

Module
 5

EMBEDDED
WAVELET

CODING
Version 2 ECE IIT, Kharagpur

Lesson
15

EBCOT
Algorithm

Version 2 ECE IIT, Kharagpur

Instructional Objectives
At the end of this lesson, the students should be able to:

1. Explain the inadequacies of EZW and SPIHT in wavelet packet encoding.

2. Define resolution scalability of embedded bit-stream.

3. Define SNR scalability of embedded bit-stream.

4. State the basic characteristics of EBCOT algorithm.

5. Explain the rate-distortion optimization problem of code blocks.

6. Explain how the truncation points are selected in EBCOT bit-stream.

7. State the highlighting features of block coding algorithm.

8. Define the significance of sub-blocks.

9. Explain the quad-tree structure representation of sub-block significance.

10. Name the four coding passes in block coding algorithm.

11. State the role of each of the coding passes in block coding algorithm.

12. Define the four coding primitives used in block coding algorithm.

13. Explain the formation of the quality layers from the embedded code block

bit stream.

15.0 Introduction
In lesson-13 and lesson-14, we have studied two similar approaches to coding of
wavelet (in general, subband) coefficients, namely Embedded Zerotree Wavelet
(EZW) and Set Partitioning in Hierarchical Trees (SPIHT). Both these
approaches use ordering of coefficients by magnitudes for encoding the
coefficients in an embedded bit-stream and exploit the self-similarity of
coefficients across subbands. The latter approach is more efficient in terms of
coding efficiency, as compared to the former, since it doesn’t require explicit
transmission of ordering information of the coefficients by efficiently partitioning
the subsets of coefficients in spatial orientation trees. However, both EZW and
SPIHT can only be applied to dyadic partitioning of coefficients, in which only the
LL subband at a decomposition level are further analyzed. This is regarded as a
limitation, since these two algorithms cannot be applied to wavelet packets in
general. Wavelet packets allow more flexible decomposition of subbands and the
subbands at higher frequencies can also be decomposed into narrower bands.
Moreover, these two approaches only offer SNR scalability by encoding all the
subbands at a given precision in an iteration of passes (dominant -subordinate
passes in EZW and sorting-refinement passes in SPIHT). These algorithms do
not offer any resolution scalability in the sense that we do not complete the

Version 2 ECE IIT, Kharagpur

encoding at a given resolution and then do the encoding at the next higher
resolution and so on.

In this lesson, we are going to discuss a more recent approach to embedded
wavelet coding, namely Embedded Block Coding with Optimized Truncation of
bit-stream (EBCOT), which can be applied to wavelet packets and which offers
both resolution scalability and SNR scalability. Because of its advantages, the
EBCOT algorithm has been accepted incorporated within the most recent still
image compression standard JPEG-2000. In this lesson, we shall first define
resolution and SNR scalabilities and their combinations. This will be followed by
the basic objectives of EBCOT. The algorithm selects the truncation points, that
is, where the bit-stream can be terminated based on rate-distortion (R-D)
optimization. The encoding primitives and the steps of encoding will be explained
later in the lesson.

15.1 Resolution Scalability
Before defining resolution scalability, let us consider an example subband packet
decomposition structure, as presented in fig.15.1.

 Fig 15.1: Example subband decomposition structure

Version 2 ECE IIT, Kharagpur

These subbands are grouped into different resolution levels

where corresponds to the lowest resolution level and contains
only the single LL subband (1), indicated in yellow colour. The next resolution
level is , which is green in colour and includes subbands 2, 3 and 4. The other

resolution levels are (red),

VLLLL "",,, 210 0L

1L

{ 7,6,52 =L } { }22,21,,10,9,83 ""=L (white).

