
Part

3
Formulas and Examples

Each of the following chapters deals with a certain type of

structural member or a certain condition of stress. What may

be called the common, or typical, case is usually discussed

first; special cases, representing peculiarities of form,

proportions, or circumstances of loading, are considered

subsequently. In the discussion of each case the underlying

assumptions are stated, the general behavior of the loaded

member is described, and formulas for the stress and

deformation are given. The more important of the general

equations are numbered consecutively throughout each section

to facilitate reference, but, wherever possible, formulas

applying to specific cases are tabulated for convenience and

economy of space.

In all formulas which contain numerical constants having

dimensions, the units are specified.

Most formulas contain only dimensionless constants and

can be evaluated in any consistent system of units.
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Chapter

7
Tension, Compression, Shear,

and Combined Stress

7.1 Bar under Axial Tension (or Compression);
Common Case

The bar is straight, of any uniform cross section, of homogeneous

material, and (if under compression) short or constrained against

lateral buckling. The loads are applied at the ends, centrally, and in

such a manner as to avoid nonuniform stress distribution at any

section of the part under consideration. The stress does not exceed

the proportional limit.

Behavior. Parallel to the load the bar elongates (under tension) or

shortens (under compression), the unit longitudinal strain being e and

the total longitudinal deflection in the length l being d. At right angles

to the load the bar contracts (under tension) or expands (under

compression); the unit lateral strain e0 is the same in all transverse

directions, and the total lateral deflection d0 in any direction is

proportional to the lateral dimension d measured in that direction.

Both longitudinal and lateral strains are proportional to the applied

load. On any right section there is a uniform tensile (or compressive)

stress s; on any oblique section there is a uniform tensile (or compres-

sive) normal stress sy and a uniform shear stress ty. The deformed

bar under tension is represented in Fig. 7.1(a), and the stresses in

Fig. 7.1(b).



Formulas. Let

P ¼ applied load

A ¼ cross-sectional area ðbefore loadingÞ

l ¼ length ðbefore loadingÞ

E ¼ modulus of elasticity

n ¼ Poisson0s ratio

Then

s ¼
P

A
ð7:1-1Þ

sy ¼
P

A
cos2 y; max sy ¼ s ðwhen y ¼ 0�Þ

t ¼
P

2A
sin 2y; max ty ¼

1

2
sðwhen y ¼ 45 or 135�Þ

e ¼
s
E

ð7:1-2Þ

d ¼ le ¼
Pl

AE
ð7:1-3Þ

e0 ¼ �ne ð7:1-4Þ

d0 ¼ e0d ð7:1-5Þ

Strain energy per unit volume U ¼
1

2

s2

E
ð7:1-6Þ

Total strain energy U ¼
1

2

s2

E
Al ¼

1

2
Pd ð7:1-7Þ

For small strain, each unit area of cross section changes by ð�2neÞ
under load, and each unit of volume changes by ð1 � 2nÞe under load.

In some discussions it is convenient to refer to the stiffness of a

member, which is a measure of the resistance it offers to being

Figure 7.1

110 Formulas for Stress and Strain [CHAP. 7



deformed. The stiffness of a uniform bar under axial load is shown by

Eq. (7.1-3) to be proportional to A and E directly and to l inversely, i.e.,

proportional AE=l.

EXAMPLE

A cylindrical rod of steel 4 in long and 1.5 in diameter has an axial compres-
sive load of 20,000 lb applied to it. For this steel n ¼ 0:285 and E ¼

30;000;000 lb=in2
. Determine (a) the unit compressive stress s; (b) the total

longitudinal deformation, d; (c) the total transverse deformation d0; (d) the
change in volume, DV ; and (e) the total energy, or work done in applying the
load.

