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Chapter

15
Elastic Stability

15.1 General Considerations

Failure through elastic instability has been discussed briefly in Sec.

3.13, where it was pointed out that it may occur when the bending or

twisting effect of an applied load is proportional to the deformation it

produces. In this chapter, formulas for the critical load or critical unit

stress at which such failure occurs are given for a wide variety of

members and conditions of loading.

Such formulas can be derived mathematically by integrating the

differential equation of the elastic curve or by equating the strain

energy of bending to the work done by the applied load in the

corresponding displacement of its point of application, the form of

the elastic curve being assumed when unknown. Of all possible forms

of the curve, that which makes the critical load a minimum is the

correct one; but almost any reasonable assumption (consistent with

the boundary conditions) can be made without gross error resulting,

and for this reason the strain-energy method is especially adapted to

the approximate solution of difficult cases. A very thorough discussion

of the general problem, with detailed solutions of many specified cases,

is given in Timoshenko and Gere (Ref. 1), from which many of the

formulas in this chapter are taken. Formulas for many cases are also

given in Refs. 35 and 36; in addition Ref. 35 contains many graphs of

numerically evaluated coefficients.

At one time, most of the problems involving elastic stability were of

academic interest only since engineers were reluctant to use compres-

sion members so slender as to fail by buckling at elastic stresses and

danger of corrosion interdicted the use of very thin material in exposed

structures. The requirements for minimum-weight construction in

the fields of aerospace and transportation, however, have given great



impetus to the theoretical and experimental investigation of elastic

stability and to the use of parts for which it is a governing design

consideration.

There are certain definite advantages in lightweight construction, in

which stability determines strength. One is that since elastic buckling

may occur without damage, part of a structure—such as the skin of an

airplane wing or web of a deep beam—may be used safely at loads that

cause local buckling, and under these circumstances the resistance

afforded by the buckled part is definitely known. Furthermore,

members such as Euler columns may be loaded experimentally to

their maximum capacity without damage or permanent deformation

and subsequently incorporated in a structure.

15.2 Buckling of Bars

In Table 15.1, formulas are given for the critical loads on columns,

beams, and shafts. In general, the theoretical values are in good

agreement with test results as long as the assumed conditions are

reasonably well-satisfied. It is to be noted that even slight changes in

the amount of end constraint have a marked effect on the critical

loads, and therefore it is important that such constraint be closely

estimated. Slight irregularities in form and small accidental eccentri-

cities are less likely to be important in the case of columns than in the

case of thin plates. For latticed columns or columns with tie plates, a

reduced value of E may be used, calculated as shown in Sec. 12.3.

Formulas for the elastic buckling of bars may be applied to conditions

under which proportional limit is exceeded if a reduced value of E

corresponding to the actual stress is used (Ref. 1), but the procedure

requires a stress-strain diagram for the material and, in general, is not

practical.

In Table 15.1, cases 1–3, the tabulated buckling coefficients are

worked out for various combinations of concentrated and distributed

axial loads. Tensile end loads are included so that the effect of axial

end restraint under axial loading within the column length can be

considered (see the example at the end of this section). Carter and

Gere (Ref. 46) present graphs of buckling coefficients for columns with

single tapers for various end conditions, cross sections, and degrees of

taper. Culver and Preg (Ref. 47) investigate and tabulate buckling

coefficients for singly tapered beam-columns in which the effect of

torsion, including warping restraint, is considered for the case where

the loading is by end moments in the stiffer principal plane.

Kitipornchai and Trahair describe (Ref. 55) the lateral stability of

singly tapered cantilever and doubly tapered simple I-beams, includ-

ing the effect of warping restraint; experimental results are favorably

compared with numerical solutions. Morrison (Ref. 57) considers the
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effect of lateral restraint of the tensile flange of a beam under lateral

buckling; example calculations are presented. Massey and McGuire

(Ref. 54) present graphs of buckling coefficients for both stepped and

tapered cantilever beams; good agreement with experiments is

reported. Tables of lateral stability constants for laminated timber

beams are presented in Fowler (Ref. 53) along with two design

examples.

Clark and Hill (Ref. 52) derive a general expression for the lateral

stability of unsymmetrical I-beams with boundary conditions based on

both bending and warping supports; tables of coefficients as well as

nomographs are presented. Anderson and Trahair (Ref. 56) present

tabulated lateral buckling coefficients for uniformly loaded and end-

loaded cantilevers and center- and uniformly loaded simply supported

beams having unsymmetric I-beam cross sections; favorable compari-

sons are made with extensive tests on cantilever beams.

The Southwell plot is a graph in which the lateral deflection of a

column or any other linearly elastic member undergoing a manner of

loading which will produce buckling is plotted versus the lateral

deflection divided by the load; the slope of this line gives the critical

load. For columns and some frameworks, significant deflections do

occur within the range where small-deflection theory is applicable. If

the initial imperfections are such that experimental readings of lateral

deflection must be taken beyond the small-deflection region, then the

Southwell procedure is not adequate. Roorda (Ref. 93) discusses the

extension of this procedure into the nonlinear range.

Bimetallic beams. Burgreen and Manitt (Ref. 48) and Burgreen and

Regal (Ref. 49) discuss the analysis of bimetallic beams and point out

some of the difficulties in predicting the snap-through instability of

these beams under changes in temperature. The thermal expansion of

the support structure is an important design factor.

Rings and arches. Austin (Ref. 50) tabulates in-plane buckling coeffi-

cients for circular, parabolic, and catenary arches for pinned and fixed

ends as well as for the three-hinged case; he considers cases where the

cross section varies with the position in the span as well as the usual

case of a uniform cross section. Uniform loads, unsymmetric distrib-

uted loads, and concentrated center loads are considered, and the

stiffening effect of tying the arch to the girder with columns is also

evaluated. (The discussion referenced with the paper gives an exten-

sive bibliography of work on arch stability.)

A thin ring shrunk by cooling and inserted into a circular cavity

usually will yield before buckling unless the radius=thickness ratio is

very large and the elastic-limit stress is high. Chicurel (Ref. 51)
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derives approximate solutions to this problem when the effect of

friction is considered. He suggests a conservative expression for the

no-friction condition: Po=AE ¼ 2:67ðk=rÞ1:2, where Po is the prebuck-

ling hoop compressive force, A is the hoop cross-sectional area, E is the

modulus of elasticity, k is the radius of gyration of the cross section,

and r is the radius of the ring.

EXAMPLE

A 4-in steel pipe is to be used as a column to carry 8000 lb of transformers
centered axially on a platform 20 ft above the foundation. The factor of safety
FS is to be determined for the following conditions, based on elastic buckling of
the column.

(a) The platform is supported only by the pipe fixed at the foundation.

(b) A 3 1
2
-in steel pipe is to be slipped into the top of the 4-in pipe a distance of

4 in, welded in place, and extended 10 ft to the ceiling above, where it will
extend through a close-fitting hole in a steel plate.

(c) This condition is the same as in (b) except that the 3 1
2
-in pipe will be welded

solidly into a heavy steel girder passing 10 ft above the platform.

Solution. A 4-in steel pipe has a cross-sectional area of 3:174 in
2

and a
bending moment of inertia of 7:233 in

4
. For a 3 1

2
-in pipe these are 2:68 in

2
and

4:788 in
4
, respectively.

