
Computational fluid 
dynamics 

For the flow of an incompressible fluid, if the Navier-Stokes equations of 
motion and the continuity equation are solved simultaneously under given 
boundary conditions, an exact solution should be obtained. However, since 
the Navier-Stokes equations are non-linear, it is difficult to solve them 
analytically. 

Nevertheless, approximate solutions are obtainable, e.g. by omitting the 
inertia terms for a flow whose Re is small, such as slow flow around a sphere 
or the flow of an oil film in a sliding bearing, or alternatively by neglecting 
the viscosity term for a flow whose Re is large, such as a fast free-stream flow 
around a wing. But for intermediate Re, the equations cannot be simplified 
because the inertia term is roughly as large as the viscosity term. 
Consequently there is no other way than to obtain the approximate solution 
numerically. 

For a compressible fluid, it is further necessary to solve the equation of 
state and the energy equation simultaneously with respect to the thermodyna- 
mical properties. Thus, multi-dimensional shock wave problems can only be 
solved by relying upon numerical solution methods. 

Of late, with the progress of computers, it has become popular to solve 
flow problems numerically. By such means it is now possible to follow a 
kaleidoscopic change of flow. 

This field of engineering is referred to as numerical fluid mechanics or 
computational fluid dynamics. It can be roughly classified into four 
approaches: the finite difference method, the finite volume method, the finite 
element method and the boundary element method. 

15.1.1 Finite difference indication 

One of the methods used to discretise the equations of flow for computational 
solution is the finite difference method. 

The fundamental method for indicating a partial differential coefficient in 



250 Computational fluid dynamics 

Fig. 15.1 Finite difference method 

finite difference form is through the Taylor series expansion of functions of 
several independent variables. Assume a rectangular mesh, for example. 
Subscripts ( i , j )  are to indicate (x, y )  respectively as shown in Fig. 15.1. The 
mesh intervals in the i a n d j  directions are Ax and Ay respectively, whilefis a 
functional symbol. Space points ( i , j )  mean (xi = x,, + iAx, yi = yo +jAy). 

The forward, backward and central differences of the first-order differential 
coefficient af /ax can be induced in the manner stated below. Provided that 
function f is continuous, permitting Taylor expansion of A+, and L-,, then 
considering the x direction alone, 

f ;+,=f;+- AX+--  Ax2+--  AX +.. .  (15.1) 

(15.2) 

af 1 ; $ I i  6ax3 i ax i 

l a Y l  3 

r*f I 
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3 Ax2-- -  AX +... f;-, =f - - l A x + - -  af 

Solving eqn (15.1) for afpxl,, 

- 1  ?f -f;+1 -- -f; + o(Ax) (15.3) 

Here, O(Ax) means the combination of terms of order Ax or less. Since this 
finite difference approximation, omitting O(Ax), is approximated by the 
functional value f; of xi and functional value J+, at xi+, on the side of 
increasing x, it is called the forward difference. This finite difference 
indication has a truncation error of the order Ax and it is said to have first- 
order accuracy. The backward difference is approximated by the functional 
valuei-, on the side of decreasing x andf, through a similar process, and 

af 1 - -L -f;-1 ; o(Ax) 

ax i AX 

(15.4) 

Furthermore, solving eqns (15.1) and (1  5.2) for af/axli, then by 

ax i AX 

subtraction, 
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a r l =  f;+1 - f ; - I  + O(Ax2) (15.5) 

Since this finite difference representation is approximated by functional 
values f;-l and f;+l on either side of xi, it is called the central difference. As 
seen from eqn (15.5), the central difference is said to have second-order 
accuracy. This method of representation is also applicable to the differential 
coefficient for y .  

Next, the central difference for a2f/ax2 I i  is obtainable by adding eqn (1 5.1) 
to eqn (15.2). In other words, it has second-order accuracy: 

ax i   AX 

+ O(Ax2) (15.6) 

In this way, a partial differential coefficient is expressed in finite difference 
form as an algebraic equation. By substituting these coefficients a partial 
differential equation can be converted to an algebraic equation. 

a'f f;+l - 2f; +L-, 
ax2 l i  = 2Ax2 

15.1.2 Incompressible fluid 

Method using stream function and vorticity 
To begin with, an explanation is given of the case where the flow pattern is 
obtained for the two-dimensional steady laminar flow of an incompressible 
and viscous fluid in a sudden expansion of a pipe as shown in Fig. 15.2. In 
this case, what governs the flow are the Navier-Stokes equations and the 
continuity equation. 

