Chapter

Curved Beams

9.1 Bending in the Plane of the Curve

In a straight beam having either a constant cross section or a cross
section which changes gradually along the length of the beam, the
neutral surface is defined as the longitudinal surface of zero fiber
stress when the member is subjected to pure bending. It contains the
neutral axis of every section, and these neutral axes pass through the
centroids of the respective sections. In this section on bending in the
plane of the curve, the use of the many formulas is restricted to those
members for which that axis passing through the centroid of a given
section and directed normal to the plane of bending of the member is a
principal axis. The one exception to this requirement is for a condition
equivalent to the beam being constrained to remain in its original
plane of curvature such as by frictionless external guides.

To determine the stresses and deformations in curved beams satis-
fying the restrictions given above, one first identifies several cross
sections and then locates the centroids of each. From these centroidal
locations the curved centroidal surface can be defined. For bending in
the plane of the curve there will be at each section (1) a force N normal
to the cross section and taken to act through the centroid, (2) a shear
force V parallel to the cross section in a radial direction, and (3) a
bending couple M in the plane of the curve. In addition there will be
radial stresses ¢, in the curved beam to establish equilibrium. These
internal loadings are shown in Fig. 9.1(a), and the stresses and
deformations due to each will be evaluated.

Circumferential normal stresses due to pure bending. When a curved
beam is bent in the plane of initial curvature, plane sections remain
plane, but because of the different lengths of fibers on the inner and
outer portions of the beam, the distribution of unit strain, and there-
fore stress, is not linear. The neutral axis does not pass through the
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Figure 9.1

centroid of the section and Eqgs. (8.1-1) and (8.1-2) do not apply. The
error involved in their use is slight as long as the radius of curvature is
more than about eight times the depth of the beam. At that curvature
the errors in the maximum stresses are in the range of 4 to 5%. The
errors created by using the straight-beam formulas become large for
sharp curvatures as shown in Table 9.1, which gives formulas and
selected numerical data for curved beams of several cross sections and
for varying degrees of curvature. In part the formulas and tabulated
coefficients are taken from the University of Illinois Circular by
Wilson and Quereau (Ref. 1) with modifications suggested by Neuge-
bauer (Ref. 28). For cross sections not included in Table 9.1 and for
determining circumferential stresses at locations other than the
extreme fibers, one can find formulas in texts on advanced mechanics
of materials, for example, Refs. 29 and 36.
The circumferential normal stress g, is given as

My
= 9.1-1

% Aer ( )
where M is the applied bending moment, A is the area of the cross
section, e is the distance from the centroidal axis to the neutral axis,
and y and r locate the radial position of the desired stress from the

neutral axis and the center of the curvature, respectively. See Fig.
9.1(b).

e:R—rn:R—L forE<8 (9.1-2)

J aayr @
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Equations (9.1-1) and (9.1-2) are based on derivations that neglect the
contribution of radial normal stress to the circumferential strain. This
assumption does not cause appreciable error for curved beams of
compact cross section for which the radial normal stresses are small,
and it leads to acceptable answers for beams having thin webs where,
although the radial stresses are higher, they occur in regions of the
cross section where the circumferential bending stresses are small.
The use of the equations in Table 9.1 and of Egs. (9.1-1) and (9.1-2) is
limited to values of R/d > 0.6 where, for a rectangular cross section, a
comparison of this mechanics-of-materials solution [Eq. (9.1-1)] to the
solution using the theory of elasticity shows the mechanics of materi-
als solution to indicate stresses approximately 10% too large.

While in theory the curved-beam formula for circumferential bend-
ing stress, Eq. (9.1-1), could be used for beams of very large radii of
curvature, one should not use the expression for e from Eq. (9.1-2) for
cases where R/d, the ratio of the radius of the curvature R to the depth
of the cross section, exceeds 8. The calculation for e would have to be
done with careful attention to precision on a computer or calculator to
get an accurate answer. Instead one should use the following approx-
imate expression for e which becomes very accurate for large values of
R/d. See Ref. 29.

e%é—z for§> 8 (9.1-3)
where I, is the area moment of inertia of the cross section about the
centroidal axis. Using this expression for e and letting R approach
infinity leads to the usual straight-beam formula for bending stress.

For complex sections where the table or Eq. (9.1-3) are inappro-
priate, a numerical technique that provides excellent accuracy can be
employed. This technique is illustrated on pp. 318-321 of Ref. 36.

In summary, use Eq. (9.1-1) with e from Eq. (9.1-2) for 0.6 < R/d < 8.
Use Eq. (9.1-1) with e from Eq. (9.1-3) for those curved beams
for which R/d > 8 and where errors of less than 4 to 5% are desired,
or use straight-beam formulas if larger errors are acceptable or if
R/d > 8.

Circumferential normal stresses due to hoop tension N(M=0). The
normal force N was chosen to act through the centroid of the cross
section, so a constant normal stress N/A would satisfy equilibrium.
Solutions carried out for rectangular cross sections using the theory of
elasticity show essentially a constant normal stress with higher values
on a thin layer of material on the inside of the curved section and lower
values on a thin layer of material on the outside of the section. In most
engineering applications the stresses due to the moment M are much
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larger than those due to N, so the assumption of uniform stress due to
N is reasonable.

Shear stress due to the radial shear force V. Although Eq. (8.1-2) does
not apply to curved beams, Eq. (8.1-13), used as for a straight beam,
gives the maximum shear stress with sufficient accuracy in most
instances. Again an analysis for a rectangular cross section carried
out using the theory of elasticity shows that the peak shear stress in a
curved beam occurs not at the centroidal axis as it does for a straight
beam but toward the inside surface of the beam. For a very sharply
curved beam, R/d = 0.7, the peak shear stress was 2.04V/A at a
position one-third of the way from the inner surface to the centroid.
For a sharply curved beam, R/d = 1.5, the peak shear stress was
1.56V /A at a position 80% of the way from the inner surface to the
centroid. These values can be compared to a peak shear stress of
1.5V /A at the centroid for a straight beam of rectangular cross section.

If a mechanics-of-materials solution for the shear stress in a curved
beam is desired, the element in Fig. 9.2(b) can be used and moments
taken about the center of curvature. Using the normal stress distribu-
tion oy = N/A 4+ My/AeR, one can find the shear stress expression to
be

_V(R—e)
Tpy = W(RAr - Q) (9.1-4)

where ¢, is the thickness of the section normal to the plane of
curvature at the radial position r and
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Equation (9.1-4) gives conservative answers for the peak values of
shear stress in rectangular sections when compared to elasticity
solutions. The locations of peak shear stress are the same in both
analyses, and the error in magnitude is about 1%.

Radial stresses due to moment Mand normal force N. Owing to the radial
components of the fiber stresses, radial stresses are present in a
curved beam; these are tensile when the bending moment tends to
straighten the beam and compressive under the reverse condition. A
mechanics-of-materials solution may be developed by summing radial
forces and summing forces perpendicular to the radius using the
element in Fig. 9.2.

- R_e[(M—NR)(Jr%—RArJ+¥(RA'"_Q'")] (9.1-6)

 tAer b T —

Equation (9.1-6) is as accurate for radial stress as is Eq. (9.1-4) for
shear stress when used for a rectangular cross section and compared
to an elasticity solution. However, the complexity of Eq. (9.1-6) coupled
with the fact that the stresses due to IV are generally smaller than
those due to M leads to the usual practice of omitting the terms
involving N. This leads to the equation for radial stress found in
many texts, such as Refs. 29 and 36.

R—e_(["dA, A,
7= G der ( Lr—l_R——e) ®1-7

Again care must be taken when using Eqgs. (9.1-4), (9.1-6), and (9.1-7)
to use an accurate value for e as explained above in the discussion
following Eq. (9.1-3).

Radial stress is usually not a major consideration in compact
sections for it is smaller than the circumferential stress and is low
where the circumferential stresses are large. However, in flanged
sections with thin webs the radial stress may be large at the junction
of the flange and web, and the circumferential stress is also large at
this position. This can lead to excessive shear stress and the possible
yielding if the radial and circumferential stresses are of opposite sign.
A large compressive radial stress in a thin web may also lead to a
buckling of the web. Corrections for curved-beam formulas for sections
having thin flanges are discussed in the next paragraph but correc-
tions are also needed if a section has a thin web and very thick flanges.
Under these conditions the individual flanges tend to rotate about
their own neutral axes and larger radial and shear stresses are
developed. Broughton et al. discuss this configuration in Ref. 31.
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EXAMPLES

1. The sharply curved beam with an elliptical cross section shown in Fig. 9.3(a)
has been used in a machine and has carried satisfactorily a bending moment of
2(108) N-mm. All dimensions on the figures and in the calculations are given in
millimeters. A redesign does not provide as much space for this part, and a
decision has been made to salvage the existing stock of this part by machining
10mm from the inside. The question has been asked as to what maximum
moment the modified part can carry without exceeding the peak stress in the
original installation.

Solution. First compute the maximum stress in the original section by using
case 6 of Table 9.1. R=100,c¢=50,R/c=2,A =n(50)(20) = 3142, e/c=
0.5[2 — (22 — 1)/%]1 = 0.1340, e = 6.70, and r, = 100 — 6.7 = 93.3. Using these
values the stress o; can be found as

My 2(10°)(93.3 —50) )
%= der —  31426.7)50) 2o N/mm

Alternatively one can find g; from o; = k;Mc/I,, where k; is found to be 1.616 in
the table of values from case 6

__ (1616)2)(10°)(50) _

; (20)(50)°/4 82.3 N/mm?

Next consider the same section with 10 mm machined from the inner edge as
shown in Fig. 9.3(b). Use case 9 of Table 9.1 with the initial calculations based
on the equivalent modified circular section shown in Fig. 9.3(c). For this
configuration o = cos~1(—40/50) = 2.498 rad (143.1°), sina = 0.6, cos o = —0.8,
R, =100, a =50, a/c = 1.179, ¢ = 42.418, R = 102.418, and R/c = 2.415. In
this problem R, > a, so by using the appropriate expression from case 9 one
obtains e/c = 0.131 and e = 5.548. R, ¢, and e have the same values for the
machined ellipse, Fig. 9.3(b), and from case 18 of Table A.1 the area is found to
be A = 20(50)(x — sinacosa) = 2978. Now the maximum stress on the inner
surface can be found and set equal to 82.3 N/mm?.

ggg_ My _ M(102.42 — 5.548 — 60)
0T O80T Aoy T T 2978(5.548)(60)

82.3 = 37.19(10M, M =2.21(10°)N-mm

One might not expect this increase in M unless consideration is given to the
machining away of a stress concentration. Be careful, however, to note that,
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Figure 9.3
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——L Figure 9.4

although removing the material reduced the peak stress in this case, the part
will undergo greater deflections under the same moment that it carried before.

2. A curved beam with a cross section shown in Fig. 9.4 is subjected to a
bending moment of 107 N-mm in the plane of the curve and to a normal load of
80,000 N in tension. The center of the circular portion of the cross section has a
radius of curvature of 160 mm. All dimensions are given and used in the
formulas in millimeters. The circumferential stresses in the inner and outer
fibers are desired.

Solution. This section can be modeled as a summation of three sections: (1)
a solid circular section, (2) a negative (materials removed) segment of a circle,
and (3) a solid rectangular section. The section properties are evaluated in the
order listed above and the results summed for the composite section.

Section 1. Use case 6 of Table 9.1. R=160, b =200, ¢ =100, R/c=1.6,
[dA/r = 200[1.6 — (1.6% — 1)/*] = 220.54, and A = n(100%) = 31,416.

Section 2. Use case 9 of Table 9.1. a==n/6 (30°), R, =160, a = 100,
R./a=1.6, a/c=18.55, ¢ =5.391, R=252.0, [dA/r = 3.595, and from case
20 of Table A.1, A = 905.9.

Section 3. Use case 1 of Table 9.1. R =160+ 100cos30° + 25 = 271.6,
b =100, ¢=25 R/c=10.864, A=5000, [dA/r=100In(11.864/9.864)=
18.462.

For the composite section; A = 31,416 —905.9+ 5000 = 35,510, R =
[31,416(160) — 905.9(252)+ 5000(272.6)]/35,510 = 173.37, ¢ = 113.37, [dA/r =
220.54 — 3.595 + 18.462 = 235.4, r, = A/(| dA/r) = 35,510/235.4 = 150.85, ¢ =
R—r, =2252.

Using these data the stresses on the inside and outside are found to be

My N 107(150.85 — 60) 80,000

%= Aer T A~ 35,510(22.52)(60) ' 35,510
=18.93+2.25 = 21.18 N/mm?

__ 107(150.85 — 296.6) | 80,000
° = 35,510(22.52)(296.6) | 35,510

= —6.14+ 2.25 = —3.89 N/mm?

Curved beams with wide flanges. In reinforcing rings for large pipes,
airplane fuselages, and ship hulls, the combination of a curved sheet
and attached web or stiffener forms a curved beam with wide flanges.
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Formulas for the effective width of a flange in such a curved beam are
given in Ref. 9 and are as follows.

When the flange is indefinitely wide (e.g., the inner flange of a pipe-
stiffener ring), the effective width is

b = 1.56V Rt

where b’ is the total width assumed effective, R is the mean radius of
curvature of the flange, and ¢ is the thickness of the flange.

When the flange has a definite unsupported width b (gross width
less web thickness), the ratio of effective to actual width &'/b is a

function of ¢b, where
431 =)
1= R2¢2

Corresponding values of gb and b'/b are as follows:

qb 1 2 3 4 5 6 7 8 9 10 11
b'/b 10.980 0.850 0.610 0.470 0.380 0.328 0.273 0.244 0.217 0.200 0.182

For the curved beam each flange should be considered as replaced by
one of corresponding effective width &', and all calculations for direct,
bending, and shear stresses, including corrections for curvature,
should be based on this transformed section.

Bleich (Ref. 10) has shown that under a straightening moment
where the curvature is decreased, the radial components of the fiber
stresses in the flanges bend both flanges radially away from the web,
thus producing tension in the fillet between flange and web in a
direction normal to both the circumferential and radial normal stres-
ses discussed in the previous section. Similarly, a moment which
increases the curvature causes both flanges to bend radially toward
the web and produce compressive stresses in the fillet between flange
and web. The nominal values of these transverse bending stresses ¢’ in
the fillet, without any correction for the stress concentration at the
fillet, are given by |o’| = |f0,,|, where g,, is the circumferential bending
stress at the midthickness of the flange. This is less than the maxi-
mum value found in Table 9.1 and can be calculated by using Eq.
(9.1-1). See the first example problem. The value of the coefficient f
depends upon the ratio c?/Rt, where c is the actual unsupported
projecting width of the flange to either side of the web and R and ¢
have the same meaning they did in the expressions for b and g. Values
of f may be found from the following table; they were taken from Ref.
10, where values of b’ are also tabulated.
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¢Z/Rt=0 0.1 0.2 0.3 0.4 0.5 0.6 0.8
=0 0.297 0.580 0.836 1.056 1.238 1.382 1.577
Z/Rt=1 1.2 1.4 1.5 2 3 4 5
p=1.677 1.721 1.732 1.732 1.707 1.671 1.680 1.700

Derivations of expressions for &'/b and for f§ are also found in Ref. 29.
Small differences in the values given in various references are due to
compensations for secondary effects. The values given here are conser-
vative.

In a similar way, the radial components of the circumferential
normal stresses distort thin tubular cross sections of curved beams.
This distortion affects both the stresses and deformations and is
discussed in the next section.

U-shaped members. A U-shaped member having a semicircular inner
boundary and a rectangular outer boundary is sometimes used as a
punch or riveter frame. Such a member can usually be analyzed as a
curved beam having a concentric outer boundary, but when the back
thickness is large, a more accurate analysis may be necessary. In Ref.
11 are presented the results of a photoelastic stress analysis of such
members in which the effects of variations in the several dimensions
were determined. See case 23, Table 17.1

Deflections. If a sharply curved beam is only a small portion of a
larger structure, the contribution to deflection made by the curved
portion can best be calculated by using the stresses at the inner and
outer surfaces to calculate strains and the strains then used to
determine the rotations of the plane sections. If the structure is
made up primarily of a sharply curved beam or a combination of
such beams, then refer to the next section.

9.2 Deflection of Curved Beams

Deflections of curved beams can generally be found most easily by
applying an energy method such as Castigliano’s second theorem. One
such expression is given by Eq. (8.1-7). The proper expression to use
for the complementary energy depends upon the degree of curvature
in the beam.

Deflection of curved beams of large radius. If for a curved beam the
radius of curvature is large enough such that Eqs. (8.1-1) and (8.1-2)
are acceptable, i.e., the radius of curvature is greater than 10 times
the depth, then the stress distribution across the depth of the beam is
very nearly linear and the complementary energy of flexure is given
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with sufficient accuracy by Eq. (8.1-3). If, in addition, the angular span
is great enough such that deformations due to axial stress from the
normal force NV and the shear stresses due to transverse shear V can be
neglected, deflections can be obtained by applying Egs. (8.1-3) and
(8.1-7) and rotations by Eq. (8.1-8). The following example shows how
this is done.

EXAMPLE

Figure 9.5 represents a slender uniform bar curved to form the quadrant of a
circle; it is fixed at the lower end and at the upper end is loaded by a vertical
force V, a horizontal force H, and a couple M. It is desired to find the vertical
deflection ¢,, the horizontal deflection d,, and the rotation 0 of the upper end.

Solution. According to Castigliano’s second theorem, ¢, =dU/aV, 0, =
dU/0H, and 0 = 0U/dM,. Denoting the angular position of any section by x,
it is evident that the moment there is M = VRsinx+ HR(1 — cosx) + M,,.
Disregarding shear and axial stress, and replacing ds by Rdx, we have [Eq.
(8.1-3)]

™2 [VRsinx + HR(1 — cos x) + M,>R dx
. oK1

Instead of integrating this and then carrying out the partial differentiations,
we will differentiate first and then integrate, and for convenience suppress the
constant term EI until all computations are completed. Thus

Y
YTV

0

/2
= [ [VRsinx + HR(1 — cos x) + Myl(R sinx)R dx
Jo

n/2
= VR*(x — Jsinxcosx) — HR?(cosx —|—%sin2 x) — MyR? cos x .
_ (x/HVR® + LHR® + M,R?
- EI
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U
(3x - ﬁ
/2
= J [VRsinx + HR(1 — cos x) + MylR(1 — cosx)R dx
0
/2
= VR*(—cosx — %sin2 x) + HR?(3x — 2 sinx + § sinx cos x) + MyR?(x — sin x)
0
_ 3VR® 4+ (§n — 2)HR® + (/2 — 1)M,R*
- EI
U
0 —_ TZW()

/2
= J [VRsinx + HR(1 — cosx) + My]R dx
0

/2
= —VR? cosx + HR?(x — sinx) + M,Rx

0
_ VR%+ (/2 — DHR? + (n/2)M,R
- EI

The deflection produced by any one load or any combination of two loads is
found by setting the other load or loads equal to zero; thus, V alone would
produce 6, =3 VR3/EI, and M alone would produce 6, = MyR?/EI. In this
example all results are positive, indicating that J, is in the direction of H, 6, in
the direction of V, and 6 in the direction of M.

Distortion of tubular sections. In curved beams of thin tubular section,
the distortion of the cross section produced by the radial components of
the fiber stresses reduces both the strength and stiffness. If the beam
curvature is not so sharp as to make Egs. (8.1-1) and (8.1-4) inap-
plicable, the effect of this distortion of the section can be taken into
account as follows.

In calculating deflection of curved beams of hollow circular section,
replace I by KI, where

9
10 + 12(tR/a2)*

(Here R =the radius of curvature of the beam axis, a =the outer
radius of tube section, and ¢ =the thickness of tube wall.) In calculat-
ing the maximum bending stress in curved beams of hollow circular
section, use the formulas

Ma 2
Gy = o aty = —— if£§< 1.472
I 3K./3p a

N
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or
_Mal-p

Gmax - I K

LR
aty=a if — > 1.472
a

where

6

b= eura?

and y is measured from the neutral axis. Torsional stresses and
deflections are unchanged.

In calculating deflection or stress in curved beams of hollow square
section and uniform wall thickness, replace I by

1+40.0270n
14 0.0656n

where n = b*/R?t?. (Here R =the radius of curvature of the beam axis,
b =the length of the side of the square section, and ¢ = the thickness of
the section wall.)

The preceding formulas for circular sections are from von Karman
(Ref. 4); the formulas for square sections are from Timoshenko (Ref. 5),
who also gives formulas for rectangular sections.

Extensive analyses have been made for thin-walled pipe elbows with
sharp curvatures for which the equations given above do not apply
directly. Loadings may be in-plane, out-of-plane, or in various combi-
nations (Ref. 8). Internal pressure increases and external pressure
decreases pipe-bend stiffness. To determine ultimate load capacities of
pipe bends or similar thin shells, elastic-plastic analyses, studies of the
several modes of instability, and the stabilizing effects of flanges and
the piping attached to the elbows are some of the many subjects
presented in published works. Bushnell (Ref. 7) included an extensive
list of references. Using numerical results from computer codes,
graphs of stress indices and flexibility factors provide design data
(Refs. 7, 19, and 34).

Deflection of curved beams of small radius. For a sharply curved beam,
1.e., the radius of curvature is less than 10 times the depth, the stress
distribution is not linear across the depth. The expression for the
complementary energy of flexure is given by

M? M?
U=|——=Rdx=|-—4d 9.2-1

f JZAEeR x J2AEe * (9.2-1)
where A is the cross-sectional area, E is the modulus of elasticity, and e
is the distance from the centroidal axis to the neutral axis as given in
Table 9.1. The differential change in angle dx is the same as is used in
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the previous example. See Fig. 9.1. Also keep clearly in mind that the
bending in the plane of the curvature must be about a principal axis or
the restraints described in the first paragraph of Sec. 9.1 must be
present.

For all cross sections the value of the product AeR approaches the
value of the moment of inertia I when the radius of curvature becomes
greater than 10 times the depth. This is seen clearly in the following
table where values of the ratio AeR/I are given for several sections
and curvatures.

R/d
Case
no. Section 1 3 5 10
1 Solid rectangle 1.077 1.008 1.003 1.001
2 Solid circle 1.072 1.007 1.003 1.001
5 Triangle (base inward) 0.927 0.950 0.976 0.988
6 Triangle (base outward) 1.268 1.054 1.030 1.014

For curved beams of large radius the effect on deflections of the shear
stresses due to V and the circumferential normal stresses due to N
were small unless the length was small. For sharply curved beams the
effects of these stresses must be considered. Only the effects of the
radial stresses o, will be neglected. The expression for the comple-
mentary energy including all but the radial stresses is given by

M? FV’R N’R MN

where all the quantities are defined in the notation at the top of Table
9.2.

The last term, hereafter referred to as the coupling term, involves
the complementary energy developed from coupling the strains from
the bending moment M and the normal force N. A positive bending
moment M produces a negative strain at the position of the centroidal
axis in a curved beam, and the resultant normal force N passes
through the centroid. Reasons have been given for and against
including the coupling term in attempts to improve the accuracy of
calculated deformations (see Refs. 3 and 29). Ken Tepper, Ref. 30,
called attention to the importance of the coupling term for sharply
curved beams. The equations in Tables 9.2 and 9.3 have been modified
and now include the effect of the coupling term. With this change, the
formulas given in Tables 9.2 and 9.3 for the indeterminate reactions
and for the deformations are no longer limited to thin rings and arches
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but can be used as well for thick rings and arches. As before, for thin
rings and arches « and f can be set to zero with little error.

To summarize this discussion and its application to the formulas in
Tables 9.2 and 9.3, one can place a given curved beam into one of three
categories: a thin ring, a moderately thick ring, and a very thick or
sharply curved ring. The boundaries between these categories depend
upon the R/d ratio and the shape of the cross section. Reference to the
preceding tabulation of the ratio AeR/I will be helpful.

For thin rings the effect of normal stress due to N and shear stress
due to V can be neglected; i.e., set « and f equal to zero. For
moderately thick rings and arches use the equations as they are
given in Tables 9.2 and 9.3. For thick rings and arches replace the
moment of inertia I with the product AeR in all equations including
those for o and f. To illustrate the accuracy of this approach, the
previous example problem will be repeated but for a thick ring of
rectangular cross section. The rectangular cross section was chosen
because a solution can be obtained by using the theory of elasticity
with which to compare and evaluate the results.

EXAMPLE

Figure 9.6 represents a thick uniform bar of rectangular cross section having a
curved centroidal surface of radius R. It is fixed at the lower end, and the
upper end is loaded by a vertical force V, a horizontal force H, and a couple M,.
It is desired to find the vertical deflection J,, the horizontal deflection J,, and
the rotation 0 of the upper end. Note that the deflections §, and ¢, are the
values at the free end and at the radial position R at which the load H is
applied.

First Solution. Again Castigliano’s theorem will be used. First find the
moment, shear, and axial force at the angular position x.

M, = VRsinx + HR(1 — cosx) + M,
V,=Vcosx+ Hsinx
N,=—Hcosx+ Vsinx

Since the beam is to be treated as a thick beam the expression for comple-
mentary energy is given by

M? FV2R N2ZR M_N,
U+j2AEedx+j 9AG dx+J2Ade—J AT dx

ok
—

(a) (b) Figure 9.6
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The deflections can now be calculated

aw (P M, . "2 FV.R "2N.R .
oy = e Jo E(R sin x)dx + Jo G (cosx)dx + L) ﬁ(sm x)dx
Y2 M, . ™2 N, .
— ,[0 E(sm x)dx — Jo E(R sin x)dx
_ (n/4)VR? + 0.5HR® + M,R? N 0.5R(nV/2 4+ H)2F(1+v)—1] - M,
- EAeR AE
aU  ("*M,R "2FV.R . "2 N.R
NS H L A_Ee(l — cosx)dx + Jo A (sinx)dx + Jo AR (—cosx)dx
/2 Mx /2 NxR
- L E(_ cos x)dx — L AR (1 — cosx)dx
_ 0.5VR® + (3n/4 — 2)HR? + (n/2 — 1)M,R*
- EAeR
N 0.5VR[2F(1 +v) — 1]+ (n/4)HR[2F(1 +v) + 8/n — 1] + M,
EA
U (Y2 M, "2FV.R "2 N.R "2 M,
0= oM, = Jo AEe(l)dx—l— L yYe (0)dx + L AR O)dx — Iy E(O)dx
/2 N

_ VR (n/2 ~ VHE® + (i/2M,R | H -V
- EAeR AE

There is no need to reduce these expressions further in order to make a
numerical calculation, but it is of interest here to compare to the solutions in
the previous example. Therefore, let « = ¢/R and ff = FEe/GR = 2F(1 +v)/R
as defined previously

5 = (n/4)VR*(1 — a4 p) + 0.5HR3*(1 — o+ B) + M,R*(1 — )

Y EAeR
5 — 0.5VR3(1 — a4 ) + HR?[(3n/4 — 2) + (2 — n/4)o + (n/4)f]
e EAeR
M,R*(n/2 — 1 + o)
EAeR
o VR2(1 — o) + HR*(n/2 — 1 + ) + (n/2)M,R

EAeR

Up to this point in the derivation, the cross section has not been specified. For
a rectangular cross section having an outer radius a and an inner radius b and
of thickness ¢ normal to the surface shown in Fig. 9.6(b), the following
substitutions can be made in the deformation equations. Let v = 0.3.

a+b
o
e 2(a — b)

a===1

R~ (a+b)ln(a/b)’

R=

A =(a- b, F =12 (see Sec.8.10)

B =3.124
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In the following table the value of a/b is varied from 1.1, where R/d = 10.5, a
thin beam, to a/b = 5.0, where R/d = 0.75, a very thick beam. Three sets of
numerical values are compared. The first set consists of the three deformations
d,, 0, and 0 evaluated from the equations just derived and due to the vertical
load V. The second set consists of the same deformations due to the same
loading but evaluated by applying the equations for a thin curved beam from
the first example. The third set consists of the same deformations due to the
same loading but evaluated by applying the theory of elasticity. See Ref. 2. The
abbreviation MM in parentheses identifies the values from the mechanics-of-
materials solutions and the abbreviation EL similarly identifies those found
from the theory of elasticity.

From thick-beam theory From thin-beam theory

0, (MM) 6, (MM) O(MM) 0,(MM) 6,(MM) 6(MM)
a/b R/d o,(EL) 0,.(EL) 0(EL) 0,(EL) o.(EL) O(EL)
1.1 10.5 0.9996 0.9990 0.9999 0.9986 0.9980 1.0012
1.3 3.83 0.9974 0.9925 0.9991 0.9900 0.9852 1.0094
1.5 2.50 0.9944 0.9836 0.9976 0.9773 0.9967 1.0223
1.8 1.75 0.9903 0.9703 0.9944 0.9564 0.9371 1.0462
2.0 1.50 0.9884 0.9630 0.9916 0.9431 0.9189 1.0635
3.0 1.00 0.9900 0.9485 0.9729 0.8958 0.8583 1.1513
4.0 0.83 1.0083 0.9575 0.9511 0.8749 0.8345 1.2304
5.0 0.75 1.0230 0.9763 0.9298 0.8687 0.8290 1.2997

If reasonable errors can be tolerated, the strength-of-materials solutions are
very acceptable when proper recognition of thick and thin beams is given.

Second Solution. Table 9.3 is designed to enable one to take any angular
span 20 and any single load or combination of loads and find the necessary
indeterminate reactions and the desired deflections. To demonstrate this use of
Table 9.3 in this example the deflection ¢, will be found due to a load H. Use of
case 12d, with load terms from case 5d and with 0 = n/4 and ¢ = n/4. Both
load terms LFy and LFy are needed since the desired deflection ¢, is not
in the direction of either of the deflections given in the table. Let c = m =
s=n=0.7071.

ky[m

LFy :H{ 0.7071 45

[ 0.7071 — 0.70713(2)] - k22(0.7071)}

LF, = H{—go.7071 _k [E 0.7071 + 0.70713(2)] + k24(0.70713)}

it
212

8, = (Oyq — 054)0.7071 = (LFV LF})0.7071

EAeR
~RH [ n kym R3H [3n n T
_EAeR(_E_E§+2k2> EAR[ 2+(2_Z>°‘+Zﬁ]

This expression for J, is the same as the one derived directly from Castigliano’s
theorem. For angular spans of 90 or 180° the direct derivation is not difficult,
but for odd-angle spans the use of the equations in Table 9.3 is recommended.
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(a) (b)
Figure 9.7

The use of the equations in Table 9.3 is also recommended when deflections
are desired at positions other than the load point. For example, assume the
deflections of the midspan of this arch are desired when it is loaded with the end
load H as shown in Fig. 9.7(a). To do this, isolate the span from B to C and find
the loads Hp, V3, and Mp which act at point B. This gives Hz = V5 = 0.7071H
and My = HR(1 — 0.7071). Now, superpose cases 12¢, 12d, and 12n using these
loads and 0 = ¢ = 7/8. In a problem with neither end fixed, a rigid-body motion
may have to be superposed to satisfy the boundary conditions.

Deflection of curved beams of variable cross section and/or radius. None
of the tabulated formulas applies when either the cross section or the
radius of curvature varies along the span. The use of Egs. (9.2-1) and
(9.2-2), or of comparable expressions for thin curved beams, with
numerical integration carried out for a finite number of elements
along the span provides an effective means of solving these problems.
This is best shown by example.

EXAMPLE

A rectangular beam of constant thickness and a depth varying linearly along
the length is bent such that the centroidal surface follows the curve x = 0.25y?
as shown in Fig. 9.8. The vertical deflection at the loaded end is desired. To
keep the use of specific dimensions to a minimum let the depth of the curved
beam at the fixed end = 1.0, the thickness = 0.5, and the horizontal location of
the load P =1.0. The beam will be subdivided into eight segments, each
spanning 0.25 units in the y direction. Normally a constant length along the
span is used, but using constant Ay gives shorter spans where moments are
larger and curvatures are sharper. The numerical calculations are also easier.
Use will be made of the following expressions in order to provide the tabulated

Figure 9.8
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information from which the needed summation can be found. Note that y; and
x; are used here as the y and x positions of the midlength of each segment

2
x = 0.25y2, Z—;C — 0.5y, Z—Z; — 05,  Al=Ay1+x)"2
g 1+ (dx/dyy?
B d%x/d2y
e_E — 2 for R <8
c ¢ In[R/c+1)/(R/c—1)] 2¢
[see Eq. (9.1-1) and case 1 of Table 9.1] or
e I. #(2¢)® _c R
¢~ RAc 12(Ri2¢%) 3R for 5.>8

[see Eq. (9.1-3)].