Fig 15.2: Resolution scalable bit stream

If an embedded bit-stream contains distinct subsets representing each resolution
level, the bit-stream is called resolution scalable. In the illustrative diagram of
fig.15.2, represents the bit-stream contributed by resolution level l. The
embedded bit-stream starts with the lowest resolution level corresponding to
coarsest representation and progressively the higher resolution bit-stream
follows.

lB

15.2 SNR Scalability
An embedded bit-stream is said to be SNR scalable if it contains distinct subsets

such that together represents the samples from all the subbands at

some quality (SNR) level-q. The best examples that can be cited are the EZW
and the SPIHT algorithms. There, what we generate at the end of each
dominant-subordinate or sorting-refinement pass is a SNR scalable bit-stream,
since all encoded significant coefficients correspond to a bit plane.

qB k

q

k
B

0=
∪

Fig 15.3: Both resolution and SNR scalable bit-stream.

A bit-stream is said to be both resolution and SNR scalable, if it contains distinct
subsets which hold the quality refinements in resolution level . Fig.15.3
illustrates a bit-stream that is both resolution and SNR scalable. The EBCOT
algorithm incorporates both these forms of scalability.

qlB , lL

Version 2 ECE IIT, Kharagpur

15.3 Basic Characteristics of EBCOT algorithm
Before we describe EBCOT algorithm is detail, we list some of its basic
characteristics:

• It offers both resolution and SNR scalability.

• It has a random access attribute. Given any region of interest and a

wavelet transform with finite support kernel, it is possible to identify the
regions within each subband.

• Each subband is partitioned into small non-overlapping block of samples,

known as code blocks. EBCOT generates an embedded bit-stream for
each code block. The bit-stream associated with each code block may be
truncated to any of a collection of rate-distortion optimized truncation
points.

• A code block is encoded by a two-tier coding structure, as shown in

fig.15.4. In the first stage, a small amount of summary information is
collected during the generation of each code block’s embedded bit-
stream. Based on this summary information, the truncation points for each
code block are determined, using which the quality layers are formed in
the second stage.

 Fig 15.4: Two-tier coding structure of EBCOT.

• The EBCOT algorithm works on a layered bit-stream concept, where each

layer corresponds to a quality and a collection of these layers form a rate-
distortion optimized image.

• A single bit-stream offers a range of scalability – single layer possesses

resolution scalability, few layers target at some specific bit-rate of interest
and a large number of layers offer SNR and resolution scalability with
random access attributes.

15.4 Rate-Distortion Optimization
Suppose that a truncation point is selected for a code-block . The rate and
the distortion for the code-block associated with this truncation point are given

in iB

iB

Version 2 ECE IIT, Kharagpur

by and respectively. The distortion metric used is usually the mean square
error and is additive over all the code blocks. Thus, the overall distortion in the
image is given by

in
iR in

iD

∑=

i

n
i

iDD ………………………………………………………………………... (15.1)

which is to be minimized subject to the constraint on the maximum bit-rate maxR ,
given by

∑=≥
i

n
i

iRRRmax ………………………………………………………………… (15.2)

The Rate-Distortion (R-D) optimization problem requires minimization of RD λ+ ,
where λ is a Lagrange multiplier. If we can find a value of λ such that the
truncation points { }λin selected from different code blocks achieve , we
can say that

maxRR =

{ }λin is the optimal set of truncation points. Since the truncation
points are discrete, it is not possible to exactly make maxRR = . In practice, the
code blocks are small in size and there are many truncation points. It is sufficient
to determine the smallest value of λ such that maxRR ≤ .

We have separate minimization problem for each code block . To determine

the truncation point , which minimizes () for all values of λ, we select
a set of feasible truncation points, enumerated by

iB
λ
in

λλ

λ ii n
i

n
i RD +

iN ""<< 21 jj whose rate-
distortion slopes (where
and) are strictly decreasing. Then, the optimal selection of
truncation points is given by

jk
i

jk
i

jk
i RDS ΔΔ= / jk

i
jk

i
jk

i DDD −=Δ −1

1−−=Δ jk
i

jk
i

jk
i RRR

{ }λλ >∈= jk
iii SNjkn |max . This unique set may be

determined through a process of convex hull analysis.

