
PROGRAMMING IN C

1

PROGRAMMING IN

C

CONTENT AT A GLANCE

www.EngineeringBooksPdf.com

PROGRAMMING IN C

2

MODULE 1

Unit 1 : Basics of Programming
Unit 2 : Fundamentals
Unit 3 : C Operators

MODULE 2

unit 1 : Input Output Statements
unit 2 : Control Structures
unit 3 : Program Looping

MODULE 3

Unit 1 : Functions
Unit 2 : Variables and Storage Classes

MODULE 4

Unit 1 : Arrays
Unit 2 . Strings

Module 5

Unit 1 : Pointers
Unit 2 : Macros and Preprocessors

Module 6

Unit 1 : Structures
Unit 2 : Unions

TABLE OF CONTENTS

MODULE 1

www.EngineeringBooksPdf.com

PROGRAMMING IN C

3

UNIT 1: Basics of Programming

1.1 Introduction
1.2 Problem Solving Techniques
1.3 Algorithm

1.3.1 Properties of an Algorithm
1.3.2 Basic Statements used and Examples

1.4 Flow chats
1.4.1 Types of Flowcharts
1.4.2 Symbols used in Flowcharts
1.4.3 Writing Expressions in Computer Language
1.4.4 Examples

1.5 Programming by using Simple Flowcharts
1.5.1 Adding first N Numbers
 1.5.2 Fahrenheit Scale Convert into Celsius Scale
 1.5.3 Area and perimeter of a Triangle

 1.6 Questions
 1.7 Programing Exercise.

Unit 2 : C Fundamentals

2.1 What is C ?
2.2 Program Structure in C
2.3 Executing a C program
2.4 C character set
2.5 Identifiers and Keywords

2.5.1 Keywords
2.6 Basic Data Types
2.7 Modifiers to Basic Data Types
2.8 Constants

2.8.1 Integer constants
2.8.2 Decimal Integer Constants
2.8.3 Octal Integer Constants
2.8.4 Hexadecimal Integer Constants
2.8.5 Unsigned and Long Integer Constants
2.8.6 Floating Point Constants
2.8.7 Character Constants
2.8.8 String Constants

2.9 Variables

2.9.1 Variable Declarations
2.9.2 Assigning Values to Variables
2.9.3 Declaring a variable as constant

2.10 Questions
2.11 Programing Exercise.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

4

Unit 3 : Operators In C

3.1 Introduction
3.2 Arithmetic Operators
3.3 Relational Operators
3.4 Logical Operators
3.5 Conditional Operator
3.6 The size of Operator
3.7 Precedence of Operators
3.8 Questions
3.9 Programing Exercise

MODULE 2

unit 1 : Input Output Statements

1.1 Introduction
1.2 Formatted I / O Functions
1.3 The printf() Function

1.3.1 Application of printf() Function
1.3.2 Escape Sequence in printf() Function
1.3.3 Minimum Field Width Specifier (MFWS)

 1.3.4 The Precision Specifier
1.4 The scanf() Function
1.5 Unformatted I / O Function
1.6 Character Input/Output(I/O)
1.7 String I / O
1.8 Questions
1.9 Programming exercises

unit 2: Control Structures

2.1 Introduction
2.2 The if – else statement
2.3 Nested -ifs
 2.3.1 The if -else - if Ladder
2.4 Switch Statement
 2.4.1 Rules of Switch Statement
 2.4.2 Difference Between if Statement and Switch Statement
2.5 Questions
2.6 Programming Exercise.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

5

unit 3:Program Looping

3.1 Loops
3.2 The for loop

3.2.1 The for Loop Variations
3.2.2 The Infinite Loop
3.2.3 The Comma Operator in The for Loop
3.2.3 Declaring Variables Inside The for Loop
3.2.4 The Nested for Loop

3.3 While Loop
3.3.1The Infinite while Loop

3.4 Do-while Loop
 3.4.1 Limitation of Do-while Loop
3.5 Break Statement

3.5.1 Break Statement Within Loops
 3.5.2 Can break Statement be Used Inside if Construct
3.6 Continue Statement
3.7 Goto and Labels
3.8 Questions
3.9 Programming Exercise

MODULE 3

Unit 1 : Functions

1.1 Introduction
1.2 What is a Function?
 1.2.1 Functions are Used in C for the Following Reasons
1.3 Structure of Function
 1.3.1 Function Definition
 1.3.2 Function Prototypes
 1.3.3 Function Invocation
1.4 Types of Arguments
1.5 Types of Functions
 1.5.1 A Function With No Arguments And No Return Value
 1.5.2 A Function With No Arguments and Returns a Value
 1.5.3 A Function With Arguments and Returns No Value
 1.5.4 A Function With Arguments and Returning a Value
1.6 Questions
1.7 Programing Exercise

Unit 2 : Variables and Storage Classes

www.EngineeringBooksPdf.com

PROGRAMMING IN C

6

2.1 Local variables
2.2 Global Variables
2.3 Call by Value and Call by Reference

2.3.1 Call by Value
2.3.2 Call by Reference

2.4 Recursion
2.5 Storage Class

2.5.1 Local or Automatic Variables
2.5.2 Global or External Variables
2.5.3 Static Variables
2.5.4 Register Variables

2.6 Questions
2.7 Programming Exercise

MODULE 4

UNIT 1: Arrays

1.1 Introduction
1.2 Defining an Array

1.2.1 Declaring Single Dimensional Array
1.2.2 Array Index

1.3 Initialization of One Dimensional Array
1.3.1 Compile Time Initialization
1.3.2 Run Time Initialization

1.4 Entering Data Into The Array
1.5 Reading Data From Array
1.6 The Size of an Array
1.7 Multidimensional Arrays

1.7.1 Declaration of Two-dimensional Array
1.7.2 Two-Dimensional Array Initialization

1.8 Processing a Two Dimensional Array
1.8.1 Entering Data into Two Dimensional Array
1.8.2 Printing data of Two Dimensional Arrays

1.9 Passing Arrays as Arguments
1.10 Questions
1.11 Programing Exercise

UNIT 2: Strings

2.1 Introduction
2.2 Declaring a string

www.EngineeringBooksPdf.com

PROGRAMMING IN C

7

2.3 Initializing a String
2.3.1 Type 1
2.3.2 Type 2

2.4 Initialization After Declaration
2.5 String Constants Versus Character Constants
2.6 Input data to string

2.6.1 Reading Strings Using scanf ()
2.6.2 Reading Strings using gets()

2.7 Print strings
2.7.1 Printing strings using printf()
2.7.2 Printing strings using puts()

2.8 Built-in String Functions
2.9 C Character Functions
2.10 Questions
2.11 Programing Exercise

MODULE 5

Unit 1 : POINTERS

1.1 Introduction
1.2 How variables are stored in memory?
1.3 What is a Pointer?
1.4 Pointer Declaration

1.4.1 Pointer Declaration Styles
1.4.2 Multiple Declarations

1.5 Pointer Initialization
1.5.1 The Address of Variables
1.5.2 Null Pointers
1.5.3 Understanding pointers

1.6 Pointer Expressions
1.7 Pointer Arithmetic

1.7.1 Pointer increment and decrement
1.7.2 Pointer Addition and Subtraction
1.7.3 Pointer Multiplication and Division

1.8 Pointers and Function
1.8.1 Call by Reference
1.8.2 Call by Value

1.9 Pointers and Arrays
1.9.1 Pointers and One Dimensional Array
1.9.2 Pointers and Strings

1.10 Questions
1.11 Programing Exercise

www.EngineeringBooksPdf.com

PROGRAMMING IN C

8

Unit 2 : Macros and Preprocessors
2.1 Introduction
2.2 Preprocessor Directives
2.3 Macro Substitution Directives

2.3.1 Simple Macro Substitution
2.3.2 Macro Inside the Quotes
2.3.3 Macros With Parameters
2.3.4 Undefining a Macro

2.4 File Inclusion
2.5 Questions
2.6 Programing Exercise

MODULE 6

Unit 1: STRUCTURES

1.1 Introduction
1.2 Defining a Structure
1.3 Declaring Structure Variables
1.4 Accessing Structure Members
 1.4.1 Assigning Values to the Members

1.4.2 Structure Initialization
1.5 Questions
1.6 Programing Exercise

unit 2:Unions

2.1 Introduction
2.2 Declaration of Union
2.3 Working With Unions
2.4 Difference between Structures and Unions
2.5 Questions
2.6 Programing Exercise

www.EngineeringBooksPdf.com

PROGRAMMING IN C

9

MODULE 1

Unit1 : Basics of Programming

1.1 Introduction

Computer programming is a set of instructions through which one tells
the computer to do the desired task. This set of instructions written in
human readable computer language is called Source Code. Every program
has two parts namely code and data. There are two models of
programming namely Structured Programming and Object Oriented
Programming. In Structured Programming codes are executed one after
one in a serial fashion. Example for this is ‘C’ Language. In object
oriented programming, data is accessed through objects. There is no
single flow. Here objects freely interact with one another by passing
messages.

1.2 Problem Solving Techniques

To develop the solution for the given problem, the following programming
techniques are used.

Problem solving techniques
i) Algorithm

It is a set of logical procedure steps to solve the problem.

ii) Flow Charts

www.EngineeringBooksPdf.com

PROGRAMMING IN C

10

It is a diagrammatic representation of the sequence of operation for a
given problem.

iii) Pseudo codes
These are the instructions written in ordinary English using
mathematical and logical symbols to display the program logic.

iv) Decision Tables
A decision table consists of many independent conditions with several
actions, written in table format to solve the given problem.

1.3 Algorithm

The word ‘Algorithm’ is the name of one Persian author meaning rules of
restoration and reduction. Once the problem is analyzed, its solution is
broken into a number of sample steps. A problem in a finite sequence is
called an algorithm.
1.3.1 Properties of an Algorithm

i. Finiteness: An algorithm must always terminate after a finite
number of steps.

ii. Definiteness: Each step must be clearly defined that actions
carried out must be unambiguous.

iii. Input: Input should be provided at the beginning of algorithm.
iv. Output: Algorithm must produce on or more output.
v. Effectiveness: All the operations defined must be sufficiently basic

that they can be done exactly in finite length of time manually.

1.3.2 Basic Statements Used and Examples

i. Algorithm always begins with the word ‘Start’ and ends with the word

‘Stop’
ii. Step wise solution is written in distinguished steps. This is as shown in

example 1.1
Start
Step 1:
Step 2:
Step 3:
.
.
.
Step n:
End

Example 1.1 Structure of an Algorithm

www.EngineeringBooksPdf.com

PROGRAMMING IN C

11

iii. Input Statement: Algorithm takes one or more inputs to process. The
statements used to indicate the input is Read a or Input b. This is
illustrated in example 1.2

Let a , b be the names of the Input
Input a or Read a
Input b or Read b
Where a and b are variable names.

Example 1.2 Format of Input Statement in Algorithm

iv. Output Statements: Algorithm produces one or more outputs. The

statement used to show the output is output a or print b. This is
illustrated in example 1.3

Syntax: Output variable name
 Print variable name

For example output a or print a

output b or print b
where a and b are variable names.

Example 1.3 Format of output Statement in Algorithm

v. Assignment Statements: Processing can be done using the
assignment statement.

i.e. L.H.S = R.H.S
 On the L.H.S is a variable.

While on the R.H.S is a variable or a constant or an expression. The value
of the variable, constant or the expression on the R.H.S is assigned in
L.H.S. The L.H.S and R.H.S should be of the same type. Here ‘ = ’ is
called assignment operator. This is illustrated in example 1.4

Let the variables be x, y. The product be z this can be represented by as

Read x, y
Z = x * y

Example 1.4 Format of Assignment Statement in Algorithm

vi. Order in which the steps of an algorithm are executed is divided in to 3

types namely

i) Sequential Order
ii) Conditional Order
iii) Iterative Order

www.EngineeringBooksPdf.com

PROGRAMMING IN C

12

i) Sequential Order
Each step is performed in serial fashion I.e. in a step by step procedure
this is illustrated in example 1.5

Task : Write an algorithm to add two numbers.

Step 1 : Start
Step 2 : Read a
Step 3 : Read b
Step 4 : Add a , b
Step 5 : Store in d
Step 6 : Print d
Step 7 : End

Example 1.5 Format of Sequential order Algorithm

ii) Conditional Order
Based on fact that the given condition is met or not the algorithm selects
the next step to do. If statements are used when decision has to be
made. Different format of if statements are available they are

a) Syntax :

 if (condition)
Then {set of statements S1}

Here condition means Boolean expressions which evacuates to TRUE or
FALSE. If condition is TRUE then the statements S1 is evaluated. If false
S1 is not evaluated Programme skips that section. This is illustrated in
example 1.6

Task : Write an algorithm to check equality of numbers.
Step 1 : Start
Step 2 : Read a, b
Step 3 : if a = b, print numbers are equal to each other
Step 4 : End

Example 1.6 Format of ‘ if ’ Conditional order Algorithm

b) Syntax – if else (condition)

if (condition)
Then {set of statements S1}

else
 Then {set of statements S2}

Here if condition evaluates to true then S1 is executed otherwise else
statements are executed. This is illustrated in example 1.7

Task : Write an algorithm to print the grade.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

13

Step 1 : Start
Step 2 : Read marks
Step 3 : Is marks greater than 60 ?
Step 4 : if step 3 is TRUE

print ’GRADE A’
Step 5 : Other wise

print ’GRADE B’
Step 6 : End

Example 1.7 Format of Conditional order Algorithm
c) Syntax – Nested if else (condition)

If (condition 1)

Then S1
 Else
 If (condition 2)
 Then S2
 Else
 Then S3

Here if and else condition is in a nested fashion this is more suited for the
programs have been multiple conditions. This is illustrated in example 1.8

Task : Write an algorithm to find grades of the marks.

Step 1 : Start
Step 2 : Read marks
Step 3 : Is marks greater than 60 ?
Step 4 : if step 3 is TRUE

print ’GRADE A’
Step 5 : else if marks greater than 50 less than 60
print ’GRADE B’
Step 6 : else print ’GRADE C’
Step 7 : End

Example 1.8 Format of nested if else Conditional order
Algorithm.

iii) Iterative Order

Here algorithm repeats the finite number of steps over and over till
the condition is not meet. Iterative operation is also called as
looping operation. This is illustrated in example 1.9

 Example 1.9 : Add ‘n’ natural numbers till the sum is 5.

Step 1 : Start
Step 2 : set count to 0
Step 3 : add 1 to count
Step 4 : if count is less than 5,

www.EngineeringBooksPdf.com

PROGRAMMING IN C

14

 Repeat steps 3 & 4
Step 5 : otherwise print count
Step 6 : End

Example 1.9 Format of iterative order Algorithm.

1.4 Flow Charts

Algorithm for large problems becomes complex and there by difficult to
write the code. Problem analysts found ‘Flow charts’ an easier way to
solve the problem. Here each step is represented by a symbol and also
contains a short description of the process steps within the symbol. Flow
charts are linked by arrows. The other names of flow chart are flow
diagram, process chart, and business flow diagram etc., most often it is
called by name flow chart only. Flow charts can be used for following
aspects

i.Define and analyze

 ii.Build step by step picture of a process
iii.To find the areas of improvement in the process

Advantages
i. Communication – it is better way of communicating the logic of a

program solution.
ii. Effect analysis – with the help of flow charts problem can be analyze in

a effective way
iii. Effective coding – flow charts acts as a blue print during the system

analysis
iv. Proper debugging – flow chart helps in debugging process.

Limitations

i. Alterations and modifications: If alterations are required, the flowchart
may require re-drawing completely.

1.4.1Types of Flowcharts

Flow charts can be broadly classified in to two types

i) system flow charts
These are used by system analyst to describe the data flow and operation
in a data processing cycle. System flow chart defines the broad
processing in organizations showing the origin of data filing structure,
processing to be performed and output to be generated.

ii) Program flow chats
Program flow charts are used by programmers. It is used to describe the
sequence of operations and decisions for a particular problem. Generally

www.EngineeringBooksPdf.com

PROGRAMMING IN C

15

Read a

to solve any of the programs belonging to COBOL, C, C++, Java. . etc.,
program flow charts are used.

1.4.2 Symbols Used in Flowcharts

The flow chart being symbolic representation standard symbols is used for
each specific operation. These symbols are used to represent the
sequence of operations and flow of data and documents required for
programming. Flow should be from top to bottom. The most commonly
used symbols are shown in the figure 1.1

Start or end of the programmer

Computational steps or processing function of
program

 Input or output operation

 Decision making and branching

 Connector or joining of two parts of program

 Subroutine

 Database

 Document printout

 Figure 1.1 Flowchart symbols

1.4.3 Writing Expressions in Computer Language

i. To read the input ;
i. The following symbol is used to read one or more

inputs.

ii. Here ‘a’ is the variable where the value of Input is
stored.

ii. To produce output :

i. The following symbol is used to print one or more
outputs.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

16

 Start

Read a

 Stop

 c = a + b

Print A

ii. Here ‘a’ is the variable where the value of Output is

stored.
iii. Assignment operator

The result of arithmetic operation is stored in a variable. This is
represented as below. This is illustrated in example 1.10

1. Let a and b be inputs
2. Operation addition
3. Result is stored in variable c

Example 1.10 Assignment operator.

1.4.4 Examples
i) Draw a flowchart to find greater of 2 numbers

 Yes No

Example 1.11 Flowchart of greatest of 2 numbers

Start

Read a, b

Is a < b

Stop

Print a Print b

www.EngineeringBooksPdf.com

PROGRAMMING IN C

17

Start

Stop

S = S + 1

Start

READ n

 A = 1

Sum = Sum+A*A

Initialize
Count C=0
Sum S=0

Is count
C=50?

Is a =n?

Print Sum

Stop

A = A+1

Print Sum S

ii) Write a flowchart to add natural numbers from 1 to 50

 No yes

 Example 1.12 Flowchart to find sum of natural numbers.

1. 5 Programming by Using Simple Flowcharts

To understand the concept of programming using flowcharts, consider the
below examples.

1.5.1 Adding First N Numbers

1.5.2 Fahrenheit Scale Convert into Celsius Scale

www.EngineeringBooksPdf.com

PROGRAMMING IN C

18

Solution: Formula:- C = (F-32)/1.8 where F is Fahrenheit value and C
is Celsius value.

1.5.3 Area and Perimeter of a Triangle

Solution: Formula for calculating the area of a triangle with the length of
the three sides as a, b, c is given by)cs(*)bs(*)as(*sA , where s is

the semi-perimeter of the triangle,
2

cbas
 . The perimeter of the

triangle is given by P = a+b+c.

Step 1: [Input the three sides of triangles

 Input A,B,C
Step 2: [Check the validity of given inputs and compute the area if the
inputs valid]
 IF ((A+B)>C OR (B+C)>A OR(C+A)>B) then
 S (A+B+C)/2

START

CENTI (FARH-32)/1.8

PRINT CENTI

READ FARH

END

Start
Input
a, b, c

2
cbas

)cs(*)bs(*)as(*sA

Output
A,P

End

P=2*s

www.EngineeringBooksPdf.com

PROGRAMMING IN C

19

 AREA = SQRT(S*(S-A)*(S-B)*(S-C))
 Write “Area of triangle is “,AREA
 ELSE
 Write “Given inputs are invalid”

Step 3: [End of algorithm]
 End.

1.6 Questions

1.Explain problem solving techniques in brief
2.What is an algorithm and how it is presented?
3.Define flowchart. State its advantages and limitations.
4.Explain various symbols of flowchart.

1.7 Programing Exercise

1.Write an algorithm and draw a flowchart to add the following

sequence
a. 1, 3 , 5, 7, 9 . . . N (series of odd numbers)
b. 2, 4 , 6, 8, 10 . . . N (series of even numbers)

2.Draw flowchart and algorithm to find gross salary.
3.Write an algorithm and flow chart to determine whether the given

integer array is palindrome or not
4. Write a flow chart to find the sales price of a product using the

formula sales price = cost price of a product + profit of 10%

MODULE 1

Unit 2 : C Fundamentals

2.1 What is C ?

C is a programming language developed at AT & T laboratories of USA in
1972 by Dennis Ritchie in 1970. It was initially implemented on the system

www.EngineeringBooksPdf.com

PROGRAMMING IN C

20

that used UNIX operating system. C is a midlevel computer language. C is
a nice blend of high level languages and low level assembly language. C
code is portable. C language position in the areas of programming
languages is shown in Table2.1

 High Level Language ADA
 PASCAL
 COBOL
 FORTRAN
 BASIC

 Middle Level JAVA
 C++
 C

 Low Level Assembly Language

 Table 2.1 Arena of programming Languages

Note that Portability means that it is easy to adapt software written for
one type of OS to run on another type.

Important Features of C Language
i. C is a system programming language which provides flexibility for
writing compilers, operating systems, etc.
ii. It can also be used for writing the application programs for scientific,
engineering and business applications.
iii. C is famous for its portability, meaning that program written in C for
one computer can be easily loaded to another computer with little or no
changes.
iv. C supports variety of data types like integers, float point numbers,
characters, etc.
v. C is a procedure oriented language which is most suited for structured
programming practice.
vi. It provides a rich set of built in functions

2.2 Program Structure in C

To accomplish the given task programs are written and it is executed in
Turbo C/C++ compiler. The structure of the program is given below.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

21

i. The Documentation Section: It consists of a set of comment lines
giving the name of the program, the author and other details which
the programmer would like to use later. The comments are enclosed
in a C program using /* and */ .

ii. The Preprocessor directive or Link section: It provides instruction to
the compiler to link some functions or do some processing prior to
the execution of the program. It is also used to define symbolic
constants of the program.

 Header file used by the example is a standard input/output

file (stdio.h).
 programs must contain an #include line for each header file
 There are two punctuation forms for head file.

1. #include <stdio.h>
2. #include “stdio.h”

iii. Global Declaration Section : There are some variables that are

used in more than one function. Such variables are called global
variables and are declared in this section that is outside of all
other functions.

iv. The main() function section : Every C program must have one
main() function. This section contains two parts, declaration part
and executable part. The declaration part declares all the variables
used in the executable part. There is at least one statement in the
executable part. These two parts must appear between the
opening and closing braces. The program execution begins at the
opening brace and ends at the closing brace. The closing brace of
the main function is the logical end of the program. All statements
in the declaration part and executable parts must end with a
semicolon.

Documentation Section

Preprocessor Directive or Link Section

Global Declaration Section

 main() Function Section

 {

 }

Declaration Part

Executable Part

Sub program Section
Or
User Defined Function Section

#include<stdio.h>
main()
{ int a,b;
 clrscr();
 printf(“Enter two
numbers”);
 scanf(“%d%d”, &a,&b);
 sum = a + b;
 printf(“Sum = %d”, sum);
}

/* Sample C Program */

www.EngineeringBooksPdf.com

PROGRAMMING IN C

22

v.Sub program Section : It contains all the user defined functions

that are called in the main() function. User defined functions are
generally placed immediately after the main function, although
they may appear in any order.

vi. All sections except the main() function may be absent when they
are not required in any C program.

vii. Note that each of these topics are explained in detail in the

following chapters of the book.

2.3 Executing a C program

Executing a C program involves a series of following steps.

i. Creating a program
ii. Compiling the program
iii. Linking the program with functions that are needed from the C

library.
iv. Executing the program

It is represented in the below flowchart.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

23

In MS DOS :

 For Compiling press Alt-F9.

For Compiling & Running the program press Ctr-F9.
For viewing the results press Alt-F5.

Important points to remember:

Program Code

System Ready

Enter program

Edit Source program

Source Program

Compile Source program
C Compiler

Syntax
Errors?

Link with System Library System Library

Execute Object Code

Logic & Data
Errors?

Correct Output

Stop

Input Data

Data Error
Logic Error

Executable Object Code

 Object Code

www.EngineeringBooksPdf.com

PROGRAMMING IN C

24

1. Every C program requires a main() function. Use of more than one
main() is illegal. The place of main() is where the program
execution begins.

2. The Execution of the function begins at the opening brace and ends
at the closing brace.

3. C programs are written in lowercase letters. However uppercase
letters may be used for symbolic names and constants.

4. All the words in a program line must be separated from each other
by at least one space or a tab, or a punctuation mark.

5. Every statement must end with a semicolon.
6. All variables must be declared for their type before they are used in

the program.
7. Compiler directives such as define and include are special

instructions to the compiler, so they do not end with a semicolon.
8. When braces are used in the program make sure that the opening

brace has corresponding ending brace.
9. C is a free form language and therefore proper form of indentation

of various sections would improve the legibility of the program.

2.4 C character set

Every language has its own character set. The character set of the C
language consists of basic symbols of the language. A character indicates
any English alphabet, digit or special symbol including arithmetic
operators. The C language character set includes

1. Letter, Uppercase A ….. Z, Lower case a….z
2. Digits, Decimal digits 0….9.
3. Special Characters, such as comma, period. semicolon; colon:

question mark?, apostrophe‘ quotation mark “ Exclamation mark !
vertical bar | slash / backslash \ tilde ~ underscore _ dollar $
percent % hash # ampersand & caret ^ asterisk * minus – plus +
<, >, (,), [,], {, }

4. White spaces such as blank space, horizontal tab, carriage return,
new line and form feed.

2.5 Identifiers and Keywords

Identifiers are the names given by user to various program elements such
as variables, functions and arrays. The rules for identifiers are given below.

i. Letters, digits and underscore can be used.
ii. Must not start with a digit.
iii. Avoid using underscore at the start of identifier
iv. Identifier cannot be same as reserved word (Key Word) or C library

function names

www.EngineeringBooksPdf.com

PROGRAMMING IN C

25

v. Identifiers are Case sensitive. For example india is different from
India.

Examples of Valid and Invalid Identifier are given in example2.1
 Valid Identifiers:

1) X1x
2) Count_2
3) Num1

 Invalid Identifiers:

I) 5thstandard : first character must be a letter
II) “Sam” : illegal character (“ ”)
III) Emp-no : illegal character(-)
IV) Reg no : illegal character (blank space)

Example 2.1: Valid and Invalid Identifiers

Identifiers can be arbitrarily long. Some C compliers recognize only first 8
characters. As a rule an identifier should contain enough characters so
that its meaning while reading is apparent. On the other side an excessive
number of characters should be avoided.

