
197
© Seppe vanden Broucke and Bart Baesens 2018
S. vanden Broucke and B. Baesens, Practical Web Scraping for Data Science,
https://doi.org/10.1007/978-1-4842-3582-9_9

CHAPTER 9

Examples
This chapter includes several larger examples of web scrapers. Contrary to most of the

examples showcased during the previous chapters, the examples here serve a twofold

purpose. First, they showcase some more examples using real-life websites instead of a

curated, safe environment. The reason why we haven’t used many real-life examples so

far is due to the dynamic nature of the web. It might be that the examples covered here

do not provide the exact same results anymore or will be broken by the time you read

them. That being said, we have tried to use a selection of sites that are rather scraper

friendly and not very prone to changes. The second purpose of these examples is to

highlight how various concepts seen throughout the book “fall together” and interact, as

well as to hint toward some interesting data science-oriented use cases.

The following examples are included in this chapter:

•	 Scraping Hacker News: This example uses requests and Beautiful

Soup to scrape the Hacker News front page.

•	 Using the Hacker News API: This example provides an alternative by

showing how you can use APIs with requests.

•	 Quotes to Scrape: This example uses requests and Beautiful Soup

and introduces the “dataset” library as an easy means to store data.

•	 Books to Scrape: This example uses requests and Beautiful Soup,

as well as the dataset library, illustrating how you can run a scraper

again without storing duplicate results.

•	 Scraping GitHub Stars: This example uses requests and Beautiful

Soup to scrape GitHub repositories and show how you can perform

a login using requests, reiterating our warnings regarding legal

concerns.

https://doi.org/10.1007/978-1-4842-3582-9_9

198

•	 Scraping Mortgage Rates: This example uses requests to scrape

mortgage rates using a particularly tricky site.

•	 Scraping and Visualizing IMDB Ratings: This example uses

requests and Beautiful Soup to get a list of IMDB ratings for TV series

episodes. We also introduce the “matplotlib” library to create plots in

Python.

•	 Scraping IATA Airline Information: This example uses requests and

Beautiful Soup to scrape airline information from a site that employs

a difficult web form. An alternative approach using Selenium is also

provided. Scraped results are converted to a tabular format using the

“pandas” library, also introduced in this example.

•	 Scraping and Analyzing Web Forum Interactions: This example

uses requests and Beautiful Soup to scrape web forum posts and

stores them using the dataset library. From the collected results, we

use pandas and matplotlib to create heat map plots showing user

activity.

•	 Collecting and Clustering a Fashion Data Set: This example uses

requests and Beautiful Soup to download a set of fashion images. The

images are then clustered using the “scikit-learn” library.

•	 Sentiment Analysis of Scraped Amazon Reviews: This example

uses requests and Beautiful Soup to scrape a list of user reviews from

Amazon, stored using the dataset library. We then analyze these

using the “nltk” and “vaderSentiment” libraries in Python, and plot

the results using matplotlib.

•	 Scraping and Analyzing News Articles: This example uses Selenium

to scrape a list of news articles, stored using the dataset library. We

then associate these to a list of topics by constructing a topic model

using nltk.

•	 Scraping and Analyzing a Wikipedia Graph: In this example, we

extended our Wikipedia crawler to scrape pages using requests and

Beautiful Soup, stored using the dataset library, which we then use to

create a graph using “NetworkX” and visualize it with matplotlib.

Chapter 9 Examples

199

•	 Scraping and Visualizing a Board Members Graph: This example

uses requests and Beautiful Soup to scrape board members for S&P

500 companies. A graph is created using NetworkX and visualized

using “Gephi.”

•	 Breaking CAPTCHA’s Using Deep Learning: This example

shows how a convolutional neural network can be used to break

CAPTCHA’s.

Source Code T he source code for all examples is also provided at the companion
website for this book at http://www.webscrapingfordatascience.com.

9.1  �Scraping Hacker News
We’re going to scrape the https://news.ycombinator.com/news front page, using

requests and Beautiful Soup. Take some time to explore the page if you haven’t heard

about it already. Hacker News is a popular aggregator of news articles that “hackers”

(computer scientists, entrepreneurs, data scientists) find interesting.

We’ll store the scraped information in a simple Python list of dictionary objects for

this example. The code to scrape this page looks as follows:

import requests

import re

from bs4 import BeautifulSoup

articles = []

url = 'https://news.ycombinator.com/news'

r = requests.get(url)

html_soup = BeautifulSoup(r.text, 'html.parser')

for item in html_soup.find_all('tr', class_='athing'):

 item_a = item.find('a', class_='storylink')

 item_link = item_a.get('href') if item_a else None

Chapter 9 Examples

http://www.webscrapingfordatascience.com/
https://news.ycombinator.com/news

200

 item_text = item_a.get_text(strip=True) if item_a else None

 next_row = item.find_next_sibling('tr')

 item_score = next_row.find('span', class_='score')

 item_score = item_score.get_text(strip=True) if item_score else '0 points'

 # We use regex here to find the correct element

 �item_comments = next_row.find('a', string=re.compile('\d+(|\s)

comment(s?)'))

 item_comments = item_comments.get_text(strip=True).replace('\xa0', ' ') \

 if item_comments else '0 comments'

 articles.append({

 'link' : item_link,

 'title' : item_text,

 'score' : item_score,

 'comments' : item_comments})

for article in articles:

 print(article)

This will output the following:

{'li�nk': 'http://moolenaar.net/habits.html', 'title': 'Seven habits of 

effective text editing (2000)', 'score': '44 points', 'comments': 

'9 comments'}

{'li�nk': 'https://www.repository.cam.ac.uk/handle/1810/251038', 'title': 

'Properties of expanding universes (1966)', 'score': '52 points', 

'comments': '8 comments'}

[...]

Try expanding this code to scrape a link to the comments page as well. Think

about potential use cases that would be possible when you also scrape the comments

themselves (for example, in the context of text mining).

Chapter 9 Examples

201

9.2  �Using the Hacker News API
Note that Hacker News also offers an API providing structured, JSON-formatted results

(see https://github.com/HackerNews/API). Let’s rework our Python code to now serve

as an API client without relying on Beautiful Soup for HTML parsing:

import requests

articles = []

url = 'https://hacker-news.firebaseio.com/v0'

top_stories = requests.get(url + '/topstories.json').json()

for story_id in top_stories:

 story_url = url + '/item/{}.json'.format(story_id)

 print('Fetching:', story_url)

 r = requests.get(story_url)

 story_dict = r.json()

 articles.append(story_dict)

for article in articles:

 print(article)

This will output the following:

Fetching: https://hacker-news.firebaseio.com/v0/item/15532457.json

Fetching: https://hacker-news.firebaseio.com/v0/item/15531973.json

Fetching: https://hacker-news.firebaseio.com/v0/item/15532049.json

[...]

{'by': 'laktak', 'descendants': 30, 'id': 15532457, 'kids': [15532761, 

 �15532768, 15532635, 15532727, 15532776, 15532626, 15532700, 15532634], 

'score': 60, 'time': 1508759764, ‘title': ‘Seven habits of effective 

 �text editing (2000)', 'type': 'story', 'url': 'http://moolenaar.net/ 

habits.html'}

[...]

Chapter 9 Examples

https://github.com/HackerNews/API

202

9.3  �Quotes to Scrape
We’re going to scrape http://quotes.toscrape.com, using requests and Beautiful Soup.

This page is provided by Scrapinghub as a more realistic scraping playground. Take some

time to explore the page. We’ll scrape out all the information, that is:

•	 The quotes, with their author and tags;

•	 And the author information, that is, date and place of birth, and

description.

We’ll store this information in a SQLite database. Instead of using the “records”

library and writing manual SQL statements, we’re going to use the “dataset” library

(see https://dataset.readthedocs.io/en/latest/). This library provides a simple

abstraction layer removing most direct SQL statements without the necessity for a full

ORM model, so that we can use a database just like we would with a CSV or JSON file to

quickly store some information. Installing a dataset can be done easily through pip:

pip install -U dataset

Not a Full ORM  Note that dataset does not want to replace a full-blown
ORM (Object Relational Mapping) library like SQLAlchemy (even though it uses
SQLAlchemy behind the scenes). It’s meant simply to quickly store a bunch of data
in a database without having to define a schema or write SQL. For more advanced
use cases, it’s a good idea to consider using a true ORM library or to define a
database schema by hand and query it manually.

The code to scrape this site looks as follows:

import requests

import dataset

from bs4 import BeautifulSoup

from urllib.parse import urljoin, urlparse

db = dataset.connect('sqlite:///quotes.db')

authors_seen = set()

Chapter 9 Examples

http://quotes.toscrape.com/
https://dataset.readthedocs.io/en/latest/

203

base_url = 'http://quotes.toscrape.com/'

def clean_url(url):

 # Clean '/author/Steve-Martin' to 'Steve-Martin'

 # Use urljoin to make an absolute URL

 url = urljoin(base_url, url)

 # Use urlparse to get out the path part

 path = urlparse(url).path

 # Now split the path by '/' and get the second part

 # E.g. '/author/Steve-Martin' -> ['', 'author', 'Steve-Martin']

 return path.split('/')[2]

def scrape_quotes(html_soup):

 for quote in html_soup.select('div.quote'):

 quote_text = quote.find(class_='text').get_text(strip=True)

 quote_author_url = clean_url(quote.find(class_='author') \

 .find_next_sibling('a').get('href'))

 quote_tag_urls = [clean_url(a.get('href'))

 for a in quote.find_all('a', class_='tag')]

 authors_seen.add(quote_author_url)

 # Store this quote and its tags

 quote_id = db['quotes'].insert({ 'text' : quote_text,

 'author' : quote_author_url })

 db['quote_tags'].insert_many(

 �[{'quote_id' : quote_id, 'tag_id' : tag} for tag in

quote_tag_urls])

def scrape_author(html_soup, author_id):

 �author_name = html_soup.find(class_='author-title').get_text(strip=True)

 �author_born_date = html_soup.find(class_='author-born-date').get_text

(strip=True)

 �author_born_loc = html_soup.find(class_='author-born-location').

get_text(strip=True)

 �author_desc = html_soup.find(class_='author-description').get_text

(strip=True)

Chapter 9 Examples

204

 db['authors'].insert({ 'author_id' : author_id,

 'name' : author_name,

 'born_date' : author_born_date,

 'born_location' : author_born_loc,

 'description' : author_desc})

Start by scraping all the quote pages

url = base_url

while True:

 print('Now scraping page:', url)

 r = requests.get(url)

 html_soup = BeautifulSoup(r.text, 'html.parser')

 # Scrape the quotes

 scrape_quotes(html_soup)

 # Is there a next page?

 next_a = html_soup.select('li.next > a')

 if not next_a or not next_a[0].get('href'):

 break

 url = urljoin(url, next_a[0].get('href'))

Now fetch out the author information

for author_id in authors_seen:

 url = urljoin(base_url, '/author/' + author_id)

 print('Now scraping author:', url)

 r = requests.get(url)

 html_soup = BeautifulSoup(r.text, 'html.parser')

 # Scrape the author information

 scrape_author(html_soup, author_id)

This will output the following:

Now scraping page: http://quotes.toscrape.com/

Now scraping page: http://quotes.toscrape.com/page/2/

Now scraping page: http://quotes.toscrape.com/page/3/

Now scraping page: http://quotes.toscrape.com/page/4/

Now scraping page: http://quotes.toscrape.com/page/5/

Now scraping page: http://quotes.toscrape.com/page/6/

Chapter 9 Examples

205

Now scraping page: http://quotes.toscrape.com/page/7/

Now scraping page: http://quotes.toscrape.com/page/8/

Now scraping page: http://quotes.toscrape.com/page/9/

Now scraping page: http://quotes.toscrape.com/page/10/

Now scraping author: http://quotes.toscrape.com/author/Ayn-Rand

Now scraping author: http://quotes.toscrape.com/author/E-E-Cummings

[...]

Note that there are still a number of ways to make this code more robust. We’re not

checking for None results when scraping the quote or author pages. In addition, we’re using

“dataset” here to simply insert rows in three tables. In this case, dataset will automatically

increment a primary “id” key. If you want to run this script again, you’ll hence first have to

clean up the database to start fresh, or modify the script to allow for resuming its work or

updating the results properly. In later examples, we’ll use dataset’s upsert method to do so.

Once the script has finished, you can take a look at the database (“quotes.db”) using

a SQLite client such as “DB Browser for SQLite,” which can be obtained from http://

sqlitebrowser.org/. Figure 9-1 shows this tool in action.

Figure 9-1.  Exploring an SQLite database with “DB Browser for SQLite”

Chapter 9 Examples

http://sqlitebrowser.org/
http://sqlitebrowser.org/

206

9.4  �Books to Scrape
We’re going to scrape http://books.toscrape.com, using requests and Beautiful Soup.

This page is provided by Scrapinghub as a more realistic scraping playground. Take some

time to explore the page. We’ll scrape out all the information, that is, for every book, we’ll

obtain:

•	 Its title;

•	 Its image;

•	 Its price and stock availability;

•	 Its rating;

•	 Its product description;

•	 Other product information.

We’re going to store this information in an SQLite database, again using the “dataset”

library. However, this time we’re going to write our program in such a way that it takes

into account updates — so that we can run it multiple times without inserting duplicate

records in the database.

The code to scrape this site looks as follows:

import requests

import dataset

import re

from datetime import datetime

from bs4 import BeautifulSoup

from urllib.parse import urljoin, urlparse

db = dataset.connect('sqlite:///books.db')

base_url = 'http://books.toscrape.com/'

def scrape_books(html_soup, url):

 for book in html_soup.select('article.product_pod'):

 # For now, we'll only store the books url

 book_url = book.find('h3').find('a').get('href')

 book_url = urljoin(url, book_url)

 path = urlparse(book_url).path

Chapter 9 Examples

http://books.toscrape.com/

207

 book_id = path.split('/')[2]

 # Upsert tries to update first and then insert instead

 db['books'].upsert({'book_id' : book_id,

 'last_seen' : datetime.now()

 }, ['book_id'])

def scrape_book(html_soup, book_id):

 main = html_soup.find(class_='product_main')

 book = {}

 book['book_id'] = book_id

 book['title'] = main.find('h1').get_text(strip=True)

 book['price'] = main.find(class_='price_color').get_text(strip=True)

 book['stock'] = main.find(class_='availability').get_text(strip=True)

 book['rating'] = ' '.join(main.find(class_='star-rating') \

 .get('class')).replace('star-rating', '').strip()

 book['img'] = html_soup.find(class_='thumbnail').find('img').get('src')

 desc = html_soup.find(id='product_description')

 book['description'] = ''

 if desc:

 book['description'] = desc.find_next_sibling('p') \

 .get_text(strip=True)

 �info_table = html_soup.find(string='Product Information').find_

next('table')

 for row in info_table.find_all('tr'):

 header = row.find('th').get_text(strip=True)

 # Since we'll use the header as a column, clean it a bit

 # to make sure SQLite will accept it

 header = re.sub('[^a-zA-Z]+', '_', header)

 value = row.find('td').get_text(strip=True)

 book[header] = value

 db['book_info'].upsert(book, ['book_id'])

Scrape the pages in the catalogue

url = base_url

inp = input('Do you wish to re-scrape the catalogue (y/n)? ')

Chapter 9 Examples

208

while True and inp == 'y':

 print('Now scraping page:', url)

 r = requests.get(url)

 html_soup = BeautifulSoup(r.text, 'html.parser')

 scrape_books(html_soup, url)

 # Is there a next page?

 next_a = html_soup.select('li.next > a')

 if not next_a or not next_a[0].get('href'):

 break

 url = urljoin(url, next_a[0].get('href'))

Now scrape book by book, oldest first

books = db['books'].find(order_by=['last_seen'])

for book in books:

 book_id = book['book_id']

 book_url = base_url + 'catalogue/{}'.format(book_id)

 print('Now scraping book:', book_url)

 r = requests.get(book_url)

 r.encoding = 'utf-8'

 html_soup = BeautifulSoup(r.text, 'html.parser')

 scrape_book(html_soup, book_id)

 # Update the last seen timestamp

 db['books'].upsert({'book_id' : book_id,

 'last_seen' : datetime.now()

 }, ['book_id'])

Once the script has finished, remember that you can take a look at the database

(“books.db”) using, for example, “DB Browser for SQLite.” Note the use of the dataset’s

upsert method in this example. This method will try to update a record if it exists already

(by matching existing records with a list of given field names), or insert a new record

otherwise.