Solution

(a) s ¼
P

A
¼

4P

pd2
¼

4ð�20;000Þ

pð1:5Þ2
¼ �11;320 lb=in2

(b) e ¼
s
E

¼
�11;320

30;000;000
¼ �377ð10�6Þ

d ¼ el ¼ ð�377Þð10�6Þð4Þ ¼ �1:509ð10�3Þ in ð
00
�00 means shorteningÞ

(c) e0 ¼ �ne ¼ �0:285ð�377Þð10�6Þ ¼ 107:5ð10�6Þ

d0 ¼ e0d ¼ ð107:5Þð10�6Þð1:5Þ ¼ 1:613ð10�4Þ in ð
00
þ00 means expansionÞ

(d) DV=V ¼ ð1 � 2nÞe ¼ ½1 � 2ð0:285Þ	ð�377Þð10�6Þ ¼ �162:2ð10�6Þ

DV ¼ �162:2ð10�6ÞV ¼ �162:2ð10�6Þ
p
4

d2l ¼ �162:2ð10�6Þ
p
4
ð1:5Þ2ð4Þ

¼ �1:147ð10�3Þ in
3
ð
00
�00 means decreaseÞ

(e) Increase in strain energy,

U ¼
1

2
Pd ¼

1

2
ð�20;000Þð�1:509Þð10�3Þ ¼ 15:09 in-lb

7.2 Bar under Tension (or Compression);
Special Cases

If the bar is not straight, it is subject to bending; formulas for this case

are given in Sec. 12.4.

If the load is applied eccentrically, the bar is subject to bending;

formulas for this case are given in Secs. 8.7 and 12.4. If the load is

compressive and the bar is long and not laterally constrained, it must

be analyzed as a column by the methods of Chapters 12 and 15.

If the stress exceeds the proportional limit, the formulas for stress

given in Sec. 7.1 still hold but the deformation and work done in

producing it can be determined only from experimental data relating

unit strain to unit stress.
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If the section is not uniform but changes gradually, the stress at any

section can be found by dividing the load by the area of that section;

the total longitudinal deformation over a length l is given by

ðl

0

P

AE
dx

and the strain energy is given by

ðl

0

1

2

P2

AE
dx, where dx is an infinite-

simal length in the longitudinal direction. If the change in section is

abrupt stress concentration may have to be taken into account, values

of Kt being used to find elastic stresses and values of Kr being used to

predict the breaking load. Stress concentration may also have to be

considered if the end attachments for loading involve pinholes, screw

threads, or other stress raisers (see Sec. 3.10 and Chap. 17).

If instead of being applied at the ends of a uniform bar the load is

applied at an intermediate point, both ends being held, the method of

consistent deformations shows that the load is apportioned to the two

parts of the bar in inverse proportion to their respective lengths.

If a uniform bar is supported at one end in a vertical position and

loaded only by its own weight, the maximum stress occurs at the

supported end and is equal to the weight divided by the cross-sectional

area. The total elongation is half as great and the total strain energy

one-third as great as if a load equal to the weight were applied at the

unsupported end. A bar supported at one end and loaded by its own

weight and an axial downward load P (force) applied at the unsup-

ported end will have the same unit stress s (force per unit area) at all

sections if it is tapered so that all sections are similar in form but vary

in scale according to the formula

y ¼
s
w

loge

As
P

ð7:2-1Þ

where y is the distance from the free end of the bar to any section, A is

the area of that section, and w is the density of the material (force per

unit volume).

If a bar is stressed by having both ends rigidly held while a change

in temperature is imposed, the resulting stress is found by calculating

the longitudinal expansion (or contraction) that the change in

temperature would produce if the bar were not held and then calculat-

ing the load necessary to shorten (or lengthen) it by that amount

(principle of superposition). If the bar is uniform, the unit stress

produced is independent of the length of the bar if restraint against

buckling is provided. If a bar is stressed by being struck an axial blow

at one end, the case is one of impact loading, discussed in Sec. 16.3.

EXAMPLES

1. Figure 7.2 represents a uniform bar rigidly held at the ends A and D and
axially loaded at the intermediate points B and C. It is required to determine

112 Formulas for Stress and Strain [CHAP. 7



the total force in each portion of the bar AB, BC, CD. The loads are in newtons
and the lengths in centimeters.

Solution. Each load is divided between the portions of the bar to right and
left in inverse proportion to the lengths of these parts (consistent deforma-
tions), and the total force sustained by each part is the algebraic sum of the
forces imposed by the individual loads (superposition). Of the 9000 N load,
therefore, 7

9
, or 7000 N, is carried in tension by segment AB, and 2

9
, or 2000 N, is

carried in compression by the segment BD. Of the 18,000 N load, 4
9
, or 8000 N,

is carried in compression by segment AC, and 5
9
, or 10,000 N, is carried in

tension by segment CD. Denoting tension by the plus sign and compression by
the minus sign, and adding algebraically, the actual stresses in each segment
are found to be

AB: 7000 � 8000 ¼ �1000 N

BC: �2000 � 8000 ¼ �10;000 N

CD: �2000 þ 10;000 ¼ þ8000 N

The results are quite independent of the diameter of the bar and of E provided
the bar is completely uniform.