2.5.1 Keywords

Key words or Reserve words of the C language are the words whose
meaning is already defined and explained to the C language compiler.
Therefore Reserve words can not be used as identifiers or variable names.
They should only be used to carry the pre-defined meaning. For example
int is a reserve word. It indicates the data type of the variable as integer.
Therefore it is reserved to carry the specific meaning. Any attempt to use
it other than the intended purpose will generate a compile time error. C
language has 32 keywords. Following are some of them

auto extern sizeof
break floatn static
case for struct
Char
const continue

got0
if
int

switch
typedef
union

Default
do
double

long
register
return

unsigned
void
volatile

else short while

enum signed

Some compilers may also include some or all of the following keywords.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

26

Basic Data Types
int, char, float,

double

Modifiers
long, signed,

unsigned

ada far near
asm fortran pascal
entry huge

2.6 Basic Data Types

C supports five fundamental data types: Character, Integer, Floating-Point,
Double floating-Point, and valueless. These are denoted as char, int, float
double, void, respectively, ’void’ is typically used to declare as function as
retuning nill value. This issue is discussed in subsequent chapters. The
table 2.2 given details about fundamental data types.

Data Type Description Typical memory

requirements
int integer quantity 2 bytes or one word (varies

from one compiler to another)
char single character 1 byte
float floating-point number (i.e., a

number containing a decimal
point andor an exponent)

1 word (4 bytes)

double double-precision floating-
point number (i.e., more
significant figures, and an
exponent which may be
larger in magnitude)

2 words (8 bytes)

 Table2.2 Fundamental data types

2.7 Modifiers to Basic Data Types

Modifiers are used to alter the meaning of basic data types to fit various
needs. Except the type void, all others data type can have various
modifiers preceding them

List of modifiers used in C are:

i) Signed
ii) Unsigned
iii) Long
iv) Short

Table 2.3 shows the list of modifiers that can be used with each basic data
types.

 +

www.EngineeringBooksPdf.com

PROGRAMMING IN C

27

 Character Integer Floating Point
 char unsigned int Float
 signed char signed char Double
 unsigned char unsigned char Long Double
 longint
 Signed longint

Data Types Modifiers
Memory Requirement
Bits Byte

 Character i) Char
ii) signed char
iii) unsigned char

8
8
8

1
1
1

 Integer i) int
ii) signed int
iii) unsigned int
iv) short int
v) long int
vi) signed long int
vii) unsigned long int

16
16
16
16
32
32
32

2
2
2
2
4
4
4

 Floating point i) float
ii) double
iii) long double

32
64
128

4(6 digits
ofprecision)

8(10 digits of
precision)

16(10 digits of
precision)

Table 2.3 Modifiers and their memory requirements

2.8 Constants

There are four basic types of constants in C. They are integer constants,
floating-point constants, character constants and string constants. Integer
and floating point constants represent numbers. They are also called
numeric- type constants.

 2.8.1 Integer constants

An integer constant is an integer valued number. It consists of sequence
of digits. Integer constants are divided into three different number
systems. They are decimal constants (base 10), Octal constants (base
8) and hexadecimal constants (base 16). All the integer constants have
to follow the set of rules given below.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

28

(i) Constant must have at least one digit.
(ii) Must not have decimal point.

(iii) Constant can be preceded by minus (-) sign, to indicate negative
constants.

(iv) Positive integer constants can be preceded by either positive sign
or no sign.

(v) Commas and blank spaces can’t be included with in the constant.
(vi) The value of constant must not exceed specified minimum and

maximum bound. Generally for 16bit computer, the integer
constant range is -32768 to 32767. For 32 bit computer the range is
much larger.

Now let us consider each type of integer constants individually.

2.8.2 Decimal Integer Constants

 A decimal integer constant consists of any combination of digits taken
from the set 0 to 9. If the constant consists of two or more digits, the first
digit must be other than 0. In the example 2.2 certain valid and invalid
decimal integer constants are shown.

Valid decimal integer constants:
0 1 743 32767 8888

Invalid decimal integer constants
080 First digit cannot be zero
50.3 Illegal character (.)
12,542 Illegal character (,)
25 35 60 Illegal character (Blank Space)

Example 2.2 Valid and invalid decimal integer constants

2.8.3 Octal Integer Constants

An octal integer constant consists of combination of digits taken from the
set 0 through 7. However the first digit must be 0, in order to identify the
constant as an octal number. In the example 2.3 some valid and invalid
octal integer constants are shown.

Valid octal integer constants
00 06 0753 0663

Invalid octal integer constants
543 Does not begin with zero
07865 Illegal character (8)
06, 593 Illegal character (,)
06.512 Illegal character (.)

www.EngineeringBooksPdf.com

PROGRAMMING IN C

29

Example 2.3 Valid and invalid octal integer constants

2.8.4 Hexadecimal Integer Constants

A hexadecimal integer is identified by ox or OX. Hexadecimal integer
constant consists of digits taken from the set of 0 to 9 and letters taken
from the set from from A to F (either upper or lower case). The letter a to
f or A to F represent the decimal values from 10 to 15 respectively i.e.,
a=10, b=11, c=12, d=13, e=14 and f=15. In the example 2.4 some
valid and invalid hexadecimal integer constants are shown.

Valid hexadecimal integer constants:
0x0 0x1a 0x1BEC 0x7FFF

Invalid hexadecimal integer constants
0x16.8b Illegal character (.)
563c Does not begin with 0 or 0x
0x7bcg Illegal character (g)
0x12.53 Illegal character (.)

Example 2.4 Valid and invalid hexadecimal integer constant.

For most of the PC’s the typical maximum value of decimal integer
constant is 32767. This is equivalent to 77777 in octal or 7FFF in
Hexadecimal.

2.8.5 Unsigned and Long Integer Constants

Unsigned integer constant can be identified by assigning the letter U at
the end of the constant. Unsigned integer constant magnitude may
exceed the magnitude of integer constant by factor of two. Long integer
constants exceed the magnitude of ordinary integer constant. It can store
up to four bites. Long integer constant cab be identified by appending L to
l (upper or lower case) at the end of constant. An unsigned long integer is
specified by UL or ul (upper or lower case) at the end of constant. Several
unsigned and long integer constants are shown in the example 2.5

Constant Number system
50000u unsigned decimal
0598671243 decimal (long)
0123456789 decimal (unsigned long)
0123456 octal (long)
OX50000U hexa decimal (unsigned)
OXFFFFFUL hexa decimal (unsigned long)

Example 2.5 long, unsigned long integer constants.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

30

2.8.6 Floating Point Constants

These constants are also called as ‘real constants’. The real constant can
be written in two forms namely factorial form and exponential form. If the
value of the constant is either too small or too large the exponential form
is used. The interpretation of a floating-point number in exponential form
is same as scientific notation, except that base 10 is replaced by the letter
E (or e). Thus the number 1.5 x 10 -3 can be written as 1.5 E -3 or 1.5 e -

3. This is equivalent to 0.15e-2 or 15e-4. Etc.,
 In the exponential form the part of the constant before ‘e’ is called
exponent. This is shown in example 2.6
 3.5 e + 5
 Mantissa Exponent

 Example 2.6 Exponential form of real constant.

The rules for constructing real constants are as follows.

(i) Must have at least one digit
(ii) Must have decimal point
(iii) Can be either positive or negative
(iv) Default sign is positive
(v) No comma’s or blanks are allowed with in a constant
(vi) The range of real constant expressed in exponential form is 3.4 e

+ 38 to 3.4 e -38

(a) Valid Real Constants
Some examples of valid real constants are given below.

0.01, 1.5, 825.053,
12E8, 12e8, 12e+8,12e-8, 0.65E-3

(b)Invalid real constants

Some examples of valid real constants are given below

1 either decimal joint or exponent point must be

present
1,000.0 illegal character (.)
53e10.3 exponent must be integer cot can’t contain a decimal

point
13 E 15 illegal character (blank space) in exponent part

The quantity 2 X 10 4 can be represented in any of the following ways

2000 2e4 2E4 2e X 4
0.2e5 .2e5 20e3 20.E+3

www.EngineeringBooksPdf.com

PROGRAMMING IN C

31

Similarly the quantity 8.026 x 10 -18 can be represented in any of
the following ways
8.026E-18, 0.8026e-17, 80.26c-19 0.00008026e-13

Each floating point constant occupies typically 2 words (8 bytes) memory.
Some version of C permits long floating point constant by appending
letter (l or L) at the end of constant. (e.g. 0.123456789E-3L). The
precision of floating point constants in dependent on compiler used.
Virtually all compilers permit at least 6 significant figures and some even
permit up to eighteen significant powers.

2.8.7 Character Constants

A character constant is a single alphabet a single digit or a single
special symbol enclosed in apostrophes (i.e. Single quotation marks).
Here both quotation marks should point to left for example is ’A’ valid
character constant where as ‘A’ is not. Most computers and virtually all
personal computers make use of ASCII (i.e. American standard code for
information interchange) character set, in which each individual character
is numerically encoded with its own unique 7-bit combination (2 7 = 128
different characters) ASCII table is given in appendix-1. Table in
appendix-1 shows the ASCII character set and corresponding decimal
equivalent of 7-bit combination. This allows character type data items to
be compared with one another. A few examples of character constants
and these corresponding values are given in example 2.7

 Constant Value
 ‘A’ 65
 ‘b’ 98
 ‘3’ 51
 ‘ ’ (blank space) 32

Example 2.7 Some character constants and their corresponding
ASCII values

These values will be same for all the computers that utilize ASCII
character set. There values will be different for the computers that utilize
an alternate character set. For example IBM mainframe computers utilize
EBCDIC (extended information code) character set, in which each
individual character is numerically encoded with its unique 8-bit
combination EBCDIC is entirely different from ASCII character set.

2.8.8 String Constants

String constants consist of any number of consecutive characters enclosed
in (double) equation marks. This is shown in example 2.8

www.EngineeringBooksPdf.com

PROGRAMMING IN C

32

“green” “Rs95.50” “Hi \n How are \n you” “ ”
(empty string)

Example 2.8 String constants

The string “Hi \n How are \n You” is printed as

 Hi
 How are
 You ?

Because the escape sequence new line character ‘\n’ is embedded in the
string. Data types range is given in the below table

Table 2.4 The range of data types

2.9 Variables

A variable is an identifier that may be used to store data value. A value or
a quantity which may vary during the program execution can be called as
a variable. Each variable has a specific memory location in memory unit,
where numerical values or characters can be stored. A variable is
represented by a symbolic name. Thus variable name refers to the
location of the memory in which a particular data can be stored. Variables
names are also called as identifiers since they identify the varying
quantities.

For Ex : sum = a+b. In this equation sum, a and b are the identifiers or
variable names representing the numbers stored in the memory locations.
Rules to be followed for constructing the Variable names(identifiers)

1. They must begin with a letter and underscore is considered as a
letter.
2. It must consist of single letter or sequence of letters, digits or
underscore character.
3. Uppercase and lowercase are significant. For ex: Sum, SUM and
sum are three distinct variables.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

33

4. Keywords are not allowed in variable names.
5. Special characters except the underscore are not allowed.
6. White space is also not allowed.

 2.9.1 Variable Declarations

In the program data types are written as given below.

 (i) Integer - int
(ii) Floating point - float
(iii) Double floating point - double
(vi) Character - char

Assigning an identifier to data type is called type declaration. In other
words a declaration associates a group of variables with a specific data
types. All variables must be declared before they appear in executable
statements. The syntax of variable declaration and some examples are
given below. The syntax of variable declaration and some examples are
given below.

Syntax :
 Data type ‘variable’
For example:

int a; float c; char name;
 int sam; double count;

If two are more variables of the same data type has to be declared they
can be clubbed as shown in example given below.

i. int a; intb; intc;
 this is same as
 int a, b, c;

ii. float d; float e; float f;

 this can be written as
 float d, e, f;

short int a, b, c ;
 long int r, s, t ;
The above declarations cab also be written as :

 short a, b, c;
 long r, s, r;

2.9.2 Assigning Values to Variables

Values can be assigned to variables using assignment operator “=”.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

34

Syntax:
 Variable name = value;

For Example: :a = 10; int lvalue = 0;
It is also possible to assign a value to a variable at the time the variable is
declared. The process of giving initial value to the variable is called
initialization of the variable.
For Example:
 int a=10, b=5;
 float x=10.5, y=1.2e-9

The data item can be accessed in the program simply by referring to the
variable name. Data type associated with the variable cannot be changed.
However variables hold the most recently assigned data. This is shown in
the example2.9 given below.

 C program contains the following lines

 Int a, b, c;

Char d;
- - -
a = 3;
b = 5;
c = a + b ;
- - -
a = 4;
b = 5;
c = a - b ;

 Example 2.9 nature of variables.

Here a, b, c are integer variables and d is a char-type variable. This type
declaration is fixed throughout the program. In the initial lines. Integer
quantity 3 is assigned to a, 5 is assigned to b, sum of a and b is assigned
to c. character ‘a’ is assigned to d. these values will be retained till new
values are assigned. In the last lines values are redefined to variables as
shown in the example 2.9. Integer 4 is assigned to a, replacing earlier
value 3; then 2 is assigned to b, replacing earlier value 5; then the
difference between a & b i.e. 2 is assigned to c. Replace earlier value 8.
finally character ‘w’ is assigned to d, replacing earlier character d.

2.9.3 Declaring a variable as constant

We may want the value of the certain variable to remain constant during
the execution of the program. We can achieve this by declaring the
variable with const qualifier at the time of initialization.
For example,

 const int tax_rate = 0.30;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

35

 The above statement tells the compiler that value of variable must not be
modified during the execution of the program. Any attempt change the
value will generate a compile time error.

2.10 Questions

1. Give classification of c character set
2. State the rules for identifiers. Are uppercase letters equivalent to

lowercase letters? Can digits be included in an identifier name? Can
any special characters be included?

3. What are keywords in c ? Can they be used as variable names? Justify
your answer.

4. Explain basic data types along with their qualifiers.
5. Give classification of constants and explain them.
6. What are variables and how are they classified ?

2.11 Programing exercise

1. Which of the following are invalid variable names and why?
Determine which of the following are valid identifiers. If invalid, explain
why.

a) record1
b) $tax
c) name-and-address
d) l r e c o r d
e) name-and-address
f) f i l e – 3
g) name and address
h) 123-45 -6789
i) return

2) Write appropriate declarations for each group of variables and arrays.
(a) Integer variables: p, q
Floating-point variables: x , y , z
Character variables: a, by c

(b) Floating-point variables: root 1 , root2
Long integer variable: counter
Short integer variable: f l a g

(c)Integer variable: index
Unsigned integer variable: cust-no
Double-precision variables: gross, tax, net
(d) Character variables: current, l a s t
Unsigned integer variable: count
Floating-point variable: error

www.EngineeringBooksPdf.com

PROGRAMMING IN C

36

(e) Character variables: f i r s t , l a s t
80-element character array: message
3. Find which of the following are valid identifiers. If invalid justify your
answer.

a. Float
b. 1record
c. Do
d. Data of birth
e. Date-of-birth
f. Date_of_birth
g. $num

4 Determine which of the following numerical values are valid constants.

If it is valid specify whether it is real, int or character. If not justify
your answer.

2.4 0.72
2.5 75(d)
2.6 OX12C
2.7 OXabc123g
2.8 O178
2.9 9.3e12
2.10 0.9E0.8
2.11 0.8e+5
2.12 O127a

5 Determine which of the following are valid character constants and
string constants

2.13 ‘ a ’
2.14 “ a ”
2.15 { a }
2.16 “ tree $”
2.17 ‘ hello c ’
2.18 ‘ /n ’

6 Write appropriate declaration for each group of variables given and
assign the values from the given set.

2.19 Integer variable : num, b, first
2.20 Floating point : d, river, name
2.21 Character : coin, reg_no
2.22 Short integer variable : tree
2.23 Long integer variable : pen
2.24 Double precision variable : book

{ 0, 8, 71, ‘e’, 51.2, 25e2, 11.7652, 0.005, 2.88X10 -12, 8.5x 10
5, error, ‘b’}

MODULE1

www.EngineeringBooksPdf.com

PROGRAMMING IN C

37

UNIT 3. Operators IN C

3.1 Introduction

C has a large number of built in operators. An operator is a symbol which
acts on operands to produce certain result as output. The data items on
which operators act upon are called ‘operands’ For example in the
expression a+b; + is an operator, a and b are operands. The operators
are fundamental to any mathematical computations.

1. Based on the number of operands the operator acts upon, Operators
can be classified as follows:

a. Unary operators: acts on a single operand. For example: unary
minus(-5, -20, etc), address of operator (&a)

b. Binary operators: acts on two operands. Ex: +, -, %, /, *, etc
c. Ternary operator: acts on three operands. The symbol ?: is called

ternary operator in C language. Usage: big= a>b?a:b; i.e if a>b,
then big=a else big=b.

Based on the functions, operators can be classified as given below in the
table3.1
 Operators

Arithmetic Relational Assignment Logical Special

Unary Sizeof
 Binary Conditional
 Table 3.1 Classification of Operators

3.2 Arithmetic Operators

Arithmetic operators are used to perform numerical operators in C. They
are divided into two classes namely, Unary and Binary arithmetic
operators.

Unary operators:

 Operators Actions

- Unary minus
+ + Increment
- - Decrement

Binary operators:

 Operator Action

+ Addition

www.EngineeringBooksPdf.com

PROGRAMMING IN C

38

- Subtraction
* Multiplication
/ Division
% Modules

Unary Minus (-)
This symbol is used to indicate the negative sign of the value. For
example

 a = -10;
 b = -a;
Here the value -10 is assigned to a and the value-a to b.

Increment and decrement operator

The increment operator (+ +) adds 1 to its operand and decrement
operator (- -) subtracts one from its operand

To be precise

 Y = y + 1
 Is written as
 Y = y + +

These are two types of increment and decrement operators. They are

a. Prefix increment (++i)
b. Postfix increment (i++)
c. Postfix decrement (- -i)
d. Postfix decrement (I - -)

In the prefix increment, first increment and then do operation .In postfix
increment, first do the operation and then increment. In prefix
decrement first decrement and then do operation. In postfix decrement,
first do the operation and then decrement. This is shown in the example
3.1

Let the integer variable ‘ I ’ is variable one.

(i) i.e. int i= 1;
 Print f (“ i = %d \n”, i);
Print f (“ i = %d \n”, ++i); //prefix increment
Print f (“ i = %d /n”, i);

Output
 i = 1
 i = 2
 i = 3

www.EngineeringBooksPdf.com

PROGRAMMING IN C

39

Explanation :
In the first statement original value of i is displayed. In the second
statement since prefix is used, first i is incremented i.e. ++i = i +1, I =
2. Then the value is printed hence i = 2.
In the third statement, final value is retained and displayed.

(ii) Let i = 1;
Print f (“ i = %d \n ”, i);
Print f (“ i = %d \n ”, i + +);
Print f (“ i = %d \n ”);

Output
 i = 1
 i = 1
 i = 2

Example 3.1 prefixes & postfixes operation.

Explanation: Here in the first statement, the original value of i is 1 is
printed. In the second statement since post increment is used. First the
operation on of printing is done.

 i.e. i = 1, then i is incremented. Find l value of i = 2, is displayed in
the third statement.

(iii) Arithmetic operation
There are five arithmetic operations in C. they are

 Operator Action

+ Addition
- Subtraction
* Multiplication
/ Division
% Modules

Addition, subtraction and multiplication operations are same as in normal
decimal operation. The division operator deserves special attention. For
division dividend operand must be non zero. Division of one integer by
another integer is referred as integer division. This operation results in
truncated quotient. (That is decimal portion of the quotient truncated). To
avoid this quotient storage operator data type must be float. This is as
shown the example 3.2

Case 1 :

int a = 5;
 int b = 2;
 int c ;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

40

 c = a / b;
 Print f (“the quotient c = %d \ n”, c);

Output:
The quotient c = 2

Case 2 :
int a = 5;

 int b = 2;
 float c ;
 c = a / b;
 Print f (“the quotient c = %f \ n”, c);

Output :
The quotient c = 2.5

Example 3.2: Integer division
The modulus operator (%) produces the reminder of the division. This is
as shown in the example 3.3

int a = 20;
 int b = 5;
 float c, d;
 c = a / b;
 d = a%b
 Print f (“the quotient = %f \ n”, c);
 Print f (“the reminder = %f \ n”, d);

Output :
The quotient = 4
The reminder = 0

Example 3.3 Operation of modulus operator

3.3 Relational Operators

 Operator Action

< Less than
< = Less than or equal to
> Greater than
= > Greater than or equal to

The associatively of these operators is from left to right. The following are
the two equality operators associated with the relational operators.

Operator Action

www.EngineeringBooksPdf.com

PROGRAMMING IN C

41

= = equal to
| = not equal to

Relational operators logically compare the values, according to condition
given in the program. If the condition is satisfied, this results in ‘true’
state otherwise ‘false’ state. True is represented by integer value 1 and
false is represented by integer value 0. This is shown in example 3.4

Example
 Let I, j, k be integer variables, Where the values are 1, 2, 3
respectively.

 Expression interpretation Values
 i < j true 1
 i < = j false 0
 (I + j) > 2 true 1
 j = = 2 true 1
 k i = 3 false 0

 Example 3.4 Relational operators operation.

3.4 Logical Operators

C has three types of logical operators. They are

 Operator Action

& & and
|| or
! not

In logical operation the operands are themselves logical. The individual
logical expression is compared, using logical operators. The result
evaluates which is represented by integer values 0 or 1. The logical AND
evaluates to true condition only if both of the operands are true. Logical
OR evaluates to true condition if any one of the condition is true. The
logical expression can be changed from false to true or from true to false
with negation operator. This is as shown in example 3.5

Logical OR (| |)

 Expression interpretation Value
 False || false false 0
 False || true true 1
 True || false true 1
 True || false true 1

Logical AND (& &)

www.EngineeringBooksPdf.com

PROGRAMMING IN C

42

 Expression interpretation Value
 False & & false false 0
 False & & true false 0
 True & & false false 0
 True & & false true 1

Logical Negation Operator (!)

 Expression interpretation Value
 ! (true) false 0
 ! (false) true 1

 Example 3.5: AND and OR operators conditions.

The OR and AND operators are used in practical examples as shown in
cases of example 3.6

Case 1 :
 Let a = 4, b = 5, c = 6
 (a < b) && (b < c)
 = (4 < 5) && (5 < 6)
 = true && true
 = true
 = value=1
Case 2 :
 Let a = 4, b = 5, c = 6
 (a < b) || (b > c)
 = (4 < 5) || (5 > 6)
 = true || false
 = true
 = value=1

Case 3 :
 Let a = 4, b = 5, c = 6
 ! (a < b) || (b > c)
 = ! (4 < 5) || (5 > 6)
 = ! (true) || false
 = false
 = value=0

Example 3.6: Functioning of OR, AND and NOT operators

3.5 Conditional Operator

C has special operator called ternary or conditional operator. It uses three
expressions. The general format of conditional operator is given below.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

43

Expression 1 ? Expression 2 : Expression 3
Evaluation of expression 1 is done logically.Hence it results either in true
(i.e. value = 1) or in false (I.e. value = 0) condition. If expression 1
results in true condition then expression 2 is evaluated this becomes the
value of expression 1. If expression 1 results in false condition, then
expression 3 is evaluated and this value is assigned to expression 1. This
is shown in example 3.7

case 1
 Let i be integer variable.
 int i = 0;

(i < 1) ? 0 : 50
Expression i < 1 is true

Hence the entire conditional expression takes the value 0. Otherwise the
value is 50

case 2
 Let a, b be integer variables.
 int a, b, c;
 a = 2, b = 5;

c = (a = = b) ? 5 : 10
Expression (a = = b) is evaluated and this results in false

condition. Hence the conditional expression takes the value 10.
i.e C = 10.

Example 3.7 Function of conditional operator
3.6 The sizeof Operator

The sizeof operator is one of the special operator. This operator returns
the size of its operand in bites. The sizeof operator always precedes its
operand. This is as shown in the example 3.8

Let int i ; float b; double d; char c; be the variables

Print f(“integer requires: %d bytes \n”, sizeof i) ;
Print f(“float requires: %d bytes \n”, sizeof b) ;
Print f(“double requires: %d bytes \n”, sizeof d) ;
Print f(“character requires: %d byte \n”, sizeof c) ;

Output
 Integer requires : 2 bytes
 Float requires : 4 bytes
 Double requires : 8 bytes
 Character requires : 1 byte

Example 3.8 Operation of sizeof operator.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

44

3.7 Precedence of Operators

The operators have precedence. This is given in table 3.2

Operator category Operators Associativity
unary operators - ++ ! sizeof (type) R+L
arithmetic multiply, divide and remainder * I % L-+R
arithmetic add and subtract + - L+R
relational operators < <= > >= L+R
equality operators != L-+R
logical and && L-+ R
logical or || L+R
conditional operator ? : R+L
assignment operators = += -= *= /= %= R+L

Table 3.2 Operator Precedence Groups

3.8 Questions

1) What is an operand and an operator?
2) What is syntax and symantics.
3) Give the classification of c language operators.
4) Explain with example arithmetic operators?
5) Explain unary operators?
6) Explain working of the conditional and size of operators
7) Illustrate with an example the different between equal to (= =)

and assignment operator (=).

3.9 Programing Exercise

1) Let a, b, c be integer variables having values 2, 4, 5 respectively

and x, y, z be float variables having values 1.1, 2.5, 3.6
respectively. Determine the value of each arithmetic statements.

1. a + b + c
2. a % b
3. a / b
4. a * (b / c)
5. x + y + z
6. x / (y + z)
7. x % y

www.EngineeringBooksPdf.com

PROGRAMMING IN C

45

4 Determine the value of each statement.

Let x = 2, y=5, z = 10
2.4 p = (x == 2)? y : z
2.5 q = (x >= 0)? y : z

MODULE 2

Unit 1 : Input Output Statements

1.1 Introduction

In c language input and output functions are accomplished through library
function. The header file for I/O function is <stdio.h>. In C there are two
types of I/O functions. They are console I/O and file I/O. In this chapter
only console I/O functions are dealt. Console I/ o function takes I/P from
keyboard and produces o/p on the screen. The console Input / Output
functions are also called as Standard input / output functions.

