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Instructional Objectives 
At the end of this lesson, the students should be able to: 
 

1. Explain why Huffman coding is not optimal. 
  
2. State the basic principles of arithmetic coding. 

 
3. Encode a sequence of symbols into an arithmetic coded bit stream. 

 
4. Decode an arithmetic coded bit stream. 

 
5. State the coding efficiency limitations of arithmetic coding.  

 
6. State the basic principles of Lempel-Ziv coding 

 
7. Encode a sequence of symbols into a Lempel-Ziv coded bit stream. 

 
8. Decode a Lempel-Ziv coded bit stream. 
 

 
4.0 Introduction 
In lesson-3, we have studied Huffman coding, one of the popular lossless 
compression schemes. However, we have seen from our examples that although 
the average code word length is much less as compared to that of fixed-length 
coding, it is still higher than the entropy and consequently, the coding efficiency 
is less than one. It is because, we have to encode one symbol at a time and each 
symbol translates into an integral number of bits. If instead, we sacrifice the one-
to-one mapping between the symbol and its code word and encode the entire 
sequence of source symbols into one single code word, we may expect the 
coding efficiency to be better and the average code word length approach the 
lower bound given by Shannon’s noiseless coding theorem. This is exactly the 
basis of arithmetic coding, which has emerged as a strong alternative to Huffman 
coding.  
 
This lesson begins with a discussion on arithmetic coding techniques. We shall 
first present the basic principles of arithmetic coding and then study how to 
encode a sequence of symbols into a bit stream and decode the bit stream back 
to obtain the sequence of symbols. We shall see that although the coding 
efficiency is high, arithmetic coding is still not optimal due to some deficiencies 
inherent in the coding scheme. The rest of this lesson is devoted to Lempel-Ziv 
coding, which is another popular lossless compression scheme that assigns 
fixed-length codes to a variable group of symbols. This is a dictionary-based 
coding that finds its use in a variety of image representation formats. 
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4.1 Basic Principles of Arithmetic Coding 
 
Like Huffman coding, this too is a Variable Length Coding (VLC) scheme 
requiring a priori knowledge of the symbol probabilities. The basic principles of 
arithmetic coding are as follows: 
 

a) Unlike Huffman coding, which assigns variable length codes to a fixed 
group symbols (usually of length one), arithmetic coding assigns variable 
length codes to a variable group of symbols.  

 
b) All the symbols in a message are considered together to assign a single 

arithmetic code word. 
 

c) There is no one-to-one correspondence between the symbol and its 
corresponding code word. 

 
d) The code word itself defines a real number within the half-open interval 

[0,1) and as more symbols are added, the interval is divided into smaller 
and smaller subintervals, based on the probabilities of the added symbols.  

 
4.1.2 Algorithm for Arithmetic Coding 
 
The steps of the encoding algorithm are as follows: 
 
Step-1: Consider a range of real numbers in [0,1). Subdivide this range into a 
number of sub-ranges that is equal to the total number of symbols in the source 
alphabet. Each sub-range spans a real value equal to the probability of the 
source symbol. 
 
Step-2: Consider a source message and take its first symbol. Find to which sub-
range does this source symbol belongs.  
 
Step-3: Subdivide this sub-range into a number of next level sub-ranges, 
according to the probability of the source symbols. 
 
Step-4: Now parse the next symbol in the given source message and determine 
the next-level sub-range to which it belongs.  
 
Step-5: Repeat step-3 and step-4 until all the symbols in the source message are 
parsed. The message may be encoded using any real value in the last sub-range 
so formed. The final message symbol is reserved as a special end-of-symbol 
message indicator. 
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4.2 Encoding a Sequence of Symbols using Arithmetic 

Coding 
We are now going to illustrate the arithmetic coding process with a 6-symbol 

message 214312 aaaaaa  generated from a 4-symbol source { }4321 ,,, aaaa  having 

probabilities of the symbols ( ) ( ) ( ) ( ) 1.0 and2.0,3.0,4.0 4321 ==== aPaPaPaP . 

