
Dimensional analysis 
law of similarity 

The method of dimensional analysis is used in every field of engineering, 
especially in such fields as fluid dynamics and thermodynamics where 
problems with many variables are handled. This method derives from the 
condition that each term summed in an equation depicting a physical 
relationship must have same dimension. By constructing non-dimensional 
quantities expressing the relationship among the variables, it is possible to 
summarise the experimental results and to determine their functional 
relationship. 

Next, in order to determine the characteristics of a full-scale device 
through model tests, besides geometrical similarity, similarity of dynamical 
conditions between the two is also necessary. When the above dimensional 
analysis is employed, if the appropriate non-dimensional quantities such as 
Reynolds number and Froude number are the same for both devices, the 
results of the model device tests are applicable to the full-scale device. 

When the dimensions of all terms of an equation are equal the equation is 
dimensionally correct. In this case, whatever unit system is used, that 
equation holds its physical meaning. If the dimensions of all terms of an 
equation are not equal, dimensions must be hidden in coefficients, so only the 
designated units can be used. Such an equation would be void of physical 
interpretation. 

Utilising this principle that the terms of physically meaningful equations 
have equal dimensions, the method of obtaining dimensionless groups of 
which the physical phenomenon is a function is called dimensional analysis. 

If a phenomenon is too complicated to derive a formula describing it, 
dimensional analysis can be employed to identify groups of variables which 
would appear in such a formula. By supplementing this knowledge with 
experimental data, an analytic relationship between the groups can be 
constructed allowing numerical calculations to be conducted. 
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In order to perform the dimensional analysis, it is convenient to use the n 
theorem. Consider a physical phenomenon having n physical variables u l ,  u,, 
u,, . . ., u,, and k basic dimensions' (L, M, T or L, F, T or such) used to 
describe them. The phenomenon can be expressed by the relationship among 
n - k = rn non-dimensional groups nl, n2, n,, . . . , x,. In other words, the 
equation expressing the phenomenon as a function f of the physical 
variables 

f(Vl,Q, u3. . . . , U") = 0 (10.1) 

can be substituted by the following equation expressing it as a function 4 of 
a smaller number of non-dimensional groups: 

4(7h, n2, n39 . . . , n,) = 0 (10.2) 

This is called Buckingham's x theorem. In order to produce nl, nz, ng.. . . , n,, 
k core physical variables are selected which do not form a II themselves. Each n 
group will be a power product of these with each one of the m remaining 
variables. The powers of the physical variables in each x group are determined 
algebraically by the condition that the powers of each basic dimension must 
sum to zero. 

By this means the non-dimensional quantities are found among which there 
is the functional relationship expressed by eqn (10.2). If the experimental 
results are arranged in these non-dimensional groups, this functional 
relationship can clearly be appreciated. 

10.3.1 Flow resistance of a sphere 

Let us study the resistance of a sphere placed in a uniform flow as shown in 
Fig. 10.1. In this case the effect of gravitational and buoyancy forces will be 
neglected. First of all, as the physical quantities influencing the drag D of a 
sphere, sphere diameter d, flow velocity U, fluid density p and fluid viscosity 
p, are candidates. In this case n = 5, k = 3 and m = 5 - 3 = 2, so the number 
of necessary non-dimensional groups is two. Select p,  U and d as the k core 
physical quantities, and the first non-dimensional group n, formed with D, 
is 

n1 = DpxUydz = [LMT-2][L-'M3x[LT-']y[L]' 
(10.3) - - L1-3x+y+zMl+xT-2-y 

' In general the basic dimensions in dynamics are three - length [L]. mass [MI and time [TI - 
but as the areas of study, e.g. heat and electricity, expand, the number of basic dimensions 
increases. 
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Fig. 10.1 Sphere in uniform flow 

i.e. 

L: 1 - 3 x + y + z = O  
M :  l + x = O  
T :  - 2 - y = 0  

Solving the above simultaneously gives 
x = - 1  y = - 2  z = - 2  

Substituting these values into eqn (10.3), then 
D 

n, =- (10.4) 
p U2d2 

Next, select ,u with the three core physical variables in another group, and 

7c2 = ppxU’# = [L-’ MT-’][L-3M]“[L T-’]’[L]” 
(10.5) - - L1-3x+y+zMl+xT-l-y 

i.e. 