Classification:

The console I / O function are classified as shown below.

 Console I / O function

Formatted function unformatted function

 Scan f Char I / O String I / O functions
 Print f
 Getchar() putch()
 Putche() getch()
 Getche()

www.EngineeringBooksPdf.com

PROGRAMMING IN C

46

1.2 Formatted I / O Functions

Formatted I / O means reading and writing data in formats which are
desired by the user. The function used to input action is scanf() and
output action is printf().

1.3 The printf() Function

Printf() is used to print or display data on the console in a formatted form.
The format of printf() is printf(“control string”, list of arguments);
Control string contains the formatting instructions within quotes. This can
contain

(i) characters that are simply printed as they are
(ii) Conversion specifications with begins with format specifier (%)

sign.
(iii) Escape sequences.

Arguments values get substituted in the place of appropriate format
specifications. Arguments can be variables, constants, arrays or complex
expressions. The percentage (%) followed by conversion character is
called format specifier. This indicates the type of the corresponding data
item.
In the table 1.1 most frequently used format specifiers are listed.

Format specifier Meaning
% d or % i decimal integers
% u unsigned decimal integer
% x unsigned hexadecimal (lower case letter)
% X unsigned hexadecimal (upper case letter)
% o octal
% c character
% f floating point
% s strings
% lf double
% ld long signed integer
% lu long unsigned integer
% p displays pointer
% % prints a % sign
% e scientific notation (e lower case)
% E scientific notation (e upper case)

Table 1.1 Format specifiers

1.3.1 Application of printf() Function

The printf() function is used to print the different types of output. This is
given below.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

47

(i) Printing given data
(ii) The printf() statement cab be used without format specifier, just to
print the given data. This is as shown below.

printf(“ C prigramming is easy’);

Output:
C programming is easy

(iii) Printing numbers

To print integers % d or % I is used to print floating point % f is used.
This is as shown below.
 int a = 5
 float d = 10.3;

 printf(“the value of integer a is %d’, a);
 printf(“the value of float d is %f’, d);

Output:
The value of integer a is5
The value of float is 10.3

In the above instance instead of using two printf() statements only one
printf() can be used. This is as shown below

 printf(“the value of integer a is %d \n, the value of float d is
%f” a,d);

Output
The value of integer a is 5
The value of float is 10.3

(iv) Printing character / string data

To print character % c used and to print a string % s format specifier is
used. This is shown below.

print c(“this is % c %s”, ‘a’, “book”);

The characters are always given in single quote and strings are enclosed
in quote (double).

1.3.2 Escape Sequence in printf() Function

In addition to format specification, escape sequence can also be used in
printf(). These are specified in the control string portion of the printf()
and are used mainly for screen formatting. All escape sequence are

www.EngineeringBooksPdf.com

PROGRAMMING IN C

48

provided with slash (/). Since back slash is considered as an “escape”
character. These sequences are called escape sequences. These
sequences cause an escape from the normal interpretation of a string. So
that the next character (after blank slash) is recognized as having a
special meaning.

 Usage of \t moves the cursor to next tab problem
 \n makes the a cursor to go to new line.
 \r moves the cursor to the beginning of the line in which it is

currently placed.
 \a alters the user by sounding the inbuilt speaker of system.
 \b moves the cursor one position to the left of its current

opposition.
 The character of single quote and back slash can be printed by

using escape sequence \’, \”, \\ respectively. This is as shown in
example 3.1

(i) printf(“Teacher asked, \” did you understand ?\” ”);
This will print
Teacher asked, “did you understand?”

(ii) printf(“The sequence is a<b, where \’b\’ is > 0”);
This will print
The sequence is a<b, where ‘b’ is >0

(iii) printf(“Hi,\n How are \n You?”);

This will print

Hi
How are
You

Example 1.1 Escape Sequence Usage

1.3.3 Minimum Field Width Specifier (MFWS)

An integer placed between the % sign and format code is called minimum
field width specifier or % number format code; ex. %5d. If string or
number to be printed is longer than that minimum it will printed as such.
Minimum field width specifiers are used to make the O/P such that it
reaches the minimum length specified. This is done by padding. Default
padding is done with spaces. This is used most commonly produce table
in which column line up.

If we wish to pad the space (if any) with zeros, place zero before MFWS.
For example %d, will pad a number with ‘zeros’ if numbers is less than
five digits. So that the total length is 5. %d will pad a number with
‘apace’. If number is less than five digits. So that the total length is five.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

49

The following example demonstrates the working of minimum field width
specifier.

 Double count;
 Count = 10.51324; // here total digits are 8, includes dot (.)
operators.

 printf (“ %f” , count);
 printf (“ %10f” , count);
 printf (“ %010f” , count);

Output
 10.51324
 10.51324 // inserts 2 blank spaces. So that total length = 10
digits
 0010.51324 // inserts 2 zeros. So that total length = 10 digits

 Example 1.2 Minimum field width specifier

1.3.4 The Precision Specifier

Precision specifier follows minimum field width specifier (if given). It
consists of a period followed by an integer (i.e. for ex %5.1d). the way it
works depends upon data types used. When precision is applied to float
data, it determines the number of decimal places displayed. For example
% 8.5f displays a number at least 8 character width with four decimal
places. When precision is applied to string, the precision specifier species
maximum field length. For example %5.9S, displays a string at least five
and not exceeding of characters long. If string is longer than the
maximum field width the end character are truncated, so that string
length is equal to integer types. The precision specifier determines the
minimum number of digits. That appears for the given number. Leading
zeros are added to achieve the required number of digits. This is shown in
the example 1.3.

 printf(“5.4f\n”, 176.012543871);
 printf(“2.8d\n”, 5214);

printf(“8.12S\n”, “This is C language book”);

Output
176.012543871
00005214
This is C language book
Example 1.3: Precision specifier

1.4 The scanf() Function

www.EngineeringBooksPdf.com

PROGRAMMING IN C

50

The scanf() reads the input data from standard input device. i.e.
keyboard. The general format of the scanf() function is scanf(“format
string” list of arguments); where format string consists of format
specifiers and arguments consists of address of variables. To this
corresponding address the data read from keyboard is sent. The address
of the variable is denoted by ampersand symbol ‘&’ (it is called as
‘’address of the operator). Some format specifiers as shown in the table
1.1 is used. Example 1.4 shows how to work with scanf() function.

Note that the values that are supplied through keyboard must be
separated by either blank tabs or newlines. Escape sequences are not
included in scanf() function.

(i) To read integer data:
int i ;
- - -
scanf(“%d”, &i);

(ii) To read floating point data:
floatf;
- - -
scanf(“%f”, &f);

(iii) To read character data;

char sam, john;
- - -
scanf(“%c”, &sam, &john);

(vii) To read more than one data types at a time

int i;
float b;
char c;
string s;
- - -
scanf(“%d %f %c %s”, &i, &b, &c, &s);

Example 1.4: scanf() function

1.5 Unformatted I / O Function

A simple reading of data from keyboard and writing to I / O device,
without any format is called unformatted I / O functions. This is classified
as string I / O and character I /O.

1.6 Character Input/Output(I/O)

www.EngineeringBooksPdf.com

PROGRAMMING IN C

51

In order to read and output a single character character I / O functions
are used. The functions under character I / O are

(I) getchar()
(II) putchar()
(III) getch()
(IV) getche()

The getchar() function
Single characters can be entered into the computer using the C library
function getchar. The getchar function is a part of the standard C I/O
library. It returns a single character from a standard input device typically
a keyboard. The function does not require any arguments, though a pair
of empty parentheses must follow the word getchar.

The general syntax
 Character variable=getchar();
 Where character variable refers to some previously declared
character variable.Example:
 A C program contains the following statements

char c;
 …………….
 C=getchar();
The first statement declares that c is a character-type variable. The
second statement causes a single character to be entered from the
standard input device and then assigned to c. If an end-of-file condition is
encountered when reading a character with getchar function, the value of
the symbolic constant EOF will automatically be returned. (This value will
be assigned within the stdio.h file. Typically, EOF will be assigned the
value -1, though this may vary from one compiler to another).
 The getchar function can also be used to read multi character
strings, by reading one character at a time within a multi pass loop.
 int i, j;
 char a, b;
 i = 65;
 b = ‘d’
 j = getchar(); // I / O int data type into j
 a = getchar(); // I / O char data type into a
 putchar(i);

putchar(b);
putchar(a);
putchar(j);

 Output
 a
 d

www.EngineeringBooksPdf.com

PROGRAMMING IN C

52

 --- (according to user I / O)

Drawback with getchar() is that buffers the input until ‘ENTER’ key is
pressed. This means that getchar does not see the characters until the
user presses return.This is called line buffered input. This line buffering
many leave one or more characters waiting in the input queue, which
leads to ‘errors’ in interactive environment. Hence alternatives to
getchar() is used.

.
The putchar() function:
Single characters can be displayed using the C library function putchar.
This function is complementary to the character input function getchar.
The putchar function, like getchar, is a part of the standard C I/O library.
It transmits a single character to a standard output device. The character
being transmitted will normally be represented as a character type
variable. It must be expressed as an argument to the function, enclosed
in parentheses, following the word putchar.
 The general syntax is
 putchar(character variable)
where character variable refers to some previously declared character
variable.

A C program contains the following statements
 Char c;
 ………
 putchar(c);

If putchar() is called with integer value, the equivalent ASCII character is
displayed.

Alternatives to getchar()

The two common alternative functions to getchar() are

getch()
getche()

The getch() function reads a single character at a time and it waits for
key press. It does not echo the character on the screen. The getche() is
same as getch()/ but the key is echoed. This is illustrated below.

 char ch;
 Ch = getch() // let key press = k
 putchar(ch);

 Output

www.EngineeringBooksPdf.com

PROGRAMMING IN C

53

1.7 String I / O

In order to read and write string of characters the functions gets() and
puts() are used gets() function reads the string and puts() function takes
the string as argument and writes on the screen. This is illustrated below

 char name [50]
 puts (“Enter your name”);
 gets (name);
 puts(“ The name entered is “)

Output:
 Enter your name: Fredric /* string as entered by user*/
 The name entered is: Fredric

Note: Char name (50) is character array declaration. This is explained in
unit - Arrays

1.8 Questions

1.What are the commonly used input l output functions in C?
2.Explain the instructions to read and write a single character
3.What is the purpose of the printf() function? How is it used within a

C program? Compare with the putchar()
4.What is the purpose of the scanf() function? How is it used within a

C program? Compare with the getchar()
5.If escape sequences are given in the control string of printf()

statement how are they interpreted in the output?
6.Explain the difference with example getche(), getchar(), getch().

1.9 Programming Exercises

1. A C program contains the following statements:

 #include <stdio.h>
char a, b, c;

(a) Write appropriate getchar statements that will allow values for a, b
and c to be entered into the computer.
(b) Write appropriate putchar statements to output the values of a, b and
c

 2. A C program contains the following statements:
#include <stdio.h>
Variables - i, j , k;

Write an appropriate scanf function to enter numerical values for i, j and
k, assuming
(a) The values for i,j and k will be integers.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

54

(b) The value for i = decimal integer, j =floating point and k = character.
(c) The values for I and j = long integer and k =double floating point

 3. Write a programe to find the area of a square

 A C program contains the following statements:

#include <stdio.h>
i n t i, j;
long sum;
short scale;
unsigned U;
f l o a t data;
double data1;
char name;

For each of the following groups of variables, write a scanf function that will
allow a set of data items to be read into the computer and assigned to the
variables. Assume that all integers will be read in as decimal quantities.

(a) i,j, sum and scale (c) i,data and name
(b) i, j and U (d) data1,name,data1

 4. A C program contains the following statements.

#include <stdio.h>
char x, y, z;
Suppose that $ is to be entered into the computer and assigned to
a, * assigned to b and @ assigned to c. Show
how the input data must be entered for each of the following scanf

functions.
(a) scanf ("%c%c%c, &x, &y, &z) ;
(6) scanf("%c %c %c, &x, &y, &z);

 5. A C program contains the following statements:

#include <stdio.h>
int a, b;
long ia;
unsigned d;
float p;
double q;
char c;

For each of the following groups of variables, write a printf function that
will allow the values of the variablesto be displayed. Assume that all
integers will be shown as decimal quantities.

(a) a, b, and d (c) a,ia and c
(b) a, q,ia,

 A C program contains the following statements:

#include <stdio.h>
int i, j;
long ix;
unsigned U;
float x;
double dx;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

55

char c;
Write an appropriate printf function for each of the following situations,
assuming that all integers will be displayed as decimal quantities.

MODULE 2

UNIT 2: Control Structures

2.1 Introduction

www.EngineeringBooksPdf.com

PROGRAMMING IN C

56

In most of C programs that are encountered so far, the instructions
appeared in serial fashions. In reality C program requires a logical test to
be carried at some point in the program depending upon the outcome of
the logical test, one of several possible actions can be carried out. This is
called branching. The branching structure which controls the program flow
is called control structure. The classification of control structures is given
below.

Control structures

Conditional control structure Unconditional control structure
 (i) goto &labels
 (ii) Break
Decision Looping or (iii) Continue
Statements Iterative

Statements
(i) if-else statement (i) for loop statement
(ii) Switch statement (ii) while loop statement
 (iii) do-while statement

An expression such as x=0, printf(), or a=b+c becomes ‘statements’.
When it is terminated by semicolon, as shown below.

 x=0;
 printf(. . .);
 a=b+c;

Braces { and } are used to group statement into a block. So that they are
syntactically equivalent to a single statement. These braces are used to
group multiple statements in if, else, structures, while or for loops. In the
conditional controlled structure, a condition is given. This condition is
logically evaluated. Depending upon whether the condition evaluates to
either true or false state. The appropriate branching is taken.
Unconditional branching means transferring the control of the program to
a specified statement without any conditions. Let us study each one in
detail.

2.2 The if – else statement

The If – else statement contains a condition. It is logically evaluated. If it
evaluates to TRUE condition, then statements under if part is executed. If
the condition evaluates to FALSE state then statements under else part is
executed. Else clause is optional. The statement under if or else part can
be single or multiple statements. If multiple statements are used, they

www.EngineeringBooksPdf.com

PROGRAMMING IN C

57

must be embraced with the braces. The syntax of if – else statement is
given here.

Syntax: i) if (expression)

 Statement;
 else
 statement; /* else part is optional*/

ii) if (expression)
 {
 Statement1;

 Statement2;
 . . .

 Statement n;
 }

 else
 {
 Statement1;

 Statement2;
 . . .

 Statement n;
 }

Some valid forms of if are given below.

(i) if (x > 0)
printf(“%i”, x);

(ii) if (a > b)
printf(“ a is greatest ”);

 else
printf(“ b is greatest ”);

(iii) if (a = = b)

{
printf(“ a & b are equal ”)
printf(“ x/a is equal to x/b ”)
}

Some invalid forms of if are given below.

(i) if (a > b);
printf(“a is greatest”)

the semicolon at the end of condition, makes if (a >b) as

invalid.

(ii) if (a > b)

www.EngineeringBooksPdf.com

PROGRAMMING IN C

58

statement1;
statement2;
statement3;

Here multiple statements under if are not enclosed in braces.

(iii) if (a > b)

{
Statement 1;
statement 2;
 . . .
Statement n;
};

Here the ending brace has semicolon (;)

Usage of if else condition is illustrated in the following examples1 and 2.

Example1
Write a program to calculate greatest of 3 numbers.

/* Write a program to calculate greatest of 3 numbers */

 # include <stdio.h>
main()
{

int a, b, c;
printf(“Enter three numbers”);
scanf (“ %d %d %d “, &a, &b, &c);
if ((a > b) && (a > c))

 printf (“\n a is greatest”);L
if ((b > a) & & (b > c))

 print f (“\n b is greatest”);
if ((c > a) & & (c > b))

 print f (“\n c is greatest”);
}

Example2

Write a program to check a given number is odd or even.
/* program to check given number is either odd or even*/

 # include <stdio.h>
main()
{

int a;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

59

printf(“Enter the number to bechecked”);
scanf (“ %d” , &a);
if ((a%2) = = 0)
printf(“The given number is even”);
else
printf(“The given number is odd”);

}

2.3 Nested -ifs

Inside one if statement, if or if-else can be used. Such statements are
called nested if’s the structure is given below.

 if(a)
 {
 if (b)
 {
 Statement1;
 - - -
 Statement n;

}
 if (c)
 {
 Statement1;
 - - -
 Statement n;

}
 else

 {
 Statement1;
 - - -
 Statement n;

}
}
else
 {

 Statement1;
 - - -
 Statement n;

 }
The final else is associated with if (a) and not associated with if c,
because it is not in the same block.

2.3.1 The if -else - if Ladder

A common programming construction is the if-else-if staircase because of
its appearance. The general form is

www.EngineeringBooksPdf.com

PROGRAMMING IN C

60

if (expression)
 Statement:
else

if (expression)
 Statement:

else
if (expression)

 Statement:
 . . .

else
 Statement:

The condition are evaluated from top, towards down. As soon as a true
condition is found, the statement associated with it is executed and the
rest of the ladder is bypassed. If none of the conditions are true, the final
else is executed. If final else is not present, no action taken place if all
other conditions are false. This is given in the below example

include <stdio.h>
main()
{

int i;
i = 0;
clrscr();
printf(“Enter your choice (1-4);”);

s scanf (“ %d” , & i);
if (i == 1)
printf(“\n your choice is 1”);
else if (i = = 2)
printf(“\n your choice is 2”);
else if (i = = 3)
printf(“\n your choice is 3”);
else if (i = = 4)
printf(“\n your choice is 4”);
else
printf(“\n invalid choice”);

}

Output:

 Enter your choice (1-4): 2
 Your choice is 2.

Explanation: here the second condition (i ==2) is true. Hence the
following printf() is executed and control will come out of loop. If none of
the conditions is satisfied then final the statement is executed.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

61

2.4 Switch Statement

C has a multiple branch selection statements called switch. It tests the
value of an expression against a list of integer or character constants.
When a match is found the statements associated with that constants are
executed. The general format of switch is

switch (expression)

{
case constant1;
 Statement sequence
 break;
case constant2;
 Statement sequence
 break;
case constant3;
 Statement sequence
 break;

. . .
default
 Statement sequence
}

Switch, case and default are key words and statement sequence can be
single statement or a compound statement. If it is compound statement it
must be enclosed in braces.

The expression which is in switch, must evaluate to integer type. The
expression is switch can have int constant or char constant or expression
that evaluates to one of their constants. If character date type is used, its
equivalent integer value is considered. Floating point expressions are not
allowed in switch statement.

In case expression such as case constant1, case constant2, case
constant3, . etc the word constant 1 is called case labels or case prefixes.
The case label can either be integer or character constant. Each case label
must be distinct.

When a switch statement is executed, the expression is evaluated and
control is directly transferred to the group of statements where case-label
value matches with the value of expression statements under that case
label is executed the break statement ensures immediate exit from the
switch statement. If none of the cases are satisfied, the default statement
is executed. The default statement is optional. If none of the case are
satisfied and default case is also not present, then no action takes place.
To understand the functioning of switch-case statement a few programs
are given below.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

62

Example 1 write a program to check whether the enter the character is a
vowel, a last alphabet or consonant

/* program to check whether the enter the character is a vowel, a last
alphabet or consonant */

include <stdio.h>
main()
{
char ch()
printf(“\n Enter a lower case alphabeet (a-z);”);
scanf (“ %d” , & ch);
if (ch<’a’ || ch>’z’)
printf(“\n Character is not lower case alphabet”);
else
switch (ch)
{

case ‘a’ :
case ‘e’ :
case ‘i’ :
case ‘o’ :
Case ‘u’ :
printf(“\n Entered Character is vowel”);
break;
case ‘z’ :
printf(“\n Entered Character is last alphabet”);
break;
default;
printf(“\n Entered Character is consonant”);
}

}

Output: Enter a lower case alphabet (a – z): p entered character is
consonant.

Explanation: each case need not have its own statements. A set of case
can have common statements to be executed. This is as shown in the
above program. The default can either end with break or not. This
depends upon program structure.

include <stdio.h>
main()
{
int a()
printf(“\n Enter a an integer (10-13);”);
scanf (“ %d” , & a);
switch (a)

www.EngineeringBooksPdf.com

PROGRAMMING IN C

63

{
case 10 :
printf(“\n You have entered 10”);
break;
case 11 :
printf(“\n You have entered 11”);
break;
case 12 :
printf(“\n You have entered 12”);
break;
case 13 :
printf(“\n You have entered 13”);
break;
default;
printf(“\n Invalid choice”);
}

}
Output :
 Enter an integer : 11
 You have entered : 11

Note : observe here the case labels. This in accordance with the program
flow labels need not be always in the order of 1, 2, 3 . . etc.,

1. write a program to choose color using switch case statements.

/* a program to choose color using switch case statements */

include<stdio.h>
main()
{
 int a;
 printf(“ choose the color u like; red-11, blue-22, violet-13: ”);
 scanf(“%d “, &a);

 switch(a)
 {
 case 11:
 printf(“/n you have selected RED colour “);

 case 22:

printf(“/n you have selected BLUE colour “);

case13:

 printf(“/n you have selected VIOLET colour “);

default:
printf(“/n Invalid choice“);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

64

}
}

Output:
choose the color u like; red-11, blue-22, violet-13: 22

you have selected BLUE colour
you have selected VIOLET colour
Invalid choice

Analysis:
Observe here the out put. Since the user has entered the choice as 22 ,
expected out put is only the line you have selected BLUE color. But the
program has executed the case statements where a match is found and
all subsequent cases and default also. The reason is break clause is not
used. If break clause is used after each case , the problem is eliminated.
This is shown in the below example.

 /* a program to choose color using switch case statements */

include<stdio.h>
main()
{
 int a;
 printf(“ choose the color u like; red-11, blue-22, violet-13: ”);
 scanf(“%d “, &a);

 switch(a)
 {
 case 11:
 printf(“/n you have selected RED colour “);
 break;

 case 22:

printf(“/n you have selected BLUE colour “);
break;

case13:

 printf(“/n you have selected VIOLET colour “);
 break;

default:
printf(“/n Invalid choice“);
}

}
Output:
choose the color u like; red-11, blue-22, violet-13: 22
you have selected BLUE colour

2.4.1 Rules of Switch Statement

www.EngineeringBooksPdf.com

PROGRAMMING IN C

65

 The switch variable must be an integer or character type.
 Case labels must be constants of constant expressions.
 Case labels must be unique. No two labels can have the same

value.
 Case labels must end with a colon.
 The break statement transfers the program control out of the

switch
block.
 The break statement is optional. When the break is not written in

any
‘case’ then the statements following the next case are also executed
until the ‘break’ is not found.
 The default case is optional. If present, it will be executed when the
match with any ‘case’ is not found.
 There can be at most one default label.
 The default may be placed anywhere but generally written at the

end.
 When placed at end it is not compulsory to write the ‘break’ for it.
 We can nest the switch statements.

2.4.2 Difference Between if Statement and Switch Statement

No. If statement Switch statement
1

It checks whether the condition
is
true or false

It is multi-way decision
statement

2

It contains the condition which
will evaluates to true or false

It contains the variable whose
value is to be checked

3

It supports all types of
conditions

It supports checking only integer
and character values

4

Syntax:
if(condition)
{
//statements
}
else
{
//statements
}

Syntax:
switch(variable)
{
case value1:
break;
case value2:
break;
default:

2.5 Questions

1) Describe if-else statement.
2) In what way does switch statement differ from an if statement
3) Explain nested if-else statement execution
4) Write syntax for nested if-else statement.

2.6 Programming Exercises

www.EngineeringBooksPdf.com

PROGRAMMING IN C

66

1. Write a program to input two numbers from keyboard and find the
result of subtraction of greater number – smaller number.
2. Input a year from keyboard and determine whether it is leap year or
not.
3) Create a menu driven program to input a character from user and
Determine:
i. Whether it is alphabet or not.
ii. Whether it is in upper – case or not. Using switch case.
4) Write a program to compute net amount from the given quantity
purchased and rate per quantity. Discount @10% is allowed if quantity
purchased exceeds 100. Use the formula
Net Amount = (Quantity Purchased x Rate Per Quantity) – Discount

5) Write a program to compute the division from the given marks of 5
subjects. The division can be calculated as follows:

7) Write a program to compute the division
from the given marks of 5 subjects. The
division can be calculated as follows: -

Average Mark

Division

>=60 First
>=50 Second
>=40 Third
<40 Fail

www.EngineeringBooksPdf.com

PROGRAMMING IN C

67

MODULE 2

Unit 3: PROGRAM LOOPING

3.1 Loops

In the programming often there is a need to perform an action over and
over ie repeatedly, often with variations in the details each time we
repeat. This repetitive operation is done through the control structure
called loop or iteration. There are three types of looping, namely:

1. for loop
2. while loop
3. do-while loop

3.2 The for loop

A for loop is a block of code that iterates a list of commands as long as
the loop control condition is true. The syntax of for loop is

for(initialization;Test condition;loop expression)
 statement sequence

Syntax explanation:

(1) Initialization:
This is some kind of expression which initializes the control variable or
(index varaible) This statement is carried out only once before the start of
the loop. e.g. i = 0;

(2) Condition:
The condition is evaluated at the beginning of every loop and the loop is
only carried out while this expression is true. e.g. i < 20;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

68

(3) Loop expression
This is some kind of expression for altering the value of the control
variable. This expression is evaluated at the end of each iteration. In C it
can be absolutely anything. e.g. i++ or i *= 20 or i /= 2.3 ...