Chapter 9 Examples

209

9.5  �Scraping GitHub Stars
We’re going to scrape https://github.com, using requests and Beautiful Soup. Our goal

is to get, for a given GitHub username, like, for example, https://github.com/google,

a list of repositories with their GitHub-assigned programming language as well as the

number of stars a repository has.

The basic structure of this scraper is quite simple:

import requests

from bs4 import BeautifulSoup

import re

session = requests.Session()

url = 'https://github.com/{}'

username = 'google'

r = session.get(url.format(username), params={'page': 1, 'tab':

'repositories'})

html_soup = BeautifulSoup(r.text, 'html.parser')

repos = html_soup.find(class_='repo-list').find_all('li')

for repo in repos:

 name = repo.find('h3').find('a').get_text(strip=True)

 language = repo.find(attrs={'itemprop': 'programmingLanguage'})

 language = language.get_text(strip=True) if language else 'unknown'

 stars = repo.find('a', attrs={'href': re.compile('\/stargazers')})

 stars = int(stars.get_text(strip=True).replace(',', '')) if stars else 0

 print(name, language, stars)

Running this will output:

sagetv Java 192

ggrc-core Python 233

gapid Go 445

certificate-transparency-rfcs Python 55

mtail Go 936

[...]

Chapter 9 Examples

https://github.com/
https://github.com/google

210

However, this will fail if we would try to scrape a normal user’s page. Google’s GitHub

account is an enterprise account, which is displayed slightly differently from normal user

accounts. You can try this out by setting the “username” variable to “Macuyiko” (one of

the authors of this book). We hence need to adjust our code to handle both cases:

import requests

from bs4 import BeautifulSoup

import re

session = requests.Session()

url = 'https://github.com/{}'

username = 'Macuyiko'

r = session.get(url.format(username), params={'page': 1, 'tab':

'repositories'})

html_soup = BeautifulSoup(r.text, 'html.parser')

is_normal_user = False

repos_element = html_soup.find(class_='repo-list')

if not repos_element:

 is_normal_user = True

 repos_element = html_soup.find(id='user-repositories-list')

repos = repos_element.find_all('li')

for repo in repos:

 name = repo.find('h3').find('a').get_text(strip=True)

 language = repo.find(attrs={'itemprop': 'programmingLanguage'})

 language = language.get_text(strip=True) if language else 'unknown'

 stars = repo.find('a', attrs={'href': re.compile('\/stargazers')})

 stars = int(stars.get_text(strip=True).replace(',', '')) if stars else 0

 print(name, language, stars)

Running this will output:

macuyiko.github.io HTML 0

blog JavaScript 1

minecraft-python JavaScript 14

[...]

Chapter 9 Examples

211

As an extra exercise, try adapting this code to scrape out all pages in case the

repositories page is paginated (as is the case for Google’s account).

As a final add-on, you’ll note that user pages like https://github.com/

Macuyiko?tab=repositories also come with a short bio, including (in some cases) an

e-mail address. However, this e-mail address is only visible once we log in to GitHub. In

what follows, we’ll try to get out this information as well.

Warning T his practice of hunting for a highly starred GitHub profile and
extracting the contact information is frequently applied by recruitment firms.
This being said, do note that we’re now going to log in to GitHub and that we’re
crossing the boundary between public and private information. Consider this
a practice exercise illustrating how you can do so in Python. Keeping the legal
aspects in mind, you’re advised to only scrape out your own profile information
and to not set up this kind of scrapers on a large scale before knowing what you’re
getting into. Refer back to the chapter on legal concerns for the details regarding
the legality of scraping.

You will need to create a GitHub profile in case you haven’t done so already. Let us

start by getting out the login form from the login page:

import requests

from bs4 import BeautifulSoup

session = requests.Session()

url = 'https://github.com/{}'

username = 'Macuyiko'

Visit the login page

r = session.get(url.format('login'))

html_soup = BeautifulSoup(r.text, 'html.parser')

form = html_soup.find(id='login')

print(form)

Chapter 9 Examples

https://github.com/Macuyiko?tab=repositories
https://github.com/Macuyiko?tab=repositories

212

Running this will output:

<div class="auth-form px-3" id="login"> <!-- '"` -->

<!-- </textarea></xmp> --></div>

This is not exactly what we expected. If we take a look at the page source, we see that

the page is formatted somewhat strangely:

<div class="auth-form px-3" id="login">

 <!-- '"` --><!-- </textarea></xmp> --></option></form>

 <form accept-charset="UTF-8" action="/session" method="post">

 <div style="margin:0;padding:0;display:inline">

 <input name="utf8" type="hidden" value="✓" />

 <input name="authenticity_token" type="hidden" value="AtuMda[...]zw==" />

 </div>

 <div class="auth-form-header p-0">

 <h1>Sign in to GitHub</h1>

 </div>

 <div id="js-flash-container">

</div>

[...]

</form>

The following modification makes sure we get out the forms in the page:

import requests

from bs4 import BeautifulSoup

session = requests.Session()

url = 'https://github.com/{}'

username = 'Macuyiko'

Visit the login page

r = session.get(url.format('login'))

html_soup = BeautifulSoup(r.text, 'html.parser')

Chapter 9 Examples

213

data = {}

for form in html_soup.find_all('form'):

 # Get out the hidden form fields

 for inp in form.select('input[type=hidden]'):

 data[inp.get('name')] = inp.get('value')

SET YOUR LOGIN DETAILS:

data.update({'login': '', 'password': ''})

print('Going to login with the following POST data:')

print(data)

if input('Do you want to login (y/n): ') == 'y':

 # Perform the login

 r = session.post(url.format('session'), data=data)

 # Get the profile page

 r = session.get(url.format(username))

 html_soup = BeautifulSoup(r.text, 'html.parser')

 user_info = html_soup.find(class_='vcard-details')

 print(user_info.text)

Even Browsers Have Bugs  If you’ve been using Chrome, you might wonder why
you’re not seeing the form data when following along with the login process using
Chrome’s Developer Tools. The reason is that Chrome contains a bug that will prevent
form data from appearing in Developer Tools when the status code of the POST
corresponds with a redirect. The POST data is still being sent; however, you just won’t
see it in the Developer Tools tab. This bug will probably be fixed by the time you’re
reading this, but it just goes to show that bugs appear in browsers as well.

Running this will output:

Going to login with the following POST data:

{'utf8': 'V',

 'authenticity_token': 'zgndmzes [...]',

 'login': 'YOUR_USER_NAME',

 'password': 'YOUR_PASSWORD'}

Chapter 9 Examples

214

Do you want to login (y/n): y

KU Leuven

Belgium

macuyiko@gmail.com

http://blog.macuyiko.com

Plain Text Passwords  It goes without saying that hard-coding your password in
plain text in Python files (and other programs, for that matter) is not advisable for
real-life scripts. In a real deployment setting, where your code might get shared
with others, make sure to modify your script so that it retrieves stored credentials
from a secure data store (e.g., from the operating system environment variables, a
file, or a database, preferably encrypted). Take a look at the “secureconfig” library
available in pip, for example, on how to do so.

9.6  �Scraping Mortgage Rates
We’re going to scrape Barclays’ mortgage simulator available at https://www.barclays.

co.uk/mortgages/mortgage-calculator/. There isn’t a particular reason why we

pick this financial services provider, other than the fact that it applies some interesting

techniques that serve as a nice illustration.

Take some time to explore the site a bit (using “What would it cost?”). We’re asked

to fill in a few parameters, after which we get an overview of possible products that we’d

like to scrape out.

If you follow along with your browser’s developer tools, you’ll note that a POST

request is being made to https://www.barclays.co.uk/dss/service/co.uk/

mortgages/costcalculator/productservice, with an interesting property: the

JavaScript on the page performing the POST is using an “application/json” value for the

“Content-Type” header and is including the POST data as plain JSON; see Figure 9-2.

Depending on requests’ data argument will not work in this case as it will encode the

POST data. Instead, we need to use the json argument, which will basically instruct

requests to format the POST data as JSON.

Chapter 9 Examples

https://www.barclays.co.uk/mortgages/mortgage-calculator/
https://www.barclays.co.uk/mortgages/mortgage-calculator/
https://www.barclays.co.uk/dss/service/co.uk/mortgages/costcalculator/productservice
https://www.barclays.co.uk/dss/service/co.uk/mortgages/costcalculator/productservice

215

Additionally, you’ll note that the result page is formatted as a relatively complex-

looking table (with “Show more” links for every entry), though the response returned

by the POST request looks like a nicely formatted JSON object; see Figure 9-3, so we

might not even need Beautiful Soup here to access this “internal API”.

Figure 9-2.  The Barclays mortgage simulator submits a POST request using
JavaScript and embeds the request data in a JSON format

Chapter 9 Examples

216

Let’s see which response we get by implementing this in Python:

import requests

url = 'https://www.barclays.co.uk/dss/service/co.uk/mortgages/' + \

 'costcalculator/productservice'

session = requests.Session()

estimatedPropertyValue = 200000

repaymentAmount = 150000

months = 240

data = {"header": {"flowId":"0"},

 "body":

 {"wantTo":"FTBP",

 "estimatedPropertyValue":estimatedPropertyValue,

 "borrowAmount":repaymentAmount,

 "interestOnlyAmount":0,

Figure 9-3.  The POST response data also comes back as nicely formatted JSON

Chapter 9 Examples

217

 "repaymentAmount":repaymentAmount,

 "ltv":round(repaymentAmount/estimatedPropertyValue*100),

 "totalTerm":months,

 "purchaseType":"Repayment"}}

r = session.post(url, json=data)

print(r.json())

Running this will output:

{'header':

{'result': 'error', 'systemError':

 {'errorCode': 'DSS_SEF001', 'type': 'E',

 'severity': 'FRAMEWORK',

 'errorMessage': 'State details not found in database',

 'validationErrors': [],

 'contentType': 'application/json', 'channel': '6'}

}}

That doesn’t look too good. Remember that, when we don’t get back the results we

expect, there are various things we can do:

•	 Check whether we’ve forgotten to include some cookies. For

example, we might need to visit the entry page first, or there might be

cookies set by JavaScript. If you inspect the request in your browser,

you’ll note that there are a lot of cookies present.

•	 Check whether we’ve forgotten to include some headers, or whether

we need to spoof some.

•	 If all else fails, resort to Selenium to implement a full browser.

In this particular situation, there are a lot of cookies being included in the request,

some of which are set through normal “Set-Cookie” headers, though many are also

set through a vast collection of JavaScript files included by the page. These would

certainly be hard to figure out, as the JavaScript is obfuscated. There are, however, some

interesting headers that are being set and included by JavaScript in the POST request,

Chapter 9 Examples

218

which do seem to be connected to the error message. Let’s try including these, as well as

spoofing the “User-Agent” and “Referer” headers:

import requests

url = 'https://www.barclays.co.uk/dss/service/co.uk/mortgages/' + \

 'costcalculator/productservice'

session = requests.Session()

session.headers.update({

 # These are non-typical headers, let's include them

 'currentState': 'default_current_state',

 'action': 'default',

 'Origin': 'https://www.barclays.co.uk',

 # Spoof referer, user agent, and X-Requested-With

 'Referer': 'https://www.barclays.co.uk/mortgages/mortgage-calculator/',

 �'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 Safari/537.36',

 'X-Requested-With': 'XMLHttpRequest',

 })

estimatedPropertyValue = 200000

repaymentAmount = 150000

months = 240

data = {"header": {"flowId":"0"},

 "body":

 {"wantTo":"FTBP",

 "estimatedPropertyValue":estimatedPropertyValue,

 "borrowAmount":repaymentAmount,

 "interestOnlyAmount":0,

 "repaymentAmount":repaymentAmount,

 "ltv":round(repaymentAmount/estimatedPropertyValue*100),

 "totalTerm":months,

 "purchaseType":"Repayment"}}

r = session.post(url, json=data)

Chapter 9 Examples

219

Only print the header to avoid text overload

print(r.json()['header'])

This seems to work! In this case, it in fact turns out we didn’t have to include any

cookies at all. We can now clean up this code:

import requests

def get_mortgages(estimatedPropertyValue, repaymentAmount, months):

 url = 'https://www.barclays.co.uk/dss/service/' + \

 'co.uk/mortgages/costcalculator/productservice'

 headers = {

 # These are non-typical headers, let's include them

 'currentState': 'default_current_state',

 'action': 'default',

 'Origin': 'https://www.barclays.co.uk',

 # Spoof referer, user agent, and X-Requested-With

 �'Referer': 'https://www.barclays.co.uk/mortgages/mortgage-

calculator/',

 �'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 �Safari/537.36',

 'X-Requested-With': 'XMLHttpRequest',

 }

 data = {"header": {"flowId":"0"},

 "body":

 {"wantTo":"FTBP",

 "estimatedPropertyValue":estimatedPropertyValue,

 "borrowAmount":repaymentAmount,

 "interestOnlyAmount":0,

 "repaymentAmount":repaymentAmount,

 "ltv":round(repaymentAmount/estimatedPropertyValue*100),

 "totalTerm":months,

 "purchaseType":"Repayment"}}

Chapter 9 Examples

220

 r = requests.post(url, json=data, headers=headers)

 results = r.json()

 return results['body']['mortgages']

mortgages = get_mortgages(200000, 150000, 240)

Print the first mortgage info

print(mortgages[0])

Running this will output:

{'mortgageName': '5 Year Fixed', 'mortgageId': '1321127853346',

 'ctaType': None, 'uniqueId': '590b357e295b0377d0fb607b',

 'mortgageType': 'FIXED',

 'howMuchCanBeBorrowedNote': '95% (max) of the value of your home',

 'initialRate': 4.99, 'initialRateTitle': '4.99%',

 'initialRateNote': 'until 31st January 2023',

[...]

9.7  �Scraping and Visualizing IMDB Ratings
The next series of examples moves on toward including some more data science-

oriented use cases. We’re going to start simple by scraping a list of reviews for episodes

of a TV series, using IMDB (the Internet Movie Database). We’ll use Game of Thrones as

an example, the episode list for which can be found at http://www.imdb.com/title/

tt0944947/episodes. Note that IMDB’s overview is spread out across multiple pages

(per season or per year), so we iterate over the seasons we want to retrieve using an

extra loop:

import requests

from bs4 import BeautifulSoup

url = 'http://www.imdb.com/title/tt0944947/episodes'

episodes = []

ratings = []

Chapter 9 Examples

http://www.imdb.com/title/tt0944947/episodes
http://www.imdb.com/title/tt0944947/episodes

221

Go over seasons 1 to 7

for season in range(1, 8):

 r = requests.get(url, params={'season': season})

 soup = BeautifulSoup(r.text, 'html.parser')

 listing = soup.find('div', class_='eplist')

 for epnr, div in enumerate(listing.find_all('div', recursive=False)):

 episode = "{}.{}".format(season, epnr + 1)

 rating_el = div.find(class_='ipl-rating-star__rating')

 rating = float(rating_el.get_text(strip=True))

 print('Episode:', episode, '-- rating:', rating)

 episodes.append(episode)

 ratings.append(rating)

We can then plot the scraped ratings using “matplotlib,” a well-known plotting

library for Python that can be easily installed using pip:

pip install -U matplotlib

Plotting with Python  Of course, you could also reproduce the plot below
using, for example, Excel, but this example serves as a gentle introduction as
we’ll continue to use matplotlib for some later examples as well. Note that
this is certainly not the only—or even most user-friendly—plotting library for
Python, though it remains one of the most prevalent ones. Take a look at Seaborn
(https://seaborn.pydata.org/), Altair (https://altair-viz.github.io/)
and ggplot (http://ggplot.yhathq.com/) for some other excellent libraries.

Adding in the following lines to our script plots the results in a simple bar chart, as

shown in Figure 9-4.

Chapter 9 Examples

https://seaborn.pydata.org/
https://altair-viz.github.io/
http://ggplot.yhathq.com/

222

import matplotlib.pyplot as plt

episodes = ['S' + e.split('.')[0] if int(e.split('.')[1]) == 1 else '' \

 for e in episodes]

plt.figure()

positions = [a*2 for a in range(len(ratings))]

plt.bar(positions, ratings, align='center')

plt.xticks(positions, episodes)

plt.show()

9.8  �Scraping IATA Airline Information
We’re going to scrape airline information using the search form available at http://

www.iata.org/publications/Pages/code-search.aspx. This is an interesting case to

illustrate the “nastiness” of some websites, even though the form we want to use looks

incredibly simple (there’s only one drop-down and one text field visible on the page).

As the URL already shows, the web server driving this page is built on ASP.NET (“.aspx”),

which has very peculiar opinions about how it handles form data.

