
One-dimensional flow: 
mechanism for 

conservation of flow 
properties 

General flows are three dimensional, but many of them may be studied 
as if they are one dimensional. For example, whenever a flow in a tube 
is considered, if it is studied in terms of mean velocity, it is a one- 
dimensional flow, which is studied very simply. Presented below are the 
methods of solution of those cases which may be studied as one-dimensional 
flows by using the continuity equation, energy equation and momentum 
equation. 

In steady flow, the mass flow per unit time passing through each section does 
not change, even if the pipe diameter changes. This is the law of conservation 
of mass. 

For the pipe shown in Fig. 5.1 whose diameter decreases between 
sections 1 and 2, which have cross-sectional areas A, and A2 respectively, 
and at which the mean velocities are u1 and uz and the densities p1 and p2 
respectively, 

PlAlvl = P2A202 

pAu = constant (5.1) 

namely, 

If the fluid is incompressible, e.g. water, with p being effectively constant, 
then 

Au = constant (5.2) 
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Fig. 5.1 Mass flow rate passing through any section is constant 

pAu is the mass of fluid passing through a section per unit time and this is 
called the mass flow rate. Au is that volume and this is called the volumetric 
flow rate, which is therefore constant is an incompressible pipe flow. 

Equations (5.1) and (5.2) state that the flow is continuous, with no loss or 
gain, so these equations are called the continuity equations. They are an 
expression of the principle of conservation of mass when applied to fluid flow. 
It is clear from eqn (5.1) that the flow velocity is inversely proportional to 
the cross-sectional area of the pipe. When the diameter of the pipe is reduced, 
the flow velocity increases. 

5.2.1 Bernoulli's equation 

Consider a roller-coaster running with great excitement in an amusement 
park (Fig. 5.2). The speed of the roller-coaster decreases when it is at the top 
of the steep slope, and it increases towards the bottom. This is because the 
potential energy increases and kinetic energy decreases at the top, and the 
opposite occurs at the bottom. However, ignoring frictional losses, the sum 
of the two forms of energy is constant at any height. This is a manifestation 
of the principle of conservation of energy for a solid. 

Figures 5.3(a) and (b) show the relationship between the potential energy 
of water (its level) and its kinetic energy (the speed at which it gushes out of 
the pipe). 

A fluid can attain large kinetic energy when it is under pressure as shown 
in Fig. 5.3(c). A water hydraulic or oil hydraulic press machine is powered by 
the forces and energy due to such pressure. 

In fluids, these three forms of energy are exchangeable and, again ignoring 
frictional losses, the total energy is constant. This is an expression of the 
law of conservation of energy applied to a fluid. 
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Fig. 5.2 Movement of roller-coaster 

Fig. 5.3 Conservation of fluid energy 

A streamline (a line which follows the direction of the fluid velocity) is 
chosen with the coordinates shown in Fig. 5.4. Around this line, a cylindrical 
element of fluid having the cross-sectional area dA and length ds is 
considered. Let p be the pressure acting on the lower face, and pressure 
p + (ap/as)ds acts on the upper face a distance ds away. The gravitational 
force acting on this element is its weight, pg dA ds. Applying Newton’s second 
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Fig. 5.4 Force acting on fluid on streamline 

law of motion to this element, the resultant force acting on it, and producing 
acceleration along the streamline, is the force due to the pressure difference 
across the streamline and the component of any other external force (in this 
case only the gravitational force) along the streamline. 