(4) Statement sequence
Statement sequence can consist only one statement or a group of
statements. If it contains a group of statements, they must be embraced
in braces({}).If it contains only one statement , braces need not be
enclosed.
Simple programs using for loop is given below
1. Write a program to print a word hello five times using for loop.
/* A program to print hello five times */

#include<stdio.h>
int main()
{
int i;
for(i=0; i<5; i++)

printf("Hello \n");

}

Output: Hello

Hello
Hello
Hello
Hello

Analysis:
Observe the program carefully. Inside the body of the main() function,
the statement declares an integer variable i.. In the for statement .the
first expression is initialization statement ie i=0, expression that initializes
the integer variable i to 0.

The second expression which is conditional expression in the for
statement is i<5. This expression returns TRUE value(=1)for i as long as
the relation indicated by the less-than operator (<) holds. As mentioned
earlier, the second expression is evaluated by the for statement each time
after a successful looping. If the value of i is less than5, which means the
relational expression remains true, the for statement will start another
loop. Otherwise, it will stop looping and exit.

The third expression in the for statement is i++ in this case. This
expression is evaluated and the integer variable i is increased by 1 each

www.EngineeringBooksPdf.com

PROGRAMMING IN C

69

time after the statement inside the body of the for statement is executed.
In other words, when the for loop is first encountered, i is set to 0, the
expression i<5is evaluated and found to be true, and therefore the
statements within the body of the for loop are executed. Following
execution of the for loop, the third expression i++ is executed
incrementing i to 1, and i<5 is again evaluated and found to be true, thus
the body of the loop is executed again. The looping lasts until the
conditional expression i<5 is no longer true. Summary of evacuation of
for statement is as given in the table below.
Loop
step

Initialization
expression i=0

Test condition
i<5 True/False

Loop expression
i++

Output

1 i=0 True i=1 Hello
2 i=1 True i=2 Hello
3 i=2 True i=3 Hello
4 i=3 True i=4 Hello
5 i=4 True i=5 Hello
6 I=5 False Stops execution

2. Write a program to convert 0 through 15integers to hex numbers.
/* program to convert 0 through 15integers to hex numbers */

#include <stdio.h>
main()

{
int i;
printf("Hex(uppercase)\t Hex(lowercase)\t Decimal\n");

 for (i=0; i<16; i++)
 printf("%X %x %d\n", i, i, i);

}
OUTPUT

Hex(uppercase) Hex(lowercase) Decimal
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
A a 10
B b 11
C c 12
D d 13
E e 14
F f 15

www.EngineeringBooksPdf.com

PROGRAMMING IN C

70

ANALYSIS

Observe the program carefully. Inside the body of the main() function,
the statement declares an integer variable i. The printf statement declares
format of the output on the screen. In the for statement .the first
expression is initialization statement ie i=0, expression that initializes the
integer variable i to 0.

The second expression which is conditional expression in the for
statement is i<16. This expression returns TRUE value(=1)for i as long as
the relation indicated by the less-than operator (<) holds. As mentioned
earlier, the second expression is evaluated by the for statement each time
after a successful looping. If the value of i is less than 16, which means
the relational expression remains true, the for statement will start
another loop. Otherwise, it will stop looping and exit.

The third expression in the for statement is i++ in this case. This
expression is evaluated and the integer variable i is increased by 1 each
time after the statement inside the body of the for statement is executed.
In other words, when the for loop is first encountered, i is set to 0, the
expression i<16is evaluated and found to be true, and therefore the
statements within the body of the for loop are executed. Following
execution of the for loop, the third expression i++ is executed
incrementing i to 1, and i<16 is again evaluated an d found to be true,
thus the body of the loop is executed again. The looping lasts until the
conditional expression i<16 is no longer true.

. The statement contains the printf() function, which is used to display the
hex numbers (both uppercase and lowercase) converted from the decimal
values by using the format specifiers, %X and %x.

3. Write a program to find simple interest for three sets of input.

/* calculation of simple interest for 3 sets */

main()
{
int p,n, count;
float r, si;
for(count = 1; count <=3; count = count +1)

{
printf(“Enter values of p,n and r”);
scanf(“%d %d %f”, & p, & n, & r);
si = p * n * r / 100;
printf(“Simple interest = Rs %f \n”, si);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

71

}
}

4. Write a program to print upper case and lower case alphabets using
using char data type in for loop.

/* a program to print upper case and lower case alphabets using using
char data type in for loop */

#include <stdio.h> /* library header */
main()
{

char ch;

for (ch = 'A' ; ch <= 'z' ; ch++)
 printf("%c\n" , ch);
}
This program demonstrates the for loop.

3.2.1 The for Loop Variations

For loop is a powerful programming tool. Many variations can be done in
the for loop. They are listed below.

1) for(i=1;i<4; i=i+1)
 Here in the initialization part instead of i=i+1, the statements i++ or
i+=1 can also be used.

2) for(i=1;i<4;)

{
 Printf(“ helo for loop”);
 i=i+1;
}

Here in the for loop statement increment is not given, but given in the
body of the statement. Semicolon after the condition is mandatory.

3) int i=2;

for(;i<4; i=i+1)
Printf(“ helo for loop”);

Here in the for loop statement initialization is not given, but given
before the statement. Semicolon before the condition is mandatory.

4) int i=2;

for(;i<4;)

{

www.EngineeringBooksPdf.com

PROGRAMMING IN C

72

 Printf(“ helo for loop”);
 i=i+1;
}

Here in the for loop statement initialization and increment is not given.
But both the semicolons are mandatory.

3.2.2 The Infinite Loop

In the for loop if conditional expression is absent, the condition is
assumed to be true. This turns out to be infinite loop. This is as shown
below.
 for(; ;)
If break statement is used inside the loop , infinite loop is terminated.
More about break is discussed in section3.5 of this unit.

3.2.3 The Comma Operator in The for Loop

The comma (,) operator is basically used in conjunction with for loop
statement. This permits two expressions to be used in initialization and
count section of the for loop. Only one test expression is allowed in the for
loop. The syntax of this is given below.
 for (expression1a, expression1b; expression2; expression3a,
expression3b)
Here expression 1a and expression 1b and expression 3a expression 3b
are separated comma operator.
For example consider the below for statement
 for(i=0,j=2;j<=0;j--,i++)
Here i and j are the two different variables used and they are separated
by comma operator. Operation of this is given in the below example:

#include <stdio.h>
main()
{
 int i, j;

 for (i=0, j=1; i<8; i++, j++)
 printf("%d - %d = %d\n", j, i, j - i);
}

OUTPUT:

1 - 0 = 1
2 - 1 = 1
3 - 2 = 1
4 - 3 = 1
5 - 4 = 1
6 - 5 = 1
7 - 6 = 1

www.EngineeringBooksPdf.com

PROGRAMMING IN C

73

8 - 7 = 1

3.2.4 Declaring Variables Inside The for Loop

In the initialization section of the for loop, Variable can be initialized
also. The scope of it limited to the block of code controlled by that
statement. Consider the example given below.

#include<stdio.h>
main()
{ int j;

for(int i=0; i<5;i++)
{
 j=i*i;
 printf(“The value of j is%d”,j);

}

 i=i+9; /*ERROR. i is not known here */
}

In the above example the integer variable i is declared inside the for
loop in the initialization part of it.. This i is limited only to that declared
loop. Outside the loop is unknown. If declared compiler shows error
message.

3.2.5 The Nested for Loop

The concept of using a loop within a loop is called nested loop. If a for
loop contains another for loop statement, such loop is called nested for
loop.. A nested for loop can contain any number of for loop statements
within itself. Usually only two loops are used. In this the first loop is called
outer loop and the second is called inner loop. These types of loops are
used to create matrix. In this the outer loop is used for counting rows and
the internal loop is used for counting columns. The syntax and example
program is given below.
SYNTAX:-
for (initializing ; test condition ; increment / decrement)

{
statement;

for (initializing ; test condition ; increment / decrement)
{
body of inner loop;
}

statement;
}

Example: Write a program to generate a matrix of order4*4 containg
symbol*(asterisk).

www.EngineeringBooksPdf.com

PROGRAMMING IN C

74

/*program to generate a matrix oforder4*4 containing
symbol*(asterisk)*/

#include
void main ()

{
int i, j;
clrscr ();
for (j=1; j<=4; j++) /*outer for loop*/
{
for (i=1; i<=5; i++) /*inner for loop*/
{
printf (“*”)
}
printf (“\n”);
}
getch ();
}

OUTPUT OF THIS PROGRAM IS

* * * *
* * * *
* * * *
* * * *

3.3 While Loop

The simplest of the three loops is the while loop. The while-loop has a
condition and the statements .The syntax is given below.

while (condition)
 {
 statements;
 }

The condition expression (something like (a > b) etc...) is evaluated first.
If the expression evaluates to True state i.e returns a nonzero value
(normally 1) the looping continues; that is, the statements inside the
statement block are executed. After the execution, the expression is
evaluated again. The statements are then executed one more time if the
expression still returns nonzero value. The process is repeated over and
over until the expression returns 0(False state).

The statement block, surround by the braces { and }.If there is only one
statement in the statement block, the braces can be discarded. Consider
an example of using the while statement.

1) Write a program to understand the use of while loop.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

75

 /* program Using a while loop*/

#include <stdio.h>
main()
{
int a;
printf("Enter a character:\n(enter x to exit)\n");
while (a != `x')
 {

a = getc(stdin);
putchar(a);

printf("\n");

}
printf("\nOut of the while loop. Bye!\n");
}

OUTPUT

Enter a character:
(enter x to exit)
i
H
x
x
Out of the while loop. Bye!

ANALYSIS

The char variable a is initialized before the the while Statement. In the
while condition the relational expression c !=`x' is tested. If the
expression returns 1, which means the relation still holds,the statements
under the while are executed. The looping continues as long as the
expression returns 1i.e returns True value. However when the user enters
the character x, which makes the relational expression return 0, the
looping stops.

3.3.1The Infinite while Loop

You can also make a while loop infinite by putting 1 in the expression
field, like this:

while (1) {
statement1;
statement2;
.
.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

76

.
}

Because the expression always returns 1, the statements inside the
statement block will be executed over and over— that is, the while loop
will continue forever. Of course, you can set certain conditions inside the
while loop to break the infinite loop as soon as the conditions are met.
The C language provides some statements, such as if and break
statements, that you can use to set conditions and break the infinite while
loop if needed. Details on the if and break statements are covered in Hour
10, "Getting Controls.

3.4 Do-while Loop

The while and for loops test the termination condition at the beginning of
the loop. By contrast, the do-while loop, tests at the bottom after making
each pass through the loop body; the body is always executed at least
once. The syntax of the do is

do
statement
while (expression);

First the statement is executed under the do clause, then expression in
the while is evaluated. If it is true, statement is executed and again the
while is evaluated and this looping process continues. When the
expression becomes false, the loop terminates. The do-while is much less
used than while and for. If the statement contains a set of statements,
they must be enclosed in the braces .consider the example to understand
the working of while-do loop.

1) Write a program to illustrate the working of do-while loop

/*working of Do-While loop*/

#include<stdio.h>
int main(void)
{
 int pass-word= 15;
 int code;
 int i=3;
 do
 {
 printf("Type the password to enter.\n");
 scanf("%d", &code);
 if (code==15)
 printf("Right code. You can Enter\n");

www.EngineeringBooksPdf.com

PROGRAMMING IN C

77

 else
 ("Wrong code. No Entry\n");
 i=i-1:
 }
 while(i!=0)

}

Output:

13
Wrong code. No Entry
15
Right code. You can Enter

Analysis:
Here do part is executed to know the password. If it is right, entry is
given otherwise not. Loop will repeat only for three set of inputs. For the
fourth set variable i value does not satisfy the while condition. Hence loop
is quit.

3.4.1 Limitation of Do-while Loop

 In Do-while, the loop the is executed as least once before checking the
validity condition. In Do-while structure entry to the loop is automatic
(even with invalid input).Choice is given only for the continuation of the
loop. Such problems are deemed to be lack of control. Example for such
problem is given below.

1) Write a program to illustuate the limitation of Do-While loop.

/* program to reverse a number entered by the user */

 #include <stdio.h>
 main()
 {
 int value, r_digit;
 printf("Enter the number to be reversed:\n");
 scanf("%d", &value);
 do {
 r_digit = value % 10;
 printf("%d", r_digit);
 value = value / 10;
 }
 while(value != 0);
 printf("\n");
 }
Output:
Enter the number to be reversed: 132

www.EngineeringBooksPdf.com

PROGRAMMING IN C

78

231
Enter the number to be reversed: 0
0

Analysis:
The above program reverses a number that is entered by the user. It
does this by using the modulus % operator to extract the right most digit
into the variable r_digit. The original number is then divided by 10, and
the operation repeated whilst the number is not equal to 0.If user enters
the number other than zero, program works. If user enters 0(zero), then
also the do part is executed, violating the condition at while. This means
its possible to enter a do { } while loop with invalid data. Hence it is
better to avoid the usage of Do-while statement. Its easy to avoid the use
of Do-while construct by replacing it with other constructs. The above
program can be written without Do-while construct. This is shown below.

/* rewritten code to remove construct */
 #include <stdio.h>
 main()
 {
 int value, r_digit;
 value = 0;
 while(value <= 0) {
 printf("Enter the number to be reversed.\n");
 scanf("%d", &value);
 if(value <= 0)
 printf("The number must be positive\n");
 }

 while(value != 0)
 {
 r_digit = value % 10;
 printf("%d", r_digit);
 value = value / 10;
 }
 printf("\n");
 }

Sample Program Output
 Enter the number to be reversed.
 -43
 The number must be positive
 Enter the number to be reversed.
 423
 324

3.5 Break Statement

www.EngineeringBooksPdf.com

PROGRAMMING IN C

79

The break statement is used to terminate loops or to exit from a switch. It
is used within loop structures namely for, while, do-while and switch
statement.
The syntax of break statement is

break;

The break statement is without any embedded expressions or

statements. The break statement is frequently used to terminate the
processing of a particular case within a switch statement. Usage of break
within switch is already explained in the unit 2 of Module 1.

3.5.1 Break Statement Within Loops

statement following the loop. A break within a loop is generally protected
within an if statement. This provides control towards the exit condition.
This depicted in the below example.

Example : The following examples illustrate the use of the break
statement in loops.
1) while (<expression>) {

<statement>
<statement>
if (<condition which can only be evaluated here>)
break;
<statement>
<statement>
}

// control jumps down here on the break
2) Write a program to illustrate the functioning of break statement inside a
for loop.

/* a program to illustrate the functioning of break statement inside a for
loop. */

#include <stdio.h>
int main()
{
 int i;
 for (i = 1; i < 10; i++)
 {
 printf_s("%d\n", i);
 if (i == 4)
 break;
 }
}

Output

www.EngineeringBooksPdf.com

PROGRAMMING IN C

80

1
2
3
4

Analysis:
Here break statement is given with respect to the if condition. When
variable i value gets equal to four, loop gets terminated because of break
statement.

3)Write a program to illustrate break statement within infinite for loop.
/* program to illustrate break statement whitin infinite for loop */

#include <stdio.h>
main()
{
 int t ;

 for (; ;)
 {
 scanf("%d" , &t);
 if (t==10)
 break ;
 }
 printf("End of an infinite loop...\n");

}

5) Write a program to illustrate break statement within infinite while loop.
/* Program to Break an infinite while loop.*/

 #include <stdio.h>

main()
 {
 int c;

 printf("Enter a character:\n(enter x to exit)\n");
 while (1)
 {
 c = getc(stdin);

if (c == `x')
break;

}
printf("Break the infinite while loop. Bye!\n");
}

OUTPUT
Enter a character:

www.EngineeringBooksPdf.com

PROGRAMMING IN C

81

(enter x to exit)
H
I
x
Break the infinite while loop. Bye!

3.5.2 Can break Statement be Used Inside if Construct

The break does not work with if. It only works only with in loops and
switches. After observing the sample programs where break is used in
conjunction with if structure inside the for loop and while loop, the
common wrong assumption is that the break statement can be used
inside if construct. Thinking that a break refers to an if construct when it
really refers to the enclosing while or for loop has created some high
quality bugs. This is illustrated in the example below.

#include <stdio.h>
int main()
{
 int i;
 printf(“Enter your choice from 1-3, where apple-
1,Orange-2, grapes- 3, Enter 4 to exit “);
scanf(“%d”,&i);
if(i==1)
Printf(“Your choice of fruit is Apple “);
if(i==2)
Printf(“Your choice of fruit is Orange“);
if(i==3)
Printf(“Your choice of fruit is Grapes“);
if (i == 4)
 break;
 }
}

/* This program reports error because break is used with if construct */

3.6 Continue Statement

Instead of breaking a loop, a need to stay in the loop but skip over some
statements within the loop may occur. To do this, the continue statement
is used. The continue statement takes the control to the beginning of the
loop bypassing the statements inside the loop which have not yet been
executed. The continue statement can only be used within the body of a
while, do, or for statement. For better control over the program, like a
break statement, continue is generally used in conjunction with if
structure within loops. When continue is used the next iteration of a do,
for, or while statement is determined as follows:

www.EngineeringBooksPdf.com

PROGRAMMING IN C

82

 In a while loop, jump to the test statement.
 In a do while loop, jump to the test statement.
 In a for loop, jump to the test, and perform the iteration. Then the

compiler reevaluates the conditional expression and, depending on
the result, either terminates or iterates the statement body

One good use of continue is to restart a statement sequence when an
error occurs. Using the continue statement, as well as the break
statement, may makes program hard to debug. Hence it is seldom used.
The format of using continue in while loop and some examples of
continue statement is given below.

while (<expression>)
 {

...
if (<condition>)
continue;
...
...
// control jumps here on the continue
}

3) Write a program to find the sum Using the continue statement in for
loop.
/* Using the continue statement */

#include <stdio.h>
main()
{
int i, sum;
sum = 0;
for (i=1; i<8; i++)
{
if ((i==3) || (i==5))
continue;
sum += i;
}
printf("The sum of 1, 2, 4, 6, and 7 is: %d\n", sum);
}

OUTPUT
The sum of 1, 2, 4, 6, and 7 is: 20

ANALYSIS:
Program is to calculate the sum of the integer values of 1, 2, 4, 6, and 7.
because the integers are almost consecutive, a for loop is built in lines
9_13. The statement sum += i; sums all integers from 1 to 7 except for 3
and 5,.3nad 5 are skipped in the for loop by using continue statement.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

83

This is done by evaluating the expression (i==3) || (i==5) in the if
statement. If the expression returns 1 (that is, the value of i is equal to
either 3 or 5), the continue statement is executed, which causes the sum
operation to be skipped, and another iteration to be started at the
beginning of the for loop. In this way, the sum of the integer values of 1,
2, 4, 6, and 7is obtained, but 3 and 5are skipped, automatically by using
continue statement in for loop. After the for loop, the value of sum, 20, is
displayed on the screen by the printf() function .

3) Write a program to find the odd numbers using continue statement in
while loop.

/* a program to find the odd numbers using continue statement*/

#include <stdio.h>
main ()
 {
 Int x;
 x = 0;
 while (x < 10)
 {
 ++x;
 if (x % 2 == 0)
 {
 continue;
 }
 printf ("%i is an odd number.\n", x);
 }

Output

1 is an odd number.
3 is an odd number.
5 is an odd number.
7 is an odd number.
9 is an odd number.

3.7 Goto and Labels

C provides the infinitely-abusable goto statement, and labels to branch to.
Formally, the goto statement is never necessary, and in practice it is
almost always easy to write code without it. A goto statement causes an
unconditional branching of the program l to the statement associated with
the label specified on the goto statement. A label has the same form as a
variable name, and is followed by a colon. The scope of a label is the
entire function. Label name must be unique for that program .Any
number of goto labels can be used inside the program, provided each one
of them is distinct. Format of goto statement is given below.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

84

for (...)
statement
for (...)
{

...
if (disaster)

goto error; /* Here semicolon is associated with the label
error*/

}

error:Statemnt; /* Here colon(:) is associated with the label error*/

Analysis:
Here error is a label name that tells the goto statement where to jump.
Label name is placed in two places: One is at the place where the goto
statement is going to jump (note that a colon must follow the label
name), and the other is the place following the goto keyword. The rules to
name a variable also applies to label also. Also, the place for the goto
statement to jump can appear either before or after the statement. Tehy
are called forward goto or backward goto statements respectively.

Goto statement must be used in seldom. The programs written with goto
are unreliable and hard to debug. The goto Statements are practically not
necessary, and it is almost always easy to write code without it. However
a goto may be necessary for exiting a loop from within a deeply nested
loop.
Such as breaking out of two or more loops at once. since it can only The
break statement be used from the inner most loop only, it cannot be
used instead of goto in nested structure. Functioning of the goto
statement is given in the below example.

1) Write a program to understand the functioning of the goto statement.

#include <stdio.h>
int main()

{
 int i, j;

 for (i = 0; i < 10; i++)
 {
 printf("Outer loop executing. i = %d\n", i);
 for (j = 1; j < 3; j++)
 {
 printf(" Inner loop executing. j = %d\n", j);
 if (i == 2)
 goto stop;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

85

 }
 }
 printf("Loop is quit. i = %d\n", i);

 stop: printf("Jumped to stop. i = %d\n", i);
}

Output:

Outer loop executing. i =0
Inner loop executing. j =1
Outer loop executing. i =1
Inner loop executing. j =2
Outer loop executing. i =2
Inner loop executing. j =1
Jumped to stop. I=2

In this example, a goto statement transfers control to the point labeled
stop when i equals 2.

3.8 Questions

1) Explain the working of for loop with example.
2) Explain the variations in for loop.
3) Explain the working of do – while loop with example.
4) Differentiate between do-while and while loop.
5) Explain goto, break and continue statements

3.9 Programing Exercise

1) Using while loop write a program to print natural numbers up to a
given number.

2) Using while loop write a program to ask the user to enter a series of
marks of a student. If the user enters –1, come out of the loop and
print the average mark.

3) Using while loop write a program to ask the user for a number. Print
the square of the number and ask a confirmation from the user
whether the user want to continue or not.

4) Using do while loop Write a program to print the sum of digit of a
given number

5) Using for loop write a program to print the odd numbers within a
given number.

6) Using for loop Write a program to add the even numbers within a
given number.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

86

MODULE 3

Unit 1 : Functions

1.1 Introduction

In C a large program can be divided into a number of smaller, complete
and independent subprograms. These subprograms possess self-
contained components, each of which has some unique, identifiable
purpose. This task is called modularization and each sub program is called
a module or a function. In other words a function is a complete and
independent subprogram that can be developed and tested
successfully. Functions are used (or invoked) by the main program or
other subprograms. Thus a C program can be modularized through the
intelligent use of such functions. This kind of approach to program
development is called modular approach. (C does not support other forms
of modular program development, such as the procedures in Pascal or the
subroutines in FORTRAN.)

1.3 What is a Function?

The function takes a data from main () function and returns a value. To
invoke a function call is made in the main () function. The function which
sends the data to the function is called as the Calling Function and the
function which is called by the calling function is called as the Called
Function. This is described as given below.

 Function 1 Function 2
 Sending the data

 Returning a value

Function 1 is the Calling Function 2 is the Called Function

To understand what a function is consider the program given below.

…………..
……………
Calling is
made

……………..
……………..
…………….
Finding
some value

www.EngineeringBooksPdf.com

PROGRAMMING IN C

87

 #include <stdio.h>
 int main (void)
 {
 printf ("Programming is interesting.\n");
 return 0;
 }
This program prints the message “Programming is interesting” at the
output terminal. The same program can be written using the function
concept as given below.

 #include <stdio.h>
 void printMessage (void)
 {
 printf ("Programming is interesting.\n");
 }
 int main (void)
 {
 printMessage ();
 return 0;
 }

Here the function called print Message () is used to print the message.
More about functions is dealt in the following sections.

1.2.1 Functions are Used in C for the Following Reasons

1. Many programs require that a particular group of instructions be
accessed repeatedly, from several different places within the program.
The repeated instructions can be placed within a single function, which
can then be accessed whenever it is needed. Thus the use of a function
avoids the need for redundant (repeated) programming of the same
instructions.

2. A different set of data can be transferred to the function each time it is
accessed.

3. Logical clarity is achieved by using functions in Programs.
4. Testing and correcting errors is easy because errors are localized.
5. The flow of program and its code are easily understandable since the

readability is enhanced while using the functions.
6. A single function written in a program can also be used in other

programs also.
7. A function also promotes portability since programs can be written that

are independent of system-dependent features.

1.2.2 Classification

www.EngineeringBooksPdf.com

PROGRAMMING IN C

88

C functions can be classified into two categories, namely library functions
and user-defined functions. The library functions are standard functions
available within C-Language library (built in functions) but user defined
function are functions that are created by the user. User defined functions
(UDF) usually use library functions to get the job done. Example of library
functions are printf and scanf and main is an example of user defined
function. This chapter deals in detail with user defined functions.

1.3 Structure of Function

The structure and usage of functions can be well understood by dividing it
into three sections namely:

1. Function definition
2. Function declaration
3. Function invocation

Detailed explanation of each section is given below.

1.3.1 Function Definition

The function definition is the C code that implements what the function
does. It contains two parts. The first part is function header and second
part is function body. Function definition has the following syntax

data type function name (arguments list)

{
function
header local declarations; function body

function statements;
return statement;

}

Consider the following example to understand the function definition in
detail.

int sum(int x, inty) //Function header
{
 int ans = 0; //holds the answer that will be returned
 ans = x+y; //calculate the sum
 return ans //return the answer
}

In the first line of the above code function header int sum (int x, inty)
It has four main parts

1. The name of the function i.e. sum

www.EngineeringBooksPdf.com

PROGRAMMING IN C

89

2. The parameters int x, int y, of the function enclosed in parenthesis
3. Return value type i.e. int
4. Function Body
Whatever is written with in { } in the above example is the body of the
function
Analysis:
Function header consists of three parts namely,

Function Header

 Data type function_name (arguement1, argument2,..)

1) Data type of the function
2) Function name
3) Arguments list

1) Data type

The data type in the function header tells the type of the value returned
by the function. This is also called as return type. Any of the basic data
type such as int, float, char etc may appear in the data type part of the
function. The data types are assumed to be of type int if they are not
shown explicitly. When a function is not returning any value it may be
declared as type void. For example,

(i) Void function name(…)

 int function name(…)
 float function name(…)
 char function name(…)

 function name(…)

(ii) Consider a function which just shows a message on the screen. In this
function there is no need to return any value to the calling program. The
data type of such function is void. This is a special specifier that indicates
absence of data type.

