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Instructional Objectives 
At the end of this lesson, the students should be able to: 

1. Explain the inadequacies of EZW and SPIHT in wavelet packet encoding. 

2. Define resolution scalability of embedded bit-stream. 

3. Define SNR scalability of embedded bit-stream. 

4. State the basic characteristics of EBCOT algorithm. 

5. Explain the rate-distortion optimization problem of code blocks. 

6. Explain how the truncation points are selected in EBCOT bit-stream. 

7. State the highlighting features of block coding algorithm. 

8. Define the significance of sub-blocks. 

9. Explain the quad-tree structure representation of sub-block significance. 

10. Name the four coding passes in block coding algorithm. 

11. State the role of each of the coding passes in block coding algorithm. 

12. Define the four coding primitives used in block coding algorithm. 

13. Explain the formation of the quality layers from the embedded code block 

bit stream. 

 
 
15.0 Introduction 
In lesson-13 and lesson-14, we have studied two similar approaches to coding of 
wavelet (in general, subband) coefficients, namely Embedded Zerotree Wavelet 
(EZW) and Set Partitioning in Hierarchical Trees (SPIHT). Both these 
approaches use ordering of coefficients by magnitudes for encoding the 
coefficients in an embedded bit-stream and exploit the self-similarity of 
coefficients across subbands. The latter approach is more efficient in terms of 
coding efficiency, as compared to the former, since it doesn’t require explicit 
transmission of ordering information of the coefficients by efficiently partitioning 
the subsets of coefficients in spatial orientation trees. However, both EZW and 
SPIHT can only be applied to dyadic partitioning of coefficients, in which only the 
LL subband at a decomposition level are further analyzed. This is regarded as a 
limitation, since these two algorithms cannot be applied to wavelet packets in 
general. Wavelet packets allow more flexible decomposition of subbands and the 
subbands at higher frequencies can also be decomposed into narrower bands. 
Moreover, these two approaches only offer SNR scalability by encoding all the 
subbands at a given precision in an iteration of passes (dominant -subordinate 
passes in EZW and sorting-refinement passes in SPIHT). These algorithms do 
not offer any resolution scalability in the sense that we do not complete the 
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encoding at a given resolution and then do the encoding at the next higher 
resolution and so on. 
 
In this lesson, we are going to discuss a more recent approach to embedded 
wavelet coding, namely Embedded Block Coding with Optimized Truncation of 
bit-stream (EBCOT), which can be applied to wavelet packets and which offers 
both resolution scalability and SNR scalability. Because of its advantages, the 
EBCOT algorithm has been accepted incorporated within the most recent still 
image compression standard JPEG-2000. In this lesson, we shall first define 
resolution and SNR scalabilities and their combinations. This will be followed by 
the basic objectives of EBCOT. The algorithm selects the truncation points, that 
is, where the bit-stream can be terminated based on rate-distortion (R-D) 
optimization. The encoding primitives and the steps of encoding will be explained 
later in the lesson. 
 
15.1 Resolution Scalability 
Before defining resolution scalability, let us consider an example subband packet 
decomposition structure, as presented in fig.15.1.  
 

 
                       Fig 15.1: Example subband decomposition structure 
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These subbands are grouped into different resolution levels 

where corresponds to the lowest resolution level and contains 
only the single LL subband (1), indicated in yellow colour. The next resolution 
level is , which is green in colour and includes subbands 2, 3 and 4. The other 

resolution levels are  (red), 

VLLLL "",,, 210 0L

1L

{ 7,6,52 =L } { }22,21,,10,9,83 ""=L  (white). 
 