In the steady case, a vorticity transport equation is derived from the 
Navier-Stokes equation and is expressed in non-dimensional form. It 
produces the following equation by putting alJat = 0 in eqn (6.18) and 
additionally substituting the relationship of eqn (12.12), u = a$/ay, 
v = +/ax: 

Fig. 15.2 Flow in a sudden expansion 
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Fig. 15.3 Grid mesh and grid points 

(1 5.9) ' 
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i i , j  = t ( C - 1 . j  + l i , j - i  + l i + l , j  + l i , j + i )  

Re + z [ ( $ i + l , j  - $ i - I , j ) ( l i , j + i  - l i , j - 1 )  

- ($i.j+l - +i,,- l)(l i+1,j  - l i - l . j ) l  ( 1 5.1 0) 

ICI. 1.1 ' = i ( $ i - i , j  + +i,j-I + $i+I,j  + $t,j+i + h 2 1 i , j )  (15.11) 

Equations (15.10) and (15.11) show the relationship between vorticity 5, (as 
well as stream function t+hii) at mesh points (i, j )  in Fig. 15.3 and the vorticities 
(as well as stream functions) at the surrounding mesh points. If they are 
described for all mesh points, simultaneous equations are obtained. In general, 
because such equations have many unknowns and are also non-linear, they 
are mostly solved by iteration. In other words, substitute into eqns (15.10) and 
(1 5.1 1) the given values of the boundary condition on inlet section 1, the centre 
line and the wall face for ( and $. Set the initial value for the mesh points inside 
the area to zero. The values of [ and $ will be new values other than zero when 
their equations are first evaluated. Repeat this procedure using these new 
values and the value obtained by extrapolating the unknown boundary value 
on outlet section 2 from the value at the upstream inner mesh point. When 
satisfactory convergent mesh point values are reached, the computation is 
finished. Figure 15.4 shows the streamlines and the equivorticity lines in the 
pipe obtained through this procedure when Re = 30. 

This iteration method is called the Gauss-Seidel sequential iteration 
method. Usually, however, to obtain a stable solution in an economical 
number of iterations, the successive over-relaxation (SOR)' method is used. 

Fig. 15.4 Equivorticity lines (upper half) and streamlines (lower half) of flow through sudden 
expansion 

' Forsythe, G. E. and Wasow, W. R., Finite-Difference Methods for Partial Direrential 
Equations, (1960), 144, John Wiley, New York. 
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Furthermore, when the left-hand side of eqn (1 5.7) is discretised using 
central differences, a stable convergent solution is hard to obtain for flow at 
high Reynolds number. In order to overcome this, the upwind difference 
method2 is mostly used for this finite difference method. 

This method is based upon the idea that most flow information comes from 
the upstream side. For example, if the central difference is applied to &)lay 
of the first term of left side but the upwind difference to atlax, then the 
following equations are obtained. 

and 

( 1 5.1 2) 

(1 5.1 3 )  

Equation (1 5.13) is still only of first order accuracy and so numerical errors 
can accumulate, sometimes strongly enough to invalidate the solution. 

Method using velocity and pressure 
In the preceding section, computation was done by replacing the flow velocity 
and pressure with the stream function and vorticity to decrease the number 
of dependent variables. In the case of complex flow or three-dimensional 
flow, however, it is difficult to establish a stream function on the boundary. 
In such a case, computation is done by treating the flow velocity and pressure 
in eqns (6.2) and (6.12) as dependent variables. Typical of such methods is 
the MAC (Marker And Cell) m e t h ~ d , ~  which was developed as a numerical 
solution for a flow with a free surface, but was later improved to be 
applicable to a variety of flows. In the early development of the MAC 
method, markers (which are weightless particles indicating the existence of 
fluid) were placed in the mesh unit called a cell, as shown in Fig. 15.5, and 
such particles were followed. One of the examples is shown in Fig. 15.6, 
where a comparison was made between the photograph when a liquid drop 
fell onto a thin liquid layer and the computational result by the MAC 
method.4z5 

More recently, however, a technique with the variables of flow velocity 
and pressure separately located (using a staggered mesh) as shown in 
Fig. 15.7 was adapted from the MAC method. Markers are not needed but 
are used only for the presentation of results. 