 
Step-1: Draw a line, indicating an open interval of real numbers [0,1) and divide 
this line into a number of subintervals corresponding to the number of symbols in 
the source (in this example, 4 symbols-  4321 ,,, aaaa ). The lengths of the 
subintervals are equal to the probabilities of the symbols, starting with the interval 
[0,P(a1)) from the bottom and ending with the subinterval [P(a3),1) in this 
example.  Click. On the graphics window, a vertical line will be displayed, having 
markings 0 at the bottom and 1 on top. The line will have 3 other markings at 0.4, 
0.7 and 0.9.  4321 ,,, aaaa will be marked besides these subintervals from the 
bottom. 

                                                     4[1].2.1a.swf  
 

                                           Fig 4.2.1 
 
Step-2: Examine the first symbol in the sequence. Expand the corresponding 
subinterval to the full length of the line and mark the corresponding reduced 
overall range. Divide this line too into the subintervals as before and determine 
the positions of the subintervals corresponding to the reduced range. Click. The 
diagram will now get modified, adding a second vertical line that is pointed to by 
the interval a2 from the first line. The top of this second line will be marked as 0.7 
and the bottom as 0.4. This line will also have 3 other markings at the 
proportional positions and the numerical values corresponding to those positions 
should be indicated (0.52, 0.61 and 0.67). 4321 ,,, aaaa will be marked besides 
these subintervals from the bottom. 
 

                                                      4[1].2.2a.swf  
 
                                                     Fig 4.2.2  
 
 In this example, the first symbol being a2, the corresponding subinterval [0.4, 
0.7) is expanded for further encoding. 
 

../animations/4.2.1a.swf
../animations/4.2.2a.swf
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Step-3:  Examine the next symbol in the sequence and repeat the operations 
performed in   step-2. Repeat this step, until all the symbols in the sequence has 
been considered. Click once. The diagram will now get modified, adding a third 
vertical line that is pointed to by the interval a1 from the second line. The top of 
the third line will be marked as 0.52 and the bottom as 0.4. This line will also 
have 3 other markings at the proportional positions and the numerical values 
corresponding to those positions should be indicated (0.448, 0.484, and 0.508). 

4321 ,,, aaaa will be marked besides these subintervals from the bottom.  
 

4[1].2.3a.swf  
                                          
                                           Fig 4.2.3  

 
We have therefore added the next symbol a1 for encoding and the corresponding 
subinterval [0.4, 0.52) is expanded for further encoding.  
Click once more. A new vertical line will come up, pointed to by the interval a3 
from the previous line. Mark as before. The positions will now be (0.484, 0.4936, 
0.5008, 0.5056 and 0.508). 
 

4[1].2.4a.swf  
                                           
         Fig 4.2.4  

 
 
 We have now added the next symbol a3 
Click once more. A new vertical line will come up, pointed to by the interval a4 
from the previous line. Mark as before. The positions will now be (0.5056, 
0.50656, 0.50728, 0.50776 and 0.508).  
 

4[1].2.5a.swf  
 

Fig 4.2.5 
 

 
 We have now added the next symbol a4. 
 
Click once more. A new vertical line will come up, pointed to by the interval a1 
from the previous line. Mark as before. The positions will now be (0.5056, 
0.505984, 0.506272, 0.506464 and 0.50656).  
 

../animations/4.2.3a.swf
../animations/4.2.4a.swf
../animations/4.2.5a.swf
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4[1].2.6a.swf  
 

Fig 4.2.6  
 
We have now added the next symbols a1 and a2 and hence considered the entire 
message for encoding.  
 
Step-4: Generate an arithmetic code corresponding to the last subinterval that 
remained. In this example, [0.505984, 0.506272) should now be arithmetically 
encoded. Any real number within this subinterval can be considered for encoding 
and we can choose 0.506, which requires a precision of three digits after the 
decimal point. Encoding the example sequence of length 6 symbols therefore 
requires (3/6), i.e., 0.5 digits/ symbol, which is close to its entropy of 0.554 
digits/symbol. The bit stream corresponding to real number 0.506 can be 
generated by any appropriate coding schemes. 
 
