, information
about threads for other users is shown only if the current user has the PROCESS
privilege. That is not true of the t hr eads table; all rows are shown to any user who
has the SELECT privilege for the table. Users who should not be able to see threads
for other users should not be given that privilege.

The t hr eads table has these columns:

* THREAD I D

101

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html#priv_process

The threads Table

A unique thread identifier.
NANVE

The name associated with the thread instrumentation code in the server. For example, t hr ead/ sql /
one_connect i on corresponds to the thread function in the code responsible for handling a user
connection, and t hr ead/ sql / mai n stands for the mai n() function of the server.

TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground threads.
Threads associated with internal server activity are background threads. Examples are internal | nnoDB
threads, “binlog dump” threads sending information to slaves, and slave I/O and SQL threads.

PROCESSLI ST_I D

For threads that are displayed in the | NFORVATI ON_SCHEMA. PROCESSLI ST table, this is the same
value displayed in the | D column of that table. It is also the value displayed in the | d column of SHOW
PROCESSLI ST output, and the value that CONNECTI ON_| D() would return within that thread.

For background threads (threads not associated with a user connection), PROCESSLI ST_| Dis NULL, so
the values are not unique.

PROCESSLI ST_USER

The user associated with a foreground thread, NULL for a background thread.

PROCESSLI ST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the | NFORVATI ON_SCHENMA PROCESSLI ST table or the Host column of
SHOW PROCESSLI ST output, the PROCESSLI ST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket i nst ances table:

nmysql > SELECT * FROM setup_i nstruments WHERE NAME LIKE 'wait/i o/ socket % ;

| wait/iolsocket/sql/server_unix_socket
| wait/iolsocket/sql/client_connection

3 rows in set (0.01 sec)
nysql > UPDATE setup_i nstrunents SET ENABLED=' YES' WHERE NAME LI KE 'wai t/i o/ socket % ;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: O
nmysql > SELECT * FROM socket i nstances\G
PR EEEE SRR EREEEEEEEREEEEESEEREES] 1 rOW EEEEEE SRR EEEEEEEEEEEEESEERESES]

EVENT_NAME: wai t/i o/ socket/sql/client_connection
OBJECT_| NSTANCE_BEG N: 140612577298432

THREAD | D: 31

SOCKET_I D: 53

IP: ::ffff:127.0.0.1
PORT: 55642
STATE: ACTI VE

PROCESSLI ST_DB

102

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.6/en/information-functions.html#function_connection-id
http://dev.mysql.com/doc/refman/5.6/en/processlist-table.html
http://dev.mysql.com/doc/refman/5.6/en/show-processlist.html

The threads Table

The default database for the thread, or NULL if there is none.
PROCESSLI ST_COMVAND

For foreground threads, the type of command the thread is executing on behalf of the client, or Sl eep if
the session is idle. For descriptions of thread commands, see Examining Thread Information. The value
of this column corresponds to the COM xxx commands of the client/server protocol and Com xxx status
variables. See Server Status Variables

Background threads do not execute commands on behalf of clients, so this column may be NULL.
PROCESSLI ST_TI ME

The time in seconds that the thread has been in its current state.

PROCESSLI ST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLI ST_STATE values, see Examining Thread Information. If the value if NULL, the thread may
correspond to an idle client session or the work it is doing is not instrumented with stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

PROCESSLI ST_I NFO

The statement the thread is executing, or NULL if it is not executing any statement. The statement might
be the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
PROCESSLI ST_| NFOvalue shows the SELECT statement.

PARENT _THREAD_| D

If this thread is a subthread (spawned by another thread), this is the THREAD | D value of the spawning
thread. Thread spawning occurs, for example, to handle insertion of rows from | NSERT DELAYED
statements.

ROLE

Unused.

| NSTRUVENTED

Whether events executed by the thread are instrumented. The value is YES or NO.

 For foreground threads, the initial | NSTRUVENTED value is determined by whether the user account
associated with the thread matches any row in the set up_act or s table. Matching is based on the
values of the PROCESSLI ST _USER and PROCESSLI ST _HOST columns.

If the thread spawns a subthread, matching occurs again for the t hr eads table row created for the
subthread.

e For background threads, | NSTRUVENTED is YES by default. set up_act or s is not consulted because
there is no associated user for background threads.

e For any thread, its | NSTRUVENTED value can be changed during the lifetime of the thread. This is the
only t hr eads table column that can be modified.

103

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/thread-information.html
http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.6/en/thread-information.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/insert-delayed.html

The threads Table

For monitoring of events executed by the thread to occur, these things must be true:
e Thethread instrunentationconsumerinthe setup consuners table must be YES.
e Thet hr eads. | NSTRUVENTED column must be YES.

« Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column setto YESin the set up_i nst runent s table.

TRUNCATE TABLE is not permitted for the t hr eads table.