If instead of being held at the ends, the bar is prestressed by wedging it
between rigid walls under an initial compression of, say, 10,000 N and the
loads at B and C are then applied, the results secured above would represent
the changes in force the several parts would undergo. The final forces in the
bar would therefore be 11,000 N compression in AB, 20,000 N compression in
BC, and 2000 N compression in CD. But if the initial compression were less
than 8000 N, the bar would break contact with the wall at D (no tension
possible); there would be no force at all in CD, and the forces in AB and BC,
now statically determinate, would be 9000 and 18,000 N compression, respec-
tively.

2. A steel bar 24 in long has the form of a truncated cone, being circular
in section with a diameter at one end of 1 in and at the other of 3 in. For this
steel, E ¼ 30;000;000 lb=in2

and the coefficient of thermal expansion is
0:0000065=�F. This bar is rigidly held at both ends and subjected to a drop
in temperature of 50�F. It is required to determine the maximum tensile stress
thus caused.

Solution. Using the principle of superposition, the solution is effected in
three steps: (a) the shortening d due to the drop in temperature is found,
assuming the bar free to contract; (b) the force P required to produce an
elongation equal to d, that is, to stretch the bar back to its original length, is
calculated; (c) the maximum tensile stress produced by this force P is
calculated.

(a) d ¼ 50(0.0000065)(24) ¼ 0.00780 in.

(b) Let d denote the diameter and A the area of any section a distance x in

Figure 7.2
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from the small end of the bar. Then

d ¼ 1 þ
x

12
; A ¼

p
4

1 þ
x

12

� �2

and

d ¼

ðl

0

P

EA
dx ¼

ð24

0

4P

ðpEÞð1 þ x=12Þ2
dx ¼

4P

pð30Þð106Þ

ð�12Þ

ð1 þ x=12Þ

�����
24

0

¼ 3:395ð10�7ÞP

Equating this to the thermal contraction of 0.00780 in yields

P ¼ 22;970 lb

(c) The maximum stress occurs at the smallest section, and is

s ¼
4P

pd2
min

¼
4ð22;970Þ

pð1Þ2
¼ 29;250 lb=in2

The result can be accepted as correct only if the proportional limit of the steel
is known to be as great as or greater than the maximum stress and if the
concept of a rigid support can be accepted. (See cases 8, 9, and 10 in Table
14.1.)

7.3 Composite Members

A tension or compression member may be made up of parallel

elements or parts which jointly carry the applied load. The essential

problem is to determine how the load is apportioned among the several

parts, and this is easily done by the method of consistent deformations.

If the parts are so arranged that all undergo the same total elongation

or shortening, then each will carry a portion of the load proportional to

its stiffness, i.e., proportional to AE=l if each is a uniform bar and

proportional to AE if all these uniform bars are of equal length. It

follows that if there are n bars, with section areas A1;A2; . . . ;An,

lengths l1; l2; . . . ; ln, and moduli E1, E2; . . . ;En, then the loads on the

several bars P1, P2; . . . ;Pn are given by

P1 ¼ P

A1E1

l1

A1E1

l1

þ
A2E2

l2

þ 
 
 
 þ
AnEn

ln

ð7:3-1Þ

P2 ¼ P

A2E2

l2

A1E1

l1

þ
A2E2

l2

þ 
 
 
 þ
AnEn

ln

ð7:3-2Þ

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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A composite member of this kind can be prestressed. P1, P2, etc., then

represent the increments of force in each member due to the applied

load, and can be found by Eqs. (7.3-1) and (7.3-2), provided all bars can

sustain reversal of stress, or provided the applied load is not great

enough to cause such reversal in any bar which cannot sustain it. As

explained in Sec. 3.12, by proper prestressing, all parts of a composite

member can be made to reach their allowable loads, elastic limits, or

ultimate strengths simultaneously (Example 2).

EXAMPLES

1. A ring is suspended by three vertical bars, A, B, and C of unequal lengths.
The upper ends of the bars are held at different levels, so that as assembled
none of the bars is stressed. A is 4 ft long, has a section area of 0:3 in

2
, and is of

steel for which E ¼ 30;000;000 lb=in2
; B is 3 ft long and has a section area of

0:2 in
2
, and is of copper for which E ¼ 17;000;000 lb=in2

; C is 2 ft long, has
a section area of 0:4 in

2
, and is of aluminum for which E ¼ 10;000;000 lb=in2

.
A load of 10,000 lb is hung on the ring. It is required to determine how much of
this load is carried by each bar.