4.3 Decoding an Arithmetic-Coded Bit Stream 
The decoding process of arithmetic coded bit stream is very straightforward. We 
should follow these steps: 
 
Step-1: Identify the message bit stream. Convert this to the real decimal number 
and determine its position within the subintervals identified at the beginning of 
encoding process. The corresponding symbol is the first one in the message. 
 
In this example, the message bit stream corresponds to decimal number 506 i.e., 
0.506 in the real valued interval [0,1). This corresponds to the subinterval [0.4, 
0.7) of a2 in step-1 of encoding (Section-4.2). The first symbol is therefore a2. 
 
Step-2: Consider the expanded subinterval of the previous decoded symbol and 
map the real number within this to determine the next subinterval and obtain the 
next decoded symbol. Repeat this step until the end-of-message indicator is 
parsed. 
 
In this example, following step-1 and step-2, we obtain the complete sequence 

214312 aaaaaa . 
 
4.4 Coding Efficiency Limitations of Arithmetic-Coded Bit 

Stream 
Although we may expect coding efficiency close to unity for arithmetic coding, its 
performance falls short of the Shannon’s noiseless coding theorem bounds, due 
to the following limitations: 

../animations/4.2.6a.swf
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a) Every message ends with a special end-of-message symbol. This adds to 

an overhead in encoding and optimal performance can only be reached 
for very long messages.  

 
b) Finite precision arithmetic also restricts the coding performance. This 

problem has been addressed by Langdon and Rissanen [1] through the 
introduction of a scaling and rounding strategy. 

 
4.5 Basic Principles of Lempel-Ziv Coding 
We now consider yet another popular lossless compression scheme, which is 
originally called Lempel-Ziv coding, and also referred to as Lempel-Ziv-Welch 
(LZW) coding, following the modifications of Welch for image compression. This 
coding scheme has been adopted in a variety of imaging file formats, such as the 
graphic interchange format (GIF), tagged image file format (TIFF) and the 
portable document format (PDF). The basic principles of this encoding scheme 
are: 
 

a) It assigns a fixed length codeword to a variable length of symbols. 
 

b) Unlike Huffman coding and arithmetic coding, this coding scheme does 
not require a priori knowledge of the probabilities of the source symbols. 
 

c) The coding is based on a “dictionary” or “codebook” containing the source 
symbols to be encoded. The coding starts with an initial dictionary, which 
is enlarged with the arrival of new symbol sequences. 
 

d) There is no need to transmit the dictionary from the encoder to the 
decoder. A Lempel-Ziv decoder builds an identical dictionary during the 
decoding process. 

 
4.6 Encoding a sequence of symbols using Lempel-Ziv 
Coding 
The encoding process will now be illustrated for one line of image having the 
following intensity values in sequence: 

343232323332323432343232  
This indicates a near uniform intensity line strip with a little perturbation, that is 
commonly encountered in practical images. 
 
To begin the encoding process, we consider a dictionary of size 256 locations 
(numbered 0 to 255) that contain entries corresponding to each pixel intensity 
value in the range 0-255. When we encounter the first pixel of intensity 32, we do 
not encode it and wait for the second pixel to arrive. When the next pixel intensity 
of 32 is encountered, we encode the first pixel as 32, corresponding to its 
dictionary location number, but at the same time, we make a new entry to the 
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dictionary at the location number 256 to include the newly detected sequence 32-
32 (a short form of writing 32 followed by 32), so that next time we encounter this 
sequence 32-32, we are going to encode as 256, instead of two consecutive 
code words of 32. The arrival of the third pixel of intensity 34 makes a new 
sequence entry 32-34 at the location number 257 and the previous pixel (the 
second one) will be encoded as 32. The fourth pixel of intensity 32 will add 
another code entry at location number 258 to include the sequence 34-32 and 
the third pixel will be encoded as 34. The arrival of fifth pixel of intensity 34 will 
find a matching sequence of 32-34 at location number 257. We do not encode 
any pixel now and wait for the arrival of the sixth pixel of intensity 32. The 
previously found matching sequence of 32-34 will be encoded as 257. With the 
arrival of the sixth pixel, we also recognize the sequence 34-32 and add a triplet 
of sequence 32-34-32 to the dictionary. We can now follow the rest of the coding 
process illustrated in Table-4.1. 
 