The desired vertical deflection of the loaded end can be determined from
Castigliano’s theorem, using Eq. (9.2-2) for U in summation form rather than
integral form. This reduces to

. oU P _[M/P) V\? N\? MN]|Al
O=5P~ & [eR HE\p) 200+ (5) 2pp|a

P _ Al

“EX4

where [B] and [B]Al/A are the last two columns in the following table. The
internal forces and moments can be determined from equilibrium equations as

(B]

—=—(1—-x), Gi:tan_lg—;, V =Psin0;, and N = —Pcos0;

In the evaluation of the above equations for this problem, F' = 1.2 and v = 0.3.
In the table below one must fill in the first five columns in order to find the
total length of the beam before the midsegment depth 2c¢ can be found and the
table completed.

Element
no. ¥; X; R Al c R/c
1 0.125 0.004 2.012 0.251 0.481 4.183
2 0.375 0.035 2.106 0.254 0.442 4.761
3 0.625 0.098 2.300 0.262 0.403 5.707
4 0.875 0.191 2.601 0.273 0.362 7.180
5 1.125 0.316 3.020 0.287 0.320 9.451
6 1.375 0.473 3.574 0.303 0.275 13.019
7 1.625 0.660 4.278 0.322 0.227 18.860
8 1.875 0.879 5.151 0.343 0.176 29.243

2.295
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Element Al
no. e/c M/P V/P N/P [B] [B]Z
1 0.0809 —0.996 0.062 —0.998 11.695 6.092
2 0.0709 —0.965 0.184 —0.983 13.269 7.627
3 0.0589 —0.902 0.298 —0.954 14.370 9.431
4 0.0467 —0.809 0.401 -0.916 14.737 11.101
5 0.0354 —0.684 0.490 —0.872 14.007 12.569
6 0.0256 —0.527 0.567 —0.824 11.856 13.105
7 0.0177 —0.340 0.631 -0.776 8.049 11.431
8 0.0114 —0.121 0.684 —0.730 3.232 6.290
77.555

Therefore, the deflection at the load and in the direction of the load is
77.56P/E in whatever units are chosen as long as the depth at the fixed end
is unity. If one maintains the same length-to-depth ratio and the same shape,
the deflection can be expressed as § = 77.56P/(E2t,), where ¢, is the constant
thickness of the beam.

Michael Plesha (Ref. 33) provided a finite-element solution for this configura-
tion and obtained for the load point a vertically downward deflection of 72.4
units and a horizontal deflection of 88.3 units. The 22 elements he used were
nine-node, quadratic displacement, Lagrange elements. The reader is invited
to apply a horizontal dummy load and verify the horizontal deflection.

9.3 Circular Rings and Arches

In large pipelines, tanks, aircraft, and submarines the circular ring is
an important structural element, and for correct design it is often
necessary to calculate the stresses and deflections produced in such a
ring under various conditions of loading and support. The circular
arch of uniform section is often employed in buildings, bridges, and
machinery.

Rings. A closed circular ring may be regarded as a statically indeter-
minate beam and analyzed as such by the use of Castigliano’s second
theorem. In Table 9.2 are given formulas thus derived for the bending
moments, tensions, shears, horizontal and vertical deflections, and
rotations of the load point in the plane of the ring for various loads and
supports. By superposition, these formulas can be combined so as to
cover almost any condition of loading and support likely to occur.
The ring formulas are based on the following assumptions: (1) The
ring is of uniform cross section and has symmetry about the plane of
curvature. An exception to this requirement of symmetry can be made
if moment restraints are provided to prevent rotation of each cross
section out of its plane of curvature. Lacking the plane of symmetry
and any external constraints, out-of-plane deformations will accom-
pany in-plane loading. Meck, in Ref. 21, derives expressions concern-
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ing the coupling of in-plane and out-of-plane deformations of circular
rings of arbitrary compact cross section and resulting instabilities.
(2) All loadings are applied at the radial position of the centroid
of the cross section. For thin rings this is of little concern, but for
radially thick rings a concentrated load acting in other than a radial
direction and not at the centroidal radius must be replaced by a
statically equivalent load at the centroidal radius and a couple. For
case 15, where the loading is due to gravity or a constant linear
acceleration, and for case 21, where the loading is due to rotation
around an axis normal to the plane of the ring, the proper distribu-
tion of loading through the cross section is accounted for in the
formulas. (3) It is nowhere stressed beyond the elastic limit. (4)
It is not so severely deformed as to lose its essentially circular
shape. (5) Its deflection is due primarily to bending, but for thicker
rings the deflections due to deformations caused by axial tension or
compression in the ring and/or by transverse shear stresses in the
ring may be included. To include these effects, we can evaluate
first the coefficients « and f, the axial stress deformation factor, and
the transverse shear deformation factor, and then the constants £; and
ky. Such corrections are more often necessary when composite or
sandwich construction is employed. If no axial or shear stress correc-
tions are desired, o and f are set equal to zero and the values of k
are set equal to unity. (6) In the case of pipes acting as beams
between widely spaced supports, the distribution of shear stress
across the section of the pipe is in accordance with Eq. (8.1-2), and
the direction of the resultant shear stress at any point of the cross
section is tangential.

Note carefully the deformations given regarding the point or points
of loading as compared with the deformations of the horizontal and
vertical diameters. For many of the cases listed, the numerical values
of load and deflection coefficients have been given for several positions
of the loading. These coefficients do not include the effect of axial and
shear deformation.

No account has been taken in Table 9.2 of the effect of radial
stresses in the vicinity of the concentrated loads. These stresses
and the local deformations they create can have a significant effect
on overall ring deformations and peak stresses. In case 1 a reference
is made to Sec. 14.3 in which thick-walled rollers or rings are
loaded on the outer ends of a diameter. The stresses and deflections
given here are different from those predicted by the equations in
case 1. If a concentrated load is used only for purposes of super-
position, as is often the case, there is no cause for concern, but if an
actual applied load is concentrated over a small region and the ring is
sharply curved with thick walls, then one must be aware of the
possible errors.
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EXAMPLES

1. A pipe with a diameter of 13 ft and thickness of%in is supported at intervals
of 44 ft by rings, each ring being supported at the extremities of its horizontal
diameter by vertical reactions acting at the centroids of the ring sections. It is
required to determine the bending moments in a ring at the bottom, sides, and
top, and the maximum bending moment when the pipe is filled with water.

Solution. We use the formulas for cases 4 and 20 of Table 9.2. Taking the
weight of the water as 62.41b/ft? and the weight of the shell as 20.41b/ft?, the
total weight W of 44 ft of pipe carried by one ring is found to be 401,1001b.
Therefore, for case 20, W = 401,1001b; and for case 4, W = 250,5501b and
0 = /2. Assume a thin ring, o« = = 0.

At bottom:

M = M, = 0.2387(401,100)(6.5)(12) — 0.50(200,550)(78)
= 7.468(10%) — 7.822(10%) = —354,000 1b-in

At top:

M = M, = 0.0796(401,100)(78) — 0.1366(200,550)(78) = 354,000 Ib-in
N = N, =0.2387(401,100) — 0.3183(200,500) = 31,900 1b
V = VA . 0

At sides:

where for x=n/2, wu=0, z=1, and LTy =WR/n)(1—u—xz/2)=
[401,100(78)/n] (1 — /4) = 2.137(10%) for case 20, and LT, =0 for case 4
since z — s = 0. Therefore

M = 354,000 — 31,900(78)(1 — 0) + 0 + 2.137(10°%) = 2800 Ib-in

The value of 2800 1b-in is due to the small differences in large numbers used in
the superposition. An exact solution would give zero for this value. It is
apparent that at least four digits must be carried.

To determine the location of maximum bending moment let 0 < x < 7/2 and
examine the expression for M:

R .
M =M, — N,R(1 — cosx) -|-WT (1 _ COSx_xs;nx)

aM

X
_— cosx
dx

. R . R .
= —NARs1nx+W—s1nx—W—s1nx—
m 2n

= 31,950R sin x — 63,800Rx cos x
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At x=x;, let dM/dx=0 or sinx; =2x;cosx;, which yields x; =
66.8°(1.166 rad). At x = x; = 66.8°,

401,1
M = 354,00 — 31,900(78)(1 — 0.394) + 401,100(78)
Y

[1 0894 1.166(0.919)]

2

= —455,0001b-in (max negative moment)

Similarly, at x = 113.2°, M = 455,000 1b-in (max positive moment).

By applying the supporting reactions outside the center line of the ring at a
distance a from the centroid of the section, side couples that are each equal to
Wa/2 would be introduced. The effect of these, found by the formulas for case
3, would be to reduce the maximum moments, and it can be shown that the
optimum condition obtains when a = 0.04R.

2. The pipe of Example 1 rests on soft ground, with which it is in contact over
150° of its circumference at the bottom. The supporting pressure of the soil
may be assumed to be radial and uniform. It is required to determine the
bending moment at the top and bottom and at the surface of the soil. Also the
bending stresses at these locations and the change in the horizontal diameter
must be determined.

Solution. A section of pipe 1in long is considered. The loading may be
considered as a combination of cases 12, 15, and 16. Owing to the weight of the
pipe (case 15, w = 0.14161b/in), and letting Ky =k, =ky =1, and a = f =0,

~0.1416(78)°

M, — 4301b-in
0.1416(78
VA - O

and at x = 180 — 130 = 105° = 1.833 rad,
LTy = —0.1416(782)[1.833(0.966) — 0.259 — 1] = —440lb-in
Therefore

M5 = 430 — 5.52(78)(1 + 0.259) — 440 = —5521b-in
M, = 1.5(0.1416)(78) = 1292 1b-in

Owing to the weight of contained water (case 16, p = 0.03611b/in®),

3

My = 00T _ o i
2

N, = QO gy,

VAZO
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and at x = 105°,

= 64001b-in/in

LT, = 0.0361(783)[1 +0.259 — W]

Therefore

M5 = 4283 — 164.7(78)(1 + 0.259) + 6400 = —5490Ib-in/in

3
M, - %78)(3) — 12,8501b-in/in

Owing to earth pressure and the reversed reaction (case 12, 0 = 105°),

2wRsin § = 21R(0.1416) + 0.03617R% = 7591b (w = 5.041b/in)

M, = M[o.%e + (m — 1.833)(=0.259) — 1(n — 1.833 — 0.966)]
= —2777in-lb
N, = %4(78)[0.966 + (n — 1.833)(—0.259)] = —78.51b
V,=0
LTy =0

M,y = —2777 4 78.5(78)(1.259) = 49301b-in
1.833(1 — 0.2
M = —5.04(782)M = —13,2601b-in
T

Therefore, for the 1in section of pipe

M, =430+ 4283 — 2777 = 1936 1b-in

M, .
04 = Gt;‘ = 46,5001b/in”

M p5. = —552 — 5490 4+ 4930 = —11121b-in
0105 = 26,7001b/in’
My = 1292 + 12,850 — 13,260 = 8821b-in
oo = 21,2001b/in’
The change in the horizontal diameter is found similarly by superimposing
the three cases. For E use 30(10%)/(1 — 0.2852%) = 32.65(10)1b/in%, since a

plate is being bent instead of a narrow beam (see page 169). For I use the
moment of inertia of a 1-in-wide piece, 0.51n thick:

I =1(1)(0.5%) = 0.0104in", EI = 340,0001b-in?
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From case 12:

_ —5.04(78%) [(n — 1.833)(—0.259) + 0.966 2

ADy = — 157500 5 —~(n—1.833 — 0.966)
_ —5.04(78)* B .
= —340.000 (*-0954) = —52.37in

From case 15:

0.4292(0.1416)784
AD,; =
H 340,000

= 6.6161n

From case 16:

_0.2146(0.0361)78°

ADy = 340,000 =65.791n

The total change in the horizontal diameter is 201in. It must be understood at
this point that the anwers are somewhat in error since this large a deflection
does violate the assumption that the loaded ring is very nearly circular. This
was expected when the stresses were found to be so large in such a thin pipe.

Arches. Table 9.3 gives formulas for end reactions and end deforma-
tions for circular arches of constant radius of curvature and constant
cross section under 18 different loadings and with 14 combinations of
end conditions. The corrections for axial stress and transverse shear
are accomplished as they were in Table 9.2 by the use of the constants
o and . Once the indeterminate reactions are known, the bending
moments, axial loads, and transverse shear forces can be found from
equilibrium equations. If deformations are desired for points away
from the ends, the unit-load method [Eq. (8.1-6)] can be used or the
arch can be divided at the position where the deformations are desired
and either portion analyzed again by the formulas in Table 9.3.
Several examples illustrate this last approach. Note that in many
instances the answer depends upon the difference of similar large
terms, and so appropriate attention to accuracy must be given.

EXAMPLES

1. A WT'4 x 6.5 structural steel T-beam is formed in the plane of its web into a
circular arch of 50-in radius spanning a total angle of 120°. The right end is
fixed, and the left end has a pin which is constrained to follow a horizontal slot
in the support. The load is applied through a vertical bar welded to the beam,
as shown in Fig. 9.9. Calculate the movement of the pin at the left end, the
maximum bending stress, and the rotation of the bar at the point of attach-
ment to the arch.

Solution. The following material and cross-sectional properties may be used
for this beam. E = 30(10°) Ib/in?, G = 12(10%)1b/in%, I, = 2.90in* A = 1.92in?
flange thickness =0.2541in, and web thickness =0.2301in. The loading on the
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Figure 9.9

arch can be replaced by a concentrated moment of 8000 1b-in and a horizontal
force of 10001b at a position indicated by ¢ = 20° (0.349 rad). R = 50in and
0 = 60° (1.047 rad). For these loads and boundary conditions, cases 9b and 9n
of Table 9.3 can be used.

Since the radius of 501in is only a little more than 10 times the depth of 41in,
corrections for axial load and shear will be considered. The axial-stress
deformation factor o = I/AR? = 2.9/1.92(50%) = 0.0006. The transverse-shear
deformation factor = FEI/GAR?, where F will be approximated here by
using F =1 and A = web area = 4(0.23) = 0.92. This gives f = 1(30)(10%)
(2.90)/12(10%)(0.92)(50%) = 0.003. The small values of o and f indicate that
bending governs the deformations, and so the effect of axial load and trans-
verse shear will be neglected. Note that s = sin 60°, ¢ = cos 60°, n = sin 20°,
and m = cos 20°.

For case 9b,

1.0472 + 0.3491 in 60° cos 60°
LFy = 1000[+(1 1 2cos 20° cos 60°) — %
_ sin 20° cos 20°

2
= 1000(—0.00785) = —7.851b

— co0s 20° sin 60° — sin 20° cos 600:|

Similarly,
LFy =1000(—0.1867) = —186.7lb and LFj; = 1000(—0.1040) = —104.01b
For the case 9n,

LFy = %(—0.5099) = —81.591b

LF, = %(_1.6489) — —263.81b

8000

Also,

Byy = 1.0472 + 2(1.0472) sin? 60° — sin 60° cos 60° = 2.18501b
By = 0.59311b
By = 1.81381b



292 Formulas for Stress and Strain [cHAP. 9

Therefore,
186.7 263.8
Vy=- 91850  2.1850 — —85.47 — 120.74 = —206.21b
503

St = —— _0.5931(—206.2) + 7.85 + 81.59] = —0.0472i
HA = 30(106)2.9) ( )+ 785+ 81.59] n

The expression for the bending moment can now be obtained by an
equilibrium equation for a position located by an angle x measured from the
left end:

M, = V,R[sin 0 — sin(0 — x)] + 8000({x — (8 — ¢))°
— 1000R[cos(0 — x) — cos ¢](x — (0 — ¢))°
At x = 40°— —206.2(50)[sin 60° — sin(60° — 40°)] = —5403 1b-in
At x = 40°+ —5403 + 8000 = 2597 Ib-in
At x = 60° M, = —206.2(50)(0.866) 4+ 8000 — 1000(50)(1 — 0.940)

= —39441b-in
At x=120° M, =12,1301b-in

M, =
M, =

The maximum bending stress is therefore

12,130(4 — 1. .
o= w = 12,420 1b/in?

To obtain the rotation of the arch at the point of attachment of the bar, we
first calculate the loads on the portion to the right of the loading and then
establish an equivalent symmetric arch (see Fig. 9.10). Now from cases 12a,
12b, and 12n, where 0 = ¢ = 40°(0.698 rad), we can determine the load terms:

For case 12a LF,; = —148[2(0.698)(0.643)] = —1331b

For case 12b  LF,; = 1010[0.643 + 0.643 — 2(0.698)(0.766)] = 2181b

2597
For case 12n LFy = W(—04698 —0.698) = -72.51b

Therefore, the rotation at the load is

—502

We would not expect the rotation to be in the opposite direction to the
applied moment, but a careful examination of the problem shows that the
point on the arch where the bar is fastened moves to the right 0.0128in.
Therefore, the net motion in the direction of the 1000-1b load on the end of the

8-in bar is 0.0099in, and so the applied load does indeed do positive work on
the system.

25971b-in
1000lb 2597 lb-in
20°%; 10101b -
l\i 60° g 40""‘*40“ Vi
206.21b Z '
1481b

Figure 9.10
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Figure 9.11

2. The deep circular arch of titanium alloy has a triangular cross section and
spans 120° as shown in Fig. 9.11. It is driven by the central load P to produce
an acceleration of 40g. The tensile stress at A and the deformations at the
extreme ends are required. All dimensions given and used in the formulas are
in centimeters.

Solution. This is a statically determinate problem, so the use of information
from Table 9.3 is needed only to obtain the deformations. Superposing the
central load and the forces needed to produce the acceleration on the total span
can be accomplished readily by using cases 3a and 3h. This solution, however,
will provide only the horizontal and rotational deformations of the ends. Using
the symmetry one can also superpose the loadings from cases 12h and 12i on
the left half of the arch and obtain all three deformations. Performing both
calculations provides a useful check. All dimensions are given in centimeters
and used with expressions from Table 9.1, case 5, to obtain the needed factors
for this section. Thus, =10, d =30, A=150, ¢ =10, R=30, R/c =3,
e/c =0.155, e = 1.55 and for the peak stresses, k; = 1.368 and k, = 0.697.
The titanium alloy has a modulus of elasticity of 117 GPa [11.7(10%N/cm?], a
Poisson’s ratio of 0.33, and a mass density of 4470 kg/m?, or 0.00447 kg/cm?®.
One g of acceleration is 9.81m/s% and 1cm of arc length at the centroidal
radius of 30 cm will have a volume of 150 cm?® and a mass of 0.6705kg. This
gives a loading parallel to the driving force P of 0.6705(40)(9.81) =263 N/cm of
centroidal arc length. Since this is a very sharply curved beam, R/d = 1, one
must recognize that the resultant load of 263 N/cm does not act through the
centroid of the cross-sectional area but instead acts through the mass center of
the differential length. The radius to this point is given as R, and is found
from the expression R,,/R = 1+ 1/AR? where I is the area moment of inertia
about the centroidal axis of the cross section. Therefore, R /R =1+ (bd?/36)/
(bd/2)R? = 1.056. Again due to the sharp curvature the axial- and shear-stress
contributions to deformation must be considered. From the introduction to
Table 9.3 we find that « = A/R = 0.0517 and § = 2F(1 + v)h/R = 0.1650, where
F =1.2 for a triangular cross section as given in Sec. 8.10. Therefore,
ky=1—o+pf=1.1133, and ky = 1 — o = 0.9483.

For a first solution use the full span and superpose cases 3a and 3h. To
obtain the load terms LPj and LP;; use cases la and 1h.

For case 1la, W = —263(30)(2%/3) = —16,525N, 0 = 60°, ¢ = 0°, s = 0.866,
¢ =0.500, n =0, and m = 1.000.

1.1133

5 (0.5% — 1.0%)

LP, = —16,525[% (0.866)(0.5) — 0 +

+0.9483(0.5)(0.5 — 1.0)]

= —16,525(—0.2011) = 3323 N

Similarly, LPy; = 3575N.
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For case 1h, w = 263N/cm, R = 30, R.,/R = 1.056, 0 = 60°, s = 0.866, and
¢ = 0.5000.

LPy = 263(30)(—0.2365) = —1866 N
and
LP,, = 263(30)(—0.2634) = —2078 N

Returning now to case 3 where M, and H, are zero, one finds that V, = 0 by
superposing the loadings. To obtain dz4 and 4, we superpose cases a and h
and substitute AAR for I because of the sharp curvature

3323 — 1866
11.7(105)(150)(1.55)(30)
(23575 — 2078 _

8.161(1010)

—482(10"%) cm

Spar = —30°

Wa=—3 —16.5(10"%)rad

Now for the second and more complete solution, use will be made of cases
12h and 12i. The left half spans 60°, so 6§ = 30°, s = 0.5000, and ¢ = 0.8660. In
this solution the central symmetry axis of the left half being used is inclined at
30° to the gravitational loading of 263 N/cm. Therefore, for case 5h, w =
263 cos 30° = 227.8 N/cm

1.1133

LFy, = 227. 8(30){ [ (g)(0.8662) - % - 0.5(0.866)]

+0.9483(1.056 + 1)[— — 0.5(0. 866)] + 1.056(2)(0. 866)( 0.866 — 0. 5)}
— 227.8(30)(~0.00383) = —26.2N
Similarly
LF, = 227.8(30)(0.2209) = 1510N and LF,; = 227.8(30)(0.01867) = 1276 N
For case 51, w = —263sin 30° = —131.5 N/cm and again 6 = 30°

LFy = —131.5(30)(0.0310) = —122.3N
LF, = —131.5(30)(—0.05185) = 204.5N
LFy, = —131.5(30)(—0.05639) = 222.5N

Using case 12 and superposition of the loadings gives

_926.2-122.3
Spaz = —30° ——— "= —49.1(10°
maz = =80" — e oty — 49110 em

51510 +204.5
8.161(1010)
51276 42225

—g3p2 =2 =22t

8.161(1010)

Syae = —30 —567(10"%) cm

Yo = —16.5(107%) rad

Although the values of 4 from the two solutions check, one further step is
needed to check the horizontal and vertical deflections of the free ends. In the
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last solution the reference axes are tilted at 30°. Therefore, the horizontal and
vertical deflections of the left end are given by

Spa = 0142(0.866) + 91,45(0.5) = —241(10~%) cm
Oya = Opgaz(—0.5) + 91,45(0.866) = —516(10~) cm

Again the horizontal deflection of —0.000241cm for the left half of the arch
checks well with the value of —0.000482 cm for the entire arch. With the two
displacements of the centroid and the rotation of the end cross section now
known, one can easily find the displacements of any other point on the end
cross section.

To find the tensile stress at point A we need the bending moment at the
center of the arch. This can be found by integration as

/2 /2
M = J —263Rd0(R.4 cos ) = —263RR ,sin0| = —125,000N-cm
n/6 /6

Using the data from Table 9.1, the stress in the outer fiber at the point A is
given by

o _ koMec _ 0.697(125.000)(20)
AT T T 10(30%)/36

= 232 N/cm?

9.4 Elliptical Rings

For an elliptical ring of semiaxes a and b, under equal and opposite
forces W (Fig. 9.12), the bending moment M, at the extremities of the
major axis is given by M; = K; Wa, and for equal and opposite outward
forces applied at the ends of the minor axis, the moment M; at the
ends of the major axis is given by M; = —Ky;Wa, where K; and K, are
coefficients which depend on the ratio a/b and have the following
values:

a/b 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

K, 0.318 0.295 0.274 0.255 0.240 0.227 0.216 0.205
K, 0.182 0.186 0.191 0.195 0.199 0.203 0.206 0.208

a/b 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

K; 0.195 0.185 0.175 0.167 0.161 0.155 0.150 0.145
K, 0.211 0.213 0.215 0.217 0.219 0.220 0.222 0.223

Burke (Ref. 6) gives charts by which the moments and tensions in
elliptical rings under various conditions of concentrated loading can be
found; the preceding values of K were taken from these charts.
Timoshenko (Ref. 13) gives an analysis of an elliptical ring (or other
ring with two axes of symmetry) under the action of a uniform
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Figure 9.12

outward pressure, which would apply to a tube of elliptical section
under internal pressure. For this case M = Kpa?, where M is the
bending moment at a section a distance x along the ring from the end
of the minor axis, p is the outward normal pressure per linear inch,
and K is a coefficient that depends on the ratios b/a and x/S, where S
is one-quarter of the perimeter of the ring. Values of K are given in the
following table; M is positive when it produces tension at the inner
surface of the ring:

b/a
0.3 0.5 0.6 0.7 0.8 0.9
x/S
0 —0.172 —0.156 —0.140 —0.115 —0.085 —0.045
0.1 —-0.167 —-0.152 —0.135 —0.112 —0.082 —0.044
0.2 —0.150 —0.136 —0.120 —0.098 —0.070 —0.038
0.4 —0.085 —-0.073 —0.060 —0.046 —0.030 —-0.015
0.6 0.020 0.030 0.030 0.028 0.022 0.015
0.7 0.086 0.090 0.082 0.068 0.050 0.022
0.8 0.160 0.150 0.130 0.105 0.075 0.038
0.9 0.240 0.198 0.167 0.130 0.090 0.046
1.0 0.282 0.218 0.180 0.140 0.095 0.050

Values of M calculated by the preceding coefficients are correct only
for a ring of uniform moment of inertia I; if I is not uniform, then a
correction AM must be added. This correction is given by

M
—J —dx
AM = o1

.7
o1

The integrals can be evaluated graphically. Reference 12 gives charts
for the calculation of moments in elliptical rings under uniform radial
loading; the preceding values of K were taken from these charts.
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9.5 Curved Beams Loaded Normal to Plane of
Curvature

This type of beam usually presents a statically indeterminate problem,
the degree of indeterminacy depending upon the manner of loading
and support. Both bending and twisting occur, and it is necessary to
distinguish between an analysis that is applicable to compact or
flangeless sections (circular, rectangular, etc.) in which torsion does
not produce secondary bending and one that is applicable to flanged
sections (I-beams, channels, etc.) in which torsion may be accompanied
by such secondary bending (see Sec. 10.3). It is also necessary to
distinguish among three types of constraints that may or may not
occur at the supports, namely: (1) the beam is prevented from sloping,
its horizontal axis held horizontal by a bending couple; (2) the beam is
prevented from rolling, its vertical axis held vertical by a twisting
couple; and (3) in the case of a flanged section, the flanges are
prevented from turning about their vertical axes by horizontal second-
ary bending couples. These types of constraints will be designated here
as (1) fixed as to slope, (2) fixed as to roll, and (3) flanges fixed.

Compact sections. Table 9.4 treats the curved beam of uniform cross
section under concentrated and distributed loads normal to the plane
of curvature, out-of-plane concentrated bending moments, and concen-
trated and distributed torques. Expressions are given for transverse
shear, bending moment, twisting moment, deflection, bending slope,
and roll slope for 10 combinations of end conditions. To keep the
presentation to a reasonable size, use is made of the singularity
functions discussed in detail previously and an extensive list of
constants and functions is given. In previous tables the representative
functional values have been given, but in Table 9.4 the value of f
depends upon both bending and torsional properties, and so a useful
set of tabular values would be too large to present. The curved beam or
ring of circular cross section is so common, however, that numerical
coefficients are given in the table for f = 1.3 which will apply to a solid
or hollow circular cross section of material for which Poisson’s ratio is
0.3.

Levy (Ref. 14) has treated the closed circular ring of arbitrary
compact cross section for six loading cases. These cases have been
chosen to permit apropriate superposition in order to solve a large
number of problems, and both isolated and distributed out-of-plane
loads are discussed. Hogan (Ref. 18) presents similar loadings and
supports. In a similar way the information in Table 9.4 can be used by
appropriate superposition to solve most out-of-plane loading problems
on closed rings of compact cross section if strict attention is given to
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the symmetry and boundary conditions involved. Several simple
examples of this reasoning are described in the following three cases.

1. If a closed circular ring is supported on any number of equally
spaced simple supports (two or more) and if identical loading on
each span is symmetrically placed relative to the center of the span,
then each span can be treated by boundary condition f of Table 9.4.
This boundary condition has both ends with no deflection or slope,
although they are free to roll as needed.

2. If a closed circular ring is supported on any even number of equally
spaced simple supports and if the loading on any span is antisym-
metrically placed relative to the center line of each span and
symmetrically placed relative to each support, then boundary
condition f can be applied to each full span. This problem can
also be solved by applying boundary condition g to each half span.
Boundary condition g has one end simply supported and slope-
guided and the other end simply supported and roll-guided.

3. If a closed circular ring is supported on any even number of equally
spaced simple supports (four or more) and if each span is symme-
trically loaded relative to the center of the span with adjacent spans
similarly loaded in opposite directions, then boundary condition 1
can be applied to each span. This boundary condition has both ends
simply supported and roll-guided.

Once any indeterminate reaction forces and moments have been
found and the indeterminate internal reactions found at at least one
location in the ring, all desired internal bending moment, torques, and
transverse shears can be found by equilibrium equations. If a large
number of such calculations need be made, one should consider using a
theorem published in 1922 by Biezeno. For details of this theorem see
Ref. 32. A brief illustration of this work for loads normal to the plane of
the ring is given in Ref. 29.

A treatment of curved beams on elastic foundations is beyond the
scope of this book. See Ref. 20.

The following examples illustrate the applications of the formulas in
Table 9.4 to both curved beams and closed rings with out-of-plane
loads.

EXAMPLES

1. A piece of 8-in standard pipe is used to carry water across a passageway 40 ft
wide. The pipe must come out of a wall normal to the surface and enter normal
to a parallel wall at a position 16.56ft down the passageway at the same
elevation. To accomplish this a decision was made to bend the pipe into two
opposite arcs of 28.28-ft radius with a total angle of 45° in each arc. If it is
assumed that both ends are rigidly held by the walls, determine the maximum



sec. 9.5] Curved Beams 299

combined stress in the pipe due to its own weight and the weight of a full pipe
of water.

Solution. An 8-in standard pipe has the following properties: A = 8.4in?,
I=725in', w=238lb/in, E =30(10%1b/in?, v=0.3, J =145in%
0D =8.6251n, ID=7.9811in, and ¢t = 0.3221in. The weight of water in a 1-in
length of pipe is 1.811b. Owing to the symmetry of loading it is apparent that
at the center of the span where the two arcs meet there is neither slope nor
roll. An examination of Table 9.4 reveals that a curved beam that is fixed at the
right end and roll- and slope-guided at the left end is not included among the
10 cases. Therefore, a solution will be carried out by considering a beam that is
fixed at the right end and free at the left end with a uniformly distributed load
over the entire span and both a concentrated moment and a concentrated
torque on the left end. (These conditions are covered in cases 2a, 3a, and 4a.)

Since the pipe is round, J = 2I; and since G = E/2(1 + v), f = 1.3. Also note
that for all three cases ¢ = 45° and 0 = 0°. For these conditions, numerical
values of the coefficients are tabulated and the following expressions for the
deformations and moments can be written directly from superposition of the
three cases:

M,R? T, R? (2.38 + 1.81)R*
Ya = 030582 — 0.0590 —2- — 0.0469-
B M,R T.R 4.19R?
©, = —0.82822 — 0.0750 - + 0.0762 =~
M,R T,R 4.19R3
V4 = 0.0750 ==+ 0.9782 =0 + 0.0267 ————

Vg =0+ 0—4.19R(0.7854)
My = 0.7071M, — 0.70717T, — 0.2929(4.19)R2
Ty = 0.7071M, + 0.7071T, — 0.0783(4.19)R?
Since both ®, and ¥, are zero and R = 28.28(12) = 339.41n,
0 =-0.8282M, — 0.0750T, + 36,780
0= 0.0750M, + 0.9782T, + 12,888

Solving these two equations gives M, = 45,9201b-in and 7, = —16,700 lb-in.
Therefore,

ya =—0.40in, My = —97,1001b-in
Ty = —17,0001b-in,  Vyz=—11201b

The maximum combined stress would be at the top of the pipe at the wall
where o = Mc/I = 97,100(4.3125)/72.5 = 55751b/in% and t = Tr/J = 17,100
(4.3125)/145 = 5091b/in”

7 ? :
max = % + (@) +5092 = 58191b/in?