Therefore the following equation is obtained: 

dv aP 
dt as 

pdAds- = -dA-ds - pgdAdscos8 

or 

(5.3) ---- - l a p  gcose 
du _ -  
dt pas 

The velocity may change with both position and time. In one-dimensional 
flow it therefore becomes a function of distance and time, v = v(s, t). The 
change in velocity dv over time dt may be written as 

av a0 

at as 
dv=-dt+-& 

The acceleration is then 

do av avds aV aV _ -  - - + - - = - + v -  
dt at at dt at as 

If the z axis is the vertical direction as shown in Fig. 5.4, then 

COS 8 = dz/ds 

So eqn (5.3) becomes 

(5.4) 
av av 1 ap dz 
at as p as gds 
- + v - = - - - -  

In the steady state, &/at = 0 and eqn (5.4) would then become 
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Leonhard Euler (1707-83) 
Mathematician born near Basle in Switzerland. A 
pupil of Johann Bernoulli and a close friend of Daniel 
Bernoulli. Contributed enormously to the mathe- 
matical development of Newtonian mechanics, while 
formulating the equations of motion of a perfect 
fluid and solid. Lost his sight in one eye and then 
both eyes, as a result of a disease, but still continued 
his research. 

dv l d p  dz 
v- = ---- 9- ds pds  ds 

Equation (5.4) or ( 5 . 5 )  is called Euler’s equation of motion for one- 
dimensional non-viscous fluid flow. In incompressible fluid flow with two 
unknowns ( v  and p ) ,  the continuity equation (5.2) must be solved 
simultaneously. In compressible flow, p becomes unknown, too. So by 
adding a third equation of state for a perfect gas (2.14), a solution can be 
obtained. 

Equation ( 5 . 5 )  is integrated with respect to s to obtain a relationship 
between points a finite distance apart along the streamline. This gives 

- + - + gz = constant ; S f  
and for an incompressible fluid ( p  = constant), 

U2 P 
2 P  
- + - + gz = constant 

between arbitrary points, and therefore at all points, along a streamline. 
Dividing each term in eqn (5.7) by g, 

v2 P 
2g PS 
-+-+ z = H = constant 

(5.7) 

Multiplying each term of eqn (5.7) by p,  

(5.9) 

The units of the terms in eqn (5.7) are m2/s2, which can be expressed as 
kgm2/(s2 kg ). Since kgm2/s2 = J (for energy), then v2/2,  p / p  and gz in eqn 

P V 2  - + p + pgz = constant 
2 
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Daniel Bernoulli (1700-82) 
Mathematician born in Groningen in the 
Netherlands. A good friend of Euler. Made efforts 
to popularise the law of fluid motion, while 
tackling various novel problems in fluid statics 
and dynamics. Originated the Latin word hydro- 
dynamics, meaning fluid dynamics. 

(5.7) represent the kinetic energy, energy due to pressure and potential energy 
respectively, per unit mass. 

The terms of eqn (5.8) represent energy per unit weight, and they have 
the units of length (m) so they are commonly termed heads. 

u2 - : velocity head 
29 

pressure head 

z : potential head 
H : total head 

The units of the terms of eqn (5.9) are kg/(s2m) expressing energy per unit 
volume. Thus, eqns (5.7) to (5.9) express the law of conservation of energy in 
that the sum of the kinetic energy, energy due to pressure and potential 
energy (Le. the total energy) is always constant. This is Bernoulli's equation. 

If the streamline is horizontal, then the term pgh can be omitted giving 
the following: 

PO2 - + Ps = PI 2 
(5.10) 

where pv2/2 is called the dynamic pressure, ps the static pressure, and pt the 
total pressure or stagnation pressure. 

Static pressure ps can be detected, as shown in Fig. 5.5,  by punching a small 
hole vertically in the solid wall face parallel to the flow. 

As Bernoulli's theorem applies to a flow line, it is also applicable to the 
flow in a pipe line as shown in Fig. 5.6. Assume the pipe line is horizontal, 
and z, = z2 in eqn (5.8). The following relative equation is obtained: 
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Fig. 5.5 Picking out of static pressure 

Fig. 5.6 Exchange between pressure head and velocity head 

(5.1 1) -+-=-+- v: PI v2 P2 

29 PS 2g P9 

Also, from the continuity equation, 

VIAl = v2A2 (5.12) 

Consequently, whenever A, > A,, then v, e v2 and p 1  > p 2 .  In other words, 
where the flow channel is narrow (where the streamlines are dense), the flow 
velocity is large and the pressure head is low. 