/* void function example*/
 #include <istdio.h>
 void printmessage ()
 {
 Printf(“I am learning functions in c“);
 }
 int main ()
 {
 printmessage ();
 return 0;
 }

www.EngineeringBooksPdf.com

PROGRAMMING IN C

90

2) Function name

The function name can be anything. Normally it is named relevant to the
function operation, as it is easy to keep the tack of functions. The rules to
form the function name are same as the rules of variables. For example,

counter();
square();
message();
output();

3) Arguments List

The arguments are also called as parameters. This tells what arguments
the function needs when it is called (and what their types are).More than
one argument is called arguments list. The arguments are optional. Each
parameter consists of a data type specifier followed by an identifier, like
any regular variable declaration (for example: int x) and which acts within
the function as a regular local variable. They allow to pass arguments to
the function when it is called. The different parameters are separated by
commas. Data type of the function parameters is not mandatory and it is
based on function requirements. The structure of arguments is given
below.

data type function name (argument1, argument2, ..argumentn,)

or
data type function name (datatype argument1,datatype

argument2…datatype argument n) For example,

int square(int x,int y);
void name(double a, char car);
float space(p,x,y);

void can also be used in the function's parameter list to explicitly specify
that the functions to takes no actual parameters when it is called. For
example, function printmessage could have been declared as:

void printmessage (void)
 {
 Printf(“I am learning functions in c“);
 }
It is optional to specify void in the parameter list. For a function with no
parameters, a parameter list can simply be left blank .For example

void printmessage ()
{
 Printf(“I am learning functions in c“);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

91

}

More about arguments are dealt in the following sections.

4) Function Body

Whatever is written with in the curly braces { } below the function header
is called is the body of the function. It contains the declarations and
statements necessary for performing required task. The function body
contains three parts:

1. Local variables declaration
It specifies the variables needed by the function locally.

2. Function Statements
That actually performs task of the function.

3. The return statement

 Generally return statement is used at the end of function body. The
keyword return is used to terminate the function and return a value. The
return statement may or may not include an expression. Syntax of return
statement:

 return;
 return (expression);

The return statement can be absent altogether from a function definition,
But it is considered as poor programming practice. If a return statement
is not used in the function, control simply reverts back to the calling
portion of the program without returning any information. The presence of
an empty return statement (without the accompanying expression) is
recommended in such situations, to clarify the logic. The return statement
is generally followed by a data variable or constant value or an
expression. Some examples are

return;
return 3;
return n;
return ++a;
return (a*b);

The data type of the return expression must match that of the declared
function data type. This is shown in the below example.

float add numbers (float n1, float n2)
 {

www.EngineeringBooksPdf.com

PROGRAMMING IN C

92

 return n1 + n2; /*legal*/
 return 6; /*illegal, not the same data type*/
 return 6.0; /*legal*/
 }

1.3.2 Function Prototypes

All identifiers in C need to be declared before they are used. This is true
for functions as well as variables. For functions the declaration needs to
be done before the first call of the function. There are two ways to do
this. They are

1. Define the function before it is called
2. Declare the function before it is called.

Both the types are explained the below sections.

1. Define the function before it is called

In this approach the function called is defined before the main () function.
ie defining before main().Function definition comprises of function header
and the function body . The function definition itself can act as an implicit
function declaration. Hence the complier knows what functions are used in
main() before entering the main().Syntax is

Function definition[function header + function body]

 main()
{

 function();
}

For example consider a simple adding program which defines the function
before it is called.
 /* This program allows the user to input two numbers, then passes
those two numbers into a sum function, and finally prints the returned
sum.*/
 #include <stdio.h>
 int sum (int n1, int n2) /* Function header*/
 {
 int answer; /*Function body */
 answer = n1 + n2; /*Put the sum of the two numbers
into answer */
 return answer(); /* Exit function and return answer
*/
 }
 main ()
 {

www.EngineeringBooksPdf.com

PROGRAMMING IN C

93

 int number1,number2,total;
 printf ("What is the first number? ");
 scanf ("%d", &number1);
 printf ("What is the second number? ");
 scanf ("%d", &number2);

 total = sum (number1, number2); /* Get the sum of the
two numbers from the return value of sum() */

 printf ("The sum of %d plus %d is %d\n", number1,
number2, total);
 }

Analysis:

I. Here int sum (int n1, int n2) is a user defined function. That is, it is
a custom function that programmer has created. It is defined before
the main ().

II. Function int sum()accepts two integer values, n1 and n2 from
main() calculates the sum and returns an integer result using the
return statement

III. The function sum () has two parts one is function header, int sum
(int n1, int n2) and other is function body. This header reveals that
the function name is sum (), the arguments passed are int n1 and
int n2 and it return data type is of int. The statements written
within the curly braces are called function body.

IV. Within the main function user is prompted for two numbers. Here
the main function calls the sum function by passing the two
numbers as arguments and then storing the return value into total.
Functions such as scanf and printf, used in mani() are called library
functions. They exist in a pre-defined library of C (stdio.h)

2. Declare the function before it is called

In the above example the function is defined before the main program.
For many programmers, this is a rather illogical way to work, as they
want the main function of the program to be at the beginning, rather than
user defined functions. If main function is defined before user defined
function, compiler prompts error. Solution for this is to declare the
function before it is used. Function declaration is also called function
prototype, since they provide a model or blueprint for the function.
Function declaration tells the compiler,” a function that looks like this is
coming up later in the program”, so it is like seeing reference of it before
the function itself.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

94

To declare a function prototype simply state the data type the function
returns, the function name and in brackets list the type of parameters in
the order they appear in the function definition. Function prototype
contains the same information as the function header contains, but it
ends with semicolon. The only difference between the header and the
prototype is the semicolon (;). There must the semicolon at the end of
the prototype. It is a complete statement in itself.

The prototype of the function in the above example is

int sum (int n1, int n2);

Notice that function declaration does not contain the body of the function
and function declaration is terminated with a semicolon. So a prototype
shows what the inputs and output of the function is going to be, but
doesn't show how the function does it's work. It is basically a copy of the
function without anything inside the curly brackets. For example consider
the simple program with a function prototype

 #include <stdio.h>
 int sum (int, int); /* Function prototype*/
 int main (void)
 {
 int total;
 total = sum (2, 3); /* Function call*/
 printf ("Total is %d\n", total);
 return 0;
 }
 /* Function definition*/
 int sum (int a, int b) /* Function header*/
 {
 return a + b; /* Function body*/
 }
Advantage of function prototype:

C compiler checks there turn data tupes and types and counts of all
parameter lists. Try compiling the following:

 #include <stdio.h>
 int add (int,int); /* function prototype for add */
 void main()
 {
 printf("%d\n",add(3));
 }
 int add(int i, int j)
 {
 return i+j;
 }

www.EngineeringBooksPdf.com

PROGRAMMING IN C

95

The prototype causes the compiler to flag an error on the printf
statement. Because the function call is having only one parameter while
prototype is having two parameters.

1.3.3 Function Invocation

The function is called (or invoked) from main (). To invoke a function in
main, the function name is written, followed by parentheses. The syntax
of the function call is very similar to that of declaration, except that the
return data type is not used. A semicolon is placed at the end of the call
expression. The following facts occur when function is invoked.

• When a function is invoked, control is transferred to the first the
statement in the functions body. Computer immediately begins
executing statements from the beginning of the called function.
Each time the function is called; execution always starts at the
beginning of the function.

• Execution continues inside the called function until either:
– It reaches the right } at the end of the function
– Or a return statement.

• Either way, the function stops at this point and execution picks up
right where it had left off in the original function (e.g., back in
main)

•
If function is returning a value, variable can be assigned to the return-
value of the function. For example,

#include <stdio.h>
int addition (int a, int b)
{
 int r;
 r=a+b;
 return (r);
}
 int main ()
{
 int z;
 z = addition (5,3);
 Printf(“The result is%d “,z);
 return 0;
}

Analysis:

1. Here function addition is defined before the main. Hence there is no
need of function prototype.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

96

2. Function addition adds two arguments passed by main and returns
the result to the variable z in the main function.

3. Instead of void main int main is used. Return zero is used at the
end of the program in main just to say that program is returning int
value zero to main. void main() is also used to avoid the function of
return
because void itself specifies that there is no value returned to main

Returning values from functions

When a function completes its execution, it can return a single value to
the calling program. By default called function returns an int value to
main. Usually this return value consists of an answer to the problem the
function has solved. If user is desired that a function should return a
value other than an int, then it is necessary to explicitly mention the the
data type in the calling functions as well as in the called function. For e.g

square (float X)
{
float y;
Y = x * x;
return (y);
}
main ()
{
float a,b,
printf ("\n Enter any number:");

scanf ("\% f", &a);
 b = square (a)
printf ("\n square of entered number % f is % f", a,b);
}

Result:

Enter any number: 2.5
square of entered number 2.5 is 6.000000

Analysis:
Square of 2.5 is not 6.000.Why the result is different? This is because the
function square(float x) by default, always returns an integer value. The
fractional part is truncated. In order to return the float type , float data
type must be mentioned at the function as shown in the below example.

main ()
{
float square ();

www.EngineeringBooksPdf.com

PROGRAMMING IN C

97

float a, b;
printf ("\n Enter any number ");
scanf ("%f" &a);
b = square (a);
printf ("\n square of entered number % f is % f, " a, b);
}
float square (float x)
{
float y;
y= x *x;
return (y);
}

Result:
Enter any number:2.5
square of entered number 2.5 is 6. 2500000

Some facts about functions

The following points must be noted about functions

(i) C program is a collection of one or more functions.
(ii) A function gets called when the function name is followed by a
semicolon. Rules for declaring the functions name are same as that of
variables declaration rules. for e.g.

main ()
{

{
 int Message1 ();
}

}

Here message 1(); is the function name

(iii) A function is defined when function name is followed by a pair of
braces in which one or more statements may be present for e.g.

int message1 ()
{
 statement 1;
 statement2;
 statement 3;
}

(iv) Any function can be called from any other function even main () can
be called from other functions. for e.g.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

98

main ()
{

message ();
}
int message ()
{

printf (“ \n Hello”);
main ();
return 0

}

(v) A function can be called any number of times for eg.

message ()
{

printf (“\n Hello”);
}
main ()
{

message ();
message ();

}

(vi) The order in which the functions are defined in a program and the
order in which they get called need not necessarily be same for e.g.

void message2 ()
{

printf (“\n I am learning functions in C”);
}
 void message1 ()
{

printf (“\n Hello “);
}
main ();
{

message1 ();
message2 ();

}

(vii) A function can call itself such a process as called ‘recursion’.
(viii) A function can be called from other function, but a function cannot
be defined in another function. Thus the following program code would be
wrong, since function say() is being defined inside another function main (
).

www.EngineeringBooksPdf.com

PROGRAMMING IN C

99

main ()
{
 printf (“\nThis section is in main”);
 void say()
{
 printf {“\nFunctions are easy.”);
}
}

(ix) Any C program contains at least one function
(x) If a program contains only one function, it must be main ()
(xi) In a C program if there are more than one functions are present then
one of these functions must be main () because program execution
always begins with main ().
(xii) There is no limit on the number of functions that might be present in
a C program
(Xiii) Each function in a program is called in the sequence specified by the
function calls in main ()

1.4 Types of Arguments

An argument is an entity used to pass the data from calling function to
the called function. The arguments are also called as the parameters.
There are two types of parameters. They are

i) Actual Parameters: The arguments or parameters used in the
calling function to call the called function are called as the Actual
parameters.

ii) Formal parameters: The arguments or parameters used in the
called function header are called as the Formal parameters. Formal
arguments are the arguments available in the function definition. For
example consider the below example.

main()
{
 function1(a1,a2,a3……an)
}
 function1(f1,f2,f3….fn);
{
 functionbody;
}

here a1,a2,a3 are actual arguments and f1,f2,f3 are formal arguments.

Void add (int a, int b) / *Formal parameters */
{

www.EngineeringBooksPdf.com

PROGRAMMING IN C

100

 int c;
 c=a+b;
 printf (“The sum is %d”,c);
 return;
}
main()
{
 int x,y;
 Printf(“ Enter two integers“)
 scanf(%d %d” ,&x, &y);
 add (x, y); / *Actual parameters */
}

Analysis:
1) Consider the above program. The function definition begins with this
declaration:

 add (int a, int b)

This line informs the compiler that add() uses two arguments called a and
b, both a, b variables are of the type int. Both the a and b variables are
called formal arguments. Like variables defined inside the function, formal
arguments are local variables, private to the function. That means
programmer doesn’t have to worry about duplicating variable names used
in other functions. These variables will be assigned values each time the
function is called.

2) To declare formal arguments, each variable must be preceded by its
data type individually. That is, unlike the case with regular declarations, a
list of variables of the same type cannot be used. For example,

 void sum (int x, y, z) /* invalid function header */
 void sum (int x, int y, int z) /* valid function header */

 void add (int a, int b) /* valid function header */
 void add (int a, b) /*Invalid function header */

3) Another way of declaring formal arguments is

 void add (a, b)
 int a,b;

4) In the above program int a and int b values are assigned by actual
arguments in the function call. Consider the line in main program add
(x,y);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

101

The actual arguments are the x and y. These values are assigned to the
corresponding formal arguments in add() — for the variables x and y
respectively.

5) The actual argument can be a constant, a variable, or an even more
elaborate expression. Regardless of which it is, the actual argument is
evaluated, and its value copied to the corresponding formal argument for
the function.

6) Instead of using different variable names int a ,int b in the called
function, the same variable name as in the caller function i.e int x, int y
can be used. But still compiler treats them as different variables only
because they are in called functions.

7) Both the arguments actual and formal should match in number, type
and order. The values of actual arguments are assigned to formal
arguments on a one to one basis starting with the first argument as
shown below. If not compiler will flag error. For example,

void fun(int x, int y, char c1,char c2);
main()

{
 int x, y;
 char c1,c2;

 un(x,y,c1,c2)
}
 void fun(x,y,c1,c2)
{
 char x,y;
 int c1,c2; / * Data type mismatch*/
 …….
 ……..
}

6) When a function call is made only a copy of the values actual arguments is passed to the
called function. What occurs inside the functions will have no effect on the variables used in
the actual argument list.

1.5 Types of Functions

According the arguments and the returning value, functions are divided
into three categories.

1) A function with no arguments and no return value
2) A function with no arguments and return a value

www.EngineeringBooksPdf.com

PROGRAMMING IN C

102

3) A function with an argument or arguments and returning no value
4) A function with arguments and returning a value.

1.5.1 A Function With No Arguments And No Return Value

If a called function does not have any arguments, it is not able to get any
value from the calling function. Also if it does not return any value, the
called function is not receiving any value from the function when it is
called. That is , there is no data transfer between the calling function and
the called function. This can be represented as given below.

 Function 1 Function 2

 No input

 No output

No data is transferred between the functions

Example :

main()
{
 message ();
}
 void message()
{
 printf(“\n WELCOME”);
}

Analysis:
main () is the calling function and message () is the called function.
Between the functions, no data is transferred.

1.5.2 A Function with No Arguments and Returns a Value

A function which does not get value from the calling function but it can
return a value to calling program. This can be represented as given
below.

 Function 1 Function 2

 No input

f1(x)
Calling
the
function f2()
………………
………………

f2()
………………
………………
Returning from
the function

f1(x)
Calling
the
function f2()
………………
………………

f2()
………………
………………
Returning from
the function

www.EngineeringBooksPdf.com

PROGRAMMING IN C

103

 A value

Example :

main()
{
 int a;
 a=todaytemp();
 printf(“\n The returned value form the todaytemp()
 function is %d”,a);
}
 todaytemp()
{
 return(100);
}

Analysis:
Here the called function does not receive any parameters from main ie
called function but returns a value to called program.

1.5.3 A Function with Arguments and Returns No Value

A function has an argument or set of arguments. Through arguments
calling function can pas values to function called. But calling function does
not receive any value.

That is, data is transferred from calling function to the called function but
no data is transferred from the called function to the calling function. A
function that does not return any value cannot be used in an expression it
can be used only as independent statement. This is represented as given
below.

Function 1 Function 2

 sending

 No output

Example :

f1(x)
Calling
the
function f2()
………………
………………

f2()
………………
………………
Returning from
the function

www.EngineeringBooksPdf.com

PROGRAMMING IN C

104

/*Program to find the largest of two numbers using function*/

#include
main()

 {
 int a,b;
 printf(“Enter the two numbers”);
 scanf(“%d%d”,&a,&b);
 largest(a,b)
 }
 /*Function to find the largest of two numbers*/
 largest(int a, int b)
 {
 if(a>b)
 printf(“Largest element=%d”,a);
 else
 printf(“Largest element=%d”,b);
 }

Analysis:
In the above program the calling function reads the data and passes it on
to the called function. But called function does not return any value.

1.5.4 A Function with Arguments and Returning a Value

Here arguments are passed by caller function to called function. Called
function returns value to caller function. Called function can receive any
number of arguments but can return only one result. If multiple results
are required multiple functions must be used. For example,

fun (a,b)
int a,b;
{
 int y,z;
 y=a+b;
 z=a-b;
 return y;
 return z; /* Two return statements for one single
function called is invalid * /
}

A function with arguments and returning a value can be represented as
given below.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

105

 Function 1 Function 2

 Sending Data

 Receiving Data

No data is transferred between the functions

Example :

 #include<stdio.h>
 float findaverage(float a, float b); /*Function prototype*/
 main()
 {
 float a=5,b=15,result;
 result=findaverage(a,b);
 printf("average=%f \ n",result); /*Function prototype*/
 }
 float findaverage(float a, float b)
 {
 float average;
 average=(a+b)/2;
 return(average);
 }

1.6 Questions

1) What is a function?
2) Explain the structure of a function.
3) What is the difference between function declaration and function

definition?
4) Explain function invocation with explain with an example.
5) Explain the function types with examples.

1.7 Programing Excersice

f1(x)
Calling
the
function f2()
………………
………………

f2()
………………
………………
Returning from
the function

www.EngineeringBooksPdf.com

PROGRAMMING IN C

106

1) Write a program to print “Hello World” in the main function and
“Welcome To C” in another function.
2) Write a program to add three given numbers using function.
3) Write a program to calculate the tax of n given number of
employees. Use a separate function to calculate the tax. Tax is 20% of
basic if basic is less than 9000 otherwise tax is 25% of basic.
4) Write a program to check a number is prime or not using function.
5) Create a function add() which will calculate the sum of the array
elements passed as parameters to it
6) Write a function to calculate the factorial of the number.
7) Create a user defined function to find the minimum value of three
float numbers which are passed as the arguments to it.
8) Write a function range() which will take value of A and B as
parameter and displays total numbers divisible by 3 in the range A to
B.
9) Write a function which will take a year as argument and find
whether that year is a leap year or not?

MODULE 3

Unit 2: LOCAL AND GLOBAL VARIABLES

www.EngineeringBooksPdf.com

PROGRAMMING IN C

107

2.1 Local variables

A local variable exists inside the specific function that creates them. They
are unknown to other functions. Local variables cease to exist once the
function that created them is completed. They are recreated each time a
function is executed or called. Local variables must always be defined at
the top of a block i.e at the starting of the brace ({). When a local
variable is defined - it is not initialized by the system and must be
initialized. For example consider the below program,

main()
 {
 int x;

 float y;
 …….
 tree();

 }
 void tree()
 {
 int x;

 float y;
 …….

 }

Here each x and y variables are LOCAL to its own routine and are called
local variables. The x and y variables in main () is unrelated to the x and
y variables in the tree function. (Local variables are also called
“automatic''.)

.
2.2 Global Variables

Global variables are created by declaring them outside any (including
main) function. These variables can be accessed by any function
throughout the entire program. They do not get recreated if the function
is recalled. Global variables are initialized to zero value by the system
when they are declared. To understand global variable consider below
example,

 int max;
 main()
 {
 Printf(“ The value of global variable max is: %d“,max);
 max=max+1;
 }
 f1()
 {

www.EngineeringBooksPdf.com

PROGRAMMING IN C

108

 max++;
 Printf(“ The value of global variable max in the fuction is:
%d“,max);
 …..
 }

Output:
The value of global variable max is: 0
The value of global variable max in the function is: 2

Analysis:
Here int max is global variable. The int max can be used in both main and
function f1 and any changes made to it will remain consistent for both
functions. When the global variable is declared its value is initialized to
zero by the system. this is seen by the first output. the value of variable
is incremented by one in the main() function. In the function f1, max is
called. Even after exiting the main() the value of max variable is retained
ie 1 and it is incremented by one in the functionf1. The value of variable
is two. This is seen in the second output.
To understand the difference between local and global variable consider
the below example.

 int i=4; /* Global declaration */
 main()
 {
 i++; /* global variable */
 func();
 ……….
 }
 func()
 {
 int i=10; /* local declaration */
 i++;
 ……. /* local variable */
 }

Analysis:
The variable i in main is global and will be incremented to 5.The variable
i in func is internal and will be incremented to 11. When control returns to
main the internal variable will die and any reference to i will be to the
global.

2.3 Call by Value and Call by Reference

www.EngineeringBooksPdf.com

PROGRAMMING IN C

109

Functions communicate with each other by passing the arguments. There
are two ways of passing the arguments namely, call by value and call by
reference.

2.3.1 Call by Value

In the preceding examples it is seen that whenever a function is called,
the values of variables are passed to the called function from calling
function. Such function calls are called “calls by value”.

In this call by value method the value of each of the actual arguments in
the calling function is copied into corresponding formal arguments of the
called function. With this method the changes made to the formal
arguments in the called function have no effect on the values of actual
argument in the calling function. The following program illustrates this:

 main ()
 {
 I nt a = 10, b=20;
 swap (a,b);
 printf ("\na = % d, b = % d", a,b);
 }
 swap (int x, int y)
 {
 int t;
 t = x;
 x = y;
 y = t;
 printf ("\n x = % d, y = % d" , x, y);
 }

output :
x = 20, y = 10
a =10, b =20

Analysis:

In the above program the initial values of variables are a=10 and
b=20.These variables are passed as arguments to called function swap().
Function swap() has formal arguments x and y equivalent of a and b
variables and this function swaps the variables which is seen in the
second line of output. After swapping the control returns to main(), but
the values of variables are unaltered in the main() and this is seen in first

www.EngineeringBooksPdf.com

PROGRAMMING IN C

110

line of output. This is because when the arguments are passed their copy
is only sent not the original arguments.

2.3.2 Call by Reference

In the second method the addresses of actual arguments in the calling
function are copied in to formal arguments of the called function. This
means that using these addresses the actual arguments can be accessed
and hence programmer would be able to manipulate them. Since call by
reference uses pointers it is explained in the chapter … Pointers.

2.4 Recursion

Recursion is the process in which a function repeatedly calls itself to
perform calculations. They are commonly used in applications in which the
solution to a problem can be expressed in terms of successively applying
the same solution to subsets of the problem. Typical applications are
games and sorting trees and lists. Recursive algorithms are not
mandatory, usually an iterative approach can be found. Recursive
functions are most commonly illustrated by an example that calculates
the factorial of a number. The factorial of a positive integer n, written n!,
is simply the product of the successive integers 1 through n. The factorial
of 0 is a special case and is defined equal to 1. So 5! is calculated as
follows:

5! = 5 x 4 x 3 x 2 x 1 = 120
To understand the recursive functions consider the program given below.

/* Program using recursive function to print the factorial of a given
number*/

 #include <stdio.h>
 #include <conio.h>
 unsigned long fact(int);
 void main()
 {
 unsigned long f;
 int n;
 clrscr();
 printf("\nENTER A NUMBER: ");
 scanf("%d",&n);
 f=fact(n);
 printf("\nFACTORIAL OF %d IS %ld",n,f);
 getch();
 }
 unsigned long fact(int a)
 {

www.EngineeringBooksPdf.com

PROGRAMMING IN C

111

 unsigned long fac;
 if(a==1 || a==0)
 return(1);
 else
 fac=a*fact(a-1);
 return(fac);
 }

Output:
ENTER A NUMBER:0
FACTORIAL OF 0 IS 1

ENTER A NUMBER:3
FACTORIAL OF 3 IS 6

Analysis:

The factorial function includes a call to itself make this function recursive.
When the function is called to calculate the factorial of 3, the value of the
formal parameter a is set to 3. Because this value is not zero, the
following program statement

fac=a*fact(a-1);
is executed, which, given the value of a, is evaluated as
fac=3 * fact(2);

This expression specifies that the factorial function is to be called, this
time to calculate the factorial of 2.Therefore, the multiplication of 3 by
this value is left pending while factorial (2) is calculated. Even though the
same function is called again, it should be conceptualized as a call to a
separate function. Each time any function is called in C—be it recursive or
not—the function gets its own set of local variables and formal
parameters with which to work. Therefore, the local variable fac and the
formal parameter a that exist when the factorial function is called to
calculate the factorial of 3 are distinct from the variable fac and the
parameter a when the function is called to calculate the factorial of 2.

2.5 Storage Class

Storage class is a concept in c which provides information about the
variable’s visibility, lifetime and scope. The meaning of each term is as
follows.

Scope: Scope is the region in which a variable is available for use.

Visibility: The program’s ability to access a variable from memory is called
as visibility of variable.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

112

Lifetime: The lifetime of the variable is duration of the time in which a
variable exists in the memory during execution.

 Apart from data type variables have storage class. In C , there are four
types of storage classes. They are

1. Local or Automatic variables
2. Global or External variables
3. Static Variables
4. Register Variables

2.5.1 Local or Automatic Variables

Automatic variables are declared inside a particular function and they are
created when the function is called and destroyed when the function exits.
Automatic variables are local or private to a function in which they are
defined. Other names of automatic variable are internal variable and local
variable. A variable which is declared inside the function without using
any storage class is assumed as the automatic variable because the
default storage class is automatic.

Storage: Memory.
Default initial Value: Garbage.
Scope: Local (to block in which variable defined)
Lifetime: Till control remains within block where it is defined.

