
 
 
 
 
 
 

Module  
4  

MULTI-
RESOLUTION 

ANALYSIS 
Version 2 ECE IIT, Kharagpur 

 



 
 
 
 
 
 

Lesson 
10 

Theory  
of  

Wavelets 
 
 

Version 2 ECE IIT, Kharagpur 
 



Instructional Objectives 
At the end of this lesson, the students should be able to: 

1. Explain the space-frequency localization problem in sinusoidal transforms. 

2. Explain the need for multi-resolution image analysis. 

3. Define scaling functions. 

4. Define functional subspace of scaling functions at a given scale. 

5. Compute the scaled and translated versions of scaling functions. 

6. Show the relationship between the functional subspaces of scaling 

functions at different scales. 

7. Define wavelet functions. 

8. Show the functional subspace relationship between scaling and wavelet 

functions. 

9. Compute the scaled and translated versions of wavelet functions. 

10. Express a continuous signal as a series expansion of scaling and wavelet 

basis functions. 

10.0 Introduction 
In lesson-9, we have studied the use of sinusoidal orthogonal transforms in 
energy compaction and consequently, image compression. In this family of 
transforms, Discrete Cosine Transforms (DCT) happens to be the most popular 
choice because of several advantages mentioned. However, as we noted, DCT 
has performance limitations in the form of blocking artifacts at very low bit rates. 
In recent years, a new transformation technique has emerged as popular 
alternatives to sinusoidal transforms at very low bit rates. Unlike DCT s and DFT 
s, which use sinusoidal waves as basis functions, this new variety of 
transformations use small waves of varying frequency and of limited extent, 
known as wavelets as basis. The wavelets can be scaled and shifted to analyze 
the spatial frequency contents of an image at different resolutions and positions. 
A wavelet can therefore perform analysis of an image at multiple resolutions, 
making it an effective tool in multi-resolution analysis of images. Furthermore, 
wavelet analysis performs what is known as space-frequency localization so that 
at any specified location in space, one can obtain its details in terms of 
frequency. It is like placing a magnifying glass above a photograph to explore the 
details around a specific location. The magnifying glass can be moved up or 
down to vary the extent of magnification, that is, the level of details and it can be 
slowly panned over the other locations of the photograph to extract those details. 
A classical sinusoidal transform does not allow such space-frequency 
localizations. If we consider the spatial array of pixels, it does not provide any 
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spatial frequency information. On the other hand, the transformed array of 
coefficients contains spatial frequency information, but it does not give us any 
idea about the locations in the image where such spatial frequencies appear. The 
space-frequency localization capability of wavelets makes multi-resolution image 
analysis, representation and coding more efficient. 
 
In this lesson, we shall develop the theory of scaling and wavelet functions which 
will form a basis of wavelet transforms, used as a  tool for multi-resolution image 
analysis and coding, to be  discussed in subsequent lessons. We are going to 
show the relationship between the scaling and the wavelet functions in terms of 
the functional spaces they span. Using this property, any continuous function of a 
variable can be expressed as a series summation of shifted and scaled versions 
of scaling and wavelet functions. 
 
10.1 Need for multi-resolution image analysis 
It is our common observation that the level of details within an image varies from 
location to location. Some locations contain significant details, where we require 
finer resolution for analysis and there are other locations, where a coarser 
resolution representation suffices. A multi-resolution representation of an image 
gives us a complete idea about the extent of the details existing at different 
locations from which we can choose our requirements of desired details. Multi-
resolution representation facilitates efficient compression by exploiting the 
redundancies across the resolutions. Wavelet transforms is one of the popular, 
but not the only approach for multi-resolution image analysis. One can use any of 
the signal processing approaches to sub-band coding, such as Quadrature  
Mirror Filters (QMF) in multi-resolution analysis. 
 