As shown in Fig. 5.7, whenever water flows from tank 1 to tank 2, the 
energy equations for sections 1 , 2  and 3 are as follows from eqn (5.8): 

(5.13) v: PI 0: P2 0: P3 

2 P  l - 2  p 2 P  
- + - + z --+-+ ~2 + h2 =-+-+ ~3 + h3 



62 Onedimensional flow 

Fig. 5.7 Hydraulic grade line and energy line 

h2 and h3 are the losses of head between section 1 and either of the respective 
sections. 

In Fig. 5.7, the line connecting the height of the pressure heads at 
respective points of the pipe line is called the hydraulic grade line, while that 
connecting the heights of all the heads is called the energy line. 

5.2.2 Application of Bernoulli’s equation 

Various problems on the one-dimensional flow of an ideal fluid can be solved 
by jointly using Bernoulli’s theorem and the continuity equation. 

Venturi tube 
As shown in Fig. 5.8, a device where the flow rate in a pipe line is measured 
by narrowing a part of the tube is called a Venturi tube. In the narrowed part 
of the tube, the flow velocity increases. By measuring the resultant decreasing 
pressure, the flow rate in the pipe line can be measured. 

Let A be the section area of the Venturi tube, u the velocity and p the 
pressure, and express the states of sections 1 and 2 by subscripts 1 and 2 
respectively. Then from Bernoulli’s equation 

Pl u: P 2  V I  

PS 2g 1 - PS 29 
-+-+z --+-+z2 

Assuming that the pipe line is horizontal, 
z1 = 22 

2 
v2 - v: - PI - P2 -- - 

29 P9 

01 = V2A2IAl 

From the continuity equation, 
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Giovanni Battista Venturi (1746-1822) 
Italian physicist. After experiencing life as a priest, 
teacher and auditor, finally became a professor of 
experimental physics. Studied the effects of eddies 
and the flow rates at various forms of mouthpieces 
fitted to  an orifice, and clarified the basic principles 
of the Venturi tube and the hydraulic jump in an 
open water channel. 

Therefore, 

(5.14) 

and 
-- PI - P 2 - H  

PS 
Consequently, the flow rate 

Fig. 5.8 Venturi tube 
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Henry de Pitot (1692-1771) 
Born in Aramon in France. Studied mathematics and 
physics in Paris. As a civil engineer, undertook the 
drainage of marshy lands, construction of bridges 
and city water systems, and flood countermeasures. 
His books cover structures, land survey, astronomy, 
mathematics, sanitary equipment and theoretical 
ship steering in addition to  hydraulics. The famous 
Pitot tube was announced in 1732 as a device to  
measure flow velocity. 

Q = A2v2 = 
J 1  - ( A 2 / 4 )  

(5.15) 

In the case where the flowing fluid is a gas, pl - p2  is measured by a U-tube. 

actual cases, the above equation is amended as follows: 
However, since there is some loss of energy between sections A, and A, in 

(5.16) 

C is called the coefficient of discharge. It is determined through experiment. 
Equation (5.16) is also applicable to the case where the tube is inclined. 

Pitot tube 
Pitot, who was engaged in research work, hit upon an idea one day for a very 
simple measuring device of flow rate. It was a device where the lower end of 
a glass tube is bent by 90" and supported against the flow. The flow velocity 
was to be measured by measuring the increased height of the water level. It is 
said that, as soon as he had hit upon this idea, he rushed to the River Seine 
carrying a glass tube with a bent end. The result of an experiment as shown 
in Fig. 5.9 confirmed his expectation. The device incorporating that idea is 
shown in Fig. 5.10. This device is called a Pitot tube, and it is widely used 
even nowadays. 