 
 

Fig 15.2:  Resolution scalable bit stream 
 
If  an embedded bit-stream contains distinct subsets representing each resolution 
level, the bit-stream is called resolution scalable. In the illustrative diagram of 
fig.15.2,  represents the bit-stream contributed by resolution level l. The 
embedded bit-stream starts with the lowest resolution level corresponding to 
coarsest representation and progressively the higher resolution bit-stream 
follows. 

lB

 
15.2 SNR Scalability 
An embedded bit-stream is said to be SNR scalable if it contains distinct subsets 

such that together represents the samples from all the subbands at 

some quality (SNR) level-q. The best examples that can be cited are the EZW 
and the SPIHT algorithms. There, what we generate at the end of each 
dominant-subordinate or sorting-refinement pass is a SNR scalable bit-stream, 
since all encoded significant coefficients correspond to a bit plane. 
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k
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Fig 15.3: Both resolution and SNR scalable bit-stream. 
 
 
A bit-stream is said to be both resolution and SNR scalable, if it contains distinct 
subsets which hold the quality refinements in resolution level . Fig.15.3 
illustrates a bit-stream that is both resolution and SNR scalable. The EBCOT 
algorithm incorporates both these forms of scalability. 

qlB , lL
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15.3 Basic Characteristics of EBCOT algorithm 
Before we describe EBCOT algorithm is detail, we list some of its basic 
characteristics: 
 

• It offers both resolution and SNR scalability. 
 
• It has a random access attribute. Given any region of interest and a 

wavelet transform with finite support kernel, it is possible to identify the 
regions within each subband. 

 
• Each subband is partitioned into small non-overlapping block of samples, 

known as code blocks. EBCOT generates an embedded bit-stream for 
each code block. The bit-stream associated with each code block may be 
truncated to any of a collection of rate-distortion optimized truncation 
points. 

 
• A code block is encoded by a two-tier coding structure, as shown in 

fig.15.4. In the first stage, a small amount of summary information is 
collected during the generation of each code block’s embedded bit-
stream. Based on this summary information, the truncation points for each 
code block are determined, using which the quality layers are formed in 
the second stage. 

 

 
           Fig 15.4: Two-tier coding structure of EBCOT. 

 
• The EBCOT algorithm works on a layered bit-stream concept, where each 

layer corresponds to a quality and a collection of these layers form a rate-
distortion optimized image. 

 
• A single bit-stream offers a range of scalability – single layer possesses 

resolution scalability, few layers target at some specific bit-rate of interest 
and a large number of layers offer SNR and resolution scalability with 
random access attributes. 

 
15.4 Rate-Distortion Optimization 
Suppose that a truncation point is selected for a code-block . The rate and 
the distortion for the code-block  associated with this truncation point are given 

in iB

iB

Version 2 ECE IIT, Kharagpur 
 



by and respectively. The distortion metric used is usually the mean square 
error and is additive over all the code blocks. Thus, the overall distortion in the 
image is given by 

in
iR in

iD

 
∑=

i

n
i

iDD ………………………………………………………………………... (15.1) 

 
which is to be minimized subject to the constraint on the maximum bit-rate maxR , 
given by 
 

∑=≥
i

n
i

iRRRmax ………………………………………………………………… (15.2) 

 
The Rate-Distortion (R-D) optimization problem requires minimization of RD λ+ , 
where λ is a Lagrange multiplier. If we can find a value of λ such that the 
truncation points { }λin selected from different code blocks achieve  , we 
can say that 

maxRR =

{ }λin  is the optimal set of truncation points. Since the truncation 
points are discrete, it is not possible to exactly make maxRR = . In practice, the 
code blocks are small in size and there are many truncation points. It is sufficient 
to determine the smallest value of λ such that maxRR ≤ . 
 
We have separate minimization problem for each code block . To determine 

the truncation point , which minimizes ( ) for all values of λ, we select 
a set  of feasible truncation points, enumerated by 

iB
λ
in

λλ

λ ii n
i

n
i RD +

iN ""<< 21 jj  whose rate-
distortion slopes   (where  
and ) are strictly decreasing. Then, the optimal selection of 
truncation points is given by 
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i DDD −=Δ −1

1−−=Δ jk
i

jk
i

jk
i RRR

{ }λλ >∈= jk
iii SNjkn |max . This unique set may be 

determined through a process of convex hull analysis. 
 
