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9.5 Compression Members 
This section covers the following topics. 

• Introduction 

• Analysis 

• Development of Interaction Diagram 

• Effect of Prestressing Force 

 

9.5.1 Introduction  
 

Prestressing is meaningful when the concrete in a member is in tension due to the 

external loads. Hence, for a member subjected to compression with minor bending, 

prestressing is not necessary. But, when a member is subjected to compression with 

substantial moment under high lateral loads, prestressing is applied to counteract the 

tensile stresses. Examples of such members are piles, towers and exterior columns of 

framed structures. 

  

As the seismic forces are reversible in nature, the prestressing of piles or columns is 

concentric with the cross-section. Some typical cross sections are shown below. 

Partially prestressed 
column

Prestressed circular and 
hexagonal piles

Partially prestressed 
column

Prestressed circular and 
hexagonal piles  

Figure 9-5.1    Examples of prestressed members subjected to compression 
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Figure 9-5.2    Stacked prestressed piles  

(Reference: Industrial Concrete Products Berhad)  

 

Since a prestressed member is under self equilibrium, there is no buckling of the 

member due to internal prestressing with bonded tendons. In a deflected shape, there is 

no internal moment due to prestressing.  

 

The justification is explained in the next figure.  
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b) Under internal 
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∆
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Figure 9-5.3    Internal forces at deflected configuration  

 

In the first free body sketch of the above figure, the external compression P causes an 

additional moment due to the deflection of the member. The value of the moment at 

mid-height is P∆. This is known as the member stability effect, which is one type of P-∆ 
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effect. If this deflection is not stable, then buckling of the member occurs.  In the second 

free body sketch, there is no moment due to the deflection of the member and the 

prestressing force, since the compression in concrete (C) and the tension in the tendons 

(T) balance each other.  

 

When the additional moment due to deflection of the member is negligible, the member 

is termed as short member. The additional moment needs to be considered when the 

slenderness ratio (ratio of effective length and a lateral dimension) of the member is 

high. The member is termed as slender member. In the analysis of a slender member, 

the additional moment is calculated by an approximate expression or second order 

analysis. In this module only short members will be considered.  

  

9.5.2 Analysis  
 
Analysis at Transfer  
The stress in the section can be calculated as follows.  

 

(9-5.1) 
 

Here,  

A = Area of concrete  

P0 = prestress at transfer after short-term losses.  

 

In this equation, it is assumed that the prestressing force is concentric with the cross-

section. For members under compression, a compressive stress is considered to be 

positive. The permissible prestress and the cross-section area are determined based on 

the stress to be within the allowable stress at transfer (fcc,all). 

 

Analysis at Service Loads  
The analysis is analogous to members under flexure. The stresses in the extreme fibres 

can be calculated as follows.  

 

(9-5.2) 
 

c
Pf =
A

0

e
c

t t

P N Mcf = + ±
A A I
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In this equation, the external compression for a prestressed member is denoted as N 

and is concentric with the cross section. The eccentricity is considered in the external 

moment M.  

 

In the previous equation,  

A = area of concrete  

At = area of the transformed section  

c = distance of the extreme fibre from the centroid (CGC)  

It = moment of inertia of the transformed section  

Pe = effective prestress.  

 

The value of fc should be within the allowable stress under service conditions (fcc,all).  

 
Analysis at Ultimate  
When the average prestress in a member under axial compression and moment is less 

than 2.5 N/mm2, Clause 22.2, IS:1343 - 1980, recommends to analyse the member as 

a reinforced concrete member, neglecting the effect of prestress. For higher prestress, 

the analysis of strength is done by the interaction diagrams.  

 

At the ultimate limit state, an interaction diagram relates the axial force capacity (NuR) 

and the moment capacity (MuR). It represents a failure envelop. Any combination of 

factored external loads Nu and Mu that fall within the interaction diagram is safe. A 

typical interaction diagram is shown below. The area shaded inside gives combinations 

of Mu and Nu that are safe. 

