
Version 2 ECE IIT, Kharagpur

Module
2

LOSSLESS IMAGE
COMPRESSION

SYSTEMS

Version 2 ECE IIT, Kharagpur

Lesson
4

Arithmetic and Lempel-

Ziv Coding

Version 2 ECE IIT, Kharagpur

Instructional Objectives
At the end of this lesson, the students should be able to:

1. Explain why Huffman coding is not optimal.

2. State the basic principles of arithmetic coding.

3. Encode a sequence of symbols into an arithmetic coded bit stream.

4. Decode an arithmetic coded bit stream.

5. State the coding efficiency limitations of arithmetic coding.

6. State the basic principles of Lempel-Ziv coding

7. Encode a sequence of symbols into a Lempel-Ziv coded bit stream.

8. Decode a Lempel-Ziv coded bit stream.

4.0 Introduction
In lesson-3, we have studied Huffman coding, one of the popular lossless
compression schemes. However, we have seen from our examples that although
the average code word length is much less as compared to that of fixed-length
coding, it is still higher than the entropy and consequently, the coding efficiency
is less than one. It is because, we have to encode one symbol at a time and each
symbol translates into an integral number of bits. If instead, we sacrifice the one-
to-one mapping between the symbol and its code word and encode the entire
sequence of source symbols into one single code word, we may expect the
coding efficiency to be better and the average code word length approach the
lower bound given by Shannon’s noiseless coding theorem. This is exactly the
basis of arithmetic coding, which has emerged as a strong alternative to Huffman
coding.

This lesson begins with a discussion on arithmetic coding techniques. We shall
first present the basic principles of arithmetic coding and then study how to
encode a sequence of symbols into a bit stream and decode the bit stream back
to obtain the sequence of symbols. We shall see that although the coding
efficiency is high, arithmetic coding is still not optimal due to some deficiencies
inherent in the coding scheme. The rest of this lesson is devoted to Lempel-Ziv
coding, which is another popular lossless compression scheme that assigns
fixed-length codes to a variable group of symbols. This is a dictionary-based
coding that finds its use in a variety of image representation formats.

Version 2 ECE IIT, Kharagpur

4.1 Basic Principles of Arithmetic Coding

Like Huffman coding, this too is a Variable Length Coding (VLC) scheme
requiring a priori knowledge of the symbol probabilities. The basic principles of
arithmetic coding are as follows:

a) Unlike Huffman coding, which assigns variable length codes to a fixed
group symbols (usually of length one), arithmetic coding assigns variable
length codes to a variable group of symbols.

b) All the symbols in a message are considered together to assign a single

arithmetic code word.

c) There is no one-to-one correspondence between the symbol and its
corresponding code word.

d) The code word itself defines a real number within the half-open interval

[0,1) and as more symbols are added, the interval is divided into smaller
and smaller subintervals, based on the probabilities of the added symbols.

4.1.2 Algorithm for Arithmetic Coding

The steps of the encoding algorithm are as follows:

Step-1: Consider a range of real numbers in [0,1). Subdivide this range into a
number of sub-ranges that is equal to the total number of symbols in the source
alphabet. Each sub-range spans a real value equal to the probability of the
source symbol.

Step-2: Consider a source message and take its first symbol. Find to which sub-
range does this source symbol belongs.

Step-3: Subdivide this sub-range into a number of next level sub-ranges,
according to the probability of the source symbols.

Step-4: Now parse the next symbol in the given source message and determine
the next-level sub-range to which it belongs.

Step-5: Repeat step-3 and step-4 until all the symbols in the source message are
parsed. The message may be encoded using any real value in the last sub-range
so formed. The final message symbol is reserved as a special end-of-symbol
message indicator.

Version 2 ECE IIT, Kharagpur

4.2 Encoding a Sequence of Symbols using Arithmetic

Coding
We are now going to illustrate the arithmetic coding process with a 6-symbol

message 214312 aaaaaa generated from a 4-symbol source { }4321 ,,, aaaa having

probabilities of the symbols () () () () 1.0 and2.0,3.0,4.0 4321 ==== aPaPaPaP .