104

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

Chapter 11 Performance Schema and Plugins

Removing a plugin with UNI NSTALL PLUG N does not affect information already collected for code in
that plugin. Time spent executing the code while the plugin was loaded was still spent even if the plugin
is unloaded later. The associated event information, including aggregate information, remains readable in
per f or mance_schena database tables. For additional information about the effect of plugin installation
and removal, see Chapter 8, Performance Schema Status Monitoring.

A plugin implementor who instruments plugin code should document its instrumentation characteristics to
enable those who load the plugin to account for its requirements. For example, a third-party storage engine
should include in its documentation how much memory the engine needs for mutex and other instruments.

105

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/uninstall-plugin.html

106

www.EngineeringBooksPdf.com

Chapter 12 Performance Schema System Variables

The Performance Schema implements several system variables that provide configuration information:

nysql > SHOW VARI ABLES LI KE ' perf %

LT L e T LT +
| Vari abl e_nane | Val ue

LT L e T LT +
| performance_schema | ON

| performance_schenma_account s_si ze | 100

| performance_schena_di gests_si ze | 200

| performance_schena_events_stages_hi story_l ong_si ze | 10000

| performance_schenma_event s_st ages_hi story_si ze | 10

| performance_schena_events_statenents_history_| ong_size | 10000

| performance_schena_events_st at enents_hi story_si ze | 10

| performance_schenma_events_waits_history_| ong_size | 10000

| performance_schenma_events_waits_history_size | 10

| performance_schenma_hosts_si ze | 100

| performance_schema_nmax_cond_cl asses | 80

| performance_schema_nmeax_cond_i nst ances | 1000

| performance_schema_nmex_fil e_cl asses | 50

| performance_schema_nmex_fil e_handl es | 32768

| performance_schema_nmex_fil e_i nst ances | 10000

| performance_schema_max_nut ex_cl asses | 200

| perfornmance_schema_nmax_nut ex_i nst ances | 1000000
| performance_schema_nmax_rw ock_cl asses | 30

| performance_schema_nmax_rw ock_i nst ances | 1000000
| performance_schema_nmeax_socket _cl asses | 10

| performance_schema_nmax_socket _i nst ances | 1000

| performance_schema_nmeax_st age_cl asses | 150

| performance_schenma_nmex_st at enent _cl asses | 165

| performance_schema_nmex_t abl e_handl es | 10000

| performance_schema_nmex_t abl e_i nst ances | 1000

| performance_schema_nmex_t hread_cl asses | 50

| performance_schema_nmex_t hread_i nst ances | 1000

| performance_schenma_sessi on_connect _attrs_size | 512

| performance_schena_set up_actors_si ze | 100

| performance_schena_set up_obj ects_si ze | 100

| performance_schenma_users_size | 100

LT L e T LT +

Performance Schema system variables can be set at server startup on the command line or in option files,
and many can be set at runtime. See Performance Schema Option and Variable Reference.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Chapter 4, Performance Schema Startup
Configuration.

Performance Schema system variables have the following meanings:

e performance_schem

Command-Line Format |- - perfornmance- schema=#
System Variable Name |perfornance_schena
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type boolean
5.6.5)
107

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/performance-schema-option-variable-reference.html

Default |OFF

Permitted Values (>= Type boolean

5.6.6) Default |ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON or
1 to enable it, or with a value of OFF or O to disable it.

« performance_schena_accounts_si ze

Introduced 5.6.3
Command-Line Format |- - perf or mrance- schena- account s-si ze=#
System Variable Name |perfornmance_schena_accounts_si ze
Variable|Global
Scope
DynamicNo
Variable
Permitted Values (<= Type integer
56.5) Default |10
Min 0
Value
Max 1048576
Value
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)
Min -1 (autosized)
Value
Max 1048576
Value

The number of rows in the account s table. If this variable is 0, the Performance Schema does not
maintain connection statistics in the account s table.

 performance_schenma_di gests_size

Introduced 5.6.5
Command-Line Format |- - perfornance-schenma-di gests-si ze=#
System Variable Name |perfornance_schena_di gests_size
Variable|Global
Scope
DynamigNo
Variable
Permitted Values Type integer
Default |- 1 (autosi zed)
Min -1
Value

108

www.EngineeringBooksPdf.com

Max 1048576
Value

The maximum number of rows in the event s_st at enents_sunmary_ by di gest table. If this

maximum is exceeded such that a digest cannot be instrumented, the Performance Schema increments

the Per f or mance_schenma_di gest | ost status variable.

For more information about statement digesting, see Performance Schema Statement Digests.