(a) This case is a column fixed at the bottom and free at the top with an end
load only. In Table 15.1, case la, for I2=I1 ¼ 1:00 and P2=P1 ¼ 0, K1 is given
as 0.25. Therefore,

P 0
1 ¼ 0:25

p230ð106Þð7:233Þ

2402
¼ 9295 lb

FS ¼
9295

8000
¼ 1:162

(b) This case is a column fixed at the bottom and pinned at the top with a load
at a distance of two-thirds the 30-ft length from the bottom: I1 ¼ 4:788 in

4
,

I2 ¼ 7:233 in
4
, and I2=I1 ¼ 1:511. In Table 15.1, case 2d, for E2I2=E1I1 ¼ 1:5,

P1=P2 ¼ 0, and a=l ¼ 2
3
, K2 is given as 6.58. Therefore,

P 0
2 ¼ 6:58

p230ð106Þð4:788Þ

3602
¼ 72;000 lb

FS ¼
72;000

8000
¼ 9

(c) This case is a column fixed at both ends and subjected to an upward load on
top and a downward load at the platform. The upward load depends to
some extent on the stiffness of the girder to which the top is welded, and so
we can only bracket the actual critical load. If we assume the girder is
infinitely rigid and permits no vertical deflection of the top, the elongation
of the upper 10 ft would equal the reduction in length of the lower 20 ft.
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Equating these deformations gives

P1ð10Þð12Þ

2:68ð30Þð106Þ
¼

ðP2 � P1Þð20Þð12Þ

3:174ð30Þð106Þ
or P1 ¼ 0:628P2

From Table 15.1, case 2e, for E2I2=E1I1 ¼ 1:5 and a=l ¼ 2
3
, we find the following

values of K2 for the several values of P1=P2:

P1=P2 0 0.125 0.250 0.375 0.500

K2 8.34 9.92 12.09 15.17 19.86

By extrapolation, for P1=P2 ¼ 0:628, K2 ¼ 26:5.
If we assume the girder provides no vertical load but does prevent rotation

of the top, then K2 ¼ 8:34. Therefore, the value of P2 ranges from 91,200
to 289,900 lb, and the factor of safety lies between 11.4 and 36.2. A reason-
able estimate of the rotational and vertical stiffness of the girder will allow a
good estimate to be made of the actual factor of safety from the values
calculated.

15.3 Buckling of Flat and Curved Plates

In Table 15.2, formulas are given for the critical loads and critical

stresses on plates and thin-walled members. Because of the greater

likelihood of serious geometrical irregularities and their greater rela-

tive effect, the critical stresses actually developed by such members

usually fall short of the theoretical values by a wider margin than in

the case of bars. The discrepancy is generally greater for pure

compression (thin tubes under longitudinal compression or external

pressure) than for tension and compression combined (thin tubes

under torsion or flat plates under edge shear), and increases with

the thinness of the material. The critical stress or load indicated by

any one of the theoretical formulas should therefore be regarded as an

upper limit, approached more or less closely according to the closeness

with which the actual shape of the member approximates the geo-

metrical form assumed. In Table 15.2, the approximate discrepancy to

be expected between theory and experiment is indicated wherever the

data available have made this possible.

Most of the theoretical analyses of the stability of plates and shells

require a numerical evaluation of the resulting equations. Considering

the variety of shapes and combinations of shapes as well as the

multiplicity of boundary conditions and loading combinations, it is

not possible in the limited space available to present anything like a

comprehensive coverage of plate and shell buckling. As an alternative,

Table 15.2 contains many of the simpler loadings and shapes. The

following paragraphs and the References contain some, but by no

means all, of the more easily acquired sources giving results in tabular
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or graphic form that can be applied directly to specific problems. See

also Refs. 101–104, and 109–111.

Rectangular plates. Stability coefficients for orthotropic rectangular

plates with several combinations of boundary conditions and several

ratios of the bending stiffnesses parallel to the sides of the plate are

tabulated in Shuleshko (Ref. 60); these solutions were obtained by

reducing the problem of plate buckling to that of an isotropic bar that

is in a state of vibration and under tension. Srinivas and Rao (Ref. 63)

evaluate the effect of shear deformation on the stability of simply

supported rectangular plates under edge loads parallel to one side; the

effect becomes noticeable for h=b > 0:05 and is greatest when the

loading is parallel to the short side.

Skew plates. Ashton (Ref. 61) and Durvasula (Ref. 64) consider the

buckling of skew (parallelogram) plates under combinations of edge

compression, edge tension, and edge shear. Since the loadings eval-

uated are generally parallel to orthogonal axes and not to both sets of

the plate edges, we would not expect to find the particular case desired

represented in the tables of coefficients; the general trend of results is

informative.

Circular plates. Vijayakumar and Joga Rao (Ref. 58) describe a tech-

nique for solving for the radial buckling loads on a polar orthotropic

annular plate. They give graphs of stability coefficients for a wide

range of rigidity ratios and for the several combinations of free, simply

supported, and fixed inner and outer edges for the radius ratio (outer

to inner) 2 : 1. Two loadings are presented: outer edge only under uni-

form compression and inner and outer edges under equal uniform

compression.

Amon and Widera (Ref. 59) present graphs showing the effect of an

edge beam on the stability of a circular plate of uniform thickness.

Sandwich plates. There is a great amount of literature on the subject

of sandwich construction. References 38 and 100 and the publications

listed in Ref. 39 provide initial sources of information.

15.4 Buckling of Shells

Baker, Kovalevsky, and Rish (Ref. 97) discuss the stability of unstif-

fened orthotropic composite, stiffened, and sandwich shells. They

represent data based on theory and experiment which permit the

designer to choose a loading or pressure with a 90% probability of no
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stability failure; the work is extensively referenced. For similar

collected data see Refs. 41 and 42.

Stein (Ref. 95) discusses some comparisons of theory with experi-

mentation in shell buckling. Rabinovich (Ref. 96) describes in some

detail the work in structural mechanics, including shell stability, in

the U.S.S.R. from 1917 to 1957.

In recent years, there have been increasing development and appli-

cation of the finite-element method for the numerical solution of shell

problems. Navaratna, Pian, and Witmer (Ref. 94) describe a finite-

element method of solving axisymmetric shell problems where the

element considered is either a conical frustum or a frustum with a

curved meridian; examples are presented of cylinders with uniform or

tapered walls under axial load, a truncated hemisphere under axial

tension, and a conical shell under torsion. Bushnell (Ref. 99) presents

a very general finite-element program for shell analysis and Perrone

(Ref. 98) gives a compendium of such programs. See also Refs. 101 to

108.

Cylindrical and conical shells. In general, experiments to determine

the axial loads required to buckle cylindrical shells yield results that

are between one-half and three-fourths of the classical buckling loads

predicted by theory. The primary causes of these discrepancies are the

deviations from a true cylindrical form in most manufactured vessels

and the inability to accurately define the boundary conditions. Hoff

(Refs. 67 and 68) shows that removing the in-plane shear stress at the

boundary of a simply supported cylindrical shell under axial compres-

sion can reduce the theoretical buckling load by a factor of 2 from that

predicted by the more usual boundary conditions associated with a

simply supported edge. Baruch, Harari, and Singer (Ref. 84) find

similar low-buckling loads for simply supported conical shells under

axial load but for a different modification of the boundary support.

Tani and Yamaki (Ref. 83) carry out further work on this problem,

including the effect of clamped edges.

The random nature of manufacturing deviations leads to the use of

the statistical approach, as mentioned previously (Ref. 97) and as

Hausrath and Dittoe have done for conical shells (Ref. 77). Weingar-

ten, Morgan, and Seide (Ref. 80) have developed empirical expressions

for lower bounds of stability coefficients for cylindrical and conical

shells under axial compression with references for the many data they

present.

McComb, Zender, and Mikulas (Ref. 44) discuss the effects of

internal pressure on the bending stability of very thin-walled cylind-

rical shells. Internal pressure has a stabilizing effect on axially and=or

torsionally loaded cylindrical and conical shells. This subject is
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discussed in several references: Seide (Ref. 75), Weingarten (Ref. 76),

and Weingarten, Morgan, and Seide (Ref. 82) for conical and cylind-

rical shells; Ref. 97 contains much information on this subject as well.

Axisymmetric snap-buckling of conical shells is discussed by

Newman and Reiss (Ref. 73), which leads to the concept of the

Belleville spring for the case of shallow shells. (See also Sec. 11.8.)

External pressure as a cause of buckling is examined by Singer (Ref.

72) for cones and by Newman and Reiss (Ref. 73) and Yao and Jenkins

(Ref. 69) for elliptic cylinders. External pressure caused by preten-

sioned filament winding on cylinders is analyzed by Mikulas and Stein

(Ref. 66); they point out that material compressibility in the thickness

direction is important in this problem.

The combination of external pressure and axial loads on cylindrical

and conical shells is very thoroughly examined and referenced by

Radkowski (Ref. 79) and Weingarten and Seide (Ref. 81). The

combined loading on orthotropic and stiffened conical shells is

discussed by Singer (Ref. 74).

Attempts to manufacture nearly perfect shells in order to test the

theoretical results have led to the construction of thin-walled shells by

electroforming; Sendelbeck and Singer (Ref. 85) and Arbocz and

Babcock (Ref. 91) describe the results of such tests.

A very thorough survey of buckling theory and experimentation for

conical shells of constant thickness is presented by Seide (Ref. 78).