Gosman, A. D. et al., Heat and Mass Transfer in Recirculating Flow, (1969), 55,  Academic 

Harlow, F. H. and Welch, J.  E., The Physics of Fluids, 8, (1965), 2182. 
Nakayama, Y. and Nakagome, H., (photograph only). 
Nichols, B. D., Proc. 2nd Int. ConJ on Numerical Methods in Fluid Dynamics, (1971), 371. 

Press, New York. 
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Fig. 15.5 Layout of cell and marker particles used for computing flow on inclined free surface 

Fig. 15.6 Liquid drop falling onto thin liquid layer: 0 start; 0 at 0.0002 s; 0 at 0.0005 s; @ at 0.0025 s 

6 Fujii, K. and Nakagome, H., Reading Physical Phenomena (1978), 102, Kodansha, Tokyo (in 
Japanese). 
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Fig. 15.7 Layout of variables in the MAC method 

Fig. 15.8 Time-sequenced change of Karman vortex street: 0 start; 0 at 0.1 s; 0 at 0.2s 
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As an example, in Fig. 15.8 comparison is made between the kaleidoscopic 
change of Kannan vortices in the flow behind a prism and the computational 
result.' 

15.1.3 Compressible fluid 

Timeinarching method 
For a compressible fluid, the equation of a thermodynamic quantity in 
addition to the equations of continuity and momentum must be evaluated. 
One-dimensional isentropic flows etc. are solvable analytically. However, the 
development of a multi-dimensional shock wave, for example, can be solved 
by numerical methods only. For example, in the MacConnack method,* the 
differential equation is developed from the conservation form' for the mass, 
momentum and energy, neglecting the viscosity. 

Figure 15.9 is the equi-Mach-number diagram of a rocket head flying at 
supersonic velocity calculated by using this method." 

One of the methods used to solve the compressible Navier-Stokes equation 
taking the viscosity into account is the IAF (Implicit Approximate 

Fig. 15.9 Equi-Mach number diagram of rocket nose in supersonic flow 

' Nakayama, Y. ,  Aoki, K. and Oki, M., Proc. 3rdAsian Symp. on Visualizotion, (1994), 453. 
' MacCormack, R.  W., AIAA Paper, 69-354, (1969). 
9 The conservation form of a one-dimensional inviscid compressible fluid is 

-+-=o f =  pu g =  p+puZ 
af at ax ag {: 1 [u(::p)l 

Hirose, N .  et a[ . ,  National Aerospace Lab., Japan. 10 
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Factorisation) method which is sometimes called the Beam-Warning 
method.” In Fig. 15.10 it is applied to a transonic turbine cascade. The 
solution is produced by using this method only for the region near the turbine 
cascade, while using the finite element method for the other region. Results 
matching the test result well are obtained.” As an example of a three- 
dimensional case, Plate 513 shows the result obtained by solving the 
compressible Navier-Stokes equation for the density distribution of the flow 
on the rotating fan blades and spinner of a supersonic turbofan engine by the 
IAF method. 

Fig. 15.10 Equidensity diagram of a transonic turbine cascade: (a) computation; (b) experiment 
(photograph of Mach-Zehnder interference fringe) 

Method of characteristics 
Figure 15.11 is a test rig for water hammer, which is capable of measuring 
the pressure response waveform by the pressure transducer set just upstream 
of the switching valve. When the switching valve is suddenly closed, pressure 
p increases and propagates along the pipe as a pressure wave. To obtain its 
numerical solution, the wave phenomenon is expressed by a hyperbolic 
equation, and the so-called method of  characteristic^'^ is used. 