The tube is so designed that at the streamlined end a hole is opened in the 
face of the flow, while another hole in the direction vertical to the flow is used 
in order to pick out separate pressures. 

Let pA and vA respectively be the static pressure and the velocity at 
position A of the undisturbed upstream flow. At opening B of the Pitot 
tube, the flow is stopped, making the velocity zero and the pressure p e .  B is 
called the stagnation point. Apply Bernoulli's equation between A and B, 
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Fig. 5.9 Pitot's first experiment 

Fig. 5.10 Pitot tube 
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and 
2 -+-=- P A  vA P B  

PS 29 PS 

or 

(5.17) 

In a parallel flow, the static pressure pA is the same on the streamline adjacent 
to A and is detected by hole C normal to the flow. Thus, since pc = pA, 
eqn (5.17) becomes: 

VA = /F (5.18) 

VA = /- P B  - PC 

And, since (pB - pc)/pg = H, the following equation is obtained: 

V A  = m (5.19) 

In the case where the flowing fluid is a gas, pB - pc is measured with a U- 
tube. 

However, with an actual Pitot tube, since some loss occurs due to its shape 
and the fluid viscosity, the equation is modified as follows: 

V A  = C v m  (5.20) 

where C, is called the coefficient of velocity. 

Flow through a small hole I: the case where water level does not change 
As shown in Fig. 5.1 1, we study here the case where water is discharging from 
a small hole on the side of a water tank. Such a hole is called an orifice. As 

Fig. 5.11 Flow through a small hole (1) 
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shown in the figure, the spouting flow contracts to have its smallest section 
B a small distance from the hole. Here, it is conceived that the flow lines are 
almost parallel so that the pressures are uniform from the periphery to the 
centre of the flow. This part of the flow is called the vena contracta. 

Assume that fluid particle A on the water surface has flowed down to 
section B. Then, from Bernoulli's theorem, 

Assuming that the water tank is large and the water level does not change, 
at point A, vA = 0 and zA = H ,  while at point B, zB = 0. If pA is the 
atmospheric pressure, then 

- + H = - + -  P A  P A  vi 
P9 PS 2g 

or 

VB = 

Equation (5.21) is called Torricelli's theorem. 

(5.21) 

Coeficient of contraction Ratio C, of area a, of the smallest section of the 
discharging flow to area a of the small hole is called the coefficient of 
contraction, which is approximately 0.65: 

a, = C,a (5.22) 

Coeficient of velocity The velocity of spouting flow at the smallest section 
is less than the theoretical value ,&El produced by the fluid velocity and the 
edge of the small hole. Ratio C,  of actual velocity v to is called the 
coefficient of velocity, which is approximately 0.95: 

v = C"VB = c,J2sH (5.23) 

Coeficient of discharge Consequently, the actual discharge rate Q is 

Q = C,a cvuB = CCC,aJ2SH (5.24) 

Furthermore, setting C,C, = C ,  this can be expressed as follows: 

Q = C a m  (5.25) 

C is called the coefficient of discharge. For a small hole with a sharp edge, 
C is approximately 0.60. 

Flow through a small hole 2: the case where water level changes 
The theoretical flow velocity is 

v = & E  
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Fig. 5.12 Flow through a small hole (2) 

Assume that dQ of water flows out in time dt with the water level falling by 
-dH (Fig. 5.12). Then 

dQ = C a m d t  = -dHA 

dt = c a m  
-AdH 

A H 2 d H  1:: dt = - E d H ,  z 
The time needed for the water level to descend from HI to H2 is 

(5.26) 
2A 

t 2 4 1 = - ( f i - f i )  
c a a  

Flow through a small hole 3: the section of water tank where the 
descending velociiy of the water level is constant 
Assume that the bottom has a small hole of area a, through which water 
flows (Fig. 5.13), then 

dQ = C a m d t  = -dH A = -dH n? 