15.5 Block Coding Algorithm 
The block coding algorithm generates separate embedded bit-stream for every 
code block. Some highlighting features of the block coding algorithm are: 
 

• Uses the concept of “fractional bit plane”, in which every bit-plane is 
encoded in multiple numbers of passes. 

 
• Uses context-sensitive arithmetic coding. 

 
• Code blocks are further subdivided into sub-blocks whose significance are 

efficiently encoded prior to sample by sample encoding. 
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Before presenting the algorithm, we introduce you to the symbols used in the 
encoding process: 
 
( 21,kksi )

)

: 2-D sequence of subband samples belonging to the code block . For 
the LL, LH and HH subbands, and represent the horizontal and the vertical 
positions respectively. The HL subband is transposed, so that and represent 
the vertical and the horizontal positions respectively. 

iB

1k 2k

1k 2k

 
( 21 ,kkiχ : The sign of the subband sample ( )21,kksi . Hence, ( ) { }1,1, 21 −∈kkiχ  

 
( 21 ,kki )υ : Quantized magnitude of the subband sample, given by 

( ) ( )
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

i

kks
kk i

i
βδ

υ 21
21

,
,  

 
where, 

iβ
δ is the quantization step-size for the subband to which the code-block 

belongs. iB
 

( 21 ,kkp
iυ ): The p th bit-plane of ( )21 ,kkiυ . 0=p  corresponds to the least 

significant bit     and is the most significant bit. max
ip

 
( 21 ,kki )σ : A binary state-variable, indicating the significance map. Its entry is 

initialized to zero, but is set to one, when the relevant sample’s first non-zero bit-
plane  is encountered. ( ) 1, 21 =kkp

iυ
 
15.5.1 Sub-blocks and their significance: 
Every code-block is further subdivided into sub-blocks, each of which is typically 
of the size 16 x 16. For each bit-plane , the significance of the sub-
blocks are represented in a quad-tree structure, where the sub-blocks belong to 
the leaf nodes of the quad-tree 

0max ≥≥ ppi

( )21
0 , jjBi   ( are the coordinates of the sub-

block and 0 is the level of the leaf node).  The nodes at the level-t in the tree are 
formed from the nodes at the level-    (t-1) as  

21, jj

( ) ( )
{ }

TtzjzjBjjB
zz

t
i

t
i ≤≤++=

∈

− 0 where,2,2,
1,0,

2211
1

21
21

∪  

 
where, T is the level corresponding to the root of the tree, given by ( )0,0T

iB , 
which indicates the entire code-block. The quad-tree data structure for the sub-
blocks is illustrated in fig.15.5.  
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The significance of a sub-block ( )21 , jjBi for a bit-plane p is defined as follows. If 
any of the quantized magnitudes ( ) p

i kk 2, 21 ≥υ for ( ) ( 2121 ,, jjBkk i )∈ , the sub-
block is defined as significant for the bit-plane p. The significance of a 
sub-block is propagated to the nodes at the higher levels in the quad-tree, which 
means that the node   is significant, only if at least one of its descendant 
sub-blocks is significant. The significance of a quad-tree node at level-t for bit-
plane p is indicated by

( 21 , jjBi )

)( 21 , jjBt
i

( )( )21 , jjB t
i

pσ . The significance of the quad-tree data-
structure is encoded by arithmetic coding. If a quad-tree node is insignificant, the 
significance of its descendants need not be encoded. Also, if a quad-tree node is 
significant in the previous bit-plane that is, (p+1), it will remain significant in all the 
bit-planes from p onwards. 
 
The encoding of the sub-block significance, sub-blocks containing one or more 
significant samples are identified and this leads to an efficient coding, since all 
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other sub-blocks which are insignificant, are by-passed in the remaining coding 
phases for the bit-plane. 
 