10.2 Scaling Functions and functional subspace 
Any function f(x) can be analyzed as a linear combination of real-valued 
expansion functions ( )xkϕ  
 
( ) ( )∑=

k
kk xxf ϕα  …………………………………………………………..…….. (10.1) 

 
where k is an integer index of summation (finite or infinite), the kα s are the real-
valued expansion coefficients and ( ){ }xkϕ  forms an expansion set. 
 
Let us compose a set of expansion functions ( ){ }xsr ,ϕ  through integer translations 
and binary scalings of the real, square-integrable function ( )xϕ , so that 
 

( ) ( )sxx rr
sr −= 22 2/

, ϕϕ ……………………………………………………. (10.2) 
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where, (the integer space) and Zsr ∈, ( ) ( )RLx 2∈ϕ  (the square-integrable real 
space). In the above equation, s controls the translation in integer steps and r 
controls the amplitude, as well as the width of the function in the x-direction. 
Increasing r by one decreases the width by one-half and increases the amplitude 
by 2 . In other words, the index r scales the function and the set of functions 

( ){ }xsr ,ϕ  obtained through equation (10.2) are referred to as scaling functions. By 
a wise choice of ( )xϕ , the set of functions ( ){ }xsr ,ϕ  can be made to cover the 

entire square-integrable real space ( )RL2 . Hence, if we choose any particular 
scale, say , the set of functions 0rr = ( ){ }xsr ,0

ϕ  obtained through integer 
translations can only cover a subspace of the entire ( )RL2 . The subspace so 
spanned is defined as the functional subspace of 

0r
V

( ){ }xsr ,0
ϕ  at a given scale . 

Since the width of the set of functions 
0r

( ){ }xsr ,10+
ϕ  is half of that of the set of 

functions ( ){ }xsr ,0
ϕ , the latter can be analyzed by the former, but not the other way. 

Hence, the functional subspace spanned by ( ){ }xsr ,10 +
ϕ  contains the subspace 

( ){ }xsr ,0
ϕ , that is, the subspace spanned by the scaling functions at lower scales is 

contained within the subspace spanned by those at higher scales and is given by 
the following nested relationship 

∞−∞− ⊂⊂⊂⊂⊂⊂⊂ VVVVVV 2101 …………………………………….. (10.3) 
This subspace relationship is illustrated in Fig.10.1. 
The expansion functions of subspace can be expressed as a weighted 

summation of the functions of subspace V  as follows 
rV

1+r

V0 V1 
V2 

V0⊂ V1⊂ V2 

Fig 10.1   Subspace   Relationship   of   Scaling   Functions 
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( ) ( ) ( )nxnhx
n

−= ∑ 22ϕϕ ϕ ……………………………………………………… (10.4) 

 
where the  are the wavelet function coefficients. ϕh ( )n
Let us consider the example of unit amplitude, unit width Haar scaling function, 
shown in Fig.10.2 

 
 
 

Fig 10.2 Haar Scaling Function  
 
 
 
 and mathematically defined as 
 

( ) [ )
⎩
⎨
⎧ ∈

=
otherwise0

1,0for1 x
xϕ …………………………………………………………… (10.5) 

 
By the mathematical definition of scaling functions, given in equation (10.1),  
 

( ) ( )xx ϕϕ =0,0  …………………………………………………………………….. (10.6) 
 
The functional subspace is spanned by the set0V ( ){ }xs,0ϕ , each functional 
element of which represents a translated version of ( )x0,0ϕ  by an integer s. To 
obtain any scaled and translated version ( )xsr ,ϕ  of the scaling function from 

( )x0,0ϕ , it follows from the scaling function definition given in equation (10.2) that 
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(a) its amplitude should be , 2/2r

 
(b) its width should be , 2/2 r−

 
(c) it should be positioned at  2/2. rs −

 
Fig.10.3, fig.10.4 and fig.10.5 show a few examples of these.  
 