MuR

NuR

Tension failure

Compression failure

Balanced failure
Ne
1

MuR

NuR

Tension failure

Compression failure

Balanced failure
Ne
1

 
Figure 9-5.4    A typical interaction diagram for compression and bending 

 

The radial line in the previous sketch represents the load path. Usually the external 

loads increase proportionally. At any load stage, M and N are related as follows. 
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 M = N eN                                                                                    (9-5.3) 
 

Here, eN represents the eccentricity of N which generates the same moment M. The 

slope of the radial line represents the inverse of the eccentricity (1/eN). At ultimate, the 

values of M and N (Mu and Nu, respectively) correspond to the values on the interaction 

diagram. For high values of N as compared to M, that is eN is small, the concrete in the 

compression fibre will crush before the steel on the other side yields in tension. This is 

called the compression failure.  

 

For high values of M as compared to N, that is eN is large, the concrete will crush after 

the steel yields in tension. This is called the tension failure.  

 

The transition of these two cases is referred to as the balanced failure, when the 

crushing of concrete and yielding of steel occur simultaneously. For a prestressed 

compression member, since the prestressing steel does not have a definite yield point, 

there is no explicit balanced failure.  

 
9.5.3 Development of Interaction Diagram  
 

An interaction diagram can be developed from the first principles using the non-linear 

stress-strain curves of concrete under compression and steel under tension. Several 

sets of NuR and MuR for given values of eN or xu are calculated. The distance of neutral 

axis from the extreme compressive face is denoted as xu. Partial safety factors for 

concrete and prestressing steel can be introduced when the interaction diagram is used 

for design. Here, the procedure is illustrated for a rectangular section with prestressed 

tendons placed at two opposite faces symmetrically, and without non-prestressed 

reinforcement. 

d2d1Ap1
Ap2

B

D

CGC
+

d2d1Ap1
Ap2

B

D

CGC
+

 
Figure 9-5.5    A rectangular prestressed section  
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The notations used are as follows.  

B = dimension of section transverse to bending  

D = dimension of section in the direction of bending  

Ap1 = area of prestressing tendons at the tension face  

Ap2 = area of prestressing tendons at the compression face  

d1, d2 = distances of centres of Ap1 and Ap2, respectively, from the centroid of the 

section (CGC).  

The strain compatibility equation is necessary to relate the strain in a prestressing 

tendon with that of the adjacent concrete. Due to a concentric prestress, the concrete at 

a section undergoes a uniform compressive strain. With time, the strain increases due 

to the effects of creep and shrinkage. At service, after the long term losses, let the strain 

be εce. Also, let the strain in the prestressing steel due to effective prestress be εpe.  

εce

εpe εpe

εce

εpe εpe  
Figure 9-5.6    Strain profile due to effective prestress only 

 

The strain compatibility equation for the prestressed tendons is given below.  

(9-5.4) 
 

 

The strain difference of the strain in a prestressing tendon with that of the adjacent 

concrete is denoted as ∆εp. The design stress-strain curve for concrete under 

compression is used.  This curve is described in Section 1.6, Concrete (Part II).  The 

design stress-strain curve for the prestressed tendon under tension is expressed as fp = 

F(εp).  

 

The calculation of NuR and MuR for typical cases of eN or xu are illustrated. The typical 

cases are as follows. 

1) Pure compression (eN = 0, xu = ∞)   

p c p

p pe ce

ε = ε + ∆ε
    ∆ε = ε - εwhere,  
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2) Full section under varying compression (0.05D < eN ≤ eN │xu = D , xu ≥ D)  

3) Part of section under tension (eN │xu = D < eN ≤ ∞, xu < D)  

4) Pure bending (eN = ∞, xu = xu,min)  

The above cases are illustrated in the following sketches. 

e = 0
e

xu

Case 1 Case 2

Elevation

Strain 
diagram

e = 0
e

xu

Case 1 Case 2

Elevation

Strain 
diagram

 

e

xu xu

Elevation

Strain 
diagram

Case 3 Case 4

e

xu xu

Elevation

Strain 
diagram

Case 3 Case 4  
Figure 9-5.7    Typical cases of eccentricity and depth of neutral axis 

  

In addition to the above cases, the case of pure axial tension is also calculated. The 

straight line between the points of pure bending and pure axial tension provides the 

interaction between the tensile force capacity and the moment capacity. 