2. A hollow steel rectangular beam 4in wide, 8in deep, and with 0.1-in wall
thickness extends over a loading dock to be used as a crane rail. It is fixed to a
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warehouse wall at one end and is simply supported on a post at the other. The
beam is curved in a horizontal plane with a radius of 15ft and covers a total
angular span of 60°. Calculate the torsional and bending stresses at the wall
when a load of 3000 1b is 20° out from the wall. Neglect the weight of the beam.

Solution. The beam has the following propertles R =180in; qb =
60°(n/3 rad); 0=40° ¢—0=20°(n/9rad); I==[4(8%)— 3 8(7.8%)]=20.391n"
K =2(0.12)(7.9)(3. 92)/[8(0 1) + 4(0.1) — 2(0.1%)] = 16.09in* (see Table 10. 1
case 16); E =30(10°%); G = 12(10%); and B = 30(10%)(20.39)/12(108)(16.09) =
3.168. Equations for a curved beam that is fixed at one end and simply
supported at the other with a concentrated load are found in Table 9.4, case
1b. To obtain the bending and twisting moments at the wall requires first the
evaluation of the end reaction V,, which, in turn, requires the following
constants:

1+3.168
2

Coy = —3.168(% —5in20°) - C,y = 0.006867

Cy = —3.168(% — sin 600) - (g cos 60° — sin 60°> —0.1397

Similarly,
C6 - Cl - 03060, Cll6 - Clll - 0.05775
Cy=C,=-0.7136, Cy=C, =—0.02919
Therefore,
V, = 3000 —0.02919(1 — cos 60°) — 0.05775 sin 60° + 0.006867 — 359.31b

—0.7136(1 — cos 60°) — 0.3060 sin 60° + 0.1397
Mp = 359.3(180)(sin 60°) — 3000(180)(sin 20°) = —128,7001b-in
Ty = 359.3(180)(1 — cos 60°) — 3000(180)(1 — cos 20°) = —230 Ib-in

At the wall,
_ Mc  128,700(4) L
0= ="5039 = 25:2401b/in
VA’ (3000 — 359.3)[4(4)(2) — 3.9(3.8)(1.95)] _ .
b 20.39(0.2) = 20081b/in

(due to transverse shear)

T B 230
2t(a—t)(b—1t)  2(0.1)(7.9)(3.9)

= 37.31b/in®

(due to torsion)

3. A solid round aluminum bar is in the form of a horizontal closed circular
ring of 100-in radius resting on three equally spaced simple supports. A load of
10001b is placed midway between two supports, as shown in Fig. 9.13(a).
Calculate the deflection under this load if the bar is of such diameter as to
make the maximum normal stress due to combined bending and torsion equal
to 20,0001b/in%. Let E = 10(105)1b/in® and v = 0.3.

Solution. The reactions Rg, R, and Ry are statically determinate, and a
solution yields Rz = —333.31b and Ry = Rp = 666.71b. The internal bending



sec. 9.5] Curved Beams 301

666.71b

RA
66671
(a) (b)

Figure 9.13

and twisting moments are statically indeterminate, and so an energy solution
would be appropriate. However, there are several ways that Table 9.4 can be
used by superimposing various loadings. The method to be described here is
probably the most straightforward.

Consider the equivalent loading shown in Fig. 9.13(b), where Rp=
—333.31b and R4, = —10001b. The only difference is in the point of zero
deflection. Owing to the symmetry of loading, one-half of the ring can be
considered slope-guided at both ends, points A and B. Case 1f gives tabulated
values of the necessary coefficients for ¢ = 180° and 0 = 60°. We can now solve
for the following values:

V, = —666.7(0.75) = —5001b
M, = —666.7(100)(—0.5774) = 38,490 1b-in

 —666.7(100?) _ 1.815(10%)
Va= g (F0.2722) =~

TA =0 YA = 0 ®A =0
My = —666.7(100)(—0.2887) = 19,250 Ib-in
My, = —666.7(100)(0.3608) = —24,050 Ib-in

The equations for M and 7T can now be examined to determine the location of
the maximum combined stress:

M, = —50,000 sin x + 38,490 cos x + 66,667 sin(x — 60°){x — 60°)°
T, = —50,000(1 — cos x) + 38,490 sin x + 66,667[1 — cos(x — 60°)](x — 60°)°

A careful examination of the expression for M shows no maximum values
except at the ends and at the position of the load The torque, however, has a
maximum value of 13,100in-1b at x=37.59° and a minimum value of
—87901in-1b at x = 130.9°. At these same locations the bending moments are
zero. At the position of the load, the torque 7T = 83301b-in. Nowhere is the
combined stress larger than the bending stress at point A. Therefore,

B _ Myc 38,490d/2 392,000
7a=20000="7"="Ceqar =

which gives

d=270in and I=2.609in*
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To obtain the deflection under the 1000-1b load in the original problem, first
we must find the deflection at the position of the load of 666.71b in Fig. 9.13(b).
At x = 60°,

38,490(100%)

1.815(106)(100)
10(106)(2.609) " !

10(10%)2.609
—500(1003)

Y. =0+0+ (1 —cos60°) +

[ Rt Sehi A
T 1009 @.609) " ?
where
1+1. .
F, = +1.3 T in 60° — 1.3(1 — cos60°) = 0.3029 and F;=0.1583
Therefore,

Yeo = 3.478 + 5.796 — 3.033 = 6.24in

If the entire ring were now rotated as a rigid body about point B in order to
lower points C and D by 6.24in, point A would be lowered a distance of
6.24(2)/(1 + cos 60°) = 8.321in, which is the downward deflection of the 1000-1b
load.

The use of a fictitious support, as was done in this problem at point A, is
generalized for asymmeric loadings, both in-plane and out-of-plane, by Barber
in Ref. 35.

Flanged sections. The formulas in Table 9.4 for flangeless or compact
sections apply also to flanged sections when the ends are fixed as to
slope only or when fixed as to slope and roll but not as to flange
bending and if the loads are distributed or applied only at the ends. If
the flanges are fixed or if concentrated loads are applied within the
span, the additional torsional stiffness contributed by the bending
resistance of the flanges [warping restraint (see Sec. 10.3)] may
appreciably affect the value and distribution of twisting and bending
moments. The flange stresses caused by the secondary bending or
warping may exceed the primary bending stresses. References 15 to 17
and 22 show methods of solution and give some numerical solutions for
simple concentrated loads on curved I-beams with both ends fixed
completely. Brookhart (Ref. 22) also includes results for additional
boundary conditions and uniformly distributed loads. Results are
compared with cases where the warping restraint was not considered.

Dabrowski (Ref. 23) gives a thorough presentation of the theory of
curved thin-walled beams and works out many examples including
multispan beams and beams with open cross sections, closed cross
sections, and cross sections which contain both open and closed
elements; an extensive bibliography is included. Vlasov (Ref. 27) also
gives a very thorough derivation and discusses, among many other
topics, vibrations, stability, laterally braced beams of open cross
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section, and thermal stresses. He also examines the corrections
necessary to account for shear deformation in flanges being warped.
Verden (Ref. 24) is primarily concerned with multispan curved beams
and works out many examples. Sawko and Cope (Ref. 25) and Meyer
(Ref. 26) apply finite-element analysis to curved box girder bridges.



9.6 Tables

TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve

NOTATION: R =radius of curvature measured to centroid of section; ¢ = distance from centroidal axis to extreme fiber on concave side of beam; A = area
of section; e = distance from centroidal axis to neutral axis measured toward center of curvature; I = moment of inertia of cross section about centroidal
axis perpendicular to plane of curvature; and k; = 0;/0 and k, = 6,/c where o; =actual stress in exteme fiber on concave side, 6, =actual stress in
extreme fiber on convex side, and ¢ =fictitious unit stress in corresponding fiber as computed by ordinary flexure formula for a straight beam

Form and dimensions of cross section,
reference no.

Formulas

R
Values ofg,kl, and k&, for various values of <

(Note : e/c, k;, and k&,

=0.403 0.318 0.267 0.232 0.206 0.134 0.100 0.067 0.050 0.040

1. Solid rectangular section e R 2 R
T Rierl are independent of .= 1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
[ 4 :
b the width b)
- _‘1 . 1 Rjc—1 2:0.366 0.284 0.236 0.204 0.180 0.115 0.085 0.056 0.042 0.033
c 1 1—e/c
—é— e __(X;_ 3 f _%R/c— 1 [ dA_ Rjci1 k; =2.888 2.103 1.798 1.631 1.523 1.288 1.200 1.124 1.090 1.071
| ¥ _ 1 l+e/c aea 7 Rjc—1 k, = 0.566 0.628 0.671 0.704 0.730 0.810 0.853 0.898 0.922 0.937
" 3e/cRjc+1
2. Trapezoidal section é _ 3(1 +b1/b) a_ é -1 1
¢ 1+2b/b° ¢ ¢ (When b, /b =3)
kb R
e E B %(1 + bl/b)(d/c)z = 1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
%y c ¢ e
c

R ¢, b (R R/c+c/c b\ d
[?*?7(;*9]“(%)*(“?);
k_Llfe/c1+4b1/b+(l>1/b)Z

"7 2e/cR/c—1 (14 2b,/b)*

e/ erfethjc1+dby/b+ (b /b)
° 7 2efc Rjctci/e (24 by/b)?

(Note: while e/c, k;, k, depend upon the width ratio b, /b,
they are independent of the width b)

k; =3.011 2.183 1.859 1.681 1.567 1.314 1.219 1.137 1.100 1.078

k, =0.544 0.605 0.648 0.681 0.707 0.790 0.836 0.885 0.911 0.927
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

3. Triangular section, e_ E _ 4.5 c= g R
base inward c ¢ (§+2> 1n(§§2t?)— 3 ?:1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
g:0.434 0.348 0.296 0.259 0.232 0.155 0.117 0.079 0.060 0.048

L b= 1 1-e/c ¢
S g = SecRjie—1 [ dA R 2\, (Rjc+2 k; = 3.265 2.345 1.984 1.784 1.656 1.368 1.258 1.163 1.120 1.095

Ly (242 -1
B i o= Germ(Ee ) 1) -

) L&‘b—’l _ 1 2+e/c k, =0.438 0.497 0.539 0.573 0.601 0.697 0.754 0.821 0.859 0.883

° " 4e/cR/c+2

(Note: e/c, k;, and k, are independent of the width b)

[9'6 038

4. Triangular section, base e R 1125 ¢ 2d

outward ¢ ¢ W’ -3

R/c—1
=0.151 0.117 0.097 0.083 0.073 0.045 0.033 0.022 0.016 0.013

b
lff 14‘1)_( i 1 1-e/c k; = 3.527
1
d

=120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

e oX

< 7 8e/cR/c—1 dA 9 /R R/c+05 i 2.362 1.947 1.730 1.595 1.313 1.213 1.130 1.094 1.074
—:b{l——(——l)ln—']

1 2e/c+1 Lrea r 3\c Rje—1 k, =0.636 0.695 0.735 0.765 0.788 0.857 0.892 0.927 0.945 0.956

. k°=4e/c2R/c+1
T { l (Note: e/c, k;, and k, are independent of the width b;)

5. Diamond €_ E _ 1 R
¢c ¢ R 2 Rjc+1 —=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

7ln|i17(7) ]+ln ¢

—E_T R, R/c—1 e
-=0.175 0.138 0.116 0.100 0.089 0.057 0.042 0.028 0.021 0.017

d c

¢ [ 1 1-e/c
R ﬂ,_l_l ‘T 6e/cR/c—1 k; =3.942 2.599 2.118 1.866 1.709 1.377 1.258 1.159 1.115 1.090
b

‘ 1 1+e/c k, =0.510 0.572 0.617 0.652 0.681 0.772 0.822 0.875 0.904 0.922

° = 6e/cRjc+1

5= emf - @] e mgretd]

(Note: e/c, k;, and k, are independent of the width b)
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TABLE 9.1

Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,
reference no.

Formulas

. R
Values ofg, k;, and k&, for various values of -

6. Solid circular or

elliptical section e 1 |:R (R)Z 1} ?: 120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.000
c 2| V)™
¢ _0.268 0.210 0.176 0.152 0.134 0.086 0.064 0.042 0.031 0.025
b _ 1 1-e/c ¢
" %_'_r "~ 4e/cRjc—1 k; = 3.408 2.350 1.957 1.748 1.616 1.332 1.229 1.142 1.103 1.080
c _ 5
d poo 1 1defe j aa_ I B_ (5)271 k, = 0.537 0.600 0.644 0.678 0.705 0.791 0.837 0.887 0.913 0.929
R c ° " 4e/cR/c+1’ area T c c
' . .
(Note: e/c, k;, and k, are independent of the width b)
7. Solid semicircle or d 3n R
semiellipse, base inward R=R.+c <=7 —=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
(Note: e/c, k; and k, are independent of the width b) g: 0.388 0.305 0.256 0.222 0.197 0.128 0.096 0.064 0.048 0.038
f 0.3879 1 —
/A“,__\ !°1 § = ele k; = 3.056 2.209 1.878 1.696 1.579 1.321 1.224 1.140 1.102 1.080
/ + \ S 1 i e/c Rjc—1
_ 0.2860 ¢/c +1.3562 k, = 0.503 0.565 0.609 0.643 0.671 0.761 0.811 0.867 0.897 0.916
R b ——l °~ "e/c R/c+1.3562

|
T

(Note: For a semicircle,

b/2 = d)

For R, > d:R/c > 3.356 and

J dA_mRb b —dz(g—sin’li>

r 2d d
R (d/c)*/2

c ¢ 2 2
R R d 2. 4 dfe
?—2.5— (;—1) 7(5) (17;sm R/c—l)
For R, <d:R/c < 3.356 and

2 _ R2
[ N
. .

rea r

R (@/c)’/2
c

c R/c—1

R 2 (d)2 (R 1>21 dfe+(d/eP - (Rje—1)
2 [(d\ _(B_ |\ Hetyid/or - /e 17
c s c
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

8. Solid semicircle or R=R —c¢ d __3n a_ 4 R
cemiellipse, base outward e e el wy <=1.200 1.400 1.600 1.800 2:000 3.000 4.000 6.000 8.000 10.000
(Note: e/c, k;, and k, are independent of the width b) %: 0.244 0.189 0.157 0.135 0.118 0.075 0.055 0.036 0.027 0.021
"
| dAinRxb b 7 7(™ .4, d k; = 3.264 2.262 1.892 1.695 1.571 1.306 1.210 1.130 1.094 1.073
s s = S B Rk s A BT AL
T ¢ d k, =0.593 0.656 0.698 0.730 0.755 0.832 0.871 0.912 0.933 0.946
_I_L e_R_ (d/c)?/2
c

e a N
} c nsm Rjc+cy/c

R,__10 (R o)
‘ c 3n—4 c ¢
021091 —e/c
' e/c Rjc—1

(Note: for a semicircle, b/2 = d)

_0.2860 e/c +0.7374
°= "e/c RJc+0.7374

[9'6 03s
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values ofg, k;, and &, for various values of§
9. Segment of a solid circle, R=R,+c+acosa :
base inward s For o« = 60>:
a_ 30— 3sinocoso 07173o<—351n9<cosa72sin o R
¢ 3sino— S3xcosy —sin’a ¢ 3sino— 3xcosy —sin®a == 1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
k; :Li 1=ejc E:0.401 0.317 0.266 0.232 0.206 0.134 0.101 0.067 0.051 0.041
Ac?e/cR/c—1 c
where expressions for I and A are found in Table A.1, case 19 k; =3.079 2.225 1.891 1.707 1.589 1.327 1.228 1.143 1.104 1.082
I 1 e/c+c/c
R e i it Vi _ .
k, A (ejoer /o) Rjct crc k, =0.498 0.560 0.603 0.638 0.665 0.755 0.806 0.862 0.893 0.913
l For R, > a:R/c> (a/c)(1+cosa)+ 1 and For o = 30°:
dA . 5 - R R
J —= 2R.0 — 2asino — 2y/ R — a2 (g —sin”! %) = 1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
Note: R, c,e/c, k;, and k, are all area . * e
independent of the width of the e_R_ (x —sinacoswa/c .= 0.407 0.322 0.271 0.236 0.210 0.138 0.103 0.069 0.052 0.042
segment provided all horizontal ¢ ¢ 20R, 94 9 R, 1™ i 1+ (R,/a)coso _
elements of the segment change g 2sma- o) “Hg—sn “R.Ja+cosa k; =3.096 2.237 1.900 1.715 1.596 1.331 1.231 1.145 1.106 1.083
idth 1 ly. There-
width proportionately. There - _ k, = 0.495 0.556 0.600 0.634 0.662 0.752 0.803 0.860 0.891 0.911
fore to use these expressions for (Note: Values of sin™" between —n/2 and n/2 are to be taken in above
a segment of an ellipse, find the expressions.)
mlrcle vs{hlch has the same radial For R, < a:R/c < (a/c)(1+cosz)+1 and
dimensions R,, r;, and d and
evaluate e/c, k;, and k, which J dA_2R % — 2asing 5 51 v/a? —Risina+a+ R, cosa
: ° —= - +2ya? - RZIn
have the same values for both area I * - R, +acoso
the circle and ellipse. To find e R
dA/r for the ellipse, multiply c ¢
the value of dA/r for the _ (o — sina cos a)a/c
Clrc}e by the ratlo‘ of the ) 9oR B2 \/1 —(R,/a)’ sina+ 1+ (R,/a) cos
horizontal to vertical semi- =X _2sina+2,/1— (—*) In 7
axes for the ellipse. See the a a w/@+cosa
example.
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

10. Segment of a solid
circle, base outward

Note: R, c,e/c, k;, and k, are
all independent of the width of
the segment provided all hori-
zontal elements of the segment
change width proportionately.
To use these expressions for a
segment of an ellipse, refer to
the explanation in case 9.

R=R,+c—a

a 30— 3sinucoso c 3sina — Bcos o — sin® o

¢ 3y 3sinocoss—2sin« € 30— 3sinocoss — 2sin’ «
I 1 1-e/c
' T Ac?e/cR/c—1

where expressions for I and A are found in Table A.1, case 19
k _ I 1 e/c+cy/c
° 7 Ac2 (e/c)(cy/c)R/c+cy/c

dA . 5 ~(n . _ja—R,cosu
'Lre — =2R,x+ 2asina — 2y/R2 — a? <é+ sin lm)

r
R (o — sinocosa)a/c
c

B 2
20(Rx+2sin“_2 & i E+Sin,,1—(Rx/a)cosx
a a 2 R,/a—coso

e
c

(Note: Values of sin™' between —n/2 and ©/2 are to be taken in above
expressions.)

For « = 60°:

=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000

=0.235 0.181 0.150 0.129 0.113 0.071 0.052 0.034 0.025 0.020

e ol

k; = 3.241 2.247 1.881 1.686 1.563 1.301 1.207 1.127 1.092 1.072

k, =0.598 0.661 0.703 0.735 0.760 0.836 0.874 0.914 0.935 0.948

For o = 30°:
g: 1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000 10.000
e

=0.230 0.177 0.146 0.125 0.110 0.069 0.051 0.033 0.025 0.020

o

k; =3.232 2.241 1.876 1.682 1.560 1.299 1.205 1.126 1.091 1.072

k, =0.601 0.663 0.706 0.737 0.763 0.838 0.876 0.916 0.936 0.948

11. Hollow circular section

S ENCEN TR
b=t e @]

IR E7] AT
k"_4e/cR/c+1|:1+(c) ]

(Note: For thin-walled tubes the discussion on page 277 should
be considered)

(When ¢;/c=1)

g: 1.20 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00
k; =3.276 2.267 1.895 1.697 1.573 1.307 1.211 1.130 1.094 1.074

2:0.323 0.256 0.216 0.187 0.166 0.107 0.079 0.052 0.039 0.031

k, =0.582 0.638 0.678 0.708 0.733 0.810 0.852 0.897 0.921 0.936

[9'6 038
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,

reference no. Formulas Values ofg, k;, and &, for various values of§
1 —
12. Hollow elliptical section €_ E — 31 = (01/b)e1/€)] (When b,/b=2,c;/c=1%)
¢ ¢ R R\? b,/b| R R\® /c\? > >
12a. Inner and outer ——./(=) -1- —— /= 7(7)
perimeters are ellipses, ¢ ¢ c/e|c ¢ ¢ =120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

wall thickness is not
constant

Lo
R _'_11_L
| by

b—h

=0.345 0.279 0.233 0.202 0.178 0.114 0.085 0.056 0.042 0.034

ale ol

_ 1 1—e/c1—(by/b)er/0)
"~ 4e/cRjc—1 1— (b, /b)(c;/c)

k; =3.033 2.154 1.825 1.648 1.535 1.291 1.202 1.125 1.083 1.063

1 1+4e/c1=(by/b)ci/c)’
k, = _
o = Te/eRjc+ 1 1= by /b)c)/0) k, =0.579 0.637 0.677 0.709 0.734 0.812 0.854 0.899 0.916 0.930

(Note: While e/c, k;, and k, depend upon the width ratio b, /b,
they are independent of the width b)

12b. Constant wall thickness,
midthickness perimeter is
an ellipse (shown dashed)

Note: There is a limit on the
maximum wall thickness
allowed in this case. Cusps will
form on the inner perimeter

at the ends of the major axis if
this maximum is exceeded. If
p/q < 1, then t,,,, = 2p?/q. If
p/q =1, then t,,,, = 2¢°/p

There is no closed-form solution for this case, so numerical solutions were run for the ranges 1.2 < R/c < 5;0 <t < t,,.: 0.2 < p/q < 5. Results are
expressed below in terms of the solutions for case 12a for which c =p +¢/2,¢; =p —t/2,b=2q +t, and b, = 2q — t.
Z: K, (g from case 123). k; = Ky(k; from case 12a)

k, = K3(k, from case 12a)

where K, K,, and K; are given in the following table and are essentially independent of ¢ and R/c.

p/q 0.200 0.333 0.500 0.625 1.000 1.600 2.000 3.000 4.000 5.000
K, 0.965 0.985 0.995 0.998 1.000 1.002 1.007 1.027 1.051 1.073
K, 1.017 1.005 1.002 1.001 1.000 1.000 1.000 0.998 0.992 0.985
K, 0.982 0.992 0.998 0.999 1.000 1.002 1.004 1.014 1.024 1.031
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

13. T-beam or channel section

b~ 3bAp b
Gy

.j_(l:.d - _L

Rt o7

d_2b/b+(1=by/b)t/d)] o _d
¢ by /b+(1=by/b)/d? T ¢ ¢

e R (d/c)[by/b + (1 = b,/b)(t/d)]
c ¢ bf‘ln d/c+R/c—1 n(d/C)(t/d)‘FR/C*l
b (d/o)(t/d)+R/c—1 R/c—1

b 1, 1—e/c
P T AR(R/c—1) efc

c

L 1(d\*[by/b+ (1 —by/b)t/d)’
where Ast( ) [bi/bm—b,/b)(t/d) !
ho— I, djc+e/c—1 1

° " Ac2(e/c)R/c+d/c—1d/c—1

(Note: While e/c, k;, and k, depend upon the width ratio b, /b,
they are independent of the width b)

(When by /b=1,t/d =1

=1.200 1.400 1.600 1.800 2.000 3.000 4.000 6.000 8.000

sle ol

=0.502 0.419 0.366 0.328 0.297 0.207 0.160 0.111 0.085
k; =3.633 2.538 2.112 1.879 1.731 1.403 1.281 1.176 1.128

k, = 0.583 0.634 0.670 0.697 0.719 0.791 0.832 0.879 0.905

10.000

0.069

1.101

0.922

14. Symmetrical I-beam
or hollow rectangular
section

t

b~} b

ol
=

L

—D0

e_R_ 2[t/c + (1 = t/c)(by /b)]
¢ ¢ R+ Rt Dt/ -1 by Rje—tje+l
(R/e) —=(R/c—1)t/c)—1 b  Rjc+tje—1

B 1, 1—e/c
T Ac%(R/c—1) e/c

I,  11-(1-by/b)d -t/
where 3 =31 -a=b,/0)1=t/0)
b 1, 1+e/c

° T A2(R/c+1) e/c

(Note: While e/c, k;, and k, depend upon the width ratio b, /b,
they are independent of the width b)

(When by /b=1.t/d=13)

sle ol

=0.489 0.391 0.330 0.287 0.254 0.164 0.122 0.081 0.060
k; =2.156 1.876 1.630 1.496 1.411 1.225 1.156 1.097 1.071

k, =0.666 0.714 0.747 0.771 0.791 0.853 0.886 0.921 0.940

=120 140 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

0.048

1.055

0.951

[9'6 038
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TABLE 9.1 Formulas for curved beams subjected to bending in the plane of the curve (Continued)

Form and dimensions of cross section,
reference no.

. R
Values ofg,k,, and k, for various values of -

15. Unsymmetrical I-beam
section

1y kb,
Il'*i

: —
[ be~E d

Formulas
A =0bd[b;/b+ (1 —by/b)(t/d) — (b1 /b —by/b)(1 — t,/d)]
d_ 24/bd
¢ (by/b—by/b)2 —t;/d)(t,/d) + (1 — by/b)(t/d)* + by /b
e_R_ (A/bd)(d/c)
© e 1nR/;?76t1617 - +%lnR/Bc’/t«cf1{/cciti/C %1 nR/CRJch:r/zl—/ctl/c
1, 1—e/c

ki :Ac2(R/c —1) e/c

A2~ 3\c

where e _1 (g)z[blxbﬂl—bz/bxt/d)“—<b1/b—bz/b>(1—z1/d>“}_l

b1/b + (1 = by/b)(t/d) — (b1 /b — by/b)(1 — t,/d)

h o I, djct+e/c—1 1
°Ac%(e/c)R/c+d/c—1d/c—1

(Note: While e/c, k;, and k, depend upon the width ratios b,/b and b, /b,
they are independent of the width b)

(When b, /b=2,by/b=1.t,/d=1t/d=1)

=120 1.40 1.60 1.80 2.00 3.00 4.00 6.00 8.00 10.00

ale ol

=0.491 0.409 0.356 0.318 0.288 0.200 0.154 0.106 0.081 0.066
k; = 3.589 2.504 2.083 1.853 1.706 1.385 1.266 1.165 1.120 1.094

k, =0.671 0.721 0.754 0.779 0.798 0.856 0.887 0.921 0.938 0.950
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TABLE 9.2 Formulas for circular rings

NOTATION: W =load (force); w and v =unit loads (force per unit of circumferential length); p = unit weight of contained liquid (force per unit volume); M, = applied couple
(force-length). My, Mg, M, and M are internal moments at A, B, C, and x, respectively, positive as shown. Ny, N, V,, and V are internal forces, positive as shown.
E = modulus of elasticity (force per unit area); v =Poisson’s ratio; A = cross-sectional area (length squared); R =radius to the centroid of the cross section (length); I = area
moment of inertia of ring cross section about the principal axis perpendicular to the plane of the ring (length?). [Note that for a pipe or cylinder, a representative segment of
unit axial length may be used by replacing EI by Et®/12(1 — v2).] e = positive distance measured radially inward from the centroidal axis of the cross section to the neutral
axis of pure bending (see Sec. 9.1). 0,x, and ¢ are angles (radians) and are limited to the range zero to = for all cases except 18 and 19; s =sin0, ¢ = cos0,
z =sinx, u = cosx, n = sin ¢, and m = cos ¢.

ADy, and ADy are changes in the vertical and horizontal diameters, respectively, and an increase is positive. AL is the change in the lower half of the vertical diameter or
the vertical motion relative to point C of a line connecting points B and D on the ring. Similarly ALy is the vertical motion relative to point C of a horizontal line connecting
the load points on the ring. ALy is the change in length of a horizontal line connecting the load points on the ring. ¥ is the angular rotation (radians) of the load point in the
plane of the ring and is positive in the direction of positive 0. For the distributed loadings the load points just referred to are the points where the distributed loading starts,
i.e., the position located by the angle 6. The reference to points A, B, and C and to the diameters refer to positions on a circle of radius R passing through the centroids of the
several sections; i.e., diameter = 2R. It is important to consider this when dealing with thick rings. Similarly, all concentrated and distributed loadings are assumed to be
applied at the radial position of the centroid with the exception of the cases where the ring is loaded by its own weight or by dynamic loading, cases 15 and 21. In these two
cases the actual radial distribution of load is considered. If the loading is on the outer or inner surfaces of thick rings, an equivalent loading at the centroidal radius R must
be used. See the examples to determine how this might be accomplished.

The hoop-stress deformation factor is « = I/AR? for thin rings or « = e/R for thick rings. The transverse (radial) shear deformation factor is f = FEI/GAR? for thin rings
or f = 2F(1 + v)e/R for thick rings, where G is the shear modulus of elasticity and F'is a shape factor for the cross section (see Sec. 8.10). The following constants are defined
to simplify the expressions wheih follow. Note that these constants are unity if no correction for hoop stress or shear stress is necessary or desired for use with thin rings.
ki=1-a+pf ky=1—0.

N M General formulas for moment, hoop load, and radial shear
‘ M =M, —N,R(1—u)+ VyRz+ LTy,

~ % N =Nyu+Vyz+ LTy
V=—-Nyz+ Vyu+ LTy

i
| where LTy, LTy, and LTy, are load terms given below for several types of load.

Note: Due to symmetry in most of the cases presented, the loads beyond 180° are not included in the load terms. Only for cases 16, 17,
and 19 should the equations for M, N, and V be used beyond 180°.

Note: The use of the bracket (x — 0)° is explained on page 131 and has a value of zero unless x > 0

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

L w = Bk Max+ M = M, — 0.3183WRk,
ks
Max — M = My = —(0.5 — 0.3183%ky) WR
N, =0
Ifa=p=0.
B V=0
WR? WR?
Ay RS (b ADy =0.1366—-— and ADy = ~0.1488——
w H=Er \2 T
LT, — —WRz LT W Note: For concentrated loads on thick-walled rings, study the material
MT e M —WR (nhy 2k} in Sec. 14.3 on hollow pins and rollers. Radial st der th
ADy = (71 _ 72) in Sec. 14.3 on hollow pins and rollers. Radial stresses under the
W EI 4 n concentrated loads have a significant effect not considered here.
LT, =
' 2
2. _ WRs(ky — c?)
My =" o)1 ) stk, — o) Max + M = =225 atx=0
n
-WR M, ifo<
M 77[0(1+C)7s(kz +0)] Max — M = i
Mo if6 > 5

LTy = —WR(c — u){x — 0)°
LTy = Wulx — 0)°
LTy = —Wz(x — 0)°

NA:¥[7570+SC]

Vy=0
_WpR3
#[Oﬁnkl(() — s¢) + 2ky0c — 2k2s] if0 <
ADy = T
—WR?
Elrn
WR? [k, s? 20c\ | 2k3s
ADy *W[T*’%(l *”7) S
WR3[0c  ky(0 — sc) Oc s
Bl [5*7271 *kZ(?i)
AL =

EI 2 2n

3
ALy = WE [(m — 0)0sc + 0.5k;5%(0 — sc) + ky(20s® — ns* — Oc — 0) + k3s(1 + ¢)]
n

EI

—WR?
Eln

ALy =

_WR?
Ay = 7325 [(m — 0)0c — kys(sc + m — 20)]

[0.5nky (1 — 0 + sc) — 2ky(n — O)c — 2k3s] if 0 >

]

4+ 22
n

WR? |:(7[ —0)c k(0 —sc—nc?) 7k2(1

If o= f=0,M =Ky WR, N = KyW,AD = K,,WR* /I,
AY = Ky, WR2/EI, etc.