L: - I - ~ x + Y + z = O  
M :  l + x = O  
T :  - l - y = O  

Solving the above simultaneously gives 
x = - 1  y = - 1  z = - 1  

Substituting these values into eqn (10.5), then 
D 

n2 = __ (10.6) 

Therefore, from the 7c theorem the following functional relationship is 
obtained: 

711 =f(n*> (10.7) 

P Ud 

Consequently 
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D -- 
pU2d2 -f (s) (10.8) 

In eqn (1O.Q since d2 is proportional to the projected area of sphere 
A = (71d2/4), and p U d / p  = U d / v  = Re (Reynolds number), the following 
general expression is obtained: 

(1 0.9) 

where C, = f ( R e ) .  Equation (10.9) is just the same as eqn (9.4). Since C, is 
found to be dependent on Re, it can be obtained through experiment and 
plotted against Re. The relationship is that shown in Fig. 9.10. Even through 
this result is obtained through an experiment using, say, water, it can be 
applied to other fluids such as air or oil, and also used irrespective of the size 
of the sphere. Furthermore, the form of eqn (10.9) is always applicable, not 
only to the case of the sphere but also where the resistance of any body is 
studied. 

P u2 D = CDA- 
2 

10.3.2 Pressure loss due to pipe friction 

As the quantities influencing pressure loss Ap/l per unit length due to pipe 
friction, flow velocity v,  pipe diameter d, fluid density p, fluid viscosity p and 
pipe wall roughness E, are candidates. In this case, n = 6, k = 3, 
m =  6 - 3 = 3. 

Obtain n l ,  n2, n3 by the same method as in the previous case, with p, u 
and d as core variables: 

Ap (10.10) AP 
71, = -pp"uyd" = [L-'F][L-'FT2]x[LT-']y[L]' = -- 

1 1 pu2 

(1 0.12) 
E 

713 = &p"oY& = [L][L-4FT21"[LT-']y[L]n = 2 

Therefore, from the 71 theorem, the following functional relationship is 

n1 = f ( 7 1 2 , 7 1 3 )  (10.13) 

obtained: 

and 

" " = j ( L , f )  1 pv pvd d 

That is, 

(1 0.14) 

The loss of head h is as follows: 
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( 1 0.1 5 )  

where 1 = f ( R e ,  &Id). Equation (10.15) is just the same as eqn (7.4), and 1 
can be summarised against Re and e ld  as shown in Figs 7.4 and 7.5. 

When the characteristics of a water wheel, pump, boat or aircraft are 
obtained by means of a model, unless the flow conditions are similar in 
addition to the shape, the characteristics of the prototype cannot be assumed 
from the model test result. In order to make the flow conditions similar, the 
respective ratios of the corresponding forces acting on the prototype and the 
model should be equal. The forces acting on the flow element are due to 
gravity FG, pressure Fp, viscosity F,, surface tension FT (when the prototype 
model is on the boundary of water and air), inertia F, and elasticity FE. 

The forces can be expressed as shown below. 

gravity force 
pressure force 

F G  = mg = pL3g 
Fp = (Ap)A = (Ap)L2 

viscous force v du 
FV = .(-)A dY = P ( ~ ) L ~  = P v ~  

surface tension force FT = T L  

inertial force FI = ma = pL3 

elasticity force FE = KL2 

L 
T 

= pL4TP2 = pv2L2 

Since it is not feasible to have the ratios of all such corresponding forces 
simultaneously equal, it will suffice to identify those forces that are closely 
related to the respective flows and to have them equal. In this way, the 
relationship which gives the conditions under which the flow is similar to the 
actual flow in the course of a model test is called the law of similarity. In 
the following section, the more common force ratios which ensure the flow 
similarity under appropriate conditions are developed. 