Spherical shells. Experimental work is described by Loo and Evan-

Iwanowski on the effect of a concentrated load at the apex of a

spherical cap (Ref. 90) and the effect of multiple concentrated loads

(Ref. 89). Carlson, Sendelbeck, and Hoff (Ref. 70) report on the

experimental study of buckling of electroformed complete spherical

shells; they report experimental critical pressures of up to 86% of those

predicted by theory and the correlation of flaws with lower test

pressures.

Burns (Ref. 92) describes tests of static and dynamic buckling of thin

spherical caps due to external pressure; both elastic and plastic

buckling are considered and evaluated in these tests. Wu and Cheng

(Ref. 71) discuss in detail the buckling due to circumferential hoop

compression which is developed when a truncated spherical shell is

subjected to an axisymmetric tensile load.

Toroidal shells. Stein and McElman (Ref. 86) derive nonlinear equa-

tions of equilibrium and buckling equations for segments of toroidal

shells; segments that are symmetric with the equator are considered

for both inner and outer diameters, as well as segments centered at

the crown. Sobel and Flügge (Ref. 87) tabulate and graph the mini-
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mum buckling external pressures on full toroidal shells. Almroth,

Sobel, and Hunter (Ref. 88) compare favorably the theory in Ref. 87

with experiments they performed.

Corrugated tubes or bellows. An instability can develop when a corru-

gated tube or bellows is subjected to an internal pressure with the

ends partially or totally restrained against axial displacement. (This

instability can also occur in very long cylindrical vessels under similar

restraints.) For a discussion and an example of this effect, see Sec.

13.5.
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams
NOTATION: P0 ¼ critical load (force); p0 ¼ critical unit load (force per unit length); T 0 ¼ critical torque (force-length); M 0 ¼ critical bending moment

(force-length); E ¼ modulus of elasticity (force per unit area); and I ¼ moment of inertia of cross section about central axis perpendicular to plane of

buckling

Reference number, form of bar, and manner of loading and support

1a. Stepped straight bar under end load P1 and intermediate load P2; upper end free, lower end fixed P0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 0.250 0.250 0.250 0.250 0.250 0.279 0.312 0.342 0.364 0.373 0.296 0.354 0.419 0.471 0.496

0.5 0.249 0.243 0.228 0.208 0.187 0.279 0.306 0.317 0.306 0.279 0.296 0.350 0.393 0.399 0.372

1.0 0.248 0.237 0.210 0.177 0.148 0.278 0.299 0.295 0.261 0.223 0.296 0.345 0.370 0.345 0.296

2.0 0.246 0.222 0.178 0.136 0.105 0.277 0.286 0.256 0.203 0.158 0.295 0.335 0.326 0.267 0.210

4.0 0.242 0.195 0.134 0.092 0.066 0.274 0.261 0.197 0.138 0.099 0.294 0.314 0.257 0.184 0.132

8.0 0.234 0.153 0.088 0.056 0.038 0.269 0.216 0.132 0.084 0.057 0.290 0.266 0.174 0.112 0.076

1b. Stepped straight bar under end load P1 and intermediate load P2; both ends pinned P 0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 1.000 1.000 1.000 1.000 1.000 1.010 1.065 1.180 1.357 1.479 1.014 1.098 1.297 1.633 1.940

0.5 0.863 0.806 0.797 0.789 0.740 0.876 0.872 0.967 1.091 1.098 0.884 0.908 1.069 1.339 1.452

1.0 0.753 0.672 0.663 0.646 0.584 0.769 0.736 0.814 0.908 0.870 0.776 0.769 0.908 1.126 1.153

2.0 0.594 0.501 0.493 0.473 0.410 0.612 0.557 0.615 0.676 0.613 0.621 0.587 0.694 0.850 0.814

4.0 0.412 0.331 0.325 0.307 0.256 0.429 0.373 0.412 0.442 0.383 0.438 0.397 0.470 0.566 0.511

8.0 0.254 0.197 0.193 0.180 0.147 0.267 0.225 0.248 0.261 0.220 0.272 0.240 0.284 0.336 0.292
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1c. Stepped straight bar under end load P1 and intermediate load P2; upper end guided, lower end fixed P 0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 1.000 1.000 1.000 1.000 1.000 1.113 1.208 1.237 1.241 1.309 1.184 1.367 1.452 1.461 1.565

0.5 0.986 0.904 0.792 0.711 0.672 1.105 1.117 1.000 0.897 0.885 1.177 1.288 1.192 1.063 1.063

1.0 0.972 0.817 0.650 0.549 0.507 1.094 1.026 0.830 0.697 0.669 1.171 1.206 1.000 0.832 0.805

2.0 0.937 0.671 0.472 0.377 0.339 1.073 0.872 0.612 0.482 0.449 1.156 1.047 0.745 0.578 0.542

4.0 0.865 0.480 0.304 0.231 0.204 1.024 0.642 0.397 0.297 0.270 1.126 0.794 0.486 0.358 0.327

8.0 0.714 0.299 0.176 0.130 0.114 0.910 0.406 0.232 0.169 0.151 1.042 0.511 0.284 0.203 0.182

1d. Stepped straight bar under end load P1 and intermediate load P2; upper end pinned, lower end fixed P 0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 2.046 2.046 2.046 2.046 2.046 2.241 2.289 2.338 2.602 2.976 2.369 2.503 2.550 2.983 3.838

0.5 1.994 1.814 1.711 1.700 1.590 2.208 2.071 1.991 2.217 2.344 2.344 2.286 2.196 2.570 3.066

1.0 1.938 1.613 1.464 1.450 1.290 2.167 1.869 1.727 1.915 1.918 2.313 2.088 1.915 2.250 2.525

2.0 1.820 1.300 1.130 1.111 0.933 2.076 1.535 1.355 1.506 1.390 2.250 1.742 1.518 1.796 1.844

4.0 1.570 0.918 0.773 0.753 0.594 1.874 1.107 0.941 1.042 0.891 2.097 1.277 1.065 1.270 1.184

8.0 1.147 0.569 0.469 0.454 0.343 1.459 0.697 0.582 0.643 0.514 1.727 0.812 0.664 0.796 0.686
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

1e. Stepped straight bar under end load P1 and intermediate load P2; both ends fixed P0
1 ¼ K1

p2E1I1

l2
where K1 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P2=P1

0.0 4.000 4.000 4.000 4.000 4.000 4.389 4.456 4.757 5.359 5.462 4.657 4.836 5.230 6.477 6.838

0.5 3.795 3.298 3.193 3.052 2.749 4.235 3.756 3.873 4.194 3.795 4.545 4.133 4.301 5.208 4.787

1.0 3.572 2.779 2.647 2.443 2.094 4.065 3.211 3.254 3.411 2.900 4.418 3.568 3.648 4.297 3.671

2.0 3.119 2.091 1.971 1.734 1.414 3.679 2.459 2.459 2.452 1.968 4.109 2.766 2.782 3.136 2.496

4.0 2.365 1.388 1.297 1.088 0.857 2.921 1.659 1.649 1.555 1.195 3.411 1.882 1.885 2.008 1.523

8.0 1.528 0.826 0.769 0.623 0.479 1.943 1.000 0.992 0.893 0.671 2.334 1.138 1.141 1.158 0.854

2a. Stepped straight bar under end load P1 and intermediate load P2; upper end free, lower end fixed P0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 9.00 2.25 1.00 0.56 0.36 13.50 3.38 1.50 0.84 0.54 18.00 4.50 2.00 1.13 0.72

0.125 15.55 3.75 1.48 0.74 0.44 21.87 5.36 2.19 1.11 0.65 27.98 6.92 2.89 1.48 0.87

0.250 21.33 5.30 2.19 1.03 0.55 29.51 7.36 3.13 1.53 0.82 37.30 9.31 4.02 2.02 1.10

0.375 29.02 7.25 3.13 1.52 0.74 39.89 9.97 4.37 2.21 1.10 50.10 12.52 5.52 2.86 1.46

0.500 40.50 10.12 4.46 2.31 1.08 55.66 13.92 6.16 3.28 1.60 69.73 17.43 7.73 4.18 2.12
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2b. Stepped straight bar under tensile end load P1 and intermediate load P2; both ends pinned P0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 2.60 1.94 1.89 1.73 1.36 2.77 2.24 2.47 2.54 2.04 2.86 2.41 2.89 3.30 2.72