NuR

MuR

NuR

MuR

 
Figure 9-5.8    A typical interaction diagram for tension and bending 
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1. Pure compression (eN = 0, xu = ∞). 

The following sketches represent the strain and stress profiles across the section and 

the force diagram. 

– 0.002

εp1 εp2

Strain profile

fp1 fp2

0.447 fck Stress profile

Tu1 Tu2Cu
Force diagram

– 0.002

εp1 εp2

Strain profile

fp1 fp2

0.447 fck Stress profile

Tu1 Tu2Cu
Force diagram

 
Figure 9-5.9    Sketches for analysis at pure compression 

 

The forces are as follows.  

 

Cu = 0.447fck (Ag – Ap)                                     (9-5.5) 
Tu1   = Tu2  = Ap1 fp1                                                                    (9-5.6) 

                                  = Ap1 Ep (– 0.002 + ∆εp) 

 

The steel is in the elastic range. The total area of prestressing steel is Ap = Ap1 + Ap2. 

The area of the gross-section Ag = BD. The moment and axial force capacities are as 

follows.  

MuR = 0                                                           (9-5.7) 
      

                    NuR = Cu – Tu1 – Tu2  

                  = 0.447fck (Ag – Ap) – Ap Ep (εpe – 0.002 – εce)                           (9-5.8) 
 

In design, for simplification the interaction diagram is not used for eccentricities eN ≤ 

0.05D. To approximate the effect of the corresponding moment, the axial force capacity 

is reduced by 10%.  

∴ NuR = 0.4fck (Ag – Ap)  –  0.9Ap Ep (εpe – 0.002 + εce)                  (9-5.9) 
 
 

2. Full section under varying compression (0.05D < eN ≤ eN │xu = D , xu ≥ D)  

The following sketches represent the strain and stress profiles across the section and 

the force diagram. 
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– 0.002

εp1 εp2

fp1 fp2
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0.447 fck

Tu1 Tu2Cu
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Force diagram

 
Figure 9-5.10    Sketches for analysis for section under varying compression 

 

The limiting case for full section under compression corresponds to xu = D, when the 

neutral axis lies at the left edge of the section. The strain diagram pivots about a value 

of – 0.002 at 3/7D from the extreme compression face. To calculate Cu, first the 

reduction of the stress at the edge with lower compression (g) is evaluated. Based on 

the second order parabolic curve for concrete under compression, the expression of ‘g’ 

is as follows. 

  

 

 

 
(9-5.10) 

 

The area of the complementary sector of the stress block is given as follows.  

 

 

(9-5.11) 
 

Asector

4 / 7 D

+g
x /

Asector

4 / 7 D

+g
x /

 
Figure 9-5.11    Complementary area of the stress block 
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Distance of centroid from apex (x /) = (3/4)(4/7)D = 3/7 D The forces are as follows.  

 

 

 

 

(9-5.12) 
 

 

 

 

 

 

(9-5.13) 
 

 

 

 

 

 

(9-5.14) 
 

 

The strains in the concrete at the level of the prestressing steels εc1 and εc2 are 

determined from the similarity of triangles of the following strain profile. 

εc1

xu – (3 / 7 D)

xu – (D/2 + d1)
– 0.002

εc1

xu – (3 / 7 D)

xu – (D/2 + d1)
– 0.002

 

εc2

xu – (3 / 7 D)

xu – (D / 2 – d2)

– 0.002 εc2

xu – (3 / 7 D)

xu – (D / 2 – d2)

– 0.002

 
Figure 9-5.12    Strain profile across section 
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The moment and axial force capacities are as follows. 

NuR = Cu – Tu1 – Tu2                                                                                (9-5.15) 
MuR = Mc + Mp                                                                                              (9-5.16) 

The expressions of Mc and Mp about the centroid are given below. Anticlockwise 

moments are considered positive.  The lever arms of the tensile forces are shown in the 

following sketch.  