15.5 Block Coding Algorithm
The block coding algorithm generates separate embedded bit-stream for every
code block. Some highlighting features of the block coding algorithm are:

• Uses the concept of “fractional bit plane”, in which every bit-plane is
encoded in multiple numbers of passes.

• Uses context-sensitive arithmetic coding.

• Code blocks are further subdivided into sub-blocks whose significance are

efficiently encoded prior to sample by sample encoding.

Version 2 ECE IIT, Kharagpur

Before presenting the algorithm, we introduce you to the symbols used in the
encoding process:

(21,kksi)

)

: 2-D sequence of subband samples belonging to the code block . For
the LL, LH and HH subbands, and represent the horizontal and the vertical
positions respectively. The HL subband is transposed, so that and represent
the vertical and the horizontal positions respectively.

iB

1k 2k

1k 2k

(21 ,kkiχ : The sign of the subband sample ()21,kksi . Hence, () { }1,1, 21 −∈kkiχ

(21 ,kki)υ : Quantized magnitude of the subband sample, given by

() ()
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

i

kks
kk i

i
βδ

υ 21
21

,
,

where,

iβ
δ is the quantization step-size for the subband to which the code-block

belongs. iB

(21 ,kkp
iυ): The p th bit-plane of ()21 ,kkiυ . 0=p corresponds to the least

significant bit and is the most significant bit. max
ip

(21 ,kki)σ : A binary state-variable, indicating the significance map. Its entry is

initialized to zero, but is set to one, when the relevant sample’s first non-zero bit-
plane is encountered. () 1, 21 =kkp

iυ

15.5.1 Sub-blocks and their significance:
Every code-block is further subdivided into sub-blocks, each of which is typically
of the size 16 x 16. For each bit-plane , the significance of the sub-
blocks are represented in a quad-tree structure, where the sub-blocks belong to
the leaf nodes of the quad-tree

0max ≥≥ ppi

()21
0 , jjBi (are the coordinates of the sub-

block and 0 is the level of the leaf node). The nodes at the level-t in the tree are
formed from the nodes at the level- (t-1) as

21, jj

() ()
{ }

TtzjzjBjjB
zz

t
i

t
i ≤≤++=

∈

− 0 where,2,2,
1,0,

2211
1

21
21

∪

where, T is the level corresponding to the root of the tree, given by ()0,0T

iB ,
which indicates the entire code-block. The quad-tree data structure for the sub-
blocks is illustrated in fig.15.5.

Version 2 ECE IIT, Kharagpur

The significance of a sub-block ()21 , jjBi for a bit-plane p is defined as follows. If
any of the quantized magnitudes () p

i kk 2, 21 ≥υ for () (2121 ,, jjBkk i)∈ , the sub-
block is defined as significant for the bit-plane p. The significance of a
sub-block is propagated to the nodes at the higher levels in the quad-tree, which
means that the node is significant, only if at least one of its descendant
sub-blocks is significant. The significance of a quad-tree node at level-t for bit-
plane p is indicated by

(21 , jjBi)

)(21 , jjBt
i

()()21 , jjB t
i

pσ . The significance of the quad-tree data-
structure is encoded by arithmetic coding. If a quad-tree node is insignificant, the
significance of its descendants need not be encoded. Also, if a quad-tree node is
significant in the previous bit-plane that is, (p+1), it will remain significant in all the
bit-planes from p onwards.

The encoding of the sub-block significance, sub-blocks containing one or more
significant samples are identified and this leads to an efficient coding, since all

Version 2 ECE IIT, Kharagpur

other sub-blocks which are insignificant, are by-passed in the remaining coding
phases for the bit-plane.