0.125 3.51 2.49 2.43 2.14 1.62 3.81 2.93 3.26 3.18 2.43 3.98 3.21 3.89 4.19 3.24

0.250 5.03 3.41 3.32 2.77 1.99 5.63 4.15 4.64 4.15 2.99 5.99 4.65 5.75 5.52 3.98

0.375 7.71 5.16 4.96 3.76 2.55 8.98 6.61 7.26 5.63 3.82 9.80 7.67 9.45 7.50 5.09

0.500 12.87 9.13 8.00 5.36 3.48 15.72 12.55 12.00 7.96 5.18 17.71 15.45 16.00 10.54 6.87

2c. Stepped straight bar under tensile end load P1 and intermediate load P2; upper end guided, lower end fixed P0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 10.40 3.08 1.67 1.19 1.03 14.92 4.23 2.21 1.55 1.37 19.43 5.37 2.73 1.88 1.65

0.125 15.57 4.03 2.03 1.40 1.18 21.87 5.57 2.71 1.82 1.57 27.98 7.07 3.36 2.21 1.90

0.250 21.33 5.37 2.54 1.67 1.38 29.52 7.40 3.42 2.20 1.84 37.32 9.34 4.26 2.68 2.24

0.375 29.02 7.26 3.31 2.08 1.67 39.90 9.97 4.50 2.76 2.24 50.13 12.53 5.61 3.39 2.73

0.500 40.51 10.12 4.53 2.72 2.10 55.69 13.91 6.21 3.66 2.84 69.76 17.43 7.76 4.52 3.47
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

2d. Stepped straight bar under tensile end load P1 and intermediate load P2; upper end pinned, lower end fixed P 0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 13.96 5.87 4.80 4.53 3.24 18.66 7.33 6.04 6.58 4.86 23.26 8.64 6.98 8.40 6.48

0.125 20.21 7.93 6.50 5.84 3.91 27.12 10.12 8.43 8.71 5.86 33.71 12.06 9.92 11.51 7.81

0.250 28.58 11.35 9.64 7.68 4.87 38.32 14.82 13.13 11.50 7.27 47.36 17.85 15.96 15.30 9.65

0.375 41.15 17.64 15.82 10.15 6.26 55.43 23.67 23.44 14.96 9.30 68.40 28.88 30.65 19.66 12.28

0.500 62.90 31.73 23.78 13.58 8.42 85.64 44.28 34.97 19.80 12.40 106.27 55.33 45.81 25.83 16.27

2e. Stepped straight bar under tensile end load P1 and intermediate load P2; both ends fixed P 0
2 ¼ K2

p2E1I1

l2
where K2 is tabulated below

E2I2=E1I1 1.000 1.500 2.000

a=l
1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

1
6

1
3

1
2

2
3

5
6

P1=P2

0 16.19 8.11 7.54 5.79 4.34 21.06 9.93 9.89 8.34 6.09 25.75 11.44 11.55 10.87 7.78

0.125 21.83 10.37 9.62 6.86 5.00 28.74 12.93 13.03 9.92 7.05 35.28 15.06 15.55 12.96 9.01

0.250 30.02 14.09 12.86 8.34 5.91 39.81 17.99 18.36 12.09 8.35 48.88 21.25 22.98 15.79 10.69

0.375 42.72 20.99 17.62 10.47 7.19 57.14 27.66 26.02 15.17 10.20 70.23 33.29 34.36 19.79 13.11

0.500 64.94 36.57 24.02 13.70 9.16 86.23 50.39 35.09 19.86 13.07 102.53 61.71 45.87 25.86 16.85
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3a. Uniform straight bar under end load P and a uniformly distributed load p over a lower portion of the length; several end conditions. ðpaÞ0 ¼ K
p2EI

l2
where K is tabulated below (a negative value

for P=pa means the end load is tensile)

End

conditions

Upper end free,

lower end fixed
Both ends pinned

Upper end

pinned, lower

end fixed

Both ends

fixed

a=l
1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1

P=pa

� 0.25 11.31 5.18 2.38 9.03 5.32 4.25 3.30 27.9 17.4 11.3 31.3 19.4 13.4

0.00 12.74 3.185 1.413 0.795 3.52 2.53 2.22 1.88 22.2 9.46 7.13 5.32 25.3 13.0 9.78 7.56

0.25 0.974 0.825 0.614 0.449 1.97 1.59 1.46 1.30 6.83 4.70 3.98 3.30 11.2 7.50 6.25 5.20

0.50 0.494 0.454 0.383 0.311 1.34 1.15 1.08 0.98 3.76 3.03 2.71 2.37 6.75 5.18 4.54 3.94

1.00 0.249 0.238 0.218 0.192 0.81 0.73 0.70 0.66 1.97 1.75 1.64 1.51 3.69 3.17 2.91 2.65

3b. Uniform straight bar under end load P and a uniformly distributed load p over an upper portion of the length; several end conditions. ðpaÞ0 ¼ K
p2EI

l2
where K is tabulated below (a negative value

for P=pa means the end load is tensile)

End

conditions

Upper end

free, lower

end fixed

Both

ends

pinned

Upper end

pinned, lower

end fixed

Both

ends

fixed

a=l
1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

P=pa

� 0.25 0.481 0.745 1.282 1.808 2.272 2.581 4.338 5.937 7.385 5.829 7.502 9.213

0.00 0.327 0.440 0.600 1.261 1.479 1.611 2.904 3.586 4.160 4.284 5.174 5.970

0.25 0.247 0.308 0.380 0.963 1.088 1.159 2.164 2.529 2.815 3.384 3.931 4.383

0.50 0.198 0.236 0.276 0.778 0.859 0.903 1.720 1.943 2.111 2.796 3.164 3.453

1.00 0.142 0.161 0.179 0.561 0.603 0.624 1.215 1.323 1.400 2.073 2.273 2.419
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

3c. Stepped straight bar under end load P and a distributed load of maximum value p at the bottom linearly decreasing to zero at a distance a from the bottom. ðpaÞ0 ¼ K
p2EI

l2
where K is tabulated

below (a negative value for P=pa means the end load is tensile)

End

conditions

Upper end

free, lower

end fixed

Both

ends

pinned

Upper end

pinned, lower

end fixed

Both

ends

fixed

a=l
1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1 1
4

1
2

3
4

1

P=pa

�0.250 58.9 41.1 30.4

�0.125 26.7 15.5 31.9 15.7 12.0 9.41 62.1 43.8 113.0 70.2 48.7

0.000 52.4 13.1 5.80 3.26 9.66 6.31 5.32 4.72 30.3 20.6 16.1 38.9 27.8 21.9

0.125 1.98 1.85 1.58 1.29 4.65 3.66 3.29 3.03 15.2 11.7 9.73 8.50 27.3 18.9 15.6 13.4

0.250 0.995 0.961 0.887 0.787 2.98 2.54 2.35 2.22 7.90 6.92 6.18 5.66 14.9 12.1 10.6 9.53

0.500 0.499 0.490 0.471 0.441 1.72 1.56 1.49 1.43 4.02 3.77 3.54 3.36 7.73 6.95 6.43 6.00

1.000 0.250 0.248 0.243 0.235 0.93 0.88 0.86 0.84 2.03 1.96 1.90 1.85 3.93 3.73 3.57 3.44

4. Uniform straight bar under end load P; both ends hinged and bar elastically supported by lateral pressure p proportional to deflection ðp ¼ ky, where k ¼ lateral force per unit length per unit of

deflection)

P0 ¼
p2EI

l2
m2 þ

kl4

m2p4EI

� �
where m represents the number of half-waves into which the bar buckles and is equal to the lowest integer greater than

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

4l2

p2

ffiffiffiffiffiffi
k

EI

rs
� 1

0
@

1
A

(Ref. 1)
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5. Uniform straight bar under end load P; both ends hinged and bar elastically supported by lateral pressure p proportional to deflection but where the constant of proportionality depends upon the

direction of the deflection ðp ¼ k1y for deflection toward the softer foundation; p ¼ k2y for deflection toward the harder foundation); these are also called unattached foundations

P 0 ¼
p2EI

l2
m2 þ

k2l4

m2p4EI
fa

� �
where f ¼

k1

k2

and a depends upon m as given below

m a

1 1

2 1 þ fð0:23 � 0:017l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=EI

p
Þ

3 0:75 � 0:56f

This is an empirical expression which closely fits numerical solutions found in Ref. 45 and is valid only over the range 04 l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=EI

p
4 120. Solutions for P0 are

carried out for values of m ¼ 1, 2, and 3, and the lowest one governs

6. Straight bar, middle

portion uniform, end

portions tapered and

alike; end load; I ¼

moment of inertia of

cross section of middle

portion; I0 ¼ moment

of inertia of end cross

sections; Ix ¼ moment

of inertia of section x

(For singly tapered

columns see Ref. 46.)