Figure 9-4.  Plotting IMDB ratings per episode using “matplotlib”

Chapter 9 Examples

http://www.iata.org/publications/Pages/code-search.aspx
http://www.iata.org/publications/Pages/code-search.aspx

223

It is a good idea to try submitting this form using your browser and taking a look at

what happens using its developer tools. As you can see in Figure 9-5, it seems that a lot of

form data get included in the POST request — much more than our two fields.

Certainly, it does not look feasible to manually include all these fields in our Python

script. The “__VIEWSTATE” field, for instance, holds session information that changes

for every request. Even some names of fields seem to include parts of which we can’t

really be sure that they wouldn’t change in the future, causing our script to break. In

addition, it seems that we also need to keep track of cookies as well. Finally, take a look

at the response content that comes back from the POST request. This looks like a partial

response (which will be parsed and shown by JavaScript) instead of a full HTML page:

1|#||4|1330|updatePanel|ctl00_SPWebPartManager1_g_e3b09024_878e

[...]

MSOSPWebPartManager_StartWebPartEditingName|false|5|hiddenField|

MSOSPWebPartManager_EndWebPartEditing|false|

Figure 9-5.  Submitting the IATA form includes lots of form data.

Chapter 9 Examples

224

To handle these issues, we’re going to try to make our code as robust as possible.

First, we’ll start by performing a GET request to the search page, using requests’ sessions

mechanism. Next, we’ll use Beautiful Soup to get out all the form elements with their

names and values:

import requests

from bs4 import BeautifulSoup

url = 'http://www.iata.org/publications/Pages/code-search.aspx'

session = requests.Session()

Spoof the user agent as a precaution

session.headers.update({

 �'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 Safari/537.36'

 })

Get the search page

r = session.get(url)

html_soup = BeautifulSoup(r.text, 'html.parser')

form = html_soup.find(id='aspnetForm')

Get the form fields

data = {}

for inp in form.find_all(['input', 'select']):

 name = inp.get('name')

 value = inp.get('value')

 if not name:

 continue

 data[name] = value if value else ''

print(data, end='\n\n\n')

This will output the following:

{'_wpcmWpid': '',

 'wpcmVal': '',

 'MSOWebPartPage_PostbackSource': '',

 'MSOTlPn_SelectedWpId': '',

Chapter 9 Examples

225

 'MSOTlPn_View': '0',

 'MSOTlPn_ShowSettings': 'False',

 'MSOGallery_SelectedLibrary': '',

 'MSOGallery_FilterString': '',

 'MSOTlPn_Button': 'none',

 '__EVENTTARGET': '',

 '__EVENTARGUMENT': '',

[...]

Next, we’ll use the collected form data to perform a POST request. We do have to

make sure to set the correct values for the drop-down and text box, however. We add the

following lines to our script:

Set our desired search query

for name in data.keys():

 # Search by

 if 'ddlImLookingFor' in name:

 data[name] = 'ByAirlineName'

 # Airline name

 if 'txtSearchCriteria' in name:

 data[name] = 'Lufthansa'

Perform a POST

r = session.post(url, data=data)

print(r.text)

Strangely enough, contrary to what’s happening in the browser, the POST request

does return a full HTML page here, instead of a partial result. This is not too bad, as we

can now use Beautiful Soup to fetch the table of results.

Instead of parsing this table manually, we’ll use a popular data science library for

tabular data wrangling called “pandas,” which comes with a helpful “HTML table to data

frame” method built in. The library is easy to install using pip:

pip install -U pandas

To parse out HTML, pandas relies on “lxml” by default and falls back to Beautiful

Soup with “html5lib” in case “lxml” cannot be found. To make sure “lxml” is available,

install it with:

pip install -U lxml

Chapter 9 Examples

226

The full script can now be organized to look as follows:

import requests

from bs4 import BeautifulSoup

import pandas

url = 'http://www.iata.org/publications/Pages/code-search.aspx'

def get_results(airline_name):
 session = requests.Session()

 # Spoof the user agent as a precaution

 session.headers.update({

 �'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 Safari/537.36'

 })

 r = session.get(url)

 html_soup = BeautifulSoup(r.text, 'html.parser')

 form = html_soup.find(id='aspnetForm')

 data = {}

 for inp in form.find_all(['input', 'select']):
 name = inp.get('name')

 value = inp.get('value')

 if not name:
 continue
 if 'ddlImLookingFor' in name:
 value = 'ByAirlineName'

 if 'txtSearchCriteria' in name:
 value = airline_name

 data[name] = value if value else ''

 r = session.post(url, data=data)

 html_soup = BeautifulSoup(r.text, 'html.parser')

 table = html_soup.find('table', class_='datatable')

 df = pandas.read_html(str(table))

 return df

df = get_results('Lufthansa')

print(df)

Chapter 9 Examples

227

Running this will output:

[0 1 2 3

0 Deutsche Lufthansa AG LH 220.0 220.0

1 Lufthansa Cargo AG LH NaN 20.0

2 Lufthansa CityLine GmbH CL 683.0 683.0

3 Lufthansa Systems GmbH & Co. KG S1 NaN NaN]

The equivalent Selenium code looks as follows:

import pandas

from selenium import webdriver

from selenium.webdriver.support.ui import Select

url = 'http://www.iata.org/publications/Pages/code-search.aspx'

driver = webdriver.Chrome()

driver.implicitly_wait(10)

def get_results(airline_name):

 driver.get(url)

 # Make sure to select the right part of the form

 # This will make finding the elements easier

 # as #aspnetForm wraps the whole page, including

 # the search box

 �form_div = driver.find_element_by_css_selector('#aspnetForm

.iataStandardForm')

 select = Select(form_div.find_element_by_css_selector('select'))

 select.select_by_value('ByAirlineName')

 text = form_div.find_element_by_css_selector('input[type=text]')

 text.send_keys(airline_name)

 submit = form_div.find_element_by_css_selector('input[type=submit]')

 submit.click()

 table = driver.find_element_by_css_selector('table.datatable')

 table_html = table.get_attribute('outerHTML')

 df = pandas.read_html(str(table_html))

 return df

Chapter 9 Examples

228

df = get_results('Lufthansa')

print(df)

driver.quit()

There’s still one mystery we have to solve: remember that the POST request as made by

requests returns a full HTML page, instead of a partial result as we observed in the browser.

How does the server figure out how to differentiate between both types of results? The

answer lies in the way the search form is submitted. In requests, we perform a simple POST

request with a minimal amount of headers. On the live page, however, the form submission

is handled by JavaScript, which will perform the actual POST request and will parse out

the partial results to show them. To indicate to the server that it is JavaScript making the

request, two headers are included in the request, which we can spoof in requests as well.

If we modify our code as follows, you will indeed also obtain the same partial result:

Include headers to indicate that we want a partial result

session.headers.update({

 'X-MicrosoftAjax' : 'Delta=true',

 'X-Requested-With' : 'XMLHttpRequest',

 �'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 Safari/537.36'

 })

9.9  �Scraping and Analyzing Web Forum
Interactions

In this example, we’re going to scrape web forum posts available at http://bpbasecamp.

freeforums.net/board/27/gear-closet (a forum for backpackers and hikers) to get an

idea about who the most active users are and who is frequently interacting with whom.

We’re going to keep a tally of interactions that will be constructed as follows:

•	 The first post in a “thread” is not “replying” to anyone, so we won’t

consider this as an interaction,

•	 The next posts in a thread can optionally include one or more quote

blocks, which indicate that the poster is directly replying to another

user, which we’ll regard as such,

Chapter 9 Examples

http://bpbasecamp.freeforums.net/board/27/gear-closet
http://bpbasecamp.freeforums.net/board/27/gear-closet

229

•	 If a post does not include any quote blocks, we’ll just assume the post

to be a reply to the original poster. This might not necessarily be the

case, and users will oftentimes use little pieces of text such as “^^”

to indicate they’re replying to the direct previous poster, but we’re

going to keep it simple in this example (feel free to modify the scripts

accordingly to your definition of “interaction,” however).

Let’s get started. First, we’re going to extract a list of threads given a forum URL:

import requests

import re

from bs4 import BeautifulSoup

def get_forum_threads(url, max_pages=None):

 page = 1

 threads = []

 while not max_pages or page <= max_pages:

 print('Scraping forum page:', page)

 r = requests.get(url, params={'page': page})

 soup = BeautifulSoup(r.text, 'html.parser')

 content = soup.find(class_='content')

 �links = content.find_all('a', attrs={'href': re.compile

('^\/thread\/')})

 threads_on_page = [a.get('href') for a in links \

 if a.get('href') and not 'page=' in a.get('href')]

 threads += threads_on_page

 page += 1

 next_page = soup.find('li', class_='next')

 if 'state-disabled' in next_page.get('class'):

 break

 return threads

url = 'http://bpbasecamp.freeforums.net/board/27/gear-closet'

threads = get_forum_threads(url, max_pages=5)

print(threads)

Chapter 9 Examples

230

Note that we have to be a bit clever here regarding pagination. This forum will

continue to return the last page, even when supplying higher than maximum page

numbers as the URL parameter, so that we can check whether an item with the class

“next” also has the class “state-disabled” to determine whether we’ve reached the end

of the thread list. Since we only want thread links corresponding with the first page, we

remove all links that have “page=” in their URL as well. In the example, we also decide to

limit ourselves to five pages only. Running this will output:

Scraping forum page: 1

Scraping forum page: 2

Scraping forum page: 3

Scraping forum page: 4

Scraping forum page: 5

['/thread/2131/before-asking-which-pack-boot', [...]]

For every thread, we now want to get out a list of posts. We can try this out with one

thread first:

import requests

import re

from urllib.parse import urljoin

from bs4 import BeautifulSoup

def get_thread_posts(url, max_pages=None):

 page = 1

 posts = []

 while not max_pages or page <= max_pages:

 print('Scraping thread url/page:', url, page)

 r = requests.get(url, params={'page': page})

 soup = BeautifulSoup(r.text, 'html.parser')

 content = soup.find(class_='content')

 for post in content.find_all('tr', class_='item'):

 user = post.find('a', class_='user-link')

 if not user:

 # User might be deleted, skip...

 continue

Chapter 9 Examples

231

 user = user.get_text(strip=True)

 quotes = []

 for quote in post.find_all(class_='quote_header'):

 quoted_user = quote.find('a', class_='user-link')

 if quoted_user:

 quotes.append(quoted_user.get_text(strip=True))

 posts.append((user, quotes))

 page += 1

 next_page = soup.find('li', class_='next')

 if 'state-disabled' in next_page.get('class'):

 break

 return posts

url = 'http://bpbasecamp.freeforums.net/board/27/gear-closet'

thread = '/thread/2131/before-asking-which-pack-boot'

thread_url = urljoin(url, thread)

posts = get_thread_posts(thread_url)

print(posts)

Running this will output a list with every element being a tuple containing the

poster’s name and a list of users that are quoted in the post:

Scraping thread url/page: 

 �http://bpbasecamp.freeforums.net/thread/2131/before-asking-which-pack-boot 1

Scraping thread url/page: 

 �http://bpbasecamp.freeforums.net/thread/2131/before-asking-which-pack-boot 2

[�('almostthere', []), ('trinity', []), ('paula53', []), 

 ('toejam', ['almostthere']), (‘stickman', []), (‘tamtrails', []), 

 �('almostthere', ['tamtrails']), ('kayman', []), (‘almostthere', 

[‘kayman']), (‘lanceman', []), (‘trinity', [‘trinity']), 

 � (‘Christian', [‘almostthere']), (‘pollock', []), (‘mitsmit', []), 

 �('intothewild', []), (‘Christian', []), (‘softskull', []), (‘argus', 

[]),(‘lyssa7', []), (‘kevin', []), (‘greenwoodsuncharted', [])]

Chapter 9 Examples

232

By putting both of these functions together, we get the script below. We’ll use

Python’s “pickle” module to store our scraped results so that we don’t have to rescrape

the forum over and over again:

import requests

import re

from urllib.parse import urljoin

from bs4 import BeautifulSoup

import pickle

def get_forum_threads(url, max_pages=None):

 page = 1

 threads = []

 while not max_pages or page <= max_pages:

 print('Scraping forum page:', page)

 r = requests.get(url, params={'page=': page})

 soup = BeautifulSoup(r.text, 'html.parser')

 content = soup.find(class_='content')

 �links = content.find_all('a', attrs={'href': re.compile

('^\/thread\/')})

 threads_on_page = [a.get('href') for a in links \

 if a.get('href') and not 'page' in a.get('href')]

 threads += threads_on_page

 page += 1

 next_page = soup.find('li', class_='next')

 if 'state-disabled' in next_page.get('class'):

 break

 return threads

def get_thread_posts(url, max_pages=None):

 page = 1

 posts = []

Chapter 9 Examples

233

 while not max_pages or page <= max_pages:

 print('Scraping thread url/page:', url, page)

 r = requests.get(url, params={'page': page})

 soup = BeautifulSoup(r.text, 'html.parser')

 content = soup.find(class_='content')

 for post in content.find_all('tr', class_='item'):

 user = post.find('a', class_='user-link')

 if not user:

 # User might be deleted, skip...

 continue

 user = user.get_text(strip=True)

 quotes = []

 for quote in post.find_all(class_='quote_header'):

 quoted_user = quote.find('a', class_='user-link')

 if quoted_user:

 quotes.append(quoted_user.get_text(strip=True))

 posts.append((user, quotes))

 page += 1

 next_page = soup.find('li', class_='next')

 if 'state-disabled' in next_page.get('class'):

 break

 return posts

url = 'http://bpbasecamp.freeforums.net/board/27/gear-closet'

threads = get_forum_threads(url, max_pages=5)

all_posts = []

for thread in threads:

 thread_url = urljoin(url, thread)

 posts = get_thread_posts(thread_url)

 all_posts.append(posts)

with open('forum_posts.pkl', "wb") as output_file:

 pickle.dump(all_posts, output_file)

Chapter 9 Examples

234

Next, we can load the results and visualize them in a heat map. We’re going to use

“pandas,” “numpy,” and “matplotlib” to do so, all of which can be installed through pip

(if you’ve already installed pandas and matplotlib by following the previous examples,

there’s nothing else you have to install):

pip install -U pandas

pip install -U numpy

pip install -U matplotlib

Let’s start by visualizing the first thread only (shown in the output fragment of the

scraper above):

import pickle

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Load our stored results

with open('forum_posts.pkl', "rb") as input_file:

 posts = pickle.load(input_file)

def add_interaction(users, fu, tu):

 if fu not in users:

 users[fu] = {}

 if tu not in users[fu]:

 users[fu][tu] = 0

 users[fu][tu] += 1

Create interactions dictionary

users = {}

for thread in posts:

 first_one = None

 for post in thread:

 user = post[0]

 quoted = post[1]

 if not first_one:

 first_one = user

 elif not quoted:

Chapter 9 Examples

235

 add_interaction(users, user, first_one)

 else:

 for qu in quoted:

 add_interaction(users, user, qu)

 # Stop after the first thread

 break

df = pd.DataFrame.from_dict(users, orient='index').fillna(0)

heatmap = plt.pcolor(df, cmap='Blues')

y_vals = np.arange(0.5, len(df.index), 1)

x_vals = np.arange(0.5, len(df.columns), 1)

plt.yticks(y_vals, df.index)

plt.xticks(x_vals, df.columns, rotation='vertical')

for y in range(len(df.index)):

 for x in range(len(df.columns)):

 if df.iloc[y, x] == 0:

 continue

 plt.text(x + 0.5, y + 0.5, '%.0f' % df.iloc[y, x],

 horizontalalignment='center',

 verticalalignment='center')

plt.show()

This will provide you with a result as shown in Figure 9-6. As you can see, various

users are replying to the original poster, and the original poster is also quoting some

other users.

Chapter 9 Examples

236

There are various ways to play around with this visualization. Figure 9-7, for instance,

shows the user interactions over all forum threads, but only taking into account direct

quotes.

Figure 9-6.  Visualizing user interactions for one forum thread

Figure 9-7.  Visualizing user interactions (direct quotes only) for all scraped forum
threads

Chapter 9 Examples

237

9.10  �Collecting and Clustering a Fashion Data Set
In this example, we’re going to use Zalando (a popular Swedish web shop) to fetch a

collection of images of fashion products and cluster them using t-SNE.

Check the API  Note that Zalando also exposes an easy to use API (see
https://github.com/zalando/shop-api-documentation/wiki/Api-
introduction for the documentation). At the time of writing, the API does not
require authentication, though this is scheduled to change in the near future,
requiring users to register to get an API access token. Since we’ll only fetch images
here, we’ll not bother to register, though in a proper “app,” using the API option
would certainly be recommended.