Solution. Denoting by PA, PB, and PC the loads carried by A, B, and C,
respectively, and expressing the moduli of elasticity in millions of pounds per
square inch and the lengths in feet, we substitute in Eq. (7.3-1) and find

PA ¼ 10;000

ð0:3Þð30Þ

4
ð0:3Þð30Þ

4
þ
ð0:2Þð17Þ

3
þ
ð0:4Þð10Þ

2

2
64

3
75 ¼ 4180 lb

Similarly

PB ¼ 2100 lb and PC ¼ 3720 lb

2. A composite member is formed by passing a steel rod through an aluminum
tube of the same length and fastening the two parts together at both ends. The
fastening is accomplished by adjustable nuts, which make it possible to
assemble the rod and tube so that one is under initial tension and the other
is under an equal initial compression. For the steel rod the section area is
1:5 in

2
, the modulus of elasticity 30,000,000 lb=in2

and the allowable stress
15,000 lb=in2

. For the aluminum tube the section area is 2 in
2
, the modulus of

elasticity 10,000,000 lb=in2
and the allowable stress 10,000 lb=in2

. It is desired
to prestress the composite member so that under a tensile load both parts will
reach their allowable stresses simultaneously.

Solution. When the allowable stresses are reached, the force in the steel rod
will be 1.5(15,000) ¼ 22,500 lb, the force in the aluminum tube will be
2(10,000) ¼ 20,000 lb, and the total load on the member will be
22,500 þ 20,000 ;¼ 42,500 lb. Let Pi denote the initial tension or compression
in the members, and, as before, let tension be considered positive and
compression negative. Then, since Eq. (7.3-1) gives the increment in force,
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we have for the aluminum tube

Pi þ 42;500
ð2Þð10Þ

ð2Þð10Þ þ ð1:5Þð30Þ
¼ 20;000

or

Pi ¼ þ 6920 lb ðinitial tensionÞ

For the steel rod, we have

Pi þ 42;500
ð1:5Þð30Þ

ð2Þð10Þ þ ð1:5Þð30Þ
¼ 22;500

or

Pi ¼ �6920 lb ðinitial compressionÞ

If the member were not prestressed, the unit stress in the steel would
always be just three times as great as that in the aluminum because it would
sustain the same unit deformation and its modulus of elasticity is three times
as great. Therefore, when the steel reached its allowable stress of
15,000 lb=in2

, the aluminum would be stressed to only 5000 lb=in2
and the

allowable load on the composite member would be only 32,500 lb instead of
42,500 lb.

7.4 Trusses

A conventional truss is essentially an assemblage of straight uniform

bars that are subjected to axial tension or compression when the truss

is loaded at the joints. The deflection of any joint of a truss is easily

found by the method of unit loads (Sec. 4.5). Let p1, p2, p3, etc., denote

the forces produced in the several members by an assumed unit load

acting in the direction x at the joint whose deflection is to be found,

and let d1, d2, d3, etc., denote the longitudinal deformations produced

in the several members by the actual applied loads. The deflection Dx

in the direction x of the joint in question is given by

Dx ¼ p1d1 þ p2d2 þ p3d3 þ 
 
 
 ¼
Pn
i¼1

pidi ð7:4-1Þ

The deflection in the direction y, at right angles to x, can be found

similarly by assuming the unit load to act in the y direction; the

resultant deflection is then determined by combining the x and y

deflections. Attention must be given to the signs of p and d, p is

positive if a member is subjected to tension and negative if under

compression, and d is positive if it represents an elongation and

negative if it represents a shortening. A positive value for
P

pd
means that the deflection is in the direction of the assumed unit
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load, and a negative value means that it is in the opposite direction.

(This procedure is illustrated in Example 1 below.)