15.5.2 Coding Passes: 
The embedded bit-stream for each bit-plane belonging to a code block is 
generated in four different passes in the following order, namely (a) Forward 

significance propagation pass ( )pP1 , (b) Reverse significance propagation pass 
( )pP2 , (c) Magnitude refinement pass ( )pP3 and (d) Normalization pass ( )pP4 .  The 
quad-tree significance code for the p th bit-plane is sent before the 

normalization pass , so that the coefficients that become significant in bit 

plane-p are ignored until . The generation of the embedded bit stream starts 

with the most significant bit-plane and proceeds up to the least significant 

bit-plane . 

pS
pP4

pP4

max
ip

0
ip

 
 

Fig 15.6: Apperance of coding passes in EBCOT bit-stream. 
 
 
 Fig.15.6 illustrates the bit-stream generation order. The coding passes are 
described below: 
 

(a) Forward significance propagation pass ( )pP1 : In this pass, the 
coefficients in a code block are visited in scan line. Those which are 
insignificant till the previous bit-plane, that is ( ) 1

21 2, +≤ pp
i kkυ and have a 

preferred neighborhood are coded and the rest are skipped. For LL, LH 
and HL subbands (note that the HL subband coefficients are already 
transposed, as described earlier.), the sample ( )21,kksi  is said to have a 
preferred neighborhood, if at least one of its horizontal neighbors is 
significant, that is ( 21 ,1 kki )±σ =1. The HH subband’s sample  is 
said to have a preferred neighborhood, if at least one of its four diagonal 
neighbors are significant, that is, 

( )21,kksi

( )1,1 21 ±± kkiσ =1. To each such sample, 
one of the two coding primitives, namely Zero Code (ZC) or Run Length 
Code (RLC) (to be described shortly) is applied to indicate if the sample 
first becomes significant in the current bit-plane p. If so, another coding 
primitive, Sign Code (SC) is invoked to encode the sign of the coefficient. 
This pass is referred to as significance propagation, since, the coefficients 
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already found to be significant serve as seeds and propagate their 
significance in the direction of their scan. 

 

(b) Reverse significance propagation pass ( )pP2 : This coding pass is 
identical to except for the order of scanning the coefficients which is 
reverse. Also, the concept of preferred neighborhood is extended to eight-
connected neighbors of the sample. 

pP1

 

(c) Magnitude refinement pass ( )pP3 : In this pass, the coefficients which are 
already found to be significant are encoded using the Magnitude 
Refinement (MR) primitive (to be described shortly). 

 

(d) Normalization pass ( )pP4 : All coefficients which were skipped in the 
earlier three passes are encoded in this pass. This includes coefficients 
which are insignificant till the previous bit-plane and do not have any 
preferred neighborhood. To encode such coefficients, we make use of 
RLC and SC coding primitives. 

 
Although the original EBCOT algorithm proposed by Taubman uses the four 
passes listed above, in the JPEG-2000 image coding standard, the four passes 
are simplified to three by using only one significance pass, instead of the forward 
and the reverse and using eight neighbors for preferred direction. 
 
15.5.3 Coding Primitives: 
To encode the code block coefficients, one of the following four coding primitives 
are used: 
 

• Zero Coding (ZC): This primitive is used in the significance propagation 
passes to encode those coefficients which are insignificant till the last bit-
plane, have a preferred neighborhood and do not form a run of 
insignificant samples. The coefficient under consideration i.e.  is 
encoded using the context of its neighbors in terms of significance. The 
significance of the neighbors of 

( )21 ,kksi

( )21 ,kksi are grouped into three categories: 
 

o Horizontal: Given by ( )
{ }

( )21
1,1

121 ,, kzkkkh
z

i += ∑
−∈

σ , so that 

. ( ) 2,0 21 ≤≤ kkhi

 
o Vertical: Given by ( )

{ }
( )zkkkkv

z
i += ∑

−∈
21

1,1
121 ,, σ , so 

that ( ) 2,0 21 ≤≤ kkvi . 
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o Diagonal: Given by ( )
{ }

( )2211
1,1,

121 ,,
21

zkzkkkd
zz

i ++= ∑
−∈

σ , so that 

 ( ) 4,0 21 ≤≤ kkdi

 
   The label associated with the ZC primitive depends on the values of ,    

 and . These are quantized to nine distinct coding contexts. 
( )21 ,kkhi

( 21 ,kkvi ) )( 21 ,kkdi

 
• Run-length Coding (RLC): This primitive is used in place of the ZC 

primitive, when each of the following conditions hold good: 
 

o Four consecutive samples are all insignificant, i.e. 
( ) 3z0for 0, 21 ≤≤=+ kzkiσ  

 
o All these samples have insignificant neighbors, i.e. 