6a. Ix ¼ I
x

b
for example, rectangular

section tapering uniformly

in width

6b. Ix ¼ I
x

b

� �2

for example, section of four

slender members latticed

together

P0 ¼
KEI

l2
where K depends on

I0

I
and

a

l
and may be found from the following table:

K for ends hinged K for ends fixed

I0=I

0 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

a=l

0 5.78 5.87 6.48 7.01 7.86 8.61 9.27 20.36 26.16 31.04 35.40

0.2 7.04 7.11 7.58 7.99 8.59 9.12 9.53 22.36 27.80 32.20 36.00

0.4 8.35 8.40 8.63 8.90 9.19 9.55 9.68 23.42 28.96 32.92 36.36

0.6 9.36 9.40 9.46 9.73 9.70 9.76 9.82 25.44 30.20 33.80 36.84

0.8 9.80 9.80 9.82 9.82 9.83 9.85 9.86 29.00 33.08 35.80 37.84

(Ref. 5)

P0 ¼
KEI

l2
where K may be found from the following table:

K for ends hinged K for ends fixed

I0=I

0 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

a=l

0 1.00 3.45 5.40 6.37 7.61 8.51 9.24 18.94 25.54 30.79 35.35

0.2 1.56 4.73 6.67 7.49 8.42 9.04 9.50 21.25 27.35 32.02 35.97

0.4 2.78 6.58 8.08 8.61 9.15 9.48 9.70 22.91 28.52 32.77 36.34

0.6 6.25 8.62 9.25 9.44 9.63 9.74 9.82 24.29 29.69 33.63 36.80

0.8 9.57 9.71 9.79 9.81 9.84 9.85 9.86 27.67 32.59 35.64 37.81

(Ref. 5)
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued)

Reference number, form of bar, and manner of loading and support

6c. Ix ¼ I
x

b

� �3

P 0 ¼
KEI

l2
where K may be found from the following table:

for example, rectangular section tapering

uniformly in thickness I0=I K for ends hinged K for ends fixed

a=l 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0 2.55 5.01 6.14 7.52 8.50 9.23 18.48 25.32 30.72 35.32

0.2 3.65 6.32 7.31 8.38 9.02 9.50 20.88 27.20 31.96 35.96

0.4 5.42 7.84 8.49 9.10 9.46 9.69 22.64 28.40 32.72 36.32

0.6 7.99 9.14 9.39 9.62 9.74 9.81 23.96 29.52 33.56 36.80

0.8 9.63 9.77 9.81 9.84 9.85 9.86 27.24 32.44 35.60 37.80

(Ref. 5)

6d. Ix ¼ I
x

b

� �4

P 0 ¼
KEI

l2
where K may be found from the following table:

for example, end portions pyramidal or

conical I0=I K for ends hinged K for ends fixed

a=l 0.01 0.10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0 2.15 4.81 6.02 7.48 8.47 9.23 18.23 25.23 30.68 35.33

0.2 3.13 6.11 7.20 8.33 9.01 9.49 20.71 27.13 31.94 35.96

0.4 4.84 7.68 8.42 9.10 9.45 9.69 22.49 28.33 32.69 36.32

0.6 7.53 9.08 9.38 9.62 9.74 9.81 23.80 29.46 33.54 36.78

0.8 9.56 9.77 9.80 9.84 9.85 9.86 27.03 32.35 35.56 37.80

(Ref. 5)
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7. Uniform straight bar under end loads P

and end twisting couples T ; cross section of

bar has same I for all central axes; both

ends hinged

Critical combination of P and T is given by

T2

4ðEIÞ2
þ

P

EI
¼

p2

l2
(Ref. 1)

If P ¼ 0, the formula gives critical twisting moment T 0 which, acting alone, would cause buckling

If for a given value of T the formula gives a negative value for P, T > T 0 and P represents tensile load required to prevent buckling

For thin circular tube of diameter D and thickness t under torsion only, critical shear stress

t ¼
pED

lð1 � nÞ
1 �

t

D
þ

1

3

t2

D2

� �
for helical buckling only (not for shell-type buckling in the thin wall) (Ref. 2)

8. Uniform circular ring under uniform radial

pressure p lb=in; mean radius of ring r
p0 ¼

3EI

r3
(Ref. 1)

9. Uniform circular arch under uniform radial

pressure p lb=in; mean radius r; ends

hinged

p0 ¼
EI

r3

p2

a2
� 1

� �
(Ref. 1)

(For symmetrical arch of any form under central concentrated loading, see Ref. 40; for parabolic and catenary arches, see Ref. 50)

10. Uniform circular arch under uniform

radial pressure p lb=in; mean radius r;

ends fixed

p0 ¼
EI

r3
ðk2 � 1Þ (Ref. 1)

where k depends on a and is found by trial from the equation: k tan a cot ka ¼ 1 or from the following table:

a 15� 30� 45� 60� 75� 90� 120� 180�

k 17:2 8:62 5:80 4:37 3:50 3:00 2:36 2:00

(For parabolic and catenary arches, see Ref. 50)
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TABLE 15.1 Formulas for elastic stability of bars, rings, and beams (Continued )

Reference number, form of bar, and manner of loading and support

11. Straight uniform beam of narrow

rectangular section under pure

bending

For ends held vertical but not fixed in horizontal plane:

M 0 ¼

pb3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG 1 � 0:63

b

d

� �s

6l

For ends held vertical and fixed in horizontal plane

M 0 ¼

2pb3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG 1 � 0:63

b

d

� �s

6l
(Refs. 1, 3, 4)

12. Straight uniform cantilever beam of

narrow rectangular section under

end load applied at a point a distance

a above (a positive) or below

(a negative) centroid of section

P 0 ¼

0:669b3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:63

b

d

� �
EG

s

l2
1 �

a

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

G 1 � 0:63
b

d

� �
vuuut

2
6664

3
7775

For a load W uniformly distributed along the beam the critical load, W 0 ¼ 3P0 (approximately)

(For tapered and stepped beams, see Ref. 54)

(Refs. 1, 3, 4)

13. Straight uniform beam of narrow

rectangular section under center

load applied at a point a distance a

above (a positive) or below

(a negative) centroid of section: ends

of beam simply supported and

constrained against twisting

P 0 ¼

2:82b3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:63

b

d

� �
EG

s

l2
1 �

1:74a

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

G 1 � 0:63
b

d

� �
vuuut

2
6664

3
7775

For a uniformly distributed load, the critical load W 0 ¼ 1:67P 0 (approximately)

If P is applied at an intermediate point, a distance C from one end, its critical value is practically the same as for central loading if 0:4l < C < 0:5l:

if C < 0:4l, the critical load is given approximately by multiplying the P 0 for central loading by 0:36 þ 0:28
l

C
If the ends of the beam are fixed and the load P is applied at the centroid of the middle cross section,

P 0 ¼
4:43b3d

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:63

b

d

� �
EG

s

(Refs. 1, 3, 4)
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14. Straight uniform I-beam under pure

bending; d ¼ depth center to center

of flange; ends constrained against

twisting

M 0 ¼
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyKG

q
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2

If Ed2

2KGl2

s

where Iy is the moment of inertia of the cross section about its vertical axis of symmetry, If is the moment of inertia of one flange about this axis,

and KG is the torsional rigidity of the section (see Table 10.1, case 26)

(For tapered I-beams, see Ref. 47.)

(Refs. 1, 3)

15. Straight uniform cantilever beam of

I-section under end load applied at

centroid of cross section; d ¼ depth

center to center of flanges

P 0 ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyKG

q
l2

where m is approximately equal to 4:01 þ 11:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
If Ed2

2KGl2

r
and Iy , If , and KG have the same significance as in case 14

(For unsymmetric I-beams, see Refs. 52 and 56; for tapered I-beams, see Ref. 55.)

(Refs. 1, 3)

16. Straight uniform I-beam loaded at

centroid of middle section; ends

simply supported and constrained

against twisting

P 0 ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyKG

q
l2

where m is approximately equal to 16:93 þ 45
If Ed2

2KGl2

� �0:8

and Iy, If , and KG have same significance as in case 14.

