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3.4 Analysis of Members under Flexure (Part III)  
This section covers the following topics 

• Analysis for Ultimate Strength  

• Analysis of a Rectangular Section 

 

3.4.1 Analysis for Ultimate Strength  
 

Introduction  

A prestressed member usually remains uncracked under service loads.  The analysis 

under service loads assumes the material to be linear elastic.  

After cracking, the behaviour of a prestressed member is similar to a non-prestressed 

reinforced concrete member.  With increasing load, the stress versus strain behaviour of 

concrete becomes non-linear.  Close to the yielding of the prestressing steel, the stress 

versus strain behaviour of steel also becomes non-linear. 

  

The analysis of a prestressed member for ultimate strength is similar to that of a 

reinforced concrete member. The analysis aims to calculate the ultimate moment 

capacity (ultimate moment of resistance).  The capacity is compared with the demand at 

ultimate loads. 

   

There is an inconsistency in the traditional analysis at the ultimate state. The force 

demand is calculated based on elastic analysis, with superposition for the different load 

cases using the load factors. But the capacity is calculated based on the non-linear limit 

state analysis.  The inconsistency is justified by the following arguments. 

1) The moment versus curvature relationship is almost linear till the yielding of the 

steel.  The moment versus curvature relationship is also referred to as the 

behaviour and is explained in Section 3.6, Analysis of Member under Flexure 

(Part V). 

2) The moment at yield is only slightly lower than the ultimate moment capacity.  

Hence the behaviour is practically linear for most of the range of the moment.   

3) The calculated moment demand for a load case based on elastic analysis is well 

within the moment at yield. Hence, superposition for the load cases is applied to 

find out the moment demand under combined loads.  
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Of course, superposition cannot be used to calculate the deflection under combined 

loads.  

 
Variation of Stress in Prestressing Steel 
In non-prestressed reinforced concrete members, the tension and consequently the 

stress in steel increase almost proportionately with increasing moment till yielding. The 

lever arm between the resultant compression and tension remains almost constant.  In 

prestressed concrete members, the tension and consequently the stress in prestressing 

steel increase slightly with increasing moment till cracking of concrete. The increase in 

moment changes the lever arm significantly. This is explained in Section 3.2, Analysis of 

Member under Flexure (Part I).  After cracking, the stress in prestressing steel 

increases rapidly with moment. 

  

The following sketch explains the variations of the stress in prestressing steel (fp) with 

increasing load.  The variations are shown for bonded and unbonded tendons.  After the 

prestress is transferred while the member is supported at the ends, the stress will tend 

to increase from the value after losses (fp0) due to the moment under self weight.  

Simultaneously the stress will tend to drop due to the time dependent losses such as 

from creep, shrinkage and relaxation.  The losses of prestress are covered in Section 

2.3, Losses in Prestress (Part III).  The effective prestress after time dependent losses 

is denoted as fpe.       

 

Due to the moment under service loads, the stress in the prestressing steel will slightly 

increase from fpe.  The increase is more at the section of maximum moment in a bonded 

tendon as compared to the increase in average stress for an unbonded tendon.  The 

stress in a bonded tendon is not uniform along the length.  Usually the increase in 

stress is neglected in the calculations under service loads.  If the loads are further 

increased, the stress increases slightly till cracking. 

 

After cracking, there is a jump of the stress in the prestressing steel.  Beyond that, the 

stress increases rapidly with moment till the ultimate load.  At ultimate, the stress is 

represented as fpu. Similar to the observation for pre-cracking, the average stress in an 

unbonded tendon is less than the stress at the section of maximum moment for a 

bonded tendon. 
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Figure 3-4.1    Variation of stress in prestressing steel 

 

The above sketch assumes that the section is failing in flexure. Other types of failure 

are not considered.   

 
Conditions at Ultimate Limit State 
In the limit states method of analysis, the limit state of collapse (ultimate state) of a 

member under flexure is defined as the state when the extreme concrete compressive 

strain reaches a value of 0.0035.  At ultimate, let the extreme concrete compressive 

strain be denoted as εcu. Thus, εcu = 0.0035. 

  

Depending on the amount of prestressing steel, a section can be under-reinforced or 

over-reinforced.  For an under- reinforced section, the amount of prestressing steel is 

less and the steel yields before the extreme concrete strain reaches 0.0035.  For an 

over-reinforced section, the amount of steel is high and the steel does not yield at 

ultimate. The transition situation is called a balanced condition.  The strain profiles 

across the depths of prestressed flexural members (up to the depth of CGS) for the 

three situations are shown below.  
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Figure 3-4.2    Strain profiles along the depths of three prestressed members 

 

In the above sketch, 

εpu  = strain in the prestressing steel at the level of CGS at ultimate  

   condition 

  εpu,bal  = strain in the steel for a balanced section. 