Syntax:

auto<variable>
Here auto is the keyword for automatic variable.
For example consider the below program.

 main()
 {
 auto int x, y;
 int a,b;
 x = 10;
 printf(“Values : %d %d”, x, y);
 }

Analysis:
Here x and y are defined as automatic variables by the usage of keyword
auto. Variables a and b are also considered as auto because any variable
which does not have any storage class explicitly specified , it is considered
as automatic storage class only.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

113

2.5.2 Global or External Variables

External variable:
External variable is a global variable which is declared outside the
function. The memory cell is created at the time of declaration statement
is executed and is not destroyed when the flow comes out of the function
to go to some other function. .The global variables can be accessed by
any function in the same program. A global variable can be declared
externally in the global variable declaration section.

Specifications:
Storage: Memory.
Default initial Value: Zero
Scope: Global
Lifetime: As long as the program execution doesn’t come to an end.

Syntax:
There is no keyword to state any variable as global. if any variable is
declared outside the function without any other storage class , it is
implicitly considered as global variable.

For example consider the program,

 int x = 100;
 main ()
 {
 …..
 x = 200;
 f1 ();
 f2 (); …
 …..
 }
 f1 ()
 {
 x = x + 1;
 ….
 …..
 }
 f2 ()
 {
 x = x + 100;
 ….
 …..
 Printf(“ The final value of global variable x is %d“,x);
 }

Output;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

114

The final value of global variable x is 307

Analysis:

The global variable x is declared above all the functions. It can be
accessed by all the functions as main (), f1 () and f2 ().The initial Value
assigned to it is 100.When it is accessed by main(), its value is 200.
When f1() function accesses it , x with the last recent value200 is passed
and f1() function manipulates it to 201.Similarly when function f2() is
executed the value of x becomes 307 which is given in output.

2.5.3 Static Variables

These variables are alive throughout the program. A static variable can be
initialized only once at the time of declaration. The initialization part is
executed only once and retains the value till the end of the program.

Storage: Memory.
Default initial Value: Zero.
Scope: Local (to block in which variable defined)
Lifetime: Value of the variable remains as it is between function calls.

Syntax:
A variable can be declared as static by using the keyword “static”. For
example
staic int x ; For example consider the program,

 main()
 {
 int j;
 for(j=1; j<=3; j++)

 stat();
 }
 stat();
 {
 static int x=0;
 x=x+1;
 printf(“The Value of X is %d\n”,x);
 }

Output:

The Value of X is 1
The Value of X is 2
The Value of X is 3.

Analysis:

www.EngineeringBooksPdf.com

PROGRAMMING IN C

115

During the first call to stat() function, x is incremented to 1. Because x is
static, this value persists and therefore the next call adds another 1 to x
giving it a value of 2. The value of x becomes 3 when third call is made. If
variable x would have declared as an auto then output would have been
x=1 all the three times.

2.5.4 Register Variables

A variable is usually stored in the memory but it is also possible to store a
variable in the processor’s register by defining it as register variable. The
registers access is much faster than a memory access, keeping the
frequently accessed variables in the register will make the execution of
the program faster. Since only a few variables can be placed in a register,
it is important to carefully select the variables for this purpose. However c
will automatically convert register variables into normal variables once the
limit is exceeded.

Syntax;

Register variables are declared by using the keyword “register ” . For
example,

 register int x;

Specifications:

Storage: CPU Registers.
Default initial Value: Garbage.
Scope: Local (to block in which variable defined)
Lifetime: Till control remains within block where it is defined.
For example consider the program,
 main ()
 {
 register x , y z;
 Printf(“ Enter two numbers”);
 scanf(“%d %d”,&x,&y);
 z=x+y;
 printf(“\n The sum is %d”,z);
 }

Output:
Enter two numbers: 2.4
The sum is 6

Analysis:
In the above program, all the variables are stored in the registers instead
of memory.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

116

Programs:

1) Write a program in C which incorporates a function using parameter
passing and performs the addition of three numbers. The main section of
the program is to print the result.

 #include <stdio.h>
 int calc_result(int var1, int var2, int var3)
 {
 int sum;
 sum = var1 + var2 + var3;
 return(sum); /* return(var1 + var2 + var3); */
 }
 main()
 {
 int numb1 = 2, numb2 = 3, numb3=4, answer=0;
 answer = calc_result(numb1, numb2, numb3);
 printf("%d + %d + %d = %d\n", numb1, numb2, numb3,
answer);
 }

2) Write a recursive function to print a given number in reverse order.

 #include <stdio.h>
 #include <conio.h>
 int reverse(unsigned long);
 void main()
 {
 unsigned long num;
 clrscr();
 printf("\nENTER A NUMBER: ");
 scanf("%lu",&num);
 printf("\nREVERSE OF %lu IS ",num);
 reverse(num);
 getch();
 }
 int reverse(unsigned long n)
 {
 int dig;
 if(n==0)
 return 1;
 else
 {
 dig=n%10;
 n=n/10;
 printf("%d",dig);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

117

 reverse(n);
 }
 }

3) Write a recursive function to print the Fibonacci series up to a given

number.

 #include <stdio.h>
 #include <conio.h>
 unsigned long fib(int);
 void main()
 {
 int n,i;
 unsigned long f;
 clrscr();
 printf("\nENTER A NUMBER: ");
 scanf("%d",&n);
 printf("\nTHE FIBONNACI SERIES UPTO %d NUMBERS
IS:\n",n);
 for(i=0;i<n;i++)
 {
 f=fib(i);
 printf("%lu ",f);
 }
 getch();
 }
 unsigned long fib(int x)
 {
 unsigned long res;
 if(x==0)
 return(0);
 else
 if(x==1)
 return(1);
 else
 {
 res=fib(x-1)+fib(x-2);
 return(res);
 }
 }

4) Write a program to pass a constant as a variable.

include <stdio.h >
void repchar(char,int);
int main()
{

www.EngineeringBooksPdf.com

PROGRAMMING IN C

118

char char;
int num;
printf("enter a character:");
scanf(“%c”, &char);
printf("enter a number of times to repeat it:");
scanf(“%d”, &num);
repchar (char,num);
return 0;
}
/*repchar () function definition*/
void repchar(char ch, int n)
{
for(int j=0,j<n;j++)
Printf(“%c”,ch);
Printf(“/n”);
}

2.6 Questions

1. Explain recursion with example
2. Define global and local variables. Explain with examples.
3. What is meant by storage class? Explain the four different storage

classes with example
4. List the rules governing the return statement.

2.7 Programming Exercise

1) Write a function to calculate the factorial of the number
2) Create a user defined function to find the minimum value of three
float numbers which are passed as the arguments to it.
3) Write a function which will take a year as argument and find whether
that year is a leap year or not?
4) Write the output of following program. Take suitable input. 4

 #include<stdio.h>
 void large()
 {
 int a,b;
 printf(“Enter values of a and b :”);
 scanf(“%d %d”,&a,&b);
 if(a<b)
 printf(“large : %d”,b);
 else
 printf(large : %d”,a);
 }

www.EngineeringBooksPdf.com

PROGRAMMING IN C

119

 main()
 {
 large();
 large();

 }

MODULE 4

UNIT 1: Arrays

1.1 Introduction

In the previous chapters how to declare a variable with a specified data
type, such as char, int, float, or double is explained. In many cases, there
is a need to declare a set of variables that have the same data type. For
example, to store date of birth, three different variables

int day, month, year;

are defined and each of which can store a single whole number. If date of
birth is 1-2-2009, this can be stored in the variables as, day = 1; month
= 2; year = 2009; similarly, to store five different numbers, five variables
would have to be declared such as,

int num1, num2, num3, num4, num5;

With five numbers this is fairly easy. But what if a hundred items has to
be stored? Can hundred variables be declared? If yes, program would
become rather large and repetitive and cumbersome. As a solution for
such problems programming language C has given the concept of an
array. In array a variable is allowed to store more than one item. All of
the items in a single array variable must be the same type - e.g. an
integer or a float or a char.

1.2 Defining an Array

An array is a collection of variables of the same data type accessed by
indexing. Each item in an array is called an element. All elements in an
array are referenced by the name of the array and are stored in a set of
consecutive memory slots.

Arrays are classified as single dimensional and multidimensional arrays.
Array containing single column elements are called single dimensional

www.EngineeringBooksPdf.com

PROGRAMMING IN C

120

array or one dimensional or linear array. More than one column are called
multidimensional array.

1.2.1 Declaring Single Dimensional Array

Like any other variable arrays must be declared explicitly before they are
used. The general form of declaration is:

data-type Array-Name[Array-Size];

Here data-type is the type specifier that indicates what data type the
declared array is such as int, float double or char. Array-Name is the
name of the declared array and rules of declaring the variable applies to
array name. Array-Size defines how many elements the array contains.
This is always an integer. Note that the brackets ([and])are required in
declaring an array. The bracket pair ([and]) is also called the array
subscript operator.

For example, an array of integers is declared in the following statement,

int array_int[8];

where int specifies the data type of the array whose name is array_int.
The size of the array is 8, which means that the array can store eight
elements (that is, integers in this case).
The other examples are

char C[10] An array of characters
float plum[6] An array of float numbers
double page[12] An array of double numbers

1.2.2 Array Index

An array is implemented as continuous storage, the index-based access.
To access element n, in array, position or index of array is important the
index of the first element (sometimes called the "origin") varies by
language. There are three main implementations: zero-based, one-based,
and n-based arrays, for which the first element has an index of zero, one,
or a programmer-specified value respectively. The zero-based array is
more natural and adopted by the C programming language.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

121

For ex, consider the array declaration int num[6];This array consists of
five elements and index of first element is 0 , second is one and so on.
This described in the below figure.

int num[6];

1.3 Initialization of One Dimensional Array

There are two categories of array namely,

1. Static array
2. Dynamic array
.
Declaration for static array specifies the array size, which cannot be
altered afterwards. But for dynamic arrays the size can be altered. Using
dynamic memory the dynamic array’s size can be modified. This is
discussed pointers in chapters.

Once an array is declared, it must be initialized. Otherwise array will
contain the garbage values. There are two different ways in which we can
initialize the static array:

1. Compile time
2. Run time

1.3.1 Compile Time Initialization

This initialization is done while writing the program itself. Following is the
syntax of initialization of the array.

data-type array-name[size] = { list of values separated by comma };0
]; For example:

int var[5] = {5, 7, 9, 3, 4};

num [2]

num

reference

num [0]

num [1]

num [3]

num [5]

num [4]

www.EngineeringBooksPdf.com

PROGRAMMING IN C

122

Here, the array variables are initialized with the values given in front of it.
That is, the 0th element of array will contain 5, 1st will contain 7 and so on.
Remember, the array indexing or subscripting is always done from 0th

position. The values of the array will be get stored in following manner

var[0]

var[1]

var[2]

var[3]

var[4]

Each element in the array will be referred individually by its index such
as, var[0], var[1], var[2], . . .

They can also be initialized individually such as:
var[0] = 5;
var[1] = 7;
var[2] = 9;
etc. after declaration of the array.

In the array declaration, the size can also be omitted. In such cases the
compiler will automatically identify the total number of elements and size
will be given to it. For example:

int max[] = {8, 6, 7, 4, 5, 3, 0, 1};

This array is not declared with size, but initialized with values. Here, size
of the array will be automatically set to 8. Now it can be referred as the
general array. Compile time initialization can also be done partially. Such
as

float x[5] = {1.2, 6.9, 4.1};
x[0]=1.2, x[1]=6.9, x[2]=4.1, x[3]=0, x[4]=0

Here, array ‘x’ is having size 5, but only 0th, 1st, and 2nd elements are
declared with values. The remaining 3rd and 4th element of the array will
be
automatically set to 0. This property is applicable to all numerical type of
the
array in C. However, if we have more values than the declared
size, the compiler will give an error. For example –

5

7

9

3

4

www.EngineeringBooksPdf.com

PROGRAMMING IN C

123

int arr[5] = {56, 10, 30, 74, 56, 32};

This is the illegal statement in C.

int n[10] = {0};

First element of n[] is explicitly initialized to 0, and the remaining
elements by default are initialized to 0.

int n[10];

In this all 10 elements contains junk values. The individual array element
can be assigned to a variable with a statement such as

int G;
G = grade [50];

The statement assigns the value stored in the 50th index of the array to
the variable g. A value can be stored into an element in the array simply
by specifying the array element on the left hand side of the equals sign.
This is as shown in the statement,

grades [100]=95;

The value 95 is stored into the element number 100 of the grades array.

1.3.2 Run Time Initialization

An array can initialized at run time by the program or by taking the input
from the keyboard. Generally, the large arrays are declared at run time in
the program itself. Such as –

int sum[20];
for (i = 0;i<20;i++)
sum[i] = 1;

Here, all the elements of the array ‘sum’ are initialized with the value one.
The loop control structures are applicable in these cases. The scanf
function can also be used to input the values from the user. In such
cases, the loop control structure is applicable. For example:

int sum[10], x;
printf(“Enter 10 numbers: ”);
for(x=0;x<10;x++)
scanf(“%d”, &sum[x]);

Here, the array ‘sum’ is initialized by taking the values as input from

www.EngineeringBooksPdf.com

PROGRAMMING IN C

124

the keyboard.

1.4 Entering Data Into The Array

To enter the data into aray, consider the below lines.

 for (i=0; i<= 29; i++)
 {
 printf (“\n Enter marks”)
 scanf (“%d”, &marks [i]);
 }

The above section will read about 30 elements numbered from 0 to 29 in
to the array named marks . This will take input from the user repeatedly
30 times.

1.5 Reading Data From Array

for (i=0; i <= 29; i++);
Printf(The value entered into array marks [%d] is %d”, i,marks[i]);

In order to understand the working of array , consider the below
programs.
1)Write a program to initialize ten elements of an array.

/* Initializing an array */

 #include <stdio.h>

 main()
 {

 int i;
 int list[10];
 for (i=0; i<10; i++)
 {
 list[i] = i + 1;
 printf("list[%d] is initialized with %d.\n", i, list[i]);
 }

}

Output:

list [0] is initialized with 1.
list [1] is initialized with 2.
list [2] is initialized with 3.
list [3] is initialized with 4.
list [4] is initialized with 5.
list [5] is initialized with 6.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

125

list [6] is initialized with 7.
list [7] is initialized with 8.
list [8] is initialized with 9.
list [9] is initialized with 10.

ANALYSIS

An integer array, called list is initialized to ten elements. In order to enter
the values into array in the run time, for loop is set to iterate for ten
times. The statement list[j] = i + 1; assigns the values to array array. In
the first iteration i=0,which is assigned as array index and the value is
i+1 ie0+1=1 is assigned as the value for array index list[0].This value is
printed. For the next iteration index is 2 and the computed value is 2.
This process continues till for loop condition is invalid.

1) Write a program to read 10 data from users and to find sum of them
using array.

/* Input 10 numbers from user and find the total of all of them */

 #include<stdio.h>
 main()
 {
 int val[10], i, total=0;
 printf(“Enter any ten numbers: ”);
 for(i=0;i<10;i++)
 scanf(“%d”, &val[i]); // input numbers
 for(i=0;i<10;i++)
 total = total + val[i]; // find total
 printf(“\nTotal is: %d”, total);
 }

Sample Output:
Enter any ten numbers: 1 2 3 4 5 6 7 8 9 10
Total is: 55

1.6 The Size of an Array

An array is stored in consecutive memory locations. Given an array, like
this:

data-type Array-Name[Array-Size];

it is possible to calculate the total bytes of the array by the following
expression:

sizeof(data-type) * Array-Size

www.EngineeringBooksPdf.com

PROGRAMMING IN C

126

Here sizeof is a library function, data-type is the data type of the array.
Array-Size specifies the total number of elements the array can take. The
result returned by the expression is the total number of bytes the array
takes.Another way to calculate the total bytes of an array is simpler; it
uses the following expression:

sizeof(Array-Name)

Here Array-Name is the name of the array. Consider the below program
to know how to calculate the memory space taken by an array.

/*Calculating the size of an array.*/

 #include <stdio.h>
 main()
 {
 int total_byte;
 int list_int[10];
 total_byte = sizeof (int) * 10;
 printf("The size of int is %d-byte long.\n", sizeof (int));
 printf("The array of 10 ints has total %d bytes.\n",
total_byte);
 }

OUTPUT

The size of int is 2-byte long.
The array of 10 int has total 20 bytes

1.7 Multidimensional Arrays

So far, all the arrays dealt with have been one-dimensional arrays, in
which the dimension sizes are placed within a pair of brackets ([and]).In
addition to one-dimensional arrays, the C language also supports
multidimensional arrays. Arrays can be declared with as many dimensions
as compiler allows. The general form of declaring a N-dimensional array is

data-type Array-Name[Array-Size1][Array-Size2]. . .[Array-SizeN];

where N can be any positive integer.

Because the two-dimensional array, which is widely used and is the
simplest form of the multidimensional array, focus is on two-dimensional
arrays are focused in this section. However concept of two dimensional
array can be applied to arrays of more than two dimensions.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

127

1.7.1 Declaration of Two-dimensional Array

Two-dimensional array is also called as array of arrays a table, a grid or a
matrix. Many applications it is required to manipulate the data in table
format or in matrix format which contains rows and columns. In order to
create such two dimensional arrays in C, following syntax is followed.

datatype arrayname[rows][columns];

For example, the following statement declares a two-dimensional integer
array:

int x[2][3];
Array type: int
Array name: x
Array indices: i,j
Standard identification: x[i][j]
Number of entries: n x m

Where n is row size and m is column size and x[i][j] indicates any
particular element.

Consider the array int x[2][3];
 Here there are two pairs of brackets that represent two dimensions with
a size of 2 and 3 integer elements, respectively. The first dimension 2 is
number of rows and second dimension 3 is number of columns. This will
create total 6 storage locations for two dimensional arrays as shown
below.

Arrays can be declared with the other variables in the program, such as

float sale[9] [3];
double rate[5] [6];
char name[2] [4];
1.7.2 Two-Dimensional Array Initialization

A two dimensional array data can be declared and initialized follows:

 //declaration
 int data [3][4] = {
 {8, 2, 6, 5}, //row 0
 {6, 3, 1 ,0}, //row 1
 {8, 7, 9, 6} //row 2
 };

x[0][0] x[0][1] x[0][2]

x[1][0] x[1][1] x[1][2]

www.EngineeringBooksPdf.com

PROGRAMMING IN C

128

Similar to the one-dimensional the two-dimensional arrays are initialized.
For example

int array[2][3] = {1,2,3,4,5,6};

In the above case elements of the first row are initialized to 1,2,3 &
second row elements are initialized to 4,5,6.
The initialization can be done row wise also, for the above example it is

int array[2][3] = {{1,2,3},{4,5,6}};

If the initialization has some missing values then they are automatically
initialized to 0.

For example

int array[2][3] = {{3,4},{5}}

In this case the first two elements of the first row are initialized to 3, 4
while the first element of the second row is initialized to 5 & rest all
elements are initialized to 0.
User can store the values in each of these memory locations by referring
their respective row and column number as,

 table[2][3] = 10;
 table[1][1] = -52;

In one dimensional arrays could be initialized without mentioning the size.
For example,

int a[] = {1,2,3}; is same as int a[3] = {1,2,3};

Can this be done for two dimensional arrays also? For example consider a
multidimensional array sap declared as given below.

int sap[][] = {1,2,3,4,5,6};

This is illegal because the array sap could be of 2 rows and 3 columns,
or of 3 rows and 2 columns. To avoid this ambiguity, the column size
(second subscript) must be specified explicitly in the declaration. For
example,

int sap [][2] = {1,2,3,4,5,6}; /*this is valid /

Array sap has two columns and three rows.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

129

But declaring, int sap [2][] = {1,2,3};

will not work !

1.8 Processing a Two Dimensional Array

Arrays are usually processed using a for statement. To process all the
items in a two-dimensional array, a nested for statement (that is, one for
inside another for) has to be used. The first for loop will process the row
indexes of the array, and the inside for loop will process the column
indexes of the array. The length of a two dimensional array is the
number of rows it has.

1.8.1 Entering Data into Two Dimensional Array

1) Data can be entered into two dimensional arrays in the following ways.
Number of rows is the conditional expression in the outer for loop and
number of columns is the conditional expression in the inner for loop.

 int arr[5][5];
 int z = 0, x, y ;
 for(x=0;x<5;x++)
 {
 for(y=0;y<5;y++)
 {
 arr[x][y] = z;
 z++;
 }
 }

This will initialize the array ‘arr’ as,

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

2) int n,m;
 double x[5][6];

Printf(“Enter the elements for the array matrix “); Outer for loop

for (n = 0; n < 5; ++n) Row index= number of rows
 {

www.EngineeringBooksPdf.com

PROGRAMMING IN C

130

 for (m = 0; m < 6; ++m) Column index=number of columns
 columns
 scanf ("%lf", &x[n][m]);
 }

1.8.2 Printing data of Two Dimensional Arrays

To output the Array’s Data the same concept of two for loops are used.
Number of rows is the conditional expression in the outer for loop and
number of columns is the conditional expression in the inner for loop.
Instead of scanf, printf statement is used inside the inner for loop. This is
shown in the example below.

 int n,m;
 double x[5][6];

 for (n = 0; n < 5; ++n
 {
 for (m = 0; m < 6; ++m)
 printf ("%10.2f", &x[n][m]);
 Prinftf(“/n “)
 }

To understand the processing of two dimensional matrix consider the
below programs.

1) /*Write a program to create a matrix and display a matrix. */

 #include <stdio.h>
 #include <conio.h>
 void main()
 {
 int a[2][3],i,j;
 clrscr();
 printf("\nENTER VALUES FOR THE MATRIX:\n");
 for(i=0;i<2;i++)
 for(j=0;j<3;j++)
 scanf("%d",&a[i][j]);
 printf("\nTHE VALUES OF THE MATRIX ARE:\n");
 for(i=0;i<2;i++)
 {
 for(j=0;j<3;j++)
 printf("%5d",a[i][j]);
 printf("\n");
 }

Result:

www.EngineeringBooksPdf.com

PROGRAMMING IN C

131

Input:
ENTER VALUES FOR THE MATRIX: 1 2 3 4 5 6

Output:
THE VALUES OF THE MATRIX ARE:
1 2 3
4 5 6

2) /*Addition of matrices Program */

#include<stdio.h>
main()
{
int x[][] = { {8,5,6},
{1,2,1},
{0,8,7}
};
int y[][] = { {4,3,2},
{3,6,4},
{0,0,0}
};
int i,j;
printf("First matrix: ");
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
printf(“%d”, x[i][j]);
printf("\n");
}
printf("Second matrix: ");
for(i=0;i<3;i++)
{
for(int j=0;j<3;j++)
printf(“%d”, y[i][j]);
printf("\n");
}
printf("Addition: ");
for(i=0;i<3;i++)
{
for(int j=0;j<3;j++)
printf(“%d”, x[i][j]+y[i][j]);
printf("\n");
}
}
}

Result:

www.EngineeringBooksPdf.com

PROGRAMMING IN C

132

Input:

First matrix:
8 5 6
1 2 1
0 8 7

Second matrix:
4 3 2
3 6 4
0 0 0
Output:

Addition:

12 8 8
4 8 5
0 8 7

1.9 Passing Arrays as Arguments

When an array is passed to a function as an argument, the array's
address is actually passed, rather than the values of the elements in the
array. If the function modifies the array values, the array will be modified,
since there is only one copy of the array in memory. To pass one
dimensional array to the function following rules are considered.

1) Function must be called by using only the name of array. It need not

include size of array(i.e square brakets[]) or any arguments. For
example,

int list[] = {0, 4, 5, -8, 17, 301};/*This defines the array list */
Let biggest be the called function. To pass the array list and an integer
variable to the called function, it can be written as

biggest(list, n)

To pass array alone to the called function, it can be written as
biggest (list)

2) The function header must have the data type of the array. Size of
array need not be specified. However empty square brackets must be
used, to specify the parameter as an array. Function definition can
have formal parameters.
For example:
The function header for the called function biggest can be written as

www.EngineeringBooksPdf.com

PROGRAMMING IN C

133

int biggest(int array[], int size)

The function biggest is defined to have two arguments one array name
and other an integer value. Here int array[] is a formal parameter
which is same as actual parameter int list[].Int size is also a formal
parameter.

3) Function prototype(if any), must specify the argument is an array. For
 example,

int biggest(int array[], int size);

[Remember that the difference between function header and function
prototype is only semicolon(;)]

To understand the passing of one dimensional array to a function consider
the below two programs.

1) /*This program declares one dimensional array and passes it as

parameter to a function. The function takes an index and an array, and
returns the array element specified by the index: */

 #include <stdio.h>
 int retrieve_element(int index, int array1[]);
 main()
 {
 int value;
 int a[] = {0, 4, 12, 17, 34};
 value= retrieve_element(3, a);

 Printf(“The value of array element is %d “, value);
 }
 int retrieve_element(int index, int array1 [])
 {
 return array1[index]; /* This will return the value of the
element in the array at the position indicated by the value
of index. */
 }

Output:
The value of array element is 12

Analysis:
(i)Consider the function prototype.
 int retrieve_element(int index, int array1[]);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

134

This denotes that called function name is retrieve-element, its returns
integer value to caller function and it has two formal parameters, one is
integer variable index and other is int data type array.

(ii)Function main declares integer array int a[] and integer variables
index and value. It calls the function retrieve-element by passing two
actual parameters ,first parameter an integer value 3 and second is an
array a. The returned result is stored in variable value.

(iii) Function header in the called function has two formal arguments, int
index and int array1[] which are same as actual arguments in function 3
and a respectively. In other words this can be described as below.
main()
{
 int value;
 int a[] = {0, 4, 12, 17, 34};

 value= retrieve_element(3, a); /* actual parameters where 3=int
value,
 …………… a=array a[] */
}

int retrieve_element(int index, int array1 []) /* Formal parameters where

 3=index, int array1=int
a[]*/
 {
 ………….
 }

(iv) Consider the called function body

 return array1[index];
Here the index is 3. This statement is equivalent to return array1[3]; This
will return the value of the element in the array at the position indicated
by the value of index which is twelve in this case.