(For unsymmetric I-beams, see Refs. 52 and 56; for tapered I-beams, see Ref. 55.)

(Refs. 1, 3)
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TABLE 15.2 Formulas for elastic stability of plates and shells
NOTATION: E ¼ modulus of elasticity; n ¼ Poisson’s ratio; and t ¼ thickness for all plates and shells. All angles are in radians. Compression is positive; tension is negative. For the plates, the smaller

width should be greater than 10 times the thickness unless otherwise specified.

Form of plate or shell and

manner of loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

1. Rectangular plate under equal uniform

compression on two opposite edges b

1a. All edges simply

supported
s0 ¼ K

E

1 � n2

t

b

� �2

Here K depends on ratio
a

b
and may be found from the following table:

a

b
0:2 0:3 0:4 0:6 0:8 1:0 1:2 1:4 1:6 1:8 2:0 2:2 2:4 2:7 3:0 1

K 22:2 10:9 6:92 4:23 3:45 3:29 3:40 3:68 3:45 3:32 3:29 3:32 3:40 3:32 3:29 3:29

(For unequal end compressions, see Ref. 33) (Refs. 1, 6)

1b. All edges clamped
s0 ¼ K

E

1 � n2

t

b

� �2

a

b
1 2 3 1

K 7:7 6:7 6:4 5:73 (Refs. 1, 6, 7)

1c. Edges b simply supported,

edges a clamped
s0 ¼ K

E

1 � n2

t

b

� �2

a

b
0:4 0:5 0:6 0:7 0:8 1:0 1:2 1:4 1:6 1:8 2:1 1

K 7:76 6:32 5:80 5:76 6:00 6:32 5:80 5:76 6:00 5:80 5:76 5:73 (Refs. 1, 6)

1d. Edges b simply supported,

one edge a simply supported,

other edge a free

s0 ¼ K
E

1 � n2

t

b

� �2

a

b
0:5 1:0 1:2 1:4 1:6 1:8 2:0 2:5 3:0 4:0 5:0

K 3:62 1:18 0:934 0:784 0:687 0:622 0:574 0:502 0:464 0:425 0:416 (Ref. 1)

1e. Edges b simply supported,

one edge a clamped, other

edge a free

s0 ¼ K
E

1 � n2

t

b

� �2

a

b
1 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 2:0 2:2 2:4

K 1:40 1:28 1:21 1:16 1:12 1:10 1:09 1:09 1:10 1:12 1:14 1:19 1:21 (Ref. 1)
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1f. Edges b clamped, edges a

simply supported
s0 ¼ K

E

1 � n2

t

b

� �2

a

b
0:6 0:8 1:0 1:2 1:4 1:6 1:7 1:8 2:0 2:5 3:0

K 11:0 7:18 5:54 4:80 4:48 4:39 4:39 4:26 3:99 3:72 3:63
(Ref. 1)

2. Rectangular plate under uniform

compression (or tension) sx on edges

b and uniform compression (or tension)

sy on edges a

2a. All edges simply

supported
s0x

m2

a2
þ s0y

n2

b2
¼ 0:823

E

1 � n2
t2 m2

a2
þ

n2

b2

� �2

Here m and n signify the number of half-waves in the buckled plate in the x and y directions, respectively. To

find s0y for a given sx , take m ¼ 1, n ¼ 1 if C 1 � 4
a4

b4

� �
< sx < C 5 þ 2

a2

b2

� �
, where C ¼

0:823Et2

ð1 � n2Þa2
.

If sx is too large to satisfy this inequality, take n ¼ 1 and m to satisfy:

C 2m2 � 2m þ 1 þ 2
a2

b2

� �
< sx < C 2m2 þ 2m þ 1 þ 2

a2

b2

� �
. If sx is too small to satisy the first inequality, take

m ¼ 1 and n to satisfy:

C 1 � n2ðn � 1Þ2
a4

b4

� �
> sx > C 1 � n2ðn þ 1Þ2

a4

b4

� �
(Refs. 1, 6)

2b. All edges clamped s0x þ
a2

b2
s0y ¼ 1:1

Et2a2

1 � n2

3

a4
þ

3

b4
þ

2

a2b2

� �

(This equation is approximate and is most accurate when the plate is nearly square and sx and sy nearly

equal (Ref. 1)

3. Rectangular plate under linearly

varying stress on edges b (bending

or bending combined with tension or

compression)

3a. All edges simply

supported
s0o ¼ K

E

1 � n2

t

b

� �2

Here K depends on
a

b
and on a ¼

so

so � sv

and may be found from the following table:

a

b
¼ 0:4 0:5 0:6 0:667 0:75 0:8 0:9 1:0 1:5

a ¼ 0:5 K ¼ 23:9 21:1 19:8 19:7 19:8 20:1 21:1 21:1 19:8
0:75 15:4 10:6 9:5 9:2 9:1 9:5
1:00 12:4 8:0 6:9 6:7 6:4 6:9
1:25 10:95 6:8 5:8 5:7 5:4 5:8
1:50 8:9 5:3 5:0 4:9 4:8 5:0
1 ðpure compressionÞ 6:92 4:23 3:45 3:29 3:57

(Refs. 1, 6)
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued)

Form of plate or shell and

manner of loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

4. Rectangular plate under uniform

shear on all edges

4a. All edges simply

supported
t0 ¼ K

E

1 � n2

t

b

� �2

a

b
1:0 1:2 1:4 1:5 1:6 1:8 2:0 2:5 3:0 1

K 7:75 6:58 6:00 5:84 5:76 5:59 5:43 5:18 5:02 4:40 (Refs. 1, 6, 8, 22)

4b. All edges clamped
t0 ¼ K

E

1 � n2

t

b

� �2

a

b
1 2 1

K 12:7 9:5 7:38

Test results indicate a value for K of about 4.1 for very large values of
a

b
(Ref. 9)

(For continuous panels, see Ref. 30)

5. Rectangular plate under uniform

shear on all edges; compression (or

tension) sx on edges b; compression

(or tension) sy on edges a; a=b very

large

5a. All edges simply

supported t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

sy

C

r
þ 2 �

sx

C

� �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

sy

C

r
þ 6 �

sx

C

� �s

where C ¼
0:823

1 � n2

t

b

� �2

E (Refs. 1, 6, 23, and 31)

5b. All edges clamped
t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 2:31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �

sy

C

r
þ

4

3
�
sx

C

� �
2:31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �

sy

C

r
þ 8 �

sx

C

� �s

where C ¼
0:823

1 � n2

t

b

� �2

E

(sx and sy are negative when tensile) (Ref. 6)

6. Rectangular plate under uniform

shear on all edges and bending

stresses on edges b

6a. All edges simply

supported
s0 ¼ K

E

1 � n2

t

b

� �2

Here K depends on
t
t0

(ratio of actual shear stress to shear stress that, acting alone, would be critical) and on

a

b
. K varies less than 10% for values

a

b
from 0.5 to 1, and for

a

b
¼ 1 is approximately as follows:

t
t0

0 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0

K 21:1 20:4 19:6 18:5 17:7 16:0 14:0 11:9 8:20 0 (Refs. 1, 10)
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7. Rectangular plate under

concentrated center loads on two

opposite edges

7a. All edges simply

supported
P 0 ¼

p
3

Et3

ð1 � n2Þb
for

a

b
> 2

� �
(Ref. 1)

7b. Edges b simply supported,

edges a clamped
P 0 ¼

2p
3

Et3

ð1 � n2Þb
for

a

b
> 2

� �
(Ref. 1)

8. Rhombic plate under uniform

compression on all edges

8a. All edges simply supported s0 ¼ K
Et2

a2ð1 � n2Þ

a 0� 9� 18� 27� 36� 45�

K 1:645 1:678 1:783 1:983 2:338 2:898 Ref. 65)

9. Polygon plate under uniform

compression on all edges

9a. All edges simply supported s0 ¼ K
Et2

a2ð1 � n2Þ

N 3 4 5 6 7 8

K 4:393 1:645 0:916 0:597 0:422 0:312 (Ref. 65)

N ¼ number of sides

10. Parabolic and semielliptic plates

under uniform compression on

all edges

10a. All edges simply supported s0 ¼ K
Et2

a2ð1 � n2Þ

where K is tabulated below for the several shapes and boundary conditions for n ¼ 1
3
:

