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Instructional Objectives 
At the end of this lesson, the students should be able to: 

1. Define quantization. 

2. Distinguish between scalar and vector quantization. 

3. Define quantization error and optimum scalar quantizer design criteria. 

4. Design a Lloyd-Max quantizer. 

5. Distinguish between uniform and non-uniform quantization. 

6. Define rate-distortion function. 

7. State source coding theorem. 

8. Determine the minimum possible rate for a given SNR to encode a 

quantized Gaussian signal.  

 
6.0 Introduction 
In lesson-3, lesson-4 and lesson-5, we have discussed several lossless 
compression schemes. Although the lossless compression techniques guarantee 
exact reconstruction of images after decoding, their compression performance is 
very often limited. We have seen that with lossless coding schemes, our 
achievable compression is restricted by the source entropy, as given by 
Shannon’s noiseless coding theorem. In lossless predictive coding, it is the 
prediction error that is encoded and since the entropy of the prediction error is 
less due to spatial redundancy, better compression ratios can be achieved. Even 
then, compression ratios better than 2:1 is often not possible for most of the 
practical images. For significant bandwidth reductions, lossless techniques are 
considered to be inadequate and lossy compression techniques are employed, 
where psycho-visual redundancy is exploited so that the loss in quality is not 
visually perceptible. The main difference between the lossy and the lossless 
compression schemes is the introduction of the quantizer. In image compression 
systems, discussed in lesson-2, we have seen that the quantization is usually 
applied to the transform-domain image representations. Before discussing the 
transform coding techniques or the lossy compression techniques in general, we 
need to have some basic background on the theory of quantization, which is the 
scope of the present lesson. 
 
In this lesson, we shall first present the definitions of scalar and vector 
quantization and then consider the design issues of optimum quantizer. In 
particular, we shall discuss Lloyd-Max quantizer design and then show the 
relationship between the rate-distortion function and the signal-to-noise ratio.  
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6.1 Quantization 
Quantization is the process of mapping a set of continuous-valued samples into a 
smaller, finite number of output levels. Quantization is of two basic types – (a) 
scalar quantization and (b) vector quantization.  
 
In scalar quantization, each sample is quantized independently. A scalar 
quantizer Q(.)  is a function that maps a continuous-valued variable s having a 
probability density function  p(s) into a discrete set of reconstruction levels 

 by applying a set  of  the decision levels  , 
applied on the continuous-valued samples s, such that 

( Liri ,,2,1= ) ( )Lidi ,,2,1=
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where, L is the number of output level. In words, we can say that the output of 
the quantizer is the reconstruction level  , if the value of the sample lies within 
the range ( .   
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In vector quantization, each of the samples is not quantized. Instead, a set of 
continuous-valued samples, expressed collectively as a vector is represented by 
a limited number of vector states. In this lesson, we shall restrict our discussions 
to scalar quantization. In particular, we shall concentrate on the scalar quantizer 
design, i.e., how to design  and  in equation (6.1).  id ir
The performance of a quantizer is determined by its distortion measure. Let 

be the quantized variable. Then, ( )sQs = ss −=ε  is the quantization error and 
the distortion D is measured in terms of the expectation of the square of the 
quantization error (i.e., the mean-square error) and is given by ( )[ ]2ssED −= . 
We should design  and  so that the distortion D is minimized.  id ir
 
 There are two different approaches to the optimal quantizer design – 
 

(a) Minimize ( )[ ]2ssED −=  with respect to  and  id ir ( )Li ,,2,1= , subject to 
the constraint that L, the number of output states in the quantizer is fixed. 
These quantizers perform non-uniform quantization in general and are 
known as Lloyd-Max quantizers. The design of Lloyd-Max quantizers is 
presented in the next section. 

 
(b) Minimize ( )[ ]2ssED −=  with respect to  and  id ir ( )Li ,,2,1= , subject to 

the constraint that the source entropy ( ) CsH =  is a constant and the 
number of output states L may vary. These quantizers are called entropy-
constrained quantizers. 
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In case of fixed-length coding, the rate R for quantizers with L states is given by 

, while  in case of variable-length coding. Thus, Lloyd-Max 
quantizers are more suited for use with fixed-length coding, while entropy-
constrained quantizers are more suitable for use with variable-length coding. 