 

 

 

(9-5.17) 
 

Mp = Tu1d1 – Tu2d2                                                                                        (9-5.18) 

Tu1 Tu2Cu

d2d1

+
Tu1 Tu2Cu

d2d1

Tu1 Tu2Cu

d2d1

+

 
Figure 9-5.13    Force diagram across the section 

 

3. Part of section under tension (eN │xu = D < , eN ≤ ∞, xu < D)  

The following sketches represent the strain and stress profiles across the section and 

the force diagram. 
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Tu1
Tu2Cu
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Strain profile
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Figure 9-5.14    Sketches for analysis for part of section under tension 

 

The forces are as follows.  The compression is the resultant of the stress block whose 

expression can be derived similar to a reinforced concrete section.  

Cu = 0.36fck xu B  
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Tu1  = Ap1 fp1  

         = Ap1 F (εp1) 

         = Ap1 F (εc1+ ∆εp) 

Tu2  = Ap2 fp2  

         = Ap2 Ep εp2   

         = Ap2 Ep (εc2+ ∆εp)  

The strains εc1 and εc2 are calculated from the similarity of triangles of the following 

strain diagram. 

   

(9-5.19) 
 

 

(9-5.20) 
 

– 0.0035

xu – (D/2 – d2)
(D/2 + d1) – xu

εc2
εc1

xu

– 0.0035

xu – (D/2 – d2)
(D/2 + d1) – xu

εc2
εc1

xu

 
Figure 9-5.15    Strain profile across section 

 

The moment and axial force capacities are as follows. 

NuR = Cu – Tu1 – Tu2                                                                      (9-5.21) 
MuR = Mc + Mp                                                                                    (9-5.22) 

 

The expressions of Mc and Mp about the centroid are as follows.  

Mc = 0.36fck xu B [ (D / 2) – 0.42 xu ]                     (9-5.23) 
Mp = Tu1d1 – Tu2d2                                                 (9-5.24) 

 

The lever arms of the forces are shown in the following sketch.  The location of Cu is 

similar to that of a reinforced concrete section.  
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Tu1 Tu2Cu

d2d1

(D / 2) – 0.42 xu

+
Tu1 Tu2Cu

d2d1

(D / 2) – 0.42 xu

+

 
Figure 9-5.16    Force diagram across the section 

 

4. Pure bending (eN = ∞, xu = xu,min) 

The value of xu is determined by trial and error from the condition that the sum of the 

forces is zero.  

Cu – Tu1 – Tu2 = 0 

or,   0.36fck xu B – Ap1 fp1 – Ap2 fp2 = 0                                       (9-5.25) 
 

(9-5.26) 
 

The strains εp1 and εp2 are calculated from the strain compatibility equations. The strain 

εp2 is within the elastic range, whereas εp1 may be outside the elastic range.  The 

stresses fp1 and fp2 are calculated accordingly from the stress versus strain relationship 

of prestressing steel.  

 

The steps for solving xu are as follows.  

1) Assume xu = 0.15 D (say).  

2) Determine εp1 and εp2 from strain compatibility.  

3) Determine fp1 and fp2 from stress versus strain relationship.  

4) Calculate xu from Eqn. (9-5.26).  

5) Compare xu with the assumed value. Iterate till convergence.  

 

The moment and axial force capacities are as follows. 

 NuR = 0                                                    (9-5.27) 
     MuR = Mc + Mp                                                              (9-5.28) 

The expressions of Mc and Mp are same as the previous case.  

 

5. Axial tension  

The moment and axial force capacities are as follows. The cracked concrete is 

neglected in calculating the axial force capacity.  

p p p p p
u

ck

A f + A E ε
   x =

f B
1 1 2 2or,    

0.36
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NuR = – 0.87fpk Ap                                                          (9-5.29) 
   MuR = 0                                                       (9-5.30) 

 

The above sets of NuR and MuR are joined to get the interaction diagram.   

 
Example 9-5.1 
 
Calculate the design interaction diagram for the member given below.  The 
member is prestressed using 8 strands of 10 mm diameter.  The strands are 
stress relieved with the following properties.  
  

Tensile strength (fpk)  = 1715 N/mm2.   
Total area of strands  = 8 × 51.6 

         = 413.0 mm2 

Effective prestress (fpe)  = 1034 N/mm2 

Modulus (Ep)   = 200 kN/mm2 

Strain under fpe (εpe)  = 0.0042. 
 