Step-1: Draw a line, indicating an open interval of real numbers [0,1) and divide
this line into a number of subintervals corresponding to the number of symbols in
the source (in this example, 4 symbols- 4321 ,,, aaaa). The lengths of the
subintervals are equal to the probabilities of the symbols, starting with the interval
[0,P(a1)) from the bottom and ending with the subinterval [P(a3),1) in this
example. Click. On the graphics window, a vertical line will be displayed, having
markings 0 at the bottom and 1 on top. The line will have 3 other markings at 0.4,
0.7 and 0.9. 4321 ,,, aaaa will be marked besides these subintervals from the
bottom.

 4[1].2.1a.swf

 Fig 4.2.1

Step-2: Examine the first symbol in the sequence. Expand the corresponding
subinterval to the full length of the line and mark the corresponding reduced
overall range. Divide this line too into the subintervals as before and determine
the positions of the subintervals corresponding to the reduced range. Click. The
diagram will now get modified, adding a second vertical line that is pointed to by
the interval a2 from the first line. The top of this second line will be marked as 0.7
and the bottom as 0.4. This line will also have 3 other markings at the
proportional positions and the numerical values corresponding to those positions
should be indicated (0.52, 0.61 and 0.67). 4321 ,,, aaaa will be marked besides
these subintervals from the bottom.

 4[1].2.2a.swf

 Fig 4.2.2

 In this example, the first symbol being a2, the corresponding subinterval [0.4,
0.7) is expanded for further encoding.

../animations/4.2.1a.swf
../animations/4.2.2a.swf

Version 2 ECE IIT, Kharagpur

Step-3: Examine the next symbol in the sequence and repeat the operations
performed in step-2. Repeat this step, until all the symbols in the sequence has
been considered. Click once. The diagram will now get modified, adding a third
vertical line that is pointed to by the interval a1 from the second line. The top of
the third line will be marked as 0.52 and the bottom as 0.4. This line will also
have 3 other markings at the proportional positions and the numerical values
corresponding to those positions should be indicated (0.448, 0.484, and 0.508).

4321 ,,, aaaa will be marked besides these subintervals from the bottom.

4[1].2.3a.swf

 Fig 4.2.3

We have therefore added the next symbol a1 for encoding and the corresponding
subinterval [0.4, 0.52) is expanded for further encoding.
Click once more. A new vertical line will come up, pointed to by the interval a3
from the previous line. Mark as before. The positions will now be (0.484, 0.4936,
0.5008, 0.5056 and 0.508).

4[1].2.4a.swf

 Fig 4.2.4

 We have now added the next symbol a3
Click once more. A new vertical line will come up, pointed to by the interval a4
from the previous line. Mark as before. The positions will now be (0.5056,
0.50656, 0.50728, 0.50776 and 0.508).

4[1].2.5a.swf

Fig 4.2.5

 We have now added the next symbol a4.

Click once more. A new vertical line will come up, pointed to by the interval a1
from the previous line. Mark as before. The positions will now be (0.5056,
0.505984, 0.506272, 0.506464 and 0.50656).

../animations/4.2.3a.swf
../animations/4.2.4a.swf
../animations/4.2.5a.swf

Version 2 ECE IIT, Kharagpur

4[1].2.6a.swf

Fig 4.2.6

We have now added the next symbols a1 and a2 and hence considered the entire
message for encoding.

Step-4: Generate an arithmetic code corresponding to the last subinterval that
remained. In this example, [0.505984, 0.506272) should now be arithmetically
encoded. Any real number within this subinterval can be considered for encoding
and we can choose 0.506, which requires a precision of three digits after the
decimal point. Encoding the example sequence of length 6 symbols therefore
requires (3/6), i.e., 0.5 digits/ symbol, which is close to its entropy of 0.554
digits/symbol. The bit stream corresponding to real number 0.506 can be
generated by any appropriate coding schemes.