Our first script downloads images and stores them in a directory; see Figure 9-8:

import requests

import os, os.path

from bs4 import BeautifulSoup

from urllib.parse import urljoin, urlparse

store = 'images'

if not os.path.exists(store):

 os.makedirs(store)

url = 'https://www.zalando.co.uk/womens-clothing-dresses/'

pages_to_crawl = 15

def download(url):

 r = requests.get(url, stream=True)

 filename = urlparse(url).path.split('/')[-1]

 print('Downloading to:', filename)

 with open(os.path.join(store, filename), 'wb') as the_image:

 for byte_chunk in r.iter_content(chunk_size=4096*4):

 the_image.write(byte_chunk)

Chapter 9 Examples

https://github.com/zalando/shop-api-documentation/wiki/Api-introduction
https://github.com/zalando/shop-api-documentation/wiki/Api-introduction

238

for p in range(1, pages_to_crawl+1):

 print('Scraping page:', p)

 r = requests.get(url, params={'p' : p})

 html_soup = BeautifulSoup(r.text, 'html.parser')

 for img in html_soup.select('#z-nvg-cognac-root z-grid-item img'):

 img_src = img.get('src')

 if not img_src:

 continue

 img_url = urljoin(url, img_src)

 download(img_url)

Next, we’ll use the t-SNE clustering algorithm to cluster the photos. t-SNE is a

relatively recent dimensionality reduction technique that is particularly well-suited for

the visualization of high-dimensional data sets, like images. You can read about the

technique at https://lvdmaaten.github.io/tsne/. We’re going to use “scikit-learn”

together with “matplotlib,” “scipy,” and “numpy,” all of which are libraries that are

familiar to data scientists and can be installed through pip:

Figure 9-8.  A collection of scraped dress images

Chapter 9 Examples

https://lvdmaaten.github.io/tsne/

239

pip install -U matplotlib

pip install -U scikit-learn

pip install -U numpy

pip install -U scipy

Our clustering script looks as follows:

import os.path

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import offsetbox

from sklearn import manifold

from scipy.misc import imread

from glob import iglob

store = 'images'

image_data = []

for filename in iglob(os.path.join(store, '*.jpg')):

 image_data.append(imread(filename))

image_np_orig = np.array(image_data)

image_np = image_np_orig.reshape(image_np_orig.shape[0], -1)

def plot_embedding(X, image_np_orig):

 # Rescale

 x_min, x_max = np.min(X, 0), np.max(X, 0)

 X = (X - x_min) / (x_max - x_min)

 # Plot images according to t-SNE position

 plt.figure()

 ax = plt.subplot(111)

 for i in range(image_np.shape[0]):

 imagebox = offsetbox.AnnotationBbox(

 offsetbox=offsetbox.OffsetImage(image_np_orig[i], zoom=.1),

 xy=X[i],

 frameon=False)

 ax.add_artist(imagebox)

Chapter 9 Examples

240

print("Computing t-SNE embedding")

tsne = manifold.TSNE(n_components=2, init='pca')

X_tsne = tsne.fit_transform(image_np)

plot_embedding(X_tsne, image_np_orig)

plt.show()

This code works as follows. First, we load all the images (using imread) and convert

them to a numpy array. The reshape function makes sure that we get a n x 3m matrix,

with n the number of images and m the number of pixels per image, instead of an n x

r x g x b tensor, with r, g, and b the pixel values for the red, green, and blue channels

respectively. After constructing the t-SNE embedding, we plot the images with their

calculated x and y coordinates using matplotlib, resulting in an image like shown in

Figure 9-9 (using about a thousand scraped photos). As can be seen, the clustering here

is primarily driven by the saturation and intensity of the colors in the image.

Figure 9-9.  The result of the t-SNE clustering (applied on about a thousand
photos)

Chapter 9 Examples

241

Image Sizes  We’re lucky that all of the images we’ve scraped have the same
width and height. If this would not be the case, we’d first have to apply a resizing
to make sure every image will lead to a vector in the data set with equal length.

9.11  �Sentiment Analysis of Scraped Amazon Reviews
We’re going to scrape a list of Amazon reviews with their ratings for a particular product.

We’ll use a book with plenty of reviews, say Learning Python by Mark Lutz, which can be

found at https://www.amazon.com/Learning-Python-5th-Mark-Lutz/dp/1449355730/.

If you click through “See all customer reviews,” you’ll end up at https://www.amazon.

com/Learning-Python-5th-Mark-Lutz/product-reviews/1449355730/. Note that this

product has an id of “1449355730,” and even using the URL https://www.amazon.com/

product-reviews/1449355730/, without the product name, will work.

Simple URLs P laying around with URLs as we do here is always a good idea
before writing your web scraper. Based on the above, we know that a given
product identifier is enough to fetch the reviews page, without a need to figure out
the exact URL, including the product name. Why then, does Amazon allow for both
and does it default to including the product name? The reason is most likely search
engine optimization (SEO). Search engines like Google prefer URLs with human-
readable components included.

If you explore the reviews page, you’ll note that the reviews are paginated. By

browsing to other pages and following along in your browser’s developer tools, we see

that POST requests are being made (by JavaScript) to URLs looking like https://www.

amazon.com/ss/customer-reviews/ajax/reviews/get/ref=cm_cr_arp_d_paging_

btm_2, with the product id included in the form data, as well as some other form fields

that look relatively easy to spoof. Let’s see what we get in requests:

import requests

from bs4 import BeautifulSoup

review_url = 'https://www.amazon.com/ss/customer-reviews/ajax/reviews/get/'

product_id = '1449355730'

Chapter 9 Examples

https://www.amazon.com/Learning-Python-5th-Mark-Lutz/dp/1449355730/
https://www.amazon.com/Learning-Python-5th-Mark-Lutz/product-reviews/1449355730/
https://www.amazon.com/Learning-Python-5th-Mark-Lutz/product-reviews/1449355730/
https://www.amazon.com/product-reviews/1449355730/
https://www.amazon.com/product-reviews/1449355730/
https://www.amazon.com/ss/customer-reviews/ajax/reviews/get/ref=cm_cr_arp_d_paging_btm_2
https://www.amazon.com/ss/customer-reviews/ajax/reviews/get/ref=cm_cr_arp_d_paging_btm_2
https://www.amazon.com/ss/customer-reviews/ajax/reviews/get/ref=cm_cr_arp_d_paging_btm_2

242

session = requests.Session()

session.headers.update({

 �'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 Safari/537.36'

 })

session.get('https://www.amazon.com/product-reviews/{}/'.format(product_id))

def get_reviews(product_id, page):

 data = {

 'sortBy':'',

 'reviewerType':'all_reviews',

 'formatType':'',

 'mediaType':'',

 'filterByStar':'all_stars',

 'pageNumber':page,

 'filterByKeyword':'',

 'shouldAppend':'undefined',

 'deviceType':'desktop',

 'reftag':'cm_cr_getr_d_paging_btm_{}'.format(page),

 'pageSize':10,

 'asin':product_id,

 'scope':'reviewsAjax1'

 }

 r = session.post(review_url + 'ref=' + data['reftag'], data=data)

 return r.text

print(get_reviews(product_id, 1))

Note that we spoof the “User-Agent” header here. If we don’t, Amazon will reply

with a message requesting us to verify whether we’re a human (you can copy the value

for this header from your browser’s developer tools). In addition, note the “scope” form

field that we set to “reviewsAjax1.” If you explore the reviews page in the browser, you’ll

see that the value of this field is in fact increased for each request, that is, “reviewsAjax1,”

“reviewsAjax2,” and so on. We could decide to replicate this behavior as well — which

we’d have to do in case Amazon would pick up on our tactics, though it does not seem to

be necessary for the results to come back correctly.

Chapter 9 Examples

243

Finally, note that the POST request does not return a full HTML page, but some kind

of hand-encoded result that will be parsed (normally) by JavaScript:

["script",

 "if(window.ue) { ues('id','reviewsAjax1','FE738GN7GRDZK6Q09S9G');

 ues('t0','reviewsAjax1',new Date());

 ues('ctb','reviewsAjax1','1');

 uet('bb','reviewsAjax1'); }"

]

&&&

["update","#cm_cr-review_list",""]

&&&

["loaded"]

&&&

["appe�nd","#cm_cr-review_list","<div id=\"R3JQXR4EMWJ7AD\" data-

hook=\"review\"class=\"a-section review\"><div id=\ 

 �"customer_review-R3JQXR4EMWJ7AD\"class=\"a-section celwidget\"> 

<div class=\"a-row\"><a class=\"a-link-normal\"title=\"5.0 out 

of 5 stars\"

[...]

Luckily, after exploring the reply a bit (feel free to copy-paste the full reply in a text

editor and read through it), the structure seems easy enough to figure out:

•	 The reply is composed of several “instructions,” formatted as a JSON

list;

•	 The instructions themselves are separated by three ampersands,

“&&&”;

•	 The instructions containing the reviews start with an “append” string;

•	 The actual contents of the review are formatted as an HTML element

and found on the third position of the list.

Let’s adjust our code to parse the reviews in a structured format. We’ll loop through

all the instructions; convert them using the “json” module; check for “append” entries;

and then use Beautiful Soup to parse the HTML fragment and get the review id, rating,

Chapter 9 Examples

244

title, and text. We’ll also need a small regular expression to get out the rating, which is set

as a class with a value like “a-start-1” to “a-star-5”. We could use these as is, but simply

getting “1” to “5” might be easier to work with later on, so we already perform a bit of

cleaning here:

import requests

import json

import re

from bs4 import BeautifulSoup

review_url = 'https://www.amazon.com/ss/customer-reviews/ajax/reviews/get/'

product_id = '1449355730'

session = requests.Session()

session.headers.update({

 �'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 Safari/537.36'

 })

session.get('https://www.amazon.com/product-reviews/{}/'.format(product_id))

def parse_reviews(reply):

 reviews = []

 for fragment in reply.split('&&&'):

 if not fragment.strip():

 continue

 json_fragment = json.loads(fragment)

 if json_fragment[0] != 'append':

 continue

 html_soup = BeautifulSoup(json_fragment[2], 'html.parser')

 div = html_soup.find('div', class_='review')

 if not div:

 continue

 review_id = div.get('id')

 title = html_soup.find(class_='review-title').get_text(strip=True)

 review = html_soup.find(class_='review-text').get_text(strip=True)

Chapter 9 Examples

245

 # Find and clean the rating:

 �review_cls = ' '.join(html_soup.find(class_='review-rating').

get('class'))

 rating = re.search('a-star-(\d+)', review_cls).group(1)

 reviews.append({'review_id': review_id,

 'rating': rating,

 'title': title,

 'review': review})

 return reviews

def get_reviews(product_id, page):

 data = {

 'sortBy':'',

 'reviewerType':'all_reviews',

 'formatType':'',

 'mediaType':'',

 'filterByStar':'all_stars',

 'pageNumber':page,

 'filterByKeyword':'',

 'shouldAppend':'undefined',

 'deviceType':'desktop',

 'reftag':'cm_cr_getr_d_paging_btm_{}'.format(page),

 'pageSize':10,

 'asin':product_id,

 'scope':'reviewsAjax1'

 }

 r = session.post(review_url + 'ref=' + data['reftag'], data=data)

 reviews = parse_reviews(r.text)

 return reviews

print(get_reviews(product_id, 1))

This works! The only thing left to do is to loop through all the pages, and store the

reviews in a database using the “dataset” library. Luckily, figuring out when to stop

looping is easy: once we do not get any reviews for a particular page, we can stop:

Chapter 9 Examples

246

import requests

import json

import re

from bs4 import BeautifulSoup

import dataset

db = dataset.connect('sqlite:///reviews.db')

review_url = 'https://www.amazon.com/ss/customer-reviews/ajax/reviews/get/'

product_id = '1449355730'

session = requests.Session()

session.headers.update({

 �'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 ' + ' (KHTML, like Gecko) Chrome/62.0.3202.62

 Safari/537.36'

 })

session.get('https://www.amazon.com/product-reviews/{}/'.format(product_id))

def parse_reviews(reply):

 reviews = []

 for fragment in reply.split('&&&'):

 if not fragment.strip():

 continue

 json_fragment = json.loads(fragment)

 if json_fragment[0] != 'append':

 continue

 html_soup = BeautifulSoup(json_fragment[2], 'html.parser')

 div = html_soup.find('div', class_='review')

 if not div:

 continue

 review_id = div.get('id')

 �review_cls = ' '.join(html_soup.find(class_='review-rating').

get('class'))

 rating = re.search('a-star-(\d+)', review_cls).group(1)

 title = html_soup.find(class_='review-title').get_text(strip=True)

 review = html_soup.find(class_='review-text').get_text(strip=True)

Chapter 9 Examples

247

 reviews.append({'review_id': review_id,

 'rating': rating,

 'title': title,

 'review': review})

 return reviews

def get_reviews(product_id, page):

 data = {

 'sortBy':'',

 'reviewerType':'all_reviews',

 'formatType':'',

 'mediaType':'',

 'filterByStar':'all_stars',

 'pageNumber':page,

 'filterByKeyword':'',

 'shouldAppend':'undefined',

 'deviceType':'desktop',

 'reftag':'cm_cr_getr_d_paging_btm_{}'.format(page),

 'pageSize':10,

 'asin':product_id,

 'scope':'reviewsAjax1'

 }

 r = session.post(review_url + 'ref=' + data['reftag'], data=data)

 reviews = parse_reviews(r.text)

 return reviews

page = 1

while True:

 print('Scraping page', page)

 reviews = get_reviews(product_id, page)

 if not reviews:

 break

 for review in reviews:

 print(' -', review['rating'], review['title'])

 db['reviews'].upsert(review, ['review_id'])

 page += 1

Chapter 9 Examples

248

This will output the following:

Scraping page 1

 - 5 �let me try to explain why this 1600 page book may actually end 

up saving you a lot of time and making you a better Python progra

 - 5 Great start, and written for the novice

 - 5 Best teacher of software development

 - 5 Very thorough

 - 5 If you like big thick books that deal with a lot of ...

 - 5 Great book, even for the experienced python programmer

 - 5 Good Tutorial; you'll learn a lot.

 - 2 Takes too many pages to explain even the most simpliest ...

 - 3 �If I had a quarter for each time he says something like "here's 

an intro to X

 - 4 it almost seems better suited for a college class

[...]

Now that we have a database containing the reviews, let’s do something fun with

these. We’ll run a sentiment analysis algorithm over the reviews (providing a sentiment

score per review), which we can then plot over the different ratings given to inspect

the correlation between a rating and the sentiment in the text. To do so, we’ll use the

“vaderSentiment” library, which can simply be installed using pip. We’ll also need to

install the “nltk” (Natural Language Toolkit) library:

pip install -U vaderSentiment

pip install -U nltk

Using the vaderSentiment library is pretty simple for a single sentence:

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

analyzer = SentimentIntensityAnalyzer()

sentence = "I'm really happy with my purchase"

vs = analyzer.polarity_scores(sentence)

print(vs)

Shows: {'neg': 0.0, 'neu': 0.556, 'pos': 0.444, 'compound': 0.6115}

Chapter 9 Examples

249

To get the sentiment for a longer piece of text, a simple approach is to calculate the

sentiment score per sentence and average this over all the sentences in the text, like so:

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

from nltk import tokenize

analyzer = SentimentIntensityAnalyzer()

paragraph = """

 I'm really happy with my purchase.

 I've been using the product for two weeks now.

 It does exactly as described in the product description.

 The only problem is that it takes a long time to charge.

 �However, since I recharge during nights, this is something I can

live with.

 """

sentence_list = tokenize.sent_tokenize(paragraph)

cumulative_sentiment = 0.0

for sentence in sentence_list:

 vs = analyzer.polarity_scores(sentence)

 cumulative_sentiment += vs["compound"]

 print(sentence, ' : ', vs["compound"])

average_sentiment = cumulative_sentiment / len(sentence_list)

print('Average score:', average_score)

If you run this code, ntlk will most likely complain about the fact that a resource is

missing:

Resource punkt not found.

 Please use the NLTK Downloader to obtain the resource:

 >>> import nltk

 >>> nltk.download('punkt')

[...]