0 30° 45° 60°
Ky, —0.0903 ~0.1538 ~0.1955
Ky, 0.0398 0.1125 0.2068
Ky, —0.9712 —0.9092 —0.8045
Kap, —0.0157 —0.0461 —0.0891
Kyp, 0.0207 0.0537 0.0930
). 0.0060 0.0179 0.0355
Ky, 0.0119 0.0247 0.0391
Kar,, —0.0060 —0.0302 —0.0770
Ky, 0.0244 0.0496 0.0590

[( — 0)20¢? — ky(nsc + s%c — 20s¢ — 10 + 0%) — 2kysc(n — 20) — 2k3s?]
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TABLE 9.2 Formulas for circular rings (Continued)

MA:;M’(R,Q,
n

M, 2sky
me =S (0-58)

_ M, (2sky
n=ge (i)

V=0

2skqy
ky

MR, (20 ifo<?
LTy = My(x — 0)° EI "\ x T2
LTy =0 ADp = :
T MR, (20 5 s T
v=0 EI 2\ 7 ¥ 3
M,R® (20
ADy == k2(7—1+c)
_ 2
MR2[0 ky(0+5) o< ®
EI 2 T 2
AL = i
~M, R’ n767k2(9+s+nc) if(?ZE
EI 2 7 2
— 2 P
ALy = MR [(m — 0)0s — ky(s® + 0 + 0c)]

Eln
M,R?
ALyy = ﬁ[ﬂ)c(n — 0) + 2ky5(20 — 7 — sc)]

M,R 25213
M= [9(” -0- T]

Max+M:%<0+ZSCk2

n Ry

Mafo:7M0<n707%
s

If o = p =0, M = KyyM,. N = KyM, /R, AD = KypM,R? /EI,

AW = Ky, M,R/EI, etc.

Fy

7> at x just greater than 0

) at x just less than 0

0 30° 45° 60° 90°
Ky, ~0.5150 ~0.2998 ~0.1153 0.1366
Ky, 0.3183 0.4502 0.5513 0.6366
Ky, —0.5577 —0.4317 ~0.3910 —0.5000
Kup, ~0.1667 —0.2071 ~0.1994 0.0000
Kyp, 0.1994 0.2071 0.1667 0.0000
Ky, 0.0640 0.0824 0.0854 0.0329
Ky, 0.1326 0.1228 0.1022 0.0329

Ky, —0.0488 —0.0992 ~0.1180 0.0000
Ky, 0.2772 0.2707 0.2207 0.1488

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms Formulas for moments, loads, and deformations and some selected numerical values
4. —WR L _ T .
M, = [s(s — 7+ 0) + ko(1 + )] Max + M occurs at an angular position x; = tan 2 if 0 < 106.3
n
u _WR ) Max + M occurs at the load if 0 > 106.3°
c=— [s0 — s° + ky(1 + ©)]
Max — M = M,
Ny=We :
A= Ifo=f=0,M =Ky WR, N = KyW.AD = K,, WR®*/EI,
Vi—o Ay = Ky, WR?/EI etc.
)=
—WR? 52 5 . n
S [nkl (1 - E) — 2ky(n — 0s) + 2k3(1 + c)] if0< 3 0 00 60° 90° 120° 150°
2w APE= s s
_ [n 19 ey — ) 2031+ C)] o> " Ky, ~ -02569  —0.1389  —0.1366  —0.1092  —0.0389
LTy = WR(z — s)x — 0)° Eln [ 2 Ky, ~0.0796  —0.2387  —0.3183  —0.2387  —0.0796
LTy = Wa(x — 0y° WE® Tk 0 KMc —0.5977 —0.5274 —0.5000 —0.4978 —0.3797
LTy = Wulx — 6)° ap, =% [M 4 Ry — 20) — 2031 + c)] Ky, ~ —0.2462  —-0.0195 0.1817 0.2489 0.1096
T Kup, —0.2296 —0.1573 —0.1366 —0.1160 —0.0436
WR? S 90 Kup, 0.2379 0.1644 0.1488 0.1331 0.0597
m[@erkl (5—7) —ky (1 —c+7> Kyr 0.1322 0.1033 0.0933 0.0877 0.0431
KALW 0.2053 0.1156 0.0933 0.0842 0.0271
_ 2K+ C)] o< ™ K, ~ —0.0237 00782  -0.1366  —0.1078  —0.0176
AL = n 2 Ky 0.1326 0.1022 0.0329 —0.0645 —0.0667
| wre s 20s
=T |:s(n—0)+k1(n—0—sc—;) —k2(1+c+T>
2
72]32(1+c):| o> "
n 2
WR3T nky(n — 0 —sc—s/m)
ALy 7m|:03 (=) + =
+ kys(me — 20 — 20c) — k3(1 + 0)2:|
—-WR?
ALyy = e [20sc(n — 0) + kys2(0 — s¢)
—2ky(ns® — 0% + Oc + 0c?) + 2k2s(1 + ¢)]
2
Ay = @[—Hs(n —0) + ky(0 + Oc + 5%)]
Eln
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TABLE 9.2 Formulas for circular rings (Continued)

2W cos @

LTy = —WRsin(x — 0)(x — 0)°
LTy = —Wsin(x — 0){x — 0)°
LTy = —W cos(x — 0)(x — 0)°

—WR
My =——[s(n~ 0) ~ k(1 + 0]
M = 7:}:@ [80 — ky(1 + )]

Ny :%s(n —0)

V,=0
—WR3 0s 2k3(1+c¢)] . n
il [kl(g—c>+2k2c—Ti| 1f(-)<§
U7 —wRS Thyst—6) 2R2(1L+ o) o
_ ifo> -
EI 2 n 2
_ WR3 [ky(s — mc + 0c) 2k3(1 + c)
ADV—W[ R k- }
WR3 0s mc 2k5(1+0)] .
() s 2050

WR? 0s
AL={—— = . —
okl |:k1(n nc+00>+kz(1+c 2s)

+ 2k3(1 + c)]
T

3
ALy :@{k]

2

LB+’
n

—WR? S
ALy = ﬂ[kls(n — 0)(0 — sc) + 20cky(1 +¢) — Zské(l +0)]

WR?

M= T

[rs? — 0(1 + ¢ + s%)]ky

NI

if 6 >

)

—s3(1 — — —
s—s*(1—0/n) —c(n 0)+k2|:03(1n+c)—sj|

Max + M = M, if0 < 60°
Max + M occurs at the load if 6 > 60° where
M, = @[kz(l +6) = se(z — 0)]
M. if6 > 90°
T M, if60° <0< 90°
Max — M occurs at an angular

Max — M

position x; = tan~! %;C if 0 < 60°
Ifa=p=0,M=Ky,WR N=KyW,AD = K,,,WR®/EI,
Ay = Ky, WR*/EI etc.

0 30° 60° 90° 120° 150°
Ky, 01773  —0.0999  -0.1817  -0.1295  —0.0407
Ky, ~ —04167 -05774  —0.5000  —0.2887  —0.0833
Ky, 0.5106 01888  —0.1817  —0.4182  —0.3740
Ky, 0.2331 0.1888 0.3183 0.3035 0.1148
Kap, 0.1910 0.0015  —0.1488  —0.1351  —0.0456
Kap,  —0.1957  —0.0017 0.1366 0.1471 0.0620
Ky, —0.1115  —0.0209 0.0683 0.0936 0.0447
Ky, ~— —01718  —0.0239 0.0683 0.0888 0.0278

Kar,, 0.0176 ~ —0.0276  -0.1488  —0.1206  —0.0182
Ky —0.1027 0.0000 0.0000 0.0833  —0.0700

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

2Wsing

LTy, = —WR[1 — cos(x — 0)]¢x — 0)°
LTy = W cos(x — 0)¢x — 0)°
LTy = —W sin(x — 0)¢x — 0)°

WR
My =—ls(1+ k) = (1= O)(1 ~c)]
M = ’ZVR [s(ky — 1)+ 0(1 +c)]

N, :ﬂ[sﬂn —0)]

T

V=0

—WRS [k, (s + 0c) 0\  2ks . n
polj [T*%(s*;)*T] if0<g

— 3 - — ¢ 2
WR |:k1(s+m 9()_2k2<1_g)+2l;23i| 0>

EI 2

WR3 [kys(n — 0) 20\ 2kZs
ADy :ﬁ[%Jrkz(l—c—?) 772]

2

o

WR?[0  ky(n®s + 20c — 2s) s 0 k3s] .
£l [T’ in _k2( )_T] it0<
WR3 |:7r 0 ky(ns—0s+0c/n—s/n—c)

AL = r ¢
EI

272" 2

2
7k2(9+f+c)7@] if0> 2
T 2 T
3
ALy :%[Os(n—ow

kys(0sc — 8% — sen + 12 — On)

2

— kyO(1 + 5% +¢) — k3s(1 +c):|

_ 3
ALyy = ELIf[Z()c(n —0) — ky(sc®m — 20sc? + s%¢ — Ocn
+ 0%c — 05%) — 2kys(n — 0 + Oc) + 2k3s?)]

~WR?
Ay = E—IT[[G(TL —0) — kys(0 4 s + mc — 0c)]

Max +M = ?[Tl&‘ sinx; — (s — 0c)cosx, — kys — 0]
. —ms
s—0c

at an angular positionx; = tan™

(Note : x; > 0 and x; > 1/2)

Max - M = M,

If u=f=0,M =Ky WR,N = KyW,AD = K,,,WR® /EI

AY =Ky, WR?/EI, etc.

0 30° 60° 90° 120° 150°
Ky, —0.2067 —0.2180 —0.1366 —0.0513 —0.0073
Ky, —0.8808 —0.6090 —0.3183 —0.1090 —0.0148
Ky, —0.3110 —0.5000 —0.5000 —0.3333 —0.1117
Kap, —0.1284 —0.1808 —0.1366 —0.0559 —0.0083
Kup, 0.1368 0.1889 0.1488 0.0688 0.0120
Ky 0.0713 0.1073 0.0933 0.0472 0.0088
Ky, 0.1129 0.1196 0.0933 0.0460 0.0059
KLy, —0.0170 —0.1063 —0.1366 —0.0548 — 0.0036
Ky 0.0874 0.1180 0.0329 —0.0264 —0.0123
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TABLE 9.2 Formulas for circular rings (Continued)

7. Ring under any number of For0<x <0 M= WR(u/s — ky/0) N = @ _ —Wz
equal radial forces equally 2 2s 2s
spaced _ B .
Max+M = M, M Max - M = I;VR (%z — E) at each load position

_ 2
Radial displacement at each load point = ARy = @ [M Fye kz]

EI 457 2s 20

— 3 —Oc 2
Radial displacement atx =0, 20,... = AR, = % [M - ? + }2%]
. 52 s
Ifo=p$=0,M=KyWR,AR = K,y WR?/EI
0 15° 30° 45° 60° 90°

KMA 0.02199 0.04507 0.07049 0.09989 0.18169
KME —0.04383 —0.08890 —0.13662 —0.18879 —0.31831
Kyr, 0.00020 0.00168 0.00608 0.01594 0.07439
Kyg, —0.00018 —0.00148 —0.00539 —0.01426 —0.06831

[9'6 038

8. w.

R? sc— 2 iti .17
M, = n |:n(sz —05)— sc2 0 & (9 N Es) hy@stse—n+ H)] Max + M occurs at an angular positionx; where x; > 0,x, > 123.1°, and

3n(s — sinx,)

tanx; + 3 =0
— 2 3
R If = =0,M=KywR? N =KywR,AD = K,,wR*/EI, etc.
—WIS"
Ny = 3n
V,=0 0 90° 120° 135° 150°
—wR* [ kys® , ) Ky, —0.0494 —0.0329 —0.0182 ~0.0065
APn = 5E T [ g T ha(n—2ns” = 04205 4 sc) Ky, ~0.1061 ~0.0689 —0.0375 ~0.0133
2 ) Ku, ~0.3372 ~0.2700 ~0.1932 ~0.1050
+2k3(2s + s —m )] K, ~0.0533 ~0.0362 ~0.0204 ~0.0074
Kup, 0.0655 0.0464 0.0276 0.0108
R? &
L u; (o— 8 — ) ADy = 2}5 [k,n(ns COs—ioc4 ) by +sc— 04 2052) Ky, 0.0448 0.0325 0.0198 0.0080
LTy = —wRz(z — s){x — 0y° .
LTy = —wRu(z — s){x — 0y° ~ 2@t se 0)]
AL = x —0)28 “1_TC k(2 ms ot 05— S 45
4EI (m 9 Ut 3 s c S 3 37

—kz(ss+n—0+2952+an—n2+n0+nsc)72k§(28+sc—7r+0):|
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

2
LTy = %(z — )% x— 0)°

LTy = ’”sz(z —8)%(x — 0)°

wRu

LTy =~ (z—s)*(x—0)°

R? ;
M, = 3w6ns {( — 0)(65° — 9s) — 35 + 8 + 8¢ — Bs?c — 6ky[3s(s — 7 + 0) + s%¢ + 2 + 2c]}
—wR? 3 4 2 2
M. :m{f)s(ﬂfe)JrGGs' —3s" —8—8c+5s”c+ 6ky[3s(s — m+ 0) + s7c + 2 + 2c]}
7L
—wRs?
Na= 12n
V,=0
—wR* (3kyns® 5 8(1+c) 5 2(1+c¢)
ADy = 18EIT[{ y —k2|:(71—6)(6s —9)+T—osc:| +6k2|:sc+T—3(n—H—s)“

wR* s 1 13c s?c 1 5 2y, 8(1+0) 2 2(1+¢)
ADV7m{18nk1|:(z+ﬁ>(n—0)——7—77]+k2[(n—0)(3s —9) — 3s 0+Tf5sc]76k2|isc+T—3(n—0—s)]}

48 24 3

wR* s2 1 14+c¢ bsc (n — 0)(125 4 3/s) — 13¢c — 2s%¢c — 16 — 25%/n
AL—W[‘”“”(E‘@) CRE TR i

L (1+0)@n —8)/s — 3(n — O)(n — 1) + 20s% + 3ns + sc(n + 5) k23(s—n+0)+2(1+c)s+sc
— R —R2

127

67n(s — sinx; ) _

st 0

Max + M occurs at an angular position x; where x; > 0,x, > 131.1°, and tanx; +
Max - M = M.

If o = f = 0, M = KyywR? N = KywR, AD = K,,wR"/EI etc.

0 90° 120° 135° 150°
Ky, —0.0127 —0.0084 —0.0046 —0.0016
Ky, ~0.0265 —0.0172 ~0.0094 ~0.0033
Ky, ~0.1263 ~0.0989 ~0.0692 ~0.0367
Ko, ~0.0141 —0.0093 —0.0052 ~0.0019
Kap, 0.0185 0.0127 0.0074 0.0028
K, 0.0131 0.0092 0.0054 0.0021

67

]
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TABLE 9.2 Formulas for circular rings (Continued)

o R2 2
10. M, =Z}7f|:(n—9)(4c+282 - 1)+s<4—%—0) —2k2(n—9+sc)]

M = 7’ZR [3n+0+49c7205 —4s—sc+—72k (nfﬁ+sc)i|
_ 3
Ny = (nc+s—()c—7)
Vi=0
—wR* 5 5 N n
m[nkl (s” + 30c + 4 — 3s) + 3ky(n — 0 + 20c” — sc) — 6k5(n — 0 + sc)] for6 < 3
R? ADy = wR* 5% n
_TWhT 2, 0 —wn _ 2 Bl — 00252 — 1) — scl — 22 (5t — x
LTy = 5 (c — u)*¢x — 0) SFTn {nkl[c(n 0)+s 3] + ky[(n — 0)(2s 1) — sc] — 2k5(n 0+sc)] for6 > 3
LTy = wRu(c — u){x — 0y° .
LTy = —wRz(c — u){x — 0)° ADy = 35 (k1 (2 — ¢ 4 3c) + 3ky[205% — 0 4 sc — n(1 + 2¢ 4 87)] + 6kZ(n — 0 + sc)}
12EI [1 5m(0 — 20s% — sc) 4 2k1 (21 4 8° + 30c — 3s) + 3ky(sc + On + 205 — 31 — 0 — nsc) + 6k3(n — 0 + sc)] for6 <
AL =
ll;}l};I {(L.5a[(m — 0)(1 — 25%) + sc] + 2k (21 + 8 + 30c — 3s — nc®) + 3ky[(n 4+ 1)(n — 0 + s¢) + 205% — 4n(1 + ¢)] + 6k3(n — 0 + sc)} for 0 >
3 _
Max + M occurs at an angular position x, where x; > 0,x, > 90°, and x; = cos™ $/3+0e=s
e
Max — M = M.
If o = f = 0, M = Kj;wR? N = KywR, AD = K, ,wR*/EI etc.
0 0° 30° 45° 60° 90° 120° 135° 150°
Ky, —0.2500 —0.2434 —0.2235 —0.1867 —0.0872 —0.0185 —0.0052 —0.00076
KNA —1.0000 —0.8676 —0.7179 —0.5401 —0.2122 —0.0401 —0.0108 —0.00155
KML- —0.2500 —0.2492 —0.2448 —0.2315 —0.1628 —0.0633 —0.0265 —0.00663
Kup, —0.1667 —0.1658 —0.1610 —0.1470 —0.0833 —0.0197 —0.0057 —0.00086
Ky, 0.1667 0.1655 0.1596 0.1443 0.0833 0.0224 0.0071 0.00118
K, 0.0833 0.0830 0.0812 0.0756 0.0486 0.0147 0.0049 0.00086

[9'6 038
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

3

s
27372

_Bse_, (mc_Oc & sc?
2\2 273" 2

TP 2s% 2 T
2) kz[c(n 9)+?+sc for(-)<5

forg >

7(n79)c+2s201| 7k§[c(n—9)+s7§]}

6

72>+k§c(n70);s—83/3}

1-53 c(3+scf0)+300+6032c73375331| Jrkzc(rz—())/ZJrscz/ZJrSS/S
- 2

] for0 <

4 36m k3

11. M _ —wR? ( 70)3+12c2+20+4csz73330—33—533 Bsc , (mc Oc s
AT A+on|" 24 36 g
—wR? —3—12¢% + 2¢ +4cs>  n(14¢)® 3sPc+ 3s 4 bs?
MC*(Hc)n[(”*O) 24 T T 36
—wR 1+4c* bBsc sic
NA*(Hc)n[( 03 ?75]
V,y=0
—wR! 0 + 40c* — 5sc 4 s3c+ 16¢ bk 5sc? + 30c + 60s%c — 8s _me
EId+or|™ 16 24 2 18
LT, —wk (c —u)’x — 0y’ ADg = wR* 1+4c? bBsc sc 5s¢% — 8s
M= - - o _ i —
GSRJ;C) Fator|™ [(’T S TIAST: 24] kz[ 18
LTy = m(c —u)?(x— 0)°
wR; AD wR* { |:(1+c)2 s4i| k (5302+300+60325783 s?
mo_ = IR YN v =mrr a1k —57 o\l ——— a5
LTy 72(1+C)(c u)“(x — 0 EI(1+c¢) 6 24 18n 2 3
wR* 3s + 5s® + 60c® — 90c — 16 c 1 120c* + 30+ 2s%c — 15sc
EI(1+c¢) 72 "\3"16 487
o
AL =

wR* —(n—())c(1+2s2)_£_j+ [
EI(1+c¢) 24 24 9 " "1\3716 24

2s — 2+ sc? c(n—97372c)+386+66320—33—533

c 1 ¢t 120c* + 30+ 2s%c — 15sc
48n

e

Max — M = M.
Ifo=pf=0M=KywR? N = KywR, AD = K,p,wR*/EI, etc.

", ; 0
Max + M occurs at an angular positionx; wherex; > 0, x, > 96.8°, and x; = arccos[c - |:(cz + 0.25)(1 - 7) +
n

5 3c(n — 0) + 2s + sc? n
2 —
1 361 ] +k 61 for0 >3
se(5 — 2s2/3) 2
4n

0 0° 30° 45° 60° 90° 120° 135° 150
Ky, —0.1042 —0.0939 —0.0808 —0.0635 —0.0271 — 0.0055 —0.0015 —0.00022
Ky, —0.3125 —0.2679 —0.2191 —0.1628 —0.0625 —0.0116 —0.0031 —0.00045
Ky, —0.1458 —0.1384 —0.1282 —0.1129 —0.0688 —0.0239 —0.0096 —0.00232
Kyp, —0.8333 —0.0774 —0.0693 —0.0575 —0.0274 — 0.0059 —0.0017 —0.00025
Kyp, 0.0833 0.0774 0.0694 0.0579 0.0291 0.0071 0.0022 0.00035
Kur, 0.0451 0.0424 0.0387 0.0332 0.0180 0.0048 0.0015 0.00026
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TABLE 9.2 Formulas for circular rings (Continued)

12.

LTy = —wR*[1 — cos(x — 0))¢x — 0)°
LTy = —wR[1 — cos(x — 0))(x — 0)°

LTy, = —wRsin(x — 0)(x — 0)°

“wR?
M, = "T’r [s + 7 — Oc — ky(m — 0 — 5)]
_WwR?
My = H;IR [t —s+0c—ky(n—0—5)]
N, = 7L:R(s + mc — Oc)
Vy=0
—wR* [ky(s + 0c) 2k3(n — 0 — ) n
El [TJF 2ky(1 —s) — f} for0 < 3
ADg . )
—wR* [ky(s +mnc—0c) 2k5(n—0—s) n
ol [ 2 T for6>3
wR* [kys(n — 0) 2k3(n — 0 — s)
ADy 7E[T—k2(l+c)+f
wR* s 5
L m[k1(7—s+00) +k2n(0—s—2)+2k2(n—07s)i|

wR*

for0 <

[k (n®s — 10s — mc — 5 + 0c) + kym(n — 0 — 5 — 2 — 2¢) + 2k%(n — 0 — )] for6) >

2EIn

Max + M occurs at an angular positionx; where x; > 0, %, > 90°, and x; = tan™!

Max — M = M.

Ifo=p=0M=KywR? N=KywR,AD = K,pwR*/EI, etc.

—Ts

s—0c

0 30° 60° 90° 120° 150°
Ky, —0.2067 —0.2180 —0.1366 —0.0513 —0.0073
Ky, —0.8808 —0.6090 —0.3183 —0.1090 —0.0148
Ky, —0.3110 —0.5000 —0.5000 —0.3333 —0.1117
Kap, —0.1284 —0.1808 —0.1366 —0.0559 —0.0083
Kyp, 0.1368 0.1889 0.1488 0.0688 0.0120
K, 0.0713 0.1073 0.0933 0.0472 0.0088
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

13.

The radial pressure w, varies linearly
with x from 0 at x =0 to w at x = 7.

LTy =%

2
IZ(.’XI*G*ZC‘FMS)(X*())“

LTy =

WR(x—Hfchrus)(xf())“
n—0

LTy = %};(1 — uc —zs){x — 0)°

o —wR2 I 0 arl (m—0)? Max + M occurs at an angular position x;
A7 2(n—0) +2—sm—0)+hy 14c- 2 wherex; > 0, x; > 103.7°, and x, is found from
1+C+SH sinx; +ccosx; —1=0
—wR® (n—0)* 9 1 1— 1=
Mcfm[7‘[(7‘!76)727267394’}82[1‘#677
Max - M = M,
Ny=—%F 191 9c— s -0
LR r— c —s(n
Vy=0
—wR* s0 5242 —(n—0)° T
m|k1(1—5>+k2(n—20—20)+sz for()éi
ADy = wR* s(x—0) 24 2¢— (n— 0) n
_ 8- s (- n
7E1(n70)ikl|il+c 3 :|+kz - ] for();z
wR! s+c(n—0) 5242 —(n—0)
ADV_mlle—kz(n—H—s)—kzi
4 2 2 2
%[kl(%c72c+2n—2—ﬂs)7k27t|:2(n—6)71+67%+%:|—k§[2+20—ﬂ70)2} for0< 2
AL =
wR* (m—0)?

e _ _ _9_ _ _ _ T 2 _ _ 02
2EIn(n—0)[k1[nc(n 0) + 2ns — 2¢ — 2 — 0s] k2n|:2(rz 0)+1+c—2s 5 :| k5[2+ 2¢ — (n ())]} for 0 >
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TABLE 9.2 Formulas for circular rings (Continued)

14. M. = _wR? 9 0 s kol 2 0 Max + M occurs at an angular position x;
4T n(m — 0)% (=02 =0 =65tk 2An—0-5) where x; > 0,x; > 108.6°, and x, is found from
7(71—0)3:“ (x; — 0+ scosx;) +(3s — 2n+ 20 — Oc) sinx; =0
3
Max - M =M.
_WR?
M. :(wiRO)z!20(2—0)+63—67{+n(n—0)z
o —
(@—0°
+ky|2m—0—5) ——F7—
AwR(T~ 0 = 5)/ (- )2 [ 3
C —wR
Ny = m[Z(n —0)(2—c)— 6s]
w
Vy=0
The radial pressure w, varies with R
P _ Rt 2 . 2 =0 — 6 — 0 —
(x— 0" from O atx =0 tow at Wl Eh ha 7Lf67023+33—BI)CJrEJchrOszO + ky T 4445 — 20+ 20 72k§7(n O —6x—6-5) for0 < =
x=n AD EI(n — 0y 4 2 2 3n 2
H= 4 3
_wR? —wR B e 5 (m—0)" —6(mn—0—5s) m
LTy, = E— [(x—0)?%—2 71«71(71 e {kl[(z c)(n — 0) — 3s] — 2k5 — for 0 > 3
+ 2uc + 2zs](x — 0)° . N
ADy =B Vhi2 4 2e — stn— 0] + ko2 + 2 — (n— 0)2) 4 223 "D 8@ =079
—wR 2 EI(n — 0) 3n
LTy = Sk - 07?2
(m—0)
+2uc+22$](x70)°
—2wR
LTy :m(x—e—zcurus)
x (x — 0)°

[9'6 03s
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

14. Continued R* 20 — 0 3 0° on? —0)° — 6(n— 0 — ¢
ontinue “’72[ 1M+n—2()—%s)+k2 2450+ + G- — (=0 +k§(")3¢] foro <7
AL — EI(n — 0) T 4
- 4 _ — 03 . —0)? - —0—
El(lfi o7 =k1[33+2no ocfs(nf())+30:| +k2|:%7(n70)2 7n+0+s+2+20:| T kﬁw for0 > g
15. Ring supported at base and loaded My = wR?| hy — 0.5 — Ky — DB where Kp = 1 +—— Max+M =M, .
by own weight per unit length of ky AR? Max — M occurs at an angular position x; where
circumference w n__ 054 (Kp — 1)
tanx,; ky

M = wR? [kz +05+ (I{Tk;l)ﬂ]
1

w N, = wR[O.5+7(KT — 1)k2] 5
ky Max — M = —wR*(1.6408 — k,) atx = 105.23°
V=0 fo=p=0,
wR® (kyn 5 WwR?
ADHfE—Ae(?—kzn+2kz) My ="
C - 5
—wR® (kyn? o, N, = VR
2rRw ADV=W( v —2k2> A b}
—wRP[,  3kyn?  hyn ADy = 0.4292 %
LTy = ~wR?az + Kp(u - 1)) Ain[ 1 7ifk§+(KT—1)a] = 0.4292 5
LTy = —wRxz EAe 6 2
LTy = —wRxu wR*
v Note: The constant K; accounts for the radial ADy = _0-4674ﬁ
distribution of mass in the ring.
AL = -0 2798w—R4
- EI

For a thin ring where K ~ 1,

Max + M = 3wR? at C

ulRIlS pue SS.IS 10} Se|NW.OS
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TABLE 9.2 Formulas for circular rings (Continued)

16. UAnit a‘\xia?l segme.nt of pipe ﬁlled M, = pR® (0.75 _ &)
with liquid of weight per unit 2
volume p and supported at the base

My = pR3(1,25 - %2)

N, =0.75pR?
Vy=0
-~ pRO12(1 —v?) [kym b 5
ADy =g T e (2-5) — 1
—pR512(1 —v?) (ky7® 5
ADV:T S —2ky + k3

- —pR°12(1 —v?) [k, 372 | k2
AL= Et3 EDR (0'5 + 4) 2

Note: For this case and case 17,

Max + M = M.
Max — M = —pR? (%2 - 01796) atx = 105.23°

Ifa=p4=0,

pR%12(1 —v?)
ADp =0.2146—— ——
H Ef

pR?12(1 —v?)
ADy = 70.2337T
9 pR%12(1 —v?)

AL = —0.139 -
Et?

2
YT R1 )
2 . .
p= m where t = pipe wall thickness
17. Unit axial segment of pipe partly Note: see case 16 for expressions for « and
filled with liquid of weight per unit oR?
volume p and supported at the base | My = e (20s% + 3sc — 30 + 1 + 2nc? + 2ky[sc — 25 + (1 — 0)(1 — 2¢)]}
pR? 2
Ny = ﬂ[Ssan(n —0)(1 4+ 2¢%)]
Vy=0
pR?3(1 —»*) 2 L4 2 L4
e {kln(sc + 27 — 30 +20c%) + San(zc —se—5+ 0) + 83 — 0)(1 — 2¢) + s¢ — 2s]} for < 3
=
R3(1 —v?) b
pzW {kyl(m — 0)(1 + 2¢2) + 3sc] + 8Kk3[(n — 0)(1 — 2¢) + sc — 2s]} for0 > 5
_OR93(1 — 12
ADy = ZPEBUL V) 16?4 (= 0)(m — 0+ 250)] — 4kym(1 + ) — 8E2[(x — 0)(1 — 2¢) + s — 2s])

2Et3n
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

17. Continued
3
LTy = %[ZC —2z(x— 0+ sc)
—u(l+c*)x - 0)°
2
LTy :%[Zcfz(x— 0+ sc)
—u(1 4 A)x - 0)°

2
LTy = %[zc2 — u(x — 0+ sc)]
x {x — 0)°

—pR3(1 —v
2Et3n

—pR73(1 —v?)
2Et3n

AL =

3
Max+M = M, :%(47{04’”4’2062 + 0 — 3sc + 2ky[(m — 0)(1 — 2¢) + sc — 2s]}
7

Max — M occurs at an angular position where x; > 0, x; > 105.23°, and x, is found from
(04 20¢* — 3sc — m) tanx, + 2n(0 — sc — x,) = 0

If o = =0, M = Ky pR®, N = KxypR?, AD = K,,pR°12(1 —V?)/Et®, etc.

2
){kl[zoc2 +0—3sc+nz(sc—0+3f>] + 2k m[2 4 20c — 25 — 4c — 1+ 0 — sc] — 4k3[(n — 0)(1 —20)+sc—25]} for0 <

ki
2

(k1[20c% 4 0 — 3sc + n(n — O)(n — 0 + 2s¢) — 3nc?] + 2kyn[25 — 2(1 4 ¢)? —sc— (n— 0)(1 — 2¢)] — 4k3[(n — 0)(1 — 2¢) + sc — 2s]} for0 >

0 0° 30° 45° 60° 90° 120° 135° 150°
Ky, 0.2500 0.2290 0.1935 0.1466 0.0567 0.0104 0.0027 0.00039
Ky, 0.7500 0.6242 0.4944 0.3534 0.1250 0.0216 0.0056 0.00079
Ky, 0.7500 0.7216 0.6619 0.5649 0.3067 0.0921 0.0344 0.00778
Kap, 0.2146 0.2027 0.1787 0.1422 0.0597 0.0115 0.0031 0.00044
Kip, —0.2337 —0.2209 —0.1955 —0.1573 —0.0700 —0.0150 —0.0043 —0.00066
K, —0.1399 —0.1333 —0.1198 —0.0986 —0.0465 —0.0106 —0.0031 —0.00050

b
2
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TABLE 9.2 Formulas for circular rings (Continued)

18.