( ) ( ) ( ) 30for ,,, 212121 ≤≤+=+=+ zkzkdkzkvkzkh iii  
 

o The samples must reside within the same code block. 
 

o Horizontal index of the first of these four samples, must be even. 1k
                      When a group of four samples satisfy the above conditions, a     
                      single symbol is used to identify whether any of the four samples  
                      become significant in the current bit plane. 
 

 Sign Coding (SC): This primitive is used only once for each sample, 
when a previously insignificant sample is found to be significant during a 
ZC or RLC operation. It is observed that the sign bits ( )21 ,kkiχ  of adjacent 
samples tend to be correlated and that is why, the label assigned to the 
SC primitive takes into consideration the contexts of ,  
and 

( )21,kkhi ( )21 ,kkvi

( )21,kkiχ . 
 

 Magnitude Refinement (MR): This primitive is used to encode the 
subband samples in a bit-plane, which are already significant from the 
previous pass. A new state variable ( )21 ,~ kkiσ is introduced which makes a 
transition from 0 to 1 after the MR primitive is first applied to . The 
bit  is coded with contexts that depend upon  
and . 

( 21,kksi )
)( 21 ,kkp

iυ ( )21 ,kkhi

( )21 ,kkvi

 
15.6 Formation of Quality Layers 
We now focus our attention to the second stage of the two-tier coding structure 
shown in fig.15.4, which accepts the embedded bit-stream and other summary 
information from each of the code blocks to form the quality layers. As discussed 
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in section-15.4, each code block has a collection of truncation points iB

{ }"",2,1, =qnq
i  corresponding to the different quality layers. The embedded bit 

stream for each code block, generated from the first stage of the coding engine is 
composed of a collection of quality layers , where qQ "",2,1=q are the indices of 

the quality layers in the increasing order of quality. The first bytes in the 
embedded bit-stream of is composed of the quality layers to , in which 

the layer q makes an incremental contribution from the code 
block . The code blocks may make empty contributions to some of the quality 
layers. For each code block, following quantities are sent as summary 
information: (a) the index of the quality layer  to which the code block makes 
the first nonempty contribution, (b) the incremental contribution  to each quality 
layer and (c) the value of . These quantities are available for all the code 
blocks from the first stage. Two quantities show significant amount of inter code 
block redundancies. These are and the index of the quality layer to which 
the code block makes its first contribution. These inter code block 
redundancies are exploited by using a separate embedded quad-tree code within 
each subband.  

q
in

iR

iB 1Q qQ

0
1

≥−=
−q

i
q
i n

i
n
i

q
i RRL

iB

qQ
q
iL

max
ip

max
ip iq

iB

 
The second-stage of the coding engine, utilize the summary information from the 
code blocks rather than each sample to compose the quality layers. The quality 
layer formation is illustrated in fig.15.7. The bit-stream from each code block, 
truncated into specific truncation points corresponding to the quality layers are 
arranged in increasing order of q. To compose the bit-stream corresponding to 
each quality layer, we have to proceed along the code blocks in their scanning 
order and add their contributions to the quality layer.  
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15.7 Summary and Conclusions 
In this lesson, we have presented EBCOT algorithm, which offers resolution 
scalability, and SNR scalability within finely embedded bit-streams for relatively 
small blocks of subband samples. The EBCOT algorithm forms the basis for the 
latest still image compression standard, JPEG-2000. We shall discuss about the 
deviations of the JPEG-2000 algorithm from the original EBCOT in lesson-17. 
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