Fig. 15.11 Water hammer testing device 

I ‘  Beam, R. M. and Warming, R.  F., AIAA Journal, 16 (1978), 393. 
I’ Nakahashi, K.  et al., Transactions ofrhe JSME, 54, (1988), 506. 
l 3  Nozaki, 0. et al., Proc. Znt. Symp. on Air Breathing Engines, (1993). 
I4 Steerer, V. L., Fluid Mechanics, (1975), 6th edition, 654, McGraw-Hill, New York. 
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Now, putting f as the friction coefficient of the pipe and a as the 
propagation velocity of the pressure wave, linearly combine the continuity 
equation, which is the one-dimensionalised equations (6.1) and (6.12), with A 
times the momentum equation, to get 

pa2 at+ u + -  - + - + ( u + A ) -  + - u I u ( = O  (1 5.14) ax av] 2 f D  ;[aP ( "2) "1 [a, 
A ax at 

Here, assume that 

a' dx dx 
dt u + A = -  @=*a)  ( 1 5.1 5) 

and partial differential equation (15.14) is converted to an ordinary 
differential equation. Furthermore, discretise it, and, as shown in Fig. 15.12, 
u and p of point P after time interval At are obtained as the intersection of the 
curves C+ (A = a) and C- (A = -a) which are expressed by eqn (15.15) from 
the initial values of velocity v and pressurep at A and C.  

V+n=x 

Fig. 15.12 x-tgrid for solution of single pipe line 

Fig. 15.13 Pressure response wave in water hammer action 
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Figure 15.13 shows the comparison between the pressure waves thus 
calculated and the actually measured values.” The difference between them 
arises from the fact that the frequency dependent pipe friction is not taken 
into account in eqn (1 5.14). 

15.1.4 Turbulence 

Turbulence model 
As already stated in Section 6.4, making some assumption or simplification 
for computing the Reynolds stress z,, expressed by eqn (6.39), is called the 
modelling of turbulence. It is mainly classified by the number of transport 
equations for the turbulence quantity used for computation. The equation for 
which z, is given by eqn (6.40) or (6.43) is called a zero-equation model. The 
equation for which the kinetic energy k of turbulence is determined from the 
transport equation, while the length scale E of turbulence is given by an 
algebraic expression, is called a one-equation model. And the method by 
which both k and E are determined from the transport equation is called a 
two-equation model. The k-& model, using the turbulence energy dispersion E 

instead of I ,  is typical of the two-equation model. As an example, Fig. 15.14 
shows the mesh diagram used to compute the flow in a fluidic device and also 
the computational results of streamline, turbulence energy and turbulence 
dispersion.’6 

Fig. 15.14 Flow in a fluidic device: (a) mesh diagram; (b) streamline; ( 3  turbulent energy; (d) 
turbulent dispersion. Re = lo4, Q,/Q, = 0.2 (Q,: control flow rate; Q,, supply flow rate) 

I s  Izawa, K., MS thesis, Faculty of Engineering, Tokai University, (1976). 
l6 Ogino, H. and Nakayama, Y.,  Bulletin of rheJSME, 29 (1986), 1515. 
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LE5 (Large Eddy Simulation) 
In computations based on the time-averaged Navier-Stokes equation using 
turbulence models, time is averaged and the change in turbulence is treated 
as being smooth. However, a method by which computation can follow the 
change in irregularly changing turbulence for clarifying physical phenomena 
etc. is LES. 

LES is a method where the computation is conducted by modelling only 
vortices small enough to stay inside the mesh in terms of local mean (mesh 
mean model), while large vortices are not modelled but computed as they are. 
Figure 15.15(a) shows a solution for the flow between parallel  wall^.'^ 
Comparing this with Fig. 15.15(b), a visualised photograph of bursts by the 

Fig. 15.15 Time lines near the wall of a flow between parallel walls: (a) computed; (b) experimental 

Fig. 15.16 Turbulent flow over step (large eddy simulation). Reynolds number based on a channel 
width, Re= 1.1 x lo4. 

” Moin, P. and Kim, J. ,  JournalofFIuidMechanzcs, 118, (1982), 341. 



262 Computational fluid dynamics 

hydrogen bubble method,18 it is clear that they coincide well with each other. 
In Fig. 15.16, the turbulent flow over a step is computed and its time lines 
are shown graphically.” Plate 2 shows the computational result for turbulent 
flow around a rectangular column.” 