Grade of concrete   = M40 
Strain under fpe (εce)  = – 0.0005. 

200 5050

300

300

200 5050

300

300

 
Solution 
 

Calculation of geometric properties and strain compatibility relationship.  

 

Ag   = 300 × 300 = 90,000 mm2 

Ap1 = Ap2  = 4 × 51.6 = 206 mm2 

d1 = d2  = 100 mm 
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∆εp   = 0.0042 + 0.0005 = 0.0047 

∴εp = εc + 0.0047 

 

1. Pure compression (eN = 0, xu = ∞) 

MuR  = 0 kNm 

    

Cu  = 0.447fck (Ag – Ap) 

       = 0.447 × 40 (90,000 – 413)  

       = 1601.8 kN 

 

Tu1 = Tu2  = Ap1 Ep (– 0.002 + ∆εp)  

       = 206.4 × 200 × (0.0047 – 0.002) 

       = 111.5 kN 

 

NuR  = Cu – Tu1 – Tu2  

   = 1601.8 – 2 × 111.5 

   = 1378.8 kN 

 

With 10% reduction, to bypass the use of interaction diagram for eccentricities   

eN ≤ 0.05D 

     NuR  = 1204.9 kN  

 

2. Full section under compression (0.05D < eN ≤ eN │xu = D , xu ≥ D) 

400400

 
Select xu  = 400 mm 

                  = (4 / 3) × 300 mm    

 

∴k  = 4 / 3 

 

 

 

 

⎛ ⎞
⎜ ⎟
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⎛ ⎞
⎜ ⎟
⎝ ⎠

2

2

2
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7 -3

4= 0.447×40 
7×(4/3) -3

= 7.13 N/mm

ckg f
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– 0.002

271.4

εc1

(3/7) 300 = 128.6 

150
– 0.002

271.4

εc1

(3/7) 300 = 128.6 

150  
 

 

 

 

– 0.002

271.4

εc2

350

– 0.002

271.4

εc2

350  
 

 

 

 

 

NuR  = Cu – Tu1 – Tu2 
  = 1486.9 – 148.4 – 87.5  

  = 1251.0 kN 

 

Limit NuR to 1240.9 kN to bypass the use of interaction diagram for eccentricities eN ≤ 

0.05D.  
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MuR  = Mc + Mp 
  = 13.1 + 6.1  

  = 19.2 kNm 

 

Select xu = 300 mm    

∴k = 1  

By similar calculations,   

g  = 17.9 N/mm2  NuR  = 1060.6 kN 

Cu  = 1304.1 kN    Mc  = 32.9 kNm 

Tu1  = 169.9 kN    Mp  = 9.6 kNm 

Tu2  = 73.6 kN   MuR  = 42.5 kNm. 

 

3. Part of section under tension (eN │xu = D < eN ≤ ∞, xu < D) 

Select xu  = 200 mm.     

       Cu  = 0.36fck xu B 

   = 0.36 × 40 × 200 × 300  

   = 864.0 kN 

 

 

 

 

 

– 0.003550

εc1 200

– 0.003550

εc1 200

 
 

Strain corresponding to elastic limit  

      εpy = 0.87 × 0.8fck / Ep  
  = 0.87 × 1715 / 200 × 103  

  = 0.0059. 

 

p u uM  = T d  - T d1 1 2 2

=148.4×100 -87.5×100
= 6.1 kNm

1
0.0035= 50

200
= 0.0009

cε

1 = 0.0009+0.0047
= 0.0056

pε

300300
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εp1 < εpy  

 

∴fp1 = Ep εp1  

  = 200 × 103 × 0.0055  

  = 1115 N/mm2 

  

Tu1  = Ap1 fp1  

  = 206.4 × 1115  

  = 230.1 kN 

 

 

 

 

 

– 0.0035

150

εc2

200

– 0.0035

150

εc2

200

 
fp2 = Ep εp2  

  = 200 × 103 × 0.0021  

  = 416 N/mm2 

  