To fix this, execute the recommended commands on a Python shell:

>>> import nltk

>>> nltk.download('punkt')

Chapter 9 Examples

250

After the resource has been downloaded and installed, the code above should work

fine and will output:

I'm really happy with my purchase. : 0.6115

I've been using the product for two weeks now. : 0.0

It does exactly as described in the product description. : 0.0

The only problem is that it takes a long time to charge. : -0.4019

However, since I recharge during nights, this is something I can live

with. : 0.0

Average score: 0.04192000000000001

Let’s apply this to our list of Amazon reviews. We’ll calculate the sentiment for each

rating, organize them by rating, and then use the “matplotlib” library to draw violin plots

of the sentiment scores per rating:

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

from nltk import tokenize

import dataset

import matplotlib.pyplot as plt

db = dataset.connect('sqlite:///reviews.db')

reviews = db['reviews'].all()

analyzer = SentimentIntensityAnalyzer()

sentiment_by_stars = [[] for r in range(1,6)]

for review in reviews:

 full_review = review['title'] + '. ' + review['review']

 sentence_list = tokenize.sent_tokenize(full_review)

 cumulative_sentiment = 0.0

 for sentence in sentence_list:

 vs = analyzer.polarity_scores(sentence)

 cumulative_sentiment += vs["compound"]

 average_score = cumulative_sentiment / len(sentence_list)

 sentiment_by_stars[int(review['rating'])-1].append(average_score)

Chapter 9 Examples

251

plt.violinplot(sentiment_by_stars,

 range(1,6),

 vert=False, widths=0.9,

 showmeans=False, showextrema=True, showmedians=True,

 bw_method='silverman')

plt.axvline(x=0, linewidth=1, color='black')

plt.show()

This should output a figure similar to the one shown in Figure 9-10. In this case, we

can indeed observe a strong correlation between the rating and the sentiments of the

texts, though it’s interesting to note that even for lower ratings (two and three stars), the

majority of reviews are still somewhat positive. Of course, there is a lot more that can

be done with this data set. Think, for instance, about a predictive model to detect fake

reviews.

Figure 9-10.  Sentiment plots per rating level

Chapter 9 Examples

252

9.12  �Scraping and Analyzing News Articles
We’re going to use Selenium to scrape the “Top Stories” from Google News, see https://

news.google.com/news/?ned=us&hl=en. Our goal is to visit every article and get out the

title and main content of the article.

Not as Easy as It Looks  Getting out the “main content” from a page is
trickier as it might seem at first sight. You might try to iterate all the lowest-
level HTML elements and keeping the one with the most text embedded in it,
though this approach will break if the text in an article is split up over multiple
sibling elements, like a series of “<p>” tags inside a larger “<div>”, for instance.
Considering all elements does not resolve this issue, as you’ll end up by simply
selecting the top element (e.g., “<html>” or “<body>”) on the page, as this will
always contain the largest amount (i.e., all) text. The same holds in case you’d
rely on the rect attribute Selenium provides to apply a visual approach (i.e., find
the element taking up the most space on the page). A large number of libraries
and tools have been written to solve this issue. Take a look at, for example,
https://github.com/masukomi/ar90-readability, https://github.
com/misja/python-boilerpipe, https://github.com/codelucas/
newspaper and https://github.com/fhamborg/news-please for some
interesting libraries for the specific purpose of news extraction, or specialized APIs
such as https://newsapi.org/ and https://webhose.io/news-api. In
this example, we’ll use Mozilla’s implementation of Readability; see https://
github.com/mozilla/readability. This is a JavaScript-based library, but
we’ll figure out a way to use it with Python and Selenium nonetheless. Finally,
although it has sadly fallen a bit out of use in recent years, it is interesting to know
that there exists already a nice format that sites can apply to offer their content
updates in a structured way: RSS (Rich Site Summary): a web feed that allows
users to access updates to online content in a standardized, XML-based format.
Keep an eye out for “<link>” tags with their “type” attribute set to ”application/
rss+xml”. The “href” attribute will then announce the URL where the RSS feed can
be found.

Chapter 9 Examples

https://news.google.com/news/?ned=us&hl=en
https://news.google.com/news/?ned=us&hl=en
https://github.com/masukomi/ar90-readability
https://github.com/misja/python-boilerpipe
https://github.com/misja/python-boilerpipe
https://github.com/codelucas/newspaper
https://github.com/codelucas/newspaper
https://github.com/fhamborg/news-please
https://newsapi.org/
https://webhose.io/news-api
https://github.com/mozilla/readability
https://github.com/mozilla/readability

253

Let’s start by getting out a list of “Top Stories” links from Google News using Selenium.

A first iteration of our script looks as follows:

from selenium import webdriver

base_url = 'https://news.google.com/news/?ned=us&hl=en'

driver = webdriver.Chrome()

driver.implicitly_wait(10)

driver.get(base_url)

for link in driver.find_elements_by_css_selector('main a[role="heading"]'):

 news_url = link.get_attribute('href')

 print(news_url)

driver.quit()

This will output the following (of course, your links might vary):

http://news.xinhuanet.com/english/2017-10/24/c_136702615.htm

http://www.cnn.com/2017/10/24/asia/china-xi-jinping-thought/index.html

[...]

Navigate to http://edition.cnn.com/2017/10/24/asia/china-xi-jinping-

thought/index.html in your browser and open your browser’s console in its developer

tools. Our goal is now to extract the content from this page, using Mozilla’s Readability

implementation in JavaScript, a tool which is normally used to display articles in a

more readable format. That is, we would like to “inject” the JavaScript code available at

https://raw.githubusercontent.com/mozilla/readability/master/Readability.js

in the page. Since we are able to instruct the browser to execute JavaScript using Selenium,

we hence need to come up with an appropriate piece of JavaScript code to perform this

injection. Using your browser’s console, try executing the following block of code:

(function(d, script) {

 script = d.createElement('script');

 script.type = 'text/javascript';

 script.async = true;

 script.onload = function(){

 console.log('The script was successfully injected!');

 };

Chapter 9 Examples

http://edition.cnn.com/2017/10/24/asia/china-xi-jinping-thought/index.html
http://edition.cnn.com/2017/10/24/asia/china-xi-jinping-thought/index.html
https://raw.githubusercontent.com/mozilla/readability/master/Readability.js

254

 script.src = 'https://raw.githubusercontent.com/' +

 'mozilla/readability/master/Readability.js';

 d.getElementsByTagName('head')[0].appendChild(script);

}(document));

This script works as follows: a new “<script>” element is constructed with its “src”

parameter set to https://raw.githubusercontent.com/mozilla/readability/master/

Readability.js, and appended into the “<head>” of the document. Once the script has

loaded, we show a message on the console. This will provide you with a result as shown

in Figure 9-11.

Figure 9-11.  Trying to inject a “<script>” tag using JavaScript

This does not work as we had expected, as Chrome refuses to execute this script:

Refused to execute script from

'https://raw.githubusercontent.com/mozilla/readability/master/Readability.js'

because its MIME type ('text/plain') is not executable, and strict MIME 

type checking is enabled.

Chapter 9 Examples

https://raw.githubusercontent.com/mozilla/readability/master/Readability.js
https://raw.githubusercontent.com/mozilla/readability/master/Readability.js

255

The problem here is that GitHub indicates in its headers that the content type

of this document is “text/plain,” and Chrome prevents us from using it as a script.

To work around this issue, we’ll host a copy of the script ourselves at http://www.

webscrapingfordatascience.com/readability/Readability.js and try again:

(function(d, script) {

 script = d.createElement('script');

 script.type = 'text/javascript';

 script.async = true;

 script.onload = function(){

 console.log('The script was successfully injected!');

 };

 �script.src = 'http://www.webscrapingfordatascience.com/readability/

Readability.js';

 d.getElementsByTagName('head')[0].appendChild(script);

}(document));

Which should give the correct result:

The script was successfully injected!

Now that the “<script>” tag has been injected and executed, but we need to

figure out how to use it. Mozilla’s documentation at https://github.com/mozilla/

readability provides us with some instructions, based on which we can try executing

the following (still in the console window):

var documentClone = document.cloneNode(true);

var loc = document.location;

var uri = {

 spec: loc.href,

 host: loc.host,

 prePath: loc.protocol + "//" + loc.host,

 scheme: loc.protocol.substr(0, loc.protocol.indexOf(":")),

 pathBase: loc.protocol + "//" + loc.host +

 loc.pathname.substr(0, loc.pathname.lastIndexOf("/") + 1)

};

var article = new Readability(uri, documentClone).parse();

console.log(article);

Chapter 9 Examples

http://www.webscrapingfordatascience.com/readability/Readability.js
http://www.webscrapingfordatascience.com/readability/Readability.js
https://github.com/mozilla/readability
https://github.com/mozilla/readability

256

This should provide you with a result as shown in Figure 9-12, which looks promising

indeed: the “article” object contains a “title” and “content” attribute we’ll be able to use.

The question is now how we can return this information to Selenium. Remember

that we can execute JavaScript commands from Selenium through the execute_script

method. One possible approach to get out the information we want is to use JavaScript to

replace the whole page’s contents with the information we want, and then use Selenium

to get out that information:

from selenium import webdriver

base_url = 'http://edition.cnn.com/2017/10/24/asia/china-xi-jinping-

thought/index.html'

driver = webdriver.Chrome()

driver.implicitly_wait(10)

driver.get(base_url)

Figure 9-12.  Extracting the article’s information

Chapter 9 Examples

257

js_cmd = '''

(function(d, script) {

 script = d.createElement('script');

 script.type = 'text/javascript';

 script.async = true;

 script.onload = function(){

 var documentClone = document.cloneNode(true);

 var loc = document.location;

 var uri = {

 spec: loc.href,

 host: loc.host,

 prePath: loc.protocol + "//" + loc.host,

 scheme: loc.protocol.substr(0, loc.protocol.indexOf(":")),

 pathBase: loc.protocol + "//" + loc.host +

 loc.pathname.substr(0, loc.pathname.lastIndexOf("/") + 1)

 };

 var article = new Readability(uri, documentClone).parse();

 document.body.innerHTML = '<h1 id="title">' + article.title + '</h1>' +

 '<div id="content">' + article.content + '</div>';

 };

 �script.src = 'http://www.webscrapingfordatascience.com/readability/

Readability.js';

d.getElementsByTagName('head')[0].appendChild(script);

}(document));

'''

driver.execute_script(js_cmd)

title = driver.find_element_by_id('title').text.strip()

content = driver.find_element_by_id('content').text.strip()

print('Title was:', title)

driver.quit()

The “document.body.innerHTML” line in the JavaScript command will replace the

contents of the “<body>” tag with a header and a “<div>” tag, from which we can then

simply retrieve our desired information.

Chapter 9 Examples

258

However, the execute_script method also allows us to pass back JavaScript objects

to Python, so the following approach also works:

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

base_url = 'http://edition.cnn.com/2017/10/24/asia/china-xi-jinping-

thought/index.html'

driver = webdriver.Chrome()

driver.implicitly_wait(10)

driver.get(base_url)

js_cmd = '''

(function(d, script) {

 script = d.createElement('script');

 script.type = 'text/javascript';

 script.async = true;

 script.onload = function() {

 script.id = 'readability-script';

 }

 �script.src = 'http://www.webscrapingfordatascience.com/readability/

Readability.js';

 d.getElementsByTagName('head')[0].appendChild(script);

}(document));

'''

js_cmd2 = '''

var documentClone = document.cloneNode(true);

var loc = document.location;

var uri = {

 spec: loc.href,

 host: loc.host,

 prePath: loc.protocol + "//" + loc.host,

 scheme: loc.protocol.substr(0, loc.protocol.indexOf(":")),

Chapter 9 Examples

259

 pathBase: loc.protocol + "//" + loc.host +

 loc.pathname.substr(0, loc.pathname.lastIndexOf("/") + 1)

};

var article = new Readability(uri, documentClone).parse();

return JSON.stringify(article);

'''

driver.execute_script(js_cmd)

wait = WebDriverWait(driver, 10)

wait.until(EC.presence_of_element_located((By.ID, "readability-script")))

returned_result = driver.execute_script(js_cmd2)

print(returned_result)

driver.quit()

There are several intricacies here that warrant some extra information. First, note

that we’re using the execute_script method twice: once to inject the “<script>” tag,

and then again to get out our “article” object. However, since executing the script might

take some time, and Selenium’s implicit wait does not take this into account when using

execute_script, we use an explicit wait to check for the presence of an element with

an “id” of “readability-script,” which is set by the “script.onload” function. Once such an

id is found, we know that the script has finished loading and we can execute the second

JavaScript command. Here, we do need to use “JSON.stringify” to make sure we return

a JSON-formatted string instead of a raw JavaScript object to Python, as Python will not

be able to make sense of this return value and convert it to a list of None values (simple

types, such as integers and strings, are fine, however).

Let’s clean up our script a little and merge it with our basic framework:

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

base_url = 'https://news.google.com/news/?ned=us&hl=en'

Chapter 9 Examples

260

inject_readability_cmd = '''

(function(d, script) {

 script = d.createElement('script');

 script.type = 'text/javascript';

 script.async = true;

 script.onload = function() {

 script.id = 'readability-script';

 }

 �script.src = 'http://www.webscrapingfordatascience.com/readability/

Readability.js';

 d.getElementsByTagName('head')[0].appendChild(script);

}(document));

'''

get_article_cmd = '''

var documentClone = document.cloneNode(true);

var loc = document.location;

var uri = {

 spec: loc.href,

 host: loc.host,

 prePath: loc.protocol + "//" + loc.host,

 scheme: loc.protocol.substr(0, loc.protocol.indexOf(":")),

 pathBase: loc.protocol + "//" + loc.host +

 loc.pathname.substr(0, loc.pathname.lastIndexOf("/") + 1)

};

var article = new Readability(uri, documentClone).parse();

return JSON.stringify(article);

'''

driver = webdriver.Chrome()

driver.implicitly_wait(10)

driver.get(base_url)

news_urls = []

for link in driver.find_elements_by_css_selector('main a[role="heading"]'):

 news_url = link.get_attribute('href')

 news_urls.append(news_url)

Chapter 9 Examples

261

for news_url in news_urls:

 print('Now scraping:', news_url)

 driver.get(news_url)

 print('Injecting scripts')

 driver.execute_script(inject_readability_cmd)

 wait = WebDriverWait(driver, 10)

 wait.until(EC.presence_of_element_located((By.ID, "readability-script")))

 returned_result = driver.execute_script(get_article_cmd)

 # Do something with returned_result

driver.quit()

Note that we’re using two “for” loops: one to extract the links we wish to scrape,

which we’ll store in a list; and another one to iterate over the list. Using one loop

wouldn’t work in this case: as we’re navigating to other pages inside of the loop,

Selenium would complain about “stale elements” when trying to find the next link with

find_elements_by_css_selector. This is basically saying: “I’m trying to find the next

element for you, but the page has changed in the meantime, so I can’t be sure anymore

what you want to retrieve.”

If you try to execute this script, you’ll note that it quickly fails anyway. What is

happening here? To figure out what is going wrong, try opening another link in your

browser, say https://www.washingtonpost.com/world/chinas-leader-elevated-

to-the-level-of-mao-in-communist-pantheon/2017/10/24/ddd911e0-b832-11e7-

9b93-b97043e57a22_story.html?utm_term=.720e06a5017d (a site using HTTPS), and

executing the first JavaScript command manually in your browser’s console, that is, by

copy-pasting and executing:

(function(d, script) {

 script = d.createElement('script');

 script.type = 'text/javascript';

 script.async = true;

 script.onload = function() {

 script.id = 'readability-script';

}

Chapter 9 Examples

https://www.washingtonpost.com/world/chinas-leader-elevated-to-the-level-of-mao-in-communist-pantheon/2017/10/24/ddd911e0-b832-11e7-9b93-b97043e57a22_story.html?utm_term=.720e06a5017d
https://www.washingtonpost.com/world/chinas-leader-elevated-to-the-level-of-mao-in-communist-pantheon/2017/10/24/ddd911e0-b832-11e7-9b93-b97043e57a22_story.html?utm_term=.720e06a5017d
https://www.washingtonpost.com/world/chinas-leader-elevated-to-the-level-of-mao-in-communist-pantheon/2017/10/24/ddd911e0-b832-11e7-9b93-b97043e57a22_story.html?utm_term=.720e06a5017d

262

script.src = 'http://www.webscrapingfordatascience.com/readability/

Readability.js';

 d.getElementsByTagName('head')[0].appendChild(script);

}(document));

You’ll probably get a result like what follows:

GET https://www.webscrapingfordatascience.com/readability/Readability.js 

net::ERR_CONNECTION_CLOSED

On other pages, you might get:

Mixed Content: The page at [...] was loaded over HTTPS, but requested an 

insecure script 'http://www.webscrapingfordatascience.com/readability/

Readability.js'.

This request has been blocked; the content must be served over HTTPS.

It’s clear what’s going on here: if we load a website through HTTPS and try to inject

a script through HTTP, Chrome will block this request as it deems it insecure (which

is true). Other sites might apply other approaches to prevent script injection, using for

example, a “Content-Security-Policy” header. that would result in an error like this:

Refused to load the script

 �'http://www.webscrapingfordatascience.com/readability/Readability.js' 

because it violates the following Content Security Policy directive: 

 �"script-src 'self' 'unsafe-eval' 'unsafe-inline'".