Whenever the descending velocity of the water level (-dH/dt = Y) is 
constant, the above equation becomes 

(5.27) 

H =  ~ (5.28) 

H o( r4 (5.29) 

dH C a m  
dt nlz 

v = - - -  - 

2 

(c:&) r4 
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Fig. 5.13 Flow through a small hole (3) 

In other words, whenever the section shape has a curve of r4 against the 
vertical line, the descending velocity of the water level is constant. 

Figure 5.14 shows a water clock made in Egypt about 3400 years ago, 
which indicates the time by the position of the water level. 

Fig. 5.14 Egyptian water clock 3400 years old (London Science Museum) 

Weir 
As shown in Fig. 5.15, in the case where a water channel is stemmed by a 
board or a wall, over which the water flows, such a board or wall is called a 
weir. A weir is used to adjust the flow rate. 
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Fig. 5.15 Weir 

In the figure, assume a minute depth dz at a given depth z from the water 
level. Let b be the width of the water channel and assume a minute area bdz 
as an orifice. From Bernoulli’s equation 

u = &  

The flow rate dQ passing here is as follows assuming the coefficient of 
discharge is C: 

dQ = Cbdz& 

Integrating the above equation, 

Q = C b f i  J” f i  dz = f CbfiH3” (5.30) 
0 

By measuring H, the discharge Q can be computed from eqn (5.30). 

5.3.1 Equation of momentum 

A flying baseball can simply be caught with a glove. A moving automobile, 
however, is difficult to stop in a short time (Fig. 5.16). Therefore, the velocity 
is not sufficient to study the effects of bodily motion, but the product, Mu, 
of the mass M and the velocity u can be used as an indicator of the 
consequences of motion. This is called the linear momentum. By Newton’s 
second law of motion, the change per unit time in the momentum of a body is 
equal to the force acting on the body. 

Now, assume that a body of mass M(kg) will be at velocity u (m/s) in t 
seconds. The acting force F (N) is given by the following equation: 
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Fig. 5.16 Car does not stop immediately 

(5.31) 
MU, - M U ,  

t 
F =  

In other words, the acting force is conserved as an increase in unit time in 
momentum. This is the law of conservation of momentum. 

Whenever the reaction force of a jet or the force acting on a solid wall in 
contact with the flow is to be obtained, by using the change in momentum, 
such a force can be obtained comparatively simply without examining the 
complex internal phenomena. 

In an actual computation, keeping in mind an assumed control volume in 
the flow, the relation between the change in momentum and the force within 
that volume is obtained by using the equation of momentum. In the case 
where fluid flows in a curved pipe as shown in Fig. 5.17, let ABCD be the 
control volume, A , ,  A, the areas, u l ,  u2 the velocities, and pi,  p2  the pressures 
of sections AB and CD respectively. Furthermore, let F be the force of fluid 
acting on the pipe; the force of the pipe acting on the fluid is -F. This force 
and the pressures acting on sections AB and CD act on the fluid, increasing 
the fluid momentum by such a combined force.' If F, and F, are the 
component forces in the x and y directions of F respectively, then from the 
equation of momentum, 

(5.32) 
- F, + A l p ,  cos a, - A,p, cos a, = m(u2 cos a, - u, cos a l )  
- F, + Alp, sin a, - A,p, sin a, = m(u2 sin a, - ul sin a,)  

' Increase in momentum = momentum going out - momentum coming in. 
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Fig. 5.17 Flow in a curved pipe 

In this equation, rn is the mass flow rate. If Q is the volumetric flow rate, then 
the following relation exists: 

rn = pQ = pA,u, = pA2uz = pQ 

From eqn (5.32), F, and F,, are given by 

(5.33) 1 F, = m(ul cos a1 - u2 cos a2) + A l p ,  cos a, - A,p, cos a2 

F,, = rn(q sin aI - u, sin a,) + A l p ,  sinal - A2p2 sin a2 

Equation (5.32) is in the form where the change in momentum is equal to 
the force, but since rn refers to mass per unit time, note that the equation 
shows that the time-sequenced change in momentum is equal to the force. 