Tu2  = Ap2 fp2     NuR  = Cu – Tu1 – Tu2 

  = 206.4 × 416    = 864 – 230.1 – 85.9  

  = 85.9 kN    = 548.0 kN 

 

Mc  = 0.36fck xu B [ (D / 2) – 0.42xu ] 

  = 864 (150 – 0.42 × 200)  

  = 57.0 kNm 

 

      Mp  = Tu1d1 – Tu2d2   MuR  = Mc + Mp 
  = 230.1 × 100 – 85.9 × 100    = 57.0 + 14.4  

  = 14.4 kNm     = 71.4 kNm  

 

 

2
0.0035= - 150

200
= -0.0026

cε

2 = - 0.0026+0.0047
= 0.0021

pε
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4. Pure bending (eN = ∞, xu = xu,min) 

NuR  = 0.0 kN 

  Try xu  = 100 mm. 

 

      Cu  = 0.36fck xu B 

  = 0.36 × 40 × 100 × 300  

  = 432.0 kN 

 

 

 

 

 

 

– 0.0035150

εc1

100

– 0.0035150

εc1

100

 
From stress-strain curve 

      fp1  = 0.87fpk  

  = 1492 N/mm2 

 

Tu1  = Ap1 fp1  

  = 206.4 × 1492  

  = 308.0 kN 

– 0.0035

50

εc2

100

– 0.0035

50

εc2

100

 
 

 

 

 

1
0.0035= 150

100
= 0.0052

cε

1 = 0.0052+0.0047
= 0.0099

pε

2
0.0035= - 50

100
= -0.0017

cε
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fp2  = Ep εp2 
  = 200 × 103 × 0.0029 

  = 580 N/mm2 

 

Tu2   = Ap2 fp2  

  = 206.4 × 580  

  = 120.0 kN 

 

Tu1 + Tu2 = 428.0 kN 

This is close enough to Cu = 432.0 kN.  Hence, the trial value of xu is satisfactory.  

Mc  = 0.36fck xu B [ (D / 2) – 0.42xu ]  

  = 0.36 × 40 × 100 × 300 (150 – 0.42 × 100)  

  = 46.6 kNm 

     Mp  = Tu1d1 – Tu2d2   
= 308.0 × 100 – 120.0 × 100 

= 18.8 kNm 

 

MuR = 46.6 + 18.8     

= 65.4 kNm  

 

5. Axial tension 

    MuR  = 0.0 kNm 

 

    NuR  = – 0.87fpk Ap 
  = – 0.87 × 1715 × 413.0  

  = – 616.2 kN  

 

The above sets of NuR and MuR are joined to get the following interaction diagram.  The 

limit on axial force capacity to consider the effect of eccentricity less than 0.05D, is not 

shown.   

2 = - 0.0017+0.0047
= 0.0029

pε
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9.5.4 Effect of Prestressing Force 
 

Along with the interaction curve for the prestressed concrete (PC) section, the 

interaction curves for two reinforced concrete (RC) sections are plotted. The section 

denoted as RC 1 has the same moment capacity at zero axial force. The section 

denoted as RC 2 has the same axial force capacity at zero moment. The gross section 

of RC 1 is same as that of PC, but the section of RC 2 is smaller. 
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Figure 9-5.17    Interaction diagrams for reinforced and prestressed sections 
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Figure 9-5.18    Interaction of moment and tension for cracking and strength 

 

Comparing the curves for PC and RC 2, it is observed that if the moment demand is 

small, then a smaller reinforced concrete section is adequate to carry the axial force. Of 

course with increasing moment, the flexural capacity of the prestressed concrete 

section is higher.   Comparing the curves for PC and RC 1, it is inferred that for two 

sections with same flexural capacities, the axial load capacity of a prestressed concrete 

section is less.  However if there is tension, the cracking load combination is higher for 

PC as compared to RC 1.   

 

Thus, prestressing is beneficial for strength when there is occurrence of:   

a) Large moment in addition to compression 

b) Moment along with tension.   

 

Such situations arise in piles or columns subjected to seismic forces. In presence of 

tension, prestressing is beneficial at service loads due to reduced cracking.  Non-

prestressed reinforcement may be used for supplemental capacity.  

 

 
 