There are extensions available for Chrome that will disable such checks, but we’re

going to take a different approach here, which will work on the majority of pages except

those with the most strict Content Security Policies: instead of trying to inject a “<script>”

tag, we’re going to simply take the contents of our JavaScript file and execute these directly

using Selenium. We can do so by loading the contents from a local file, but since we’ve

already hosted the file online, we’re going to use requests to fetch the contents instead:

from selenium import webdriver

import requests

Chapter 9 Examples

263

base_url = 'https://news.google.com/news/?ned=us&hl=en'

script_url = 'http://www.webscrapingfordatascience.com/readability/

Readability.js'

get_article_cmd = requests.get(script_url).text

get_article_cmd += '''

var documentClone = document.cloneNode(true);

var loc = document.location;

var uri = {

 spec: loc.href,

 host: loc.host,

 prePath: loc.protocol + "//" + loc.host,

 scheme: loc.protocol.substr(0, loc.protocol.indexOf(":")),

 pathBase: loc.protocol + "//" + loc.host +

 loc.pathname.substr(0, loc.pathname.lastIndexOf("/") + 1)

};

var article = new Readability(uri, documentClone).parse();

return JSON.stringify(article);

'''

driver = webdriver.Chrome()

driver.implicitly_wait(10)

driver.get(base_url)

news_urls = []

for link in driver.find_elements_by_css_selector('main a[role="heading"]'):

 news_url = link.get_attribute('href')

 news_urls.append(news_url)

for news_url in news_urls:

 print('Now scraping:', news_url)

 driver.get(news_url)

 print('Injecting script')

 returned_result = driver.execute_script(get_article_cmd)

 # Do something with returned_result

driver.quit()

Chapter 9 Examples

264

This approach also has the benefit that we can execute our whole JavaScript

command in one go and do not need to rely on an explicit wait anymore to check

whether the script has finished loading. The only thing remaining now is to convert the

retrieved result to a Python dictionary and store our results in a database, once more

using the “dataset” library:

from selenium import webdriver

import requests

import dataset

from json import loads

db = dataset.connect('sqlite:///news.db')

base_url = 'https://news.google.com/news/?ned=us&hl=en'

script_url = 'http://www.webscrapingfordatascience.com/readability/

Readability.js'

get_article_cmd = requests.get(script_url).text

get_article_cmd += '''

var documentClone = document.cloneNode(true);

var loc = document.location;

var uri = {

 spec: loc.href,

 host: loc.host,

 prePath: loc.protocol + "//" + loc.host,

 scheme: loc.protocol.substr(0, loc.protocol.indexOf(":")),

 pathBase: loc.protocol + "//" + loc.host +

 loc.pathname.substr(0, loc.pathname.lastIndexOf("/") + 1)

};

var article = new Readability(uri, documentClone).parse();

return JSON.stringify(article);

'''

driver = webdriver.Chrome()

driver.implicitly_wait(10)

driver.get(base_url)

Chapter 9 Examples

265

news_urls = []

for link in driver.find_elements_by_css_selector('main a[role="heading"]'):

 news_url = link.get_attribute('href')

 news_urls.append(news_url)

for news_url in news_urls:

 print('Now scraping:', news_url)

 driver.get(news_url)

 print('Injecting script')

 returned_result = driver.execute_script(get_article_cmd)

 # Convert JSON string to Python dictionary

 article = loads(returned_result)

 if not article:

 # Failed to extract article, just continue

 continue

 # Add in the url

 article['url'] = news_url

 # Remove 'uri' as this is a dictionary on its own

 del article['uri']

 # Add to the database

 db['articles'].upsert(article, ['url'])

 print('Title was:', article['title'])

driver.quit()

The output looks as follows:

Now scraping: https://www.usnews.com/news/world/articles/2017-10-24/

 �china-southeast-asia-aim-to-build-trust-with-sea-drills-

singapore-says Injecting script

Title was: �China, Southeast Asia Aim to Build Trust With Sea Drills, 

Singapore Says | World News

Chapter 9 Examples

266

Now scraping: http://www.philstar.com/headlines/2017/10/24/

 �1751999/pentagon-chief-seeks-continued-maritime-cooperation-

asean Injecting script

Title was: �Pentagon chief seeks continued maritime cooperation with ASEAN |

Headlines News, The Philippine Star,

[...]

Remember to take a look at the database (“news.db”) using a SQLite client such as

“DB Browser for SQLite”; see Figure 9-13.

We can now analyze our collected articles using Python. We’re going to construct a

topic model using Latent Dirichlet Allocation (LDA) that will help us to categorize our

articles along some topics. To do so, we’ll use the “nltk,” “stop-words,” and “gensim”

libraries, which can simply be installed using pip:

pip install -U nltk

pip install -U stop-words

pip install -U gensim

Figure 9-13.  Exploring some scraped articles with DB Browser for SQLite

Chapter 9 Examples

267

First, we’re going to loop through all our articles in order to tokenize them (convert

text into a list of word elements) using a simple regular expression, remove stop words,

and apply stemming:

import dataset

from nltk.tokenize import RegexpTokenizer

from nltk.stem.porter import PorterStemmer

from stop_words import get_stop_words

db = dataset.connect('sqlite:///news.db')

articles = []

tokenizer = RegexpTokenizer(r'\w+')

stop_words = get_stop_words('en')

p_stemmer = PorterStemmer()

for article in db['articles'].all():

 text = article['title'].lower().strip()

 text += " " + article['textContent'].lower().strip()

 if not text:

 continue

 # Tokenize

 tokens = tokenizer.tokenize(text)

 # Remove stop words and small words

 clean_tokens = [i for i in tokens if not i in stop_words]

 clean_tokens = [i for i in clean_tokens if len(i) > 2]

 # Stem tokens

 stemmed_tokens = [p_stemmer.stem(i) for i in clean_tokens]

 # Add to list

 articles.append((article['title'], stemmed_tokens))

print(articles[0])

Our first article now looks as follows (we keep the title for later reporting):

('Paul Manafort, former business partner to surrender in Mueller

investigation', ['presid', 'trump', 'former', 'campaign', 'chairman', [...]]

Chapter 9 Examples

268

To generate an LDA model, we need to calculate how frequently each term occurs

within each document. To do that, we can construct a document-term matrix with

gensim:

from gensim import corpora

dictionary = corpora.Dictionary([a[1] for a in articles])

corpus = [dictionary.doc2bow(a[1]) for a in articles]

print(corpus[0])

The Dictionary class traverses texts and assigns a unique integer identifier to

each unique token while also collecting word counts and relevant statistics. Next, our

dictionary is converted to a bag of words corpus that results in a list of vectors equal to

the number of documents. Each document vector is a series of “(id, count)” tuples:

[(0, 10), (1, 17), (2, 7), (3, 11), [...]]

We’re now ready to construct an LDA model:

from gensim.models.ldamodel import LdaModel

nr_topics = 30

ldamodel = LdaModel(corpus, num_topics=nr_topics,

 id2word=dictionary, passes=20)

print(ldamodel.print_topics())

This will show something like:

[�(0, �'0.027*"s" + 0.018*"trump" + 0.018*"manafort" + 0.011*"investig" 

+ 0.008*"presid" + 0.008*"report" + 0.007*"mueller" + 0.007*"year" 

+ 0.007*"campaign" + 0.006*"said"'),

 �(1, �'0.014*"s" + 0.014*"said" + 0.013*"percent" + 0.008*"1" + 

0.007*"0" + 0.006*"year" + 0.006*"month" + 0.005*"increas" + 

0.005*"3" + 0.005*"spend"'),

 [...]

]

Chapter 9 Examples

269

This overview shows an entry per topic. Each topic is represented by a list of

probable words to appear in that topic, ordered by probability of appearance. Note that

adjusting the model’s number and amount of “passes” is important to get a good result.

Once the results look acceptable (we’ve increased the number of topics for our scraped

set), we can use our model to assign topics to our documents:

from random import shuffle

Show topics by top-3 terms

for t in range(nr_topics):

 print(ldamodel.print_topic(t, topn=3))

Show some random articles

idx = list(range(len(articles)))

shuffle(idx)

for a in idx[:3]:

 article = articles[a]

 print('==========================')

 print(article[0])

 prediction = ldamodel[corpus[a]][0]

 print(ldamodel.print_topic(prediction[0], topn=3))

 print('Probability:', prediction[1])

This will show something like the following:

0.014*"new" + 0.013*"power" + 0.013*"storm"

0.030*"rapp" + 0.020*"spacey" + 0.016*"said"

0.024*"catalan" + 0.020*"independ" + 0.019*"govern"

0.025*"manafort" + 0.020*"trump" + 0.015*"investig"

0.007*"quickli" + 0.007*"complex" + 0.007*"deal"

0.018*"earbud" + 0.016*"iconx" + 0.014*"samsung"

0.012*"halloween" + 0.007*"new" + 0.007*"star"

0.021*"octopus" + 0.014*"carver" + 0.013*"vega"

0.000*"rapp" + 0.000*"spacey" + 0.000*"said"

0.025*"said" + 0.017*"appel" + 0.012*"storm"

0.039*"akzo" + 0.018*"axalta" + 0.017*"billion"

Chapter 9 Examples

270

0.024*"rapp" + 0.024*"spacey" + 0.017*"said"

0.000*"boehner" + 0.000*"one" + 0.000*"trump"

0.033*"boehner" + 0.010*"say" + 0.009*"hous"

0.000*"approv" + 0.000*"boehner" + 0.000*"quarter"

0.017*"tax" + 0.013*"republican" + 0.011*"week"

0.012*"trump" + 0.008*"plan" + 0.007*"will"

0.005*"ludwig" + 0.005*"underlin" + 0.005*"sensibl"

0.015*"tax" + 0.011*"trump" + 0.011*"look"

0.043*"minist" + 0.032*"prime" + 0.030*"alleg"

0.058*"harri" + 0.040*"polic" + 0.032*"old"

0.040*"musk" + 0.026*"tunnel" + 0.017*"compani"

0.055*"appl" + 0.038*"video" + 0.027*"peterson"

0.011*"serv" + 0.008*"almost" + 0.007*"insid"

0.041*"percent" + 0.011*"year" + 0.010*"trump"

0.036*"univers" + 0.025*"econom" + 0.012*"special"

0.022*"chees" + 0.021*"patti" + 0.019*"lettuc"

0.000*"boehner" + 0.000*"said" + 0.000*"year"

0.000*"boehner" + 0.000*"new" + 0.000*"say"

0.030*"approv" + 0.025*"quarter" + 0.021*"rate"

==========================

Paul Manafort, Who Once Ran Trump Campaign, Indicted on Money Laundering

and Tax Charges

0.025*"manafort" + 0.020*"trump" + 0.015*"investig"

Probability: 0.672658189483

==========================

Apple fires employee after daughter's iPhone X video goes viral

0.055*"appl" + 0.038*"video" + 0.027*"peterson"

Probability: 0.990880503145

==========================

Theresa May won't say when she knew about sexual harassment allegations

0.043*"minist" + 0.032*"prime" + 0.030*"alleg"

Probability: 0.774530402797

Chapter 9 Examples

271

Scraping Topics T here is still a lot of room to improve on this by, for example,
exploring other topic model mapping algorithms, applying better tokenization, adding
custom stop words, or expanding the set of articles or adjusting the parameters.
Alternatively, you might also consider scraping the tags for each article straight from
the Google News page, which also includes these as “topics” on its page.

9.13  �Scraping and Analyzing a Wikipedia Graph
In this example, we’ll work once again with Wikipedia (we already used Wikipedia in

the chapter on web crawling). Our goal here is to scrape titles of Wikipedia pages, while

keeping track of links between them, which we’ll use to construct a graph and analyze it

using Python. We’ll again use the “dataset” library as a simple means to store results. The

following code contains the full crawling setup:

import requests

import dataset

from bs4 import BeautifulSoup

from urllib.parse import urljoin, urldefrag

from joblib import Parallel, delayed

db = dataset.connect('sqlite:///wikipedia.db')

base_url = 'https://en.wikipedia.org/wiki/'

def store_page(url, title):

 print('Visited page:', url)

 print(' title:', title)

 db['pages'].upsert({'url': url, 'title': title}, ['url'])

def store_links(from_url, links):

 db.begin()

 for to_url in links:

 db['links'].upsert({'from_url': from_url, 'to_url': to_url},

 ['from_url', 'to_url'])

 db.commit()

Chapter 9 Examples

272

def get_random_unvisited_pages(amount=10):

 result = db.query('''SELECT * FROM links

 WHERE to_url NOT IN (SELECT url FROM pages)

 ORDER BY RANDOM() LIMIT {}'''.format(amount))

 return [r['to_url'] for r in result]

def should_visit(base_url, url):

 if url is None:

 return None

 full_url = urljoin(base_url, url)

 full_url = urldefrag(full_url)[0]

 if not full_url.startswith(base_url):

 # This is an external URL

 return None

 ignore = ['Wikipedia:', 'Template:', 'File:', 'Talk:', 'Special:',

 'Template talk:', 'Portal:', 'Help:', 'Category:', 'index.php']

 if any([i in full_url for i in ignore]):

 # This is a page to be ignored

 return None

 return full_url

def get_title_and_links(base_url, url):

 html = requests.get(url).text

 html_soup = BeautifulSoup(html, 'html.parser')

 page_title = html_soup.find(id='firstHeading')

 page_title = page_title.text if page_title else ''

 links = []

 for link in html_soup.find_all("a"):

 link_url = should_visit(base_url, link.get('href'))

 if link_url:

 links.append(link_url)

 return url, page_title, links

if __name__ == '__main__':

 urls_to_visit = [base_url]

Chapter 9 Examples

273

 while urls_to_visit:

 scraped_results = Parallel(n_jobs=5, backend="threading")(

 �delayed(get_title_and_links)(base_url, url) for url in

urls_to_visit

)

 for url, page_title, links in scraped_results:

 store_page(url, page_title)

 store_links(url, links)

 urls_to_visit = get_random_unvisited_pages()

There are a lot of things going on here that warrant some extra explanation:

•	 The database is structured as follows: a table “pages” holds a list of

visited URLs with their page titles. The method store_page is used to

store entries in this table. Another table, “links,” simply contains pairs

of URLs to represent links between pages. The method store_link

is used to update these, and both methods use the “dataset” library.

For the latter, we perform multiple upsert operations inside a single

explicit database transaction to speed things up.

•	 The method get_random_unvisited_pages now returns a list of

unvisited URLs, rather than just one, by selecting a random list of

linked-to URLs that do not yet appear in the “pages” table (and hence

have not been visited yet).

•	 The should_visit method is used to determine whether a link

should be considered for crawling. It returns a proper formatted URL

if it should be included, or None otherwise.

•	 The get_title_and_links method performs the actual scraping of

pages, fetching their title and a list of URLs.

•	 The script itself loops until there are no more unvisited pages

(basically forever, as new pages will continue to be discovered). It

fetches out a list of random pages we haven’t visited yet, gets their

title and links, and stores these in the database.

Chapter 9 Examples

274

•	 Note that we use the “joblib” library here to set up a parallel

approach. Simply visiting URLs one by one would be a tad too slow

here, so we use joblib to set up a multithreaded approach to visit links

at the same time, effectively spawning multiple network requests. It’s

important not to hammer our own connection or Wikipedia, so we

limit the n_jobs argument to five. The back-end argument is used

here to indicate that we want to set up a parallel calculation using

multiple threads, instead of multiple processes. Both approaches

have their pros and cons in Python. A multi-process approach comes

with a bit more overhead to set up, but it can be faster as Python’s

internal threading system can be a bit tedious due to the “global

interpreter lock” (the GIL) (a full discussion about the GIL is out of

scope here, but feel free to look up more information online if this

is the first time you have heard about it). In our case, the work itself

is relatively straightforward: execute a network request and perform

some parsing, so a multithreading approach is fine.

•	 This is also the reason why we don’t store the results in the database

inside the get_title_and_links method itself, but wait until the

parallel jobs have finished their execution and have returned their

results. SQLite doesn’t like to be written to from multiple threads or

many processes at once, so we wait until we have collected the results

before writing them to the database. An alternative would be to use a

client-server database system. Note that we should avoid overloading

the database too much with a huge set of results. Not only will the

intermediate results have to be stored in memory, but we’ll also

incur a waiting time when writing the large set of results. Since the

get_random_unvisited_pages method returns a list of ten URLs

maximum, we don’t need to worry about this too much in our case.