A statically indeterminate truss can be solved by the method of least

work (Sec. 4.5). To do this, it is necessary to write down the expression

for the total strain energy in the structure, which, being simply the

sum of the strain energies of the constituent bars, is given by

1

2
P1d1 þ

1

2
P2d2 þ

1

2
P3d3 þ 
 
 
 ¼

Pn
i¼1

1

2
Pidi ¼

Pn
i¼1

1

2

P2l

AE

� 

i

ð7:4-2Þ

Here P1, P2, etc., denote the forces in the individual members due to

the applied loads and d has the same meaning as above. It is necessary

to express each force Pi as the sum of the two forces; one of these is the

force the applied loads would produce with the redundant member

removed, and the other is the force due to the unknown force (say, F)

exerted by this redundant member on the rest of the structure. The

total strain energy is thus expressed as a function of the known

applied forces and F , the force in the redundant member. The partial

derivative with respect to F of this expression for strain energy is then

set equal to zero and solved for F. If there are two or more redundant

members, the expression for strain energy with all the redundant

forces, F1, F2, etc., represented is differentiated once with respect to

each. The equations thus obtained are then solved simultaneously for

the unknown forces. (The procedure is illustrated in Example 2.)

EXAMPLES

1. The truss shown in Fig. 7.3 is composed of tubular steel members, for which
E ¼ 30;000;000 lb=in2

. The section areas of the members are given in the table
below. It is required to determine Dx and Dy, the horizontal and vertical
components of the displacement of joint A produced by the indicated loading.

Solution. The method of unit loads is used. The force P in each member due
to the applied loads is found, and the resulting elongation or shortening d is
calculated. The force px in each member due to a load of 1 lb acting to the right
at A, and the force py in each member due to a load of 1 lb acting down at A are
calculated. By Eq. (7.4-1),

P
pxd, then gives the horizontal and

P
pyd gives the

vertical displacement or deflection of A. Tensile forces and elongations are

Figure 7.3
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denoted by þ , compressive forces and shortenings by � . The work is
conveniently tabulated as follows:

Area, Length, ðpxdÞi, ðpydÞi,
Member Ai, in

2
li, in Pi, lb

di ¼
Pl

AE

� 

i

, in
ðpxÞi in (a) ðpyÞi in (b)

(1) AB 0.07862 48 800 0.01628 1.000 0.01628 1.333 0.02171

(2) AC 0.07862 60 �1000 �0.02544 0 0 �1.667 0.04240

(3) BC 0.1464 36 1200 0.00984 0 0 1.000 0.00984

(4) BE 0.4142 48 4000 0.01545 1.000 0.01545 2.667 0.04120

(5) BD 0.3318 60 �4000 �0.02411 0 0 �1.667 0.04018

(6) CD 0.07862 48 �800 �0.01628 0 0 �1.333 0.02171

Dx ¼ 0:03173 in Dy ¼ 0:17704 in

Dx and Dy are both found to be positive, which means that the displacements
are in the directions of the assumed unit loads—to the right and down. Had
either been found to be negative, it would have meant that the displacement
was in a direction opposite to that of the corresponding unit load.

2. Assume a diagonal member, running from A to D and having a section
area 0:3318 in

2
and length 8.544 ft, is to be added to the truss of Example 1;

the structure is now statically indeterminate. It is required to determine the
force in each member of the altered truss due to the loads shown.

Solution. We use the method of least work. The truss has one redundant
member; any member except BE may be regarded as redundant, since if any
one were removed, the remaining structure would be stable and statically
determinate. We select AD to be regarded as redundant, denote the unknown
force in AD by F, and assume F to be tension. We find the force in each member
assuming AD to be removed, then find the force in each member due to a pull F
exerted at A by AD, and then add these forces, thus getting an expression for
the force in each member of the actual truss in terms of F . The expression for
the strain energy can then be written out, differentiated with respect to F ,
equated to zero, and solved for F. F being known, the force in each member of
the truss is easily found. The computations are conveniently tabulated as
follows:

Forces in membersy

Due to

applied

loads without

AD

Due to

pull, F ,

exerted by

AD

Total forces,

Pi. Superposition

of (a) and (b)

Actual total

values with

F ¼ �1050 lb in (c)

Member (a) (lb) (b) (c) (d) (lb)

(1) AB 800 �0.470 F 800 � 0:470 F 1290

(2) AC �1000 �0.584 F �1000 � 0:584 F �390

(3) BC 1200 0.351 F 1200 þ 0:351 F 830

(4) BE 4000 0 4000 4000

(5) BD �4000 �0.584 F �4000 � 0:584 F �3390

(6) CD �800 �0.470 F �800 � 0:470 F �306

(7) AD 0 F F �1050

y þ for tension and � for compression.
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U ¼
P7
i¼1