« performance_schema_events_stages_history_|l ong_size

Introduced

5.6.3

Command-Line Format

- - performance- schenma- event s- st ages- hi story-1| ong-si ze=#

System Variable

Name |perfornmance_schena_events_stages_history | ong_size

Variable|Global
Scope

DynamicNo
Variable

Permitted Values (<=
5.6.5)

Type integer

Default 10000

Permitted Values (>=
5.6.6)

Type integer

Default |- 1 (autosi zed)

The number of rows in the event s_st ages_hi st ory_| ong table.

e performance_schema_events_stages_history_size

Introduced

5.6.3

Command-Line Format

- - performance- schema- event s- st ages- hi story-si ze=#

System Variable

Name |performance_schena_events_stages_history_size

Variable|Global
Scope

DynamigNo
Variable

Permitted Values (<=
5.6.5)

Type integer

Default |10

Permitted Values (>=
5.6.6)

Type integer

Default |- 1 (autosi zed)

The number of rows per thread in the event s_st ages_hi st ory table.

e performance_schena _events statenents _history |ong size

Introduced

5.6.3

Command-Line Format

- - perf ormance- schema- event s- st at enent s- hi st ory-1 ong-
Si ze=#

System Variabte

[. y L -)
Name |per T %émnce_scnena_event S_StatementsS_nrstory_Ion

www.EngineeringBooksPdf.com

_Ssize

http://dev.mysql.com/doc/refman/5.6/en/performance-schema-statement-digests.html

Variable|Global
Scope
DynamicNo
Variable
Permitted Values (<= Type integer
5.6.5) Default [10000
Permitted Values (>= Type integer
5.6.6) Default |-1 (autosi zed)

The number of rows in the event s_st at enent s_hi st ory_I| ong table.

performance_schema_events_statenents_hi story_size

Introduced 5.6.3
Command-Line Format |- - perfornmance- schenma-event s- st at ement s- hi story-si ze=#
System Variable Name |perfornmance_schena_events_statenents_history_size
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type integer
5.6.5) Default |10
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)

The number of rows per thread in the event s_st at ement s_hi st or y table.

performance_schema_events waits_history | ong_size

Command-Line Format |- - perfornmance- schenma-event s-wai t s- hi story-1ong-si ze=#
System Variable Name |perfornmance_schena_events waits_history | ong_size
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type integer
5.6.5) Default |10000
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)

The number of rows inthe events_wai ts_hi story_I| ong table.

performance_schenma_events waits_history size

Command-Line Format |- - perfornmance- schenma-event s-wai t s- hi story-si ze=#

System Variable Name |perfﬂgance_scherm_event S walts_history_size

www.EngineeringBooksPdf.com

Variable|Global
Scope
DynamicNo
Variable
Permitted Values (<= Type integer
5.6.5) Default |10
Permitted Values (>= Type integer
5.6.6) Default |-1 (autosi zed)

The number of rows per thread in the event s_wai t s_hi st ory table.

e performance_schema_hosts_si ze

Introduced 5.6.3
Command-Line Format |- - performance-schena- host s-si ze=#
System Variable Name |perfornmance_schena_hosts_size
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type integer
5.6.5) Default |10
Min 0
Value
Max 1048576
Value
Permitted Values (>= Type integer
5.6.6) Default |-1 (autosi zed)
Min -1 (autosized)
Value
Max 1048576
Value

The number of rows in the host s table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the host s table.

e« performance_schena_nmax_cond_cl asses

Command-Line Format |- - perfor mance- schena- nax- cond- cl asses=#

System Variable Name |perfornmance_schenma_nax_cond_cl asses

Variable|Global
Scope

DynamigNo
Variable

Permitted Values Type integer

111

www.EngineeringBooksPdf.com

‘Default ‘80

The maximum number of condition instruments.

per f or mance_schema_max_cond_i nst ances

Command-Line Format

- - performance- schenma- max- cond- i nst ances=#

System Variable Name |perfornmance_schena_nax_cond_i nstances
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type integer
5.6.5) Default {1000
Permitted Values (>= Type integer
5.6.6) Default |-1 (autosi zed)

The maximum number of instrumented condition objects.

per formance_schema_max_di gest _| ength

Introduced 5.6.26
Command-Line Format |- - perfornmance- schema- max- di gest - | engt h=#
System Variable Name |perfornmance_schena_nax_digest | ength
Variable|Global
Scope
DynamicNo
Variable
Permitted Values Type integer
Default [{1024
Min 0
Value
Max 1048576
Value

The maximum number of bytes available for storage of normalized statement digest values in the
Performance Schema. This variable is related to max_di gest _| engt h; see the description of that
variable in Server System Variables

For more information about statement digesting, see Performance Schema Statement Digests.

performance_schema_nax_file_cl asses

Command-Line Format

--performance-schenma-max-fil e-cl asses=#

System Variable Name |perfornmance_schenma _nax file_cl asses
Variable|Global
anpp

149
11Z

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_digest_length
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.6/en/performance-schema-statement-digests.html

DynamigNo
Variable

Permitted Values Type integer

Default |50

The maximum number of file instruments.

performance_schema_max_fil e_handl es

Command-Line Format |- - perfornance-schena- max-fil e-handl es=#

System Variable Name |performance_schenma_nmax_fil e_handl es

Variable|Global
Scope

DynamigNo
Variable

Permitted Values Type integer

Default [32768

The maximum number of opened file objects.