The combined force acting on the curved pipe can be obtained by the 
following equation: 

F =  Jm (5.34) 

5.3.2 Application of equation of momentum 

The equation of momentum is very effective when a fluid force acting on a 
body is studied. 

Force of ajet 
Let us study the case where, as shown in Fig. 5.18, a two-dimensional jet flow 
strikes an inclined flat plate at rest and breaks into upward and downward 
jets. 

Assume that the internal pressure of the jet flow is equal to the external 
one and that no loss arises from the flow striking the flat plate. Since no loss 
occurs, it is assumed that the fluid flows out at the velocity u along the flat 
board after striking it. The control volume is conceived as shown in Fig. 5.18. 
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Fig. 5.18 Force of jet acting on a flat plate at rest 

Examining the direction at right angles to the flat plate, since the velocity of 
the jet turns out to be zero after it has struck the flat board at v sin 6, 

F = pQosin8 (5.35) 

Force F, acting in the direction of the jet is 

F, = F sin 6 = pQv sin' 6 (5.36) 

Force F,, acting in the direction at right angles to the jet is 

F,, = F cos 6 = pQv sin 6 cos 6 (5.37) 

Then the flow rate along the flat plate separates into Q1 and Q2. Let us obtain 
the change in the ratio of Q, to Q2 according to the inclined angle 6. In this 
case, since no force acts along the flat board if the flow loss is disregarded, 
applying the equation of momentum to the direction along the flat board, 

~ Q v c o s ~ = ~ Q ~ v - P Q ~ v  Q c o s ~ = Q I  - Q 2  

Ql and Q2 are obtained using the continuity equation Q = QI + Q2, and 

Q1 = Q(l + COS 6 ) / 2  (5.38) 

Q2 = Q( 1 - COS 6)/2 (5.39) 

In the case where the flat board in Fig. 5.18 moves in the same direction 
as the jet flow at velocity u, since the relative velocity of the jet flow compared 
with the flat board is v - u, the flow rate Q' reaching the flat board is given 
by 

V - U  

v 
Q = Q -  

Since the change in velocity in the direction at right angles to the flat board 
is (v  - u) sin 6 ,  force F acting on the flat board is therefore 
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( u  - u)2 
F = pQ(u - u)sin0 = pQ- sin 0 (5.40) 

IJ 

loss in a suddenly expanding pipe 
For a suddenly expanding pipe as shown in Fig. 5.19, assume that the pipe 
is horizontal, disregard the frictional loss of the pipe, let h, be the expansion 
loss, and set up an equation of energy between sections 1 and 2 as 

PI 4 P2 IJ: 

P9 29 P9 29 

h, = - 

-+ - = - + -+ h, 

2 2  
or 

(5.41) 

Next, the streamlines in the smaller pipe are parallel at its very end, so 
the pressure there is pl.  And it can be considered that the pressure at the cross 
section is constant, so the pressure on the annular face at the pipe joint is also 
pI.  Apply the equation of momentum setting the control volume as shown 
in Fig. 5.19. Thus 

~ Q ( u 2  - V I )  = (PI - ~ 2 M 2  (5.42) 

Since Q = Alvl  = A2u2, from the above equation, 

PI - P 2  I UI - v2 

PS 2g 

(5.43) -- p1 - p2 Q u2 - u1 = u2 (u2 - ul) - 
PS A2 9 9 

Substituting eqn (5.43) into (5.41), 

(5.44) 
(VI - U 2 l 2  A ,  ' u 2  

h, = 2g = (1 - z) $ 
is obtained. This h, is called the Borda-Carnot head loss or simply the 
expansion loss. 