4.3 Decoding an Arithmetic-Coded Bit Stream
The decoding process of arithmetic coded bit stream is very straightforward. We
should follow these steps:

Step-1: Identify the message bit stream. Convert this to the real decimal number
and determine its position within the subintervals identified at the beginning of
encoding process. The corresponding symbol is the first one in the message.

In this example, the message bit stream corresponds to decimal number 506 i.e.,
0.506 in the real valued interval [0,1). This corresponds to the subinterval [0.4,
0.7) of a2 in step-1 of encoding (Section-4.2). The first symbol is therefore a2.

Step-2: Consider the expanded subinterval of the previous decoded symbol and
map the real number within this to determine the next subinterval and obtain the
next decoded symbol. Repeat this step until the end-of-message indicator is
parsed.

In this example, following step-1 and step-2, we obtain the complete sequence

214312 aaaaaa .

4.4 Coding Efficiency Limitations of Arithmetic-Coded Bit

Stream
Although we may expect coding efficiency close to unity for arithmetic coding, its
performance falls short of the Shannon’s noiseless coding theorem bounds, due
to the following limitations:

../animations/4.2.6a.swf

Version 2 ECE IIT, Kharagpur

a) Every message ends with a special end-of-message symbol. This adds to

an overhead in encoding and optimal performance can only be reached
for very long messages.

b) Finite precision arithmetic also restricts the coding performance. This

problem has been addressed by Langdon and Rissanen [1] through the
introduction of a scaling and rounding strategy.

4.5 Basic Principles of Lempel-Ziv Coding
We now consider yet another popular lossless compression scheme, which is
originally called Lempel-Ziv coding, and also referred to as Lempel-Ziv-Welch
(LZW) coding, following the modifications of Welch for image compression. This
coding scheme has been adopted in a variety of imaging file formats, such as the
graphic interchange format (GIF), tagged image file format (TIFF) and the
portable document format (PDF). The basic principles of this encoding scheme
are:

a) It assigns a fixed length codeword to a variable length of symbols.

b) Unlike Huffman coding and arithmetic coding, this coding scheme does
not require a priori knowledge of the probabilities of the source symbols.

c) The coding is based on a “dictionary” or “codebook” containing the source
symbols to be encoded. The coding starts with an initial dictionary, which
is enlarged with the arrival of new symbol sequences.

d) There is no need to transmit the dictionary from the encoder to the
decoder. A Lempel-Ziv decoder builds an identical dictionary during the
decoding process.

4.6 Encoding a sequence of symbols using Lempel-Ziv
Coding
The encoding process will now be illustrated for one line of image having the
following intensity values in sequence:

343232323332323432343232
This indicates a near uniform intensity line strip with a little perturbation, that is
commonly encountered in practical images.

To begin the encoding process, we consider a dictionary of size 256 locations
(numbered 0 to 255) that contain entries corresponding to each pixel intensity
value in the range 0-255. When we encounter the first pixel of intensity 32, we do
not encode it and wait for the second pixel to arrive. When the next pixel intensity
of 32 is encountered, we encode the first pixel as 32, corresponding to its
dictionary location number, but at the same time, we make a new entry to the

Version 2 ECE IIT, Kharagpur

dictionary at the location number 256 to include the newly detected sequence 32-
32 (a short form of writing 32 followed by 32), so that next time we encounter this
sequence 32-32, we are going to encode as 256, instead of two consecutive
code words of 32. The arrival of the third pixel of intensity 34 makes a new
sequence entry 32-34 at the location number 257 and the previous pixel (the
second one) will be encoded as 32. The fourth pixel of intensity 32 will add
another code entry at location number 258 to include the sequence 34-32 and
the third pixel will be encoded as 34. The arrival of fifth pixel of intensity 34 will
find a matching sequence of 32-34 at location number 257. We do not encode
any pixel now and wait for the arrival of the sixth pixel of intensity 32. The
previously found matching sequence of 32-34 will be encoded as 257. With the
arrival of the sixth pixel, we also recognize the sequence 34-32 and add a triplet
of sequence 32-34-32 to the dictionary. We can now follow the rest of the coding
process illustrated in Table-4.1.