15.5.2 Coding Passes:
The embedded bit-stream for each bit-plane belonging to a code block is
generated in four different passes in the following order, namely (a) Forward

significance propagation pass ()pP1 , (b) Reverse significance propagation pass
()pP2 , (c) Magnitude refinement pass ()pP3 and (d) Normalization pass ()pP4 . The
quad-tree significance code for the p th bit-plane is sent before the

normalization pass , so that the coefficients that become significant in bit

plane-p are ignored until . The generation of the embedded bit stream starts

with the most significant bit-plane and proceeds up to the least significant

bit-plane .

pS
pP4

pP4

max
ip

0
ip

Fig 15.6: Apperance of coding passes in EBCOT bit-stream.

 Fig.15.6 illustrates the bit-stream generation order. The coding passes are
described below:

(a) Forward significance propagation pass ()pP1 : In this pass, the
coefficients in a code block are visited in scan line. Those which are
insignificant till the previous bit-plane, that is () 1

21 2, +≤ pp
i kkυ and have a

preferred neighborhood are coded and the rest are skipped. For LL, LH
and HL subbands (note that the HL subband coefficients are already
transposed, as described earlier.), the sample ()21,kksi is said to have a
preferred neighborhood, if at least one of its horizontal neighbors is
significant, that is (21 ,1 kki)±σ =1. The HH subband’s sample is
said to have a preferred neighborhood, if at least one of its four diagonal
neighbors are significant, that is,

()21,kksi

()1,1 21 ±± kkiσ =1. To each such sample,
one of the two coding primitives, namely Zero Code (ZC) or Run Length
Code (RLC) (to be described shortly) is applied to indicate if the sample
first becomes significant in the current bit-plane p. If so, another coding
primitive, Sign Code (SC) is invoked to encode the sign of the coefficient.
This pass is referred to as significance propagation, since, the coefficients

Version 2 ECE IIT, Kharagpur

already found to be significant serve as seeds and propagate their
significance in the direction of their scan.

(b) Reverse significance propagation pass ()pP2 : This coding pass is
identical to except for the order of scanning the coefficients which is
reverse. Also, the concept of preferred neighborhood is extended to eight-
connected neighbors of the sample.

pP1

(c) Magnitude refinement pass ()pP3 : In this pass, the coefficients which are
already found to be significant are encoded using the Magnitude
Refinement (MR) primitive (to be described shortly).

(d) Normalization pass ()pP4 : All coefficients which were skipped in the
earlier three passes are encoded in this pass. This includes coefficients
which are insignificant till the previous bit-plane and do not have any
preferred neighborhood. To encode such coefficients, we make use of
RLC and SC coding primitives.

Although the original EBCOT algorithm proposed by Taubman uses the four
passes listed above, in the JPEG-2000 image coding standard, the four passes
are simplified to three by using only one significance pass, instead of the forward
and the reverse and using eight neighbors for preferred direction.

15.5.3 Coding Primitives:
To encode the code block coefficients, one of the following four coding primitives
are used:

• Zero Coding (ZC): This primitive is used in the significance propagation
passes to encode those coefficients which are insignificant till the last bit-
plane, have a preferred neighborhood and do not form a run of
insignificant samples. The coefficient under consideration i.e. is
encoded using the context of its neighbors in terms of significance. The
significance of the neighbors of

()21 ,kksi

()21 ,kksi are grouped into three categories:

o Horizontal: Given by ()
{ }

()21
1,1

121 ,, kzkkkh
z

i += ∑
−∈

σ , so that

. () 2,0 21 ≤≤ kkhi

o Vertical: Given by ()

{ }
()zkkkkv

z
i += ∑

−∈
21

1,1
121 ,, σ , so

that () 2,0 21 ≤≤ kkvi .

Version 2 ECE IIT, Kharagpur

o Diagonal: Given by ()
{ }

()2211
1,1,

121 ,,
21

zkzkkkd
zz

i ++= ∑
−∈

σ , so that

 () 4,0 21 ≤≤ kkdi

 The label associated with the ZC primitive depends on the values of ,

 and . These are quantized to nine distinct coding contexts.
()21 ,kkhi

(21 ,kkvi))(21 ,kkdi

• Run-length Coding (RLC): This primitive is used in place of the ZC

primitive, when each of the following conditions hold good:

o Four consecutive samples are all insignificant, i.e.
() 3z0for 0, 21 ≤≤=+ kzkiσ

o All these samples have insignificant neighbors, i.e.