The value of per f or mance_schema_max_fil e_handl es should be greater than the value of
open files limt:open files |imt affects the maximum number of open file handles the
server can support and per f or mance_schema_mnaex_f il e_handl es affects how many of these file
handles can be instrumented.

performance_schema_max_fil e_instances

Command-Line Format |- - perfornance-schena- nax-fil e-instances=#
System Variable Name |performance_schena _nax _fil e_instances
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type integer
5.6.5) Default [10000
Permitted Values (>= Type integer
5.6.6) Default |-1 (autosized)

The maximum number of instrumented file objects.

per formance_schema_nax_mnut ex_cl asses

Command-Line Format |- - perfor mance- schema- max- nut ex- cl asses=#

System Variable Name |perfornmance_schenma_nax_nut ex_cl asses

Variable|Global
Scope

DynamigNo
Variable

113

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_open_files_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_open_files_limit

Permitted Values Type integer

Default {200

The maximum number of mutex instruments.

e« performance_schema_nmax_mut ex_i nst ances

Command-Line Format |- - perfor nance- schena- nax- mut ex-i nst ances=#
System Variable Name |perfornmance_schena_nax_mut ex_i nstances
Variable|Global
Scope
DynamicNo
Variable
Permitted Values (<= Type integer
56.5) Default |1000
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)

The maximum number of instrumented mutex objects.

e« performance_schema_max_rw ock_cl asses

Command-Line Format

- - performance- schema- max-rw ock- cl asses=#

System Variable Name |performance_schena _nmax_rw ock cl asses
Variable|Global
Scope
DynamicNo
Variable
Permitted Values (5.6.0) |Type integer
Default |20
Permitted Values (>= Type integer
5.6.1, <=5.6.14) Default 130
Permitted Values (>= Type integer
5.6.15) Default |40

The maximum number of rwlock instruments.

« performance_schena_max_rw ock i nstances

Command-Line Format

- - per f or mance- schema- max- rw ock-i nst ances=#

System Variable

Name

per formance_schema_nmax_rw ock_i nstances

Variable
Scope

Global

Dynamig
Variable

No

114

www.EngineeringBooksPdf.com

Permitted Values (<= Type integer

565 Default |1000

Permitted Values (>= Type integer

5.6.6) Default |- 1 (autosi zed)

The maximum number of instrumented rwlock objects.

 performance_schena _nmax_socket cl asses

Introduced

5.6.3

Command-Line Format

- - performance- schenma- max- socket - cl asses=#

System Variable Name |perfornmance_schena_nax_socket cl asses
Variable|Global
Scope
DynamigNo
Variable
Permitted Values Type integer
Default |10

The maximum number of socket instruments.

« performance_schena_max_socket instances

Introduced

5.6.3

Command-Line Format

- - per f or mance- schema- max- socket - i nst ances=#

System Variable Name |perfornmance_schena_nax_socket instances
Variable|Global
Scope
DynamicNo
Variable
Permitted Values (<= Type integer
56.5) Default |1000
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)

The maximum number of instrumented socket objects.

« performance_schena_nax_stage cl asses

Introduced

5.6.3

Command-Line Format

- - performance- schena- max- st age- cl asses=#

System Variable

Name

performance_schenma_nex_stage_cl asses

Variable
Scope

Global

Dynamig

No

Variable

115

www.EngineeringBooksPdf.com

Permitted Values Type integer

Default |150

The maximum number of stage instruments.

« performance_schena_max_stat enent _cl asses

Introduced 5.6.3
Command-Line Format |- - perfor nance- schema- nax- st at enent - cl asses=#
System Variable Name |perfornance_schena _nax_statenent cl asses
Variable|Global
Scope
DynamigNo
Variable
Permitted Values Type integer
Default |- 1 (autosi zed)

The maximum number of statement instruments. The default value is calculated at server build time
based on the number of commands in the client/server protocol and the number of SQL statement types
supported by the server.

This variable should not be changed, unless to set it to O to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has no
benefit; in particular, values larger than the default cause more memory to be allocated then is needed.

« performance_schena _nax_tabl e _handl es

Command-Line Format |- - perfor nance-schena- nax-t abl e- handl es=#
System Variable Name |performance_schena_max_t abl e_handl es
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type integer
5.6.5) Default | 100000
Permitted Values (>= Type integer
5.6.6) Default |-1 (autosized)

The maximum number of opened table objects.

« performance_schema_nmax_t abl e_i nst ances

Command-Line Format |- - performance- schenma- max-t abl e-i nst ances=#

System Variable Name |perfornance_schema_nax_tabl e_i nstances

Variable|Global
Scope

DynamigNo
Variable

116

www.EngineeringBooksPdf.com

Permitted Values (<= Type integer
565 Default |50000
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)

The maximum number of instrumented table objects.

 performance_schena _nax_t hread_cl asses

Command-Line Format |- - perf or mance- schena- max-t hr ead- cl asses=#

System Variable Name |perfornmance_schena _nax_t hread_cl asses

Variable|Global
Scope

DynamicNo
Variable

Permitted Values Type integer

Default |50

The maximum number of thread instruments.