W .
v= ﬁ(sm(ﬁ —sin0)

WR

LTy = 7ﬂ(n —s)(x—2)
+ WR(z — s)(x — 0)°
— WR(z — n)(x — §)°

LTy = 27Wn(n —8)z
+ Wa(x — 0)°
- Watx — ¢)°

-w

LTy =4 —(n=s)1-u)
+ Wux — 0)°
- Wugx — ¢)°

_WE

My=-—"[n" 5" —(n—p)n+(m—0)s — ky(c — m)]

21

W e
NA?Zn(n s%)

w
VA:ﬂ(67¢+s—n+sc—nm)

Ifo=p=0M=KyWRN=KyW,V=K,W

0 ¢—0 30° 45° 60° 90° 120° 135° 150° 180°
Ky, —0.1899 —0.2322 —0.2489 —0.2500 —0.2637 —0.2805 —0.2989 —0.3183
0° Ky, 0.0398 0.0796 0.1194 0.1592 0.1194 0.0796 0.0398 0.0000
Ky, —0.2318 —0.3171 —0.3734 —0.4092 —0.4022 —0.4080 —0.4273 —0.5000
Ky, —0.0590 —0.0613 —0.0601 —0.0738 —0.1090 —0.1231 —0.1284 —0.1090
30° Ky, 0.0796 0.1087 0.1194 0.0796 —0.0000 —0.0291 —0.0398 —0.0000
Ky, —0.1416 —0.1700 —0.1773 —0.1704 —0.1955 —0.2279 —0.2682 —0.3408
Ky, —0.0190 —0.0178 —0.0209 —0.0483 —0.0808 —0.0861 —0.0808 —0.0483
45° Ky, 0.0689 0.0796 0.0689 0.0000 —0.0689 —0.0796 —0.0689 —0.0000
Ky, —0.0847 —0.0920 —0.0885 —0.0908 —0.1426 —0.1829 —0.2231 —0.2749
Ky, —0.0011 —0.0042 —0.0148 —0.0500 —0.0694 —0.0641 —0.0500 —0.0148
60° Ky, 0.0398 0.0291 —0.0000 —0.0796 —0.1194 —0.1087 —0.0796 0.0000
Ky, —0.0357 —0.0322 —0.0288 —0.0539 —0.1266 —0.1668 —0.1993 —0.2243
Ky, —0.0137 —0.0305 —0.0489 —0.0683 —0.0489 —0.0305 —0.0137 0.0000
90° Ky, —0.0398 —0.0796 —0.1194 —0.1592 —0.1194 —0.0796 —0.0398 0.0000
Ky, 0.0069 0.0012 —0.0182 —0.0908 —0.1635 —0.1829 —0.1886 —0.1817
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

-M, 2kys
19. M= (n—o——kf>

_ M, (ks

m=2 ()
-M, 2kyc
Va=om (1+ T )

M,

2

Atx=0+180°, M =0

-M,
LTy = 2710 (x —2)+ M,(x— 0)° Other maxima are, foro = =0
J - —0.1090M,  atx=0+120°
27R 0.1090M,  atx=0+240°

_Mu
LTy =5 2(1-w

Max + M =—_% forx just greater than 6

Max — M = IZW" for x just less than 0

Ifo=f=0,M=kyM, N =KyM,/R, V =K,M,/R

0 0° 30° 45° 60° 90° 120° 135° 150° 180°
Ky, —0.5000 —0.2575 —0.1499 —0.0577 0.0683 0.1090 0.1001 0.0758 0.0000
Ky, 0.0000 0.1592 0.2251 0.2757 0.3183 0.2757 0.2250 0.1592 0.0000
Ky, —0.4775 —0.4348 —0.3842 —0.3183 —0.1592 0.0000 0.0659 0.1165 0.1592
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TABLE 9.2 Formulas for circular rings (Continued)

20. Bulkhead or supporting ring
in pipe, supported at bottom and
carrying total load W transferred
by tangential shear v distributed
as shown

LTy = %xz

LTy = %(z — xu)

for 0 < x < 180°

1)
k3

LR
n

WR
My ==~ (ky = 05)
WR
M =~ (ky +0.5)
0.75W
A= x
V,=0
WR? (ky ks
ADi =7 (Zfi
~WR? (kyn
ADy = 1
VT EI ( 8
ALfiR3 PR
" 4EIn o

TEZ
g e +2) - 2k§]

Max +M = M.

Max — M = #(342815 —2k,) atx=105.2°
T

Ifa=p4=0,
M, = 0.0796WR
N, =0.2387W
V,=0
ADy =0 0683W—R3
o= EI
WR3
ADy = ~0.0744
WR3

AR = —0,0445ﬁ
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TABLE 9.2 Formulas for circular rings (Continued)

Reference no., loading, and load terms

Formulas for moments, loads, and deformations and some selected numerical values

21. Ring rotating at angular rate
 rad/s about an axis perpendicular
to the plane of the ring. Note the
requirement of symmetry of the
cross section in Sec. 9.3.

Sw227 RRLA

J§ = mass density of ring material

LTy = 60?AR? (KT(l —u)
R,
g e~ Krp(1- u)]}

LTy = 0w*AR? |:Kr,~(1 —u)— %xz]

LTy = 0*AR? |:2KT(2u —1)— %xui|

M, = észR3{KTa + % [k2 -0.5

M = 6w’AR® {KToc + % |:k2 +0.5+

N, = 00?AR{ Ky +& 0.5+ (K — 1)’12
R ky

V=0

dw’R*

ADy = 17

Ee 4

AL

dw’RY R, (k3%
= TR2% —

Ee R

Note: The constant K; accounts for the radial

distribution of mass in the ring.

& - Df

R, (k )
T [ZKTkzoc +7 (7 — ko4 2k§)]

2 2
AD, =R [2K7vk2a - % (k‘” - 2k§]

16 Ty

Max +M = M

Max — M occurs at an angular position x; where
X

Ky — DB
tanx; 0.5+ 3

For a thin ring where K ~ 1,

Max — M = —6w?AR® [%(16408 —ky) — a:| atx = 105.23°
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TABLE 9.3 Reaction and deformation formulas for circular arches

NOTATION: W =load (force); w =unit load (force per unit of circumferential length); M, = applied couple (force-length). 0, = externally created concentrated angular
displacement (radians); A, = externally created concentrated radial displacement; T — 7, = uniform temperature rise (degrees); T; and 7, = temperatures on outside and
inside, respectively (degrees). H, and Hp are the horizontal end reactions at the left and right, respectively, and are positive to the left; V, and Vj are the vertical end
reactions at the left and right ends, respectively, and are positive upward; M, and My are the reaction moments at the left and right, respectively, and are positive
clockwise. E = modulus of elasticity (force per unit area); v = Poisson’s ratio; A is the cross-sectional area; R is the radius ot the centroid of the cross section; I =area
moment of inertia of arch cross section about the principal axis perpendicular to the plane of the arch. [Note that for a wide curved plate or a sector of a cylinder, a
representative segment of unit axial length may be used by replacing EI by Et?/12(1 — v2).] e is the positive distance measured radially inward from the centroidal axis of
the cross section to the neutral axis of pure bending (see Sec. 9.1). 0 (radians) is one-half of the total subtended angle of the arch and is limited to the range zero to 7. For an
angle 0 close to zero, round-off errors may cause troubles; for an angle 0 close to 7, the possibility of static or elastic instability must be considered. Deformations have been
assumed small enough so as to not affect the expressions for the internal bending moments, radial shear, and circumferential normal forces. Answers should be examined to
be sure that such is the case before accepting them. ¢ (radians) is the angle measured counterclockwise from the midspan of the arch to the position of a concentrated load or
the start of a distributed load. s = sin 0, ¢ = cos 0, n = sin ¢, and m = cos ¢. 7y = temperature coefficient of expansion.

The references to end points A and B refer to positions on a circle of radius R passing through the centroids of the several sections. It is important to note this carefully
when dealing with thick rings. Similarly, all concentrated and distributed loadings are assumed to be applied at the radial position of the centroid with the exception of
cases h and i where the ring is loaded by its own weight or by a constant linear acceleration. In these two cases the actual radial distribution of load is considered. If the
loading is on the outer or inner surfaces of thick rings, a statically equivalent loading at the centroidal radius R must be used. See examples to determine how this might be
accomplished.

The hoop-stress deformation factor is & = I/AR? for thin rings or o = e/R for thick rings. The transverse- (radial-) shear deformation factor is f = FEI/GAR? for thin rings
or f = 2F(1 + v)e/R for thick rings, where G is the shear modulus of elasticity and F'is a shape factor for the cross section (see Sec. 8.10). The following constants are defined
to simplify the expressions which follow. Note that these constants are unity if no correction for hoop stress or shear stress is necessary or desired for use with thin rings.
ki=1—oa+pky=1-ua.

General reaction and expressions for cases 1-4; right end pinned in all four cases, no vertical motion at the left end
Deformation equations:

3
Horizontal deflection at A = 6y, = % (AHHHA + Ay % - LPH)

. R?
Angular rotation at A =y, = =

M,
i <AMHHA +Aum fA - LPM)

where Agy = 20¢® + k(0 — sc) — ky2sc
Aun = Apy = kys — Oc

1
Ay = 4—82[20s2 + k(0 + sc) — ky2sc]

and where LPy and LP); are loading terms given below for several types of load.

(Note: If desired, V,, Vp, and Hy can be evaluated from equilibrium equations after calculating H, and M,)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

1. Left end pinned, right end
pinned

Since dyy =0 and My =0,

_LPy

Ha He HAfA
-HH

Va Ve

The loading terms are given below.

R?
and wA:ﬁ(AMHHA—LPM)

Reference no., loading

Loading terms and some selected numerical values

la. Concentrated vertical load LPy = W[Hsc — ¢ne +k§1(62 — m®) + kyelc — m):| Fora=p=0
W B 0 30° 60° 90°
LPy = - [q{)n —0s+ ﬁ(ﬁn — ¢s + snc — snm) — ky(c — m):|
/WLI\ 3 0° 15° 0° 30° 0° 45°
‘(4,4{ LPy  _00143 —0.0100 -0.1715 —0.1105 —0.5000 —0.2500
w
I
LPy  _0.0639 —0.0554 —0.2034 —0.1690 —0.2854 —0.1978
w
1b. Concentrated horizontal LPy = W|:902 + pme +ﬁ(0+ & — sc— nm) — kye(s + n)] Fora=4=0
load 2 o o ]
w k ‘ 0 30 60 90
LPy =— |:—0c —¢pm+ —12(00 — O0m +sm? — scm) + ky(s + n)]
W 2 28 ¢ 0° 15° 0 30° 0° 45°
[ LPy 00050 00057 0.1359  0.1579  0.7854  0.9281
[ W
\
| LPy 0.0201  0.0222  0.1410  0.1582  0.3573  0.4232
W
lc. Concentrated radial load LPy = W[Oc(cn +sm) +%(0n+ dn — sen — s2m) — kye(1 + sn — cm)] Foro=4=0
w k 0 30° 60° 90°
W LPy, :E[—(l(cn+sm)+2—12(()cn — psm) + ky(1 +sn — cm)]
f & ) 0 15° 0 30° 0 45°
\‘ ¢ LPy  _00143 —0.0082 —0.1715 —0.0167 —0.5000 0.4795
R w
Vo LPy  _0.0639 —0.0478 —0.2034 —0.0672 —0.2854 0.1594
w
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

[9'6 03s

1d. Concentrated tangential LPy = W[Oc(cm —sn)+ ¢c+%(0m 4 ¢m —scm — c?n) — kyc(sm +cn)] Fora=p4=0
load w 0 0 30° 60° 90°
LPy =— [(;(Sn —cm) — ¢ + 5 (Ocm — 0+ psn — sc + sm) + ky(sm + cn)]
| 2 2s ® 0° 15° 0° 30° 0° 45°
W
\4,4 LPy 0.0050 0.0081 0.1359 0.1920 0.7854 0.8330
w
\ ‘ LPy 0.0201 0.0358  0.1410 0.2215 0.3573 0.4391
W
le. Unif rtical load , , Fora=f=0
© Unltlorlm vertieal Joad on LPy = W—R |:00(1 + 4sn 4 25%) + d)c(m2 - nz) — c(sc + mn) or &= f
partial span 4 0 30° 60° 90°
2k
+ ?l(n‘% — 3ns? — 25%) + 2kyc(2cn +cs — 0 — ¢ — mn)i| ) 0 15° 0° 30° 0° 45°

LPy  _0.0046 —0.0079 —0.0969 —0.1724 —0.3333 —0.6280
R ; ;
LPy = % ‘mn +sc — 0(4sn + 257 + 1) — p(m? — n?)

w LPy  _0.0187 —0.0350 —0.1029 —0.2031 —0.1667 —0.3595
RifO0 o, o 2(c3 3 2 _ g2 wR
)\¢ t ;(n +5%)+2(c—m)—2(c® —m?) +c(n® — s*) — 2én
\

1 +2k2(0+¢+mn—sc—2cn)}
\‘ If ¢ = 0 (the full span is loaded)
LPy = %R[3c(20s2 40— s¢) — 4ky5° + Bkyc(sc — 0)]

LPy = %[sc — 0 — 205% + 2ky(0 — sc)]

1f. Uniform horizontal load on LPy = w—R[3()c(l — 6¢2 + 4c) + 3sc? + &y (60 — 6sc — 120c + 12¢ — 85°) Foroa==0
left side only 12 0 300 60° 90
+ 6kyc(3sc — 2s — 0)]
W= T R X LPy 0.0010 0.0969 1.1187
LPy = % [6902 —0—40c — sc + 2 [s(2 — 8¢+ ¢*) — 30(1 - 0% whR
i LPy 0.0040 0.1060 0.5833
wR

+ 2ky(0 + 25 — 3sc)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

lg. Uniform horizontal load on | 1p, — “Ria0.1 4 92— 40) 4+ 35¢% + 2, (26 — 30 + Bs0) + 6hye(25 — s¢ — 0} Fora=f=0
right side only 12 0 30° 60° 90°
wR 2 ky 3 9
w LPy; =—{40c — 20c® — 0 — sc — —[s(2 — 3¢+ ¢’) — 30(1 — ¢)°]
/’_\E M8 i 3s? LPy —0.0004 —0.0389 —0.4521
wR
+ 2k (0 — 25 + SC)} LPy —0.0015 —0.0381 —0.1906
wR
i i 5 R —f= _
1h. Vetjtlcalloac{hng' LPH:wR{Z(?zsc+(ﬁ+k2)(2002—Hfsc)+ﬁ[k2(ﬂfsc)72c(s—Gc)]} For « = =0 and for R, =R
uniformly distributed 2 R
. 0 30° 60° 90°
along the circumference R
(by gravity or linear LPy = WR[( T k2>(s — ) - st] LPy, ~0.0094 ~0.2135 —0.7854
acceleration) wR
w where R, is the radial distance to the center of mass for a differential length % —0.0440 —0.2648 —0.4674
of the circumference for radially thicker arches. R.,/R=1+1./(AR?). I, is w
) . the area moment of inertia about the centroidal axis of the cross section.
(Note: The full span is N . S . .
loaded) For radially thin arches let R, = R. See the discussion on page 333.
1i. Horizontal loading LPy; = wRO[20¢* + k(0 — sc) — 2kqsc] For o =f =0 and for Ry =R
uniformly distributed wR o Ry oo 9 2 o o o
along the circumference LPy = R |:—29 sc+ %(20 c+0s+s°c) + ky(20s* — 0 — sc) 0 30 60 90
(by gravity or linear Ry LPy 0.0052 0.2846 2.4674
acceleration) - f(k‘ —hka)(0 + sc)] wR ' ’ '
ﬁ See case 1h for a definition of the radius R, % 0.0209 0.2968 1.1781
w w.
(Note: The full span is
loaded)
1. Parltial uniformly distributed LPy = ch|:0(1 —em+sn) +h(scm +e2n— 0m — dpm) + ky(sm+cn— 0 — 4’)] Foroa=f=0
radial loading 2¢ 0 30° 60° 90°
LPy, :w—R[O(cmf 1 7sn)+k—12[070cm — ¢sn +sc—sm)+ky(0+ —sm — cn)]
)\¢ l‘ If ¢ = 0 (the full span is loaded) LP}g —0.0050 —0.0081 —0.1359 —-0.1920 —0.7854 —0.8330
D ; w.
LPy; = wRc[20s* — k1 (0 — sc) — 2ky (0 —
\ | = wRA208™ = 1y (0= 50) = 2hy(0 = sc)] LPy 00201 -0.0358 —0.1410 —02215 —0.3573 —0.4391
LPy; = wR[—05 + ky(0 — s¢)] wR

ulRIlS pue SS.IS 10} Se|NW.OS

6 "dvHO]



TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

1k. Partial uniformly increasing Foro=f=0
distributed radial loading LPy = 74) [OC(O +d—cn—sm) + 2 [n(sc —0= ) +s*m+2c—2m] §
0 30° 60° 90°
+hy[sen+5'm — SO0+ )" +c—m] - - 5
/\)(,’:—‘FLLQ/ w o |scn +s°m B c—m ) 0° 15° 0° 30° o 45°
)\ ) _ WwR Q k B LPy 00018 -0.0035 —0.0518 —0.0915 —0.3183 —0.5036
\ LPy, = i1é ) [ 5 152 [(0 + ¢)(O + sc) + psm — Ocn wR
\ s LPy  _0.0072 —0.0142 —0.0516 —0.0968 —0.1366 —0.2335
=25% = 2sn] + "2 [0 + ¢)° + 20m — 25 — 2]] wR
If ¢ = 0 (the full span is loaded)
LP, = LRC [0(0 —es)— %(0 — s0) — ky(0% — 32)]
LPy, —f [Osc — 0%+ 12 (0% + Osc — 252) + k(0% — sz)]
11. Partial second-order wRe 9 ky Fora=$=0
increase in distributed LPy = 0+ ¢)* i()({) +¢)" 200 —cm +sn) + ?[(0 + e+ m)
: : 0 30° 60 90°
radial loading
—c(sm+cn) —2n — 2s] + 7[6(9 +¢—sm—cn)—(0+ ) ]] & o 15° o0 30° 0° 45°
W
wR 0 2 LPy  _0.0010 -0.0019 —0.0276 —0.0532 —0.1736 —0.3149
LPy =—1{0(1 —cm+sn) — - (0 + — :
/)\‘;‘FLLL(/ v =Gt a7 | ) =50 +9) o
! LPy  _0.0037 —0.0077 —0.0269 —0.0542 —0.0726 —0.1388

\J

+ %[(0 + $)*(0 + s¢) + 25(¢pn + 3m — 3¢) — 45%(0 + ) — 20(1 — cm))
+k2|:sm+cn 0— ¢+(6+¢) i“
If ¢ = 0 (the full span is loaded)
LPy = g’—;f[eo% — 60s%c + 3k, (30c — 3s + s%) + 2ky(30c — 20°¢ — 3sc?)]

wR o 0, B 20°
LP, :ﬁ[()sz—() +k1@(0 + Osc — 25%) + ky sc—()+?

wR
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

1m. Partial uniformly LPy = w—R(Zﬁc(cn T sm)— (0% — ¢2) Fora=f=0
distributed tangential 2 5 . .
loading +k1[0(0 + ¢) + c(cm — sn — 2) + e] + ky2c(cm — sn — 1)} 0 30 60 90
w . B - . - B
A LPy = %3 [02 — ¢? — 20(cn + sm) 4 0 15 0 30 0 45
N
;\qﬁ F i LPy 00010  0.0027  0.0543 01437 05000  1.1866
! + sle[ﬂ(cnfcs—97(b)f¢os(c+m)+23(s+n)]+k22(1+sn—cm) wR
X LPy 00037 00112 00540  0.1520  0.2146  0.5503
\ If ¢ = 0 (the full span is loaded) wR
LPy; = wR[20¢%s + kys(0 — s¢) — 2kycs?]
LPy, = wR[—()sc +2%(252 — 0sc— 0%) + kzsz]
1n. Concentrated couple LPy = %(4)0 — kyn) Fora=p4=0
0 30° 60° 90°
LPy = = 2R[ 252 — ky (0 + sc) + ky2sm]
) 0° 15° 0° 30° 0° 45°
/GJ\ LPyR 00000 -0.0321 0.0000 —0.2382 0.0000 —0.7071
\*¢ o M,
' LPyR 00434 —0.1216 0.0839 —0.2552 0.1073 —0.4318
M,
0,E1
1p. Concentrated angular LPy = = (m—c)

displacement

—%
-
¥
om

0,EI n
LPy = R? (2 + 23)

1q. Concentrated radial
displacement

ﬂfﬁj\
|

AEI
LPy; = ;23 n
AEI m
LPy =" (’%)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

1r. Uniform temperature rise
over that span to the right
of point @

/jf!y\

\

VET
LPy = ~(T' = T)) (s + )

yEI (m—c)
s

LPM:(T*TO)W

T =uniform temperature
T, =unloaded temperature

1s. Linear temperature
differential through the
thickness ¢ for that span
to the right of point @

Q T
m

1

\

vEI
LPy = (7 = Ty) - (05 = Oc — o)
VEI

LPy =Ty ~- T g

Os+ps—m+c)

where ¢t is the radial thickness and 7}, the unloaded temperature, is the temperature at the radius of the centroid

2. Left end guided horizontally,
right end pinned

Va

Since 4, =0 and Hy =0

N R?

“LPvp  and oHA:ﬁ<AHM%—LPH>

Ma= Ao

Use load terms given above for cases la—1s

[}

. Left end roller supported in
vertical direction only, right
end pinned

Since both M, and H, are zero, this is a statically determinate case:

_R3 _R2

dua="pLPy  and Yy = LPy

Use load terms given above for cases la—1s

[9'6 038
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

4. Left end fixed, right
end pinned

Hy =

Since dy4 =0 and ¥, =0,

_AwvLPy—ApyLPy o My _ ApyLPy —AuyLPy

AHHAMM - A%IM R AHHAMM - A%IM

Use load terms given above for cases la—1s

General reaction and deformation expressions for cases 5-14, right end fixed in all 10 cases.

Deformation equations:

3
Horizontal deflection at A = 64 = % (BHHHA + By V4 + By % - LFH)

R® M,
Vertical deflection at A = dyy = 7 (BvHHA +Byy V4 + By TA - LFV>
2

R M,
7 (BMH Hy + Byy Vi + Byy f/‘ - LFM)

Angular rotation at A =y, =

where Byy = 20c% + k(0 — sc) — ky2sc

Byy = Byy = —20sc + ky2s?

Bynr = By = —20c + ky2s

Byy = 20s? + k1 (0 + sc) — ky2sc

Byy = By = 20s

By =20
and where LFy, LFy, and LF), are loading terms given below for several types of load

(Note: If desired, Hp, Vp, and Mp can be evaluated from equilibrium equations after calculating Hy, V,, and My)

5. Left end fixed, right end fixed

Since dgy = 0,0y4 =0, Y, = 0, these equations must be solved simultaneously for H,, V,, and M, /R
The loading terms are given in cases ba—bs

ByyHy + Byy Vs + By My /R = LFy
By Hy + By Vy + Byy My /R = LFy
By Hy + Byy Va + Byy My /R = LEy
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

; k Foro=f=
5a. Concentrated vertical load LFy = W|:—(H + d)en +§1(52 —m®) 4 hy(1+ sn— cm)] ora=F=0
W 0 30° 60° 90°
ky
LFy = W|:(6+¢)sn+§(9+¢+sc+nm)—kz(Zsc—strcn)] ¢ o 15 0 300 0 a5
V’ | LFy = W[(0 + ¢p)n + ky(m — )] LFy 00090 00253 01250  0.3573  0.5000  1.4571
w
LFy 0.1123 0.2286  0.7401 1.5326 1.7854  3.8013
w
LFy  0.1340  0.3032 05000 1.1514  1.0000  2.3732
w
5b. ;}or:{centrated horizontal LFy = W|:(0+ Pyme +%(0+ & — sc— nm) — ky(sm + cn)] Foro=4=0
oa 0 30° 60° 90°
k , ;
W 7(_:]_\ LFy = W[—(H +@)sm 45 (¢ = m®) + ky(1 = 26" + em + sn)] P 0 15° 0 30° 0 45°
T ¢ LFy = WI=(0+ ¢)m + kos + 1)] LfVH —~0.0013  0.0011 —0.0353  0.0326 —0.2146  0.2210
|
LFy 00208 -0.0049 —0.2819 —0.0621 —1.0708 —0.2090
w
LFy  —0.0236  0.0002 —0.1812  0.0057 —0.5708  0.0410
W
5c. Concentrated radial load LFy = W|:kf‘((~)n T n — sen — §*m) + ko(m — c):| Fora==0
2
W 0 30° 60° 90°
/\rj»\ LFy = W[%(Bm + ¢dm +sem + c2n) + ky(s +n — 2scm — 2c2n):| 3 0° 15° 0° 30° 0° 45°
e LF,
Y | Ly = Wiky(1 + 51 — cm)] WH 0.0090  0.0248  0.1250  0.3257  0.5000  1.1866
LFy 01123 02196  0.7401  1.2962  1.7854  2.5401
w
LFy 01340 02929  0.5000  1.0000  1.0000  1.7071
W

[9'6 038

sweag paAIn)

e



TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

5d. Concentrated tangential
load

LFy = W[(G +¢)c +kz—1(0m + ¢m —sem — c?n) — ky(s + n)] Fora=f=0
. 0 30° 60° 90°
LFy = W|:—(0 +d)s — ?I(On + ¢n 4 scn + s2m) + ky(252m + 2scn + ¢ — m)]
¢ 0° 15° 0° 30° 0° 45°

LFy = W[—0 — ¢ + ky(sm + cn)]
LFy  _0.0013 —0.0055

—0.0353 —0.1505 —-0.2146 —0.8741

U "
| LFy —0.0208 —-0.0639 —-0.2819 —0.8200 —1.0708 —2.8357
w
LFy 00236 -0.0783 -0.1812 —0.5708 —0.5708 —1.6491
w
5e. Uniform vertical load on wR 2 2k o 2 3 Fora=$=0
partial span LFy = - ic[(l —2n°)(0+ ¢) — sc — mn] — ?(23 + 3s“n —n°)
0 30° 60° 90°
» + 2ky[s +2n +sn® —c(0+ ¢ + mn)]} ¢ o 15° o 30° o 45°
TN R o T
ﬂ_r‘\ LF, = wT is[(l —2m3)(0 + ¢) + sc + mn] +Tll3n(0 ++s0) w};l 0.0012 0.0055 0.0315 0.1471 0.1667 0.8291

\

LEy 00199  0.0635
+3m — m® — 2¢%] + 2ky[s(0 + § — 2s¢ + nm — 4cn) — an]] wR

2 LFy 00226 00778

LFy = wT[(l —2m%)(0 + ¢) + nm + sc 4 2ky(0 4 ¢ + nm — sc — 2cn)] whk

0.2371 0.7987 0.7260 2.6808

0.1535 0.5556 0.3927 1.5531

If ¢ = 0 (the full span is loaded)
ky4s®

LFy = %R |:00(1 —2s%) —sc? — + ke 2(s® + 5 — c(l)]
LFy = wR|:%((9s2 — 0% + 5¢) + kys(0 + s¢) + kys(0 — 330)]

LFy; = wR[L(0s* — 0c® + s¢) + ky(0 — sc)]
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

5f. Uniform horizontal load on wR ; 2s% Fora=4=0
left side only LFy = e |:Hc(4s2 — 1)+ sc? + 2k, (6 — 20c — sc 4 2s¢? + ?) + 2ky(sc? — 55 — Hc):|
0 30° 60° 90°
w % wR 2 2, 2k 2 3 2
LFy == = 0s(45° = 1) = s% = =21 (1= 3¢ + 2¢%) + 2[5 + 2(1 = 0)(1 = 2¢*)] LFy 0.0005 0.0541 0.6187
wR
wR B LFy 0.0016 0.0729 0.4406
LFy, =T[—0(4s — 1) — sc + 2ky(2s — 3sc + 0)] WR
LFy 0.0040 0.1083 0.6073
wR
5g. Unifor@ horizontal load on LFy :W7R|:3627ec+%(233+336739)+2k2(8700):| Fora==0
right side only 4 3
0 30° 60° 90°
W LF, = ’”TR [03 Csfet 2P _ 362 4 ac) — aky(2 - de? 1 26" — 03)]
/\E 3 LFy 0.0000 0.0039 0.0479
wR wR
LEy =710 = s+ 20,0 = 25 + 50)] LFy 0.0009 0.0448 0.3448
wR
LFy 0.0010 0.0276 0.1781
wR
5h. \/iert%cal loading uniformly LFy, = wR[ki(ZGCZ —0—50)+ky (& + 1)«]. —so)+ &20(00 _ s)] Foro=f=0and R, =R
distributed along the 2 R R
circumference (by gravity R. 0 30° 60° 90°
or linear acceleration) LFy = WR|:k10(0 + s¢) 4 2kys(s — 20c) — ég 2s(0c — S)]
LFy 0.0149 0.4076 2.3562
w LBy = 2wr(Fe ) wht
= 2WR| o4 ks ) (5 = 0c) LFy 0.1405 1.8294 6.4674
(Note: The full span is wk
loaded) See case 1h for a definition of the radius R, LFy, 0.1862 1.3697 4.0000
wR
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading Loading terms and some selected numerical values
5i. Horizontal loading LFy = wR[kIG(H —s0) +&2S((}C _ kzs):| Fora=f=0and R, =R
uniformly distributed along R
i R R . o o o
the cireumference (by LFy = wr] " 20 — 0 - 50y + (B2 4 1) ytse - 0) + (2R, - 2 )20 0 30 60 %
gravity or linear 2 R R
acceleration) Ry, LFy 0.0009 0.0501 0.4674
LFy = wR| ky — Vil 20s wR
ﬁ LFy —0.0050 —0.1359 ~0.7854
See case 1h for a definition of the radius R, wR
(Note: The full span is LFy 0.0000 0.0000 0.0000
loaded) wR
5j. Partial uniformly distributed LFy = wR[h(scm +2n— 0m — dm) + ky(s +n— Oc — ¢C)] Foro=f=0
radial loading 2
LFy, :wR[%(()n+(ﬁn+scn+s2m)+k2(()s+¢s—230n+2czm—c—m):| 0 30 60 90
" 0° 15° 0° 30° 0° 45°

LFy; = wR[ky(0 + ¢ — sm — cn)]

w
LF = =
W If ¢ = 6 (the full span is loaded) w;‘: 0.0013 0.0055 0.0353 0.1505 0.2146 0.8741
LFy = wR[k c(sc — 0) + 2ky(s — Oc)]

LEy 0.0208 0.0639 0.2819 0.8200 1.0708 2.8357

ulRIlS pue SSa.IS 10} Se|NW.OoS

\
\ | LFy = wRkys(0+ s¢) + 2ky5(0 — 250)] ok
l LFy = wR(2ky (0 = s0)] LFy 00236 00783  0.1812 05708 05708  1.6491
wR
5k. Partial uniformly increasing wR | ky 5 Forao==0
distributed radial loading LFn =55 { g lsen =0+ @t 2c—m = cim]
X 0 30° 60° 90°
+ 2210 + ¢)(2s — Oc — pe) + 2¢ — 2m]}
2 ¢ 0° 15° 0° 30° 0° 45°
wR | ky 5
/‘;“L.;LL((/ w LEy =55 2 Bt 2n -0+ dm—sme—c'n) LFy  0.0003 0.0012  0.0074 00330  0.0451  0.1963
wR
A s
" + 5‘[(0 + ¢)(0s + ¢s — 2¢) — 25 — 2n + dsme + 4c2n]} LEFy 0.0054  0.0169  0.0737  0.2246  0.2854  0.8245
wR
\ wR (&
l LFy = 14 [52[(0 +)° +2(cm — sn — 1)]] LFy 00059 00198 00461  0.1488  0.1488  0.4536
wR

If ¢ = 0 (the full span is loaded)
LFy = ";—f [ys(sc — 0) + 2k, 0(s — 00)]
wR 2 2 2
LFy = %[kl(z‘s —sc” — 0c) + 2ky(25¢ 4 50 — s — Oc)]

wR 5 5
LFy =5 [ks(0" = 5°)]
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