() () () 30for ,,, 212121 ≤≤+=+=+ zkzkdkzkvkzkh iii

o The samples must reside within the same code block.

o Horizontal index of the first of these four samples, must be even. 1k
 When a group of four samples satisfy the above conditions, a
 single symbol is used to identify whether any of the four samples
 become significant in the current bit plane.

 Sign Coding (SC): This primitive is used only once for each sample,
when a previously insignificant sample is found to be significant during a
ZC or RLC operation. It is observed that the sign bits ()21 ,kkiχ of adjacent
samples tend to be correlated and that is why, the label assigned to the
SC primitive takes into consideration the contexts of ,
and

()21,kkhi ()21 ,kkvi

()21,kkiχ .

 Magnitude Refinement (MR): This primitive is used to encode the
subband samples in a bit-plane, which are already significant from the
previous pass. A new state variable ()21 ,~ kkiσ is introduced which makes a
transition from 0 to 1 after the MR primitive is first applied to . The
bit is coded with contexts that depend upon
and .

(21,kksi)
)(21 ,kkp

iυ ()21 ,kkhi

()21 ,kkvi

15.6 Formation of Quality Layers
We now focus our attention to the second stage of the two-tier coding structure
shown in fig.15.4, which accepts the embedded bit-stream and other summary
information from each of the code blocks to form the quality layers. As discussed

Version 2 ECE IIT, Kharagpur

in section-15.4, each code block has a collection of truncation points iB

{ }"",2,1, =qnq
i corresponding to the different quality layers. The embedded bit

stream for each code block, generated from the first stage of the coding engine is
composed of a collection of quality layers , where qQ "",2,1=q are the indices of

the quality layers in the increasing order of quality. The first bytes in the
embedded bit-stream of is composed of the quality layers to , in which

the layer q makes an incremental contribution from the code
block . The code blocks may make empty contributions to some of the quality
layers. For each code block, following quantities are sent as summary
information: (a) the index of the quality layer to which the code block makes
the first nonempty contribution, (b) the incremental contribution to each quality
layer and (c) the value of . These quantities are available for all the code
blocks from the first stage. Two quantities show significant amount of inter code
block redundancies. These are and the index of the quality layer to which
the code block makes its first contribution. These inter code block
redundancies are exploited by using a separate embedded quad-tree code within
each subband.

q
in

iR

iB 1Q qQ

0
1

≥−=
−q

i
q
i n

i
n
i

q
i RRL

iB

qQ
q
iL

max
ip

max
ip iq

iB

The second-stage of the coding engine, utilize the summary information from the
code blocks rather than each sample to compose the quality layers. The quality
layer formation is illustrated in fig.15.7. The bit-stream from each code block,
truncated into specific truncation points corresponding to the quality layers are
arranged in increasing order of q. To compose the bit-stream corresponding to
each quality layer, we have to proceed along the code blocks in their scanning
order and add their contributions to the quality layer.

Version 2 ECE IIT, Kharagpur

15.7 Summary and Conclusions
In this lesson, we have presented EBCOT algorithm, which offers resolution
scalability, and SNR scalability within finely embedded bit-streams for relatively
small blocks of subband samples. The EBCOT algorithm forms the basis for the
latest still image compression standard, JPEG-2000. We shall discuss about the
deviations of the JPEG-2000 algorithm from the original EBCOT in lesson-17.

Version 2 ECE IIT, Kharagpur

	EMBEDDED WAVELET CODING
	EBCOTAlgorithm
	Instructional Objectives
	Introduction
	Resolution Scalability
	SNR Scalability
	Basic Characteristics of EBCOT algorithm
	Rate-Distortion Optimization
	Block Coding Algorithm
	Formation of Quality Layers
	Summary and Conclusions