« performance_schema_max_t hread_i nstances

Command-Line Format |- - perfor nance- schenma- nax-t hread-i nst ances=#
System Variable Name |perfornmance_schena_nax_t hread_i nstances
Variable|Global
Scope
DynamicNo
Variable
Permitted Values (<= Type integer
56.5) Default |1000
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)

The maximum number of instrumented thread objects. The value controls the size of the t hr eads table.
If this maximum is exceeded such that a thread cannot be instrumented, the Performance Schema
increments the Per f or mance_schena_t hread_i nst ances_| ost status variable.

The max_connect i ons system variable affects how many threads are run in the server.
performance_schema_max_t hread_i nst ances affects how many of these running threads can
be instrumented. The default value of per f or rance_schena_nax_t hread_i nst ances is autosized
based on the value of nax_connecti ons.

e« performance_schema_sessi on_connect _attrs_size

Introduced 5.6.6
Command-Line Format |- - perfor nance- schena- sessi on-connect-attrs-si ze=#
Qy':tpm Variahle Name !ppr for rmnr‘p_cr‘hprm_cpcci on_connect attr Q_Qi ze

117

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_connections

Variable|Global
Scope
DynamicNo
Variable
Permitted Values Type integer
Default |- 1 (autosi zed)
Min -1
Value
Max 1048576
Value

The amount of preallocated memory per thread reserved to hold connection attribute key/

value pairs. If the aggregate size of co

nnection attribute data sent by a client is larger

than this amount, the Performance Schema truncates the attribute data, increments the
Per f or mance_schena_sessi on_connect _attrs_| ost status variable, and writes a message to
the error log indicating that truncation occurred if the | og_war ni ngs system variable value is greater

than zero.

The default value of per f or mance_schena_sessi on_connect _attrs_si ze

is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schena_sessi on_connect _attrs_| ost becomes nonzero), you may wish to set
performance_schema_sessi on_connect _attrs_si ze explicitly to a larger value.

Although the maximum permitted per f or rance_schena_sessi on_connect _attrs_si ze value
is 1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the aggregate
size of connection attribute data it will accept. If a client attempts to send more than 64KB of attribute

data, the server rejects the connection
Connection Attribute Tables”.

. For more information, see Section 10.8, “Performance Schema

performance_schenma_set up_actors_si ze

Introduced 5.6.1
Command-Line Format |- - perfornmance- schena-set up-act ors-si ze=#
System Variable Name |perfornmance_schena_setup_actors_size
Variable|Global
Scope
DynamigNo
Variable
Permitted Values Type integer
Default [100
The number of rows in the set up_act or s table.
per formance_schenma_set up_obj ects_si ze
Introduced 5.6.1
Command-Line Format |- - perfor nance- schena- set up- obj ect s-si ze=#
System Variable Name ‘perfor mance_schena_set up_obj ects_si ze

118

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_log_warnings

Variable|Global
Scope

DynamicNo
Variable

Permitted Values Type integer

Default {100

The number of rows in the set up_obj ect s table.

 performance_schema_users_size

Introduced 5.6.3
Command-Line Format |- - perfornmance-schena- users-si ze=#
System Variable Name |perfornance_schena_users_size
Variable|Global
Scope
DynamigNo
Variable
Permitted Values (<= Type integer
5.6.5) Default |10
Min 0
Value
Max 1048576
Value
Permitted Values (>= Type integer
5.6.6) Default |- 1 (autosi zed)
Min -1 (autosized)
Value
Max 1048576
Value

The number of rows in the user s table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the user s table.

119

www.EngineeringBooksPdf.com

120

www.EngineeringBooksPdf.com

Chapter 13 Performance Schema Status Variables

The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

nysql > SHOW STATUS LI KE ' perf % :

Per f or mance_schenma_account s_| ost

Per f or mance_schena_cond_cl asses_| ost

Per f or mance_schena_cond_i nst ances_| ost
Per f ormance_schena_fil e_cl asses_| ost

Per f ormance_schena_fil e_handl es_|I ost

Per f ormance_schena_fil e_i nst ances_| ost
Per f or mance_schena_host s_| ost

Per f ormance_schena_| ocker _| ost

Per f or mance_schenma_nut ex_cl asses_| ost
Per f or mance_schenma_nut ex_i nst ances_| ost
Per f ormance_schenma_rw ock_cl asses_| ost
Per f or mance_schenma_rw ock_i nst ances_| ost
Per f or mance_schena_socket _cl asses_| ost
Per f or mance_schena_socket _i nst ances_| ost
Per f or mance_schena_st age_cl asses_| ost
Per f ormance_schena_st at ement _cl asses_| ost
Per f or mance_schena_t abl e_handl es_| ost
Per f ormance_schena_t abl e_i nst ances_| ost
Per f ormance_schena_t hread_cl asses_| ost
Per f or mance_schena_t hread_i nst ances_| ost
Per f or mance_schena_users_| ost