 
Fig 10.3:   Example of Scaling function [Φ0,3(x)] 

 

 
Fig 10.4:   Example of Scaling function [Φ1,3(x)] 
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Fig 10.5:   Example  of Scaling  function  [Φ2,5(x)] 

 
 
.3 Wavelet Functions: 
A set of integer translated and binary scaled functions ( ){ }xsr ,ψ  that spn the 
difference subspace between two adjacent scaling functions subspace is defined 
as a set of wavelet functions. If we consider two adjacent subspaces and , 
the set of wavelets spanning the subspace within these are given as 

rV 1+rV

rW
( ) ( )sxx rr

sr −= 22 2/
, ψψ ……………………………………………………………. (10.7) 

where, and Zs∈ ( ) ( )RLx 2∈ψ . It may be noted that although the functional forms 
of equations (10.2) and (10.7) are the same, the scaling functions and the 
wavelet functions differ by their spanning subspaces. The relationship between 
scaling and wavelet function spaces is illustrated in fig.10.6  
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Fig 10.6:  Relationship between Scaling and wavelet Functions. 
 
 
and is given by 

rrr WVV ⊕=+1 ………………………………………………………………………. 
(10.8) 
where  indicates union of subspaces. ⊕
By recursively applying equation (10.7) to compute , we can express the total 
measurable square-integrable space 

rV
( )RL2  as 

( ) ⊕⊕⊕= 100
2 WWVRL ……………………………………………………… (10.9) 

Again, by repetitively applying equation (10.8) in (10.9), we can obtain alternative 
forms of expansion as 

( )

⊕⊕⊕=
⊕⊕⊕=
⊕⊕⊕=

+1

322

211
2

000 rrr WWV
WWV
WWVRL

 …………………..………………...……………. 

(10.10) 
Suppose that a function to be analyzed belongs to the subspace  but 
not . In that case, the scaling functions of make a crude approximation of 

 and the wavelet functions of provide the details.  In this sense, the 
scaling functions analyze  into its low-pass filtered form and the wavelet 
functions analyze  into its high-pass filtered form. 

( )xf 1V

0V 0V
( )xf 0W

( )xf
( )xf

 Since wavelet spaces reside within the spaces spanned by the next higher 
scaling functions, any wavelet function can be expressed as a weighted sum of 
shifted double-resolution scaling functions as follows 
( ) ( ) ( nxnhx

n
−= ∑ 22ϕ )ψ ψ  …………………………………………………..…. 

(10.11) 
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where the  are the wavelet function coefficients. Using the conditions that 
the wavelets span the orthogonal complement spaces in fig.10.6

ψh ( )n
  and the integer 

wavelet translates are orthogonal,  it is possible to obtain relationship between 
 and . Using the definition of Haar scaling function given in equation 

(10.5) and the solutions of 
( )nhϕ ( )nhψ

( )nhϕ  and ( )nhψ , the corresponding Haar wavelet 
function is obtained as 

( )
⎪
⎩

⎪
⎨

⎧
<≤−

<≤
=

elsewhere0
15.01
5.001

x
x

xψ ………………………………………………………….. 

(10.12) 
Fig.10.7  
 

 
Fig 10.7:   Haar Wavelet function 

 
 
shows equation (10.12) graphically. By the definition of equation (10.7),  

( ) ( )xx ψψ =0,0 …………………………………………...………………………… 
(10.13) 
Like the scaling functions, we can obtain binary scaled and integer shifted 
versions of wavelets by applying equation (10.7). Fig.10.8, fig.10.9 and fig.10.10 
show few such examples.  
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Fig 10.8:  Example of Haar Wavelet 

Fig  10.9:   Example   of   Haar   Wavelet   [Ψ1,2(x)] 
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        Fig 10.10:   Example   of   Haar   Wavelet   [Ψ2,3 (x)] 
 
 
 
 
10.4  The wavelet series: 
In accordance with the functional subspace relationships shown in equation 
(10.10) and the definition of expansion functions in equation (10.1), any function 

can be expressed as a series summation of scaling functions and 
wavelet functions as 
( ) ( )RLxf 2∈

( ) ( ) ( )xbxaxf
rr s

srsr
s

srsr ∑∑∑
∞

=

+=
0

00 ,,,, ψϕ ………………………………………….. 

