Recursion

* Recursion is a fundamental programming
technique that can provide an elegant solution
certain kinds of problems

hmehta.scs@dauniv.ac.in

Recursive Thinking

* A recursive definition is one which uses the word
or concept being defined in the definition itself

 When defining an English word, a recursive
definition is often not helpful

 But in other situations, a recursive definition can
be an appropriate way to express a concept

« Before applying recursion to programming, it is
best to practice thinking recursively

hmehta.scs@dauniv.ac.in

" 2 Recursive Definitions

4 1_;"
&

r
.._..r

- * Consider the following list of numbers:

24, 88, 40, 37

« Such a list can be defined as follows:

A LIST is a: number
or a: number comma LIST

 That is, a LIST is defined to be a single number, or
a number followed by a comma followed by a LIST

 The concept of a LIST is used to define itself

hmehta.scs@dauniv.ac.in

¢ Recursive Definitions

* The recursive part of the LIST definition is
used several times, terminating with the
non-recursive part:

number comma LIST
24 1 4 88[40, 37

number comma LIST
88 ’ 40, 37

number comma LIST
40 , 37

number
37

hmehta.scs@dauniv.ac.in

Infinite Recursion

 All recursive definitions have to have a non-
recursive part

 |If they didn't, there would be no way to terminate
the recursive path

* Such a definition would cause infinite recursion

* This problem is similar to an infinite loop, but the
non-terminating "loop" is part of the definition
itself

 The non-recursive part is often called the base
case

hmehta.scs@dauniv.ac.in

Recursive Definitions

* NI, for any positive integer N, is defined to be the
product of all integers between 1 and N inclusive

« This definition can be expressed recursively as:

1! = 1
N! = N * (N-1)!

A factorial is defined in terms of another factorial

« Eventually, the base case of 1! is reached

hmehta.scs@dauniv.ac.in

Recursive Definitions

* A Function can invoke itself; if set up that way, it
is called a recursive function

* The code of a recursive function must be
structured to handle both the base case and the
recursive case

« As with any function call, when the function
completes, control returns to the function that

invoked it (which may be an earlier invocation of
itself)

hmehta.scs@dauniv.ac.in

Recursive Programming

« Consider the problem of computing the sum of all
the numbers between 1 and any positive integer N

« This problem can be recursively defined as:

N-1 N=-2

N + N-1 + i
=

N-3

= N + N-1 + N-2 + >
=]

I
2
+

[

]

N
2
i=1

hmehta.scs@dauniv.ac.in 9

Recursive Programming

// This function returns the sum of 1 to num

int sum (int num)

{

int result;

if (num == 1)
result = 1;
else
result = num + sum (n-1);

return result;

hmehta.scs@dauniv.ac.in

10

Recursive Programming

result = 6

result = 1

hmehta.scs@dauniv.ac.in

Recursive Programming

* Note that just because we can use recursion to
solve a problem, doesn't mean we should

* For instance, we usually would not use recursion
to solve the sum of 1 to N problem, because the
iterative version is easier to understand

« However, for some problems, recursion provides
an elegant solution, often cleaner than an iterative
version

* You must carefully decide whether recursion is the
correct technique for any problem

hmehta.scs@dauniv.ac.in 12

Indirect Recursion

« A function invoking itself is considered to be
direct recursion

* A function could invoke another function, which
invokes another, etc., until eventually the original
function is invoked again

* For example, function m1 could invoke m2, which
invokes m3, which in turn invokes m1 again

 This is called indirect recursion, and requires all
the same care as direct recursion

« It is often more difficult to trace and debug

hmehta.scs@dauniv.ac.in 13

Indirect Recursion

ml

hmehta.scs@dauniv.ac.in

m2

m3

14

Towers of Hanoi

« The Towers of Hanoi is a puzzle made up of three
vertical pegs and several disks that slide on the

pegs

 The disks are of varying size, initially placed on
one peg with the largest disk on the bottom with
increasingly smaller ones on top

* The goal is to move all of the disks from one peg
to another under the following rules:

= We can move only one disk at a time

= We cannot move a larger disk on top of a smaller one

hmehta.scs@dauniv.ac.in 15

Towers of Hanoi

Original Configuration

Move 2

hmehta.scs@dauniv.ac.in

Move 1

Move 3

16

Towers of Hanoi

Move 4 Move 5

Move 6 Move 7 (done)

hmehta.scs@dauniv.ac.in 17

 An iterative solution to the Towers of Hanoi is
quite complex

A recursive solution is much shorter and more
elegant

hmehta.scs@dauniv.ac.in

18

Towers of Hanoi

#include <stdio.h>
#include <conio.h>

void transfer(int,char,char,char);

int main()
{
int n;
printf("Recursive Solution to Towe of Hanoi Problem\n");
printf("enter the number of Disks");
scanf("%d",&n);
transfer(n,'L','R",'C");
getch();
return 0;

}
void transfer(int n,char from,char to,char temp)

{
if (n>0)

{

transfer(n-1,from,temp,to); I* Move n-1 disk from origin to temporary */

printf("Move Disk %d from %c to %c\n",n,from,to);

transfer(n-1,temp,to,from); I* Move n-1 disk from temporary to origin */

}

return;

}

hmehta.scs@dauniv.ac.in

19

ﬁ’ Drawbacks of Recursion

)

Regardless of the algorithm used, recursion has two
important drawbacks:
» Function-Call Overhead

= Memory-Management Issues

hmehta.scs@dauniv.ac.in 20

™ Eliminating Recursion — Tail

B~ Recursion
A special kind of recursion is tail recursion.
= Tail recursion is when a recursive call is the last thing a
function does.
Tail recursion is important because it makes the

recursion — iteration conversion very easy.

* That is, we like tail recursion because it is easy to
eliminate.

» |n fact, tail recursion is such an obvious thing to optimize
that some compilers automatically convert it to iteration.

hmehta.scs@dauniv.ac.in 21

Eliminating Recursion — Tail
Recursion

For a void function, tail recursion looks like this:

void foo (TTT a, UUU b)

{

foo(x, y):

}

For a function returning a value, tail recursion looks like this:

SSS bar (TTT a, UUU b)

{

return bar(x, vy):;

hmehta.scs@dauniv.ac.in

22

2 A tail-recursive Factorial Function

o] _'I |

We will use an auxiliary function to rewrite factorial as tail-
recursive:

int factAux (int x, int result)

{
if (x==0) return result;
return factAux(x-1, result * x);

}
int tailRecursiveFact(int x)
{
return factAux (n, 1);
}

hmehta.scs@dauniv.ac.in

23