10b. All edges fixed

Square Semiellipse Parabola Triangle

Simply supported 1:65 1:86 2:50 3:82

Fixed 4:36 5:57 7:22 10:60 (Ref. 62)
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued )

Form of plate or shell and manner of

loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

11. Isotropic circular plate under uniform

radial edge compression

11a. Edges simply supported

s0 ¼ K
E

1 � n2

t

a

� �2
n 0 0:1 0:2 0:3 0:4

K 0:282 0:306 0:328 0:350 0:370 (Ref. 1)

11b. Edges clamped
s0 ¼ 1:22

E

1 � n2

t

a

� �2

(Ref. 1)

For elliptical plate with major semiaxis a, minor semiaxis b, s0 ¼ K
E

1 � n2

t

b

� �2

, where K has values as

follows:

a

b
1:0 1:1 1:2 1:3 2:0 5:0

K 1:22 1:13 1:06 1:01 0:92 0:94 (Ref. 21)

12. Circular plate with concentric hole

under uniform radial compression

on outer edge

12a. Outer edge simply

supported, inner edge free
s0 ¼ K

E

1 � n2

t

a

� �2

Here K depends on
b

a
and is given approximately by following table:

b

a
0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

K 0:35 0:33 0:30 0:27 0:23 0:21 0:19 0:18 0:17 0:16 (Ref. 1)

12b. Outer edge clamped, inner

edge free
s0 ¼ K

E

1 � n2

t

a

� �2

a

t
> 10 Here K depends on

b

a
and is given approximately by following table:

b

a
0 0:1 0:2 0:3 0:4 0:5

K 1:22 1:17 1:11 1:21 1:48 2:07 (Ref. 1)

13. Curved panel under uniform

compression on curved edges b

(b ¼ width of panel measured on arc;

r ¼ radius of curvature)

13a. All edges simply supported
s0 ¼

1

6

E

1 � n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1 � n2Þ

t

r

� �2

þ
pt

b

� �4
s

þ
pt

b

� �2
2
4

3
5

(Note: With a > b, the solution does not depend upon a)

or s0 ¼ 0:6E
t

r
if

b

r
(central angle of curve) is less than 1

2
and b and a are nearly equal (Refs. 1 and 6)

(For compression combined with shear, see Refs. 28 and 34.)

b

t
> 10
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14. Curved panel under uniform shear on

all edges

14a. All edges simply supported
t0 ¼ 0:1E

t

r
þ 5E

t

b

� �2

(Refs. 6, 27, 29)

14b. All edges clamped
t0 ¼ 0:1E

t

r
þ 7:5E

t

b

� �2

(Ref. 6)

Tests show t0 ¼ 0:075E
t

r
for panels curved to form quadrant of a circle (Ref. 11)

b=t > 10. See case 13 for b and r.

(See also Refs. 27, 29)

15. Thin-walled circular tube under

uniform longitudinal compression

(radius of tube ¼ r)

15a. Ends not constrained s0 ¼
1ffiffiffi
3

p
Effiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n2
p

t

r
(Refs. 6, 12, 13, 24)

Most accurate for very long tubes, but applicable if length is several times as great as 1:72
ffiffiffiffi
rt

p
, which is the

length of a half-wave of buckling. Tests indicate an actual buckling strength of 40–60% of this theoretical

value, or s0 ¼ 0:3Et=r approximately

r

t
> 10

16. Thin-walled circular tube under a

transverse bending moment M

(radius of tube ¼ r)

16a. No constraint M 0 ¼ K
E

1 � n2
rt2

Here the theoretical value of K for pure bending and long tubes is 0.99. The average value of K determined by

tests is 1.14, and the minimum value is 0.72. Except for very short tubes, length effect is negligible and a

small transverse shear produces no appreciable reduction in M 0. A very short cylinder under transverse

(beam) shear may fail by buckling at neutral axis when shear stress there reaches a value of about 1:25t0 for

case 17a (Refs. 6, 14, 15)
r

t
> 10

17. Thin-walled circular tube under a

twisting moment T that produces a

uniform circumferential shear stress:

17a. Ends hinged, i.e., wall free

to change angle with cross

section, but circular section

maintained

t0 ¼
E

1 � n2

t

l

� �2

ð1:27 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:64 þ 0:466H1:5

p
Þ

t ¼
T

2pr2t

where H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

p l2

tr

(length of tube ¼ l; radius of

tube ¼ r)

Tests indicate that the actual buckling stress is 60–75% of this theoretical value, with the majority of the data

points nearer 75% (Refs. 6, 16, 18, 25)

17b. Ends clamped, i.e., wall

held perpendicular to cross

section and circular section

maintained

t0
E

1 � n2

t

l

� �2

ð�2:39 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96:9 þ 0:605H1:5

p
Þ

where H is given in part 17a.

r

t
> 10

The statement in part a regarding actual buckling stress applies here as well (Refs. 6, 16, 18, 25)
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued)

Form of plate or shell and manner of

loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P 0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

18. Thin-walled circular tube under

uniform longitudinal compression s
and uniform circumferential shear t
due to torsion (case 15 combined with

case 17)

18a. Edges hinged as in case

17a.

18b. Edges clamped as in case

17b.

The equation 1 �
s0

s0o
¼

t0

t0o

� �n

holds, where s0 and t0 are the critical compressive and shear stresses for the

combined loading, s0o is the critical compressive stress for the cylinder under compression alone (case 15), and

t0o is the critical shear stress for the cylinder under torsion alone (case 17a or 17b according to end conditions).

Tests indicate that n is approximately 3. If s is tensile, then s0 should be considered negative. (Ref. 6)

(See also Ref. 26. For square tube, see Ref. 32)

r

t
> 10

19. Thin tube under uniform lateral

external pressure (radius of tube ¼ r)

19a. Very long tube with free

ends; length l
q0 ¼

1

4

E

1 � n2

t3

r3

Applicable when l > 4:90r

ffiffiffi
r

t

r
(Ref. 19)

19b. Short tube, of length l, ends

held circular, but not other-

wise constrained, or long

tube held circular at inter-

vals l

q0 ¼ 0:807
Et2

lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 � n2

� �3
t2

r2

4

s
approximate formula (Ref. 19)

r

t
> 10

20. Thin tube with closed ends under

uniform external pressure, lateral

and longitudinal (length of tube ¼ l;

radius of tube ¼ r)

20a. Ends held circular

q0 ¼

E
t

r

1 þ
1

2

pr

nl

� �2

1

n2 1 þ
nl

pr

� �2
" #2

þ
n2t2

12r2ð1 � n2Þ
1 þ

pr

nl

� �2
� �2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(Refs. 19, 20)

where n ¼ number of lobes formed by the tube in buckling. To determine q0 for tubes of a given t=r, plot a

group of curves, one curve for each integral value of n of 2 or more, with l=r as ordinates and q0 as abscissa;

that curve of the group which gives the least value of q0 is then used to find the q0 corresponding to a given

l=r. If 60 <
l

r

� �2
r

t

� �
< 2:5

r

t

� �2

, the critical pressure can be approximated by q0 ¼
0:92E

l

r

� �
r

t

� �2:5
(Ref. 81)

r

t
> 10 For other approximations see ref. 109

Values of experimentally determined critical pressures range 20% above and below the theoretical values

given by the expressions above. A recommended probable minimum critical pressure is 0.80q’.
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21. Curved panel under uniform radial

pressure (radius of curvature r,

central angle 2a, when

2a ¼ arc AB=rÞ

21a. Curved edges free, straight

edges at A and B simply

supported (i.e., hinged)
q0 ¼

Et3 p2

a2
� 1

� �
12r3ð1 � n2Þ

(Ref. 1)

21b. Curved edges free, straight

edges at A and B clamped

Here k is found from the equation k tan a cot ka ¼ 1 and has the following values:

q0 ¼
Et3ðk2 � 1Þ

12r3ð1 � n2Þ

a 15� 30� 60� 90� 120� 150� 180�

k 17:2 8:62 4:37 3:0 2:36 2:07 2:0
(Ref. 1)

22. Thin sphere under uniform external

pressure (radius of sphere ¼ r)

22a. No constraint
q0 ¼

2Et2

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � n2Þ

p (for ideal case) ðRefs: 1; 37Þ

q0 ¼
0:365Et2

r2
(probable actual minimum q0 Þ

For spherical cap, half-central angle f between 20 and 60� , R=t between 400 and 2000,

q0 ¼ ½1 � 0:00875ðf�
� 20�Þ� 1 � 0:000175

R

t

� �
ð0:3EÞ

t

R

� �2

(Empirical formula, Ref. 43)r=t > 10

23. Thin truncated conical shell with

closed ends under external pressure

(both lateral and longitudinal

pressure)

23a. Ends held circular q0 can be found from the formula of case 20a if the slant length of the cone is substituted for the length of the

cylinder and if the average radius of curvature of the wall of the cone normal to the meridian

ðRA þ RBÞ=ð2 cos aÞ is substituted for the radius of the cylinder. The same recommendation of a probable

minimum critical pressure of 0:8q0 is made from the examination of experimental data for cones.