2)/*This program reads and prints an array elements by passing the array
as parameter to function*/

 #include<stdio.h>
 void read(int take[],int in);
 void dis(int give[],int out);
 void main()
 {
 int a[5];

www.EngineeringBooksPdf.com

PROGRAMMING IN C

135

 printf("Enter five elements of first list \n");
 read(a,5);
 printf("The elements of first list are \n");
 dis(a,5);
 }
 void read(int take[],int in);
 {
 int j;
 for(j=0;j<in;j++)
 scanf("%d",&take[j]);
 }
 void dis(int give[],int out)
 {
 int j;
 for(j=0;j<out;j++)
 printf("%d ",give[j]);
 printf("\n");
 }

Result:

Input:
Enter five elements of first list: 1 2 3 4 5

Output:
The elements of first list are
1
2
3
4
5

1.10 Questions

2) What is array? How it is declared?
3) Explain the need for array variables.
4) Explain two types of initialization of array with an example.
5) Explain functioning of an array with example.
6) How to define and declare an array?
7) Explain how to declare and initialize two dimensional array?
8) How an array can be passed as argument?
9) Explain the processing of two dimensional array?

1.11 Programing Exercises

1) Write a program to create an array. Print the values and addresses
of each elements of the array.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

136

2) Write a program to create an array of student’s ages. Print the
average age.

3) Write a program to create an array. Print the highest and lowest
number in the array.

4) Write a program to insert a given number in the array in a given
position.

5) Write a program to create a matrix and display a matrix.
6) Write a program to create two matrixes. Add the values of the two

matrixes and store it in another matrix. Display the new matrix.

Module 4

UNIT 2: Strings

2.1 Introduction

The string is sequence of characters that is treated as a single data item.
No intrinsic string data type exists in c. The character array ended with a
null character \0 is implemented as string. A series of characters enclosed
in double quotes (" ") is called a string constant, a string or string literal.
The C compiler can automatically add a null character (\0) at the end of a
string constant to indicate the end of the string. For example, the
character string "hello" is considered a string constant.

2.2 Declaring a string

C does not support string as the data type. However is allows us to
represent strings as character arrays. It can be declared as –

char string_name[size];

Here char is character data type. This is must for specifying the data type
as string. string_name is the valid variable name given to the string and
‘size’ determines the number of characters in the string. For example:

char star[10];
char book[13];
char phone[];

Analysis:
Here ‘star’ is the character array or a string that can store up to 10
elements of type char. It can be represented as:

www.EngineeringBooksPdf.com

PROGRAMMING IN C

137

char star[10];

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

However star can also store shorter sequences than 10 characters.
Similarly ‘book’ can store 13 characters. It can be represented as

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

char phone[];
Here phone array does not have size specified. This initializes an upsized
character array, phone, with a string constant. Later when the compiler
sees the statement, it will figure out the total memory space needed to
hold the string constant plus an extra null character added by the
compiler itself and allocates the memory space.

2.3 Initializing a String

 As other type of arrays, strings can also be initialized at compile
time and at run time. The process of initializing the strings at compile
time is to write the string literal within double quotes. Compile time
initialization is called as static initialization. Compile time initialization can
be done in three ways. They are given below.

Type 1. char name[9] = “Sri Rama”;
Type 2. char stream[7] = {`H', `e', `l', `l', `o', `!', `\0'};
Type 3. char str[] = "I like C.";

2.3.1 Type 1

Consider a character array name that is initialized with a string constant
“Mr JOHN”. This is written as
char name[9] = “Mr JOHN”;

This string is stored in the memory as given below.

M R J O H N

Here null (\0) is appended by the compiler at the end string to denote
that it is end of given string. The compiler can automatically append a null
character (\0) to the end of the array and treat the character array as a
character string. Note that the size of the array is specified to hold up to
nine elements, although the string constant has only eight characters
enclosed in double quotes. The extra space is reserved for the null
character that the compiler will add later.

char str1[4] = "text"; /* illegal declaration*/

www.EngineeringBooksPdf.com

PROGRAMMING IN C

138

 Here the array str1 has size 4. This it cannot hold a string constant plus
an extra null character and above declaration is considered illegal.

Note that many C compilers will not issue a warning or an error message
on this incorrect declaration. The runtime errors that could eventually
arise as a result could be very difficult to debug.

2.3.2 Type 2

A character array can also be declared and initialized like this:
char stream[6] = {`H', `e', `l', `l', `o', `!'}; /* char array*/

This same array can be declared as string when null(\0) is appended at
the end by user and array size is made sufficient to hold all characters.
This is shown below.

char stream[7] = {`H', `e', `l', `l', `o', `!', `\0'};/*string */

You can also initialize the above a character array stream can be
initialized with a string constant “Hello! “. For example,

char str[7] = "Hello!";

The compiler can automatically append a null character (\0) to the end of
the array, and treat the character array as a character string.

2.3.3 Type 3

The third type of initialization is not specifying the array size. For
example,

char str[] = "I like C.";

This statement initializes an character array, str, with a string constant.” I
like c. “Later when the compiler sees the statement, it will figure out the
total memory space needed to hold the string constant plus an extra null
character added by the compiler itself.

2.4 Initialization after Declaration

char s[10] = " Web Design";
is not the same as
char s[10];
s = "Web Design"; /*Illegal declaration. */
This generates a compiler error. The assignment operator cannot be used
with a string already declared.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

139

2.5 String Constants versus Character Constants

A string constant is a series of characters enclosed in double quotes (" ").
On the other hand, a character constant is a character enclosed in single
quotes (` `). When a character variable ch and a character array str are
initialized with the same character,x, such as the following,

char ch = `x';
char str[] = "x";

One byte is reserved for the character variable ch, and two bytes are
allocated for the character array str. The reason that an extra byte is
needed for str is that the compiler has to append a null character to the
array.

2.6 Input data to string

This is also called as run time initialization. The integers, character and
float data types are read by using functions such as scanf(), gets,etc.
Similarly to read a string two functions are used. They are

1. scanf()
2. gets()

2.6.1 Reading Strings Using scanf ()

To read strings using scanf() format specifier %s is used with the function
scanf().For example

char name[10];

To input data in
to char array ’name’, scanf function and %s is used as given below.

scanf("%s",name);

Note that the %s format specifier doesn’t require the ampersand (&)
symbol before the variable name. The major limitation of scanf() is that it
reads until occurrence of first separator a white space characters such as
space character, tab or new line and store it into given variable. For
example if the input literal is “How are you?”. Then the scanf statement
will read only the word ‘How’ into the variable name.

To overcome this limitation, gets() and getchar() functions are used.

2.6.2 Reading Strings using gets()

www.EngineeringBooksPdf.com

PROGRAMMING IN C

140

The gets() functions reads the string from the keyboard including spaces
until the enter key is not pressed. The getchar() function is used to get a
single charater. The gets() and getchar() functions are defined in stdio.h
library file. For example

char line[100];
printf("Enter a line:\n");
gets(line);
puts("Entered input is :\n");
puts(line);

The gets() function keeps reading characters from the standard input
stream until a new line character or end-of-file is encountered. Instead of
saving the new line character, the gets() function appends a null
character to the array that is referenced by the argument to the gets()
function.

2.7 Print strings

To out put data of the given string two functions are used. They are

1) printf()
2) puts ()

2.7.1 Printing strings using printf()

The printf statement along with format specifier %s is used to print
strings on the screen. The format %s can be used to display an array of
characters that is terminated by the null character. For example,

printf(“%s”, name);

can be used to display the entire contents of the array name.

printf expects to receive a string as an additional parameter when it sees
%s in the format string. This additional parameter

– Can be from a character array.
– Can be another literal string.
– Can be from a character pointer (more on this Pointer chapter).

printf knows how much to print out because of the NULL character at the
end of all strings. When printf() encounters a null\0, it stops printing. The
string variable can be printed out with precision using printf() statement.
For example

 printf("%7.3s",name)

www.EngineeringBooksPdf.com

PROGRAMMING IN C

141

This specifies that only the first 3 characters have to be printed in a total
field width of 7 characters & right justified in the allocated width by
default. We can include a minus sign to make it left justified (%-7.3). For
example consider the following program.

– printf("|%5s|","Have a Happy Day");
• | Have a Happy Day|

– printf("|%-5s|","Have a Happy Day");
• |Have a Happy Day |

– printf("|%25.12s|","Have a Happy Day");
• | Have a Happy|

– printf("|%.12s|","Have a Happy Day");
• |Have a Happy|

2.7.2 Printing strings using puts()

The puts function is a much simpler output function than printf for string
printing. Prototype of puts is defined in stdio.h For example:

char sentence[] = "This is strings in C \n";
puts(sentence);

This Prints out:
This is strings in C
Consider a simple program to understand string input and output
functions.

#include <stdio.h>
main()
{
char str[80] ; Char str2[45];
printf("Enter a string: ") ;
gets(str1) ;
printf("Enter another string: ") ;
scanf(“%s“,str2); /*Reads upto first white space character*/
Printf(“output of first string:\n”);
printf("%s" , str1\n);
Printf(“output of second string:\n”);
puts(“str2 “)
}

Result:

Input:
Enter a string: This is c language.
Enter another string: This is strings

www.EngineeringBooksPdf.com

PROGRAMMING IN C

142

Output:
Output of first string: This is c language
Output of second string: This

2.8 Built-in String Functions
C does not provide any operators for string. Because of this C has built in
string functions in its library. C library supports a large number of string
handling functions that can be used to perform many of the string
manipulations. Some of the string functions are given below. To do all the
operations described here it is essential to include string.h library header
file in the program.
Some of the String Functions in string.h

Function name Description
strcpy(str1,str2) copies str2 to str1 including the null (\0).

strcat(str1,str2) Appends str2 to end of string str1

strlen(string) Returns the length of string. Does not include the
null(\0)

strcmp(str1,str2) Compares str1 with str2 returns integer result.If
str1<str2 returns negative integer.Returns zero
when str1==str2,and
Returns a positive integer when str1>str2.

Strncpy(str1,str2,n) It copies at most n characters of str2 to str1.If str2
has fewer than n characters, it pads str1 with
null(‘\o’) characters.

Strchr(string,char) Locates the position of the first occurrence of char
within string and returns the address of the
characterif it finds. and null if not.For ex-(“ Hello”,
’l’)

strlwr() converts all characters in a string from uppercase to
lowercase.

strupr() converts all characters in a string from lower case to
uppercase.

strcpy() function:

C does not allow you to assign the characters to a string directly.For
example as in the statement name=”Java”; Instead use the strcpy()
function. The strcpy() function works almost like a string-assignment
operator. The syntax of the function is

strcpy(string1,string2);

Strcpy() function assigns the contents of string2 to string1.The string2
may be a character array variable or a string constant.

strcpy(Name,”Java”);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

143

strcpy(city1, city2);

This will assign the contents of the string variable city2 to the string
variable city1.The size of the array city1 should be large enough to
receive the contents of city2, if not compiler will lodge an error.

strcat() function:
The process of appending the characters of one string to the end of other
string. Is called concatenation.The strcat() function joins two strings
together. Sstrcat(string1,string2)

Here string1 & string2 are character arrays. When the function strcat is
executed string2 is appended to string1.The string at string2 remains
unchanged.

Example

strcpy(string1,”Web”);
strcpy(string2,”Mining”);
Printf(“%s”, strcat(string1,string2);

From the above program segment the value of string1 becomes
webmining. The string at str2 remains unchanged as mining. The
variation in this function is strn(str1,str2,n) .This concatenates the n
integer letters to str1. For example,

strncat(stri,name,4);

This concatenates first 4 letters of string name to string stri.

strlen() function:
This function counts and returns the number of characters in a string. The
length does not include a null character. The syntax is n=strlen(string);
Where n is integer variable, which receives the value of length of the
string.

Example:

int len;
len=strlen(“Coral Draw”);
Here the integer variable len will store the value 10 which is the length of
given sting.

strcmp() function
In c the values of two strings cannot be directly compare in a condition
like if(string1==string2). The strcmp() function is used for this purpose.
This function returns a zerovalue if two strings are equal, or a non zero

www.EngineeringBooksPdf.com

PROGRAMMING IN C

144

number if the strings are not the same. This returns a negative if the
string1 is alphabetically less than the second and a positive number if the
string is greater than the second.

 The syntax of strcmp() is given below:

Strcmp(string1,string2)
String1 & string2 may be string variables or string constants.

Example:
strcmp(“Book”,”Book”) will return zero because 2 strings are equal.
strcmp(“their”,”there”) will return a 9 which is the numeric difference
between ASCII ‘i’ and ASCII ’r’.
strcmp(“The”, “the”) will return 32 which is the numeric difference
between ASCII “T” & ASCII “t”.

strcmpi() function
This function is same as strcmp() which compares 2 strings but not case
sensitive. For example

strcmpi(“THE”, ”the”); will return 0.

strlwr () function:
This function converts all characters in a string from uppercase to
lowercase. The syntax is

strlwr(string);

For example:
strlwr(“APPLICATION”) converts the string to application

strupr() function:
This function converts all characters in a string from lower case to
uppercase. The syntax is

strupr(string);
For example strupr(“application”) will convert the string to APPLICATION.

2.9 C Character Functions

Apart from string functions C has character functions. These functions are
defined in ctype.h library file. Some of the character functions are given
below.

Function Return true if
int isalpha(c); c is a letter.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

145

int isupper(c); c is an upper case letter.
int islower(c); c is a lower case letter.
int isdigit(c); c is a digit [0-9].
int isxdigit(c); c is a hexadecimal digit [0-9A-Fa-f].
int isalnum(c); c is an alphanumeric character (c is a letter or a digit);

int isspace(c); c is a SPACE, TAB, RETURN, NEWLINE, FORMFEED,
or vertical tab character.

int ispunct(c); c is a punctuation character (neither control nor
alphanumeric).

int isprint(c); c is a printing character.
int iscntrl(c); c is a delete character or ordinary control character.
int isascii(c); c is an ASCII character, code less than 0200.

int toupper(int
c);

convert character c to upper case (leave it alone if not
lower)

int tolower(int
c);

convert character c to lower case (leave it alone if not
upper)

Programs

1. Write a program to find out the length of a given string without using
the library function strlen().

#include <stdio.h>
void main()
{
char str[50];
char nul={‘\0’}
int len;
printf("\nENTER A STRING: ");
gets(str);
for(len=0; str[len]!=nul; len++);

printf("\n THE LENGTH OF THE STRING IS %d", len);
}

Result:
Input:
ENTER A STRING: This is string in C

Output:
THE LENGTH OF THE STRING IS 19.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

146

2) Write a program to find out the length of a given string using the
library function strlen().

/*The "strlen()" function gives the length of a string, not including the
NULL character at the end.*/

 #include <stdio.h>
 #include <string.h>
 void main()
 {
 char name[30] = "This is string in C";
 int len;
 len= strlen(name);
 printf("Length of string <%s> is %d.\n", name ,len);
 }

Output:
 Length of string < This is string in C > is19.

3) Write a program to print the reverse of a given string.

#include <stdio.h>
#include <string.h>
void main()
{
 char ch[100];
 int i,len;
 printf("\n Enter a string: ");
 gets(ch);
 len= strlen(ch);
 printf("\n The string in the reverse order: ");
 for(i=len-1; i>=0; i--)
 printf("%c", ch[i]);
 getch();
}

Result:
Input
Enter a string: strings are interesting.

Output
The string in the reverse order: .gnitseretni era sgnirts

4)Write a program to check if a given string is palindrome or not.

#include <stdio.h>
#include <string.h>
#include <string.h>

www.EngineeringBooksPdf.com

PROGRAMMING IN C

147

void main()
{
 char a[100];
 int i,len, flag=0;
 printf("\n Enter a string: ");
 gets(a);
 len=strlen(a);
for(i=0;i<len; i++)
 {
 if(a[i]==a[len-i-1])
 flag=flag+1;
 }
 if(flag==len)
 printf("\n The string is palindrom");
 else
 printf("\n The string is not palindrom");
}

RESULT:

Input
Enter a string: madam

Output
The string is palindrome

5) Write a program to count the number of vowels in a given string.

#include <stdio.h>
#include <string.h>
void main()
{
char a[100];
int leni, vow=0;
printf("\n ENTER A STRING: ");
gets(a);
len=strlen(a);
for(i=0;i<len; i++)
{

if(a[i]=='a' || a[i]=='A' || a[i]=='e' || a[i]=='E' || a[i]=='i' ||
a[i]=='I' || a[i]=='o' || a[i]=='O' || a[i]=='u' || a[i]=='U')

 vow=vow+1;
}
printf("\n There are %d vowels in the string", vow);
}

RESULT:

www.EngineeringBooksPdf.com

PROGRAMMING IN C

148

Input
Enter a string: Evening

Output
There are 3 vowels in the string

6) Write a program to count the number of words in a given string. Two
words are separated by one or more blank spaces.

#include <stdio.h>
#include <string.h>
void main()
{
 char a[100];
 int len, word, i =0;
 printf("\n Enter a string: ");
 gets(a);
 len=strlen(a);
for(i=0;i<len; i++)
 {
 if(a[i] !=' ' && a[i+1]==' ')
 word=word+1;
 }
printf("\n There are %d words in the string", word);
}

RESULT:

Input
Enter a string: Strings are very interesting.

Output
There are 4 words in the string

2.10 Questions

1) What is a string? How strings are different from character strings. Give
different types of initialization of the strings.
2)Explain different functions used to write and read the strings.
3) Explian any five string handling functions.
4) Differentiate between scanf() and gets() pertaining to reading the
strings.

2.11 Programing Exercise

1. Write a program to copy contents of one array into another array.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

149

Accept size of both arrays as 7.
2) Read a string from keyboard and inverse the case of it. That is, convert
lower case letters to upper-case and vice versa.
3) Input any two strings from user and find whether these are equal or
not.
4) Read a string from user and analyze it. That is, count total number of
alphabets, digits, special symbols and display their counts.
5) Write a program to accept a string and display a list of ASCII codes
which represent accepted string.

Module 5

Unit 1 : POINTERS

1.1 Introduction

Pointers are a fundamental part of C. A pointer is a derived data type in
‘C’. It is built from any one of the primary data type available in ‘C’
programming language. Pointers contain memory addresses as their
values. C uses pointers because of following advantages namely,

 It is the only way to express some computations.
 It produces compact and efficient code.
 It provides a very powerful tool to solve complex problems.
 It reduces the complexity and length of the program.

C uses pointers explicitly with:

 Arrays
 Structures
 Functions

1.2 How variables are stored in memory?

Consider the following variables declared in a program:

char name;
int number;
float height;

When a variable is defined the compiler allocates a real memory address
for the variable. For character one byte, float four bytes and int two bytes
are allocated generally. The following diagram illustrates how the above
declared variables might be arranged in memory along with their
addresses

www.EngineeringBooksPdf.com

PROGRAMMING IN C

150

1000 1001 1003

char name int number float height

When the variables are initialized, the value of the variable gets stored in
that respective memory location.
1.3 What is a Pointer?

A pointer is a special variable that holds the address of the memory
location of another variable. Another variable could be anything. It could
be a float, int, char, double, etc. Consider the following statement:

int number =5;

For integer variable quantity let the address of the variable be 5078.This
can be diagrammatically presented as given below.

 Number variable
 Value

 5078 Address

During the execution of program computer always associates the integer
variable number with address 5078. The value 5 can be accessed by using
either the variable number or the address of it which is 5078. Since
memory addresses are simply numbers they can be assigned to some
variables which can be stored in memory like any other variables. Such
variables that hold memory addresses are called as ‘pointer variables’ the
pointer variable is nothing but a variable that contains an address of
another variable in memory. When a pointer contains address of integer
variable, such pointer is called integer pointer. Similarly float, char
pointers contain the address of char and float data type.

1.4 Pointer Declaration

In C every variable must be declared before it is used. Since pointer is a
special variable, its declaration is also different. An operator called
dereference operator or indirection operator is used to declare a Pointer.
It is represented by *(asterisk).The ‘*’ symbol appears in C language in
four different situations with four different meanings. Two of these are
well known.

(i) Comments/*…*/
(ii) Arithmetic operator for multiplication as in a*b
(iii) Declaring pointer variable using *(dereference operator)

5

www.EngineeringBooksPdf.com

PROGRAMMING IN C

151

Usage of deference operator in comment can be easily recognized.
Multiplication needs two operands; this can also be easily recognized.
When it appears in a declaration as int *p, read it is read as p is a pointer
to an integer. The syntax of pointer declaration is

data-type *variable-name;

Here data type can be int, float, char etc and the dereference operator
before the int variable variable-name tells that it is a pointer variable.
Hence the pointer variable variable-name holds the address of another
variable of the same data type. For example,

A pointer is declared by assigning an asterisk (*) in front of the variable
name in the declaration statement.

int x; /* define x */
int *ptr; /* define a pointer to x */
int *p; p is a pointer to an integer.
similarly pointer to char and float can be declared
char *q; q is a pointer to a char.
float *fp; fp is a pointer to float.

The "dereferencing operator” the asterisk can also be is used as follows:

 *ptr = 7;

This will copy 7 to the address pointed to by ptr. Thus if ptr "points to"
(contains the address of) x, the above statement will set the value of x to
7. That is, when the '*' is used this way, it is referring to the value of that
which ptr is pointing to, not the value of the pointer itself.

1.4.1 Pointer Declaration Styles

The dereference operator (*) can appear anywhere between the
data type name and the pointer variable name as shown below.,

int * p; /*style 1 between the data type and variable*/
int *p; /*style 2 Close to varible*/
int* p; /*style 3 close to data type.*/

1.4.2 Multiple Declarations

Multiple pointers of same data type can be declared as given below.
int *p, x, *q;
Here p and q are pointer variables and x is integer variable.
1.5 Pointer Initialization

www.EngineeringBooksPdf.com

PROGRAMMING IN C

152

 Consider the declaration

int i, j,*p;

 It declares a pointer variable p that can point to an integer. Just this

kind of declaration, doesn’t specify where a integer pointer p has to
point at particular. In other words it does not say anything about which
particular integer variable address it has to hold, either of int i or of int
j, in this case. To explicitly specify where variable a pointer has to
point to, a unary operator called reference or address operator (&)
is used. The reference operator (&) cannot be applied to expressions,
constants, or register variables. To initialize the pointer variable
reference operator (&) is used with pointer variable. To understand
different types of initialization consider the following examples,

(i) int i, j, *p;

 p = &i;

This causes p pointer variable to point at i the integer data type. Here

 * is the indirection operator
 & is the address operator

1.5.1 The Address of Variables

All the variables that are declared in programs are allocated addresses in
the memory. This address can be printed out using the & operator.(which
has already been used in scanf(). For example, consider the below
program.

#include <stdio.h>
main()
{
int x;
x=1000;
printf(“ Value of x=%d\n”,x);
printf(“Address of variable x = %d\n”, &x);
}
OUTPUT:

Value of x = 1000
Address of variable x = 278614

Analysis:
In this case, the value will be stored in 4 locations, not one, since integer
requires 4 bytes to store. However 1000 is ‘sliced’ into 4 pieces,. Here,
what is the address of x? Actually it is 278614, 278615, 278616 and

www.EngineeringBooksPdf.com

PROGRAMMING IN C

153

278617.However in C we consider the address of C as 278614, the
address of first of the four locations. This is an important thing to
remember and crucial to the understanding of pointers

(ii) int x;
 int*ptr;

 ptr=&x; /*Address of x is assigned to pointer variable*/
 *ptr=&x;/*The value of x is assigned to ptr */

1.5.2 Null Pointers

A pointer is said to be a null pointer when its value is 0. Remember, a null
pointer can never point to valid data. To set a null pointer, simply assign
0 to the pointer variable. For example:
char *pc;
int *pt;
pt=pc=0;
Here pt and pc pointers become null pointers after the integer value of 0
is assigned to them. Later in the program any required value can be
assigned to null pointers. This analogous to initializing the variables to
zero value in the program, such as

int x=0;
X=5;

1.5.3 Understanding pointers

Pointers has the following two important aspects. They are given below.

&x = address of variable x.
*p = content of address given by p.

Pointers concept is well understood by following example problems.

(i)Write a program to display the contents of a pointer.

#include <stdio.h>
int main()
{
 int x = 12;
 int *ptr;
 ptr = &x;

 printf("Address of x: 0x%p\n", ptr);
 printf("Address of x: 0x%x\n", &x);
 printf("Address of ptr: 0x%x\n", &ptr);
 printf("Value of x: %d\n", *ptr);

www.EngineeringBooksPdf.com

PROGRAMMING IN C

154

 return 0;
}

OUTPUT:
Address of x: 0x0065FBFA
Address of x: 0x65fbfa
Address of ptr: 0x65fbfa
Value of x: 12

Note: Format specifiers %x,%X and %p are used to get the address of
the variable in c. ox in the address refers that the format of address is in
hexadecimal format.

%x -> Hexadecimal value represented with lowercase characters
(unsigned integer type)
%X -> Hexadecimal value represented with uppercase characters
(unsigned integer type)
%p -> Displays a memory address (pointer type) compatible to the
computer memory.

2) Write a simple program to understand the usage deference and
reference operators in pointers

#include <stdio.h>
int main()
{
int *ptr, q;

q = 19; /* assign 19 to q*/

ptr = &q; /* assign ptr the address of q */
printf(“ Vlaue of q=%d\n“,q);
Printf(“Contents of ptr=%d\n “,*ptr);
printf(“Address of q stored in ptr=%d “,ptr);
return 0;
}

OUTPUT
value of q=19
Contents of ptr=19
address of q stored in ptr=782AB2

3) Write a program to assign a character variable to the pointer and to
display the contents of the pointer.

#include <stdio.h>
void main()

www.EngineeringBooksPdf.com

PROGRAMMING IN C

155

{
 char x, y;
 char *p;
 x=’t’;
 p=&x;
 y=*p;
 printf("value of x=%c\n", x);
 printf("Pointer value in y=%d\n", y);
 printf("Pointer value in *p=%d\n", *p);

}

Output
Value of x=t
Pointer value in y=t
Pointer value in *p=t

4) Write a program to assign the pointer variable to another pointer and
display the contents of both pointer variables.