51. Partial second-order wR 9 Foroa=4=0
increase in distributed H= 0+ ¢)* {kl[(o + )2t m) =28 —2n—n —sem]
radial loading k 0 30° 60° 90°
2 3
2[3(0 + ¢)(0s + 2¢) — 6s — 61 — c(0
. + G130+ )(Os + bs +2¢) — 65 — 6n — (0 + ) 1] p o - o 0 o =
/‘;_LLLW LFy =B 1[0+ ¢)(@s — n) + me® — 3m — sen + 2] LFy 00001  0.0004  0.0025 00116  0.0155  0.0701
)\ 0+ ) wR
| ky s LFy 00022 00070  0.0303  0.0947  0.1183  0.3579
\\ _ E[3(() + $)(0c + pc + 2s) — 6¢ — 6m + 12¢(mce — sn) — s(0 + ¢)°] wR
} wR (h LFy 00024 0.0080 0018  0.0609  0.0609  0.1913
=—— 12[6(sm+cn—0—¢)+ (0 + )3] wR
T 3! )+ (0+ )]
If ¢ = 0 (the full span is loaded)
wR 5 2c0°
LFy = 20 [k1(390 —3s+5%) + 2k2<90 —s+s0” — =
wR 5 2s0°
LF, = 20 |:kls(() — 5¢) + 2k, (2s2c =05 —c0” + =
wR 20°
LFy = e |:kz (sc -0 +?>:|
5m. Partial uniformly LFy = ﬂ%[(() + )2+ ki (0n + ¢pn — sen — s*m + 2m — 2¢) + 2ky(m — ¢ — 0s — $s)] Foroa=f=0
distributed tangential 2R R
loading LFy :%[—(()+¢)zs+kl(0m+¢m+czn+scm — 25 —2n) 0 30 60 90
+ 2ky(0c + pc + 25%n — n — 2scm + )] ¢ 0° 15° 0° 30° 0° 45°
w
R
Zgﬁl:\‘ LFy, = %He + $)? + 2ky (1 + sn — cm)] LFy  _0.0001 —0.0009 —0.0077 —0.0518 —0.0708 —0.4624
wR
)\‘ ! If ¢ = 0 (the full span is loaded) LFy  _0.0028 —0.0133 —0.0772 —0.3528 —0.4483 —1.9428
' LFy = wR[20%¢ + kys(0 — sc) — ky20s] wR
\ LFy = wR[—20%s + ky(0c — 5 — 8°) + 2ky(0c + 5 — 25¢%)] LEy  —0.0031 —0.0155 —0.0483 —0.2337 —0.2337 —1.0687
wR

LFy; = wR(—20° + ky25)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

Reference no., loading

Loading terms and some selected numerical values

5n. Concentrated couple LFy = %[(0 +d)e — ky(s + )] Fora=p=0
M, 0 30° 60° 90°
M, LFy =2 [=(0+ ¢)s + ky(c — m)]
0° 15° 0° 30° 0° 45°
L o LEy =" 0 9) v °
Y ’1 LFyR  _0.0466 -0.0786 —0.3424 —0.5806 —1.0000 —1.7071
MO
LEyR  _0.3958 —0.4926 —1.4069 —1.7264 —2.5708 —3.0633
MD
LFyR  _05236 —0.7854 —1.0472 —1.5708 —1.5708 —2.3562
Mo
5p. Concentrated angular LFy = 0,EI (m—c)
displacement R?
0,EI
LFy = ' (s—n)
0,EI
b LEy =" ()
\eo -
1 ]
5q. Concentrated radial LE, — AEI n)
. H= p3
displacement Al
LEy = ;23 (m)
LFy =0

Ao;)%/_j.\
T

5r. Uniform temperature rise
over that span to the right of
point @

Q |

0
|

LFy = —(T — T,,)%(Hs)

LFy =@ -1y Z ()

RZ
LFy =0

T =uniform temperature
T, =unloaded temperature
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

5s. Linear temperature
differential through the
thickness ¢ for that span
to the right of point @

Q T

4\ ¢ T2

VEI
LFy =(T, - Tz)'ITt(n +5—0c— ¢c)
LFy = (T, — Tz)%(mfc+05+¢s)

yEI
LEy = (T, = T) 5o (0+ ¢)

Note: The temperature at the centroidal axis is the initial unloaded temperature

6. Left end pinned, right
end fixed

Ha
Va

Since dyy = 0,0y, =0, and M, =0,

Use load terms given above for cases 5a—5s

1, = BrvLFu = BuvLFy
BHHBVV - B%{V
v,  BunLFy — BuyLFy
BHHBVV - B;{V

RZ
Va =77 Burr Ha + Byy Va = LFy)

7. Left end guided in horizontal

direction, right end fixed

M
A V

Since dyy =0,¢4 =0, and Hy =0,

Use load terms given above for cases 5a—5s

v. _ BunLFy —~ ByyLFy
4 BVVBMM - B%JV

M, _ByyLFy — ByyLFy,

R Byy By — By

N R? M,
OHA :E(BHVVA +BHM7A*LFH>

8. Left end guided in vertical
direction, right end fixed

Since dgy =0,9, =0, and V, =0,

Use load terms given above for cases 5a—5s

~ BymLFy — By LFy

H,
47 BugByy — Bhy

M, _BuyLFy — BuyyLFy

R BHHBMM - B%IM

< R? M,
ova=g7 (BVHHA + Byy fA - LFV)
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

9. Left end roller supported
in vertical direction only,
right end fixed

Y

Va

Since dy, =0,H, =0, and My =0,

Use load terms given above for cases 5a—b5s

LFy, . _R®
Vy="Y  ys == (ByyVy — LFy)
A BVV HA EI HV YA H

RZ
Va =7 BuvVa — LFy)

10. Left end roller supported in
horizontal direction only,
right end fixed

Since dyy =0,V, =0, and M, =0,

Use load terms given above for cases 5a—5s

_LFy
BHH '

RZ
Va = 37 By Ha — LEy)

R
H, va = g7 (ByuHy — LEy)

11. Left end restrained against
rotation only, right end fixed

Ma

Since 4, =0,H, =0, and V, =0,

Use load terms given above for cases 5a—5s

My LFy N R} M,

T =By Ona = 57 (BHM & LF, H)
. R? M,

Oya = El (BVM fA - LFV)

12. Left end free, right end fixed

T T

Since Hy =0, V, =0, and M, = 0, this is a statically determinate problem. The deflections at the free end are given by

Use load terms given above for cases 5a—5s

_R® _R3

6HA:ﬁLFHV 6VA:ﬁLFV
_R?

'//A :ﬁLFM
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TABLE 9.3 Reaction and deformation formulas for circular arches (Continued)

13. Left end guided along an
inclined surface at angle (,
right end fixed

8

Pa

Since there is no deflection perpendicular to the incline, the following three equations must be solved for M, P,, and d;:

5 EI;T;SQ = P,y(Byy cos ¢ — Byy sin0) + Byy % —LFy,
5 EI;;“‘ = P,(Byy cos{ — Byy sin{) + Byy % —LFy
. s My
0= P4(Byy cos{ — By sin{) +BMMf —LFy

Use load terms given above for cases 5a—b5s

14. Left end roller supported
along an inclined surface
at angle (, right end fixed

3
r m
5 ;
p

A

Since there is no deflection perpendicular to the incline and M, = 0, the following equations give P,, 6;, and y:

LFy cos{ — LFy sin(

P, = _
By sin® { — 2By sin { cos { + Byy cos? {

3
o7 = % {P4[Bpy(cos® { — sin® {) + (Byy — Byp) sin{ cos {] — LFy cos { — LFy sin(}

R? . sy
Yy = E[PA(BMV cos { — By sin{) — LFy]

Use load terms given above for cases 5a—5s
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature

NOTATION: W =applied load normal to the plane of curvature (force); M, =applied bending moment in a plane tangent to the curved axis of the beam (force-length);
T, = applied twisting moment in a plane normal to the curved axis of the beam (force-length); w = distributed load (force per unit length); ¢, = distributed twisting moment
(force-length per unit length); V, =reaction force, M, =reaction bending moment, 7, =reaction twisting moment, y, = deflection normal to the plane of curvature,
©, =slope of the beam axis in the plane of the moment M, and 4, = roll of the beam cross section in the plane of the twisting moment 7, all at the left end of the beam.
Similarly, Vg, My, T, yg, ©p, and Y5 are the reactions and displacements at the right end: V, M, T, y, ©, and y are internal shear forces, moments, and displacements at an
angular position x rad from the left end. All loads and reactions are positive as shown in the diagram; y is positive upward; @ is positive when y increases as x increases; and
¥ is positive in the direction of 7.

R =radius of curvature of the beam axis (length); E = modulus of elasticity (force per unit area); I =area moment of inertia about the bending axis (length to the fourth
power) (note that this must be a principal axis of the beam cross section); G = modulus of rigidity (force per unit area); v =Poisson’s ratio; K = torsional stiffness constant of
the cross section (length to the fourth power) (see page 383); 0 = angle in radians from the left end to the position of the loading; ¢ = angle (radians) subtended by the entire
span of the curved beam. See page 131 For a definition of the term (x — 0)".

The following constants and functions are hereby defined to permit condensing the tabulated formulas which follow. f = EI/GK.

Py = i — 1 o) ¢ = psing— g1 —cosg)
Fzzlgﬁ(xcosxfsinx) C, = Hﬁ«ﬁcossbfsmaﬁ)

F, = (e — sin®) — 28 (xeosx — sinx) Co= (6 —sin )~ pcos g —sin )
F4:1;ﬁxcosx+1;ﬁsinx 04:1;ﬂ¢c05¢+1;ﬁsin</>

Fy =~ rcins ¢ =2l g sing

Fs=F, Cs=C

F;=F Cr=Gs

Fo= T sine -1 oo e Rl

Fy = F, Cy=C,

Fa,={“’}<x—9>sm(x 0) = 1 — costx — 0) [¢x — 0)° Cu =6~ ysin(@ — 0) — 1 — costs — o)
Fpy= Hﬂ [(x — 0) cos(x — 0) — sin(x — O)Kx — 0)° Cas :ﬂ[(qb 0) cos(¢ — 0) — sin(¢ — 0)]
Fas={—/f[x—9—sin<x—9)]—Faz><x—e>° Ca.a:—ﬁw—efsmw—e]—c

R = [ e costc -0+ 15 Leinte -0 e 0 Cu =36~ 0costo 0+ S Lsines - 0)
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

148 . N0
Fp=— 3 (x — 0) sin(x — 0)¢x — 0) Ca5:71+/3(¢ 0) sin( — 0)
Fu=F, Cus = Ca
Fy =Fy5 Cu1=Cys
F= |:1 3 ﬂsm(x —0)— ﬂ(x 0) cos(x — ())] (x—0)° Cus = - ﬁSiD(d’ -0)— ﬂ(d’ 0) cos(¢ — 0)
Fog=Fy Cug =Cpo
7 + B 0 +[

e = [(x — 0) sin(x — 0) — 2 + 2 cos(x — 0)Kx — 0 Copz =———(¢p — 0)sin(¢p — 0) — 2 + 2 cos(¢p — 0)]
Fooy = [ﬂi 1 cos(x — 0) - ") } - Fa12:|<x — 0y Cans = /3[1 —cos(9— 0) — @} —Co
Fos=Fop Cars = Caz
Foe="Fo Cuis = Cu3
Fag= |:1 — cos(x — 0) — 1+ /}( — 0) sin(x — 9)](95 -0y Cys =1—cos(¢p —0)— —ﬂ(d) — 0)sin(¢p — 0)
Fog=Faz Carg = Carz

1. Concentrated intermediate lateral load

Transverse shear = V = V, — W(x — 0)°
Bending moment = M = V,Rsinx + M, cos x — T4 sin x — WRsin(x — 0){x — 6)°
Twisting moment = 7' = V4 R(1 — cosx) + M, sinx + T4 cos x — WR[1 — cos(x — 0))(x — 0)°

L . M,R? TyR? VAR WR?
Deflection =y =y, + O4Rsinx + 4 R(1 — cosx) + i F+ BT —F, + Vi ———F3 — i —F,3
. . MR T,R V,R? WR?
Bending slope = © = @4 cosx + |, sinx + Bl Fy+-4 i Fs+ i Fs—ﬁFae
o . MR TR VAR? . WR?

Roll slope = = 4 cosx — Oy sinx + Bl F; + Bl Fg + i Fy 7 Fa Fo
2 2

For tabulated values: V =Ky W, M =KyWR, T=K;WR, y=K, % 0 =Ky % V=K, %
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no. Formulas for boundary values and selected numerical values
. _WR3 2
la. Right end fixed, left end free ya= 2’? [Cussing — Cpo(1 — cosd) — Cogl, @4 = Vg; (Cy5 008§ — Cog sin )
W 2
WR .
Va = (Cagcosd + Cogsin )
If B = 1.3 (solid or hollow round cross section, v = 0.3)
Vp=-W
¢ 45° 90° 180°
Mp = —WRsin(¢ — 0)
Vy=0 My=0 Ty=0 0 0° 0° 30° 60° 0° 60° 120°
_ _ _ Tg = —WR[1 — cos(¢ — 0)]
=0 Op=0 yp=0 K, 0.1607 1.2485 0.6285 0.1576 7.6969 3.7971 0.6293
A —0. —1. —0. —0. -7 —-3. —0.
Koa 0.3058 1.1500 0.3938 0.0535 2.6000 —0.1359 —0.3929
Kya 0.0590 0.5064 0.3929 0.1269 3.6128 2.2002 0.3938
Kyp —1.0000 —1.0000 —1.0000 —1.0000 —1.0000 —1.0000 —1.0000
Kyp —0.7071 —1.0000 —0.8660 —0.5000 —0.0000 —0.8660 —0.8660
Krp —0.2929 —1.0000 —0.5000 —0.1340 —2.0000 —1.5000 —0.5000
1b. Right end fixed, left end simply VieW Ca9(1 —cos @) — Cygsing + Cyg
A= -
supported Co(1 —cosp) — Cgsing + Cy
0, = WR? (C45Co — CagC3) sin § + (Cag Cs — CagCo)(1 — 08 §) + (Co C5 — Ca3Ce) cos ¢
W AT EI Co(1 —cosdp) — Cgsin + Cy
WRZ [Ca6(Cs + Cg) — Cs(Cag + Cag)lsin d + (Cg C5 — C3Cy) cos ¢
A= Cy(1 —cos ) — Cgsing + Cy
Vp=V,-W
v, Mg = V,Rsin ¢ — WRsin(¢ — 0) If p = 1.3 (solid or hollow round cross section, v = 0.3)
Ty = VoR(1 — cos ¢) — WR[L — cos(¢p — 0)] ¢ 45° 90° 180°
My=0 Ty=0 y,=0 0 15° 30° 30° 60° 60° 120°
yp=0 Op=0 yYyp=0
Ky, 0.5136 0.1420 0.5034 0.1262 0.4933 0.0818
Koy —0.0294 —0.0148 —0.1851 —0.0916 —1.4185 —0.6055
Kya 0.0216 0.0106 0.1380 0.0630 0.4179 0.0984
Kyp —0.1368 —0.1584 —0.3626 —0.3738 —0.8660 —0.8660
Kpp 0.0165 0.0075 0.0034 —0.0078 —0.5133 —0.3365
Ko 0.1329 0.0710 0.2517 0.1093 0.4272 0.0708
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

lc. Right end fixed, left end supported

W(CQ9C4 = CasCr)(1 — €08 ) + (CyCy — Co3Cy)cos ¢ + (Cy3Cr — CygCy) sin

Vy= B
and slope guided 4 (C4Cy — CsCr)(1 = cos ) + (€, Cs — C3Cy) cos ¢ + (C3C7 — C, Co) sin g
w M. — WR(Cascs = Ca9Cs)(1 — cos ) + (Cy3Cs — Co C3) €08 ¢ + (Cog C3) — Co3Cy) sin ¢
4 (C4Cy — CsCr)(1 = cos ) + (C; C5 — C3Cy)cos ¢ + (C3C7 — C, Cg) sin
M
A v, = WR? Ca3(C4Cy — CsCq) + Co(C3C7 — C1Cy) + Cog(C1 C — C3Cy)
C AT EI (C,Cy — C4Cq)(1 = cos d) + (C;Cg — C5Cy) cos  + (C3C; — C;Cy) sin ¢
v Vg=Vyi—W If f = 1.3 (solid or hollow round cross section, v = 0.3)
A ° o o
Mp =V, Rsin ¢ + My cos ¢ — WRsin(¢p — 0) [ 45 90 180
Ty=0 y4=0 0,=0 o o o o o o
_ ; 0 15 30 30 60 60 120
yp=0 @p=0 Yp=0 Ty = VaR(1 — cos ¢) + M, sin ¢ — WR[1 — cos(¢p — 0)]
Ky, 0.7407 0.2561 0.7316 0.2392 0.6686 0.1566
Kya —0.1194 —0.0600 —0.2478 —0.1226 —0.5187 —0.2214
Kyu —0.0008 —0.0007 —0.0147 —0.0126 —0.2152 —0.1718
Kyp —0.0607 —0.1201 —0.1344 —0.2608 —0.3473 —0.6446
Krp —0.0015 —0.0015 —0.0161 —0.0174 —0.1629 —0.1869
Ky 0.0764 0.0761 0.1512 0.1458 0.3196 0.2463
1d. Right end fixed, left end supported V= 1w (Cas + Ca9)Cs = Cu(Cy + Co)lsind + (Cus Cs = Cap Cy) cos ¢
and roll guided [C5(C3 + Cy) — C4(Cy + Cy)lsin +(C5Cs — Cy Cy) cos
W T, = WR[C:JS(CS + Cy) = C6(Caz + Cag)lsin g +(Cog C3 — Cy3C) cos ¢
4 [C5(C5 + Cg) — C6(Cy + Cy)lsin ¢ + (C3Cy — CyCq) cos
0, = WR? Cy3(C5Cy — CsCs) + Ca6(C5Cs — CyCy) + Cog(CyCs — C5C5)
£ AT EI [C5(C3 + Cg) — C4(Cy + Cg)]sin ¢ + (C3Cg — CyCy) cos ¢
T
A
Vp=V,—-W
A B=Va
Mg = VyRsin¢ — Ty sin¢ — WRsin(¢ — 0) If B = 1.3 (solid or hollow round cross section, v = 0.3)
My=0 y4=0 Yy =0
yp=0 Op=0 =0 Tg = V,R(1 — cos ¢p) + T4 cos o — WR[1 — cos(¢p — 0)] b 45° 90° 180°
0 15° 30° 30° 60° 60° 120°
Ky, 0.5053 0.1379 0.4684 0.1103 0.3910 0.0577
Kpy —0.0226 —0.0111 —0.0862 —0.0393 —0.2180 —0.0513
Koa —0.0252 —0.0127 —0.1320 —0.0674 —1.1525 —0.5429
Kyp —0.1267 —0.1535 —0.3114 —0.3504 —0.8660 —0.8660
Krp —0.0019 —0.0015 —0.0316 —0.0237 —0.5000 —0.3333
Ky 0.1366 0.0745 0.2773 0.1296 0.5274 0.0944
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

le. Right end fixed, left end fixed

Ca3(CyCs — C5Cq) + Cyg(Cy.C7 — €1 Cg) + Cg(C1 G5 — C,Cy)

Vi=W
W 4 Ci(C5Cy — CsCg) + Cy(C3C5 — C5.Cg) + C7(CyCg — C3.C5)
M, = WRC“3(05C9 — CsCs) + Cup(C3Cy — C3Cy) + Cog(Cy Cs — C3C5)
C1(C5Cy — C5Cg) + Cy(C3Cs — CyCy) + C(C,.Cs — C3Cs)
T, — WRCas(C6C7 — CyCy) + Cu6(C1Cy — C3C7) + Cog(C3C4 — C1 C)
“ C1(C5Cy — CsCg) + C4(C3C5 — Cy.Cg) + C7(Cy G — C3.C5)
ya=0 ©,=0 y,=0 V=V, - W - -
yp=0 Og=0 Yp=0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp = V,Rsin ¢ + M, cos ¢ - - -
', sing - WRsin(p— 0) é 45 90° 180 270 360
. 0 15° 30° 60° 90° 90° 180°
Tg = V4R(1 — cos ¢p) + My sin ¢
+ Ty cos ¢ — WR[1 — cos(¢ — 0)] Ky, 0.7424 0.7473 0.7658 0.7902 0.9092 0.5000
Kya —0.1201 —0.2589 —0.5887 —0.8488 —0.9299 —0.3598
Kpy 0.0009 0.0135 0.1568 0.5235 0.7500 1.0000
Kyp —0.0606 —0.1322 —-0.2773 —0.2667 0.0701 —0.3598
Krp —0.0008 —0.0116 —0.1252 —0.3610 —0.2500 —1.0000
Ky 0.0759 0.1427 0.2331 0.2667 0.1592 0.3598
1f. Right end supported and V. — W[—Cl sin ¢ + C,4(1 — cos $)][1 — cos(p — 0)] + Cyg sin” ¢ — Cyg sin (1 — cos ¢)
slope-guided, left end supported A C,4(1 —cos 4))2 +Cy sin’ ¢ —(Cy + Cg)(1 —cos¢p)sing
and slope-guided
C,6(1 —cos ¢)? — Cy3(1 —cos ¢)sin g + [Cy sin ¢ — Cg(1 — cos P)][1 — cos(¢p — 0)]
M, =+WR : ki :
Ve C,(1 —cos $)* + Cysin® ¢ — (C; + Cg)(1 — cos ) sin ¢
W Va= WR? (Cy3Cy — CogC1)(1 — cos ) — (Ca3Cs — Ca6Cs) sin ¢ — (C5C4 — C1 Cg)[1 — cos(¢p — 0)]
A EI C,4(1 = cos $)* + Cy sin ¢ — (C, + Cg)(1 — cos p) sin ¢
M MB If = 1.3 (solid or hollow round cross section, v = 0.3)
A
Vg=Vy—W
C ¢ 45° 90° 180° 270°
Mp = V,Rsin¢ + M, cos p — WRsin(¢p — 0)
v, 0 15° 30° 60° 90°
A M,R V,R? WR?
o v —0 60 Ve =vacosd+pr Crt—pr G~ Cos Ky 0.7423 0.7457 0.7500 0.7414
R Ja= 0 6 o Ky —0.1180 —0.2457 —0.5774 —1.2586
5=0 ¥p=0 Op= Ky —0.0024 ~0.0215 ~0.2722 ~2.5702
Kus ~0.0586 ~0.1204 —0.2887 —0.7414
Kyp —0.0023 —0.0200 —0.2372 —2.3554
Ky 0.0781 0.1601 0.3608 0.7414
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

1g. Right end supported and slope-
guided, left end supported and roll-
guided

VB
1 )
T, ( Mg
VA

Vyi=W

(C5 sin ¢ — Cy cos )[1 — cos(¢p — 0)] + Cyg cos® ¢p — Cyq sin ¢ cos ¢

T, = WR

(C5sin¢ — Cy cos ¢p)(1 — cos ¢) + C3 cos? ¢ — Cg sin ¢ cos ¢

(C5cos ¢ — Cgsin)[1 — cos(¢p — 0)] — (Cyz cos p — Cyg sin ¢)(1 — cos ¢)

(Cj sin ¢ — Cy cos ¢)(1 — cos p) + C; cos? ¢ — Cg sin ¢ cos ¢

_ WR? (C;,Cs — C3C5)[1 — cos(¢p — 0)] + (Ca3C5 — Co Co)(1 — c0s ) + (Cos C3 — C3Cs) cos

0, =

EI (C;5 sin ¢ — Cy cos ¢p)(1 — cos Pp) + Cs cos? ¢ — Cg sin ¢ cos ¢
Vg=Vy-W If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V, Rsin¢$ — T sin¢p — WRsin(¢ — 0) ¢ 45° 90° 180°
Mi=0 =0 4,=0 o TR, ViR WR 0 15° 30° 30° 60° 60° 120°
. Vg = ®Asm¢+7EI Cg+7EI Cy E C,
Tp=0 yp=0 05=0 Kua 0.5087 0.1405 0.5000 0.1340 0.6257 0.2141
Kry —0.0212 —0.0100 —0.0774 —0.0327 —0.2486 —0.0717
Koa —0.0252 —0.0127 —0.1347 —0.0694 —1.7627 —0.9497
Kyp —0.1253 —0.1524 —0.2887 —0.3333 —0.8660 —0.8660
Kyp —0.0016 —0.0012 —0.0349 —0.0262 —0.9585 —0.6390
L) 0.1372 0.0753 0.2887 0.1443 0.7572 0.2476
1h. Right end supported and slope- V=W 1 —cos(¢ — 0)
guided, left end simply supported 1—cos¢
Vg o, WR? (C,3sin ¢ + Cg[1 — cos(¢p — 0)] ~ Cysing[l —cos(¢ —0)] c
A EI 1—cos¢ (1= cos p)? “
Y ) WR? [Cygsin ¢ — C, [ (¢ — 0)
w6 SIn ¢ — Cy5 cos . 1 —cos(¢p —
=— | — (Cgsing — C3c08 p) —————
Mg Ya EI { 1—cos¢ (Cosing 3cos ¢) (1 — cos ¢)* }
Vp=Va-W If # = 1.3 (solid or hollow round cross section, v = 0.3)
v Mp = V,Rsin ¢ — WRsin(¢ — 0) ® 45° 90° 180°
A 2 2
My=0 T,=0 y,=0 WE=WACOS¢_®ASin¢+V2:}; Cg_%ca9 0 15° 30° 30° 60° 60° 120°
4= a= A=
Tp=0 yp=0 Op=0 Ky, 0.4574 0.1163 0.5000 0.1340 0.7500 0.2500
Koa —0.0341 —0.0169 —0.1854 —0.0909 —2.0859 —1.0429
Ky 0.0467 0.0220 0.1397 0.0591 0.4784 0.1380
Kyp —0.1766 —0.1766 —0.3660 —0.3660 —0.8660 —0.8660
Kyp 0.0308 0.0141 0.0042 —0.0097 —0.9878 —0.6475
Ky 0.1184 0.0582 0.2500 0.1160 0.6495 0.2165
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

1i. Right end supported and roll-guided,

_ W(C"S + Cy9)sin ¢ + (Cy + Cg) sin(¢p — 0)

V, -
left end supported and roll-guided 4 (Cy + C3 + Cg + Cy)sing
Vg T, = WR(CaJB + Cag)sin ¢ — (Cy + Cy) sin(¢ — 0) If B = 1.3 (solid or hollow round cross section, v = 0.3)
(Cy + Cy+ Cg + Cy)sing
w Y) ¢ 45° 90° 270°
_ WRZ Cy5(Cs + Cy) = Cug(Cy + C3) + (C,Cg — C5Cg) sin(¢p — 0)/ sin
Ts ATTEI (C, + Cy + Cg + Cy)sin 0 15° 30° 90°
T ( V=V, - W Kya 0.6667 0.6667 0.6667
A Ky —0.0404 —0.1994 0.0667
v Ty = V4,R(1 — cos ¢) + Ty cos ¢ — WR[1 — cos(¢ — 0)] Kou —0.0462 —0.3430 —4.4795
A v TR w Krp 0.0327 0.1667 ~1.3333
M,=0 y,=0 y,=0 O = O cos+ At Cot AT, -Gl Kop 0.0382 0.3048 1.7333
Mp=0 yp=0 yp=0 Ko 0.1830 0.4330 0.0000
1j. Right end supported and roll-guided, V, = WSin(_¢ —0)
left end simply supported sin ¢
V, 2 ;
B _ WR? [Cy3c08 ¢ — Cog(1 — cos ) sin(¢ — 0)
W ®A7ﬁ[Tf[cgcosqﬁ—cg(lfcostﬁ)]m
) WR? sin(¢ — 0)
Tg Va= EL |:Ca:3 +Ca9 = (C3+ Cg)w]
v Vio_w If f = 1.3 (solid or hollow round cross section, v = 0.3)
B=Va—
45° 90° 270°
Va Ty = V,R(1 — cos ¢) — WR[L — cos(¢ — 0)] ¢
0 15° 30° 30° 60° 90° 180°
My=0 Ty=0 y,=0 Op = O, cos g+ si ¢+VARQC WRQC ’
= S Y4 SN T =
Mp=0 yp=0 yp=0 B= A A EI ° EI 7 Kya 0.7071 0.3660 0.8660 0.5000 0.0000  —1.0000
Koa —0.0575 —0.0473 —0.6021 —0.5215 —3.6128 0.0000
Kyu 0.0413 0.0334 0.4071 0.3403 —4.0841 —8.1681
Kpp 0.0731 0.0731 0.3660 0.3660 —2.0000 —2.0000
Kop 0.0440 0.0509 0.4527 0.4666 6.6841 14.3810
Ky 0.1830 0.1830 0.4330 0.4330 0.0000 0.0000
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

2. Concentated intermediate bending
moment

Transverse shear = V =V,

Bending moment = M = V,Rsinx + M, cosx — T, sinx 4+ M, cos(x — 0){x — 0)°

Twisting moment = T = V,R(1 — cosx) + My sinx + T, cos x + M, sin(x — 0){x — 6)°

Vertical deflection =y =y, + ©4Rsinx+ y, R(1 — cosx) + M,

Bending slope = ® = @, cosx + /4 sinx +

Roll slope =y = 4 cosx — @4 sinx +

For tabulated values V = Ky, %

M,R
EI

M =Ky M,,

M,R
EI

T4R

F+

TR . VAR® . M,R?
T R 7] TR 7
T.R. VR . MR
AT+ AL By + SRy
ViR: . MR
Fy+ A0 Fy+ 20,
M,R? M, MR
T=KM, y=K Vel 0=Kyel u=K,"y

End restraints,reference no.