10.4.1 Nondimensional groups which determine flow 
similarity 

Reynolds number 
Where the compressibility of the fluid may be neglected and in the absence 
of a free surface, e.g. where fluid is flowing in a pipe, an airship is flying in 
the air (Fig. 10.2) or a submarine is navigating under water, only the viscous 
force and inertia force are of importance: 
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Fig. 10.2 Airship 

inertia force FI pv2L2 Lvp Lo 
viscous force F, pvL p v 

-_-----_- - -  - - - R e  

which defines the Reynolds number Re, 

Re = Lv/v (1 0.1 6 )  

Consequently, when the Reynolds numbers of the prototype and the model 
are equal the flow conditions are similar. Equations (10.16) and (4.5) are 
identical. 

Froude number 
When the resistance due to the waves produced by motion of a boat (gravity 
wave) is studied, the ratio of inertia force to gravity force is important: 

inertia force F, p u 2 ~ *  u2 
gravity force F, p ~ ~ g  gL 

-- - - - _ -  - -  

In general, in order to change v2 above to v as in the case for Re, the square 
root of u2/gL is used. This square root is defined as the Froude number Fr, 

U 
Fr = - ( 1 0.1 7) 

If a test is performed by making the Fr of the actual boat (Fig. 10.3) and of 
the model ship equal, the result is applicable to the actual boat so far as the 
wave resistance alone is concerned. This relationship is called Froude’s law of 
similarity. For the total resistance, the frictional resistance must be taken into 
account in addition to the wave resistance. 

Also included in the circumstances where gravity inertia forces are 

J Z  

Fig. 10.3 Ship 
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important are flow in an open ditch, the force of water acting on a bridge 
pier, and flow running out of a water gate. 

Weber number 
When a moving liquid has its face in contact with another fluid or a solid, 
the inertia and surface tension forces are important: 

inertia force F, pv’L’ pv’L 
surface tension FT T L  T 

In this case, also, the square root is selected to be defined as the Weber 
number We, 

We = v J ~ ~  ( 1 0.1 8) 

We is applicable to the development of surface tension waves and to a poured 
liquid. 

Mach number 
When a fluid flows at high velocity, or when a solid moves at high velocity 
in a fluid at rest, the compressibility of the fluid can dominate so that the 
ratio of the inertia force to the elasticity force is then important (Fig. 10.4): 

inertia force F, pv2L’ v’ v’ 
elastic force FE K L  K / p  a’ 

Again, in this case, the square root is selected to be defined as the Mach 
number M, 

--- - -_ -  - -  

--_ - -- - _ -  - - -  

M = v/a ( 1 0.1 9) 

M < 1, M = 1 and M > 1 are respectively called subsonic flow, sonic flow 
and supersonic flow. When M = 1 and M < 1 and M > 1 zones are 
coexistent, the flow is called transonic flow. 

Fig. 10.4 Boeing 747: full length, 70.5 m; full width, 59.6 m; passenger capacity, 498 persons; 
turbofan engine and cruising speed of 891 km/h (M = 0.82) 

10.4.2 Model testing 

From such external flows as over cars, trains, aircraft, boats, high-rise 
buildings and bridges to such internal flows as in tunnels and various 
machines like pumps, water wheels, etc., the prediction of characteristics 
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Ernst Mach (1838-1916) 
Austrian physicist/philosopher. After being professor a t  
Graz and Prague Universities became professor at 
Vienna University. Studied high-velocity flow of air and 
introduced the concept of Mach number. Criticised 
Newtonian dynamics and took initiatives on the theory 
of relativity. Also made significant achievements in 
thermodynamics and optical science. 

through model testing is widely employed. Suppose that the drag D on a car 
is going to be measured on a 1 : 10 model (scale ratio S = 10). Assume that the 
full length 1 of the car is 3 m and the running speed u is 60 km/h. In this case, 
the following three methods are conceivable. Subscript m refers to the 
model. 

Test in a wind tunnel In order to make the Reynolds numbers equal, the 
velocity should be u, = 167m/s, but the Mach number is 0.49 including 
compressibility. Assuming that the maximum tolerable value M of incom- 
pressibility is 0.3, v, = 102m/s and Re,/Re = u,/Su = 0.61. In this case, 
since the flows on both the car and model are turbulent, the difference in C ,  
due to the Reynolds numbers is modest. Assuming the drag coefficients for 
both D/(pu212/2) are equal, then the drag is obtainable from the following 
equation: 

(10.20) 

This method is widely used. 