⎣ R2log ⎦ ( )sHR >

 
6.2 Design of Lloyd-Max Quantizers 
The design of Lloyd-Max quantizers requires the minimization of  
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Setting the partial derivatives of D with respect to  and   to 
zero and solving, we obtain the necessary conditions for minimization as 
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Mathematically, the decision and the reconstruction levels are solutions to the 
above set of nonlinear equations. In general, closed form solutions to equations 
(6.3) and (6.4) do not exist and they need to be solved by numerical techniques. 
Using numerical techniques, these equations could be solved in an iterative way 
by first assuming an initial set of values for the decision levels{ }id . For simplicity, 
one can start with decision levels corresponding to uniform quantization, where 
decision levels are equally spaced. Based on the initial set of decision levels, the 
reconstruction levels can be computed using equation (6.3) if the pdf  of the input 
variable to the quantizer is known. These reconstruction levels are used in 
equation (6.4) to obtain the updated values of{ }id . 
 
Solutions of equations (6.3) and (6.4) are iteratively repeated until a convergence 
in the decision and reconstruction levels are achieved. In most of the cases, the 
convergence is achieved quite fast for a wide range of initial values. 
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6.3 Uniform and non-uniform quantization 
Lloyd-Max quantizers described above perform non-uniform quantization if the 
pdf of the input variable is not uniform. This is expected, since we should perform 
finer quantization (that is, the decision levels more closely packed and 
consequently more number of reconstruction levels) wherever the pdf is large 
and coarser quantization (that is, decision levels widely spaced apart and hence, 
less number of reconstruction levels), wherever pdf is low. In contrast, the 
reconstruction levels are equally spaced in uniform quantization, i.e., 
 

111 −≤≤=−+ Lirr ii θ  
 
where θ is a constant, that is defined as the quantization step-size.  
In case, the pdf of the input variable s is uniform in the interval [A, B], i.e., 
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the design of Lloyd-Max quantizer leads to a uniform quantizer, where 
 

L
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If the pdf exhibits even symmetric properties about its mean, e.g., Gaussian and 
Laplacian distributions, then the decision and the reconstruction levels have 
some symmetry relations for both uniform and non-uniform quantizers, as shown 
in Fig.6.1 and Fig.6.2 for some typical quantizer characteristics (reconstruction 
vels vs. input variable s) for L even and odd respectively. 
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 When pdf is even symmetric about its mean, the quantizer is to be designed for 
only L/2 levels or (L-1)/2 levels, depending upon whether L is even or odd, 
respectively. 
 
6.4 Rate-Distortion Function and Source Coding Theorem 
Shannon’s Coding Theorem on noiseless channels considers the channel, as 
well as the encoding process to be lossless. With the introduction of quantizers, 
the encoding process becomes lossy, even if the channel remains as lossless. In 
most cases of lossy compressions, a limit is generally specified on the maximum 
tolerable distortion D from fidelity consideration. The question that arises is 
“Given a distortion measure D, how to obtain the smallest possible rate?” The 
answer is provided by a branch of information theory that is known as the rate-
distortion theory. The corresponding function that relates the smallest possible 
rate to the distortion, is called the rate-distortion function R(D). A typical nature of 
rate-distortion function is shown in Fig.6.3. 
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 At no distortion (D=0), i.e. for lossless encoding, the corresponding rate R(0) is 
equal to the entropy, as per Shannon’s coding theorem on noiseless channels. 
Rate-distortion functions can be computed analytically for simple sources and 
distortion measures. Computer algorithms exist to compute R(D) when analytical 
methods fail or are impractical. In terms of the rate-distortion function, the source 
coding theorem is presented below. 
 
Source Coding Theorem 
There exists a mapping from the source symbols to codewords such that for a 
given distortion D, R(D) bits/symbol are sufficient to enable source reconstruction 
with an average distortion arbitrarily close to D. The actual bits R is given by 

( )DRR ≥  
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