•	 Finally, note that the main entry point of the script is now placed under

“if __name__ == ’__main__’:”. In other examples, we have not done so for

the sake of simplicity, although it is good practice to do so nonetheless.

The reason for this is as follows: when a Python script imports another

module, all the code contained in that module is executed at once.

For instance, if we’d like to reuse the should_visit method in another

script, we could import our original script using “import myscript”

Chapter 9 Examples

275

or “from myscript import should_visit.” In both cases, the full code in

“myscript.py” will be executed. If this script contains a block of code,

like our “while” loop in this example, it will start executing that block

of code, which is not what we want when importing our script; we just

want to load the function definitions. We hence want to indicate to

Python to “only execute this block of code when the script is directly

executed,” which is what the “if __name__ == ’__main__’:” check does.

If we start our script from the command line, the special “__name__”

variable will be set to “__main__”. If our script would be imported from

another module, “__name__” will be set to that module’s name instead.

When using joblib as we do here, the contents of our script will be sent

to all “workers” (threads or processes), in order for them to perform the

correct imports and load the correct function definitions. In our case,

for instance, the different workers should know about the get_title_

and_links method. However, since the workers will also execute the full

code contained in the script (just like an import would), we also need to

prevent them from running the main block of code as well, which is why

we need to provide an “if __name__ == ’__main__’:” check.

You can let the crawler run for as long as you like, though note that it is extremely

unlikely to ever finish, and a smaller graph will also be a bit easier to look at in the next

step. Once it has run for a bit, simply interrupt it to stop it. Since we use “upsert,” feel free

to resume it later on (it will just continue to crawl based on where it left off).

We can now perform some fun graph analysis using the scraped results. In Python,

there are two popular libraries available to do so, NetworkX (the “networkx” library

in pip) and iGraph (“python-igraph” in pip). We’ll use NetworkX here, as well as

“matplotlib” to visualize the graph.

Graph Visualization Is Hard A s the NetworkX documentation itself notes,
proper graph visualization is hard, and the library authors recommend that people
visualize their graphs with tools dedicated to that task. For our simple use case,
the built-in methods suffice, even although we’ll have to wrangle our way though
matplotlib to make things a bit more appealing. Take a look at programs such as
Cytoscape, Gephi, and Graphviz if you’re interested in graph visualization. In the
next example, we’ll use Gephi to handle the visualization workload.

Chapter 9 Examples

276

The following code visualizes the graph. We first construct a new NetworkX graph

object and add in the pages as visited nodes. Next, we add the edges, though only

between pages that were visited. As an extra step, we also remove nodes that are

completely unconnected (even although these should not be present at this stage). We

then calculate a centrality measure, called betweenness, as a measure of importance of

nodes. This metric is calculated based on the number of shortest paths from all nodes

to all other nodes that pass through the node we’re calculating the metric for. The more

times a node lies on the shortest path between two other nodes, the more important it

is according to this metric. We’ll color the nodes based on this metric by giving them

different shades of blue. We apply a quick and dirty sigmoid function to the betweenness

metric to “squash” the values in a range that will result in a more appealing visualization.

We also add labels to nodes manually here, in order to have them appear above the

actual nodes. This will provide a result as shown in Figure 9-14.

Figure 9-14.  Visualizing our scraped graph

Chapter 9 Examples

277

Ignore the Warnings  When running the visualization code, you’ll most likely see
warnings appear from matplotlib complaining about the fact that NetworkX is using
deprecated functions. This is fine and can be safely ignored, though future versions
of matplotlib might not play nice with NetworkX anymore. It’s unclear whether the
authors of NetworkX will continue to focus on visualization in the future. As you’ll
note, the “arrows” of the edges in the visualization also don’t look very pretty. This
is a long-standing issue with NetworkX. Again: NetworkX is fine for analysis and
graph wrangling, though less so for visualization. Take a look at other libraries if
visualization is your core concern.

import networkx

import matplotlib.pyplot as plt

import dataset

db = dataset.connect('sqlite:///wikipedia.db')

G = networkx.DiGraph()

print('Building graph...')

for page in db['pages'].all():

 G.add_node(page['url'], title=page['title'])

for link in db['links'].all():

 # Only addedge if the endpoints have both been visited

 if G.has_node(link['from_url']) and G.has_node(link['to_url']):

 G.add_edge(link['from_url'], link['to_url'])

Unclutter by removing unconnected nodes

G.remove_nodes_from(networkx.isolates(G))

Calculate node betweenness centrality as a measure of importance

print('Calculating betweenness...')

betweenness = networkx.betweenness_centrality(G, endpoints=False)

print('Drawing graph...')

Sigmoid function to make the colors (a little) more appealing

squash = lambda x : 1 / (1 + 0.5**(20*(x-0.1)))

Chapter 9 Examples

278

colors = [(0, 0, squash(betweenness[n])) for n in G.nodes()]

labels = dict((n, d['title']) for n, d in G.nodes(data=True))

positions = networkx.spring_layout(G)

networkx.draw(G, positions, node_color=colors, edge_color='#AEAEAE')

Draw the labels manually to make them appear above the nodes

for k, v in positions.items():

 plt.text(v[0], v[1]+0.025, s=labels[k],

 horizontalalignment='center', size=8)

plt.show()

9.14  �Scraping and Visualizing a Board Members
Graph

In this example, our goal is to construct a social graph of S&P 500 companies and their

interconnectedness through their board members. We’ll start from the S&P 500 page at

Reuters available at https://www.reuters.com/finance/markets/index/.SPX to obtain

a list of stock symbols:

from bs4 import BeautifulSoup

import requests

import re

session = requests.Session()

sp500 = 'https://www.reuters.com/finance/markets/index/.SPX'

page = 1

regex = re.compile(r'\/finance\/stocks\/overview\/.*')

symbols = []

while True:

 print('Scraping page:', page)

 params = params={'sortBy': '', 'sortDir' :'', 'pn': page}

 html = session.get(sp500, params=params).text

 soup = BeautifulSoup(html, "html.parser")

Chapter 9 Examples

https://www.reuters.com/finance/markets/index/.SPX

279

 pagenav = soup.find(class_='pageNavigation')

 if not pagenav:

 break

 companies = pagenav.find_next('table', class_='dataTable')

 for link in companies.find_all('a', href=regex):

 symbols.append(link.get('href').split('/')[-1])

 page += 1

print(symbols)

Once we have obtained a list of symbols, we can scrape the board member pages for

each of them (e.g., https://www.reuters.com/finance/stocks/company-officers/

MMM.N), fetch the table of board members, and store it as a pandas data frame, which

we’ll save using pandas’ to_pickle method. Don’t forget to install pandas first if you

haven’t already:

pip install -U pandas

Add this to the bottom of your script:

import pandas as pd

officers = 'https://www.reuters.com/finance/stocks/company-officers/

{symbol}'

dfs = []

for symbol in symbols:

 print('Scraping symbol:', symbol)

 html = session.get(officers.format(symbol=symbol)).text

 soup = BeautifulSoup(html, "html.parser")

 officer_table = soup.find('table', {"class" : "dataTable"})

 df = pd.read_html(str(officer_table), header=0)[0]

 df.insert(0, 'symbol', symbol)

 dfs.append(df)

Store the results

df = pd.concat(dfs)

df.to_pickle('sp500.pkl')

Chapter 9 Examples

https://www.reuters.com/finance/stocks/company-officers/MMM.N
https://www.reuters.com/finance/stocks/company-officers/MMM.N

280

This sort of information can lead to a lot of interesting use cases, especially —

again — in the realm of graph and social network analytics. We’re going to use NetworkX

once more, but simply to parse through our collected information and export a graph in

a format that can be read with Gephi, a popular graph visualization tool, which can be

downloaded from https://gephi.org/users/download/:

import pandas as pd

import networkx as nx

from networkx.readwrite.gexf import write_gexf

df = pd.read_pickle('sp500.pkl')

G = nx.Graph()

for row in df.itertuples():

 G.add_node(row.symbol, type='company')

 G.add_node(row.Name,type='officer')

 G.add_edge(row.symbol, row.Name)

write_gexf(G, 'graph.gexf')

Open the graph file in Gephi, and apply the “ForceAtlas 2” layout technique for a

few iterations. We can also show labels as well, resulting in a figure like the one shown in

Figure 9-15.

Figure 9-15.  Visualizing our scraped graph using Gephi

Chapter 9 Examples

https://gephi.org/users/download/

281

Take some time to explore Gephi’s visualization and filtering options if you like. All

attributes that you have set in NetworkX (“type,” in our case) will be available in Gephi

as well. Figure 9-16 shows the filtered graph for Google, Amazon, and Apple with their

board members, which are acting as connectors to other firms.

9.15  �Breaking CAPTCHA’s Using Deep Learning
This final example is definitely the most challenging one, as well as the one that is

mostly related to “data science,” rather than web scraping. In fact, we’ll not use any web

scraping tools here. Instead, we’re going to walk through a relatively contained example

to illustrate how you could incorporate a predictive model in your web scraping pipeline

in order to bypass a CAPTCHA check.

We’re going to need to install some tools first. We’ll use “OpenCV,” an extremely thorough

library for computer vision, as well as “numpy” for some basic data wrangling. Finally, we’ll

use the “captcha” library to generate example images. All of these can be installed as follows:

pip install -U opencv-python

pip install -U numpy

pip install -U captcha

Figure 9-16.  Showing connected board members for Google, Amazon, and Apple

Chapter 9 Examples

282

Next, create a directory somewhere in your system to contain the Python scripts we

will create. The first script (“constants.py”) will contain some constants we’re going to use:

CAPTCHA_FOLDER = 'generated_images'

LETTERS_FOLDER = 'letters'

CHARACTERS = list('QWERTPASDFGHKLZXBNM')

NR_CAPTCHAS = 1000

NR_CHARACTERS = 4

MODEL_FILE = 'model.hdf5'

LABELS_FILE = 'labels.dat'

MODEL_SHAPE = (100, 100)

Another script (“generate.py”) will generate a bunch of CAPTCHA images and save

them to the “generated_images” directory:

from random import choice

from captcha.image import ImageCaptcha

import os.path

from os import makedirs

from constants import *

makedirs(CAPTCHA_FOLDER)

image = ImageCaptcha()

for i in range(NR_CAPTCHAS):

 captcha = ''.join([choice(CHARACTERS) for c in range(NR_CHARACTERS)])

 filename = os.path.join(CAPTCHA_FOLDER, '{}_{}.png'.format(captcha, i))

 image.write(captcha, filename)

 print('Generated:', captcha)

After running this script, you should end up with a collection of CAPTCHA images

(with their answers in the file names) as shown in Figure 9-17.

Chapter 9 Examples

283

Isn’t This Cheating?  Of course, we’re lucky here that we are generating the
CAPTCHA’s ourselves and hence have the opportunity to keep the answers as well.
In the real world, however, CAPTCHA’s do not expose their answer (it would kind
of refute the point of the CAPTCHA), so that we would need to figure out another
way to create our training set. One way is to look for the library a particular site
is using to generate its CAPTCHA’s and use it to collect a set of training images of
your own, replicating the originals as closely as possible. Another approach is to
manually label the images yourself, which is as dreadful as it sounds, though you
might not need to label thousands of images to get the desired result. Since people
make mistakes when filling in CAPTCHA’s, too, we have more than one chance to
get the answer right and hence do not need to target a 100 percent accuracy level.
Even if our predictive model is only able to get one out of ten images right, that is
still sufficient to break through a CAPTCHA after some retries.

Figure 9-17.  A collection of generated CAPTCHA images

Chapter 9 Examples

284

Next, we’re going to write another script that will cut up our images into separate

pieces, one per character. We could try to construct a model that predicts the complete

answer all at once, though in many cases it is much easier to perform the predictions

character by character. To cut up our image, we’ll need to invoke OpenCV to perform

some heavy lifting for us. A complete discussion regarding OpenCV and computer vision

would require a book in itself, so we’ll stick to some basics here. The main concepts we’ll

use here are thresholding, opening, and contour detection. To see how this works, let’s

create a small test script first to show these concepts in action:

import cv2

import numpy as np

Change this to one of your generated images:

image_file = 'generated_images/ABQM_116.png'

image = cv2.imread(image_file)

cv2.imshow('Original image', image)

Convert to grayscale, followed by thresholding to black and white

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_

OTSU)

cv2.imshow('Black and white', thresh)

Apply opening: "erosion" followed by "dilation"

denoised = thresh.copy()

kernel = np.ones((4, 3), np.uint8)

denoised = cv2.erode(denoised, kernel, iterations=1)

kernel = np.ones((6, 3), np.uint8)

denoised = cv2.dilate(denoised, kernel, iterations=1)

cv2.imshow('Denoised', denoised)

Now find contours and overlay them over our original image

_, cnts, _ = cv2.findContours(denoised.copy(), cv2.RETR_TREE, cv2.CHAIN_

APPROX_NONE)

cv2.drawContours(image, cnts, contourIdx=-1, color=(255, 0, 0),

thickness=-1)

cv2.imshow('Contours', image)

cv2.waitKey(0)

Chapter 9 Examples

285

If you run this script, you should obtain a list of preview windows similar as shown in

Figure 9-18. In the first two steps, we open our image with OpenCV and convert

it to a simple pure black and white representation. Next, we apply an “opening”

morphological transformation, which boils down to an erosion followed by dilation.

The basic idea of erosion is just like soil erosion: this transformation “erodes away”

boundaries of the foreground object (which is assumed to be in white) by sliding a

“kernel” over the image (a “window,” so to speak) so that only those white pixels are

retained if all pixels in the surrounding kernel are white as well. Otherwise, it gets turned

to black. Dilation does the opposite: it widens the image by setting pixels to white if

at least one pixel in the surrounding kernel was white. Applying these steps is a very

common tactic to remove noise from images. The kernel sizes used in the script above

are simply the result of some trial and error, and you might want to adjust these with

other types of CAPTCHA images. Note that we allow for some noise in the image to

remain present. We don’t need to obtain a perfect image as we trust that our predictive

model will be able to “look over these.”

Next, we use OpenCV’s findContours method to extract “blobs” of connected

white pixels. OpenCV comes with various methods to perform this extraction and

different ways to represent the result (e.g., simplifying the contours or not, constructing

a hierarchy or not, and so on). Finally, we use the drawContours method to draw the

discovered blobs. The contourIdx argument here indicates that we want to draw all top-

level contours, and the thickness value of -1 instructs OpenCV to fill up the contours.

We now still need a way to use the contours to create separate images: one per

character. The way how we’ll do so is by using masking. Note that OpenCV also allows

to fetch out the “bounding rectangle” for each contour, which would make “cutting” the

image much easier, though this might get us into trouble in case parts of the characters

are near to each other. Instead, we’ll use the approach illustrated by the following code

fragment:

Figure 9-18.  Processing an image with OpenCV. From left to right: original image,
image after conversion to black and white, image after applying an opening to
remove noise, and the extracted contours overlaid in blue over the original image.

Chapter 9 Examples

286

import cv2

import numpy as np

image_file = 'generated_images/ABQM_116.png'

Perform thresholding, erosion and contour finding as shown before

image = cv2.imread(image_file)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_

OTSU)

denoised = thresh.copy()

kernel = np.ones((4, 3), np.uint8)

denoised = cv2.erode(denoised, kernel, iterations=1)

kernel = np.ones((6, 3), np.uint8)

denoised = cv2.dilate(denoised, kernel, iterations=1)

_, cnts, _ = cv2.findContours(denoised.copy(), cv2.RETR_TREE, cv2.CHAIN_

APPROX_NONE)

Create a fresh 'mask' image

mask = np.ones((image.shape[0], image.shape[1]), dtype="uint8") * 0

We'll use the first contour as an example

contour = cnts[0]

Draw this contour over the mask

cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)

cv2.imshow('Denoised image', denoised)

cv2.imshow('Mask after drawing contour', mask)

result = cv2.bitwise_and(denoised, mask)

cv2.imshow('Result after and operation', result)

retain = result > 0

result = result[np.ix_(retain.any(1), retain.any(0))]

cv2.imshow('Final result', result)

cv2.waitKey(0)

Chapter 9 Examples

287

If you run this script, you’ll obtain a result as shown in Figure 9-19. First, we

create new black image with the same size as the starting, denoised image. We take

one contour and draw it in white on top of this “mask.” Next, the denoised image and

mask are combined in a bitwise “and” operation, which will retain white pixels if the

corresponding pixels in both input images were white, and sets it to black otherwise.

Next, we apply some clever numpy slicing to crop the image.