#include<stdio.h>
main()
{
int x;
int *ptr1,*ptr2;
x=5;
ptr1=&x;
ptr2=ptr1;

printf("value of x=%d\n", x);
printf("Contents of ptr1=%d\n",*ptr1);
printf("Contents of ptr2=%d\n", *ptr2);
}

Output

Value of x=5
Contents of ptr1=5
Contents of ptr2=5

1.6 Pointer Expressions

To understand the working of pointers consider the below expressions.

int x,y;
int *ptr1,*ptr2;

1)ptr1=&x;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

156

The memory address of the variable x is assigned to pointer variable ptr1.

2) y=*ptr1
pointer variable ptr1 is holding the address. The content of that address
is assigned to the variable y, not the memory address.

3) ptr1=&x;
 ptr2=ptr1;
Ptr1 holds the address of the variable due to first declaration. In the
second declaration content of ptr1 ie the address of x is transferred to
ptr2.Hence both ptr1, ptr2 both will be holding the same address.

4) For better understanding of the pointers consider some of the invalid
declarations given below.

(i) int x;
 int ptr1;
 ptr1=&x;
Error: pointer declaration must have the prefix of dereference (*)
operator.

(ii) float p;
 float*var
 var=y;
Error: While assigning variable to the pointer variable the address
operator (&) must be used along with the variable.

(iii) int x;
 char *name;
 name=&x;
error: Mixing of data type is not allowed.

1.7 Pointer Arithmetic

Pointer is a variable .Some arithmetic operations can be performed with
pointers. C language supports four arithmetic operators which can be
performed with pointers .They are

addition +
subtraction
Pointer increment
Pointer decrement

1.7.1 Pointer increment and decrement

Integer, float, char, double data type pointers can be incremented and
decremented. For all these data types both prefix and post fix increment

www.EngineeringBooksPdf.com

PROGRAMMING IN C

157

or decrement is allowed. Integer pointers are incremented or
decremented in the multiples of two. Similarly character by one, float by
four and double pointers by eight etc.

Let int*p;

P++ /*valid*/
++p /*valid*/
p-- /*valid*/
--p /*valid*/

This is illustrated in the below program.

#include <stdio.h>
main()
{
int *p1,p;
float *f1,f;
char *c1,c;
p1=&p;
f1=&f;
c1=&c;

printf(“Memory address before increment:\n
int=%p\n,float=%p\n, char=%p\n“,p1,f1,c1);
p1++;
f1++;
c1++;
printf(“Memory address after increment:\n int=%p\n, float=%p\n,
char=%p\n“,p1,f1,c1);
}

Output:

Memory address before increment:

int=0045AF19 /*int Occupies two bytes*/
float=0045AF2B /*float occupies four bytes*/
char= 0045AF3E /*character occupies one byte*/

Memory address after increment:

int=0045AF1B
float=0045AF2F
char= 0045AF3F

2) #include <stdio.h>
main()
{

www.EngineeringBooksPdf.com

PROGRAMMING IN C

158

int x;
int *p;
x=1000;
p=&x;
printf(“Pointer value = %d\n”,p);
printf(“Pointer plus one =%d\n”,p+1);

}

An example output can be:
Pointer value = 22F455
Pointer plus one = 22F439

Analysis:
223455+1=223439! That is pointer magic! How does C justify that? Well,
223455 is not just a number, C knows it is the address of an integer that
takes 4 locations. So 223455,223456, 223457 and 223458 are all
together held by the integer. So C interprets +1 as next free location and
gives the answer 223459.Remember that it need not be continuation of
memory location, when a pointer is incremented.

1.7.2 Pointer Addition and Subtraction

Other than addition and subtraction, no other operations are allowed on
integer pointers. Addition and subtraction with float or double data type
pointers are not allowed. Pointers cannot be added or subtracted from
each other. For example,

int*p1,*p2;
p1=p1+p2; /* invalid */
p1=p1-p2; /* invalid */

A constant can be added or subtracted from integer pointer variable. For
example,

int*ptr;
ptr=ptr+9;

To understand the pointer additions consider the following program.
/*pointer arithmetic*/

#include <stdio.h>
main()
{
 int x;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

159

int*ptr1,*ptr2;
x=10;
ptr1=&x;
ptr2=ptr1+6;
printf(“ Value of x=%d\n“,x);
printf(“Value pointed by ptr1 =%d\n “,*ptr1);
printf(“ Address of x pointed by ptr1=%d\n“, ptr1);
printf(“Content of ptr2=(ptr1+6)is =%u “,ptr2);
printf(“Value pointed by ptr1=%d “, *ptr2);
}

OUTPUT:

Value pointed by ptr1=10
Address of x pointed by ptr1=00785614
Content of ptr2=(ptr1+6)is = 0078561A
Value pointed by ptr2=8A/* let he value at location 0078561A be 8A
*/

1.7.3 Pointer Multiplication and Division

 Multiplication or division is not allowed with the pointers. For example

int*p1,*p2;
p1=p1*p2; /*Invalid*/
p1=p1/p2; /*Invalid*/

 Pointer cannot be multiplied or divided a pointer by constant. For
example:
p = p * 4; /* invalid */
p = p / 2; /* invalid */

1.8 Pointers and Function

C allows operations of pointers with functions. The typical use of this is
passing an argument to called function in the function declaration.
Sometimes only with a pointer a complex function can be easily
represented and success. The usage of the pointers in a function
definition may be classified into two groups.

1. Call by reference
2. Call by value.

1.8.1 Call by Reference

www.EngineeringBooksPdf.com

PROGRAMMING IN C

160

 In this case, the address of a variable is passed to a function through a
pointer. This means that the value of the variable maybe changed inside
the function. Passing the address of a variable to a function is called
passing by reference. In order to declare a pointer to a function it has to
be declared like the prototype of the function except that the name of the
function is enclosed between parentheses () and an asterisk (*) is inserted
before the name. The function which is called by reference can change the
values of the variable used in the calling program. For example,

int x, y;
To pass by reference the variables x and y to function add,
add (&x, &y); /*address of x and y is passed*/
In the called function add () x and y variable values can obtained by
inserting asterisk (*) before the formal parameters name. For example,

main()
{
 int x ,y, z;
 x=10;

y=20;
add(&x, &y); /*Call by reference*/
z=x+y; /*Z=20+40=60*/

}
add(a,b)
int *a, int *b;/a,b are formal arguments/
{
*a=*a+*a; /*New values will be copied to actual parameters in
main*/
*b=*b+*b;
}

/* example of call by reference*?

include< stdio.h >
void main()
{
int x,y;
x=20;
y=30;
printf(“\n Value of a and b before function call a=%d, b= %d”, a, b);
fncn(&x, &y);
printf(“\n Value of a and b after function call a=%d ,b=%d”, a, b);
}
fncn(p,q)

www.EngineeringBooksPdf.com

PROGRAMMING IN C

161

int *p,*q;
{
*p=*p+*p+2;
*q=*q+*q+3;
}

Value of a and b before function call a=20, b=40
Value of a and b after function call a=42, b=63

2) int myfunction(int p1, int* p2)

{
p1 = 1 ;
*p2 = 2;

}
int main()
{
int x = 5, y = 6;
int *pY = &y ;
printf("\nValue of x and y before function call x=%d, y=%d", x, y);
myfunction(x, pY) ;
printf("\n Value of a and b after function x=%d, y=%d", x, y);
}

Output:
x=5, y=6
x=1, y=2

1.8.2 Call by Value

 Call by value explained well in functions chapter. Here only the value is
passed but not address. Hence the changes made to formal arguments do
not affect the actual parameters in the main function.

1.9 Pointers and Arrays

An array is actually very much like a pointer. We can declare the arrays
first element of array can be declared as a1[0] or as int *a1 because a[0]
is an address and *a is also an address. Hence the correspondence
between array and pointers can be understood in the following section.

1.9.1 Pointers and One Dimensional Array

An array is a collection of items of the same data type. For example, the
following are all array declarations:

int x[30]; /* an array of integers/

www.EngineeringBooksPdf.com

PROGRAMMING IN C

162

char name[20]; /* an array of characters*/
double g1[30]; /* an array of doubles*/
Consider the following:
int x[5] = {8, 4, 9, 6, 3};
Here array x is containing 5 integers. Each of these integers can be
referred by means of a subscript to x i.e. using x[0] through x[5].
Alternatively array can be access ed via a pointer as follows:
int *ptr; /*declare the pointer*/
ptr = &x[0]; /* pointer points to first element of the array*/
In the similar way other array elements can also be accessed as
given below.
p = &x[1]; /* pointer points to second element of the array*/
p = &x[2]; /* pointer points to third element of the array*/
p = &x[3]; /* pointer points to fourth element of the array*/
The other way of assigning the array to pointer is
int p[200];
int*ptr;
ptr=p;
This is exactly same as ptr=p[0];
The following equalities are also valid.
Ptr+6=&p[6];
*ptr==&p[0];
*(ptr+6)==&value[6];

The array subscripting is defined in terms of pointer arithmetic.The
expression a[i]is defined to be same as *((a)+(i)).
Aray and pointers concept can be well understood by the following
program.

#include<stdio.h>
main()
{
 int a[4]={1,2,3,4};
int*ptr;
int i,n,temp;
n=4;
Printf(“ Contents of array\n“)
for(i=0;i<=n-1;i++)
temp=a[i];
printf(“a[%d]value =%d \n“ i, temp);
}

Output:
Contents of array
a[0] value=1
a[1] value=2
a[2] value=3

www.EngineeringBooksPdf.com

PROGRAMMING IN C

163

a[3] value=4

1.9.2 Pointers and Strings

A string is an array of characters ending with the NULL characterA string
constant is enclosed in double quotes, e.g. “hello”, “I like C” In order to
assign a pointer to string, A character data type pointer variable is
declared and the address of the first element of a character array is
assigned to pointer variable as shown For example,
char a[] = "hello";/*string*/
char *ptr1;/*Declare a character data type pointer*/
char *ptr1 = &a[0]; /*Assign array to pointer*/

To print the string:

printf("string is: %s\n",a);
printf("string pointed by pointer ptr1: %s\n",ptr1);

OUTPUT:
string is: hello
string pointed by pointer ptr1: hello

The concept of string is well understood by the following example.

#include <conio.h>
void main() {
 clrscr();
 char *array[2];
 array[0]="Hello";
 array[1]="World";
 printf("The Array of String is = %s,%s\n", array[0], array[1]);
 getch();
}

Output
The Array of String is = Hello, World

All the string functions can be used with pointers. Consider a below
program to understand usage of strlen()function with pointer.

/* Measuring string length */

 #include <string.h>
 int main()
 {
 char str1[] = {`A', ` `, `s', `t', `r', `i', `n', `g', `\0'};
 char str2[] = "string constant";
 char *ptr_str = "Assign a string to a pointer.";

www.EngineeringBooksPdf.com

PROGRAMMING IN C

164

 printf("The length of str1 is: %d bytes\n", strlen(str1));
 printf("The length of str2 is: %d bytes\n", strlen(str2));
 printf("The length of the string assigned to ptr_str is: %d bytes\n",
 strlen(ptr_str));
 return 0;
 }

OUTPUT

The length of str1 is: 9 bytes
The length of str2 is: 15 bytes
The length of the string assigned to ptr_str is: 29 bytes

1.10 Questions

1. What is a pointer? what are the uses of pointers in C?
2. 1. Write the following pointer declarations.

(a) p, a pointer to an integer
(b) char p, a pointer to a character
(c) fp, a pointer to a float

3. How is a pointer variable different from an ordinary variable?
4. Differentiate between reference and dereference operators?
5. Explain pointer arithmetic.
6. How do you pass a pointer to a function?
7. Explain call by reference with an example.
8. How pointers are used in arrays? Explain with an example.
9. How pointers are used in strings? Explain with an example.

1.11 Programing Exercise

1) Predict the output of each of the following program. Size of memory
address can be assumed to 6 digits.

a) int a;
int *integer_pointer;
a=222;
integer_pointer=&a;
printf(“The value of a a %d\n”, a);
printf(“The address of a %d\n”,&a);
printf(“The address of integer_pointer %d\n”, &integer_pointer);
printf(“Star integer_pointer %d\n”, *integer_pointer);

b) for char
char a;
char *char_pointer;
a=’b’;
char_pointer=&a;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

165

printf(“The value of a %d\n”, a);
printf(“The address of a %d\n”, &a);
printf(“The address of char_pointer %d\n”, &char_pointer);
printf(“Star char_pointer %d\n”, *char_pointer);

c) for float
float a;
float *float_pointer;
a=22.25;
float_pointer=&a;
printf(“The value of a %d\n”, a);
printf(“The address of a %d\n”, &a);
printf(“The address of float_pointer %d\n”, &float_pointer);
printf(“Star float_pointer %d\n”, *float_pointer);

d) int a, b
int *ip1, *ip2;
a=5;
b=6;
ip1=&a;
ip2=ip1;
printf(“The value of a is %d\n”, a);
printf(“The value of b is %d\n”, b);
printf(“The address of a is %d\n”,&a);
printf(“The address of b is %d \n”&b);
printf(“The address of ip1 is %d\n”, &ip1);
printf(“The address of ip2 is %d\n”, &ip2);
printf(“The value of ip1 is %d\n”,ip1);
printf(“The value of ip2 is %d\n”, ip2);

2) Write a c program to find a given string in the line of text using a
pointer

3) Write a program to swap two numbers using pointers.

4) Write a program to find out whether a given string is palindrome or
not using pointers.

5) Write a program to reverse a string using pointers.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

166

Module 5

UNIT 2: Preprocessors

2.1 Introduction

A unique feature of c language is the preprocessor. A program can use
the tools provided by preprocessor to make his program easy to read,
modify, portable and more efficient.
The C preprocessor is a collection of special statements, called directives that
are executed at the beginning of the compilation process. It operates under the
control of preprocessor command lines and directives. Preprocessor directives
are placed in the source program before the main line before the source code
passes through the compiler it is examined by the preprocessor for any
preprocessor directives. If there is any appropriate actions are taken then the
source program is handed over to the compiler.

Preprocessor directives follow the special syntax rules that are listed
below.

 Executed by the pre-processor.
 Occurs before a program is compiled.
 Begin with #.
 Would not end with semicolon.
 Can be placed anywhere in the program.
 Normally placed at the beginning of the program or before any particular

function.

The compilation process can be diagrammatically given as below.

 .c files .h files

 Object code
 (.obj file)

.obj files .exe file

Types of Preprocessor Directives
A set of commonly used preprocessor directives are given below.

unconditional directives

Preprocessor
 C

source
C

Processed code

C compiler

Machine code

Librari Linker
Executable

code

www.EngineeringBooksPdf.com

PROGRAMMING IN C

167

#include Inserts a particular header from another file

#define Defines a preprocessor macro
#undef Undefines a preprocessor macro

The conditional directives

#ifdef If this macro is defined

#ifndef If this macro is not defined

#if Test if a compile time condition is true

#else The alternative for#if

#elif #else an #if in one statement

#endif End preprocessor conditional

2.2 Preprocessor Directives

The preprocessor directives can be divided into three categories. They are

1. Macro substitution directives
2. File inclusion directives
3. Compiler control directives

2.3 Macro Substitution Directives

Macro substitution is a process where an identifier in a program is
replaced by a pre defined string composed of one or more tokens. The
#define statement is used for this task. It has the following form

#define identifier string

This definition is known as a macro definition. The preprocessor replaces
every occurrence of the identifier in the source code by a string. The
definition should start with the keyword #define followed by an identifier
and a string with at least one blank space between them. Definition is not
terminated by a semicolon. The string may be any text and identifier
must be a valid c name.

There are three different forms of macro substitution. They are,
1. Simple macro substitution
2. Argument macro substitution
3. Nested macro substitution
Note that in this book only simple macro substitution alone is explained.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

168

2.3.1 Simple Macro Substitution

Simple string replacement is commonly used to define constants. For
example:

#define PI 3.1415926
#define CAPITAL “BANGALORE”
#define AREA 12.36

Writing macro definition in capitals is a convention not a rule. Macro is not
ended by semicolon.

Consider the below program to understand the functioning of macro.

#include<stdio.h>
#define PI 3.14
#define ERROR_1 "File not found."
#define QUOTE "Hello World!"
main()
{
printf("Area of circle = %f * diameter", PI);
printf("\nError : %s",ERROR_1);
printf("\nQuote : %s\n",QUOTE);
}

Preprocessor step is performed before compilation and it will change the
actual source code to below code. Compiler will see the program as given
below.

#include<stdio.h>
main()
{
printf("Area of circle = %f * diameter", 3.14);
printf("\error : %s","File not found.");
printf("\nQuote : %s","Hello World!\n");
system("pause");
}

Output
Area of circle = 3.140000 * diameter
Error : File not found.
Quote : Hello World!
2.3.2 Macro Inside the Quotes

While programming, care should be taken such that macro is not included
inside quotes because the macro inside a string does not replaced. For
example ,

www.EngineeringBooksPdf.com

PROGRAMMING IN C

169

define P 5
sum= P+ value;
printf(“P= %d\n “, P);

During preprocessing all the occurrences of P is replaced by 5 except for
the P inside the string. In the string ” P= %d\n “,P is left unchanged. This
is as shown below.

sum= 5+ value;
printf(“P= %d\n “, 5);

2.3.3 Macros With Parameters

The preprocessor permits us to define more complex and more useful
form of replacements it takes the following form.

define identifier(f1,f2,f3…..fn) string.
A simple example of a macro with arguments is
define CUBE (x) (x*x*x)

If the following statements appears later in the program,

volume=CUBE(side);
The preprocessor would expand the statement to
volume =(side*side*side)

2.3.4 Undefining a Macro

A defined macro can be undefined using the statement #undef<macro
name>. For example to undefined a macro, CUBE we can write

undef CUBE

This is useful when we want to restrict the definition only to a particular
part of the program.

2.4 File Inclusion

The preprocessor directive include< file name> can be used to include
any file into user program if the function s or macro definitions are
present in the source code. This represented as below.

#include< filename >

For example,

www.EngineeringBooksPdf.com

PROGRAMMING IN C

170

#include<stdio.h>
#include<string.h>
main()
{

 printf(“ ---“);
 x= strcpy(---);

}

In the above program printf() is defined in the standard library file
stdio.h.and strcpy is defined in string.h. library file.Because of this stdio.h
and string.h are used in the file inclusion macro.

2.5 Questions

1) what is a macro?
2) What is a preprocessor? How it is different from a macro?
3) What is a header file in c? What is the purpose of using this in

program?
4) List out preprocessor directives.
5) What are the advantages of macro?

2.6 Programing Exercise

1) Write a macro in c to find odd or even number.
2) Define a macro name that can multiply two arguments. Write a
program to calculate the multiplication of 2 and 3 with the help of the
macro. Print out the result of the program.
3) Write a symbolic constant or a macro definition for each of the
following situations.

(a) Define the symbolic constant P I to represent the value 3.141
5927.
(b) Define a macro called AREA, which will calculate the area of a
circle in terms of its radius.

(c) Rewrite the macro described in the preceding problem so that the
radius is expressed as an argument.
(d) Define a macro called CIRCUMFERENCE, which will calculate the
circumference of a circle in terms of its radius. Use the constant PI.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

171

Module 6

Unit 1: STRUCTURES

1.1 Introduction

An array is a collection of more than one homogenous element. The data
items /elements of the same type and same length are the homogenous
elements. To represent the heterogeneous elements under a single name,
an array cannot be used. The solution for this problem is Structures. It is
a derived data-type in C. Structure is a collection of different data type
elements with different lengths.. It is a convenient tool for handling a
group of logically related data items. Structure helps to organize the
complex data in more meaningful way.

www.EngineeringBooksPdf.com

PROGRAMMING IN C

172

1.2 Defining a Structure

To use the structure within a program, the special data type, called as
structured data type has to be created.. The general format for defining
the structured data type is given below.

Storage class struct Userdefined _variable name
{
 data type member 1;
 data type member 2;

data type member n;
};

Here storage class is optional. The struct is a keyword. user defined
variable name, are same as other variable name. Data type and members
are any valid C data objects such as int, float, char. Once the structure is
defined it can be used. The format is called as the template. Remember,
this template is terminated by a semicolon. The keyword struct declares a
structure to hold the details of different data elements. For
example:

struct book
{
char title[20];
char author[15];
int pages;
float price;
};

Here, the fields: title, author, pages and price are called as structure
elements or members. Each of these members belongs to different data
types. The name of structure ‘book’ is called structure tag.

1.3 Declaring Structure Variables

Members of the structure cannot be accessed directly. To access the
member of a structure within a program, a variable has to be declared. To
declare a structured variable, the following format is used. It includes
following elements:

1. The keyword struct
2. The structure tag name
3. List of variable names separated by commas
4. A terminating semicolon

www.EngineeringBooksPdf.com

PROGRAMMING IN C

173

For example, the statement:

struct book book1, book2, book3;

This declares book1, book2 and book3 as variables of type struct book.
The entire structure with variable is given below.

struct book
{
char title[20];
char author[15];
int pages;
float price;
};

struct book book1, book2, book3;

The other way to declare a structure variable is to combine both the
structure definition and variables declaration in one statement. This is as
shown below.

struct book
{
char title[20];
char author[15];
int pages;
float price;
} book1, book2, book3;

1.4 Accessing Structure Members

The individual members of a structure can be accessed through the
structure variable only. The link between a member and a variable is
established through the operator ‘.’ is called as the dot operator or
member operator or period operator. The syntax is

Structure variable. member name
For example,

struct book
{
char title[20];
char author[15];
int pages;
float price;
} book1, book2, book3;
book1.price;
book2.author;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

174

book3.pages;
book1.title;

Note that it is possible to access all the members, through a single
variable. There is no one to one correspondence between the the number
of members to the number of variables. Any variable can access any
member of the struct.

1.4.1 Assigning Values to the Members

Members of the structure can be assigned the values as given below.

strcpy(book1.title, “ Java Programming”);
strcpy(book1.author, “patric”);
book1.pages = 375;
book1.price = 275.00;

scanf can also be used to give values through the keyboard.
scanf(“%s”, book1.title);
scanf(“%s”, book1.author);
scanf(“%d”, &book1.pages);

1.4.2 Structure Initialization

Like any other data type, a structure variable can be initialized at compile
time. The general format for structure initialization is

static structured datatype structured variable = { val1,val2,……,valn};
where val1,Val2 ,….,Valn are the values of the members , member 1,
member 2 ,
…member n respectively. The values are separated by commas.. Consider
the following example.

struct time
{
int hrs;
int mins;
int secs;
}t1,t2;

struct time t1 = {4, 52, 29};
struct time t2 = {10, 40, 21};

This assigns value 4 to t1.hrs, 52 to t1.mins, 29 to t1.secs and value 10
to t2.hrs, 40 to t2.mins, 21 to t2.secs. There is one-to-one
correspondence between the members and their initializing values. C does
not permit the initialization of individual structure members within the

www.EngineeringBooksPdf.com

PROGRAMMING IN C

175

template. The initialization must be done only in the declaration of actual
variables.

Basic functioning of the structure can be well understood by the following
programs.

1) #include<stdio.h>

main()
{
struct student
{

int roll_no;
char name[10];
int age;

}s;
printf(“Enter roll, name and age: ”);
scanf(“%d %s %d”, &s.roll_no, s.name, &s.age);
printf(“\nEntered information: \n”);
printf(“Roll number: %d”, s.roll_no);
printf(“\nName: %s”, s.name);
printf(“\nAge: %d”,s.age);
}

Result:
Input:
Enter roll, name and age:09kbt657, shyam,
Output:

Input information:
Roll number: 09kbt657
Name: shyam
age: 17

2) #include <stdio.h>

int main (void)
{
struct date
{
int month;
int day;
int year;
};
struct date today;
today.month = 4;
today.day = 25;
today.year = 2009;

www.EngineeringBooksPdf.com

PROGRAMMING IN C

176

printf ("Today's date is %i / %i / %.2i.\n",
today.month, today.day, today.year % 100);
return 0;
}

Output

Today's date is 4/25/09.

3) Write a program to create a book structure having name, author, page
and price.

#include <stdio.h>
void main()
{
struct book
{
char name[20];
char auth[20];
int page;
float price;
};
struct book b;
printf("\n ENTER THE NAME OF THE BOOK: ");
gets(b. name);
printf("\n ENTER THE NAME OF THE AUTHOR: ");
gets(b. auth);
printf("\n ENTER THE NUMBER OF PAGES: ");
scanf("%d", &b.page);
printf("\n ENTER THE PRICE OF THE BOOK: ");
scanf("%f", &b.price);
printf("\n NAME OF THE BOOK: %s",b.name);
printf("\n NAME OF THE AUTHOR: %s ", b.auth);
printf("\n NUMBER OF PAGES: %d ", b.page);
printf("\n PRICE OF THE BOOK: %0.2f ",b.price);
getch();
}

Result:

Input
ENTER THE NAME OF THE BOOK: Complete Reference Java
ENTER THE NAME OF THE AUTHOR: Schildt
ENTER THE NUMBER OF PAGES:1000
ENTER THE PRICE OF THE BOOK:395

NAME OF THE BOOK: Complete Reference Java

www.EngineeringBooksPdf.com

PROGRAMMING IN C

177

NAME OF THE AUTHOR: Schildt

NUMBER OF PAGES:1000
PRICE OF THE BOOK:395

1.5 Questions

1) What is a structure?
2) How structure is different from array?
3) How to declare a structure? explain with an example
4) How do you access the members of structure? Explain with an

example.
5) How do you initialize the structure ? Explain with an example.
6) Define a structure that contains the following three members:

(a) an integer quantity called won
(b) an integer quantity called l o s t
(c) a floating-point quantity called percentage Include the user-
defined data type record within the definition)

1.6 Programing Exercise

1) Develop a program in c using structures to read the following

information from the keyboard.
employee name
employee code
designation
age

2) Write a program to assign some values to structure members.

Display it on the screen using the structure tag.

www.EngineeringBooksPdf.com