[eNeoNeoNoNoNoNoNolNoNololoNoloNoloNoNolNoNeNe]

Performance Schema status variables have the following meanings:
e Performance_schenma_accounts | ost
The number of times a row could not be added to the account s table because it was full.
e Performance_schema_cond _cl asses_| ost
How many condition instruments could not be loaded.
e Performance_schema_cond_i nstances_| ost
How many condition instrument instances could not be created.
e Performance_schenma_di gest | ost

The number of digest instances that could not be instrumented in the
events_statenents _summary_ by di gest table. This can be nonzero if the value of
performance_schena_di gests_si ze is too small.

e Performance_schema _file_cl asses_| ost
How many file instruments could not be loaded.
e Performance _schenma fil e handl es | ost
How many file instrument instances could not be opened.

e Performance_schema file instances | ost

121

www.EngineeringBooksPdf.com

How many file instrument instances could not be created.
Per f or mance_schena_hosts_| ost
The number of times a row could not be added to the host s table because it was full.
Per f or mance_schenma_| ocker | ost
How many events are “lost” or not recorded, due to the following conditions:
« Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).
< The depth of the nested events stack is greater than the limit imposed by the implementation.
Events recorded by the Performance Schema are not recursive, so this variable should always be 0.
Per f ormance_schema_nut ex_cl asses_| ost
How many mutex instruments could not be loaded.
Per f ormance_schema_nut ex_i nst ances_| ost
How many mutex instrument instances could not be created.
Per f or mance_schema_rw ock_cl asses_| ost
How many rwlock instruments could not be loaded.
Per f or mance_schema_rw ock_i nst ances_| ost
How many rwlock instrument instances could not be created.
Per f ormance_schema_sessi on_connect _attrs_| ost

The number of connections for which connection attribute truncation has occurred.

For a given connection, if the client sends connection attribute key/value pairs for

which the aggregate size is larger is larger than the reserved storage permitted by

the value of the per f or mance_schenma_sessi on_connect _attrs_si ze system

variable, the Performance Schema truncates the attribute data and increments

Per f ormance_schenma_sessi on_connect _attrs_| ost. If this value is nonzero, you may wish to
set per f ornance_schena_sessi on_connect _attrs_si ze to a larger value.

For more information about connection attributes, see Section 10.8, “Performance Schema Connection
Attribute Tables”.

Per f ormance_schema_socket cl asses_| ost

How many socket instruments could not be loaded.
Per f ormance_schema_socket i nstances_| ost

How many socket instrument instances could not be created.
Per f or mance_schema_st age_cl asses_| ost

How many stage instruments could not be loaded.

Per f or mance_schena_st at enment _cl asses_| ost

122

www.EngineeringBooksPdf.com

How many statement instruments could not be loaded.
» Performance_schena_tabl e _handl es_| ost

How many table instrument instances could not be opened.
e Performance_schena_tabl e_i nstances_| ost

How many table instrument instances could not be created.
e Performance_schema_thread cl asses | ost

How many thread instruments could not be loaded.
e Performance_schena_t hread i nstances | ost

The number of thread instances that could not be instrumented in the t hr eads table. This can be
nonzero if the value of per f or mance_schena_max_t hread_i nst ances is too small.

e Performance_schema_users_| ost
The number of times a row could not be added to the user s table because it was full.

For information on using these variables to check Performance Schema status, see Chapter 8,
Performance Schema Status Monitoring.

123

www.EngineeringBooksPdf.com

124

www.EngineeringBooksPdf.com

Chapter 14 Using the Performance Schema to Diagnose
Problems

Table of Contents

14.1 Query Profiling Using Performance SChemaccoouiiiiii i 126

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for
this purpose. The discussion here relies on the use of event filtering, which is described in Section 5.2,
“Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use case where
performance is deemed “too slow” and needs optimization, and you should enable all instrumentation (no
pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis will rely heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if analysis
shows that the issue is not related to file I/O in a particular storage engine, disable the file /O
instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

At each iteration, the Performance Schema output, particularly the events_wai ts_hi story_| ong
table, will contain less and less “noise” caused by nonsignificant instruments, and given that this table
has a fixed size, will contain more and more data relevant to the analysis of the problem at hand.

At each iteration, investigation should lead closer and closer to the root cause of the problem, as the
“signal/noise” ratio will improve, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action, such
as:

« Tune the server parameters (cache sizes, memory, and so forth).

e Tune a query by writing it differently,

Tune the database schema (tables, indexes, and so forth).
< Tune the code (this applies to storage engine or server developers only).
6. Start again at step 1, to see the effects of the changes on performance.

The nmut ex_i nst ances. LOCKED_BY_THREAD | D and

rwi ock_i nstances. WRI TE_LOCKED_BY_THREAD_| D columns are extremely important for investigating
performance bottlenecks or deadlocks. This is made possible by Performance Schema instrumentation as
follows:

125

www.EngineeringBooksPdf.com

Query Profiling Using Performance Schema

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM events_waits_current WHERE THREAD ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_wai ts_current. OBJECT_I| NSTANCE_BEG N.