Fig. 5.19 Abruptly enlarging pipe 
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Jet pump 
A jet pump is constructed as shown in Fig. 5.20. By making a water jet spout 
out into a larger water pipe, mixing with the surrounding water occurs so that 
it is carried out with that jet flow. 

Fig. 5.20 Jet pump 

If uo is the velocity of the jet discharging at section 1 and u, the velocity 
of the surrounding water, and assuming that mixing finishes at section 2 and 
the flow is then at uniform velocity u2, then we have the following: 

KO’ 2 

- (D’ - d2)pu: + -d’pui 
4 4 
-p [D2u:  - (0’ - d2)u: - d’ui] 
4 

-D’(p ,  - p 2 )  4 

outflow momentum: 4 PO2 
R 71 

inflow in momentum: 

increase in momentum: 

force acting on the fluid: 

71 

71 

By the law of momentum, 

~ [ D ’ u :  - (D’ - d2)u: - d ’ ~ ; ]  = D2(pl - p 2 )  

Rearranging using the continuity equation, 

(5.45) 

This equation shows that pz - p ,  is always positive. In other words, a jet 
pump can force out water against the differential pressure. 

Efficiency of a propeller 
In the case shown in Fig. 5.21, a propeller of diameter D moving from right 
to left at velocity U can be considered as the case where a flow from left to 
right at velocity U strikes a propeller at rest. It can also be assumed that 
the fluid downstream has been accelerated to velocity U + u. Furthermore, 
the pressures upstream and downstream of the propeller are equally 
constant p. 

From the changes in momentum and kinetic energy across the revolving 
face of the propeller, the thrust T is given by 

T = F D ’ p u ( U + i )  4 (5.46) 

d’ 0’ - d’ 
P2 -PI = PZ.,(OO - 01)’ 
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Fig. 5.21 Flows upstream and downstream of a propeller 

and the efficiency q by 

(5.47) q = -  

Since the losses due to the fluid viscosity and the revolution of the wake 
are disregarded in this computation, this theory gives the attainable upper 
limit. 

2 
2 + u/u 

5.4.1 Equation of angular momentum 

The angular momentum in the case where a body of mass M is rotating at 
radius r and rotational velocity v is given by 

Angular momentum = moment of inertia x angular velocity 
u (5.48) 

= M? x - = Mrv 
r 

The torque (rotational couple) on this body is given by 

Torque = change of angular momentum 
(5.49) 

= moment of inertia x angular acceleration 

This is equivalent to Newton’s second law of motion, and expresses the law 
of conservation of angular momentum. 

Figure 5.22 shows a diagram of an ice skater. Whenever the skater revolves 
with the same angular momentum, if she spreads out her arms and stretches 
out one of her legs to enlarge the moment of inertia, she will slow down. This 
graphically expresses the relation of eqn (5.49). 

If the relation of eqn (5.49) is applied to fluid flow, the torque acting on 
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Fig. 5.22 Ice skater 

Fig. 5.23 Flow in curved tube supported so as to turn around shaft 0 

the shaft of a water wheel or a pump when the fluid runs over its rotating 
impeller can be obtained. 

In the case where fluid is running in a curved tube as shown in Fig. 5.23, 
let T be the moment (torque),* which tries to turn the pipe around shaft 0, 
generated by the force which the fluid between section A, and section A, 
exerts on the pipe wall. Then from the equation of angular momentum 

T + A2p2r2 cos C Y ~  - A,p ,r ,  cos CY, = m(r2u2 cos a2 - rlul cos cq) (5.50) 

2 The directions of rotation and torque are usually positive whenever they are counterclock- 
wise. 
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5.4.2 Power of a water wheel or pump 

Fluid flows at mass flow rate m along the blade in Fig. 5.24 due to rotation 
of the pump impeller. At radii I - , ,  r2, the peripheral velocities are ul, u2 
and ul, u2 are the absolute velocities at angles cy1, a, to them. The relative 
velocities to the impeller are w1 and w2. As seen from Fig. 5.24, since the 
direction of the pressures passes through the centre of the impeller, the 
second and third terms on the left eqn (5.50) turn out to be zero. The 
torque is as follows: 

T = m(r2v2 cos a2 - rlul cos cyI )  (5.51) 

In this way, the torque acting on the impeller shaft can be obtained just from 
the states of the velocities at the inlet and outlet of the impeller. 