It is to be noted that the encoding process of the pixel intensities and the 
sequence of pixel intensities will require 9 bits, as long as the dictionary size is 
restricted  to 29 (=512) locations. There is considerable bit savings when the pixel 
sequences find matching with a dictionary entry. For example, encoding the 
sequence 32-34 requires only 9-bits, as compared to 16-bits, which would have 
been required to independently encode the two pixels. Longer matching 
sequences (triplets and higher) results in substantial bit savings. In fact, it will be 
more and more efficient to encode larger file sizes. However, the size of the 
dictionary is a very crucial parameter. If it is too small, we are going to have less 
frequent matches and consequently less compression. On the other hand, too 
large a dictionary size would lead to increased bit consumption in encoding 
unmatched sequence of pixels. 

Currently 
Recognized 
Sequence 

Pixel being
processed 

Encoded
Output 

Dictionary 
Location 
(Code word)

Dictionary Entry 

 32    
32 32 32 256 32-32 
32 34 32 257 32-34 
34 32 34 258 34-32 
32 34    
32-34 32 257 259 32-34-32 
32 32    
32-32 33 256 260 32-33 
33 32 33 261 33-32 
32 32    
32-32 32 256 262 32-32-32 
32 34    
32-34  257   

 
Table 4.1 Lempel-Ziv coding example 
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4.7 Decoding a Lempel-Ziv encoded sequence 
Decoding of Lempel-Ziv encoded sequence is quite straightforward. If we follow 
the example shown in Table-4.1, we find that the encoded sequence of symbols 
will be 25725633256257343232  
Like the encoder, the decoder also starts with the initial dictionary entries of 0-
255 only. When the decoder receives this sequence at the input, it first receives 
32, which can be directly decoded as a pixel of intensity of 32. Next received 
symbol, as well as the next pixel is also 32. However, the dictionary now makes a 
new entry of 32-32 sequence at the location 256. Next received symbol, as well 
as the next pixel is 34. The dictionary now enters the sequence 32-34 at the 
location 257. Having made this entry, when the next received symbol is 257, the 
decoder detects two consecutive pixels 32, followed by 34. The next received 
symbol is 256, i.e., 32 followed by 32. The reader should verify that this way we 
decode the sequence of pixels as 

343232323332323432343232 , which is the original 
sequence. 
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Questions 

 
NOTE: The students are advised to thoroughly read this lesson first and then 
answer the following questions. Only after attempting all the questions, they 
should click to the solution button and verify their answers.  
 
 
 
 

PART-A 
 
A.1. Explain why Huffman coding fails to achieve the optimal coding efficiency 
A.2. Explain why arithmetic coding can achieve better coding efficiency than  
        Huffman. 
A.3. State the basic principles of arithmetic coding. 
A.4. Make a comparison between Huffman coding and arithmetic coding. 
A.5. Discuss the limitations of arithmetic coding in achieving optimal coding  
        efficiency. 
A.6. State the basic principles of Lempel-Ziv coding. 
 
 

PART-B: Multiple Choice 
 
In the following questions, click the best out of the four choices. 
Radio buttons will be provided to the left of each choice. Only one out of the four 
buttons can be chosen. 
 
B.1 Which of the following statements is not true for arithmetic coding 
 
 (A) Integral number of bits is assigned to each symbol. 

 (B) A real number in the interval [0, 1) indicates the entire coding  

                 sequence. 

 (C) Coding requires a priori knowledge of the probabilities of source  

                 symbols. 