1

2

P2l

AE

� 

i

¼
1

2E

ð800 � 0:470FÞ
2
ð48Þ

0:07862
þ
ð�1000 � 0:584FÞ

2
ð60Þ

0:07862

"

þ
ð1200 þ 0:351FÞ

2
ð36Þ

0:1464
þ
ð4000Þ2ð48Þ

0:4142

þ
ð�4000 � 0:584FÞ

2
ð60Þ

0:3318
þ
ð�800 � 0:470FÞ

2
ð48Þ

0:07862

þ
F2ð102:5Þ

0:3318

�

Setting the partial derivative of U relative to F to zero,

@U

@F
¼

1

2E

2ð800 � 0:470FÞð�0:470Þð48Þ

0:07862
þ

2ð�1000 � 0:584FÞð�0:584Þð60Þ

0:07862
þ 
 
 


� �
¼ 0

and solving for F gives F ¼ �1050 lb.
The negative sign here simply means that AD is in compression. A positive

value of F would have indicated tension. Substituting the value of F into the
terms of column (c) yield the actual total forces in each member as tabulated in
column (d).

7.5 Body under Pure Shear Stress

A condition of pure shear may be produced by any one of the methods

of loading shown in Fig. 7.4. In Fig. 7.4(a), a rectangular block of

length a, height b, and uniform thickness t is shown loaded by forces

P1 and P2, uniformly distributed over the surfaces to which they are

applied and satisfying the equilibrium equation P1b ¼ P2a. There are

equal shear stresses on all vertical and horizontal planes, so that any

contained cube oriented like ABCD has on each of four faces the shear

stress t ¼ P1=at ¼ P2=bt and no other stress.

In Fig. 7.4(b) a rectangular block is shown under equal and opposite

biaxial stresses st and sc. There are equal shear stresses on all planes

inclined at 45� to the top and bottom faces, so that a contained cube

Figure 7.4
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oriented like ABCD has on each of four faces the shear stress

t ¼ st ¼ sc and no other stress.

In Fig. 7.4(c), a circular shaft is shown under a twisting moment T ; a

cube of infinitesimal dimensions, a distance z from the axis and

oriented like ABCD has on each of four faces an essentially uniform

shear stress t ¼ Tz=J (Sec. 10.1) and no other stress.

In whatever way the loading is accomplished, the result is to impose

on an elementary cube of the loaded body the condition of stress

represented in Fig. 7.5, that is, shearing stress alone on each of four

faces, these stresses being equal and so directed as to satisfy the

equilibrium condition Tx ¼ 0 (Sec. 4.1).

The stresses, sy and ty on a transformed surface rotated counter-

clockwise through the angle y can be determined from the transforma-

tion equations given by Eqs. (2.3-17). They are given by

sy ¼ t sin 2y; ty ¼ t cos 2y ð7:5-1Þ

where ðsyÞmax;min ¼ �t at y ¼ �45�.

The strains produced by pure shear are shown in Fig. 7.5(b), where

the cube ABCD is deformed into a rhombohedron A0B0C0D0. The unit

shear strain, g, referred to as the engineering shear strain, is reduction

of angles ffABC and ffADC, and the increase in angles ffDAB and

ffBCD in radians. Letting G denote the modulus of rigidity, the shear

strain is related to the shear stress as

g ¼
t
G

ð7:5-2Þ

Assuming a linear material, the strain energy per unit volume for pure

shear, us, within the elastic range is given by

us ¼
1

2

t2

G
ð7:5-3Þ

Figure 7.5 (a) Shear stress and transformation. (b) Shear strain.
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The relations between t, s, and the strains represented in Fig. 7.5(b)

make it possible to express G in terms of E and Poisson’s ratio, n, for a

linear, homogeneous, isotropic material. The relationship is

G ¼
E

2ð1 þ nÞ
ð7:5-4Þ

From known values of E (determined by a tensile test) and G

(determined by a torsion test) it is thus possible to calculate n.

7.6 Cases of Direct Shear Loading

By direct shear loading is meant any case in which a member is acted

on by equal, parallel, and opposite forces so nearly colinear that the

material between them is subjected primarily to shear stress, with

negligible bending. Examples of this are provided by rivets, bolts, and

pins, shaft splines and keys, screw threads, short lugs, etc. These are

not really cases of pure shear; the actual stress distribution is complex

and usually indeterminate because of the influence of fit and other

factors. In designing such parts, however, it is usually assumed that

the shear is uniformly distributed on the critical section, and since

working stresses are selected with due allowance for the approximate

nature of this assumption, the practice is usually permissible. In

beams subject to transverse shear, this assumption cannot be made

as a rule.