(Refs. 78, 81)

RB=t > 10

24. Thin truncated conical shell under

axial load

24a. Ends held circular
P 0 ¼

2pEt2 cos2 affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � n2Þ

p (theoretical)

Tests indicate an actual buckling strength of from 40 to 60% of the above theoretical value, or

P 0 ¼ 0:3ð2pEt2 cos2 aÞ approximately. (Ref. 78)

In Ref. 77 it is stated that P 0 ¼ 0:277ð2pEt2 cos2 aÞ will give 95% confidence in at least 90% of the cones

carrying more than this critical load. This is based on 170 tests.

RB=t > 10
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TABLE 15.2 Formulas for elastic stability of plates and shells (Continued)

Form of plate or shell and manner of

loading

Manner of support Formulas for critical unit compressive stress s0, unit shear stress t0, load P0, bending moment M 0, or unit

external pressure q0 at which elastic buckling occurs

25. Thin truncated conical shell under

combined axial load and internal

pressure

25a. Ends held circular P 0 � qpR2
B ¼ KA2pEt2 cos2 a

The probable minimum values of KA are tabulated for several values of KP ¼
q

E

RB

t cos a

� �2

.

kB ¼ 2
12ð1 � n2ÞR2

B

t2 tan2 a sin
2 a

� �1=4

Kp 0:00 0:25 0:50 1:00 1:50 2:00 3:00

for kB 4 150 0:30 0:52 0:60 0:68 0:73 0:76 0:80

for kB > 150 0:20 0:36 0:48 0:60 0:64 0:66 0:69 (Ref. 78)Þ

26. Thin truncated conical shell under

combined axial load and external

pressure

26a. Ends held circular The following conservative interaction formula may be used for design. It is applicable equally to theoretical

values or to minimum probable values of critical load and pressure.

P0

P 0
case 24

þ
q0

q0
case 23

¼ 1

This expression can be used for cylinders if the angle a is set equal to zero or use is made of cases 15 and 20.

For small values of P 0=P0
case 24 the external pressure required to collapse the shell is greater than that

required to initiate buckling. See Ref. 78.

27. Thin truncated conical shell under

torsion

27a. Ends held circular
Let T ¼ t02pr2

e t and for t0 use the formulas for thin-walled circular tubes, case 17, substituting for the radius r

of the tube the equivalent radius re, where re ¼ RB cos a 1 þ
1

2
1 þ

RA

RB

� �� �1=2

�
1

2
1 þ

RA

RB

� �� ��1=2
( )

. l and t

remain the axial length and wall thickness, respectively.

(Ref.17)
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87. Sobel, L. H., and W. Flügge: Stability of Toroidal Shells under Uniform External
Pressure, AIAA J., vol. 5, no. 3, 1967.

88. Almroth, B. O., L. H. Sobel, and A. R. Hunter: An Experimental Investigation of the
Buckling of Toroidal Shells, AIAA J., vol. 7, no. 11, 1969.

89. Loo, Ta-Cheng, and R. M. Evan-Iwanowski: Interaction of Critical Pressures and
Critical Concentrated Loads Acting on Shallow Spherical Shells, ASME J. Appl.
Mech., vol. 33, no. 3, 1966.

90. Loo, Ta-Cheng, and R. M. Evan-Iwanowski: Experiments on Stability on Spherical
Caps, Proc. Am. Soc. Civil Eng., vol. 90, no. EM3, 1964.

91. Arbocz, J., and C. D. Babcock, Jr.: The Effect of General Imperfections on the
Buckling of Cylindrical Shells, ASME J. Appl. Mech., vol. 36, no. 1, 1969.

92. Burns, J. J. Jr.: Experimental Buckling of Thin Shells of Revolution, Proc. Am. Soc.
Civil Eng., vol. 90, no. EM3, 1964.

93. Roorda, J.: Some Thoughts on the Southwell Plot, Proc. Am. Soc. Civil Eng., vol. 93,
no. EM6, 1967.

94. Navaratna, D. R., T. H. H. Pian, and E. A. Witmer: Stability Analysis of Shells of
Revolution by the Finite-Element Method, AIAA J., vol. 6, no. 2, 1968.

95. Stein, M.: Some Recent Advances in the Investigation of Shell Buckling, AIAA J.,
vol. 6, no. 12, 1968.

96. Rabinovich, I. M. (ed.): ‘‘Structural Mechanics in the U.S.S.R. 1917–1957,’’ Perga-
mon Press, 1960 (English transl. edited by G. Herrmann).

97. Baker, E. H., L. Kovalevsky, and F. L. Rish: ‘‘Structural Analysis of Shells,’’
McGraw-Hill, 1972.

98. Perrone, N.: Compendium of Structural Mechanics Computer Programs, Comput. &
Struct., vol. 2, no. 3, April 1972. (Available from NTIS as N71-32026, April 1971.)

99. Bushnell, D.: Stress, Stability, and Vibration of Complex, Branched Shells of
Revolution, AIAA=ASME=SAE 14th Struct., Struct. Dynam. & Mater. Conf.,
March, 1973.

100. ‘‘Structural Sandwich Composites,’’ MIL-HDBK-23, U.S. Dept. of Defense, 1968.
101. Allen, H. G., and P. S. Bulson: ‘‘Background to Buckling,’’ McGraw-Hill, 1980.
102. Thompson, J. M. T., and G. W. Hunt (eds.): ‘‘Collapse: The Buckling of Structures in

Theory and Practice,’’ IUTAM=Cambridge University Press, 1983.
103. Narayanan, R. (ed.): ‘‘Axially Compressed Structures: Stability and Strength,’’

Elsevier Science, 1982.
104. Brush, D. O., and B. O. Almroth: ‘‘Buckling of Bars, Plates, and Shells,’’ McGraw-

Hill, 1975.
105. Kollár, L., and E. Dulácska: ‘‘Buckling of Shells for Engineers,’’ English transl.

edited by G. R. Thompson, John Wiley & Sons, 1984.
106. Yamaki, N.: ‘‘Elastic Stability of Circular Cylindrical Shells,’’ Elsevier Science, 1984.
107. ‘‘Collapse Analysis of Structures,’’ Pressure Vessels and Piping Division, ASME,

PVP, vol. 84, 1984.
108. Bushnell, D.: ‘‘Computerized Buckling Analysis of Shells,’’ Kluwer, 1985.
109. Johnston, B. G. (ed.): ‘‘Guide to Stability Design Criteria for Metal Structures,’’ 3d

ed., Structural Stability Research Council, John Wiley & Sons, 1976.
110. White, R. N., and C. G. Salmon (eds.): ‘‘Building Structural Design Handbook,’’ John

Wiley & Sons, 1987.
111. American Institute of Steel Construction: ‘‘Manual of Steel Construction—Load and

Resistance Factor Design,’’ 1st ed., 1986.

742 Formulas for Stress and Strain [CHAP. 15


	Table of Contents
	Part III. Formulas and Examples
	7. Tension,Compression, Shear, and Combined Stress
	8. Beams; Flexure of Straight Bars
	9. Bending of Curved Beams
	10. Torsion
	11. Flat Plates
	12. Columns and Other Compression Members
	13. Shells of Revolution; Pressure Vessels; Pipes
	14. Bodies in Contact Undergoing Direct Bearing and Shear Stress
	15. Elastic Stability
	15.1 General Considerations
	15.2 Buckling of Bars
	15.3 Buckling of Flat and Curved Plates
	15.4 Buckling of Shells
	15.5 Tables
	15.6 References

	16. Dynamic and Temperature Stresses
	17. Stress Concentration Factors