 

The strain difference (∆εp) is the strain in the prestressed tendons when the adjacent 

concrete has zero strain (εc = 0).  The strain difference gets locked during the transfer of 

prestress.  The value can be determined as follows. 

   

For pre-tensioned members, the strain difference gets locked when the tendons are cut.  

The strain difference at that instant is given as follows. 

∆εp = εpi – 0                                          (3-4.1a) 

Here, 

εpi = strain in tendons just before transfer 

εc = strain in concrete is zero. 

For post-tensioned members, the strain difference gets locked when the tendons are 

anchored.  The strain difference at that instant is given as follows. 

∆εp = εp0 – εc0                                          (3-4.1b) 

Here, 

εp0 = strain in tendons due to P0, the prestress after transfer 

εc0 = strain in concrete due to P0. 

 

In general at any load stage, 

∆εp = εpe – εce                                            (3-4.1c) 
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Here, 

εpe = strain in tendons due to Pe, the prestress at service 

εce = strain in concrete due to Pe. 

  

As mentioned under material properties, the prestressing steel does not have a definite 

yield point. The 0.2% proof stress is defined when the steel reaches an inelastic strain 

of 0.2%.  Hence, unlike reinforced concrete, the transition from under-reinforced to over-

reinforced section is gradual and there is no definite balanced condition.  IS:1343 - 1980 

does not explicitly enforce an under-reinforced section. But the IRS Concrete Bridge 
Code requires that the strain in the outermost tendon is not less than the following. 

  

 

 

The above value can be considered to be the strain in the steel at balanced condition.  

 

Assumptions for Analysis 
The analysis of members under flexure for ultimate strength considers the following. 

1) Plane sections perpendicular to the axis of the member remain plane till the 

ultimate state. 

2) Perfect bond is retained between concrete and prestressing steel for bonded 

tendons. 

3) Tension in concrete is neglected. 

4) The design stress versus strain curves of concrete and steel are considered. 

 

The methods of analysis will be presented for three types of sections.  

1) Rectangular section: A rectangular section is easy to cast, but it is not an efficient 

section. 

2) Flanged section: A precast flanged section, with flanges either at top or bottom 

needs costlier formwork. But the section is efficient in flexure. A flanged section 

can also be made of precast web and cast-in-place slab. 

3) Partially prestressed section: A section in a member containing both prestressed 

and non-prestressed reinforcement. 
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3.4.4 Analysis of a Rectangular Section 
 
The following sketch shows the beam cross section, strain profile, stress diagram and 

force couple at the ultimate state.  
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Figure 3-4.3    Sketches for analysis of a rectangular section 

 

The variables in the above figure are explained. 

b  = breadth of the section 

  d  = depth of the centroid of prestressing steel (CGS) 

  Ap  = area of the prestressing steel 

  ∆εp = strain difference 

 xu  = depth of the neutral axis at ultimate 

  εpu  = strain in prestressing steel at the level of CGS at ultimate  

  fpu  = stress in prestressing steel at ultimate 

 

The stress block in concrete is derived from the constitutive relationship for concrete.  

The relationship is explained in Section 1.6, Concrete (Part II).  The compressive force 

in concrete can be calculated by integrating the stress block along the depth.  The 

stress in the tendon is calculated from the constitutive relationship for prestressing steel.  

The relationship is explained in Section 1.7, Prestressing Steel.   

 

In the force diagram,  

(3-4.2) 
(3-4.3) 

The strengths of the materials are denoted by the following symbols. 

fck  = characteristic compressive strength of concrete 

fpk  = characteristic tensile strength of prestressing steel 
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For analysis of a prestressed section, three principles of mechanics are used.  First, the 

equilibrium relates the external applied forces with the internal forces.  Second, the 

compatibility condition relates the strain in the prestressing steel with the strain in 

concrete at the level of CGS.  This also considers the first two assumptions given in the 

previous section.  The third principle involves the constitutive relationships of the 

materials.         

 

Based on the above principles of mechanics, the following equations are derived.  

 

1) Equations of equilibrium  

The first equation states that the resultant axial force is zero.  This means that the 

compression and the tension in the force couple balance each other.  

  

 

(3-4.4) 
 

The second equation relates the ultimate moment capacity (MuR) with the internal 

couple in the force diagram.     

 

 
(3-4.5) 

2) Equation of compatibility  

The depth of the neutral axis is related to the depth of CGS by the similarity of the 

triangles in the strain diagram.    

 

(3-4.6) 
 

3) Constitutive relationships 

a) Concrete  

The constitutive relationship for concrete is considered in the expression           Cu = 

0.36fckxub. This is based on the area under the design stress-strain curve for concrete 

under compression. 
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b) Prestressing steel  

(3-4.7) 
 

The function F(εpu) represents the design stress-strain curve for prestressing steel under 

tension.  