Shear and other stresses in rivets, pins, keys, etc., are discussed

more fully in Chap. 14, shear stresses in beams in Chap. 8, and shear

stresses in torsion members in Chap. 10.

7.7 Combined Stress

Under certain circumstances of loading, a body is subjected to a

combination of tensile and compressive stresses (usually designated

as biaxial or triaxial stress) or to a combination of tensile, compressive,

and shear stresses (usually designated as combined stress). For

example, the material at the inner surface of a thick cylindrical

pressure vessel is subjected to triaxial stress (radial compression,

longitudinal tension, and circumferential tension), and a shaft simul-

taneously bent and twisted is subjected to combined stress (longi-

tudinal tension or compression, and torsional shear).

In most instances the normal and shear stresses on each of three

mutually perpendicular planes are due to flexure, axial loading,

torsion, beam shear, or some combination of these which separately

can be calculated readily by the appropriate formulas. Normal stresses

arising from different load conditions acting on the same plane can be
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combined simply by algebraic addition considering tensile stresses

positive and compressive stresses negative. Similarly, shear stresses

can be combined by algebraic addition following a consistent sign

convention. Further analysis of the combined states of normal and

shear stresses must be performed using the transformation techniques

outlined in Sec. 2.3. The principal stresses, the maximum shear stress,

and the normal and shear stresses on any given plane can be found by

the equations given in Sec. 2.3.

The strains produced by any combination of stresses not exceeding

the proportional limit can also be found using Hooke’s law for each

stress and then combined by superposition. Consideration of the

strains caused by equal triaxial stresses leads to an expression for

the bulk modulus of elasticity given by

K ¼
E

3ð1 � 2nÞ
ð7:7-1Þ

EXAMPLES

1. A rectangular block 12 in long, 4 in high, and 2 in thick is subjected to a
longitudinal tensile stress sx ¼ 12;000 lb=in2

, a vertical compressive stress
sy ¼ 15;000 lb=in2

, and a lateral compressive stress sz ¼ 9000 lb=in2
. The

material is steel, for which E ¼ 30;000;000 lb=in2
and n ¼ 0:30. It is required

to find the total change in length.

Solution. The longitudinal deformation is found by superposition: The unit
strain due to each stress is computed separately by Eqs. (7.1-2) and (7.1-4);
these results are added to give the resultant longitudinal unit strain, which is
multiplied by the length to give the total elongation. Denoting unit long-
itudinal strain by ex and total longitudinal deflection by dx , we have

ex ¼
12;000

E
� n

�15;000

E
� n

�9000

E

¼ 0:000400 þ 0:000150 þ 0:000090 ¼ þ0:00064

dx ¼ 12ð0:00064Þ ¼ 0:00768 in

The lateral dimensions have nothing to do with the result since the lateral
stresses, not the lateral loads, are given.

2. A piece of ‘‘standard extra-strong’’ pipe, 2 in nominal diameter, is simulta-
neously subjected to an internal pressure of p ¼ 2000 lb=in2

and to a twisting
moment of T ¼ 5000 in-lb caused by tightening a cap screwed on at one end.
Determine the maximum tensile stress and the maximum shear stress thus
produced in the pipe.

Solution. The calculations will be made, first, for a point at the outer
surface and, second, for a point at the inner surface. The dimensions of the
pipe and properties of the cross section are as follows: inner radius
ri ¼ 0:9695 in, outer radius ro ¼ 1:1875 in, cross-sectional area of bore
Ab ¼ 2:955 in

2
, cross-sectional area of pipe wall Aw ¼ 1:475 in

2
, and polar

moment of inertial J ¼ 1:735 in
4
.
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We take axis x along the axis of the pipe, axis y tangent to the cross section,
and axis z radial in the plane of the cross section. For a point at the outer
surface of the pipe, sx is the longitudinal tensile stress due to pressure and sy

is the circumferential (hoop) stress due to pressure, the radial stress sz ¼ 0
(since the pressure is zero on the outer surface of the pipe), and txy is the shear
stress due to torsion. Equation (7.1-1) can be used for sx, where P ¼ pAb

and A ¼ Aw. To calculate sy, we use the formula for stress in thick cylinders
(Table 13.5, case 1b). Finally, for txy, we use the formula for torsional stress
(Eq. (10.1-2). Thus,