Direct simulation 
If the Navier-Stokes equation and continuity equation are computed directly 
as they are, then turbulence can be computed without using a model. This is 
called the direct simulation of turbulence. Even with the number of mesh 
points available in the latest large computer, only the larger turbulent 
vortices can be found. Nevertheless, interesting results on the large structure 
of turbulence have been obtained.’l 

Fig. 15.17 Flow behind a step 

I *  Kim, H. T. et al., Journal of Fluid Mechanics, 50, (1971), 113. 
l 9  Kobayashi, T. et al., Report IIS, University of Tokyo, 33 (1987), 25. 

21  Kuwahara, K., Simulation of Turbulence, Journal of Japan Physics Academy, 40, (1985), 877. 
Kobayashi, T., Atlas of Visualization III, Plate 10, (1997), CRC Press, Boca Raton, FL. 20 
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These methods simulate the movement of a large vortex by making the 
accuracy of the upwind difference scheme, shown in Fig. 15.13, of higher 
order and also by making the numerical viscosity” smaller. As one such 
example, the computed and visualised flows behind a step are shown in Fig. 
15.17.23 It can be seen that the movement of the vortex behind the step with 
the passage of time is well simulated. 

The finite volume method is a technique which discretises in a small region 
(the control volume shown in Fig. 15.18) the integration equation of the 
continuity equation and the Navier-Stokes equation written in conservative 
form.24 The boundary volumes are then obtained using the neighbouring grid 
points.25 

In the examples which appeared in the preceding sections, the grid was a 
regular structured grid in a line. Of late, however, the boundary-fitted grid 
following an irregular boundary or an unstructured grid has also been used. 
In the finite volume method, these new grids are easier to apply. As examples, 
the application of these techniques to an unstructured grid of triangles, the 

Fig. 15.18 Control volume 

This means the artificial propagation term produced by the finishing error of the upwind 22 

differential. 
” Oki, M. et al.,  JSME International Journal, 36-4, B (1993), 577. 

For example, the Navier-Stokes equation written in preservative form is obtained by 
expressing uaU/ax, vaU/ay, etc., the inertia term of eqn (16.12), in the form of a(u.u)/ax, 

24 

a ( U 4 P Y .  
Patankar, S. V., Numerical Heat Transfer and Fluid Flow, (1980), Hemisphere, New York. 25 
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Fig. 15.19 Unstructured grid26 

flow around a column, the mesh and the computed pressure distribution and 
velocity vector diagram are shown in Fig. 15.19 and Plate 1. 

15.3.1 Division of elements 

The finite difference method is a mathematical method by which the 
differential calculus appearing in the governing equation is directly 
approximated by finite difference equations. In the finite element method, 
however, by using physical approximations to discretise the differential 
equations, simultaneous algebraic equations are developed for the whole 
elements. Thus an approximate solution of the differential equations 
satisfying the boundary conditions is obtained. The flow zone was divided 
into a right-angled mesh as a rule in the finite difference method. In the finite 
element method, however, by dividing the area into proper-sized triangular 
or quadrangular elements as shown in Fig. 15.20, any complex-shaped area 
can be treated. The corners of the triangles or quadrangles are called nodal 
points, at which such variables as x ,  y, u, v and p are defined. 

Fig. 15.20 Two-dimensional elements 

26 Ob, M. et al., Trans. JSME, 65-631, B (1999), 870. 
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15.3.2 Method of weighted residuals 

For discretisation by the finite element method, the variational principle or 
the method of weighted residuals is used. The variational principle is also 
called the minimum energy principle, which uses the principle that the 
potential energy is a minimum in the state of equilibrium. As this method has 
limited application, the method of weighted residuals is widely used. 

Consider the potential flow around a cylinder placed between flat plates 
as shown in Fig. 15.21. 