 (D) Longer sequence of source symbols leads to longer code words. 
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B.2 The coding efficiency of arithmetic coding is expected to improve if 
 
 (A) The interval of real numbers is increased to [0, 10) 

 (B) Shorter sequence of source symbols is encoded. 

 (C) Longer sequence of source symbols is encoded. 

 (D) None of the above. 

 

 

 

 
B.3 Which one of the following leads to a performance limitation of arithmetic  
       coding 
 
 (A) There is no one-to-one mapping between source symbols and code  

                 words. 

 (B) It is a variable length coding. 

 (C) The entire sequence of source symbols in a message is encoded  

                together. 

 (D) Use of finite precision arithmetic. 

 
B.4 A source of 4 symbols 4321 ,,, aaaa  having probabilities 
( ) ( ) ( ) ( ) 125.0,25.0,5.0 4321 ==== aPaPaPaP  is used for arithmetic coding. The 

source symbol sequence a2a1 will correspond to the interval (mark the closest 
answer) 
 

(A) [0.25, 0.375) 

 (B) [0.5, 0.625) 

 (C) [0.75, 0.875) 

 (D)[0,1) 
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B.5 A sequence of three symbols is arithmetically encoded by the above source 
to a real number 0.8. The original sequence is 
 
 (A) 324 aaa  

 (B) 342 aaa  

 (C) 313 aaa  

 (D) 413 aaa  

 

B.6 Which of the following statements is not true for Lempel-Ziv coding 
 
 (A) It is a fixed-length coding for variable-length symbol sequence. 

 (B) It does not require a priori knowledge of the source symbol  

                probabilities. 

 (C) Larger image/file size leads to poorer compression. 

 (D) Decoder dictionary can be derived from the encoded sequence. 

 

B.7 A very large-sized dictionary in Lempel-Ziv coding has the following 
advantage 
 
 (A) Group of symbols can find more frequent matches. 

 (B) Faster encoding and decoding is possible. 

 (C) Isolated symbols without groups can be represented with less number  

                 of bits.  

           (D) Large-sized images and files can be encoded. 

 
B.8 A Lempel-Ziv dictionary starts with two entries – “0” and “1”. The dictionary 
size after parsing the symbol stream 00101100 is 
 
 (A) 4 

 (B) 5 

 (C) 6 

 (D)7 
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B.9 Consider the Lempel-Ziv coding example presented in Table-4.1. The 
compression ratio (compressed bits : uncompressed bits) achieved for the 
example sequence is 
 
 (A) 1:4 

(B) 3:4 

 (C) 7:8 

 (D) 5:6 

 
 

PART-C: Problems 
 
C-1.  
(a) Construct an arithmetic code in real decimal number for the word “APPLE” 
formed out of a 4-symbol alphabet – “A”, “P”, “L” and “E” having probabilities 0.2, 
0.4, 0.2 and 0.2 respectively.  
 
(b) Compare the codeword length in digits/symbol with its entropy expressed in 
the same units. Calculate its coding efficiency. 
 
C-2. A Lempel-Ziv dictionary having maximum size of 32 has 10 entries to start 
with – the decimal numbers “0” to “9”.  
 
(a) Encode the digit sequence 8,2,8,2,2,8,2,2,2,8 using Lempel-Ziv coding and 
determine the compression ratio (compressed bits: uncompressed bits). 
(b) Repeat part (a) for the digit sequence 9,7,2,0,6,1,5,3,4,8. 
(c) Why is the compression ratio better in (a), as compared to (b)? 
 

SOLUTIONS 
 
A.1 Huffman coding fails to achieve optimal coding efficiency because it encodes 
one symbol at a time and each symbol translates into an integral number of bits 
 
A.2  

A.3  

A.4  

A.5  

A.6 

 
B.1 (A) B.2 (C) B.3 (D) B.4 (B) B.5 (D) 

B.6 (C) B.7 (A) B.8 (D) B.9 (B). 
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C.1  

C.2 
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