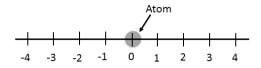
## XE (C): Q. 1-Q. 9 carry one mark each & Q. 10-Q. 22 carry two marks each.


The stress ratio for a completely reversed cyclic loading during a fatigue test is

Q.1

|     | (A) 0                                                                                                                                                                                                                                                                                                                                    | (B) 1                                                                 | (C) -1                         | (D) $-1/2$ |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|------------|--|
| Q.2 | Minimum symmetry that a cubic crystal must possess is                                                                                                                                                                                                                                                                                    |                                                                       |                                |            |  |
|     | (B) three 4-fe                                                                                                                                                                                                                                                                                                                           | ld rotation axes. old rotation axes. nogonal mirror planes. symmetry. |                                |            |  |
| Q.3 | If a material is repelled in an external magnetic field then it is                                                                                                                                                                                                                                                                       |                                                                       |                                |            |  |
|     | (A) Ferromag<br>(C) Paramagn                                                                                                                                                                                                                                                                                                             |                                                                       | (B) Diamagne<br>(D) Antiferror |            |  |
| Q.4 | An electron makes a transition from the valence band to the conduction band in an indirect band gap semiconductor. Which one of the following is true?                                                                                                                                                                                   |                                                                       |                                |            |  |
|     | <ul><li>(A) Energy of the electron decreases.</li><li>(B) A photon is emitted in the process.</li><li>(C) A phonon is annihilated in the process.</li><li>(D) A photon is created in the process.</li></ul>                                                                                                                              |                                                                       |                                |            |  |
| Q.5 | Which one of the following is the characteristic of a screw dislocation?                                                                                                                                                                                                                                                                 |                                                                       |                                |            |  |
|     | <ul> <li>(A) Dislocation line and Burgers vector are parallel.</li> <li>(B) Direction of motion of dislocation is parallel to the Burgers vector.</li> <li>(C) Atomic displacement due to the movement of the dislocation is in the direction of the motion of the dislocation line.</li> <li>(D) It has a unique slip plane.</li> </ul> |                                                                       |                                |            |  |
| Q.6 | The number of vibrational degrees of freedom for a non-linear triatomic molecule are                                                                                                                                                                                                                                                     |                                                                       |                                |            |  |
|     | (A) 9                                                                                                                                                                                                                                                                                                                                    | (B) 6                                                                 | (C) 4                          | (D) 3      |  |
|     |                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                |            |  |
|     |                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                |            |  |

XE-C 1/4

Q.7 An atom is restricted to move in one dimension by making unit jumps either to the left or right, as shown in the figure. Assuming that a jump to the left or right is equally probable, the probability of the atom returning back to the starting point after four jumps is



- (A) 0.250
- (B) 0.333
- (C) 0.375
- (D) 0.500

Q.8 For a two-dimensional solid, the variation of lattice specific heat as a function of temperature T (in K, at low temperatures) is given as:  $C_p = bT^n$ , where b is a constant. The value of n is

Q.9 If the cation (C) to anion (A) radius ratio,  $r_C/r_A$  is 0.6, then the coordination number (i.e., number of A ions surrounding a C ion) is likely to be \_\_\_\_\_.

Q.10 Match the invariant reactions in Column I with the names in Column II (L is liquid phase, and  $\alpha$ ,  $\beta$ ,  $\gamma$  are solid phases). All reactions proceed to the right on cooling.

Column I

(P)  $L \rightleftarrows \alpha + \beta$ 

- (Q)  $L + \alpha \rightleftharpoons \beta$
- (R)  $\gamma \rightleftharpoons \alpha + \beta$
- (S)  $\alpha + \beta \rightleftharpoons \gamma$

Column II

- (1) Monotectic
- (2) Peritectoid
- (3) Peritectic
- (4) Eutectoid
- (5) Eutectic

(B) P-5, Q-3, R-4, S-2

(D) P-2, Q-1, R-4, S-5

Q.11 Consider the following anodic (oxidation) reaction in an acidic solution:

$$Mg \rightarrow Mg^{+2} + 2e^{-}$$

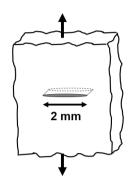
If 48250 Coulomb charge is produced during this anodic reaction then the amount of Mg (in g) dissolved into the solution is