-+,=o 
ax2 ay 
* = T  ( 1 5.1 6) 

- = 
an an 
% 3  At outlet S, which is free boundary 

in region S containing fluid 

At inlet and on wall surface S, 

** ** I 
where the bars above the letters indicate that the applicable values are those 
on the boundary. 

Next, in order to obtain the stream function tj, multiply by a given 
function which is IC/* = 0 on boundary S, (and can be any value in other areas 
by eqn (15.16)). Then integrate for the whole region. The following equation 
is obtained: 

Is (2 ** + &* ** dA + Is* (; a* - an> a* +*dS=O (15.17) 

Here, function $* is called the weighting function. In eqn (15.17), assume 
function $* and its derivative ali//an are approximate values. The first term 
on the left expresses the quantity obtained by multiplying the error of the 
differential equation in the area (here, called the residual) by a given function 
and integrating for the whole area. Likewise, the second term expresses the 
quantity obtained by applying a similar process to the residual on boundary 
S,. This is called a weighted residual expression. When the right solution is 

Fig. 15.21 Flow around cylinder 
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obtained, this equation applies strictly to the given function $*. The 
approximate solution which distributes the error to satisfy the function 
$* = 0 is called the method of weighted residuals. 

15.3.3 Interpolating function 

In the finite element method, improvement is made by applying an algebraic 
equation derived using the values at nodal points to approximate the 
unknowns in each element. This equation is called an interpolating function. 
Where a weighting function of the same type is chosen it is called the 
Galerkin method. 

It is not easy to obtain an approximate function effective all over sections 
[a, b] for the one-dimensional function $ = $(x) shown in Fig. 15.22. 
Nevertheless, the section [a, b] can be divided into large and small linear 
elements. For example, divide the subsection where the function changes 
abruptly into (1,2), and divide the subsection of the gentler change into (3,4). 
Then for each of them $ can be expressed by a one-dimensional (linear) 
function. 

In the two-dimensional case, as shown in Fig. 15.23, by using triangular 
elements their size can be determined to the extent that the functions are 
expressible by a one-dimensional function of coordinates according to how 
abruptly or gently the functional change is expected. In other words, 

* = a1 + a2x + a3y ( 1 5.1 8) 

Assume the function values at the corners of triangle 1, 2 and 3 to be $ I ,  t j 2  

and t,b3 respectively, then 

Fig. 15.22 One-dimensional function 
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Fig. 15.23 Triangular element 

1 XI Yl {;j=[: :: ;:]{:j (1 5.19) 

{ :: J = [ 1 x2 Y 2 ] [ k }  

From the above, 

1 XI Yl  

1 x3 Y3 

( 1 5.20) 

Substitute eqn (15.20) into (15.18), 
3 

$ = 411c/I+ 4 2 + 2  + 4 3 1 ~ 1 3  = C +i+i (15.21) 

In other words, $ is the interpolating function expressed as the linear 
combination of nodal point values $i .  Hence, in the following form, 

(1 5.22) 

it is called the shape function, and ai, b, and ci are determined by the 
coordinates of the nodal points. 

i= 1 

4i = ai + bix + ciy (i = 1,2, 3) 

1 5.3.4 Equationaverlapping elements 

Approximate the unknown function $ and weighting function $* respectively 
in eqn (15.17) by interpolating the functional equation (15.21) using the nodal 
point values in the element and the same equation with $ changed to $*. 
Substituting these functions into the weighted residual equation, which is the 
deformed equation (1 5.17), gives the quantitative relation for each element. 
By overlapping them, a simulated linear equation covering the whole 
analytical area is developed. By solving these equations, it is possible to 
obtain the values at each nodal point and thus to draw the streamline of 
$ = constant. 
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15.3.5 Applicable cases 

To compute the flow shown in Fig. 15.21, as this is the symmetrical flow, 
the upper half only of the flow is divided into large and small triangular 
elements as shown in Fig. 15.24. For the finite element method, it is enough, 
unlike the finite difference method, just to divide the flow section finely 
around the cylinder where the velocity changes abruptly. 