If o is the angular velocity of the impeller, the power L given to the shaft 
is 

L = T w  (5.52) 

The torque and power for a water wheel can be obtained similarly. 

Fig. 5.24 Flow along blade of centrifugal pump 

1. Derive Bernoulli’s equation for steady flow by integrating Euler’s 
equation of motion. 

2. Find the flow velocities v I ,  v2 and u3 in the conduit shown in Fig. 5.25. 
The flow rate Q is 800L/min and the diameters d , ,  d2 and d,  at sections 
1 ,2  and 3 are 50,60 and 100mm respectively. 

3. Water is flowing in the conduit shown in Fig. 5.25. If the pressure p ,  at 
section 1 is 24.5 kPa, what are the pressures p ,  and p, at sections 2 and 3 
respectively? 
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Fig. 5.25 

4. In Fig. 5.26, air of flow rate Q flows into the centre through a pipe of 
radius r, and radially between two discs, and then flows out into the 
atmosphere. Obtain the pressure distribution between the discs. Also 
calculate the pressure force acting on the lower annular ring plate whose 
inner diameter is r ,  and outer diameter is r,. Neglect frictional losses. 

Fig. 5.26 

5. In Fig. 5.26, if water flows at rate Q = 0.013m3/s radially between two 
discs of radius r, = 30cm each from a pipe of radius rl = 7cm, obtain 
the pressure and the flow velocity at r = 12cm. Assume that h = 0.3cm 
and neglect the frictional loss. 

6. As shown in Fig. 5.27, a tank has a hole and a << A. Find the time 
necessary for the tank to empty. 

7. As shown in Fig. 5.28, water flows out of a vessel through a small hole 
in the bottom. What is a suitable section shape to keep the velocity of 
descent of the water surface constant? Assume the volume of water in the 
vessel is 21, R / d  = 100 (where R is the radius of the initial water surface 
in the vessel, d the small hole on the bottom), and the flow discharge 
coefficient of the small hole is C = 0.6. What should R and d be in order 
to manufacture a water clock for measuring 1 hour? 
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8. In the case shown in Fig. 5.29, water at a flow rate of Q = 0.2m3/s is 
supplied to the cylindrical water tank of diameter 1 m discharging 
through a round pipe of length 4 m and diameter 15 cm. How deep will 
the water in the tank be? 

9. As shown in Fig. 5.30, a jet of water of flow rate Q and diameter d strikes 
the stationary plate at angle 8. Calculate the force on this stationary 
plate and its direction. Furthermore, if 8 = 60°, d = 25mm and 
Q = 0.12m3/s, obtain Q,, Qz and F. 

Fig. 5.30 

10. As shown in Fig. 5.31, if water flows out of the tank of head 50cm 
through the throttle, obtain the pressure at the throat. 
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Fig. 5.31 

11. Figure 5.32 shows a garden sprinkler. If the sprinkler nozzle diameter is 
5mm and the sprinkler velocity is 5m/s, what is the rate of rotation? 
What torque is required to hold the sprinkler stationary? Assume there is 
no friction. 

Fig. 5.32 

12. A jet-propelled boat as shown in Fig. 5.33 is moving at a velocity of 
10m/s. The river is flowing against the boat at 5m/s. Assuming the jet 
flow rate is 0.15m3/s and its discharge velocity is 20m/s, what is the 
propelling power of this boat? (Jet boats like this are actually in use.) 

Fig. 5.33 