Formulas for boundary values and selected numerical values

2a. Right end fixed, left end free

Mo

Vyo=0 My=0 T,=0
yp=0 Op=0 yYyp=0

M, R? .
Ya = ﬁ[cm sin¢ — Cyr(1 —cos¢) — Cyl

MR . .
04 =77 (Carsing — Cyy cos §)

M,R .
Va=——g7 (Cusing + Cyrcos9)
V=0, Mpy=M,cos(¢—0)

Ty =M, sin(¢ — 0)

If f = 1.3 (solid or hollow round cross section, v = 0.3)

® 45° 90° 180°

0 0° 0 30° 60° 0 60° 120°
K 0.3058 1.1500 1.1222 0.6206 2.6000 4.0359 1.6929
Ko ~0.8282 ~1.8064 ~1.0429 ~0.3011 —3.6128 ~1.3342 0.4722
Ky 0.0750 0.1500 —0.4722 —0.4465 0.0000 ~2.0859 ~1.0429
Kyn 0.7071 0.0000 0.5000 0.8660 —1.0000 —0.5000 0.5000
Krp 0.7071 1.0000 0.8660 0.5000 0.0000 0.8660 0.8660
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

2b. Right end fixed, left end simply
supported

Mo

Va

_ =M, Cy7(1 —cos ) — Coy sin ¢ + Cyy

Va= R Cy(1—cos¢p)— Cgsing + Cy

0, = ~ M,R(Cyy Cy — CyrCy)sinp + (Cy7Cs — Cuy Co)(1 — cos §) + (Cyy Cg — Cyy Cg) cos ¢
AT TEI Co(1—cos ) — Cgsin g + Cy

vy = M, R[(Cos(Cy + C3) — Cs(Cay + Cap)Isin @ + (Coy C5 — Cyy Cg) cos ¢
AT TR Co(1 —cos ) — Cgsing + Cy

V="V,

Mp = V,Rsin ¢ + M, cos(¢ — 0)

My=0 Ty=0 y,=0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
_ _ _ Ty = V4R(1 — cos ¢) + M, sin(¢p — 0)
yg=0 Op=0 WB*O N N
¢ 45° 90° 180°
0 0° 0° 30° 60° 0° 60° 120°
Ky, —1.9021 —0.9211 —0.8989 —0.4971 —0.3378 —0.5244 —0.2200
Koa —0.2466 —0.7471 —0.0092 0.2706 —2.7346 0.0291 1.0441
Kya 0.1872 0.6165 —0.0170 —0.1947 1.2204 —0.1915 —0.2483
Kyp —0.6379 —0.9211 —0.3989 0.3689 —1.0000 —0.5000 0.5000
Kpp 0.1500 0.0789 —0.0329 0.0029 —0.6756 —0.1827 0.4261
2c. Right end fixed, left end supported V, = 7Mo (Ca7Cy — CaCr)(1 — cos ¢) +(Cay €y — C11 Cy) 08§ + (Cyy C7 — C7Cy) sin ¢
and slope-guided R (C,Cy— CCr)(1 —cos ) +(C,Cq — C3Cy)cos dp +(C5C; — €, Cy) sin g
M. —-M (CasCy — Ca7C6)(1 — cos ¢) + (Co1 Cs — Cay C3) c0s  + (Co7C5 — Coy Cy) sin
M, 4 ¢ (C4Cy — C5C7)(1 —cos ) + (C,C5 — C3Cy) cos ¢ + (C3C; — C, Cy) sin ¢
M
A Uy = MR Ca1(C4Cy — C4Cy) + Cy(C5C7 — €1 Cg) + C7(C, Cg — C5Cy)
C 4 EI (C,Cy — CsCr)(1 —cos ¢) +(C,Cs — C3Cy)cos § +(C5C; — C Cy) sin g
Vg =V, If = 1.3 (solid or hollow round cross section, v = 0.3)
V,
A o o o
My = V,Rsin ¢ + My cos ¢ + M, cos(¢ — 0) ¢ 45° 90 180
Ta=0 74=0 06,=0 Ty = V4R(1 — cos ¢) + M, sin ¢ + M, sin(¢ — 6) 0 15° 30° 30° 60° 60° 120°
yp=0 Op=0 yYp=0 BT A A °
Ky, —1.7096 —1.6976 —0.8876 —0.8308 —0.5279 —0.3489
Ky ~0.0071 0.3450 ~0.0123 0.3622 0.0107 0.3818
Kya —0.0025 0.0029 —0.0246 0.0286 —0.1785 0.2177
Kyp —0.3478 0.0095 —0.3876 0.0352 —0.5107 0.1182
Kyp —0.0057 0.0056 —0.0338 0.0314 —0.1899 0.1682
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

2d. Right end fixed, left end supported
and roll-guided

¢

Ta
Va

Mo

_ M, [(Ca1 + Ca7)C5 = Ca(Cy + Cy)lsin ¢ + (Cy Cs — Cor Cp) cos ¢

VA= "R [Cs(C; + Cy) — CalCy + Co)lsin § 1 (C3Cs — CoCo)cos
T —_M [Caa(Cs + Cg) — (Cyg + Car)Celsin g + (Cy7 C — Cyy Co) cos ¢
AT T IGHC + Cy) = Co(Cy + Cylsin g+ (CCs — CyCy)cos
_ M, RCu;i(C5Cy — C6Cg) + Cua(C3Cs — C3Cy) + Cor(C2Cs — C3C5)
4 EI  [C5(C3+ Cy) — C4(Cy + Cy)lsin ¢ + (C5C5 — C,Cy) cos ¢
Vp=V,

Mp =V, Rsin¢ — Ty sin¢

If f = 1.3 (solid or hollow round cross section, v = 0.3)

My=0 y,=0 y,=0 + M, cos(¢p — 0) _ C N
Yam0 On=0 Ya=0 & 45 90 180
Tp = V4R(1 —cos §p) + Ty cos ¢ 0 0° 0 30° 60° 0 30° 60°
+ M, sin(¢ — 0)
Ky, —1.9739 —1.0773 —0.8946 —0.4478 —0.6366 —0.4775 —0.1592
Kpa —0.1957 —0.3851 0.0106 0.1216 —0.6366 0.0999 0.1295
Koa —0.2100 —0.5097 —0.0158 0.1956 —1.9576 —0.0928 0.8860
Kyp —0.5503 —0.6923 —0.4052 0.2966 —1.0000 —0.5000 0.5000
Kip —0.0094 —0.0773 —0.0286 0.0522 —0.6366 —0.1888 0.4182
2e. Right end fixed, left end fixed V, = M, Cy (C4Cg — C5C7) + Coa(CoC7 — Gy Cg) + Coq(C, G5 — C,Cy)
R C(C5Cy — CsCy) + C4(C5Cy — Cy.Cy) + C1(CyCs — C3C5)
Mo M, = — Car(C5Cy — CsCy) + Cos(C3Cs — CyCy + Cyr(Cy G — C3C5)
8 7 C1(C5Cy — C4Cg) + C4(C3Cg — C3.Cy) + C1(CyC — C3C5)
T — M Ca1(CeC7 — C4C) + Cuy(C1Cy — C3C7) + Cyr(C3C4 — €1 C)
4 7 Cy(C5Cy — CCg) + C4(C3Cs — CyCy) + C7(CoC — C5Cs)
ya=0 0,=0 y,=0 V=V,
y; -0 @2 —0 ,/,2 -0 s 4 If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin¢$ + M, cos ¢ — Ty sin¢ . N . . .
+ M, cos(é — 0) ¢ 45 90 180 270 360
. 0 15° 30° 60° 90° 90° 180°
Tg = V4R(1 — cos ¢) + My sin ¢ + Ty cos ¢
+ M, sin(¢ — 0) Ky, —1.7040 —0.8613 —0.4473 —0.3115 —0.1592 —0.3183
Kya —0.0094 —0.0309 —0.0474 0.0584 —0.0208 0.5000
Ky 0.0031 0.0225 0.1301 0.2788 0.5908 —0.3183
Kyp —0.3477 —0.3838 —0.4526 —0.4097 —0.0208 —0.5000
Krp —0.0036 —0.0262 —0.1586 —0.3699 —0.4092 —0.3183
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

2f. Right end supported and slope-

guided, left end supported and
slope-guided

Ty=0 y,=0 ©4=0
=0 yp=0 Oz=0

M [C, sin ¢ — Cy(1 — cos )] sin(p — 0) — Cyy sin® ¢ + Cyy sin (1 — cos P)

V=

R C4(1 = cos §)* + Cy sin® ¢ — (C; + Cg)(1 — cos p) sin
M. — [Cd sin ¢ — Cg(1 — cos ¢)]sin(¢p — 0) — Cyy (1 — cos ¢) sin ¢ + C,y(1 — cos ¢)?
AT C,4(1 = cos $)* + Cy sin’ ¢ — (C; + Cg)(1 — cos p) sin ¢
v MoR (C5C, — C; Cg)sin(¢p — 0) + (Cy1 Cs — Cas Cs)sinp — (Cy1 Cy — Coy C1)(1 —cos ¢) | 1f f=1.3 (solid or hollow round cross section, v = 0.3)
A= G — 7 PRIy — -
Cy(1 —cos¢)” + Cysin” ¢ — (Cy + Cg)(1 — cos ) sin ¢ 45° 90° 180° 270°
Va="Va . - 0 p .
My =V yRsing + M M -
s = VaBisin ¢ + My cos ¢ + M, cos( —0) Ky, | —-17035  —0.8582  —0.4330  —0.2842
M.R MR Kya | —0.0015  —0.0079  —0.0577  —0.2842
Yp=vacosd+—prCr + YAl Ce +57 Car Ky,a | —0.0090 00388  —0.2449  —1.7462
Kyp —0.3396 —0.3581 —0.4423 —0.7159
Kyp —0.0092 —0.0418 —0.2765 —1.8667

2g. Right end supported and slope-

guided, left end supported and
roll-guided

¢

Va

My=0 y4=0 Y, =0
Tp=0 yp=0 Op=0

M, C,; cos? ¢ — C,ysin¢cos ¢ + (Cs sin g — C, cos ¢) sin(¢p — 0)

Va=- R (C5sin¢ — Cycos ¢)(1 — cos ¢) + C; cos? ¢ — Cy sin ¢ cos ¢
oM (Cpysin ¢ — Cyy cos P)(1 — cos @) + (Cy cos ¢ — Cg sin @) sin(¢p — 0)
A= ° (Cssing — Cycos dp)(1 — cos ) + Cs cos? ¢ — Cg sin ¢ cos ¢
o, — —M,R(Cyy C5 — Cay Co)(1 — cos ) + (Cy C3 — Cyy Cg) c0s ¢ + (Cy Cg — C3C;) sin(¢p — 0)
A EI (C5sin ¢ — Cy cos P)(1 — cos ¢p) + Cg cos? ¢ — Cg sin cos ¢
V=V,
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin¢g — T,y sin¢ -
+ M, cos(¢p— 0) ¢ 45 90° 180
) T,R 0 0° 0° 30° 60° 0° 60° 120°
Yp=—0ysing +—— 71 Cg
V.R? MR Ky, —1.9576 —1.0000 —0.8660 —0.5000 —0.3378 —0.3888 —0.3555
+ = A Cy +—— 7T C,; Kry —0.1891 —0.3634 0.0186 0.1070 —0.6756 0.0883 0.1551
Kou —0.2101 —0.5163 —0.0182 0.2001 —2.7346 —0.3232 1.3964
Kyp —0.5434 —0.6366 —0.3847 0.2590 —1.0000 —0.5000 0.5000
Ky —0.0076 —0.0856 —0.0316 0.0578 —1.2204 —0.3619 0.8017
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

[9'6 038

2h. Right end supported and slope- V, = 7%5“1(4) - 0)
guided, left end simply supported R 1-cos¢
Vg 6. — MR|: C,; sin ¢ + Cg sin(¢p — 0) Cssind)sin(di—(-))_c ]
AT Rl 1—cos¢ (1 — cos §)* ot
MB
Mo 4) vy = MR |:Ca4 sin¢ — C,,; cos ¢ . (C3 cos ¢ — Cgsin¢) sin(¢p — ()):|
AT EI 1—cos¢ (1 — cos p)?
V=V, - -
If = 1.3 (solid or hollow round cross section, v = 0.3)
My =V Rsind + M, —0
v 5 = VaRsing +M, cos(¢ = 0) ® 45° 90° 180°
A ) V.R?
My=0 T,=0 0 U =¥acosg = Oasind + o 0 o 0 30° 60° 0° 60° 1200
A= A= Ya=
Tp=0 yp=0 Op=0 +% Cu Ky, —2.4142 —1.0000 —0.8660 —0.5000 0.0000 —0.4330 ~0.4330
Koa —0.2888 —0.7549 —0.0060 0.2703 —3.6128 —0.2083 1.5981
Kyu 0.4161 0.6564 —0.0337 —0.1933 1.3000 —0.1700 —0.2985
Kyp —1.0000 —1.0000 —0.3660 0.3660 —1.0000 —0.5000 0.5000
Kyp 0.2811 0.0985 —0.0410 0.0036 —1.3000 —0.3515 0.8200
2i. Right end supported and roll-guided, V. — M, (Cu+ C,7)sin® ¢ + (Cy + Cg) cos(¢p — ) sin ¢
left end supported and roll-guided AT R (Cy 4 C3 4 Cg + Cy) sin? ¢
\ 7, = _pg, Can + Cor) sin® ¢ — (Cy + Cy) cos(¢p — 0) sin §
4 (Cy + Cy + Cs + Cy) sin” ¢
Mo ) 0, = - MoRICus(Cs + Co) = Cur(Cy + Gyl +(CoCy — CsCcosts — )
Ty A EI (Cy 4 C5 4 Cg + Cg) sin® ¢
( Vg =Vy
TA If f = 1.3 (solid or hollow round cross section, v = 0.3)
v Ty = V,R(1 — cos ¢p) + T cos ¢ + M, sin(¢p — 0)
A
R VR M,R o o o
My=0 y4=0 y,=0 O =0 cong+ 2R, V¢ MR ¢ 4 % 210
Mp=0 yp=0 yp=0 0 0° 15° 0° 30° 0° 90°
Ky, —1.2732 —1.2732 —0.6366 —0.6366 —0.2122 —0.2122
Ky —0.2732 —0.0485 —0.6366 —0.1366 —0.2122 0.7878
Koa —0.3012 —0.0605 —0.9788 —0.2903 —5.1434 0.1259
Kpp 0.1410 0.0928 0.3634 0.2294 —1.2122 —0.2122
Kop 0.1658 0.1063 0.6776 0.3966 0.4259 2.0823
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

2j. Right end supported and roll-guided, V= 7Mo CO§(¢ -0
left end simply supported Rsin¢
V. M,R | C, cos¢p — Cyy(1 —cosp) [Cycosp — Cy(1 — cos )] cos(¢p — 0)
B 04 =" : - _—
sin ¢ sin” ¢
Mo ‘) oo MR[o o (Gt Ceos(~0)
T AT TEI al af sin ¢ If f = 1.3 (solid or hollow round cross section, v = 0.3)
B
V=V, ¢ 45° 90°
v Ty = V4R(1 — cos §) + M, sin(¢ — 0) 0 0° 15° 30° 0° 30° 60°
A
R? M,R K —1.0000 —1.2247 —1.3660 0.0000 —0.5000 —0.8660
Va VA
My=0 Ty=0 y,=0 O = O cos¢+asiné + = Cs + 5 Cas Kon —0.3774 ~0.0740 0.1322 ~1.8064 ~0.4679 0.6949
Mp=0 yp=0 Yyp=0 Ky 0.2790 0.0495 —0.0947 1.3000 0.2790 —0.4684
Krp 0.4142 0.1413 —0.1413 1.0000 0.3660 —0.3660
Kop 0.2051 0.1133 —0.0738 1.1500 0.4980 —0.4606
3. Concentrated intermediate twisting
moment (torque) Transverse shear = V =V,
Bending moment = M = V,Rsinx + M, cosx — T4 sinx — Ty sin(x — 0)¢x — 0)°
Twisting moment = 7' = V4 R(1 — cosx) + My sinx 4 T cos x + T cos(x — 0)¢x — 0)°
. . . M,R? T4R? V,R? T,R?
Vertical deflection =y =y, + ®4Rsinx + 4, R(1 — cosx) + }/';I F + %I Fy + 2‘[ Fy + 2,1 F,,
MR T.,R_ V,R*_ TR
Bending slope = ©® = ©,4 cosx + 1/, sinx + —5— Bl F,+ &I —Fs + ok ———Fs + Bl ——F,
. MR TR V,R? T,R
Roll slope = =4 cosx — @y sinx + BT F,+ i —“—Fg+—— i Fy+ T —2—F.
T, T,R? T,R T, R
For tabulated values: V/ :va", M=KyT, T=K;T, y=K,~—— T 0 =Ky T V= K,/,

ujelIlS pue SSa4]S 10} SejNuWLIoS

6 "dvHO]



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

3a. Right end fixed, left end free

T,R* .
Ya = ﬁ[caé sin¢ — Cyg(1 — cos ¢) — Cyol

T,R .
0, =- EO‘I (Cy5 cos  — Cog sin )
T,R .
T Va= ’ﬁ(cas cos ¢ + Cys sin¢) If B = 1.3 (solid or hollow round cross section, v = 0.3)
o
Vi=0 M,=0 T,=0 V=0 b 45° 90° 180°
yp=0 Op=0 Yp=0 My = T, sin(¢ — 0) 0 0° 0° 30° 60° 0 60° 120°
Tg =T, cos(¢p — 0) K, —0.0590 —0.5064 0.0829 0.3489 —3.6128 0.0515 1.8579
Kou —0.0750 —0.1500 —0.7320 —0.5965 0.0000 —2.0859 —1.0429
Kya 0.9782 1.8064 1.0429 0.3011 3.6128 1.0744 —0.7320
Kyp —0.7071 —1.0000 —0.8660 —0.5000 0.0000 —0.8660 —0.8660
Ky 0.7071 0.0000 0.5000 0.8660 —1.0000 —0.5000 0.5000
3b. Right end fixed, left end simply V= T, Cus(1—cosp) — Cpssing + Cyp
supported R Cy(1—cos¢) — Cgsing + Cy
0, — _T,R(CyyCy — CysCs3)sin ¢ + (CoCs — Cy5 Co)(1 — €08 §) + (C5Cs — CoCg) cos ¢
4 EI Cy(1 —cos§p) — Cgsing + Cy
vy =— ToR[Cus5(Co + C3) — Ce(Cuz + Cuglsin g + (Cyg C3 — Cp Co) cos ¢
AT TE Cy(1 —cosp) — Cysing + Cy
To
V=V,
VA . .
Mp =V Rsin$ — T, sin(¢ — 0) If p = 1.3 (solid or hollow round cross section, v = 0.3)
My=0 Ty=0 y,=0 Ty = V4R - cos ¢) + T, cos(¢ — 6) [ 45° 90° 180°
ye=0 Op=0 yp=0 0 0 0 30° 60° 0 60° 120°
Ky 0.3668 0.4056 —0.0664 —0.2795 0.4694 —0.0067 —0.2414
Koyp —0.1872 —0.6165 —0.6557 —0.2751 —1.2204 —2.0685 —0.4153
Kyu 0.9566 1.6010 1.0766 0.4426 1.9170 1.0985 0.1400
Kyp —0.4477 —0.5944 —0.9324 —0.7795 0.0000 —0.8660 —0.8660
Koy 0.8146 0.4056 0.4336 0.5865 —0.0612 —0.5134 0.0172
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

3c.

Right end fixed, left end supported

T, (CagCy = Cos C7)(L — cos §) + (Cy5C1 — CpCy) cos § + (Cop C7 — CgCy) sin g

Vy= x
and slope-guided 4 R (C,Cy — CyCr)(1 —cos ¢) + (C,Cs — C3Cy)cos dp + (C5C; — C1 Cy) sin g
M. =T (Ca5Cy — CasCe)(1 — cos ) +(Caz Cs — Cy5C3) 08 § + (Cog Cy — Cyp Cg) sin
4 ? (C4Cy — CgCr)(1 — cos p) + (C, Cy — C3Cy) cos ¢ + (C3C; — C,Cy) sin ¢
Ma Vy=— T,k Caa(C4Cy — C6Cq) + Cu5(C3C7 — €1 Cy) + Cg(C1 Cs — C3Cy)
( s 4= " BT (C;Cy — CoCr)(1 = cos §) + (C; Cg — CCr)cos § + (CsCr — C; Cy) sin
0
Ve =V,
VA If f = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin ¢ + M, cos ¢ ) N N
Ty=0 y,=0 ©,=0 — T, sin(¢ — 0) ¢ 45 90 180
yp=0 05=0 y5=0 , 0 0 0° 30° 60° 0 60° 120°
Tp = V4R(1 — cos ¢p) + M, sin ¢
+ T, cos(¢p — 0) Kyy 1.8104 1.1657 0.7420 0.0596 0.6201 0.2488 —0.1901
Kya —0.7589 —0.8252 —0.8776 —0.3682 —0.4463 —0.7564 —0.1519
KWA 0.8145 1.0923 0.5355 0.2156 1.3724 0.1754 —0.0453
Kyp 0.0364 0.1657 —0.1240 —0.4404 0.4463 —0.1096 —0.7141
Kpp 0.7007 0.3406 0.3644 0.5575 0.2403 —0.0023 0.1199
3d. Right end fixed, left end supported V,=— T, [(Cag + Cag)Cs — Cy5(Cy + Cy)lsin g + (Coy Cg — Cog Cy) cos
and roll-guided R [C5(Cy + Cy) — C6(Cy + Cy)lsing + (C3Cg — CyCy) cos
o= _T [Cas(Cs + Cy) — Cs(Cuz + Cyg)lsin ¢ + (Cys Cy — CyCo) cos
AT TG (G + Cy) — Co(Cy + Cy)lsin g + (CyCy — CyCy)cos
0, = TR Cyp(C5Cy — CsCs) + Cu5(C3Cs — C3Co) + Cug(C3Cs — C5C5)
( Ty 4= TET [Co(Cy + Cg) — Co(Cy + Co)lsin + (CsCs — CyCo)cos b
T Vp=Vy
VA If B = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V, Rsing — Tysing — T, sin(¢p — 0)
o 45° 90° 180°
My=0 34=0 ¥, =0 Tp = V4R(1 —cos ¢p) + Ty cos ¢ + T, cos(¢p — 0)
yp=0 Op=0 yp=0 o 4 ’ 0 15° 30° 30° 60° 60° 120°
Ky, —0.3410 —0.4177 —0.3392 —0.3916 —0.2757 —0.2757
Kpy —0.6694 —0.3198 —0.6724 —0.2765 —0.5730 —0.0730
Koa —0.0544 —0.0263 —0.2411 —0.1046 —1.3691 —0.3262
Kyp —0.2678 —0.3280 —0.5328 —0.6152 —0.8660 —0.8660
Kpp 0.2928 0.6175 0.1608 0.4744 —0.4783 0.0217
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

3e. Right end fixed, left end fixed V.= _ T, Caz(CyCq — C5C7) + Co5(CyC7 — €1 Cg) + Cg(C1 G5 — C5Cy)
4 R Ci(C5Cy — CsCg) + Cy(C3Cg — C5Cg) + C7(Cy Cg — C3C5)
M, — —p Cax(C5C = CsCy) + Cys (G Cs — Gy Cy) + Cis(Cy G — C5C5)
4 7 C1(C5Cy = CsCy) + C4(C3Cs — C2Cy) + C(Cy G — C5C5)
To T, =T, Caa(CeC7 — C4Cg) + Cy5(C1 Gy — C3C7) + Cug(C3C4 — €1 Co)
N ¢ C1(C5Cy — C4Cy) + Cy(C3C5 — C5Cy) + C7(CyC5 — C5Cs)
Ya=0 ©4=0 ¥, =0 V="V, - -
yp=0 O@p=0 Yp=0 If # = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V, Rsin¢d + M, cosp — Ty sin¢ - - .
~ T, sin(¢ — 0) ¢ 45 90 180 270 360
0 15° 30° 60° 90° 90° 180°
Ty = VAR(1 — cos ) + M sind + T, cos ¢ °
+1T, cos(¢p — 0) Kya 0.1704 0.1705 0.1696 0.1625 0.1592 0.0000
Kya —0.2591 —0.4731 —0.6994 —0.7073 —0.7500 0.0000
Kry —0.6187 —0.4903 —0.1278 0.2211 0.1799 0.5000
Kyp —0.1252 —0.2053 —0.1666 0.0586 0.2500 0.0000
Kpp 0.2953 0.1974 —0.0330 —0.1302 0.1799 —0.5000
3f. Right end supported and slope- V. — T, [Cy sin ¢ — Cy(1 — cos $)] cos(¢p — 0) — Cyy sin® ¢ + Cy5(1 — cos ¢) sin ¢
guided, left end supported and AT R C,4(1 —cos $)* + Cy sin ¢ — (C, + Cg)(1 — cos p) sin ¢
slope-guided
M. — [C3 sin ¢ — Cg(1 — cos ¢p)] cos(¢p — 0) Cao(1 —cos¢)sin¢ + C,5(1 — cos ¢)?
A AT Cy(1 —cos p)* + Cysin® ¢ — (C; + Cg)(1 — cos ) sin ¢
= ToR(C3C4 — €y Cg) cos(p — 0) + (CopCs — Ca5Cy) sinp — (CCy — C5 Gy )(1 — cos )
M AT EI C4(1 - cos $)* + Cy sin® ¢ — (C, + Cg)(1 — cos p) sin
M B
A
To V=V,
If = 1.3 (solid or hollow round cross section, v = 0.3)
Mp =V Rsin ¢ + M, cos ¢ — T, sin(¢p — 0)
\/A ¢ 45° 90° 180°
MAR T,R
Vp=vacosd+ g Crt E o+ BF 1 G 0 0 15° o 30° 0 60°
Ty=0 y,=0 ©,=0
Tp=0 yp=0 Op=0 Ky, 1.0645 0.5147 0.8696 0.4252 0.5000 0.2500
Kya —1.4409 —1.4379 —0.8696 —0.9252 —0.3598 —0.7573
Kya 1.6003 1.3211 1.2356 0.6889 1.4564 0.1746
Kyp —0.9733 —1.1528 —0.1304 —0.4409 0.3598 —0.1088
Kyp 1.1213 1.1662 0.4208 0.4502 0.3500 —0.0034
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

3g. Right end supported and slope-

T, Coy cos® ¢ — Cys sin ¢ cos ¢ + (Cj sin ¢p — C, cos ¢) cos(¢p — 0)

Vi=—- 8 -
guided, left end supported and 4 R (Cssin¢ — Cycos ¢)(1 — cos ¢) + C; cos? ¢ — Cy sin ¢ cos ¢
roll-guided. . .
T T (Cys sin ¢ — C,y cos §)(1 — cos @) + (C5 cos ¢ — Cg sin ) cos(¢p — 0)
Vg AT T (Cysing — Cy cos d)(1 — cos ) + C cos? ¢ — Cg sin ¢ cos ¢
j O, = _T,R(CypC5 — Cy5Co)(1 — cos ¢) + (Cy5C3 — Cup Cg) c0s § + (C3Cs — C3C5) cos(¢p — 0)
Mg A EI (C5sin ¢ — Cy cos p)(1 — cos §) + C; cos? ¢ — Cg sin ¢ cos ¢
Vp=V, - -
T If f = 1.3 (solid or hollow round cross section, v = 0.3)
A VA Mp =V, Rsing — Tysing — T, sin(¢p — 0) ¢ 15 90° 180°
2
My=0 y,=0 v, =0 Yy =-0sing+ 2B Va0 TR 0 15° 30° 30° 60° 60° 120°
Ty=0 yg=0 ©z=0 ET ET EI
Ky, —0.8503 —1.4915 —0.5000 —0.8660 —0.0512 —0.2859
Ky —0.8725 —0.7482 —0.7175 —0.4095 —0.6023 —0.0717
Kox —0.0522 —0.0216 —0.2274 —0.0640 —1.9528 —0.2997
Kyp —0.4843 —0.7844 —0.6485 —0.9566 —0.8660 —0.8660
Kyp 0.2386 0.5031 0.1780 0.5249 —0.9169 0.0416
3h. Right end supported and slope- Vy=— T, cos(¢p — 0)
guided, left end simply supported R(1 —cos¢)
Vg o, - _T,R [Caz sin ¢ + Cgcos(p —0)  Cysingpcos(dp —0) c _]
) A EI 1—cos¢ (1 —cos 45)2 @
M __ T,R[C,5sin¢ — Cyy cos ¢ ] _Cos cos(¢p — 0)
B Y AT~ T—cosh +(Cycos ¢ — Cq sin qﬁ)i(l ~con gy
TO
V=V, If f = 1.3 (solid or hollow round cross section, v = 0.3)
Va Mp = VyRsin ¢ — T, sin(p — 0) b 45° 90° 180°
My=0 T,=0 y,=0 ,
Tp=0 yp=0 ©y=0 U cosh— O, sind V%I;? ¢, +%Cas 0 0 0 30° 60 0° 60° 120
Ky, —2.4142 0.0000 —0.5000 —0.8660 0.5000 0.2500 —0.2500
Koa —0.4161 —0.6564 —0.6984 —0.3328 —1.3000 —2.7359 —0.3929
Kya 2.1998 1.8064 1.2961 0.7396 1.9242 1.1590 0.1380
Kyp —2.4142 —1.0000 —1.3660 —1.3660 0.0000 —0.8660 —0.8660
Ky 1.5263 0.5064 0.5413 0.7323 —0.1178 —0.9878 0.0332

ujelIlS pue SSa4]S 10} SejNuWLIoS

6 "dvHO]



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

3i. Right end supported and roll-guided, Va=0
left end supported and roll- s . .
guided. T, =T (Cyg + Cug)sin” ¢ + (Cy + Cq) sin(¢p — 0) sin ¢
Ve ° (Cy + Cq 4 Cg + Cg)sin”® ¢
0, —— ToR[Cas(Cs + Cg) — Cus(Cy + C3)lsind — (C;C — C3Cs) sin(¢p — 0)
) AT R (Cy+ C + Cy + Cy)sin’ ¢ . -
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Ts Vg=0
T ¢ 45° 90° 270°
T, ° Ty = V4R(1 —cos ¢p) + Ty cosp + T, cos(¢p — 0)
A y 0 15° 30° 90°
A R V,R? T R
My=0 y,=0 §,=0 Op =04 c08 +— A Cs+—41 A Co + 7 Cas Kya 0.0000 0.0000 0.0000
My=0 yg=0 yz=0 Ky —0.7071 —0.8660 0.0000
Koa —0.0988 —0.6021 —3.6128
Krpp 0.3660 0.5000 —1.0000
Kop 0.0807 0.5215 0.0000
3j. Right end supported and roll- V= T, sin(¢ — 0)
guided, left end simply supported Rsing
v T R | Cyycos p — Cog(1 — cos @) sin(¢p — 0)
B = —ee T eer” — - r 7
0, B sing +[C3cos ¢ — Cy(1 —cos §)] sin® 5
T R sin(¢ — 0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
> Vo =—— Ca2+ca8+(cﬁ+cﬁ)L
EI sin ¢
Ty ¢ 45° 90°
V=V,
To B=Va 0 o 15 30° o 300 60°
Ty = V4R(1 —cos ¢p) + T, cos(¢p — 0)
VA Kyy 1.0000 0.7071 0.3660 1.0000 0.8660 0.5000
TUR Koy —0.2790 —0.2961 —0.1828 —1.3000 —1.7280 —1.1715
My=0 Ty=0 y,=0 Op = O, 059+ Yy sind + Cﬁ 71 Co Ky 1.0210 0.7220 0.3737 2.0420 1.7685 1.0210
Mp=0 yp=0 yp=0 Ko 1.0000 1.0731 1.0731 1.0000 1.3660 1.3660
Kop 0.1439 0.1825 0.1515 0.7420 1.1641 0.9732
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4. Uniformly distributed lateral load

Transverse shear = V = V, — wR(x — 0)!
Bending moment = M = V4 Rsinx + My cosx — T4 sinx — wR2[1 — cos(x — 0)x — 0)°
Twisting moment = 7' = V,R(1 — cosx) + M sinx + T4 cosx — wR*[x — 0 — sin(x — 0))(x — 0)°

Vertical deflection =y =y, + ©4Rsinx +,R(1 — cosx) + Mgingl + T%IIFFZ + Vz,ilfg& - wE—I?FMS

Bending slope = ©® = @4 cosx + ¥4 sinx+%lﬂ +%F5 + Vz,}f Fg —wE—}?Fam

Roll slope =y = Y4 cosx — Oy sinx+%F7 +%Fs +V%7};2F9 - wE—IjSFaw

For tabulated values: V = KywR, M =KywR?, T =KywR?, y= K‘wa—}?, 0= K@wE—If, V=K, wE—}?

End restraints, reference no.