3. You can determine which thread is holding mutex A:

SELECT * FROM nut ex_i nst ances WHERE OBJECT_| NSTANCE BEG N = nut ex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
nmut ex_i nst ances. LOCKED BY_ THREAD | D.

4. You can see what thread 2 is doing:

SELECT * FROM events_waits_current WHERE THREAD I D = thread_2;

14.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage events
to retrieve data comparable to profiling information provided by SHOW PROFI LES and SHOW PROFI LE
statements.

In this example, statement and stage event data is collected in the

events_statenents_history | ongandevents_stages_history | ong tables. On a busy
server with many active foreground threads, data could age out of the history tables before you are able to
retrieve the information you want to analyze. If you encounter this problem, options include:

* Running the query on a test instance where there is less foreground thread activity.

 Disabling instrumentation for other existing foreground threads by setting the | NSTRUVENTED field
of the t hr eads table to NOfor other thread records. For example, the following statement disables
instrumentation for all foreground threads except the t est _user thread:

nysql > UPDATE per f or mance_schena. t hreads SET | NSTRUVENTED = ' NO
WHERE TYPE=' FOREGROUND AND PROCESSLI ST_USER NOT LIKE 'test_user';

However, be aware that new threads are always instrumented by default.

* Increasing the number of rows in the event s_st at enents_hi story_| ong and
event s_stages_hi story_| ong tables. The
performance_schenma_events_statenents_history_size and
performance_schenma_events_stages_hi story_si ze configuration options are autosized
by default but can also be set explicitly at startup. You can view current settings by running SHOW
VARI ABLES. For information about autosized Performance Schema parameters, see Chapter 4,
Performance Schema Startup Configuration.

Performance Schema displays event timer information in picoseconds (trillionths of a second) to

normalize timing data to a standard unit. In the following example, TI VER WAl T values are divided by
1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to display
data in the same format as SHOW PROFI LES and SHOW PRCFI LE statements.

126

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-profiles.html
http://dev.mysql.com/doc/refman/5.6/en/show-profile.html
http://dev.mysql.com/doc/refman/5.6/en/show-variables.html
http://dev.mysql.com/doc/refman/5.6/en/show-variables.html
http://dev.mysql.com/doc/refman/5.6/en/show-profiles.html
http://dev.mysql.com/doc/refman/5.6/en/show-profile.html

Query Profiling Using Performance Schema

Ensure that statement and stage instrumentation is enabled by updating the set up_i nst runent s
table. Some instruments may already be enabled by default.

nmysql > UPDATE perfor mance_schena. setup_i nstrunents SET ENABLED = 'YES', TIMED = ' YES
VWHERE NAME LI KE ' %t atenent/ % ;

nmysql > UPDATE perfor mance_schena. setup_i nstrunents SET ENABLED = 'YES', TIMED = ' YES
WHERE NAME LI KE ' %t age/ % ;

Ensure that event s_stat enents_* and event s_st ages_* consumers are enabled. Some
consumers may already be enabled by default.

nmysql > UPDATE perf or mance_schena. set up_consuners SET ENABLED = ' YES
WHERE NAME LI KE ' %events_statenments_% ;

nmysql > UPDATE perf or mance_schena. set up_consuners SET ENABLED = ' YES
WHERE NAME LI KE ' %events_stages_%;

Run the statement that you want to profile. For example:

nysql > SELECT * FROM enpl oyees. enpl oyees WHERE enp_no = 10001;

dimcccccoo dimccccocccco= dimccccocccco= dimcccococcccoo dimcccccoo dimccccocccco= +

| enmp_no | birth_date | first_name | last_nane | gender | hire_date |

dimcccccoo dimccccocccco= dimccccocccco= dimcccococcccoo dimcccccoo dimccccocccco= +

| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |

dimcccccoo dimccccocccco= dimccccocccco= dimcccococcccoo dimcccccoo dimccccocccco= +

Identify the EVENT _| D of the statement by querying the events_statenents_hi story_ | ong
table. This step is similar to running SHOW PROFI LES to identify the Query_ | D. The following query
produces output similar to SHOW PROFI LES:

nysql > SELECT EVENT_| D, TRUNCATE(TI MER_WAI T/ 1000000000000, 6) as Duration, SQL_TEXT
FROM per f or mance_schema. event s_st at enent s_hi story_| ong WHERE SQL_TEXT | i ke ' %10001% ;

doocoocoooo doocoocoooo do 0 C o OEOOCCO O COCOCOOCCOOCOC 0000 COO000C0000C000C0000000a 0 +
| event_id | duration | sql_text |
doocoocoooo doocoocoooo do 0 C o OEOOCCO O COCOCOOCCOOCOC 0000 COO000C0000C000C0000000a 0 +
| 31 | 0.028310 | SELECT * FROM enpl oyees. enpl oyees WHERE enp_no = 10001 |
doocoocoooo doocoocoooo do 0 C o OEOOCCO O COCOCOOCCOOCOC 0000 COO000C0000C000C0000000a 0 +