Test in a circulatingflume or towing tank In order to make the Reynolds 
numbers for the car and the model equal, u, = uSu,/u = 11.1 m/s. If water is 
made to flow at this velocity, or the model is moved under calm water at this 
velocity, conditions of dynamical similarity can be realised. The conversion 
formula is 

(10.21) 
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Test in a variable density wind tunnel If the density is increased, the 
Reynolds numbers can be equalised without increasing the air flow velocity. 
Assume that the test is made at the same velocity; it is then necessary to 
increase the wind tunnel pressure to 10atm assuming the temperatures are 
equal. The conversion formula is 

(10.22) P 
P m  

D = 0 , - S 2  

Two mysteries solved by Mach 

[No. 11 The early Artillerymen knew that two bangs could be heard downrange from a gun 
when a high-speed projectile was fired, but only one from a low-speed projectile. But they did 
not know the reason and were mystified by these phenomena. Following Mach's research, it 
was realised that in addition to the bang from the muzzle of the gun, an observer downrange 
would first hear the arrival of the bow shock which was generated from the head of the 
projectile when its speed exceeded the velocity of sound. 

By this reasoning, this mystery was solved. 
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[No. 21 This is a story of the Franco-Prussian war of 1870-71. It was found that the novel 
French Chassep6t high-speed bullets caused large crater-shaped wounds. The French were 
suspected of using explosive projectiles and therefore violating the International Treaty of 
Petersburg prohibiting the use of explosive projectiles. Mach then gave the complete and 
correct explanation that the explosive type wounds were caused by the highly pressurised air 
caused by the bullet's bow wave and the bullet itself. 

So it was clear that the French did not use explosive projectiles and the mystery was solved. 

1. Derive Torricelli's principle by dimensional analysis. 

2. Obtain the drag on a sphere of diameter d placed in a slow flow of 
velocity U. 

3. Assuming that the travelling velocity a of a pressure wave in liquid 
depends upon the density p and the bulk modulus k of the liquid, derive 
a relationship for a by dimensional analysis. 

4. Assuming that the wave resistance D of a boat is determined by the 
velocity u of the boat, the density p of fluid and the acceleration of 
gravity g, derive the relationship between them by dimensional analysis. 

5 .  When fluid of viscosity p is flowing in a laminar state in a circular pipe 
of length 1 and diameter d with a pressure drop Ap, obtain by 
dimensional analysis a relationship between the discharge Q and d, Apll 
and p. 

6. Obtain by dimensional analysis the thickness 6 of the boundary layer 
distance x along a flat plane placed in a uniform flow of velocity U 
(density p,  viscosity p). 

7. Fluid of density p and viscosity p is flowing through an orifice of 
diameter d bringing about a pressure difference Ap. For discharge Q, the 
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discharge coefficient C = Q/[(7~d*/4),/-], and Re = I,/-, show 
by dimensional analysis that there is a relationship C = f ( R e ) .  

8. An aircraft wing, chord length 1.2m, is moving through calm air at 
20°C and 1 bar at a velocity of 200 km/h. If a model wing of scale 1:3 is 
placed in a wind tunnel, assuming that the dynamical similarity 
conditions are satisfied by Re, then: 

(a) If the temperature and the pressure in the wind tunnel are 
respectively equal to the above, what is the correct wind velocity in 
the tunnel? 

(b) If the air temperature in the tunnel is the same but the pressure is 
increased by five times, what is the correct wind velocity? Assume 
that the viscosity p is constant. 

(c) If the model is tested in a water tank of the same temperature, what 
is the correct velocity of the model? 

9. Obtain the Froude number when a container ship of length 245m is 
sailing at 28 knots. Also, when a model of scale 1:25 is tested under 
similarity conditions where the Froude numbers are equal, what is the 
proper towing velocity for the model in the water tank? Take 
1 knot = 0.514m/s. 

10. For a pump of head H, representative size I and discharge Q, assume that 
the following similarity rule is appropriate: 

where, for the model, subscript m is used. 
If a pump of Q = 0.1 m3/s and H = 40m is model tested using this 

relationship in the situation Q, = 0.02m3/s and H ,  = 50m, what is the 
model scale necessary for dynamical similarity? 