Formulas for boundary values and selected numerical values

4a. Right end fixed, left end free

w

Vi=0 My=0 T,=0
yp=0 Op=0 yYp=0

wR* .
Ya = *ﬁ[caw sin ¢ — Cyi9(1 — cos ¢) — Czl

wR? .
0, = ﬁ(culﬁ 08 ¢ — Cqyg sin )
wR? .
VYa= EI (Carg 08 ¢ + Carg sin ) If f = 1.3 (solid or hollow round cross section, v = 0.3)
Vg = —wR(¢p —0) ¢ 45° 90° 180°
Mp = —wR*[1 - cos(¢ — 0)] 0 0° 0° 30° 60° 0° 60° 120°
T = —wR*[$ — 0 — sin(¢ — 0)] K —0.0469 —0.7118 —0.2211 —0.0269 —8.4152 —2.2654 —0.1699
Kou 0.0762 0.4936 0.1071 0.0071 0.4712 —0.6033 —0.1583
Kya 0.0267 0.4080 0.1583 0.0229 4.6000 1.3641 0.1071
Kup —0.2929 —1.0000 —0.5000 —0.1340 —2.0000 —~1.5000 —0.5000
Krp —-0.0783 —0.5708 —0.1812 —0.0236 —3.1416 —~1.2284 —0.1812

ujelIlS pue SSa4]S 10} SejNuWLIoS

6 "dvHO]



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4b. Right end fixed, left end simply

V, = wR Ca19(1 —cos ¢p) — Cyyg8in ¢ + Capg

supported Cy(1 —cos¢) — Cgsing + Cy
w _ WR? (C13Cy — Car9Cy)sin § + (Crg Co — CarCo)(L — c0s ) + (Cor6Cy — CurCo) cos
AT EI Co(1 —cos ) — Cgsing + Cy
_ WR[Co16(Cy + Cy) — Cs(Can + Curg)lsin @ + (Carg Cs — Cang Cy) cos ¢
AT EI Co(1 — cos ) — Cgsing + Cy
Vi =V — wR($ — 0)
VA My = V,Rsing If = 1.3 (solid or hollow round cross section, v = 0.3)
My=0 Ty=0 y,=0 — wR?[1 — cos(¢p — 0)] o
¢ 45 90° 180°
yp=0 Op=0 yYp=0
Ty = VaR(1 - cos ) 0 0° 0° 30° 60° 0° 60° 120°
— wR?[$ — 0 — sin(p — 0)]
Ky, 0.2916 0.5701 0.1771 0.0215 1.0933 0.2943 0.0221
Kop —0.1300 —0.1621 —0.0966 —0.0177 —2.3714 —1.3686 —0.2156
Kyu 0.0095 0.1192 0.0686 0.0119 0.6500 0.3008 0.0273
Kyp —0.0867 —0.4299 —0.3229 —0.1124 —2.0000 —1.5000 —0.5000
Kypp 0.0071 —0.0007 —0.0041 —0.0021 —0.9549 —0.6397 —0.1370
4c. Right end fixed, left end supported V, = wR (Ca19C4 — Ca16Cr)(L — c05 ) +(Cay6C1 — Ca13Cs) cos  +(Coy3Cr — Ca19_01)51n¢
and slope-guided (C4Cy — C4Cr)(1 = cos ¢) +(C, C5 — C3Cy) cos ¢ + (C5C; — C, Cy) sin
w M, — wR? (Ca16C9 — Ca19Cp)(1 — c08 §) + (Ca13Cs — C16C3) €08 ¢ + (C19Cy — Ca13Cy) sin ¢
4 (C4Cy — CsCr)(1 —cos ) + (C, Cg — C3Cy) cos ¢ + (C3C7 — C; Cy) sin ¢
M _ wR? Ca13(C4Cy — C5C7) + Ca16(C5C7 — C1Cy) + Coy9(C1Cg — C3Cy)
"( A7 EI (C,Cy — C5Cq)(1 — cos §) + (C; Cg — C5Cy) cos p + (C3C; — C; Cq) sin ¢
Vp=Vy—wR(¢p -0
v B 4-wR@=0) If f = 1.3 (solid or hollow round cross section, v = 0.3)
A .
B Mp = VyRsin + M, cos ¢ ¢ 45° 90° 180°
4=0 y4=0 0,=0 — wR2[1 — cos(¢p — 0)]
yp=0 O5=0 yp=0 0 0° 0° 30° 60° 0° 60° 120°
Tp = V4R(1 —cos ¢) + M, sin¢p
— wRY — 0 — sin(¢ — 0)] Ky 0.3919 0.7700 0.2961 0.0434 1.3863 0.4634 0.0487
Kya —0.0527 —0.2169 —0.1293 —0.0237 —0.8672 —0.5005 —0.0789
Kyu —0.0004 —0.0145 —0.0111 —0.0027 —0.4084 —0.3100 —0.0689
Kyp —0.0531 —0.2301 —0.2039 —0.0906 —1.1328 —0.9995 —0.4211
Kyp —0.0008 —0.0178 —0.0143 —0.0039 —0.3691 —0.3016 —0.0838

[9'6 038

sweag paAIn)

69€



TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

4d. Right end fixed, left end supported
and roll-guided

w

[(Cars + Ca19)Cs — Cae(Cy + Cy)lsin ¢ + (Cia Cg — Cr9Cy) cos ¢
[C5(C5 + Cg) — C6(Cy + Cy)lsin + (C3Cs — C,Cy) cos ¢

Vy=wR

Ca16(Cs + Cg) — C4(Carz + Carg)Isin @ + (Cor9 Cy — Caz Cy) cos ¢
[C5(C5 + Cg) — C4(Cy + Cy)lsin ¢ + (C3Cg — CyCy) cos

T, = wRZ[

_ wR? Cy13(C5Cy — CsCs) + Coi(C3Cs — CoCy) + Cong(CyCs — C5Cs)

( 4T EI [C5(C5 + Cg) — Ce(Cy + Cy)lsin g + (C3Cg — CyCy) cos
T Vg =V, —wR($ -0
A v B 4 - wR@ =0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
A MB:VARéin¢—TA sin ¢ ¢ 15 90° 180°
My=0 ya=0 Y, =0 — wR?[1 — cos(¢ — 0)]
=0 Op=0 yp=0 0 0 0 30° 60° 0 60° 120°
Tp = V4R(1 —cos ¢) + Ty cos ¢
_wR$ — 0 sin(é — )] Kys 0.2880 0.5399 0.1597 0.0185 0.9342 0.2207 0.0154
Kry —0.0099 —0.0745 —0.0428 —0.0075 —0.3391 —0.1569 —0.0143
Koy —0.0111 —0.1161 —0.0702 —0.0131 —1.9576 —1.1171 —0.1983
Kyp —0.0822 —0.3856 —0.2975 —0.1080 —2.0000 —1.5000 —0.5000
Kpp —0.0010 —0.0309 —0.0215 —0.0051 —0.9342 —0.6301 —0.1362
4e. Right end fixed, left end fixed V, = wR Ca13(C4Cs — C5Cq) + Co6(Co Cq — €1 Cg) + Cyyo(C1 G5 — G, Cy)
C1(C5Cy — CsCy) + C4(C3Cs — CyCy) + C7(C2Cs — C3C5)
W
M, — wR? Ca13(C5Cy — C6Cg) + Ca16(C3Cs — C3Cy) + Carg(C2Cs — C3C5)
“ C1(C5Cy — CsCg) + Cy(C3Cs — CyCy) + C7(C,.Cs — C3Cs)
T — wR? Car3(CsCr — C4Cy) + C6(C1 Co — C3C7) + Cpg(C5C4 — €1 Co)
4 C1(C5Cy — CsCy) + C4(C3Cs — Cy.Cy) + C7(C2Cg — C3C)
Vg =V, —wR(¢ —0) - -
If f = 1.3 (solid or hollow round cross section, v = 0.3)
= = = Mp = V,Rsin ¢ + My co:
ya=0 0,=0 ¥, =0 B = Vatisin ¢ 4 cos ) 45° 90° 180° 360°
yp=0 Op=0 Yp=0 — Ty sing
— wR2[1 — cos(¢ — 0)] 0 0 15° 0 30° 0° 60° 0°
Ty = V4R(1 — cos ¢) + M, sin ¢ Ky 0.3927 0.1548 0.7854 0.3080 1.5708 0.6034 3.1416
4T, cos Kua ~0.0531 ~0.0316 ~0.2279 ~0.1376 ~1.0000 ~0.6013 —2.1304
— R — 0 — sin(é — 0)] Ky 0.0005 0.0004 0.0133 0.0102 0.2976 0.2259 3.1416
Kyp —0.0531 —0.0471 —0.2279 —0.2022 —1.0000 —0.8987 —2.1304
Krp —0.0005 —0.0004 —0.0133 —0.0108 —0.2976 —0.2473 —3.1416
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4f. Right end supported and slope- V, = wR[C4(1 —cos ) — C; sin ¢][¢p — 0 — sin(¢p — 0)] + Cyy5 8in® ¢p — Cyy6 50 G(1 — cos )
guided, left end supported and C4(1 = cos §)* + Cy sin® ¢ — (C, + Cg)(1 — cos p) sin
slope-guided
\ . . 9 .
‘/a M. — wR? [Cssing — Cg(1 — cos P)][¢ — 0 — sin(¢p — 0)] + C,14(1 — cos ¢ — C,158in ¢(1 — cos §)
w 4 Cy(1 — cos ) + Cy sin ¢ — (Cy + Co)(1 — cos §) sin ¢
)MB _ WR? (Ca15Cs = Carg C1)(L — €08 §) — (Ca13Cs — CasCs) sin g — (C3C, — €1 Cy)l¢ — 0 — sin(d — 0)]
M AT EI Cy(1—cos ) + Cy sin® ¢ — (Cy + Cg)(1 — cos ) sin ¢
A
C Vg =V, —wR(¢ — 0) If # = 1.3 (solid or hollow round cross section, v = 0.3)
v Mp = V,Rsin ¢ + M, cos ¢ ¢ 45° 90° 180°
A _ 20 _ _
wR?[1 — cos(¢ — 0)] 0 0 150 0° 30° 0° 60°
Ty=0 y4=0 ©,=0 , \
- — _ MR V,R R* =
Tp=0 yp=0 Op=0 Vg =acosd+ 51 C, + % Cy— %Cm Kys 0.3927 0.1549 0.7854 0.3086 1.5708 0.6142
Kyia —0.0519 —0.0308 —0.2146 —0.1274 —1.0000 —0.6090
Kya —0.0013 —0.0010 —0.0220 —0.0171 —0.5375 —0.4155
Kyp —0.0519 —0.0462 —0.2146 —0.1914 —1.0000 —0.8910
Kyp —0.0013 —0.0010 —0.0220 —0.0177 —0.5375 —0.4393
4g. Right end supported and slope- V, = wR(C5 sin ¢ — Cy cos $)[¢ — 0 — sin(§p — 0)] + Cyy5 c05® p — Cyyg 8in ¢ cos ¢
guided, left end supported and roll- 4 (Cs sin ¢ — Cy cos ¢)(1 — cos ¢) + C; cos? ¢ — Cg sin ¢ cos ¢
uided
€ V'3 T — Wi (C5cos p — Cgsinp)[¢p — 0 — sin(¢p — 0)] — (Cy15 cos ¢ — Cyp6 sin ¢)(1 — cos )
A= (C5 sin¢ — Cy cos ¢)(1 — cos §p) + Cj cos? ¢ — Cg sin ¢ cos ¢
w
M _ wR? (C3Cg — C5C5)[¢p — 0 — sin(d — 0)] + (Ca13C5 — CargCa)(1 — 08 §) + (Cu16C5 — Ca13Cs) cos ¢
8 AT Rl (Cssin g — Cy cos ¢)(1 — cos ¢) + C;3 cos? ¢ — Cg sin ¢ cos ¢
( Vp=Vs—wR(¢—0)
TA My = V,Rsing — T, sin ¢ If § = 1.3 (solid or hollow round cross section, v = 0.3)
A — wR?[1 — cos(¢ — 0)] ¢ 45° 90° 180°
My=0 y4=0 ¢,=0 . TsR 0 0° 0° 30° 60° 0 60° 120°
Tp=0 yp=0 ©p=0 lﬁ=—®Asln¢+—EI Cyg
V,R? wR? Ky, 0.2896 0.5708 0.1812 0.0236 1.3727 0.5164 0.0793
T Er Co— EI Caro Ky —0.0093 —0.0658 —0.0368 —0.0060 —0.3963 —0.1955 —0.0226
Ko, —0.0111 —0.1188 —0.0720 —0.0135 —3.0977 —1.9461 —0.3644
Kyp —0.0815 —0.3634 —0.2820 —0.1043 —2.0000 —1.5000 —0.5000
Kyp —0.0008 —0.0342 —0.0238 —0.0056 —1.7908 —1.2080 —0.2610
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

4h. Right end supported and slope-
guided, left end simply supported

Vg

0

¢ —0—sin@—0)
VamwR e
_wR® [Cyysing + Colgp —0—sin(gp—0)] _ Cysinglp—0—sin@ - 0] _,
A*ﬁ{ 1—cos¢ N (1~ cos §)* : ul("}

Vi = Vy — wR( — 0)

My = V,Rsing If f = 1.3 (solid or hollow round cross section, v = 0.3)

Va — wR’[1 ~ cos(¢ — 0)] ¢ 45° 90° 180°
My;=0 Ty=0 y,=0 ViR 0 o o 30 o0 o 0 120°
Tz=0 yp=0 ©z=0 U =Yacos¢—Oysin ¢+ -7 Co
wR3 Ky, 0.2673 0.5708 0.1812 0.0236 1.5708 0.6142 0.0906
T EI Carg Koa —0.0150 —0.1620 —0.0962 —0.0175 —3.6128 —2.2002 —0.3938
Ky 0.0204 0.1189 0.0665 0.0109 0.7625 0.3762 0.0435
Kyp —0.1039 —0.4292 —0.3188 —0.1104 —2.0000 —1.5000 —0.5000
KwB —0.0133 —0.0008 —0.0051 —0.0026 —1.8375 —1.2310 —0.2637
4i. Right end supported and roll-guided, V.= wR(Ca13 + Carg) sin ¢ + (Cy + Cy)[1 — cos(¢ — 0)]
= -
left end supported and roll-guided (Cy + C3 + Cg + Cy)sing
V, 9 (Caig + Carg) sin g — (Cy + Cy)[1 — cos(¢p — 0)]
B Ty =wR -
(Cy + C3 + Cg + Cy) sin ¢
w
_ WR? Cuuy(Cy + Cg) — Carg(Cy + Cy) +(CoCy — Gy C)[1 — cos(p — 0)]/ sin
)TB ATEL (Cy + C3 + C5 + Cy)sing
Vg =Va —wR(¢ —0) . .
Ta If f = 1.3 (solid or hollow round cross section, v = 0.3),
Tg = VAR(1 — cos ¢) + T4 cos
BT A (2 9 Ta ¢ ¢ 45° 90° 270°
Va — wR*[¢p — 0 — sin(¢p — 0)]
) 5 0 0° 15° 0° 30° 0° 90°
TWR. V4R wR
0;=0 lalvg Co— " 0
My=0 y,=0 y,=0 B = Oacos ¢+ Cs + =g Co =7 Cas Ky 0.3927 0.1745 0.7854 0.3491 2.3562 1.0472
Mp=0 yp=0 Yp=0 Kpy —0.0215 —0.0149 —0.2146 —0.1509 3.3562 3.0472
Kou —0.0248 —0.0173 —0.3774 —0.2717 —10.9323 —6.2614
Kpp 0.0215 0.0170 0.2146 0.1679 —3.3562 —2.0944
Kop 0.0248 0.0194 0.3774 0.2912 10.9323 9.9484
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

4j. Right end supported and roll-guided,
left end simply supported

1 —cos(¢ —0)

Va=wR sin ¢

Vg _ WR?| Cyy5c08 p — Caro(1 —cos ) B N 1 — cos(¢p — 0)
) 0O, = N o [C5 cos p — Cg(1 — cos ¢)] BT )
T wR? 1 — cos(¢p — 0)
B _- — it S S
) Va = EI |:Ca13 +Cary = (Cy +Cy) sin ¢ ] If f = 1.3 (solid or hollow round cross section, v = 0.3)
Vg = Vy — wR($ — 0) ¢ 45° 90°
v Ty = V4R(1 — cos ) — wR%[¢p — 0 — sin($ — 0)] 0 0° 15° 30° 0 30° 60°
A
. V,R? wR3 Ky, 0.4142 0.1895 0.0482 1.0000 0.5000 0.1340
My=0 Tp=0 y,=0 Op =0, 08¢+ sin¢ + 7 Co =7 Case Koa —0.0308 —0.0215 —0.0066 —0.6564 —0.4679 —0.1479
Mg=0 yp=0 yp=0 Ky 0.0220 0.0153 0.0047 0.4382 0.3082 0.0954
Krp 0.0430 0.0319 0.0111 0.4292 0.3188 0.1104
Kop 0.0279 0.0216 0.0081 0.5367 0.4032 0.1404
5. Uniformly distributed torque Transverse shear = V =V,
Bending moment = M = V,Rsinx + M, cosx — T sinx — ¢, R[1 — cos(x — 0)[<x — 0)°
Twisting moment = 7' = V4 R(1 — cosx) + M sinx + T4 cos x + ¢, R sin(x — 0)¢x — 0)°
) ) ) MR TR V,R LR}
Vertical deflection =y =y, + ©4Rsinx 4+, R(1 — cosx) + 2,1 F +%Fz + %F3 + ﬁFalz
. . MuR TR V,R? t,R?
Bending slope = © = ©, cosx + 4 smer#F1 +ﬁF5 +2,71F6 + OEI Fo5
. MyR T\R V,R? t,R?
Roll slope = ¢ =y, cosx — Oy smx+ﬁF7 +ﬁFg + 2,1 F, JroE—IFa18
F 1 lues: V = Kyt,, M=K, T=K KW Kool LS
'or tabulated values: V = Ky, = Kyt,R, =Kpt,R, y= BT 0= ° G V=K, i
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

R 3
5a. Right end fixed, left end free ya= tﬁ [Coys sin ¢ — Coys(1 — cos ) — Coo]
2
0, = _%(CMS cos  — Cyrg sin )
to
t,R? .
Ya=-— ﬁ(cam c0s ¢ + Cyp5 sin )
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Vy =0
¢ 45° 90° 180°
My = —,R[1 — cos(¢p — 0)]
0 0° 0° 30° 60° 0° 60° 120°
Ty =t,Rsin(¢ — 0)
Ky 0.0129 0.1500 0.2562 0.1206 0.6000 2.5359 1.1929
Koa —0.1211 —0.8064 —0.5429 —0.1671 —3.6128 —2.2002 —0.3938
Ky 0.3679 1.1500 0.3938 0.0535 2.0000 —0.5859 —0.5429
Va=0 My=0 Ty=0 Kys —0.2929 —1.0000 —0.5000 —0.1340 —2.0000 —~1.5000 —0.5000
yp=0 ©p=0 yYp=0 Kp 0.7071 1.0000 0.8660 0.5000 0.0000 0.8660 0.8660
5b. Right end fixed, left end simply V=t Ca1s(1 —cos ) — Cyy5 §ind) + Carz
supported ? Cy(1—cosp)— Cgsing + Cy
0, —— t,R? (Ca15Cy — Co15C3) 8in ¢ + (Ca15Cs — Ca15Co)(1 — €08 h) + (Cag5Cs — Ca12Cg) cos
A EI Co(1—cos ) — Cgsing + Cy
Uy =— t,R? [Co15(Cy + Cs) — Co(Carz + Carg)] sin ¢ + (Ca15Cs — Carp Cg) cos ¢
to 4 EI Cy(1 —cos¢) — Cgsing + Cy
V=1V,
A B A
Mp = V,Rsin¢$ — t,R[1 — cos(¢ — 0)] - -
My=0 Ty=0 y,=0 If f = 1.3 (solid or hollow round cross section, v = 0.3)
_ _ _ Ty = V,R(1 — cos ¢p) + t,Rsin(¢p — 0)
=0 Op=0 =0 B A
B B 17 ° " 45° 90° 180°
0 0° 0° 30° 60° 0° 60° 120°
Ky, —0.0801 —0.1201 —0.2052 —0.0966 —0.0780 —0.3295 —0.1550
Koa —0.0966 —0.6682 —0.3069 —0.0560 —3.4102 —1.3436 0.0092
Kya 0.3726 1.2108 0.4977 0.1025 2.2816 0.6044 0.0170
Kyp —0.3495 —1.1201 —0.7052 —0.2306 —2.0000 —1.5000 —0.5000
Krp 0.6837 0.8799 0.6608 0.4034 —0.1559 0.2071 0.5560
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

5c. Right end fixed, left end supported V=t (Ca18C4 — Cay5C7)(1 — c08 ) + (Cap5 Cy — C12Cy) c08 ¢ + (Cy3C7 — CoygCy) sin g
and slope-guided ’ (C4Cy — C4Cy)(1 = cos ¢) +(C, C5 — C3Cy) cos ¢ + (C3C7 — C, Cy) sin
M, =t R(Ca1sc9 — CaysCs)(1 — €08 §) + (Cu19Cs — Ca15C5) cos ¢ + (Cu1s Cs — Ca12Co) sin ¢
4 0 (C4Cy — CsCr)(1 —cos §) +(C, C5 — C3Cy)cos ¢ + (C3C7 — C, Cy) sin g
Ma ( to Uy =— LR Cp(CiCy — CoCr) + Cs(C3C7 = €1 Cy) + Cys(C1 G — C5Cy)
4 EI (C,Cy — C4C7)(1 —cos p) + (C,C — C3Cy)cos ¢ + (C3C; — C, Cy) sin ¢
Va Vi =V : .
If f = 1.3 (solid or hollow round cross section, v = 0.3)
Ty=0 y,=0 ©4=0 Mp =V Rsin ¢ + M, cos ¢ N N N
yp=0 Op=0 yYp=0 — t,R[1 — cos(¢ — 0)] ¢ 45 90 180
X 0 0° 0° 30° 60° 0° 60° 120°
Ty = V,R(1 —cos ¢)+ M, sing
+t,Rsin(¢p — 0) Ky, 0.6652 0.7038 0.1732 —0.0276 0.3433 —0.1635 —0.1561
Kya —0.3918 —0.8944 —0.4108 —0.0749 —1.2471 —0.4913 0.0034
Kya 0.2993 0.6594 0.2445 0.0563 0.7597 0.0048 0.0211
Kyp —0.0996 —0.2962 —0.3268 —0.1616 —0.7529 —1.0087 —0.5034
Krp 0.6249 0.8093 0.6284 0.3975 0.6866 0.5390 0.5538
5d. Right end fixed, left end supported V= —t [(Ca12 + Ca18)C5 — C15(Cy + Cy)lsin ¢ + (Cy15Cg — Coy5Cy) cos
and roll-guided ’ [C5(C3 + Cg) — Co(Cy + Cy)lsin + (C3Cg — CyCy) cos
7= ¢ R[Cals(cs + Co) — C6(Carz + Carp)lsin @ + (Coig Cs — C1p C) cos ¢
4T [C5(Cs + Cg) — C4(Cy + Cy)lsin ¢ + (C3Cs — CyCy) cos ¢
TA( 1o _ t,R? Ca15(C5Co — C5Cs) + Cans(CCs — Cy.Co) + Carg(CoCo — C5Cs)
A EI  [C5(Cs+ Cy) — C4(Cy + Cy)]sin ¢ + (C5C5 — C,Cy) cos ¢
A
Vy =V, - -
My=0 y,=0 ,=0 If p = 1.3 (solid or hollow round cross section, v = 0.3)
yg =0 Op=0 Yyp=0 Mp =V,Rsin ¢ — Ty sin¢ 45 450 90° 180°
—t,R[1 — cos(¢ — 0)]
0 0° 0° 30° 60° 0° 60° 120°
Tp = V4R(1 —cos ¢)+ Tycos¢
+t,Rsin(¢p — 0) Ky, —0.2229 —0.4269 —0.3313 —0.1226 —0.6366 —0.4775 —0.1592
Ky —0.3895 —0.7563 —0.3109 —0.0640 —1.1902 —0.3153 —0.0089
Koa —0.0237 —0.2020 —0.1153 —0.0165 —1.9576 —0.9588 0.0200
Kyp —0.1751 —0.6706 —0.5204 —0.1926 —2.0000 —1.5000 —0.5000
Krp 0.3664 0.5731 0.5347 0.3774 —0.0830 0.2264 0.5566
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

5e. Right end fixed, left end fixed

Ca12(C4Cs — C5C7) + C15(CyCr — €y Cg) + Cys(C1 G5 — G2 Cy)

Vy=—t
4 ? C(C5Cy — C4Cy) + C4(C3C5 — CyCy) + C7(C,Cg — C3C5)

S RCaIZ(C5CQ — CgCs) + Co15(C5Cg) — CyCy) + Cy15(Cy Cg — C5C5)

My = C1(C5Cy — CsCg) + C4(C3C5 — C5.C9) + C7(Cy G — C3.C5)
to T, =t RCaIZ(CGC7 = CyCy) + Ca15(C1 Gy — C3Cr) + Cons(C3C4 — €1 Co)
C1(C5Cy — CsCg) + C4(C3C5 — Cy.Cy) + C7(C2 Cg — C3C5)
Vg="Vy - -
y4=0 ©,=0 y,=0 If § = 1.3 (solid or hollow round cross section, v = 0.3)
yp=0 O@g=0 yYp=0 Mp =V Rsin$ + M, cosp — Ty sin¢ 4 5 %0 180°
— t,R[1 — cos(¢p — 0)]
0 0° 15° 0° 30° 0° 60°
Ty = V,R(1 — cos ¢p) + My sinp + Ty cos ¢
+t,Rsin(¢p — 0) Kya 0.0000 —0.0444 0.0000 —0.0877 0.0000 —0.1657
Kya —0.1129 —0.0663 —0.3963 —0.2262 —1.0000 —0.4898
Kry —0.3674 —0.1571 —0.6037 —0.2238 —0.5536 —0.0035
Kyp —0.1129 —0.1012 —0.3963 —0.3639 —1.0000 —1.0102
Krp 0.3674 0.3290 0.6037 0.5522 0.5536 0.5382
5f. Right end supported and slope- v [Cl sin ¢ — Cy(1 — cos ¢)]sin(¢p — 0) — Cyyp sin® ¢+ C,y5(1 — cos Pp) sin ¢
guided, left end supported and 4=l Cy4(1 —cos ¢)? + C,q sin’ ¢ —(C; + Cg)(1 —cos ¢p)sin¢p
slope-guided
Vg M, = plCssind — Ce(1 — cos ¢)]sin(¢ — H) Cara(1 — cos §) sin ¢ + Cy5(1 — cos )
M C,(1 = cos ¢)? + Cy sin® ¢ — (C; + Cg)(1 — cos ¢) sin ¢
-]
_ t,R? (C3C, — C1Cg) sin(p — 0) + (Car3Cs — Ca15Cs) sin ¢ — (Co12Cy — Car5C1)(1 — cos §)
M, AT EI C,(1 = cos $)? + Cy sin® ¢ — (C, + Cg)(1 — cos ) sin ¢
( to Vy =V,
If p = 1.3 (solid or hollow round cross section, v = 0.3)
Vy Mp =V Rsin ¢ + My cos ¢ — t,R[1 — cos(¢ — 0)]
¢ 45° 90° 180°
Ty=0 y4=0 ©4=0 tR
Tp=0 yp=0 Op=0 Vo =vacosp+ AR o,y Ca 77 Cais 0 0° 15° 0° 30° 0° 60°
Ky, 0.0000 —0.2275 0.0000 —0.3732 0.0000 —0.4330
Kya —1.0000 —0.6129 —1.0000 —0.4928 —1.0000 —0.2974
Kya 1.0000 0.6203 1.0000 0.5089 1.0000 0.1934
Kyp —1.0000 —0.7282 —1.0000 —0.8732 —1.0000 —1.2026
Kyp 1.0000 0.7027 1.0000 0.7765 1.0000 0.7851
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

5g.

Right end supported and slope-

Cy15 €082 ¢ — Cyy5 8in ¢ cos ¢ + (Cy sin ¢p — Cy, cos ¢p) sin(¢p — 0)

Vy=- 8 -
guided, left end supported and roll- A (Cj sin ¢ — Cy cos p)(1 — cos p) 4 C; cos? ¢ — Cg sin ¢ cos ¢
guided . . .
T R(C‘ﬂs sin ¢ — Cyp5 cos @)(1 — cos ¢) + (Cy cos ¢ — Cg sin ¢) sin(¢p — 0)
A AT (Cssin ¢ — Cy cos ¢p)(1 — cos §p) + C3 cos? ¢ — Cg sin ¢ cos ¢
Mg 0, —— 1, R? (Ca15C5 — Ca15Co)(1 = €08 ) + (Ca15Cs — Ca19Cy) cos ¢ + (C, Cs — C5C5) sin(¢ — 0)
A EI (C5sing — Cy cos Pp)(1 — cos ¢) + Cg cos? ¢ — Cg sin ¢ cos ¢
V=1V,
TA( fo 5=V
v Mg =V,Rsin ¢ — Ty sin¢ If = 1.3 (solid or hollow round cross section, v = 0.3)
A
My=0 3,20 y,=0 —t,R[1 — cos(¢ — 0)] ¢ 45° 90° 180°
Ty=0 yp=0 Op=0 Wy = O, sind + Tésll‘? e 0 0° 0° 30° 60° 0° 60° 120°
4 V,4R? Co+ i, R? c Kya —0.8601 —~1.0000 —0.8660 —0.5000 —0.5976 —0.5837 —0.4204
EI °7 EI T*® Koy ~0.6437 ~0.9170 ~0.4608 ~0.1698 ~1.1953 ~0.3014 0.0252
Koa —0.0209 —0.1530 —0.0695 0.0158 —2.0590 —0.6825 0.6993
Kyp —0.4459 —1.0830 —0.9052 —0.4642 —2.0000 —1.5000 —0.5000
Kyp 0.2985 0.6341 0.5916 0.4716 —0.1592 0.4340 1.0670
5h. Right end supported and slope- Vy=— t,sin(¢ — 0)
guided, left end simply supported 1—cos¢
v 0, —— t, R [Capsing + Cgsin(gp —0)  Cysingsin(g —0) c.
8 A EI 1—cos¢ (1 —cos ¢)2 al?
M
8 2 ; ;
t,R* [Cy15sin¢ — C,y9co8 P . sin(¢ — 0)
) Va EI [ 1—cos¢ +(Gycos¢ = Cosing) (1 — cos ¢)?
Vp=1V,
to B 4 If f = 1.3 (solid or hollow round cross section, v = 0.3)
v My =VaRsin ¢ p 45 90° 180°
A —t,R[1 — cos(¢ — 0)]
My=0 Ty=0 y,=0 , , o ¢+VAR2C, 0 0° 0 30 60 0 60° 120
=y, cosp— Oy sin
Tp=0 yp=0 Op=0 B=Va A EI ° Kya —2.4142 —1.0000 —0.8660 —0.5000 0.0000 —0.4330 —0.4330
+ t,R? C Koa —0.2888 —0.7549 —0.3720 —0.0957 —3.6128 —1.0744 0.7320
ET % Ky 1.4161 1.6564 0.8324 0.3067 2.3000 0.5800 ~0.0485
Kyp —2.0000 —2.0000 —1.3660 —0.6340 —2.0000 —1.5000 —0.5000
K'PB 1.2811 1.0985 0.8250 0.5036 —0.3000 0.3985 1.0700
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TABLE 9.4 Formulas for curved beams of compact cross section loaded normal to the plane of curvature (Continued)

End restraints, reference no.

Formulas for boundary values and selected numerical values

5i. Right end supported and roll-guided, Va=0
left end supported and roll-guided oy .
v Tt R(Calz + Cy1g)sin” ¢ + (C3 + Cy) sin ¢[1 — cos(¢p — 0)]
8 AT Cy + Cy + Cg + Cy) sin®
T (Cy + C3 4 Cg + Cg) sin” ¢
B ’ .
5 0,=— t,R? [Ca12(Cs + Cg) — Cars(Cs + Cy)]sin ¢ — (C,Cq — C3C)[1 — cos(d — 0)]
) EI (Cy + C3 + Cg + Cy) sin® ¢
1o V=0
TA VA Ty = T, cosp + t, Rsin(é — 0) If f = 1.3 (solid or hollow round cross section, v = 0.3)
; 45° 90° 270°
Op =0 cos¢+MC +ﬂc ’ ’
My=0 y3=0 yu =0 BT EI 7T EI 7% 0 0 15° 0° 30° 0° 90°
Mp=0 yp=0 yYp=0
Ky, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Kry —0.4142 —0.1895 —1.0000 —0.5000 1.0000 2.0000
Kou —0.0527 —0.0368 —0.6564 —0.4679 —6.5692 —2.3000
Krp 0.4142 0.3660 1.0000 0.8660 —1.0000 0.0000
Kop 0.0527 0.0415 0.6564 0.5094 6.5692 7.2257
5. Right end supported and roll-guided, V= to[1 — cos(¢ — 0)]
left end simply supported sin ¢
6, — o [Curz 0036 = Cas(1 = cos9)  [Cycos = Cy(1 — cos @)1 = cos( — )]
A EI sin ¢ sin® ¢
t,R? Cy + Cy)[1 — cos(¢p — 0)
Ya= *(’E.il{cmz +Cas +%¢¢]
Vg ="Va If § = 1.3 (solid or hollow round cross section, v = 0.3)
Ty = V,R(1 — cos ¢p) + t,Rsin(¢p — 0) ) 45° 90°
. ViR R 0 0° 15° 30° 0° 30° 60°
My=0 Ty=0 y,=0 Op =04cos¢+d,sing + Bl Ce + El Cars
Mp=0 yp=0 =0 Kya 0.4142 0.1895 0.0482 1.0000 0.5000 0.1340
Koa —0.1683 —0.0896 —0.0247 —1.9564 -1.1179 —0.3212
Ky 0.4229 0.1935 0.0492 2.0420 1.0210 0.2736
Krp 0.8284 0.5555 0.2729 2.0000 1.3660 0.6340
Kop 0.1124 0.0688 0.0229 1.3985 0.8804 0.2878
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