The computed streamline and velocity vector are shown in Fig. 1 5.25.27 
With the finite element method also, as for the finite difference method, 

analysis of viscous and compressible fluids is possible. More recently, 
computation using a turbulence model has been carried out. As examples for 
a viscous fluid, the computational result for laminar flow around a pipe nest 
is shown in Fig. 15.26,28 while that for the turbulence velocity distribution of 
the flow in a clean room using the k--E model is shown in Plate 3.29 

Fig. 15.24 Mesh diagram of flow around cylinder (180 elements and 11 5 nodes) 

Fig. 15.25 Flow around cylinder: (a) streamline; (b) velocity vector 

27 Hayashi, K. et al., Flow Analysis by Personal Computer, (1986), 73, Asakura-Shoten, Tokyo. 
28 Nakazawa, J., Journalof JSME, 87 (1984), 316. 
29 Ikegawa. M. et al., Proc. Znt. Symp. on Supercomputers for Mechanical Engineering, JSME, 
(1988), 57. 
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\a) 

Fig. 15.26 Flow around tube bank: (a) divided element; (b) velocity vector; (c) streamline; 
(d) pressure (Re = 100) 

Instead of solving the difference equation which governs fluid movement under 
the given boundary conditions, the boundary element method uses an integral 
equation which must satisfy values on the boundary. To derive the integral 
equation, one can use the method using Green’s formula and also the method of 
weighted residuals. Green’s formula method has long been used for analysing 
potential flow, and more recently has been systematised as the ‘panel 
method’, used for analysing external flows around aircraft, automobiles, etc. 

Brebbia derived an equation by the more general method of weighted 
residuals with wider applicability, and named it the boundary element 
method.30 It is often compared with the finite element method, and has been 
used in many fields of application. 

Brebbia, C. A,, The Boundary Element Methodfor Engineers, (1978), Pentech Press, London. 30 
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In this method, the weighting function in the method of weighted residuals 
described in Section 15.3.2 is selected so as to satisfy the Laplace equation 
(15.16) within area S, and converted to an integral equation on boundary S, 
surrounding the area as shown by the following equation: 

(15.23) 

Next, the boundary is divided into a number of line-segment elements. 
For example, in the case of the flow shown in Fig. 15.24, the mesh division is 
as shown in Fig. 15.27. Then, the value at a given point in the element is 
expressed in terms of the value of the nodal point by the interpolating 
equation (15.21) in the finite element method. The simultaneous linear 
equation for the value at the nodal points can then be solved. 

The computational result for the case of Fig. 15.27 is shown in Fig. 
15.28.30 Here, a$/an expresses the flow velocity along the boundary. 

Since the boundary element method only requires division of the 
boundary of the region into the elements, it is popular for cases where the 
velocity or the pressure distribution on a body surface needs to be obtained. 

a$ a** +*-dS - $-dS = 0 .I, an s, an 

Fig. 15.27 Mesh diagram by boundary element method of flow around cylinder 

- .  

Fig. 15.28 Solution by boundary element method 

30 Brebbia, C .  A,, The Boundary Element Merhodfor Engineers, (1978), Pentech Press, London. 
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Fig. 15.29 Mesh diagram for computing flow around full model of transonic plane 

Figure 15.29 is the mesh diagram for the case of flow around a full model 
of a transonic plane using the panel method. The computational result of the 
pressure distribution obtained is shown in Plate 6(a), which coincides very 
well with the result of the wind tunnel experiment as shown in Plate 6(b).3' 

Finally, a new kind of finite volume method has been proposed. This 

Fig. 15.30 Modelling by discrete vortex element 

31 Kaiden, T. et al., Proc. 6th NAL Symp. on Aircraft Computational Aerodynamics, (1988), 141. 
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Fig. 15.31 Flow pattern around the rectangular column illustrated in Fig. 15.30 

technique replaces the successive distribution of vorticity produced in a flow 
field containing varied viscosity and density with discrete vortex elements. 
Each vortex motion is followed by the Lagrange method and thus analyses 
the unsteady flow field. This technique is called the discrete vortex method. 
As an example, the computational results for an unsteady flow around a 
square column in a uniform flow are shown in Fig. 15.30.32 

Inamoto, T. et al., Finite Element Flow Analysis, University of Tokyo Press, (1982), 931. 32 



Boundary element method 273 

In Fig. 15.31(a) and (b) the left and right sides show respectively the flow 
pattern of vortex points and streamlines. In any of these cases, the positive 
vortex (clockwise rotation) develops from point A and the negative vortex 
(counterclockwise rotation) from points B and C. These vortices develop 
behind the rectangular column and the KArmAn vortex street is formulated in 
the wake. 