sx ¼
pAb

Aw

¼
ð2000Þð2:955Þ

1:475
¼ 4007 lb=in2

sy ¼ p
r2

i ðr
2
o þ r2

oÞ

r2
oðr

2
o � r2

i Þ
¼ 2000

ð0:96952Þð1:18752 þ 1:18752Þ

ð1:18752Þð1:18752 � 0:96952Þ
¼ 7996 lb=in2

txy ¼
Tro

J
¼

ð5000Þð1:1875Þ

1:735
¼ 3422 lb=in2

This is a case of plane stress where Eq. (2.3-23) applies. The principal stresses
are thus

sp ¼ 1
2
½ðsx þ syÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � syÞ

2
þ 4t2

xy

q
	

¼ 1
2
½ð4007 þ 7996Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4007 � 7996Þ2 þ 4ð34222Þ

q
	 ¼ 9962; 2041 lb=in2

Thus, smax ¼ 9962 lb=in2
.

In order to determine the maximum shear stress, we order the three
principal stresses such that s1 5s2 5s3. For plane stress, the out-of-plane
principal stresses are zero. Thus, s1 ¼ 9962 lb=in2

, s2 ¼ 2041 lb=in2
, and

s3 ¼ 0. From Eq. (2.3-25), the maximum shear stress is

tmax ¼ 1
2
ðs1 � s3Þ ¼

1
2
ð9962 � 0Þ ¼ 4981 lb=in2

For a point on the inner surface, the stress conditions are three-dimensional
since a radial stress due to the internal pressure is present. The longitudinal
stress is the same; however, the circumferential stress and torsional shear
stress change. For the inner surface,

sx ¼ 4007 lb=in2

sy ¼ p
r2

o þ r2
i

r2
o � r2

i

¼ 2000
1:18752 þ 0:96952

1:18752 � 0:96952
¼ 9996 lb=in2

sz ¼ �p ¼ �2000 lb=in2

txy ¼
Tri

J
¼

ð5000Þð0:9695Þ

1:735
¼ 2794 lb=in2

tyz ¼ tzx ¼ 0
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The principal stresses are found using Eq. (2.3-20):y

s3
p � ð4007 þ 9996 � 2000Þs2

p þ ½ð4007Þð9996Þ þ ð9996Þð�2000Þ

þ ð�2000Þð4007Þ � 27942 � 0 � 0	sp � ½ð4007Þð9996Þð�2000Þ þ 2ð2794Þð0Þð0Þ

� ð4007Þð02Þ � ð9996Þð02Þ � ð�2000Þð27942Þ	 ¼ 0

or

s3
p � 12:003ð103Þs2

p þ 4:2415ð106Þsp þ 64:495ð109Þ ¼ 0

Solving this gives sp ¼ 11;100; 2906, and �2000 lb=in2
, which are the

principal stresses s1, s2, and s3, respectively. Obviously, the maximum

tensile stress is 11;100 lb=in2
. Again, the maximum shear stress comes

from Eq. (2.3-25), and is 1
2
½11;100 � ð�2000Þ	 ¼ 6550 lb=in2

.

Note that for this problem, if the pipe is a ductile material, and one

were looking at failure due to shear stress (see Sec. 3.7), the stress

conditions for the pipe are more severe at the inner surface compared

with the outer surface.

y Note: Since tyz ¼ tzx ¼ 0, sz is one of the principal stresses and the other two can be
found from the plane stress equations. Consequently, the other two principal stresses are
in the xy plane.

124 Formulas for Stress and Strain [CHAP. 7


	Table of Contents
	Part III. Formulas and Examples
	7. Tension,Compression, Shear, and Combined Stress
	7.1 Bar under Axial Tension (or Compression); Common Case
	7.2 Bar under Tension (or Compression); Special Cases
	7.3 Composite Members
	7.4 Trusses
	7.5 Body under Pure Shear Stress
	7.6 Cases of Direct Shear Loading
	7.7 Combined Stress

	8. Beams; Flexure of Straight Bars
	9. Bending of Curved Beams
	10. Torsion
	11. Flat Plates
	12. Columns and Other Compression Members
	13. Shells of Revolution; Pressure Vessels; Pipes
	14. Bodies in Contact Undergoing Direct Bearing and Shear Stress
	15. Elastic Stability
	16. Dynamic and Temperature Stresses
	17. Stress Concentration Factors