(10.14) 
where,  and are the corresponding expansion coefficients. In the above 
equation, the first term of the expansion involving the scaling functions provide 
approximations to f(x) at scale  and the second term of expansion involving the 
wavelet functions add details to the approximation at  and its higher scales. If 
the expansion functions form an orthonormal basis, which is often the case, the 
coefficients can be calculated as 

sra ,0 srb ,

0r

0r
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( ) ( )dxxxfa srsr ,, 00
ϕ∫= …………………………………………………………….. 

(10.15) 
( ) ( )dxxxfb srsr ,, ψ∫= ……………………………………………………………... 

(10.16) 
As an example, let us consider the wavelet series expansion of the following 
function: 

( )
⎩
⎨
⎧ <≤

=
otherwise0

10 xe
xf

x

…………………………………………………………….. 

(10.17) 
using Haar scaling and wavelet functions.  
 By applying equations (10.15) and (10.16) on the function defined in 
(10.17), the expansion coefficients are obtained as follows: 

( ) 1
1

0

1

0

1

0
0,00,0 −==== ∫∫ eedxexea xxxϕ …………………………………………… 

(10.18) 

( ) ( )12 5.0
1

5.0

5.0

0

1

0
0,00,0 +−=−== ∫∫∫ eedxedxexeb xxxψ ……………...………………… 

(10.19) 

( ) ( 122222 5.025.0
5.0

25.0

25.0

0
0,1

1

0
0,1 +−=−== ∫∫∫ eedxedxexeb xxxψ )………………. 

(10.20) 

( ) (∫ ∫∫ +−=−==
75.0

5.0

5.075.0
1

75.0
1,1

1

0
1,1 22222 eeedxedxexeb xxxψ )……………... 

(10.21) 
Using the coefficients obtained in equations (10.18) to (10.21), the function f(x) 
can be realized as 
( ) ( ) ( ) ( ) ( )++++= xbxbxbxaxf 1,11,10,10,10,00,00,00,0 ψψψϕ ……………………. 

(10.22) 
  
10.5 Conclusion: 
 
In this lesson, we have presented the basic theory of the scaling and wavelet 
functions. It is shown that these functions can analyze a continuous valued, 
square-integrable signal in multiple resolutions. The scaling functions provide 
approximations or low-pass filtering of the signal and the wavelet functions add 
the details at multiple resolutions or perform high-pass filtering of the signal. 
Although the theory is presented for continuous, one-dimensional signals, it may 
be extended for discrete two-dimensional signals, which we require for multi-
resolution image analysis and coding. The theory of subband decomposition for 
multi-resolution analysis will be presented in the next lesson. In the subsequent 
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lessons, Discrete Wavelet Transforms (DWT) and its application in image coding 
and compression will be presented. 
 
 
 
 
 
 
 

Questions 
 
NOTE: The students are advised to thoroughly read this lesson first and then 
answer the following questions. Only after attempting all the questions, they 
should click to the solution button and verify their answers.  
PART-A 
 
A.1. Explain why sinusoidal transforms applied over images cannot have space-
frequency localization. 
A.2. Why is multi-resolution image analysis needed? 
A.3. Define scaling functions. 
A.4. Define functional subspace of scaling functions at a given scale. 
A.5. Show the functional space relationship between scaling functions at different 
scales. 
A.6. Define wavelet functions. 
A.7. Show the functional space relationship between scaling and wavelet 
functions at different scales. 
A.8. Express a continuous signal as a series expansion of scaling and wavelet 
basis functions. 
A.9. Express the coefficients of wavelet series expansion in terms of the function 
and the orthonormal scaling and wavelet basis functions. 
 