This is sufficient to get started, though there still is one problem we need to solve:

overlap. In case characters overlap, they would be discovered as one large contour. To

work around this issue, we’ll apply the following operations. First, starting from a list of

contours, check whether there is a significant degree of overlap between two distinct

contours, in which case we only retain the largest one. Next, we order the contours based

on their size, take the first n contours, and order these on the horizontal axis, from left

to right (with n being the number of characters in a CAPTCHA). This still might lead to

fewer contours than we need, so that we iterate over each contour, and check whether its

width is higher than an expected value. A good heuristic for the expected value is to take

the estimated width based on the distance from the leftmost white pixel to the rightmost

white pixel divided by the number of characters we expect to see. In case a contour is

wider than we expect, we cut it up into m equal parts, with m being equal to the width

of the contour divided by the expected width. This is a heuristic that still might lead to

Figure 9-19.  Extracting part of an image using a contour mask in OpenCV. On
the top left, the starting image is shown. On the right, a new image is created with
the contour drawn in white and filled. These two images are combined in a bitwise
“and” operation to obtain the image in the second row. The bottom image shows
the final result after applying cropping.

Chapter 9 Examples

288

some characters not being perfectly cut off (some characters are larger than others), but

this is something we’ll just accept. In case we don’t end up with the desired number of

characters at the end of all this, we’ll simply skip over the given image.

We’ll put all of this in a separate list of functions (in a file “functions.py”):

import cv2

import numpy as np

from math import ceil, floor

from constants import *

def overlaps(contour1, contour2, threshold=0.8):

 # Check whether two contours' bounding boxes overlap

 area1 = contour1['w'] * contour1['h']

 area2 = contour2['w'] * contour2['h']

 left = max(contour1['x'], contour2['x'])

 �right = min(contour1['x'] + contour1['w'], contour2['x'] +

contour2['w'])

 top = max(contour1['y'], contour2['y'])

 �bottom = min(contour1['y'] + contour1['h'], contour2['y'] +

contour2['h'])

 if left <= right and bottom >= top:

 intArea = (right - left) * (bottom - top)

 intRatio = intArea / min(area1, area2)

 if intRatio >= threshold:

 # Return True if the second contour is larger

 return area2 > area1

 # Don't overlap or doesn't exceed threshold

 return None

def remove_overlaps(cnts):

 contours = []

 for c in cnts:

 x, y, w, h = cv2.boundingRect(c)

 new_contour = {'x': x, 'y': y, 'w': w, 'h': h, 'c': c}

 for other_contour in contours:

 overlap = overlaps(other_contour, new_contour)

Chapter 9 Examples

289

 if overlap is not None:

 if overlap:

 # Keep this one...

 contours.remove(other_contour)

 contours.append(new_contour)

 # ... otherwise do nothing: keep the original one

 break

 else:

 # We didn't break, so no overlap found, add the contour

 contours.append(new_contour)

 return contours

def process_image(image):

 # Perform basic pre-processing

 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 �_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV |

cv2.THRESH_OTSU)

 denoised = thresh.copy()

 kernel = np.ones((4, 3), np.uint8)

 denoised = cv2.erode(denoised, kernel, iterations=1)

 kernel = np.ones((6, 3), np.uint8)

 denoised = cv2.dilate(denoised, kernel, iterations=1)

 return denoised

def get_contours(image):

 # Retrieve contours

 �_, cnts, _ = cv2.findContours(image.copy(), cv2.RETR_TREE, cv2.CHAIN_

APPROX_NONE)

 # Remove overlapping contours

 contours = remove_overlaps(cnts)

 # Sort by size, keep only the first NR_CHARACTERS

 contours = sorted(contours, key=lambda x: x['w'] * x['h'],

 reverse=True)[:NR_CHARACTERS]

 # Sort from left to right

 contours = sorted(contours, key=lambda x: x['x'], reverse=False)

 return contours

Chapter 9 Examples

290

def extract_contour(image, contour, desired_width, threshold=1.7):

 mask = np.ones((image.shape[0], image.shape[1]), dtype="uint8") * 0

 cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)

 result = cv2.bitwise_and(image, mask)

 mask = result > 0

 result = result[np.ix_(mask.any(1), mask.any(0))]

 if result.shape[1] > desired_width * threshold:

 # This contour is wider than expected, split it

 amount = ceil(result.shape[1] / desired_width)

 each_width = floor(result.shape[1] / amount)

 # Note: indexing based on im[y1:y2, x1:x2]

 results = [result[0:(result.shape[0] - 1),

 (i * each_width):((i + 1) * each_width - 1)] \

 for i in range(amount)]

 return results

 return [result]

def get_letters(image, contours):

 �desired_size = (contours[-1]['x'] + contours[-1]['w'] - contours[0]['x']) \

 / NR_CHARACTERS

 masks = [m for l in [extract_contour(image, contour['c'], desired_size) \

 for contour in contours] for m in l]

 return masks

With this, we’re finally ready to write our cutting script (“cut.py”)

from os import makedirs

import os.path

from glob import glob

from functions import *

from constants import *

image_files = glob(os.path.join(CAPTCHA_FOLDER, '*.png'))

Chapter 9 Examples

291

for image_file in image_files:

 print('Now doing file:', image_file)

 answer = os.path.basename(image_file).split('_')[0]

 image = cv2.imread(image_file)

 processed = process_image(image)

 contours = get_contours(processed)

 if not len(contours):

 print('[!] Could not extract contours')

 continue

 letters = get_letters(processed, contours)

 if len(letters) != NR_CHARACTERS:

 print('[!] Could not extract desired amount of characters')

 continue

 if any([l.shape[0] < 10 or l.shape[1] < 10 for l in letters]):

 print('[!] Some of the extracted characters are too small')

 continue

 for i, mask in enumerate(letters):

 letter = answer[i]

 outfile = '{}_{}.png'.format(answer, i)

 outpath = os.path.join(LETTERS_FOLDER, letter)

 if not os.path.exists(outpath):

 makedirs(outpath)

 print('[i] Saving', letter, 'as', outfile)

 cv2.imwrite(os.path.join(outpath, outfile), mask)

If you run this script, the “letters” directory should now contain a directory for each

letter; see, for example, Figure 9-20. We’re now ready to construct our deep learning

model . We’ll use a simple convolutional neural network architecture, using the “Keras”

library.

pip install -U keras

Chapter 9 Examples

292

For Keras to work, we also need to install a back end (the “engine” Keras will use,

so to speak). You can use the rather limited “theano” library, Google’s “Tensorflow,” or

Microsoft’s “CNTK.” We assume you’re using Windows, so CNTK is the easiest option

to go with. (If not, install the “theano” library using pip instead.) To install CNTK,

navigate to https://docs.microsoft.com/en-us/cognitive-toolkit/setup-windows-

python?tabs=cntkpy231 and look for the URL corresponding with your Python version.

If you have a compatible GPU in your computer, you can use the “GPU” option. If this

doesn’t work or you run into trouble, stick to the “CPU” option. Installation is then

performed as such (using the GPU Python 3.6 version URL):

pip install -U https://cntk.ai/PythonWheel/GPU/cntk-2.3.1-cp36-cp36m-

win_amd64.whl

Next, we need to create a Keras configuration file. Run a Python REPL and import

Keras as follows:

>>> import keras

Using TensorFlow backend.

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "\site-packages\keras__init__.py", line 3, in <module>

 from . import utils

 File "\site-packages\keras\utils__init__.py", line 6, in <module>

 from . import conv_utils

Figure 9-20.  A collection of extracted “S” images

Chapter 9 Examples

https://docs.microsoft.com/en-us/cognitive-toolkit/setup-windows-python?tabs=cntkpy231
https://docs.microsoft.com/en-us/cognitive-toolkit/setup-windows-python?tabs=cntkpy231

293

 File "\site-packages\keras\utils\conv_utils.py", line 3, in <module>

 from .. import backend as K

 File "\site-packages\keras\backend__init__.py", line 83, in <module>

 from .tensorflow_backend import *

 �File "\site-packages\keras\backend\tensorflow_backend.py", line 1, in

<module>

 import tensorflow as tf

ModuleNotFoundError: No module named 'tensorflow'

Keras will complain about the fact that it can’t find Tensorflow, its default back

end. That’s fine; simply exit the REPL. Next, navigate to “%USERPROFILE%\.keras” in

Windows’ file explorer. There should be a “keras.json” file there. Open this file using

Notepad or another text editor, and replace the contents so that it reads as follows:

{

 "floatx": "float32",

 "epsilon": 1e-07,

 "backend": "cntk",

 "image_data_format": "channels_last"

}

Using Another Back End  In case you’re using Tensorflow, just leave the
“backend” value set to “tensorflow.” If you’re using theano, set the value
to “theano.” Note that in the latter case, you might also need to look for a
“.theanorc.txt” file on your system and change its contents as well to get things to
work on your system, especially the “device” entry that you should set to “cpu” in
case theano has trouble finding your GPU.

Once you’ve made this change, try test-importing Keras once again into a fresh REPL

session. You should now get the following:

>>> import keras

Using CNTK backend

Selected GPU[1] GeForce GTX 980M as the process wide default device.

Chapter 9 Examples

294

Keras is now set up and is recognizing our GPU. If CNTK would complain, remember

to try the CPU version instead, though keep in mind that training the model will take

much longer in this case (and so will theano and Tensorflow in case you can only use

CPU-based computing).

We can now create another Python script to train our model (“train.py”):

import cv2

import pickle

from os import listdir

import os.path

import numpy as np

from glob import glob

from sklearn.preprocessing import LabelBinarizer

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers.convolutional import Conv2D, MaxPooling2D

from keras.layers.core import Flatten, Dense

from constants import *

data = []

labels = []

nr_labels = len(listdir(LETTERS_FOLDER))

Convert each image to a data matrix

for label in listdir(LETTERS_FOLDER):

 for image_file in glob(os.path.join(LETTERS_FOLDER, label, '*.png')):

 image = cv2.imread(image_file)

 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 # Resize the image so all images have the same input shape

 image = cv2.resize(image, MODEL_SHAPE)

 # Expand dimensions to make Keras happy

 image = np.expand_dims(image, axis=2)

 data.append(image)

 labels.append(label)

Normalize the data so every value lies between zero and one

data = np.array(data, dtype="float") / 255.0

labels = np.array(labels)

Chapter 9 Examples

295

Create a training-test split

(X_train, X_test, Y_train, Y_test) = train_test_split(data, labels,

 �test_size=0.25, random_state=0)

Binarize the labels

lb = LabelBinarizer().fit(Y_train)

Y_train = lb.transform(Y_train)

Y_test = lb.transform(Y_test)

Save the binarization for later

with open(LABELS_FILE, "wb") as f:

 pickle.dump(lb, f)

Construct the model architecture

model = Sequential()

model.add(Conv2D(20, (5, 5), padding="same",

 input_shape=(MODEL_SHAPE[0], MODEL_SHAPE[1], 1),

activation="relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Conv2D(50, (5, 5), padding="same", activation="relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Flatten())

model.add(Dense(500, activation="relu"))

model.add(Dense(nr_labels, activation="softmax"))

model.compile(loss="categorical_crossentropy", optimizer="adam",

metrics=["accuracy"])

Train and save the model

model.fit(X_train, Y_train, validation_data=(X_test, Y_test),

 batch_size=32, epochs=10, verbose=1)

model.save(MODEL_FILE)

We’re doing a number of things here. First, we loop through all images we have

created, resize them, and store their pixel matrix as well as their answer. Next, we

normalize the data so that each value lies between zero and one, which makes things

a bit easier on the neural network. Next, since Keras can’t work with “Q”, “W”,… labels

directly, we need to binarize these: every label is converted to an output vertex with each

Chapter 9 Examples

296

index corresponding to one possible character, with its value set to one or zero, so that

“Q” would become “[1, 0, 0, 0,…],” “W” would become “[0, 1, 0, 0,…],” and so on. We save

this conversion as we’ll also need it to perform the conversion back to characters again

during application of the model. Next, we construct the neural architecture (which is

relatively simple, in fact), and start training the model. If you run this script, you’ll get an

output as follows:

Using CNTK backend

Selected GPU[0] GeForce GTX 980M as the process wide default device.

Train on 1665 samples, validate on 555 samples

Epoch 1/10

C:\Users\Seppe\Anaconda3\lib\site-packages\cntk\core.py:361: UserWarning: 

your data is of type "float64", but your input variable (uid "Input4") 

 �expects "<class'numpy.float32'>". Please convert your data 

beforehand to speed up training.

 (sample.dtype, var.uid, str(var.dtype)))

 �32/1665 [..............................] - �ETA: 36s - loss: 3.0294 -

acc: 0.0312

 �64/1665 [>.............................] - �ETA: 22s - loss: 5.1515 -

acc: 0.0312

[...]

1600/1665 [===========================>..] - �ETA: 0s - loss: 7.6135e-04 -

acc: 1.0000

1632/1665 [============================>.] - �ETA: 0s - loss: 8.3265e-04 -

acc: 1.0000

1664/1665 [============================>.] - �ETA: 0s - loss: 8.2343e-04 -

acc: 1.0000

1665/1665 [==============================] - �3s 2ms/step - loss: 8.2306e-

04 - acc:

 1.0000 - val_loss: 0.3644 - val_acc: 0.9207

Chapter 9 Examples

297

We’re getting a 92 percent accuracy on the validation set, not bad at all! The only

thing that remains now is to show how we’d use this network to predict a CAPTCHA

(“apply.py”):

from keras.models import load_model

import pickle

import os.path

from glob import glob

from random import choice

from functions import *

from constants import *

with open(LABELS_FILE, "rb") as f:

 lb = pickle.load(f)

model = load_model(MODEL_FILE)

We simply pick a random training image here to illustrate how predictions

work. In a real setup, you'd obviously plug this into your web scraping

pipeline and pass a "live" captcha image

image_files = list(glob(os.path.join(CAPTCHA_FOLDER, '*.png')))

image_file = choice(image_files)

print('Testing:', image_file)

image = cv2.imread(image_file)

image = process_image(image)

contours = get_contours(image)

letters = get_letters(image, contours)

for letter in letters:

 letter = cv2.resize(letter, MODEL_SHAPE)

 letter = np.expand_dims(letter, axis=2)

 letter = np.expand_dims(letter, axis=0)

 prediction = model.predict(letter)

 predicted = lb.inverse_transform(prediction)[0]

 print(predicted)

Chapter 9 Examples

298

If you run this script, you should see something like the following:

Using CNTK backend

Selected GPU[0] GeForce GTX 980M as the process wide default device.

Testing: generated_images\NHXS_322.png

N

H

X

S

As you can see, the network correctly predicts the sequence of characters in the

CAPTCHA. This concludes our brief tour of CAPTCHA cracking. As we’ve discussed

before, keep in mind that several alternative approaches exist, such as training an OCR

toolkit or using a service with “human crackers” at low cost. Also keep in mind that you

might have to fine-tune both OpenCV and the Keras model in case you plan to apply

this idea on other CAPTCHA’s, and that the CAPTCHA generator we’ve used here is still

relatively “easy.” Most important, however, remains the fact that CAPTCHA’s signpost

a warning, basically explicitly stating that web scrapers are not welcome. Keep this

intricacy in mind as well before you set off cracking CAPTCHA’s left and right.

Even a Traditional Model Might Work A s we’ve seen, it’s not that trivial to
set up a deep learning pipeline. In case you’re wondering whether a traditional
predictive modeling technique such as random forests or support vector machines
might also work (both of these are available in scikit-learn, for instance, and are
much quicker to set up and train), the answer is that yes, in some cases, these
might work, albeit at a heavy accuracy cost. Such traditional techniques have a
hard time understanding the two-dimensional structure of images, which is exactly
what a convolutional neural network aims to solve. This being said, we’ve set up
pipelines using a random forest and about 100 manually labeled CAPTCHA images
that obtained a low accuracy of about 10 percent, though enough to get the
answer right after a handful of tries.

Chapter 9 Examples

	Chapter 9: Examples
	9.1 Scraping Hacker News
	9.2 Using the Hacker News API
	9.3 Quotes to Scrape
	9.4 Books to Scrape
	9.5 Scraping GitHub Stars
	9.6 Scraping Mortgage Rates
	9.7 Scraping and Visualizing IMDB Ratings
	9.8 Scraping IATA Airline Information
	9.9 Scraping and Analyzing Web Forum Interactions
	9.10 Collecting and Clustering a Fashion Data Set
	9.11 Sentiment Analysis of Scraped Amazon Reviews
	9.12 Scraping and Analyzing News Articles
	9.13 Scraping and Analyzing a Wikipedia Graph
	9.14 Scraping and Visualizing a Board Members Graph
	9.15 Breaking CAPTCHA’s Using Deep Learning