It is to be noted that the encoding process of the pixel intensities and the
sequence of pixel intensities will require 9 bits, as long as the dictionary size is
restricted to 29 (=512) locations. There is considerable bit savings when the pixel
sequences find matching with a dictionary entry. For example, encoding the
sequence 32-34 requires only 9-bits, as compared to 16-bits, which would have
been required to independently encode the two pixels. Longer matching
sequences (triplets and higher) results in substantial bit savings. In fact, it will be
more and more efficient to encode larger file sizes. However, the size of the
dictionary is a very crucial parameter. If it is too small, we are going to have less
frequent matches and consequently less compression. On the other hand, too
large a dictionary size would lead to increased bit consumption in encoding
unmatched sequence of pixels.

Currently
Recognized
Sequence

Pixel being
processed

Encoded
Output

Dictionary
Location
(Code word)

Dictionary Entry

 32
32 32 32 256 32-32
32 34 32 257 32-34
34 32 34 258 34-32
32 34
32-34 32 257 259 32-34-32
32 32
32-32 33 256 260 32-33
33 32 33 261 33-32
32 32
32-32 32 256 262 32-32-32
32 34
32-34 257

Table 4.1 Lempel-Ziv coding example

Version 2 ECE IIT, Kharagpur

4.7 Decoding a Lempel-Ziv encoded sequence
Decoding of Lempel-Ziv encoded sequence is quite straightforward. If we follow
the example shown in Table-4.1, we find that the encoded sequence of symbols
will be 25725633256257343232
Like the encoder, the decoder also starts with the initial dictionary entries of 0-
255 only. When the decoder receives this sequence at the input, it first receives
32, which can be directly decoded as a pixel of intensity of 32. Next received
symbol, as well as the next pixel is also 32. However, the dictionary now makes a
new entry of 32-32 sequence at the location 256. Next received symbol, as well
as the next pixel is 34. The dictionary now enters the sequence 32-34 at the
location 257. Having made this entry, when the next received symbol is 257, the
decoder detects two consecutive pixels 32, followed by 34. The next received
symbol is 256, i.e., 32 followed by 32. The reader should verify that this way we
decode the sequence of pixels as

343232323332323432343232 , which is the original
sequence.

Version 2 ECE IIT, Kharagpur

Questions

NOTE: The students are advised to thoroughly read this lesson first and then
answer the following questions. Only after attempting all the questions, they
should click to the solution button and verify their answers.

PART-A

A.1. Explain why Huffman coding fails to achieve the optimal coding efficiency
A.2. Explain why arithmetic coding can achieve better coding efficiency than
 Huffman.
A.3. State the basic principles of arithmetic coding.
A.4. Make a comparison between Huffman coding and arithmetic coding.
A.5. Discuss the limitations of arithmetic coding in achieving optimal coding
 efficiency.
A.6. State the basic principles of Lempel-Ziv coding.

PART-B: Multiple Choice

In the following questions, click the best out of the four choices.
Radio buttons will be provided to the left of each choice. Only one out of the four
buttons can be chosen.

B.1 Which of the following statements is not true for arithmetic coding

 (A) Integral number of bits is assigned to each symbol.

 (B) A real number in the interval [0, 1) indicates the entire coding

 sequence.

 (C) Coding requires a priori knowledge of the probabilities of source

 symbols.

 (D) Longer sequence of source symbols leads to longer code words.

Version 2 ECE IIT, Kharagpur

B.2 The coding efficiency of arithmetic coding is expected to improve if

 (A) The interval of real numbers is increased to [0, 10)

 (B) Shorter sequence of source symbols is encoded.

 (C) Longer sequence of source symbols is encoded.

 (D) None of the above.

B.3 Which one of the following leads to a performance limitation of arithmetic
 coding

 (A) There is no one-to-one mapping between source symbols and code

 words.

 (B) It is a variable length coding.

 (C) The entire sequence of source symbols in a message is encoded

 together.

 (D) Use of finite precision arithmetic.