 
PART-B: Multiple Choice 
 
In the following questions, click the best out of the four choices. 
Radio buttons will be provided to the left of each choice. Only one out of the four 
buttons can be chosen. 
B.1 Which of the following combination of scaling functions can be used to 
synthesize Haar scaling function ( )x0,0ϕ ? 
 (A) ( ) ( )xx 1,10,1 ϕϕ +  

 (B) ( ) ( ) ( )xxx 1,20,20,1 2
1

2
1

2
1 ϕϕϕ ++  

 (C) ( ) ( ) ( )xxx 3,22,20,1 2
1

2
1

2
1 ϕϕϕ ++  
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 (D) ( ) ( ) ( )xxx 1,20,20,1 2
1

2
1

2
1 ϕϕϕ −−  

B.2 A square-integrable real-valued function ( ) 3Vxf ∈ , but ( ) 2Vxf ∉ . Which of 
the following expansions can be used to realize f(x)? 
 (A)  211 WWV ⊕⊕
 (B)  210 WWV ⊕⊕
 (C)  3211 WWWV ⊕⊕⊕
 (D)  3210 WWWV ⊕⊕⊕
B.3 A function sketched below is to be represented by Haar wavelet function: 
 

 
 
Its correct representation is: 
 (A) 0,2ψ  
 (B) 2,0ψ  
 (C) 2,0 −ψ  
 (D) 2,0ψ−  
B.4 A wavelet function ( )xψ is defined as follows: 

( )
⎩
⎨
⎧ <≤

=
otherwise0

102sin xx
x

π
ψ  

Which one of the following graphs represents the function ( )x1,2ψ ? 
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(A)  

 
 
 
 

  
 
 
 
 

(B)  
 

 
 
 
 
 
 

 (C) 
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(D) 

 
 
B.5 Which one of the statements is correct with reference to wavelet domain 
signal analysis: 

(A) Scaling functions extract the details and wavelet functions perform 
approximation. 
(B) Scaling functions perform approximations and wavelet functions 
extract the details. 

 (C) Wavelet functions perform approximations and also extraction of 
details. 
 (D) None of the above. 
B.6 The coefficient of ( )x0,0ψ  in the series expansion of the following function 

( )
⎩
⎨
⎧ <≤

=
otherwise0

102 xx
xf  

 is: 
 (A) 1/3 
 (B) 1/4 
 (C) -1/3 
 (D) -1/4 
B.7 Which of the following functional space relationship is incorrect? 
 (A)  00 WV ⊂
 (B)  03 VV ⊂−

 (C)   32 VW ⊂
(D)  ∞⊂VW1

B.8 If the scale of a wavelet function is decreased by r, its width  
 (A) remains unchanged. 
 (B) gets multiplied by  2r/2. 
 (C) gets divided by  2r/2. 
 (D) gets multiplied by . r2
 
 
 
PART-C:Problems 
 
C-1. A half sinusoid, defined by  
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( )
⎩
⎨
⎧ <≤

=
otherwise0

10sin xx
xf

π
 

is to be approximated by Haar scaling functions in function space and 
refined by Haar wavelet functions in space and . Determine the 
scaling and wavelet functions and their associated coefficients. 

0V

0W 1W

C-2. Sketch the function realized by the following series of Haar scaling and 
wavelet        functions: 
( ) ( ) ( ) ( )xxxxf 2,11,10,0 3.03.05.0 ψψϕ −+=  

 
 
 

 
SOLUTIONS 

 
A.1 
A.2 
A.3 
A.4 
A.5 
A.6 

 
B.1 (C) B.2 (A) B.3 (D) B.4 (B) 
B.5 (B) B.6 (D) B.7 (A) B.8 (B) 

 
C.1 
C.2 
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