
hmehta.scs@dauniv.ac.in 1

Recursion
• Recursion is a fundamental programming

technique that can provide an elegant solution
certain kinds of problems

hmehta.scs@dauniv.ac.in 2

Recursive Thinking
• A recursive definition is one which uses the word

or concept being defined in the definition itself

• When defining an English word, a recursive
definition is often not helpful

• But in other situations, a recursive definition can
be an appropriate way to express a concept

• Before applying recursion to programming, it is
best to practice thinking recursively

hmehta.scs@dauniv.ac.in 3

Recursive Definitions
• Consider the following list of numbers:

24, 88, 40, 37

• Such a list can be defined as follows:

A LIST is a: number
or a: number comma LIST

• That is, a LIST is defined to be a single number, or
a number followed by a comma followed by a LIST

• The concept of a LIST is used to define itself

hmehta.scs@dauniv.ac.in 4

Recursive Definitions
• The recursive part of the LIST definition is

used several times, terminating with the
non-recursive part:
number comma LIST

24 , 88, 40, 37

number comma LIST
88 , 40, 37

number comma LIST

40 , 37

number

37

hmehta.scs@dauniv.ac.in 5

Infinite Recursion
• All recursive definitions have to have a non-

recursive part

• If they didn't, there would be no way to terminate
the recursive path

• Such a definition would cause infinite recursion

• This problem is similar to an infinite loop, but the
non-terminating "loop" is part of the definition
itself

• The non-recursive part is often called the base
case

hmehta.scs@dauniv.ac.in 6

Recursive Definitions
• N!, for any positive integer N, is defined to be the

product of all integers between 1 and N inclusive

• This definition can be expressed recursively as:

1! = 1

N! = N * (N-1)!

• A factorial is defined in terms of another factorial

• Eventually, the base case of 1! is reached

hmehta.scs@dauniv.ac.in 7

Recursive Definitions

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120

hmehta.scs@dauniv.ac.in 8

Recursive Programming
• A Function can invoke itself; if set up that way, it

is called a recursive function

• The code of a recursive function must be
structured to handle both the base case and the
recursive case

• As with any function call, when the function
completes, control returns to the function that
invoked it (which may be an earlier invocation of
itself)

hmehta.scs@dauniv.ac.in 9

Recursive Programming
• Consider the problem of computing the sum of all

the numbers between 1 and any positive integer N

• This problem can be recursively defined as:

o

∑

∑∑∑
−

=

−

=

−

==

+−+−+=

+−+=+=
3

1

2

1

1

11

21

1
N

i

N

i

N

i

N

i

iNNN

iNNiNi

hmehta.scs@dauniv.ac.in 10

Recursive Programming
// This function returns the sum of 1 to num

int sum (int num)

{

int result;

if (num == 1)

result = 1;

else

result = num + sum (n-1);

return result;

}

hmehta.scs@dauniv.ac.in 11

Recursive Programming

main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6

hmehta.scs@dauniv.ac.in 12

Recursive Programming
• Note that just because we can use recursion to

solve a problem, doesn't mean we should

• For instance, we usually would not use recursion
to solve the sum of 1 to N problem, because the
iterative version is easier to understand

• However, for some problems, recursion provides
an elegant solution, often cleaner than an iterative
version

• You must carefully decide whether recursion is the
correct technique for any problem

hmehta.scs@dauniv.ac.in 13

Indirect Recursion
• A function invoking itself is considered to be

direct recursion

• A function could invoke another function, which
invokes another, etc., until eventually the original
function is invoked again

• For example, function m1 could invoke m2, which
invokes m3, which in turn invokes m1 again

• This is called indirect recursion, and requires all
the same care as direct recursion

• It is often more difficult to trace and debug

hmehta.scs@dauniv.ac.in 14

Indirect Recursion

m1 m2 m3

m1 m2 m3

m1 m2 m3

hmehta.scs@dauniv.ac.in 15

Towers of Hanoi
• The Towers of Hanoi is a puzzle made up of three

vertical pegs and several disks that slide on the
pegs

• The disks are of varying size, initially placed on
one peg with the largest disk on the bottom with
increasingly smaller ones on top

• The goal is to move all of the disks from one peg
to another under the following rules:

� We can move only one disk at a time

� We cannot move a larger disk on top of a smaller one

hmehta.scs@dauniv.ac.in 16

Towers of Hanoi

Original Configuration Move 1

Move 3Move 2

hmehta.scs@dauniv.ac.in 17

Towers of Hanoi

Move 4 Move 5

Move 6 Move 7 (done)

hmehta.scs@dauniv.ac.in 18

Towers of Hanoi
• An iterative solution to the Towers of Hanoi is

quite complex

• A recursive solution is much shorter and more
elegant

hmehta.scs@dauniv.ac.in 19

Towers of Hanoi
#include <stdio.h>
#include <conio.h>

void transfer(int,char,char,char);

int main()
{

int n;
printf("Recursive Solution to Towe of Hanoi Problem\n");
printf("enter the number of Disks");
scanf("%d",&n);
transfer(n,'L','R','C');
getch();
return 0;

}
void transfer(int n,char from,char to,char temp)
{

if (n>0)
{

transfer(n-1,from,temp,to); /* Move n-1 disk from origin to temporary */
printf("Move Disk %d from %c to %c\n",n,from,to);
transfer(n-1,temp,to,from); /* Move n-1 disk from temporary to origin */

}
return;

}

hmehta.scs@dauniv.ac.in 20

Drawbacks of Recursion
Regardless of the algorithm used, recursion has two

important drawbacks:
� Function-Call Overhead

� Memory-Management Issues

hmehta.scs@dauniv.ac.in 21

Eliminating Recursion — Tail
Recursion
A special kind of recursion is tail recursion.

� Tail recursion is when a recursive call is the last thing a
function does.

Tail recursion is important because it makes the
recursion → iteration conversion very easy.
� That is, we like tail recursion because it is easy to

eliminate.
� In fact, tail recursion is such an obvious thing to optimize

that some compilers automatically convert it to iteration.

hmehta.scs@dauniv.ac.in 22

Eliminating Recursion — Tail
Recursion
For a void function, tail recursion looks like this:

void foo(TTT a, UUU b)
{

…
foo(x, y);

}

For a function returning a value, tail recursion looks like this:

SSS bar(TTT a, UUU b)
{

…
return bar(x, y);

}

hmehta.scs@dauniv.ac.in 23

A tail-recursive Factorial Function

We will use an auxiliary function to rewrite factorial as tail-
recursive:

int factAux (int x, int result)
{

if (x==0) return result;
return factAux(x-1, result * x);

}
int tailRecursiveFact(int x)
{

return factAux (n, 1);
}