Query the event s_st ages_hi st ory_| ong table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTI NG EVENT | D
column that contains the EVENT | D of the parent statement.

nysql > SELECT event_nanme AS Stage, TRUNCATE(TI MER WAl T/ 1000000000000, 6) AS Durati on
FROM per f or mance_schema. event s_st ages_hi story_| ong WHERE NESTI NG_EVENT_| D=31;

e E g =Py =y=p=papyep=ps doocoocoooo +
| Stage | Duration |
e E g =Py =y=p=papyep=ps doocoocoooo +
stage/sql/starting	0.000080	
stage/sql/checking perm ssions	0.000005	
stage/sql/Opening tables	0.027759	
stage/sqgl/init	0.000052	
stage/sql/System	ock	0.000009
stage/sql/optimzing	0.000006	
stage/sql/statistics	0.000082	
stage/sql/preparing	0.000008	
stage/sql/executing	0.000000	
stage/sql/Sending data	0.000017	
stage/sql/end	0.000001	
stage/sql/query end	0.000004	
stage/sql/closing tables	0.000006	
stage/sqgl/freeing itenms	0.000272	
127

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.6/en/show-profiles.html
http://dev.mysql.com/doc/refman/5.6/en/show-profiles.html

Query Profiling Using Performance Schema

| stage/sql/cleaning up | 0.000001 |
S oo +

128

www.EngineeringBooksPdf.com

	MySQL Performance Schema
	Table of Contents
	Preface and Legal Notices
	Chapter 1 MySQL Performance Schema
	Chapter 2 Performance Schema Quick Start
	Chapter 3 Performance Schema Build Configuration
	Chapter 4 Performance Schema Startup Configuration
	Chapter 5 Performance Schema Runtime Configuration
	5.1 Performance Schema Event Timing
	5.2 Performance Schema Event Filtering
	5.3 Event Pre-Filtering
	5.4 Pre-Filtering by Instrument
	5.5 Pre-Filtering by Object
	5.6 Pre-Filtering by Thread
	5.7 Pre-Filtering by Consumer
	5.8 Example Consumer Configurations
	5.9 Naming Instruments or Consumers for Filtering Operations
	5.10 Determining What Is Instrumented

	Chapter 6 Performance Schema Queries
	Chapter 7 Performance Schema Instrument Naming Conventions
	Chapter 8 Performance Schema Status Monitoring
	Chapter 9 Performance Schema General Table Characteristics
	Chapter 10 Performance Schema Table Descriptions
	10.1 Performance Schema Table Index
	10.2 Performance Schema Setup Tables
	10.2.1 The setup_actors Table
	10.2.2 The setup_consumers Table
	10.2.3 The setup_instruments Table
	10.2.4 The setup_objects Table
	10.2.5 The setup_timers Table

	10.3 Performance Schema Instance Tables
	10.3.1 The cond_instances Table
	10.3.2 The file_instances Table
	10.3.3 The mutex_instances Table
	10.3.4 The rwlock_instances Table
	10.3.5 The socket_instances Table

	10.4 Performance Schema Wait Event Tables
	10.4.1 The events_waits_current Table
	10.4.2 The events_waits_history Table
	10.4.3 The events_waits_history_long Table

	10.5 Performance Schema Stage Event Tables
	10.5.1 The events_stages_current Table
	10.5.2 The events_stages_history Table
	10.5.3 The events_stages_history_long Table

	10.6 Performance Schema Statement Event Tables
	10.6.1 The events_statements_current Table
	10.6.2 The events_statements_history Table
	10.6.3 The events_statements_history_long Table

	10.7 Performance Schema Connection Tables
	10.7.1 The accounts Table
	10.7.2 The hosts Table
	10.7.3 The users Table

	10.8 Performance Schema Connection Attribute Tables
	10.8.1 The session_account_connect_attrs Table
	10.8.2 The session_connect_attrs Table

	10.9 Performance Schema Summary Tables
	10.9.1 Wait Event Summary Tables
	10.9.2 Stage Summary Tables
	10.9.3 Statement Summary Tables
	10.9.4 Object Wait Summary Table
	10.9.5 File I/O Summary Tables
	10.9.6 Table I/O and Lock Wait Summary Tables
	10.9.6.1 The table_io_waits_summary_by_table Table
	10.9.6.2 The table_io_waits_summary_by_index_usage Table
	10.9.6.3 The table_lock_waits_summary_by_table Table

	10.9.7 Socket Summary Tables

	10.10 Performance Schema Miscellaneous Tables
	10.10.1 The host_cache Table
	10.10.2 The performance_timers Table
	10.10.3 The threads Table

	Chapter 11 Performance Schema and Plugins
	Chapter 12 Performance Schema System Variables
	Chapter 13 Performance Schema Status Variables
	Chapter 14 Using the Performance Schema to Diagnose Problems
	14.1 Query Profiling Using Performance Schema