B.4 A source of 4 symbols 4321 ,,, aaaa having probabilities
() () () () 125.0,25.0,5.0 4321 ==== aPaPaPaP is used for arithmetic coding. The

source symbol sequence a2a1 will correspond to the interval (mark the closest
answer)

(A) [0.25, 0.375)

 (B) [0.5, 0.625)

 (C) [0.75, 0.875)

 (D)[0,1)

Version 2 ECE IIT, Kharagpur

B.5 A sequence of three symbols is arithmetically encoded by the above source
to a real number 0.8. The original sequence is

 (A) 324 aaa

 (B) 342 aaa

 (C) 313 aaa

 (D) 413 aaa

B.6 Which of the following statements is not true for Lempel-Ziv coding

 (A) It is a fixed-length coding for variable-length symbol sequence.

 (B) It does not require a priori knowledge of the source symbol

 probabilities.

 (C) Larger image/file size leads to poorer compression.

 (D) Decoder dictionary can be derived from the encoded sequence.

B.7 A very large-sized dictionary in Lempel-Ziv coding has the following
advantage

 (A) Group of symbols can find more frequent matches.

 (B) Faster encoding and decoding is possible.

 (C) Isolated symbols without groups can be represented with less number

 of bits.

 (D) Large-sized images and files can be encoded.

B.8 A Lempel-Ziv dictionary starts with two entries – “0” and “1”. The dictionary
size after parsing the symbol stream 00101100 is

 (A) 4

 (B) 5

 (C) 6

 (D)7

Version 2 ECE IIT, Kharagpur

B.9 Consider the Lempel-Ziv coding example presented in Table-4.1. The
compression ratio (compressed bits : uncompressed bits) achieved for the
example sequence is

 (A) 1:4

(B) 3:4

 (C) 7:8

 (D) 5:6

PART-C: Problems

C-1.
(a) Construct an arithmetic code in real decimal number for the word “APPLE”
formed out of a 4-symbol alphabet – “A”, “P”, “L” and “E” having probabilities 0.2,
0.4, 0.2 and 0.2 respectively.

(b) Compare the codeword length in digits/symbol with its entropy expressed in
the same units. Calculate its coding efficiency.

C-2. A Lempel-Ziv dictionary having maximum size of 32 has 10 entries to start
with – the decimal numbers “0” to “9”.

(a) Encode the digit sequence 8,2,8,2,2,8,2,2,2,8 using Lempel-Ziv coding and
determine the compression ratio (compressed bits: uncompressed bits).
(b) Repeat part (a) for the digit sequence 9,7,2,0,6,1,5,3,4,8.
(c) Why is the compression ratio better in (a), as compared to (b)?

SOLUTIONS

A.1 Huffman coding fails to achieve optimal coding efficiency because it encodes
one symbol at a time and each symbol translates into an integral number of bits

A.2

A.3

A.4

A.5

A.6

B.1 (A) B.2 (C) B.3 (D) B.4 (B) B.5 (D)

B.6 (C) B.7 (A) B.8 (D) B.9 (B).

Version 2 ECE IIT, Kharagpur

C.1

C.2

REFERENCES

1. Langdon, G.C. and Rissanen, J.J., “Compression of Black-White Images with
Arithmetic Coding”, IEEE Transactions on Communications, Vol.COM-29, No.6,
pp.858-867, 1981.

	LOSSLESS IMAGECOMPRESSIONSYSTEMS
	Arithmetic and Lempel-Ziv Coding
	Instructional Objectives
	Introduction
	Basic Principles of Arithmetic Coding
	Algorithm for Arithmetic Coding
	Encoding a Sequence of Symbols using ArithmeticCoding
	Decoding an Arithmetic-Coded Bit Stream
	Coding Efficiency Limitations of Arithmetic-Coded BitStream
	Basic Principles of Lempel-Ziv Coding
	Encoding a sequence of symbols using Lempel-ZivCoding
	Decoding a Lempel-Ziv encoded sequence
	Questions
	SOLUTIONS
	REFERENCES