 

The known variables in an analysis are: b, d, Ap, ∆εp, fck, fpk. 

The unknown quantities are: xu, MuR, εpu, fpu.   

 

The objective of the analysis is to find out MuR, the ultimate moment capacity.  

The simultaneous equations 3-4.1 to 3-4.7 can be solved iteratively. This procedure of 

analysis is called the strain compatibility method. The steps are as follows. 

1) Assume xu . 

2) Calculate εpu by rearranging the terms of Eqn. 3-4.6. 

3) Calculate fpu from Eqn. 3-4.7. 

4) Calculate Tu from Eqn. 3-4.3. 

5) Calculate Cu from Eqn. 3-4.2. 

If Eqn. 3-4.4 (Tu = Cu) is not satisfied, change xu. 

If Tu < Cu decrease xu. If Tu > Cu increase xu. 

6) Calculate MuR from Eqn. 3-4.5. 

The capacity MuR can be compared with the demand under ultimate loads.  

 

In the strain compatibility method, the difficult step is to calculate xu and fpu. IS:1343 -
1980 allows to calculate these variables approximately from Table 11, Appendix B, 

based on the amount of prestressing steel. The later is expressed as a prestressed 

reinforcement index ωp.  

 

(3-4.8) 
 

Table 11 is reproduced as Table 3-4.1 which is applicable for pre-tensioned and bonded 

post-tensioned beams.  The values of fpu and xu are given as fpu/(0.87fpk) and xu/d, 

respectively.   
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Table 3-4.1    Values of xu and fpu for pre-tensioned and bonded post-tensioned 

rectangular beams (Table 11, IS:1343 - 1980) 

fpu/(0.87fpk) xu/d 

ωp Pre-tensioned Bonded post-

tensioned 

Pre-tensioned Bonded post-

tensioned 

0.025 1.0 1.0 0.054 0.054 

0.05 1.0 1.0 0.109 0.109 

0.10 1.0 1.0 0.217 0.217 

0.15 1.0 1.0 0.326 0.316 

0.20 1.0 0.95 0.435 0.414 

0.25 1.0 0.90 0.542 0.488 

0.30 1.0 0.85 0.655 0.558 

0.40 0.9 0.75 0.783 0.653 

 

The values of fpu/(0.87fpk) and xu/d from Table 3-4.1 are plotted in Figures 3-4.4 and 3-

4.5, respectively.  It is observed that with increase in ωp, fpu reduces (beyond certain 

values of ωp) and xu increases.  This is expected because with increase in the amount 

and strength in the steel, the stress in steel drops and the depth of the neutral axis 

increases to maintain equilibrium.  
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Figure 3-4.4    Variation of fpu with respect to wp (Table 3-4.1) 
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Figure 3-4.5    Variation of xu with respect to wp (Table 3-4.1)  

 

Thus given the value of ωp for a section, the values of fpu and xu can be approximately 

calculated from the above tables.     

 
Example 3-4.1 
  

A prestressed concrete beam produced by pre-tensioning method has a 
rectangular cross-section of 100 mm × 160 mm (b × h).  It is prestressed with 10 
numbers of straight 2.5 mm diameter wires.  Each wire is stressed up to a load of 
6.8 kN.  The design load versus strain curve for each wire is given in a tabular 

form.  The grade of concrete is M 40.  The value of ∆εp is 0.0073.  

 
Estimate the ultimate flexural strength of the member by the strain compatibility 
method.  
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Design load (P) versus strain (εp) values for the prestressing wire are given for 
the range under consideration.  
 

εp P (kN) 

0.006 5.4 

0.008 7.6 

0.010 9.0 

0.012 10.0 

0.014 10.7 

 

Solution  
 

Strain difference 

∆εp  = 0.0073 

   

The effective depth of the CGS (d ) is 120 mm. 

 

The strain compatibility method is shown in a tabular form.  Here,  

Pu  = load in a single wire obtained from the table 

Tu  = 10 × Pu , for the ten wires. 
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xu 

(mm) 

xu/d εpu–∆εp 

 

(3-4.6) 

εpu Pu 

(kN) 

(Table) 

Tu  

(kN) 

Cu  

(kN) 

(3-4.2) 

Checking 

 

(3-4.4) 

60 0.5 0.0035 0.0108 9.4 94.0 86.4 Tu > Cu 

65 0.54 0.0030 0.0103 9.1 91.0 93.6 Tu < Cu 

63.5 0.53 0.0031 0.0104 9.15 91.5 91.4 Tu ≈ Cu 

 

The ultimate flexural strength is given as follows. 

 

= ( -0.42 )
=91.5 (120.0-0.42×63.5)kNmm
=8.5kNm

uR u uM T d x  

 