(Given: Faraday Constant = 96500 C/mole of electrons, Atomic weight of Mg = 24)

(A) 6

(B) 12

(C) 24


(D) 48

Q.12 An intrinsic semiconductor has conduction electron concentration,  $n = 10^{12}$  cm<sup>-3</sup>. The mobility of both electrons and holes are identical =  $4 \times 10^4$  cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. If a voltage of 100 V is applied on two parallel end faces of the cube (edge length 1 cm) through Ohmic contacts, the current through the cube would be (in mA)

(Given: charge of electron =  $1.6 \times 10^{-19}$  C)

- (A) 640
- (B) 1280
- (C) 6400
- (D) 12800
- Q.13 An infinite plate with a through-thickness crack of length 2 mm is subjected to a tensile stress (as shown in the figure). Assuming the plate to be linear elastic, the fracture stress is \_\_\_\_\_\_ MPa (round off to the nearest whole number)

(Given: Fracture toughness,  $K_{IC} = 25 \text{ MPa } \sqrt{m}$ )



Q.14 A unidirectionally aligned carbon fibre reinforced epoxy composite is loaded as shown in the figure. The volume fraction of the fibre is 0.6. The Young's modulus of the composite is \_\_\_\_\_ GPa.

tion of the fibre
GPa.

trix are 200 GPa

(Given: Young's Modulus of the fibre and the matrix are 200 GPa and 10 GPa, respectively)

Q.15 A sintered sample was weighed in air and water using an analytical balance. The mass of the sample in air is 2.67 g and its apparent mass in water is 1.67 g. The density of the sample is \_\_\_\_\_ g cm<sup>-3</sup> (give answer up to 2 decimal places)

(Given: Density of water =  $1.00 \text{ g cm}^{-3}$ )

Q.16 The atoms in a gas laser have two energy levels such that a transition from the higher to the lower level releases a photon of wavelength 500 nm. If  $7 \times 10^{20}$  atoms are pumped into the upper level with  $4 \times 10^{20}$  atoms in the lower level, the amount of energy released in a single pulse is \_\_\_\_\_\_ Joules (give answer up to 2 decimal places)

(Given: Planck's constant,  $h = 6.6 \times 10^{-34} \, J \, s$ ; speed of light,  $c = 3 \times 10^8 \, m \, s^{-1}$ )

Q.17 The speed of an electron is measured to be 300 m s<sup>-1</sup> with an uncertainty of 0.01%. The fundamental accuracy with which the position of the electron can be determined simultaneously with the speed in the same experiment is \_\_\_\_\_ mm (give answer up to 2 decimal places)

(Given: Planck's constant,  $h = 6.6 \times 10^{-34} \, J \, s$ ; mass of electron =  $9.1 \times 10^{-31} \, kg$ )

XE-C 3/4

| Q.18 | When 3 identical non-interacting spin ½ particles are put in an infinite potential well, the |
|------|----------------------------------------------------------------------------------------------|
|      | ground state energy of the system is 18 meV. If instead, seven particles are put inside the  |
|      | potential well, the new ground state energy is meV.                                          |
|      |                                                                                              |

Q.19 If the value of the integral (*I*) is 4, the value of the constant *b* is \_\_\_\_\_\_ (give answer up to 2 decimal places).

$$I = \int_{-\infty}^{\infty} e^{\frac{-x^2}{b}} dx$$

- Q.20 X-ray diffraction pattern is obtained from FCC polycrystalline aluminium (lattice parameter = 0.405 nm) using Cr-K $\alpha$  radiation of wavelength 0.229 nm. The maximum number of peaks that can be observed in the pattern is \_\_\_\_\_\_.
- Q.21 The planar atomic density in the (110) plane of a BCC iron crystal is \_\_\_\_\_\_ nm<sup>-2</sup> (give answer up to 2 decimal places)

(Given: lattice parameter of iron is 0.287 nm)

Q.22 Mild steel is carburized at 1300 K for 1 hour to obtain a certain case depth. Keeping the time as 1 hour, the case depth can be doubled by increasing the temperature to

\_\_\_\_\_\_K (round off to the nearest whole number)

(Given: Activation energy  $Q = 148 \text{ kJ mol}^{-1}$ , Gas constant,  $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ )

## END OF THE QUESTION PAPER

XE-C 4/4